Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Биметаллические реле темпера принцип действия: устройство и принцип действия, характеристики, схема подключения к магнитному пускателю

Содержание

Принцип работы и функционал температурных реле с датчиком температуры

Для обогрева помещений применяются различные приборы с возможностью автоматического контроля их основных рабочих параметров. Для реализации подобной функции используется термореле с регулировкой температуры.

Общее описание устройства

Термостат отключает нагревательный прибор при достижении определенной температуры

Температурное реле или термостат является основной деталью, которая управляет функционированием бытовых приборов отопления. Также он входит в конструкцию водонагревателей и вентиляторов, климатической техники.

Термореле (термостат) – это блок управления отопительной или охлаждающей системой, выполняющий конкретные задачи:

  • Экономия ресурсов. Котел или другая подобная техника с терморегулятором потребляет меньше электричества или газа. Реле отключает прибор, как только температура воздуха в помещении достигла нужного значения.
  • Повышение комфорта. При наличии реле для контроля температуры не нужно следить за работой котла.
  • Обеспечение безопасности. Термореле на включение/выключение оповещает пользователя о перегреве оборудования.

Основной задачей термостата называют контроль температурных показателей теплоносителя. Пользователь самостоятельно задает требуемые характеристики, после чего прибор поддерживает их на оптимальном уровне.

Принцип действия

Реле температуры функционирует по довольно простой схеме. Котлы, оборудованные данным конструктивным элементом, также оснащаются термодатчиком. Он собирает информацию относительно температуры теплоносителя, циркулирующего в системе. При этом комнатные датчики регистрируют климатические показатели в самом помещении. Собранная информация поступает на блок управления.

Принцип работы простейшего термореле заключается в том, что встроенный в устройство регулятор сверяет полученные данные с заданными пользователем настройками. В последующем он повышает мощность прибора или, наоборот, уменьшает ее.

Разновидности приборов

Механический терморегулятор с выносным датчиком

На рынке встречаются термореле с разным внешним видом, конструкционными особенностями и характеристиками. В зависимости от способа монтажа подобные устройства бывают стационарными и розеточными (переносными). Первая разновидность термореле устанавливается непосредственно в стену. Переносные варианты имеют возможность быстрого подключения, что привлекает многих пользователей.

По месту расположения датчиков выделяют:

  • термореле с выносным датчиком температуры;
  • агрегаты со встроенным датчиком.

В первом случае датчик размещают на конце кабеля, отходящего от температурного реле. Его длина может быть разной – от 10-20 см до нескольких метров.

Когда в схеме термореле присутствует датчик выносного типа, можно рассчитывать на более точную регулировку климатических показателей помещения.

Преимуществом устройства называют то, что их чувствительные элементы разрешается устанавливать на улице, в погребе и различных подсобных помещениях. Во время работы таких контролеров практически исключены ошибки. Единственным недостатком реле с выносным датчиком называют появление сбоев при исчезновении электричества.

Механические варианты

Подобные датчики температуры и реле считаются самыми доступными и простыми в использовании. Они работают благодаря присутствию в конструктивной схеме биметаллической пластинки. Отключение и настройка рабочих параметров устройства осуществляется при помощи рычага и поворотного колеса.

Недостатком механических моделей называют сложность их монтажа. Они устанавливаются в углубление в стене и напрямую подключаются к сети.

Электронные модели

Электронный регулятор температуры со встроенным датчиком

Популярностью пользуются и электронные термореле и датчики. Они точнее измеряют климатические параметры помещения благодаря наличию в составе конструкции полупроводниковых деталей, работающих от тока 24 В. Подобные устройства могут подключаться напрямую к электрической сети или применяются батарейки.

Электронное термореле оснащено монитором. Это облегчает выполнение настройки устройства, оповещает пользователя о результатах последнего замера климатических параметров.

Регулируемые температурные реле также дополнительно имеют календарь, часы, присутствует возможность их программировать (режимы работы день-ночь, будни-выходные).

Область применения

Термореле на 12 вольт часто входит в состав конструктивной схемы систем отопления. Пользователю необходимо контролировать температуру в котле и контурах с учетом климатических показателей помещения. Также устройство позволяет регулировать объем воды в системе. При наличии температурного реле удается своевременно выявить любые неисправности в работе котла.

В конструкции бытовых обогревателей также могут присутствовать термостаты, включаемые через розетку. Такие устройства просты в использовании и подключении, универсальны и высокоэффективны. Подобные термореле совместимы с электрическими чайниками, нагревательными приборами, светотехникой.

Термореле для теплого пола

Схема установки термореле для теплого пола

Существуют специальные контролеры, предназначенные для регулировки работы системы «теплый пол». Они подсоединяются к нескольким деталям – датчикам, нагревательным элементам и электросети. После включения термореле получает информацию о температурных показателях системы, после чего сравнивает их с заданными пользователем настройками.

При необходимости контролер включает или отключает нагревательные элементы, делая это циклично. Поэтому теплый пол без трудностей обеспечивает в помещении стабильную температуру воздуха.

Для инфракрасных обогревателей

Приборы получили большое распространение из-за способности передавать тепловую энергию на значительные площади. При установке термостата удастся повысить эффективность работы таких устройств. Используя программируемые накладное термореле, легко настроить функционирование инфракрасного обогревателя на длительный период времени.

Контролеры помогают пользователю сэкономить электроэнергию. Систему можно настроить таким образом, что прибор будет включаться в определенный момент для поддержания температуры воздуха в заданном диапазоне.

Для сауны и бани

Рекомендуется использовать контролеры, способные работать при температуре от +50°С. С их помощью функционирование сауны или бани будет происходить автономно с учетом параметров, заданных пользователем.

Инструкция по созданию устройства

Схема для создания регулятора температуры своими руками

Чтобы изготовить своими руками термореле, нужно придерживаться следующей схемы:

  1. Подготовительные работы. На плате размещают все необходимые элементы и производят пайку. Для этого запрещено использовать кислоту, способную привести к порче мелких деталей. Специалисты рекомендуют применять канифоль.
  2. Протравка дорожек. Выполняют с учетом схемы устройства.
  3. Проверка работоспособности контролера. Для выполнения данной операции применяют тестер.
  4. Проверка работоспособности полупроводников. Измеряют полярность триодов, диодов и прочих элементов.

После завершения сборки термодатчика своими руками выполняют его подключение к системе. Тиристоры подбирают опытным путем, это позволит выполнить более точную настройку функционирования устройства.

  • Как найти скрытую проводку в стене самостоятельно без прибора
  • Соединение проводов опрессовкой гильзами — чем и как обжимать

Тепловые реле с термобиметаллическими пластинами

Подробности
Категория: РЗАиА

Для защиты электрических цепей от длительного протекания токов перегрузки, в 5-7 раз превышающих номинальные токи, широко применяются аппараты тепловой защиты с термобиметаллическими исполнительными механизмами. Термобиметаллический элемент содержит биметаллическую пластину, состоящую из двух материалов с различными температурными коэффициентами линейного расширения а, жестко скрепленных друг с другом.

Биметаллическая пластина с нагревательным элементом (а) и способы ее подогрева (б)
В некоторых тепловых реле (например, в реле ТРИ-10, ТРН-25 и др.) нагревательные элементы выполняются сменными, что значительно расширяет диапазон рабочих токов.
На рис. 2 представлены упрощенные схемы биметаллических устройств тепловых реле.
При нагреве пластины У (рис. 2,а) она изгибается в направлении усилия Pi и воздействуя на штифт 3 перемещает подвижной пружинный контакт 2 до размыкания с неподвижным контактом 4. Изменяя положение контактов 2 и 4 меняется уставка реле по току срабатывания. После охлаждения биметаллической пластины реле возвращается в исходное положение. Способ подогрева пластины реле может быть непосредственный, либо косвенный. Данное устройство имеет малое быстродействие, что устраняется в конструкции, представленной на рис. 2,6. Биметаллическая пластина 1 служит защелкой, удерживающей контакты в замкнутом состоянии. При нагреве и изгибе пластины она освобождает контакты, которые размыкаются под действием пружины 5. Возврат пластины в исходное состояние осуществляется вручную.


