Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Буквенное обозначение реле на схеме: Буквенное обозначение теплового реле. Условные обозначения в различных электрических схемах. Размеры УГО в электрических схемах

Содержание

6. Реле и соединители — Условные графические обозначения на электрических схемах — Компоненты — Инструкции

 Наряду с выключателями и переключателями в радиоэлектронной технике для дистанционного управления и различных развязок широко применяют электромагнитные реле (от французского слова relais). Электромагнитное реле состоит из электромагнита и одной или нескольких контактных групп. Символы этих обязательных элементов конструкции реле и образуют его условное графическое обозначение [4].

 
 Электромагнит (точнее, его обмотку) изображают на схемах в виде прямоугольника с присоединенными к нему линиями электрической связи, символизирующими выводы. Условное графическое обозначение контактов располагают напротив одной из узких сторон символа обмотки и соединяют с ним линией механической связи (пунктирной линией). Буквенный код реле — буква K (K1 на рис.6.1)

 

 Выводы обмотки для удобства допускается изображать с одной стороны (см. рис. 6.1, К2), а символы контактов — в разных частях схемы (рядом с УГО коммутируемых элементов). В этом случае принадлежность контактов тому или иному реле указывают обычным образом в позиционном обозначении условным номером контактной группы (К2.1, К2.2, K2.3).

 
 Внутри условного графического обозначения обмотки стандарт допускает указывать ее параметры (см. рис. 6.1, КЗ) или конструктивные особенности. Например, две наклонные линии в символе обмотки реле К4 означают, что она состоит из двух обмоток.

 

 Поляризованные реле (они обычно управляются изменением направления тока в одной или двух обмотках) выделяют на схемах латинской буквой Р, вписываемой в дополнительное графическое поле УГО и двумя жирными точками (см. рис. 6.1, К5). Эти точки возле одного из выводов обмотки и одного из контактов такого реле означают следующее: контакт, отмеченный точкой, замыкается при подаче напряжения, положительный полюс которого приложен к выделенному таким же образом выводу обмотки. Если необходимо показать, что контакты поляризованного реле остаются замкнутыми и после снятия управляющего напряжения, поступают так же, как и в случае с кнопочными переключателями (см. разд. 5): на символе замыкающего (или размыкающего) контакта изображают небольшой кружок. Существуют так же реле, в которых магнитное поле, создаваемое управляющим током обмотки, воздействует непосредственно на чувствительные к нему (магнитоуправляемые) контакты, заключенные в герметичный корпус (отсюда и название геркон — ГЕРметизированный КОНтакт). Чтобы отличить контакты геркона от других коммутационных изделий в его УГО иногда вводят символ герметичного корпуса — окружность. Принадлежность к конкретному реле указывают в позиционном обозначении (см. рис. 6.1, К6.1). Если же геркон не является частью реле, а управляется постоянным магнитом, его обозначают кодом автоматического выключателя — буквами SF (рис. 6.1, SF1).

 
 Большую группу коммутационных изделий образуют всевозможные соединители. Наиболее широко используют разъемные соединители (штепсельные разъемы, см. рис. 6.2). Код разъемного соединителя — латинская буква X. При изображении штырей и гнезд в разных частях схемы в позиционное обозначение первых вводят букву Р (см. рис. 6.2, ХР1), вторых — S (XS1).

 

 Высокочастотные (коаксиальные) соединители и их части обозначают буквами XW (см. рис. 6.2, соединитель XW1, гнезда XW2, ХW3). Отличительный признак высокочастотного соединителя — окружность с отрезком касательной линии, параллельной линии электрической связи и направленной в сторону соединения (XW1). Если же с другими элементами устройства штырь или гнездо’ соединены коаксиальным кабелем, касательную продляют и в другую сторону (XW2, XW3). Соединение корпуса соединителя и оплетки коаксиального кабеля с общим проводом (корпусом) устройства показывают присоединением к касательной (без точки!) линии электрической связи со знаком корпуса на конце (XW3).

 
 Разборные соединения (с помощью винта или шпильки с гайкой и т. п.) обозначают на схемах буквами XT, а изображают — небольшим кружком (см. рис. 6.2; ХТ1, ХТ2, диаметр окружности — 2 мм). Это же условное графическое обозначение используют и в том случае, если необходимо показать контрольную точку.