Рис. 2. Схемы биметаллических устройств тепловых реле
Еще большее быстродействие достигается в конструкции рис. 2,а Пластинчатая пружина 6 удерживает контакты реле в замкнутом состоянии до тех пор, пока усилие Р1, развиваемое пластиной, не станет больше усилия Р2, развиваемое пружиной. При нагреве пластины она скачком выгнется с сторону Р1 и разомкнет контакты реле. Возврат системы — автоматический, после остывания пластины.

Разновидностью подобной конструкции является устройство, представленное на рис. 2,г. Здесь одновременно происходят скачкообразные перемещения пластины и контактов. Система имеет самовозврат.
Для исключения влияния температуры окружающей среды на характеристики тепловых реле в них предусмотрена термокомпенсация в виде дополнительной биметаллической пластины. В конструкции реле рис. 2,3 осуществляется компенсация прогиба пластины, а на рис. 2,е дан вариант исполнения пластины с компенсацией усилия.

Рис. 3. Времятоковые характеристики реле ТРН-10А:
1 — зона времятоковых характеристик при срабатывании реле из холодного состояния;
2 — зона времятоковых характеристик при срабатывании реле из горячего состояния (после прогрева номинальным током)
Тепловые реле с термобиметаллическими пластинами нашли широкое применение для защиты статорной обмотки двигателя от длительного протекания токов перегрузки, как в режиме пуска двигателя, так и в режиме технологических перегрузок. Они относятся к аппаратам защиты косвенного действия, так как реагируют не на превышение температуры нагрева защищаемого объекта, а на ток вызывающий это превышение. Отсюда недостатками тепловых реле являются: малая термическая стойкость к протекающим по реле сверхтокам; нерегулируемость защитной характеристики; большое время срабатывания и потери энергии; большой разброс в срабатывании реле; необходимость в остывании. Достоинствами тепловых реле являются: относительно малые размеры, масса и стоимость; простота конструкции и надежность в эксплуатации.
Основной защитной характеристикой реле является времятоковая характеристика — зависимость времени срабатывания реле от кратности тока в цепи по отношению к номинальному току (рис. 3  для теплового реле ТРН-10А). Характеристики приводятся для реле работающего из холодного состояния (область 1), например при пуске двигателя и реле работающего из горячего состояния (область 2), например после прогрева реле номинальным током.
Современные магнитные пускатели комплектуются тепловыми реле нового поколения. Реле серии PTЛ имеет трехполюсное исполнение, механизм для ускорения срабатывания при обрыве фазы статорной обмотки двигателя, регулятор, тока несрабатывания и несменные нагревательные элементы. Реле снабжено термокомпенсацией и имеет высокое быстродействие, рассчитано на номинальные токи до 200 А и предназначено для комплектации пускателей серии ПМЛ. Реле серии РТТ (для магнитных пускателей серии ПМА) имеет аналогичные характеристики и рассчитано на номинальные токи до 630 А.

Биметаллический датчик температуры | Сиб Контролс

Биметаллические датчики температуры

Что такое биметаллический датчик температуры?

Твердые вещества, как правило, расширяются при нагревании. Величина данных изменений зависит от линейных размеров образца, от материала, из которого он изготовлен и величины изменения температуры. Следующая формула применяется для расчета длины материала в зависимости от его температуры:

где,

  длина материала после нагрева
  первоначальная длина материала
  коэффициент линейного расширения
  изменение температуры

Вот некоторые типичные значения коэффициента линейного расширения α для металлов:

  • алюминий 25×10−6 на градус С
  • медь 16,6×10−6 на градус С
  • железо 12×10−6 на градус С
  • олово 20×10−6 на градус С
  • титана 8.5×10−6 на градус С


Как Вы видите, значения данного коэффициента α являются весьма незначительными. Это означает, что расширение (или сжатие) небольших образцов при малых перепадах температуры почти незаметно. Но мы можем легко увидеть воздействие теплового расширения для объектов, имеющих большие линейные размеры, такие, как например мосты, где деформационные разрывы должны быть включены в конструкцию для предотвращения разрушения в связи с изменением температуры окружающей среды.

Один из способов сделать заметным движение вследствие теплового расширения, заключается в том, чтобы соединить две полоски разнородных металлов, таких как медь и железо. Если мы возьмем две одинаковых полоски меди и железа, положим их рядом, и затем нагреем их, то мы увидим, что медная полоска удлинилась чуть больше, чем железная:

Если мы соединим эти две полосы металла вместе, дифференциальный рост линейных размеров приведет к движению изгиба, значительно превышающего линейное расширение. Это устройство называется — биметаллическая пластина:

Этого движения изгиба достаточно, чтобы перемещать механизм указателя, приводить в движение электромеханический переключатель, или выполнять большое число других механических задач, делая биметаллическую пластину очень простым и полезным сенсором температуры. Домашние термостаты часто используют этот принцип, чтобы и определять температуру в комнате и приводить в действие электрические выключатели для управления этой температурой. В бойлерах, электрочайниках и т. д. используется этот тип устройства (обычно в форме выпуклого диска bi-металла), чтобы определить перегрев и автоматически отключить питающее напряжение от нагревателя, если температура превышает заданный предел. Если биметаллическую полосу изогнуть по винтовой линии, то она будет иметь тенденцию раскручиваться при нагреве. Это движение скручивания может индицироваться стрелкой, указывая по шкале величину температуры. Термометр, использующий данный принцип, показан на следующей фотографии:


Тепловые реле — устройство и принцип действия

Тепловые реле — устройство и принцип действия

Тепловые реле предохраняют электродвигатель от перегрева, вызванного главным образом его перегрузкой, а также потерей фазы или отклонениями параметров сети от их номинальных значений.

Принцип действия тепловых реле основан на изгибании биметаллического элемента при его нагреве. Биметаллический элемент выполнен из двух металлических пластин с разными коэффициентами линейного расширения. При нагреве одна из пластин удлиняется в большей степени, а поскольку пластины скреплены, происходит изгиб всего элемента. Таким образом, в случае превышения тока определенного значения биметаллический элемент нагревается и изгибается, приводя в действие контакт реле. Очевидно, что при увеличении тока уменьшается время срабатывания реле. Зависимость времени срабатывания реле от тока называется характеристикой теплового реле.

Рис. 1. Характеристика теплового реле

На рисунке 1 приведен пример характеристики реле в холодном состоянии, где Iустн – номинальный ток уставки, а Iуст – ток, который протекает через реле в определенный момент времени. Под номинальным током уставки понимается наибольший ток, который в течение длительного времени при данной настройке реле не приводит к его срабатыванию.

Тепловые реле надежно защищают электродвигатель от перегрузок только в случае его эксплуатации в режиме S1 (продолжительный режим работы). Температурные условия мест, в которых установлены реле и защищаемый двигатель должны быть полностью идентичны. Если двигатель работает в повторно-кратковременном режиме, то защита его от перегрузок тепловым реле неэффективна, кроме того, возможны ложные срабатывания.

В случае, когда величины токов электродвигателя имеют относительно большие значения, тепловое реле может включаться через трансформаторы тока.

Тепловое реле необходимо выбрать таким образом, чтобы его номинальные значения напряжения и тока соответствовали аналогичным значениям двигателя, далее необходимо выставить ток уставки согласно следующим выражениям:

Iустн=Iдн, если Тср=Тн,

где Iдн – номинальное значение линейного тока двигателя, Тср

– температура окружающей среды, в которой установлено тепловое реле, Тн – температура калибровки реле;

 , если

Современные электродвигатели выполняются с изоляцией класса F и превышением температуры по классу В. Таким образом, даже при температуре окружающей среды 400С обеспечивается температурный запас 250С, благодаря чему электродвигатель может выдерживать кратковременные перегрузки без разрушения изоляции. Реле, подобранные согласно данным рекомендациям, обеспечивают надежную защиту двигателей при длительных перегрузках 15-20%. Таким образом, обеспечивается надежная продолжительная работа электродвигателя и обеспечивается заложенный заводом-изготовителем ресурс работы.