 
 Передача сигналов на подвижные узлы механизмов часто осуществляется с помощью соединения, состоящего из подвижного контакта (его изображают в виде стрелки) и токопроводящей поверхности, по которой он скользит. Если эта поверхность линейная, ее показывают отрезком прямой линии с выводом в виде ответвления у одного из концов (см. рис. 6.2, X1), а если кольцевая или цилиндрическая — окружностью {X2).

 

 Принадлежность штырей или гнезд к одному многоконтактному соединителю показывают на схемах линией механической связи и нумерацией в соответствии с нумерацией на самих соединителях (рис. 6.3, XS1, ХР1). При изображении разнесенным способом условное буквенно-цифровое позиционное обозначение контакта составляют из обозначения, присвоенного соответствующей части соединителя и его номера (XS1. 1 — первое гнездо розетки XS1; ХР5,4 — четвертый штырь вилки ХР6 и т. д.).

 
 Для упрощения графических работ стандарт допускает заменять условное графическое обозначение контактов розеток и вилок многоконтактных соединителей небольшими пронумерованными прямоугольниками с соответствующими символами (гнезда или штыря) над ними (см. рис. 6.3, XS2, ХР2). Расположение контактов в символах разъемных соединителей может быть любым — здесь все определяется начертанием схемы; неиспользуемые контакты на схемах обычно не показывают.
Аналогично строятся условные графические обозначения многоконтактных разъемных соединителей, изображаемых в состыкованном виде (рис. 6.4). На схемах разъемные соединители в таком виде независимо от числа контактов обозначают одной буквой X (исключение — высокочастотные соединители). В целях еще большего упрощения  графики стандарт допускает обозначать многоконтактный соединитель одним прямоугольником с соответствующими числом линий электрической связи и нумерацией (см. рис. 6.4, X4).

 
 Для коммутации редко переключаемых цепей (делителей напряжения с подборными элементами, первичных обмоток трансформаторов сетевого питания и т. п.) в электронных устройствах применяют перемычки и вставки. Перемычку, предназначенную для замыкания или размыкания цепи, обозначают отрезком линии электрической связи с символами разъемного соединения на концах (рис. 6.5, X1), для переключения — П-образной скобой (X3). Наличие на перемычке контрольного гнезда (или штыря) показывают соответствующим символом {X2).

 
 При обозначении вставок-переключателей, обеспечивающих более сложную коммутацию, используют способ для изображения переключателей. Например, вставка на рис. 6.5, состоящая из розетки XS1 и вилки XP1, работает следующим образом: в положении 1 замыкатели вилки соединяют гнезда 1 и 2, 3 и 4, в положении 2 — гнезда 2 и 3, 1 и 4, в положении 3 — гнезда 2 и 4. 1 и 3.

 

 

 

Условные обозначения в электрических схемах | «АльфаПолюс»

Основное

обозначение

Наименование элементаДополнительное

обозначение

Вид устройства
АУстройство

АА

АК

AKS

Регулятор тока

Блок реле

Устройство

ВПреобразователи

ВА

BF

BK

BL

BM

BS

Громкоговоритель

Телефон

Датчик тепловой

Фотоэлемент

Микрофон

Звукосниматель

CКонденсаторы

CB

CG

Батарея конденсаторов силовая

Блок конденсаторов зарядный

DИнтегральные схемы, микросборки

DA

DD

ИС Аналоговая

ИС цифровая, логический элемент

ЕЭлементы разные

ЕК

EL

Теплоэлектронагреватель

Лампа осветительная

 F

Разрядники, предохранители,

устройства защитные

FA

FP

FU

FV

Дискретный элемент защиты по току

мгновенного действия

То же, по току инерционного действия

Предохранитель плавкий

Разрядник

 G

Генераторы, источники

питания

GB

GC

GE

Батарея аккумуляторов

Синхронный компенсатор

Возбудитель генератора

 Н

Устройства индикационные

и сигнальные

HA

HG

HL

HLA

HLG

HLR

HLW

HV

 Прибор звуковой сигнализации

Индикатор

Прибор световой сигнализации

Табло сигнальное

Лампа сигнальная с зеленой линзой

Лампа сигнальная с красной линзой

Лампа сигнальная с белой линзой

Индикаторы ионные и полупроводниковые

 KРеле, контакторы, пускатели

КА

КН

КК

КМ

КТ

KV

KCC

KCT

KL

Реле токовое

Реле указательное

Реле электротепловое

Контактор, магнитный пускатель

Реле времени

Реле напряжения

Реле команды включения

Реле команды отключения

Реле промежуточное

 L Катушки индуктивности, дросселиLL

LR

LM

Дроссель люминесцентного освещения

Реактор

Обмотка возбуждения эл/двигателя

 Двигатели МАЭлектродвигатели
P Приборы измерительные

РА

PC

PF

PI

PK

PR

PT

PV

PW 

Амперметр

Счетчик импульсов

Частотомер

Счетчик активной энергии

Счетчик реактивной энергии

Омметр

Измеритель времени действия, часы

Вольтметр

Ваттметр

Q

Выключатели и

разъединители силовые

QFВыключатель автоматический
RРезисторыRK

RP

RS

RU

RR

Терморезистор

Потенциометр

Шунт измерительный

Варистор

Реостат

SУстройства коммуникации

в цепях управления,

сигнализации и измерительных цепях

SA

SB

SF

Выключатель или переключатель

Выключатель кнопочный

Выключатель автоматический

TТрансформаторы,

автотрансформаторы

TA

TV

Трансформатор тока

трансформаторы напряжения

UПреобразователиUB

UR

UG

UF

Модулятор

Демодулятор

Блок питания

Преобразователь частоты

VПриборы электровакуумные

и полупроводниковые

VD

VL

VT

VS

Диод стабилитрон

Прибор электровакуумный

Транзистор

Тиристор

XСоединители контактныеXA

XP

XS

XW

Токосъемник

Штырь

Гнездо

Соединитель высокочастотный

YУстройства механические с

электромагнитным приводом

YA

YAB

Электромагнит

Замок электромагнитный

Условное обозначение реле

Как известно, что если через катушку индуктивности пропустить постоянный электрический ток, то вокруг нее образуется магнитное поле, которое начинает притягивать металлические предметы. Если около такого соленоида расположить одну или несколько подпружиненных контактных групп и их подвижные части жестко соединить с пластиной, изготовленной из металлического сплава, расположенной около одного из полюсов катушки, то получится электромагнитное коммутирующее устройство, которое называется «реле» от французского «relais».

При подключении катушки к источнику тока стальная пластинка начинает, притягивается к катушке и тем самым приводит в движение контакты, замыкающие или размыкающие электрическую цепь. Чтобы пластина реле вернулась в первоначальное положение, катушку необходимо обесточить.

Обозначение реле

 

 

На электрических схемах условное обозначение реле наносится в виде прямоугольника, от наибольших сторон которого отведены линии выводов питания соленоида.

Номера контактной группы К2.1 и К2.2

 

Контакты электромагнитного реле изображают аналогично, контактам выключателей и переключателей. Условное графическое обозначение реле, контакты которого расположены рядом с катушкой, соединяют штриховой линией, а если контакты расположены в различных местах, то около прямоугольного знака соленоида, ставят символ «

К» и его порядковый номер, как и в первом случае, и около контактов реле помимо его номера, через точку пишут номер контактной группы.

Поляризованное реле

 

Работа обычных электромагнитных реле не требует полярности подключения источника напряжения, приложенного к концам катушки. Но есть реле, для которых обязательно нужно соблюдать это условие. Такие реле называют поляризованными.

При подаче напряжения на обмотку зависимого от полярности реле, его контакты приводятся в движение и могут быть зафиксированы в таком положении даже при разрыве цепи обмотки. Чтобы изменить положение контактов, необходимо поменять полярность подачи напряжения на обмотке.

Условное обозначение полярного реле, на электрической принципиальной схеме, наносится в виде прямоугольника с двумя выводами и жирной точкой у одного из разъёмов.