Если же нагрузка двигателя неравномерная (в одни короткие периоды времени больше номинальной, в другие наоборот – меньше), во избежание ложных срабатываний защиту необходимо несколько загрубить. С этой целью токи уставки Iуст, полученные по формулам, приведенным выше, следует увеличить на 10%.

Тепловое реле не защищает двигатель от коротких замыканий, поэтому его использование возможно только совместно с устройствами защиты от токов короткого замыкания (автоматические выключатели, предохранители, реле максимального тока).

 

Лабораторно-практическая работа №__

Тема: Тепловые реле — устройство, принцип действия, технические характеристики.

Цель: Изучить устройство, принцип действия и технические характеристики тепловых реле.

1.Принцип действия тепловых реле.

Тепловые реле — это электрические аппараты, предназначенные для защиты электродвигателей от токовой перегрузки. Наиболее распространенные типы тепловых реле — ТРП, ТРН, РТЛ и РТТ. Принцип действия тепловых реле основан на свойствах биметаллической пластины изменять свою форму при нагревании. В общем случае тепловое реле представляет собой расцепитель, в основе которого лежит биметаллическая пластина, по которой протекает ток. Под воздействием теплового эффекта протекающего тока, биметаллическая пластина изгибается, разрывая цепи. При этом происходит изменение состояния дополнительных контактов. Первая и основная функция тепловых реле — защита электрооборудования от перегрузки.

Рис.1.Тепловое реле.

Долговечность энергетического оборудования в значительной степени зависит от перегрузок, которым оно подвергается во время работы. Для любого объекта можно найти зависимость длительности протекания тока от его величины, при которых обеспечивается надежная и длительная эксплуатация оборудования. Эта зависимость представлена на рисунке 2 (кривая 1).

Рис.2. Зависимость длительности протекания тока от его величины.

При номинальном токе допустимая длительность его протекания равна бесконечности. Протекание тока, большего, чем номинальный, приводит к дополнительному повышению температуры и дополнительному старению изоляции. Поэтому чем больше перегрузка, тем кратковременнее она допустима. Кривая 1 на рисунке устанавливается исходя из требуемой продолжительности жизни оборудования. Чем короче его жизнь, тем большие перегрузки допустимы. При идеальной защите объекта зависимость tср (I) для реле должна идти немного ниже кривой для объекта. Для защиты от перегрузок, наиболее широкое распространение получили тепловые реле с биметаллической пластиной. Биметаллическая пластина теплового реле состоит из двух пластин, одна из которых имеет больший температурный коэффициент расширения, другая — меньший. В месте прилегания друг к другу пластины жестко скреплены либо за счет проката в горячем состоянии, либо за счет сварки. Если закрепить неподвижно такую пластину и нагреть, то произойдет изгиб пластины в сторону материала с меньшим. Именно это явление используется в тепловых реле. Широкое распространение в тепловых реле получили материалы инвар (малое значение a) и немагнитная или хромоникелевая сталь (большое значение a). Нагрев биметаллического элемента теплового реле может производиться за счет тепла, выделяемого в пластине током нагрузки. Очень часто нагрев биметалла производится от специального нагревателя, по которому протекает ток нагрузки. Лучшие характеристики получаются при комбинированном нагреве, когда пластина нагревается и за счет тепла, выделяемого током, проходящим через биметалл, и за счет тепла, выделяемого специальным нагревателем, также обтекаемым током нагрузки. Прогибаясь, биметаллическая пластина своим свободным концом воздействует на контактную систему теплового реле.

Температурные датчики и реле KSD.

Температурные датчики и реле

В бытовой электротехнике очень часто требуется контроль температуры. Для этого применяется специальный датчик. Собой он представляет биметаллический контакт, который размыкается при нагреве свыше определённой температуры.

В обиходе данный датчик называют термостатом, термопредохранителем, термовыключателем, термореле, термодатчиком, термопрерывателем. В общем как его только не называют, хотя сама деталь представляет собой довольно нехитрое устройство.

Выглядит это чудо так.


Термовыключатель KSD 301 на температуру срабатывания 115°С без фиксации фланца.

Термовыключатели серии KSD 201, KSD 301, KSD 302 есть в составе практически всех бытовых электроприборов, которые применяются для нагрева. Их можно встретить в составе электрических схем чайников-термосов (термопотов), накопительных водонагревателей (бойлеров), электроплит, духовых шкафов, СВЧ-печей.

Данные температурные выключатели имеют подвижной или фиксированный фланец, необходимый для установки на поверхность для контроля температуры. У некоторых моделей фланец может отсутствовать. Для уменьшения температурного сопротивления между термовыключателем и объектом контроля (баком, резервуаром, камерой и т.п.) может применяться теплопроводная паста. Выводы термовыключателей серии KSD штампованные и рассчитаны на подключение проводников без пайки.

Применение температурных выключателей.

Термовыключатели очень просты и легки в применении. Используются в электротехнике для следующих целей:

Экстренное выключение электроприбора при температурной перегрузке. Так, например, если откажет основная схема терморегулятора водонагревателя, то температура бака с водой вскоре достигнет критической (более 100 – 105° С). При этом термовыключатель размыкает свои контакты и снимает напряжение с электроприбора. Вот таким образом обеспечивается пожаробезопасность электроприбора.

Стоит отметить, что причиной неработоспособности электроприбора может служить как раз термовыключатель. Дело в том, что существуют термовыключатели с самовозвратом, как, например, типа KSD 201, так и термореле с принудительным включением. Термореле (термостат) типа KSD 302S как раз относится к приборам с принудительным включением.

При срабатывании данного датчика его термоконтакты размыкаются. Чтобы вновь замкнуть термоконтакты датчика, нужно нажать на маленькую кнопку со стороны контактов термореле. На фотографии видно, что со стороны контактов термореле есть кнопка. Она то и служит для восстановления рабочего состояния контактов.


Термореле KSD 302S

Внешний вид и цоколёвка выводов термостата типа KSD 302S показаны на рисунке.


Размеры и внешний вид термореле KSD 302S


Внешний вид и типовые размеры термовыключателей с одной парой термоконтактов и фиксированным фланцем

Контроль температуры. Термовыключатели очень активно применяются в чайниках-термосах (термопотах). Там они используются как в роли защитного термопредохранителя, так и для отключения нагревательного элемента при достижении температуры кипения воды.

Более подробно об устройстве чайников-термосов и их ремонте можно узнать здесь.

Основные параметры термовыключателей серии KSD.

  • Температура срабатывания. Температура, при которой размыкаются термоконтакты. Указывается на корпусе прибора. Редко превышает значение в 150° С, поскольку такие датчики в основном используются в приборах для нагрева воды.

  • Номинальное напряжение и ток. Рабочее напряжение и допустимый ток для термовыключателя. Обычно номинальное напряжение составляет 250V, а допустимый ток составляет не менее 10 ампер.

  • Типономинал. Например, KSD 201.

  • Температура сброса. Температура при которой остывшие термоконтакты вновь замыкаются. На корпусе термовыключателя данный параметр не указывается ,но обычно он на 13 – 30° С ниже температуры срабатывания. Более точно данный параметр можно узнать из описания конкретного типономинала термовыключателя.

Проверка термореле.

Поскольку термовыключатели серии KSD являются обычным термоуправляемым контактом, то проверяются они методом простой «прозвонки» c помощью тестера. В обычном “холодном” состоянии контакты термовыключателя замкнуты.

Для проверки срабатывания термовыключателя можно нагреть его свыше температуры выключения обычной зажигалкой и замерить сопротивление контактов. Так как интервал температур срабатывания термовыключателей серии KSD в основном лежит в интервале от 50 до 160° С, то нагреть их можно и обычным паяльником.

В некоторых случаях для восстановления нерабочего термореле серии KSD можно несколько раз сильно встряхнуть его. Как ни странно, но сильная ударная вибрация способствует восстановлению нормальной работы термоконтактов. Конечно, неисправный термовыключатель желательно заменить новым. Эта рекомендация относится лишь к тем случаям, когда под рукой нет подходящей замены неисправной детали.