Этот знак, в виде жирной точки, ставится так же у одного из неподвижного контакта, говорящего о том, что в данном положении состояние коммутирующего элемента будет зафиксировано при срабатывании реле. Латинский символ «Р» наносимый в прямоугольнике указывает на то, что это реле поляризованное.

Условные графические и буквенные обозначения

Условные графические и буквенные обозначения устанавливаются государственными стандартами, что позволяет всем, кто работает со схемами электрических цепей, легко понимать их.

В схемах электрических цепей (силовых, управления, вспомогательных) электроподвижного состава наиболее часто используют следующие условные графические обозначения:

Заземление «Земля». Через коробку заземления провода низковольтных цепей соединяются с «минусом» аккумуляторной ба тареи, а высоковольтных — с ходовыми рельсами

Примечание. Принадлежность к тому или иному аппарату указывается сокращенным обозначением этого аппарата — номером или буквенным обозначением контактора или другого аппарата.

В схеме силовых цепей приняты следующие условные буквенные обозначения:

ТР — токоприемник рельсовый

КС1 — силовая соединительная коробка

КС2 — коробка заземления

Ц — главный предохранитель

ГВ — главный разъединитель

Л Kl — ЛК4 — линейные контакторы

РПЛ, РП1-3, РП2-4 — силовые катушки реле перегрузки (соответственно линейного, в цепи тяговых двигателей 1 и 3, 2 и 4)

Я1 — ЯЯ1, Я2 — ЯЯ2, ЯЗ — ЯЯЗ, Я4 — ЯЯ4 — начало и конец обмоток якорей тяговых двигателей

Kl — КК1, К2 — КК2, КЗ — ККЗ, К4 — КК4 — обмотки возбуждения тяговых двигателей

«Вперед», «Назад» — силовые контакторы реверсора КИП — КШ4 — электромагнитные контакторы ослабления возбуждения ИШ1-3, ИШ2-4 — индуктивные шунты в цепях 1-й и 2-й групп тяговых двигателей ТШ — электромагнитный контактор цепи подмагничивания тяговых двигателей PI — Р37 — резисторы

PKI — РК26 — силовые контакторы реостатного контроллера Т1 — Т22 — силовые контакторы переключателя положений РУТ — силовая катушка реле ускорения и торможения ЗУМ — заземляющее устройство РЗ-1 — реле защиты

Н1 — НН1, Н2 — НН2, ЯЗ — ННЗ, Н4 — НН4 — обмотки подмагничивания тяговых двигателей

В схемах вспомогательных цепей и цепей управления приняты следующие условные буквенные обозначения:

АБ — аккумуляторная батарея

КВ — контроллер машиниста

КРП — контроллер резервного пуска

РЦУ — разъединитель цепей управления

СДРК — серводвигатель реостатного контроллера

РК — реостатный контроллер

СДЯП — серводвигатель переключателя положений 3777# — электромагнитный дисковый тормоз переключателя положений

KIK — мотор-компрессор

КК — контактор мотор-компрессора

КО — контактор освещения

КЗ-2 — контактор заряда аккумуляторной батареи

ДВР — дверной воздухораспределитель

БД — дверные блокировки (конечные выключатели)

ВЗ-1, ВЗ-2 — вентили замещения

Р1-5 — контактор в цепи 1-го и 5-го проводов

АК — регулятор давления

УАВА — универсальный автоматический выключатель автостопа АВТ — автоматический выключатель тормоза КРР — кнопка резервного реверсирования Ф — фары

РП — реле перегрузки

«Возврат РП» — реле возврата реле перегрузки

РУТ — реле ускорения и торможения

НР — нулевое реле

СР-1 — стоп-реле

РВ-1, РВ-2 — реле времени

Рпер — реле перехода

РР — реле реверсирования

РРТ — реле ручного торможения

РКП, РКМ — кулачковые контакторы реостатного контроллера РЗ — реле заряда

ПРВ — промежуточное реле времени РЗ-2 — реле сигнализации РРП — реле резервного пуска ВУ- выключатель управления КУ- кнопка управления

ПС, ПП, ПТ1, ПТ2 — блок-контакты переключателя положений соответственно для позиций последовательного и параллельного соединения тяговых двигателей в режиме тяги, для позиций «Тормоз 1» и «Тормоз 2».

Контрольные вопросы 1. Для чего нужны условные обозначения в схемах электрических цепей?

2. Чем определяются условные обозначения?

⇐Виды схем, принципы их построения | Электропоезда метрополитена | Способы управления тяговыми двигателями⇒

принцип действия, виды и производители

Обозначение реле на схемах или в буквенной форме необходимо, чтобы квалифицированные специалисты могли без труда найти его. Как уже было сказано, в случае с буквенным обозначением используется К. Однако здесь будет справедливо сказать, что существуют такие чертежи, как электрические принципиальные или просто электрические, на которых не используются буквенные названия. В таком случае применяется условное обозначение реле в графическом виде. Тогда реле будет описано, как прямоугольник, от больших сторон которого отходит по одному контакту.

Что такое рел

Реле – это коммутационное устройство, или просто КУ. Основное предназначение этого предмета – это соединение или же разъединение цепи электрической или электронной схемы в том случае, если определенным образом меняются входные величины тока. Что касается сферы использования, то впервые этот прибор как рабочий агрегат был применен в телеграфе. Использование же в электронных и электрических цепях пришло гораздо позже.

Устройство оборудования

Стоит сказать, что обозначение реле в буквенной форме К используется достаточно редко, так как на сегодняшний день есть много разных видов этого приспособления, а они имеют другое обозначение. Однако же начальное устройство этих приборов примерно одинаковое.

Реле – это катушка, которая имеет немагнитное основание. На данное основание наматывается медный провод с изоляцией из ткани или синтетики. Однако чаще всего используется диэлектрическое лаковое покрытие. Внутри же катушки, которая стоит на нетокопроводящем основании, размещается сердечник из металла. Кроме этого, имеются такие части, как пружины, якорь, контакты и соединительные элементы.

Если буквенное обозначение реле – всего одна буква К, то принцип работы данного устройства следующий. При подаче тока на обмотку соленоида сердечник начнет притягивать якорь. Так как элементы металлические, то при их соединении произойдет замыкание цепи. Если сила тока начнет слабеть, то при определенном уровне сила пружины станет больше, из-за чего она оттолкнет якорь обратно, и цепь разомкнется. Само по себе реле будет работать достаточно резко. Чтобы увеличить плавность и точность работы, обычно добавляют резисторы в схему, а чтобы защитить устройство от любых скачков перенапряжения, используются конденсаторы.

Если говорить кратко, то обозначение реле буквой К значит, что это самое простое оборудование, которые работает по принципу простейшей электромагнитной индукции. Из-за достаточно простого способа работы оно считается очень надежным.

Характеристики реле

У данного прибора есть несколько основных характеристик, на которые стоит обратить свое внимание.

  1. Очень важен такой параметр, как чувствительность. Он будет определять то, какая сила тока необходима, чтобы реле сработало.
  2. Есть такая характеристика, как сопротивление обмотки электромагнита.
  3. У каждого прибора есть свой порог включения и отключения цепи. Другими словами, каждое реле имеет свое минимальное значение тока для срабатывания и размыкания.
  4. Есть такая характеристика, как время притягивания и время отталкивания якоря.

Реле электромагнитного типа

Одна из наиболее распространенных разновидностей – это электромагнитное реле. Данное КУ принадлежит к электромеханическому типу, а принцип работы основан на том, что взаимодействует магнитное поле, которое создается в обмотке статичного типа, на якорь. Такие устройства, в свою очередь, делятся на два вида. Первый – это электромагнитные, которые реагируют только на величину входящего тока. Второй – это поляризованные, для которых важен как входящий ток, так и его полярность. Что касается буквенного обозначения реле, то здесь все еще можно оставить букву К. Если говорить о применении, то чаще всего они используются в цепях управления. В промышленности такие приспособления находятся на промежуточной позиции между сильноточными устройства и слаботочными.

КУ с током переменного типа

Как можно заметить из названия, срабатывание данного вида реле происходит при подаче переменного тока на входные клеммы. Что касается обозначения реле напряжения, то его часто обозначают как KV. Такая маркировка применима практически ко всем типам, так как почти все они работают со входным током и его напряжением.