Как уже говорилось, термовыключатели (термостаты, термореле) серии KSD активно применяются в бытовых электроприборах. При их ремонте порой требуется замена как раз термостата типа KSD 301, KSD 302, KSD 201 и аналогичных. Где их можно купить, если не удалось найти в ближайших радиомагазинах? Можно купить в интернете на сайте AliExpress. Цены весьма доступные, правда, если выбирать бесплатную доставку, то её сроки могут достигать 1 – 1,5 месяца. Если не знаете, как приобрести детали на AliExpress, то прочтите это.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

ПРИМЕЧАНИЯ ПО ПРИМЕНЕНИЮ. Биметаллический дисковый термостат. Принцип работы

Термисторная защита двигателя

Термисторная защита двигателя CM-E Серия Термисторная защита двигателя Термисторная защита двигателя Реле защиты двигателя Преимущества и преимущества Таблица выбора Принцип действия и области применения термистора

Дополнительная информация

СИЛОВЫЕ ТЕРМИСТОРЫ SMT

СИЛОВЫЕ ТЕРМИСТОРЫ SMT Теодор Дж.Krellner Keystone Thermometrics, Inc. Сент-Мэрис, Пенсильвания РЕЗЮМЕ Эта статья посвящена конструкции и применению отрицательного температурного коэффициента мощности поверхностного монтажа

. Дополнительная информация

Технические данные Общие

Реле перегрузки, управляемое трансформатором тока, 60-90A, 1N / O + 1N / C Partno. ZW7-90 Артикул. 002618 Каталожный XTOT090C3S Программа поставки Ассортимент продукции Реле перегрузки с трансформатором тока ZW7 Описание

Дополнительная информация

Инженер-исследователь.оборудование. сила

Примечание по применению APT0406 Использование датчика температуры NTC, встроенного в силовой модуль Пьер-Лоран Думерг, инженер-разработчик, Microsemi Power Module Products 26 rue de Campilleau 33 520 Брюгге, Франция Введение:

Дополнительная информация

Руководство по установке видеокамеры

Руководство по установке видеокамеры Целью данного руководства является предоставление информации, необходимой для завершения или изменения установки видеокамеры, чтобы избежать повреждения молнией и наведенного скачка напряжения.Это руководство

Дополнительная информация

ДАТЧИК ДАВЛЕНИЯ ДАТЧИКА

ДАТЧИК ДАТЧИКА ДАВЛЕНИЯ ДАТЧИКА ДАВЛЕНИЯ В датчиках давления используются различные чувствительные устройства, обеспечивающие выходной электрический сигнал, пропорциональный приложенному давлению. Чувствительное устройство, используемое в преобразователях

Дополнительная информация

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ

ТРУБОПРОВОДНАЯ ИНСПЕКЦИОННАЯ КОМПАНИЯ ООО.ИНСТРУКЦИИ ПО ЭКСПЛУАТАЦИИ Детекторы выходов влажной губки 670,673 и портативные детекторы выходов влажной губки MSRB и промышленные детекторы Содержание Общая информация ………………….. 3

Дополнительная информация

Датчики температуры серии A99B

Вентиляторы 125, 121, 930, 930.5 Продукт / технический бюллетень A99 Дата выпуска 0615 Температурные датчики серии A99B Температурные датчики серии A99B представляют собой пассивные датчики PTC (положительный температурный коэффициент).Датчики A99B

Дополнительная информация

Однофазное устройство плавного пуска

Руководство по установке и эксплуатации однофазного устройства плавного пуска 6/02 Содержание Раздел 1 Общая информация ………………………….. ………………. 1 1 Общее описание ……………………… …………………

Дополнительная информация

1 Форма твердотельного реле

Твердотельное реле Form A VOAT, VOAABTR ХАРАКТЕРИСТИКИ 9 S S DC S ‘3 S’ Высокоскоростное реле SSR — t вкл / выкл <8 мкс Максимум R ВКЛ.Испытательное напряжение изоляции 3 В RMS Напряжение нагрузки В Ток нагрузки A Конфигурация постоянного тока DIP-упаковка

Дополнительная информация

Руководство по выбору предохранителей

Руководство по выбору предохранителей Хотя при проектировании электрических и электронных цепей уделяется особое внимание; Могут возникнуть перегрузки по току в виде короткого замыкания и перегрузки. Единственное назначение предохранителей и цепи

Дополнительная информация

Электропечи серии Е2

Руководство по обслуживанию электропечей серии E2 Содержание Требования к электрооборудованию… 10 Коды, технические характеристики, требования … 10 Подключение кабелей питания … 10 Последовательность работы печи …

Дополнительная информация

32: (5 # 5 $ 7,1 * 4833 # USP283 # +] 4; 33 # USP293 # +] 3ULPH 113 кВА, 90 кВт 124 кВА, 99 кВт 6WDQGE \ 114 кВА, 91 кВт 125 кВА, 100 кВт

, 1’8675, $ / # * (16 (7 6HULHV # ‘9 # 448 32: (5 # 5 $ 7,1 * 4833 # USP283 # +] 4; 33 # USP293 # +] 3ULPH 113 кВА, 90 кВт 124 кВА, 99 кВт 6WDQGE \ 114 кВА, 91 кВт 125 кВА, 100 кВт Генераторная установка, состоящая из двигателя и установленного генератора переменного тока

Дополнительная информация

Технические данные.Габаритные размеры

0102 Номер модели Характеристики Квази-заподлицо 15 мм Используется до SIL2 в соотв. с IEC 61508 Принадлежности BF 30 Монтажный фланец, 30 мм V1-G-N-2M-PUR, розетка, кабель, M12, 2-контактный, NAMUR, кабель PUR V1-W-N-2M-PUR, розетка

Дополнительная информация

Дрейтон Digistat + 2RF / + 3RF

/ + Беспроводной программируемый комнатный термостат 3RF Модель: RF700 / 22090 Модель: RF701 / 22092 Источник питания: Батарея — Термостат Сеть — Digistat SCR Invensys Controls Europe Служба поддержки клиентов Тел .: 0845130 5522 Заказчик

Дополнительная информация

Комплект испытательных концов модели 1756

Keithley Instruments 28775 Aurora Road Cleveland, Ohio 44139 1-888-KEITHLEY http: // www.keithley.com Комплект измерительных проводов модели 1756 Общее назначение Информация о измерительных проводах Описание Эти измерительные провода позволяют использовать

Дополнительная информация

ДЫМОВЫЙ ИЗВЕЩАТЕЛЬ D4120

Назначение / применение Национальные и местные стандарты и нормы безопасности признают способность систем воздуховодов переносить дым, токсичные газы и пламя из одной зоны в другую. Иногда дыма может быть такое количество

Дополнительная информация

SPST-NO SPDT DPST-NO DPDT

Реле для печатной платы Реле питания для различных целей с различными моделями соответствует требованиям VDE (EN680-), UL08, CSA22.2. Отвечает требованиям стандарта EN6033 для бытовых товаров. Воздушный зазор и путь утечки: 8 мм / 8

Дополнительная информация

Система обнаружения утечки воды

Руководство по установке и эксплуатации системы обнаружения утечек воды 505-334-5865 ph 505-334-5867 факс www.rodisystems.com электронная почта: [email protected] 936 Highway 516 Aztec, NM 87410-2828 Изменения руководства и авторские права

Дополнительная информация

Пошаговое руководство по работе с ODME и принципу его работы

Некоторое время назад я написал краткий пост об ODME, но этот пост будет более подробным.Все больше и больше компаний уделяют внимание сохранению окружающей среды. Нефтяная компания не стремится сотрудничать с компаниями, которые не принимают во внимание экологические аспекты в своей повседневной работе.

Пока что в настоящее время недостаточно просто выполнять требования закона. Все хотят, чтобы мы выходили за рамки требований законодательства.

ODME — одно из устройств, обеспечивающих соблюдение экологических требований на борту судов.