Что же касается КУ переменного тока, то это прибор, который имеет контроль перехода фазы через ноль или же без него. Оборудование представляет собой цельную сборку таких модулей, как блок тиристоров, блок выпрямительных диодов и управляющие схемы. Также стоит отметить, что они могут быть двух видов, отличающихся модульной базой, на которой они выполнены. Могут быть виды с трансформаторной или оптической развязкой. Что касается применения, то, конечно же, используются они в переменных сетях с максимальным напряжением в 1,6 кВт. Что касается тока, то его величина не должна превышать 320 А.

Отдельно стоит сказать о приборах, которые рассчитаны на сети 220 В, так как они не могут функционировать без таких приспособлений. Используются такие устройства в том случае, если есть необходимость в замыкании или размыкании контактов разнонаправленного типа. Примером может служить прибор, освещающий местность и имеющий датчик движения. Тогда получается, что один из входов подключен к питанию, а другой – к сенсору.

КУ с постоянным током

Помимо таких приборов, используются и такие, как реле времени, обозначение которых – KT.

Коммутационное устройство постоянного тока может быть поляризованного или нейтрального типа. Отличие заключается в том, что поляризованные устройства чувствительны к тому, какая полярность у входящего напряжения. В зависимости от этих полюсов якорь КУ может менять свое направление движения. Нейтральные же не зависят от этого параметра. Чаще всего применяются такие приборы лишь в том случае, если нет возможности подключиться к сети с переменным током.

Это обусловлено тем, что стоимость таких приборов выше, чем с переменным током, а также с необходимостью подключения блока питания, для нормальной работы.

Устройство электронного типа

Кроме токовых устройств, имеются также и электронные или тепловые виды. К примеру, обозначение теплового реле КК. Область его применения также достаточно ясна, что следует из названия. Больше стоит обратить внимание на электронные устройства.

Что касается конструкции и принципа действия, то они не слишком отличаются от электромеханических. Существенная разница кроется в том, что для выполнения всех необходимых функций в данном случае используется диод полупроводникового типа. Наиболее распространено применение таких устройств в транспортных средствах, где большинство функций выполняется при помощи электронных релейных блоков управления. Полностью же отказаться от их использования пока не удается.

Производители устройств

На сегодняшний день имеется множество компаний, которые занимаются выпуском такой продукции, однако обратить внимание стоит лишь на некоторые из них.

К примеру, среди европейских производителей третье место занимает компания из Германии, которая называется Finder. Она занимается производством таких устройств, как реле общего назначения, твердотельные, силовые, реле времени. Есть также реле давления, обозначение которого – KP.

Если говорить об отечественных производителях, то можно выделять АО НПК «Северная Заря». Данная фирма занимается выпуском якорных электромагнитных моделей коммутационного типа. Основное предназначение – это индустриальное и специальное направления промышленности. Что касается обозначения реле, то в данном случае это К, так как они принадлежат к общему типу.

Есть производители из Японии. Компания называется Omran и занимается выпуском таких устройств, как реле твердотельного и электромеханического типов. Кроме того, выпускают и такую продукцию, как коммутационные устройства низковольтные.

Лидирующие строчки уже длительное время удерживает продукция от американской фирмы American Zettler. Фирма занимается выпуском около 40 различных видов КУ, которые подходят для самых разных целей.

Электрические реле времени, классификация и условные графические обозначения

Оглавление

Введение
Раздел 1. Классификация реле времени
Раздел 2. Условно-графическое обозначение реле времени и их контактов на схемах
Список используемой литературы

Катушки реле времени

Обозначение реле, его воспринимающей части (катушки) более информативно по сравнению с обозначением контактов. Для них возможно применение одного или двух дополнительных графических полей. По УГО воспринимающей части реле можно узнать, сколько у него обмоток, сопротивление обмоток, вид обмоток (тока или напряжения), поляризованное или не поляризованное реле и т.д.
Каждое реле имеет воспринимающую и исполнительную систему. Воспринимающая система, как в старых обозначениях, так и в новых, обозначается прямоугольниками. Если воспринимающая система представляет собой электромагнит или индуктивность, то в развернутых схемах может обозначаться как обмотка напряжения или обмотка тока (см. табл.2).