Но задержания по-прежнему происходят из-за несоблюдения ODME.Иногда такое несоблюдение является преднамеренным, но во многих случаях непреднамеренным. Компания должна сосредоточиться на развитии культуры безопасности, которая поможет предотвратить умышленное несоблюдение требований.

Но доскональное знание оборудования, такого как ODME, — единственный способ избежать непреднамеренного несоответствия. Это руководство может помочь нам лучше узнать ODME, узнав о нем больше.

Для чего нужен ODME?

Что ж, если вы это читаете, то, скорее всего, знаете, для чего нужен ODME. Но давайте все же спросим об этом.Зачем нам ODME? Разве мы не можем просто запретить выбрасывать масляную смесь за борт и высаживать ее баржей.

Мы заботимся об окружающей среде, но есть предприятия, которые нужно поддерживать. Судовладельцы будут утверждать, что им следует разрешить сбрасывать водную часть нефтесодержащей смеси в море?

ODME обеспечивает баланс между «не выбрасывать нефть в море» и «снижать эксплуатационные расходы» для судовладельцев.

Но иногда мы забываем, что цель ODME — удалить воду из помоев, а не столько нефти, сколько разрешено.

Как это делает ODME?

В общих чертах ODME управляет работой этих двух клапанов, показанных на диаграмме ниже.

Эти два клапана никогда не будут открываться или закрываться вместе. Если один открыт, другой будет в закрытом положении.

Нам известно, что правило 34 Приложения I к Marpol перечисляет условия, при которых нефтесодержащие смеси могут сбрасываться в море.

Когда условия номер 4 и 5 удовлетворены, ODME откроет забортный клапан, чтобы разрешить сброс нефтяной воды.Когда мы превышаем любое из этих двух условий, ODME закроет забортный клапан и откроет отстойный клапан.

Теперь для выполнения этой задачи ODME необходимо измерить

  • Мгновенный расход для обеспечения того, чтобы он не превышал 30 л / нм
  • Общее количество выгружено, чтобы убедиться, что оно не превышает требуемого

Итак, давайте посмотрим, какие компоненты помогают ODME измерять эти вещи.

Какие все компоненты делают ODME

Если вы помните, формула для мгновенной скорости разряда равна

.

Теперь, если ODME необходимо измерить IRD, ему обязательно нужны значения для содержания масла в PPM и расхода.Скорость соединения обычно указывается либо из журнала, либо из GPS.

Все эти значения передаются в вычислительный блок ODME. Вычислительный блок выполняет все математические вычисления для получения требуемых значений. В большинстве случаев вы найдете вычислительный блок в диспетчерской. Теперь посмотрим, как и откуда вычислительный блок получает эти значения

Расход

Вычислительный блок

ODME получает значение расхода от расходомера. Небольшая пробоотборная линия проходит от основной линии, проходит через расходомер и возвращается к основной линии.Расходомер рассчитывает расход в м3 / час и передает это значение в вычислительный блок через сигнальный кабель.

Измерение частей на миллион

Измерительная ячейка — это компонент, который измеряет количество масла (в ppm) в воде. Измерительная ячейка находится в шкафу под названием «Блок анализа». В большинстве случаев вы найдете «Блок анализа» в бювете.

Принцип измерения основан на том факте, что разные жидкости имеют разные характеристики светорассеяния.Основываясь на диаграмме светорассеяния масла, измерительная ячейка определяет содержание масла.

Проба воды пропускается через трубку из кварцевого стекла. А содержание масла определяется путем последовательного прохождения этой пробы воды через разные детекторы.

Но для измерения PPM в пробе воды проба сбросной воды должна пройти через измерительную ячейку. Эту работу выполняет пробоотборный насос.

Насос для отбора проб отбирает пробу из нагнетательной линии перед выпускными клапанами.Этот образец отправляется в измерительную ячейку (в блоке анализа) для измерения содержания масла, а затем отправляется обратно в ту же линию нагнетания.

Важно, чтобы насос для отбора проб не работал всухую или с избыточным давлением нагнетания. Чтобы избежать этой ситуации, внутри анализирующего блока установлен датчик давления. Этот датчик давления измеряет давление на входе и выходе насоса для отбора проб.

Измерительная ячейка всегда должна получать непрерывный поток пробы, чтобы анализировать самую свежую пробу.Датчик давления также исключает возможность работы ODME при закрытых пробоотборных клапанах.

Измерительную ячейку необходимо регулярно чистить во время работы. Это сделано во избежание отложения масляных следов вокруг измерительной ячейки, которые могут давать неверные показания. Для очистки измерительной ячейки ODME выполняет цикл очистки с заранее заданным интервалом во время работы. Цикл очистки включает промывание ячейки пресной водой.

Линия очистки и линии отбора проб в измерительные ячейки разделены пневматическими клапанами.Таким образом, при запуске цикла очистки происходит следующее:

  • Пневматический клапан линии пресной воды в измерительную ячейку открывается
  • Пневматический клапан линии отбора проб в измерительную ячейку закрывается
  • Если ODME имеет приспособление для впрыска моющего средства, необходимое количество моющего средства будет впрыснуто во время цикла очистки

Нам необходимо убедиться, что резервуары для моющего средства не пустые, и мы используем только моющее средство, рекомендованное производителем.

Итак, есть три дополнительные строки, которые вы найдете в блоке анализа для цикла очистки.

  • Линия пресной воды для очистки измерительной ячейки
  • Воздуховод для управления пневмоклапанами
  • Линия чистящего раствора для лучшей очистки измерительной ячейки

Блок анализа отправляет значения данных, такие как давление и содержание масла, в вычислительный блок в CCR. В зависимости от марки блок анализа отправляет эти значения либо непосредственно в вычислительный блок, либо через блок преобразования.

Если установлен преобразователь, он может выполнять дополнительные задачи, например, контролировать цикл очистки.

Вычислительный блок вычисляет IRD на основе всех этих значений, переданных ему. Если IRD меньше 30 л / миля, он дает команду блоку электромагнитного клапана открыть забортный клапан и закрыть обратный клапан рециркуляции. Когда IRD становится больше 30 л / миля, он закрывает забортный клапан.

Вычислительный блок также вычисляет количество фактической нефти, сброшенной в море.Требование состоит в том, что мы не можем выгружать более 1/30000 от общего количества перевозимого груза. Прежде чем мы запустим ODME, нам нужно вычислить и передать это максимально допустимое значение в ODME. Об этом мы поговорим позже в этом посте.

Но, как видите, постепенно мы создали базовую линейную диаграмму ODME. Теперь, если вы можете извлечь линейную диаграмму ODME на своем судне, проверьте, можете ли вы относиться к ней. Я наугад взял линейную диаграмму одного из производителей, чтобы увидеть, можем ли мы идентифицировать части и линию ODME? Я мог бы, вы также можете идентифицировать себя на изображении ниже?

Если бы вы могли, очень хорошо.Но если вам все еще нужны ответы, вот они на изображении ниже

Теперь, когда мы ясно понимаем, из чего состоит ODME и какие компоненты ODME, давайте посмотрим, как старший офицер должен управлять ODME.

Работа ODME

Как мы знаем, ODME требуется в соответствии с Приложением I Marpol, которое касается аспектов загрязнения, связанных с нефтяными грузами. Теперь за 10 шагов давайте посмотрим, как нам следует использовать ODME.

Предположим, мы находимся на танкере-продукте дедвейтом 45000 тонн, который только что выгружал нефтеналивной груз объемом 29000 тонн (30000 м3 при 15 ° C).Этот танкер должен очистить эти танки, в которых находился общий нефтяной груз в 29000 тонн. Как продолжить очистку и слив помои с помощью ODME?

Шаг 1: Установите общее количество масла в ODME

Компания Marpol установила предел общего количества масла, которое мы можем слить в промывочную воду. Этот лимит составляет 1/30000 от общего количества перевозимого груза. Итак, в нашем примере с танкером-продуктовозом рассчитаем

Всего грузов, перевезенных в очищаемых танках: 30000 м3 при 15 ° C

Общее количество масла из мойки, которое может быть слито = 1 м3 (1000 литров)

Установите общий предел масла в 1000 литров в ODME.Продемонстрируем это в ODME make Rivertrace engineering.

Чтобы установить общий предел масла, перейдите к разделу «Распределение масла» в разделе «Выбор режима», нажав кнопку ввода (центральная).

В разделе «Настройка сброса масла» перейдите к «пределу срабатывания сигнализации» и нажмите «Ввод».

Установите новое значение с помощью стрелок вверх и вниз и нажмите ввод.

Он попросит подтвердить, что мы и установили, и теперь мы установили максимальный предел слива масла.

2.Время оседания не менее 36 часов

Мы будем мыть цистерны и собирать отстой в отстойную цистерну. Но прежде чем мы сможем откачивать нефтесодержащую воду через ODME, нам нужно дать время отстоя как минимум 36 часов. Это время отстаивания обеспечивает полное отделение масла от воды.

Мы можем возразить, что если наш расход ограничен 30 л / мор. Мили, то какая разница со временем установления? Но факт в том, что даже когда мы можем использовать ODME для сброса нефтесодержащей воды, мы должны обеспечить минимальное содержание масла в воде.

3) Проверьте все остальные условия в Приложении I Marpol, Reg 34

Мы должны убедиться, что другие условия, связанные с движением судна по маршруту, минимальной скоростью и удаленностью от ближайшего берега, соответствуют требованиям.

4) Подготовьте ODME к работе

После того, как мы будем удовлетворены всеми условиями, мы можем подготовиться к началу сброса шламов за борт.

Мы уже обсуждали, какие компоненты присутствуют в ODME и каковы их функции. Итак, мы знаем, что нам нужно сделать, чтобы настроить ODME для работы.Конечно, на разных судах все может немного отличаться, но большинство вещей будет общим. Мы должны проверить и найти каждый элемент, упомянутый в руководстве. Вот краткое изложение некоторых общих элементов, которые необходимо проверить перед работой ODME

.
  • Проверить, открыты ли впускной и выпускной клапаны расходомера
  • Проверить, есть ли подача пресной воды и все ли клапаны открыты
  • Проверить, открыты ли впускной и выпускной клапаны пробоотборной линии
  • Проверьте, включена ли подача воздуха для пневматических клапанов.
  • Проверить наличие чистящего раствора в емкости
  • Проверить, включено ли питание преобразователя
  • Проверьте и проверните рукой вал пробоотборного насоса, чтобы убедиться, что он свободно перемещается

Также проверьте и убедитесь, что все значения указаны в автоматическом, а не в ручном режиме. Эти значения для проверки относятся к расходу, скорости и частям в минуту.

5) Запустить грузовой насос в режиме рециркуляции

После того, как мы настроили ODME, мы можем запустить насос отстойного резервуара, содержащего нефтесодержащую воду, в режиме рециркуляции.Теперь, даже когда он работает в режиме рециркуляции и забортный клапан закрыт, на некоторых устройствах вы можете проверить IRD на экране CCR ODME. Если вы видите какие-то странные клапаны, например высокое содержание PPM масла в пробе, остановите насос и

  • либо запустить цикл очистки вручную, если эта функция присутствует в ODME
  • или Очистите измерительную ячейку вручную с помощью инструмента производителя, как описано в руководстве ODME

6) Пуск за борт

После того, как все вышеперечисленные шаги выполнены и проверены, мы можем запустить ODME, чтобы начать сброс за борт.

7) Монитор во время всего сброса за борт

Теперь, если все в порядке, внимательно следите за

Сбрасываемая вода не оставляет видимого блеска на поверхности моря. Помните, что вам не нужен фонарик, чтобы увидеть это. Выполнять сброс за борт необходимо только в светлое время суток.

Проверяйте и отслеживайте значения масла в воде (PPM) и IRD. Если IRD близок к 30 л / миля, вы не хотите, чтобы он пересек 30 л / миля и остановил операцию.В этом случае вы можете уменьшить скорость насоса, чтобы уменьшить расход. При уменьшении скорости потока уменьшается и IRD.

Контролируйте уровень поверхности раздела масло-вода с помощью ленты MMC или UTI. Это важно, потому что мы серьезно относимся к окружающей среде. Мы хотим остановить выброс за борт за несколько сантиметров до того, как мы достигнем поверхности масла. Это показывает нашу серьезность к сохранению окружающей среды. Это также показывает, что нашей целью было не слить столько нефти, сколько мы можем, а было слить как можно больше чистой воды.

Более того, мы не хотим портить нашу систему ODME, позволяя маслу проникать в систему.

8) Остановить сброс за борт

ODME остановится автоматически, когда IRD превысит 30 л / м.миль или если мы превысим предел общего сброса масла. Но мы должны быть готовы остановить ODME и вручную. Мы должны остановить сброс за борт вручную, если произойдет одно из следующих событий

  • Мы достигли уровня интерфейса
  • Быстрое увеличение PPM.Мы можем продолжить, если уверены, что граница раздела нефть-вода еще очень далеко.
  • Мы видим масляный блеск на поверхности моря

9) Не запускайте ODME несколько раз

Если ODME останавливается автоматически из-за того, что IRD превышает 30L / NM, мы не должны запускать ODME снова. Некоторые люди снова запускают ODME, чтобы проверить, могут ли они по-прежнему уменьшить количество на борту. Даже когда вы можете утверждать, что делаете это через ODME, вы на самом деле ненамеренно осуждаете МАРПОЛ.Многие суда были задержаны Парижским меморандумом о взаимопонимании за неоднократные попытки запустить ODME. Задержание имеет логику и следующие причины

  • При многократных запусках оператор пытается выбросить за борт как можно больше масла
  • После автоматической остановки ODME оператору необходимо подождать еще 24 часа для стабилизации, чтобы снова запустить ODME. Это связано с тем, что, если уровень смеси масло / вода будет очень низким, при рециркуляции она будет взбалтываться. Теперь, чтобы вода отделилась от масла, нам нужно подождать 24 часа.

Но если ODME остановился из-за какой-либо ошибки, когда уровень воды все еще был высоким, нет необходимости ждать еще 24 часа для установления времени.

9) Выполните цикл очистки

Каждый раз, когда ODME останавливается, запускается цикл очистки. Но если он не запускается автоматически, мы можем запустить цикл очистки вручную.

10) Закройте все клапаны и систему

После завершения операции ODME мы можем закрыть все клапаны и подачу электроэнергии.Затем мы можем сделать запись в журнале нефтяных операций по этой операции.

Заключение

Было зафиксировано количество задержаний и сотни наблюдений за неправильным использованием ODME. Эти задержания также включают умышленное неправильное функционирование ODME.

Было немного случаев, когда моряки обходили ODME, даже когда ODME находился в идеальной форме и работал. Это произошло потому, что моряки иногда считают, что такое оборудование, как ODME, сложно в эксплуатации.

Но если мы хорошо знаем наше оборудование, оно не только будет казаться простым в эксплуатации, но и будет работать безупречно.

принципы работы и варианты применения

Что такое реле?
Реле обычно представляет собой электромеханическое устройство, которое приводится в действие электрическим током. Ток, протекающий в одной цепи, вызывает размыкание или замыкание другой цепи. Реле похожи на переключатели дистанционного управления и используются во многих приложениях из-за их относительной простоты. долгий срок службы и подтвержденная высокая надежность.Реле используются в самых разных сферах промышленности, например, в телефонных станциях, цифровых компьютерах и системах автоматизации. Высоко сложные реле используются для защиты электроэнергетических систем от неисправностей и перебоев в подаче электроэнергии, а также для регулирования и управления генерацией и распределением энергии. В домашних условиях реле используются в холодильниках, стиральных и посудомоечных машинах, системах управления отоплением и кондиционированием воздуха. Хотя реле обычно связаны с электрическими схемами, существует много других типов, таких как пневматические и гидравлические.Вход может быть электрическим, а выход — непосредственно механическим, или наоборот.