Таблица 2. УГО Воспринимающей части (катушек) реле времени


Каждое реле имеет воспринимающую и исполнительную систему. Воспринимающая система, как в старых обозначениях, так и в новых, обозначается прямоугольниками. Если воспринимающая система представляет собой электромагнит или индуктивность, то в развернутых схемах может обозначаться как обмотка напряжения или обмотка тока (см. табл.2).
В старых обозначениях в пространстве над прямоугольником при необходимости вычерчивали контакты исполнительного органа реле.
Если замедление действия реле создается специальным выполнением обмотки или магнитопровода воспринимающей системы (например, короткозамкнутым витком, медной втулкой или медным кольцом на магнитопроводе), замедление при срабатывании указывается в соответствии с пунктом 5 (см. табл.2) , а замедление при отпускании – в соответствии с пунктом 6 (см. табл. 2), при этом буквенный индекс в обозначении воспринимающей системы ставят «ПВ».

Немного слов о буквенных кодах и нумерации контактов (условные буквенно-цифровые обозначения) реле времени.
В ныне действующем ГОСТе 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» для реле, контакторов и пускателей предусмотрена буква «К», обозначение реле времени соответственно «КТ». До этого ГОСТа реле времени на схемах обозначалось «ЭВ», далее – «В» и «РВ», в принципе это было самое наглядное буквенное обозначение. Современное обозначение несколько непривычно, и рассматривая современные схемы, часто долго ищешь нужный элемент.
Если в схеме присутствуют несколько реле времени, то у воспринимающей части пишут цифру, номер реле по схеме, например, для обозначений по ГОСТ 2.710-81 это будет выглядеть так: КТ-1, КТ-2 и т.д. Для старых обозначений цифру ставили перед буквой, например, 3В, 4В или 5РВ, 6РВ. До ГОСТа 1955 года буквенно-цифровые обозначения разных реле времени обозначалось как ЭВ-7, ЭВ-8.
В развернутых схемах указание на то, что тот или иной контакт связан с воспринимающей системой данного реле, достигается при помощи индексов, располагаемых на чертеже около изображения воспринимающей и исполнительной систем. Причем, если у реле много контактов, их также номеруют. По современному госту контакты реле времени обозначаются как КТ-9.1, КТ-9. 2, по старому – 10В-1, 10В-2 или 11РВ-1, 11РВ-2.

Страница 8 из 9«‹456789›»

Реле — Обозначения напряжения — Энциклопедия по машиностроению XXL

На фиг. 59 показана упрощенная схема управления системой густой смазки петлевого типа, на которой отдельные элементы имеют следуй ющие обозначения ДН — двигатель насоса Т — трансформатор напряжения ДР — двигатель прибора типа КЭП-3 С — сигнальная сирена КВД—конечный выключатель реверсивного клапана 1РП— 4РП — промежуточные реле 1, 2 3 КЭП-3 — электрические контакты прибора типа КЭП-3 ПД — магнитный пускатель  [c.109]
Регулирование времени срабатывания осуществляется плавно изменением напряжения заряда конденсатора С при помощи потенциометра Ri. Время готовности реле определяется временем заряда конденсатора С и зависит от его емкости. Каждое реле снабжено шкалой уставок, деления которой не имеют числовых обозначений и служат только для ориентировки. Точное время срабатывания реле проверяется секундомером.  [c.30]

Обозначения обмоток НО— намагничивающая обмотка реле, РО — размагничивающая обмотка реле, ОРН — обмотка регулятора напряжения, ОТКР—обмотка температурной компенсации реле, ОРГ—обмотка регулятора тока, ОТК — обмотка температурной компенсации регулятора, ВО — выравнивающая обмотка, У О— ускоряющая обмотка, УС—ускоряющее сопротивление, ДС — добавочное сопротивление, КО—корректирующая обмотка и СО — согласующая обмотка.  [c.274]

Применение реле позволяет снизить ток, пропускаемый через кнопку сигнала до 0,5 а при номинальном напряжении 12 в и до 0,75 а нри 6 в. Контакты реле 1 ж 2 изготовлены из серебра, с большой поверхностью соприкасания и надежно работают при токах до 30—45 а. Буквенные обозначения зажимов реле сигналов соответствуют первым буквам слов С — сигнал, Б — батарея и Я — кнопка.  [c.327]