Как работают реле?
Все реле содержат чувствительный элемент, электрическую катушку, которая питается от переменного или постоянного тока. Когда приложенный ток или напряжение превышает пороговое значение, катушка активирует якорь, который работает либо на замыкание разомкнутых контактов, либо на размыкание замкнутых контактов. Когда на катушку подается питание, она создает магнитную силу, которая приводит в действие механизм переключения.Магнитная сила, по сути, передает действие от одной цепи к другой. Первый контур называется схема управления; второй называется схемой нагрузки.
Реле выполняет три основные функции: управление включением / выключением, управление предельными значениями и логическая работа.
Управление включением / выключением: Пример: Управление кондиционером, используемое для ограничения и управления нагрузкой высокой мощности
, такой как компрессор
Ограничение управления: Пример: Управление скоростью двигателя, используется для отключения двигателя, если он работает медленнее или
быстрее, чем желаемая скорость
Логическая операция: Пример: испытательное оборудование, используемое для подключения прибора к ряду
контрольных точек на тестируемом устройстве
Типы реле
Существует две основных классификации реле: электромеханические и твердотельные.Электромеханические реле имеют движущиеся части, тогда как твердотельные реле не имеют движущихся частей. Преимущества электромеханических реле включают в себя более низкую стоимость, отсутствие необходимости в теплоотводе, наличие нескольких полюсов и возможность переключения постоянного или переменного тока с одинаковой легкостью.

A.) Электромеханические реле
Реле общего назначения: Реле общего назначения рассчитывается по величине тока, которую могут выдерживать его переключающие контакты. Большинство версий реле общего назначения имеют от одного до восьми полюсов и могут быть одно- или двухходовыми.Они используются в компьютерах, копировальных машинах и другом бытовом электронном оборудовании и приборах. Силовое реле: силовое реле способно выдерживать большие силовые нагрузки 10-50 ампер и более. Обычно они бывают однополюсными или двухполюсными. Контактор: особый тип реле высокой мощности, оно используется в основном для управления высокими напряжениями и токами в промышленных электрических устройствах. Из-за требований к высокой мощности контакторы всегда имеют контакты с двойным замыканием. Реле с выдержкой времени: контакты могут не открываться или закрываться до определенного интервала времени после подачи питания на катушку.Это называется задержкой при срабатывании. Задержка срабатывания означает, что контакты будут оставаться в активированном положении до некоторого интервала времени после отключения питания от катушки. Третья задержка называется временной задержкой. Контакты возвращаются в свое альтернативное положение через определенный интервал времени после подачи питания на катушку. Время этих действий может быть фиксированным параметром реле или регулироваться ручкой на самом реле, или настраиваться дистанционно через внешнюю цепь.

Б.) Твердотельные реле
Эти активные полупроводниковые устройства используют свет вместо магнетизма для приведения в действие переключателя. Свет исходит от светодиода или светодиода. Когда управляющая мощность подается на выход устройства
, световое реле общего назначения включается и светит через открытое пространство. На стороне нагрузки этого пространства часть устройства определяет наличие света и запускает твердотельный переключатель, который либо размыкает, либо замыкает цепь под контролем. Часто твердотельные реле используются там, где Контур под управлением
должен быть защищен от внесения электрических помех.Преимущества твердотельных реле включают низкий уровень электромагнитных / радиочастотных помех, длительный срок службы, отсутствие движущихся частей, отсутствие дребезга контактов и быструю реакцию. Недостатком твердотельного реле является то, что оно может выполнять только однополюсное переключение.
Контактная информация
Контакты — самая важная составляющая реле. На их характеристики в значительной степени влияют такие факторы, как материал контактов, приложенные к ним значения напряжения и тока (особенно формы сигналов напряжения и тока при включении и выключении контактов), тип нагрузки, рабочая частота и дребезг. .Если какой-либо из этих факторов не соответствует заданному значению, возникают такие проблемы, как деградация металла между контактами, контактная сварка, может произойти износ или быстрое увеличение контактного сопротивления. Количество электрического тока, протекающего через контакты, напрямую влияет на характеристики контактов. Например, когда реле используется для управления индуктивной нагрузкой, такой как двигатель лампы. Контакты будут изнашиваться быстрее, и разложение металла между сопряженными контактами будет происходить чаще, по мере увеличения пускового тока контактов.
Чтобы продлить срок службы реле, рекомендуется использовать схему защиты контактов. Эта защита подавит шум и предотвратит образование нагара на контактной поверхности при размыкании реле. Примеры этих синергетических компонентов, которые обеспечивают защиту контактной цепи, включают резистивные конденсаторы, диоды, стабилитроны и варисторы.
Расположение контактов / полюса
Расположение контактов на реле зависит от форм-фактора и количества полюсов. Описание каждого форм-фактора приведено ниже.
Форма A — это нормально открытый (NO) или замыкающий контакт. Он открыт, когда катушка обесточена, и закрывается, когда катушка находится под напряжением. Контакты формы A полезны в приложениях, которые должны переключать один источник питания высокого тока из удаленного места. Примером этого является автомобильный звуковой сигнал, который не может иметь сильный ток, подаваемый непосредственно на рулевое колесо. Реле формы А можно использовать для переключения высокого тока на звуковой сигнал. Форма B — это нормально замкнутый (NC) или размыкающий контакт.Он закрыт в обесточенном положении и открывается при подаче напряжения на катушку.
Форма B Контакты полезны в приложениях, где требуется, чтобы цепь оставалась замкнутой, и когда реле активируется, цепь отключается. Примером этого является двигатель машины, который должен работать постоянно, но когда двигатель должен быть остановлен, оператор может сделать это, активировав реле формы B и разорвав цепь.
Форма C представляет собой комбинацию форм A и B, использующих один и тот же подвижный контакт в схеме переключения.Контакт формы C полезен в приложениях, где требуется, чтобы одна цепь оставалась разомкнутой; когда реле активировано, первая цепь отключается, а другая цепь включается. Примером этого является часть оборудования, которая работает постоянно: когда реле активируется, оно останавливает эту часть оборудования и размыкает секунду. цепь к другому элементу оборудования.
Контакт «замыкающий перед размыканием»: контактное устройство, в котором часть коммутационной секции используется совместно как контактами формы A, так и контактами формы B.Когда реле срабатывает или размыкает, контакт, замыкающий цепь, срабатывает до размыкания цепи. Таким образом, оба контакта замыкаются на мгновение одновременно. Обратным контакту замыкающего контакта является контакт размыкания перед размыканием. Полюсы — это количество отдельных переключений схемы внутри реле. Наиболее распространенными версиями являются однополюсные, двухполюсные и четырехполюсные.
Типы нагрузки
Параметры нагрузки включают максимально допустимое напряжение и максимально допустимую силу тока, которую может выдержать реле, как в вольтах, так и в амперах.Важны как размер груза, так и его тип. Существует четыре типа нагрузок: 1.) резистивная, 2.) индуктивная, 3.) переменный или постоянный ток, и 4.) высокий или низкий бросок тока.
1.) Резистивная нагрузка — это нагрузка, которая в первую очередь оказывает сопротивление протеканию тока. Примеры резистивных нагрузок включают электрические нагреватели, плиты и духовки, тостеры и утюги.
2.) Индуктивные нагрузки включают дрели, электрические миксеры, вентиляторы, швейные машины и пылесосы. Реле, которые будут подвергаться высоким пусковым индуктивным нагрузкам, такие как двигатель переменного тока, часто будут рассчитаны в лошадиных силах, а не в вольтах и ​​амперах.Этот рейтинг отражает мощность, которую могут выдержать контакты реле в момент включения (или переключения) устройства.
3.) Переменный или постоянный ток. Это влияет на цепь контактов реле (из-за ЭДС) и временную последовательность и может привести к проблемам с характеристиками коммутационной способности реле для различных типов нагрузки (т. Е. Резистивной, индуктивной и т. Д.) .
4.) Высокий или низкий бросок тока — некоторые типы нагрузок потребляют значительно большее количество тока (силы тока) при первом включении, чем при последующей стабилизации цепи (нагрузки также могут пульсировать, когда цепь продолжает работать, увеличивая или уменьшая ток) .Примером высокой пусковой нагрузки является электрическая лампочка, которая при первом включении может потреблять в 10 или более раз превышающий нормальный рабочий ток (некоторые производители называют это ламповой нагрузкой). В дополнение к указанным выше параметрам нагрузки вы Теперь нужно определить, какие параметры связаны с цепью управления или цепью катушки, как ее иногда называют. К ним могут относиться: Чувствительность: катушки, которые приводят в действие реле при очень низком напряжении или низком токе, называются чувствительными. Чувствительность — это относительный термин, который отличает катушки малой мощности от катушек большой мощности.
Polarized: Катушки некоторых реле, требующих постоянного напряжения, поляризованы. Это означает, что есть специальные клеммы для положительного и отрицательного напряжения для питания катушки. Информация о катушке Характеристики катушек следует понимать как часть выбранного реле. Некоторые важные характеристики включают:
Сопротивление катушки: (применимо только к реле постоянного тока) сопротивление протеканию электрического тока. Это сопротивление измеряется при температуре, зависящей от производителя. Сопротивление катушки
реле с переключением по переменному току может быть указано для справки, если указана индуктивность катушки.
Максимальное напряжение: максимальное значение допустимого перенапряжения при рабочем питании катушки реле.
Номинальное напряжение катушки: опорное напряжение прикладывается к катушке, когда реле используется при нормальных условиях эксплуатации
.
Потребляемая мощность: мощность, потребляемая катушкой при подаче на нее номинального напряжения.
Односторонний стабильный: Контакты переключателя в реле остаются в нормальном или стабильном положении, пока на катушку не подается питание. Когда на катушку подается питание, контакты перемещаются в новое положение
, но остаются в этом положении, пока на катушку подается питание.Однообмоточный тип с фиксацией: у этого типа есть одна катушка, которая служит как катушкой установки, так и катушкой сброса, в зависимости от направления тока. Когда ток течет через катушку в прямом направлении, она служит установленной катушкой; когда ток течет в обратном направлении, он действует как катушка сброса. Двухобмоточное реле с защелкой: это реле с защелкой имеет две катушки: установка и сброс. Он может сохранять ВКЛ или ВЫКЛ. состояния, даже когда подается пульсирующее напряжение или когда напряжение снимается.
Реле с защелкой часто имеют один набор клемм, предназначенных для положительного напряжения, а другой — для отрицательного напряжения, используемого для питания катушки. Такая поляризованная катушка позволяет выполнять одно действие, когда напряжение катушки положительное, и противоположное действие, когда напряжение катушки меняется на противоположное. Разница между односторонним стабильным реле и реле с фиксацией аналогична разнице между переключателем мгновенного действия и переключателем поддерживаемого действия.
Импульсное реле: Специальная версия реле с фиксацией.Импульс тока на катушку приводит к изменению положения контакта
. Контакт остается в этом положении, пока катушка не получит еще один импульс тока, который вернет контакты в исходное положение. Для импульсного реле полярность не важна; следовательно, он может приводиться в действие переменным или постоянным током.
Шаговое реле: каждый раз, когда на катушку реле подано напряжение, переключатель приводится в действие с новым набором контактов. Это похоже на поворотный переключатель.
Внутренняя работа механических реле
Стандарт: односторонний стабилизатор с любым из следующих трех различных методов замыкания контактов:
1.Тип изгиба: якорь приводит в действие контактную пружину напрямую, и контакт
приводится в действие неподвижным контактом, замыкая цепь
2. Тип отрыва: подвижная деталь приводится в действие якорем, и контакт
замыкается
3. Тип плунжера: действие рычага, вызванное подачей питания на якорь, вызывает действие с длинным ходом
Геркон
: односторонний стабильный контакт, который включает низкое контактное давление и простую точку контакта. .Постоянный магнит используется для притяжения или отталкивания якоря, управляющего контактом. Для катушки реле требуется определенная полярность (+ или -). Опция фиксации делает поляризованное реле двойной обмоткой, то есть оно остается в текущем состоянии после обесточивания катушки.
Релейные блоки
Пластиковый корпус: Большинство реле заключено в пластиковый корпус. Это негерметичный корпус, и только пальцы и провода не мешают работе релейного механизма.
Полу-герметичный: Специальная конструкция предотвращает проникновение флюса в базовый корпус реле.Этот тип реле не подлежит очистке погружением.
Уплотнение для легких условий эксплуатации: также изготовленное из пластика, это уплотнение используется для реле, которые будут устанавливаться на печатные платы. Легкое уплотнение позволяет очищать печатную плату погружением. Этот тип уплотнения не следует рассматривать как постоянное уплотнение, а не защиту от всех загрязнений. Очень маленькие молекулы могут проходить через пластиковый корпус через некоторое время. Герметичное уплотнение: этот тип уплотнения защищает почти от всех видов загрязнений.Это всегда металл реле в корпусе. Он используется там, где требуется высокая надежность в суровых условиях и стоит дороже, чем другие пакеты.
Unsealed: Реле этого типа предназначены для ручной пайки. Не принимаются меры против попадания флюса и чистящего растворителя внутрь реле. Этот тип реле не подлежит очистке погружением.