Позиционное обозначение должно быть составлено из букв, представляющих собой сокращенное наименование элемента (например, тепловое реле К), порядкового номера, проставленного после буквенного обозначения (например, 1, 2 и т. д.), буквенного кода (например. А, Ы, К я т. д.), указывающего функциональное назначение элемента. Например, К1К — тепловое реле, используемое для защиты от напряжения.  [c.433]

Примечание. Буква М в обозначении типа указывает на то, что катушка реле рассчитана на питание от сети постоянного тока с номинальным напряжением 75 в. Две последние цифры в обозначении типа реле указывают на количество замыкающих и размыкающих контактов, например Р-45М-20 имеет замыкающих контактов — 2, размыкающих — 0.  [c.75]


Устройства защиты являются обязательной составной частью любой системы управления электрическими локомотивами и моторными вагонами. Широкое распространение получила автоматическая зависимость аппаратов защиты и управления, а также аппаратов управления между собой системой блокирования. Например автоматическое регулирование в управлении вспомогательными устройствами э. п.с. всех типов, в частности регулирование напряжения в цепях управления, давления в тормозной магистрали в заданных пределах и т. д. В меньшей степени автоматизированы основные операции управления тяговыми двигателями. В настоящее время автоматическое регулирование некоторых процессов управления тяговыми двигателями (таких, как пуск и торможение) применяется на моторных вагонах электропоездов и на электровозах переменного тока (рис. 33). В схеме приняты следующие условные обозначения Т — токоприемник РК — реостатный контроллер спусковыми резисторами, являющийся регулятором ТД— тяговые двигатели РУ — реле ускорения, выполняющее роль реле автоматического пуска и датчика сигналов о величине регулируемого параметра (тока тягового двигателя) КМ — контроллер машиниста,  [c.54]

Сердечник электромагнита имеет широкий полюсный башмак прямоугольной формы с одной стороны башмака расположен якорек реле обратного тока с контактами, работающими на замыкание с другой — якорек регулятора напряжения с контактами, работающими на размыкание. Обмотки сердечника общие для реле обратного тока и для регулятора напряжения. Обмотка О является основной намагничивающей обмоткой сердечника. Обмотка ЯО служит последовательной обмоткой реле и в то же время последовательной обмоткой регулятора, которая нужна для придания наклона характеристике напряжения. Обмотка У совмещает функции ускоряющей обмотки и добавочного сопротивления ток, текущий через нее при размыкании контактов регулятора проходит в противоположном направлении по сравнению с током основной обмотки и ускоряет размагничивание сердечника. Выравнивающей обмотки нет. Зажимы цепей генератора и реле-регулятора имеют обозначения плюс якоря —Д-Ь цепь возбуждения — ДШ минус аккумулятора и масса (корпус)—АМ цепь прерывателя — ПР.  [c.96]

Схематическое обозначение логического элемента НЕ приведено на рис. 16, а. В схеме на рис. 16, б операция НЕ реализуется релейно-контактным элементом. Ток в цепочке размыкающего контакта Р реле Р имеется только при отсутствии напряжения на входе реле, т. е. при и и наоборот.  [c.39]

На рис. 17, а показано схематическое обозначение элемента ИЛИ. На рис. 17, б схема реализуется релейно-контактным элементом. Ток г в цепочке параллельно соединенных замыкающих контактов реле 1Р и 2Р будет только в том случае, если один из реле или оба будут находиться под напряжением и и и в, т. е. г = 7 + и -  [c.40]

Принципиальная электрическая схема крана приведена на рис. П-60, где приняты следующие обозначения Г — генератор постоянного тока ШОГ — шунтовая обмотка генератора Ш — штепсельный разъем Р13, РЗО, Р80 — сопротивления PH — реле напряжения  [c.151]

Если необходимо отразить в обозначении токовую обмотку или обмотку напряжения, а также обмотки реле максимального тока или минимального напряжения, следует использовать обозначения  [c.204]

ГОСТ 