Монтаж реле
Существует несколько типичных способов установки и подключения реле.
Гнездо Лопаточные выступы реле могут быть вставлены в ответный язычок или в ответное гнездо.На клеммах реле находится одна сторона заделки. Сторона сопряжения может быть подключена к ответной планке
или установлена ​​в разъем, предназначенный для этого блока реле.
Монтаж на печатной плате Предусмотрены пайки волной пайки, которые выступают из внутренней части реле наружу и разнесены (расстояние и высота) в соответствии с конструкцией, определенной производителем. Контакты реле вставляются через отверстия в печатной плате (PCB), предназначенные для соответствия разводке контактов реле, и припаяны волной для прикрепления реле к печатной плате.

Монтаж на шасси Монтажные проушины, выступы или отверстия являются частью механического блока реле. В этих местах обычно используются гайки, болты или винты для крепления реле к какому-либо шасси. Это шасси может функционировать только как место для установки или также может использоваться для управления температурой (в приложениях с более высокой мощностью). Реле также может быть прикреплено к печатной плате для обеспечения устойчивости.

Как указать реле
1.Каковы требования к переключению: какое напряжение? Сколько тока переключается?
2. Напряжение катушки: источник питания переменного или постоянного тока? Какое напряжение доступно для питания катушки?
3. Каково расположение контактов:
— Контакты формы A
— Контакты формы B
— Контакты формы C
4. Сколько требуется полюсов? (количество переключаемых цепей)
5. Тип монтажа:
— Монтаж на поверхности
— Печатная плата
— Съемная розетка
— Съемная клеммная колодка
— Верхнее крепление
— Верхнее крепление — Печатная плата

DRS-LA413 — Реле отказа автоматического выключателя

% PDF-1.6 % 144 0 объект > endobj 199 0 объект > поток application / pdf

  • АНДРИТЦ ГИДРО
  • DRS-LA413 — Реле отказа автоматического выключателя — Принцип работы
  • DRS-LA413 — Реле отказа автоматического выключателя — Принцип работы
  • DRS-LA413 — Реле отказа автоматического выключателя — Принцип работы
  • 2009-01-20T10: 58: 47 Microsoft Word 20032015-10-27T10: 55: 50 + 01: 002015-10-27T10: 55: 50 + 01: 00DRS-LA413 — Реле отказа автоматического выключателя — Принцип работыSAT smart PDF, 0101uuid: de69238c-8010-49bb-b383-8d0522832917uuid: 317b450a-9729-4388-97f0-55efbb4cb363 конечный поток endobj 146 0 объект > endobj 140 0 объект > endobj 139 0 объект > endobj 141 0 объект > endobj 51 0 объект > endobj 54 0 объект > endobj 57 0 объект > endobj 60 0 объект > endobj 62 0 объект > поток HWmSF_qW7! I% t ڤ Qla`) 4 {: Ȓl; _N.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *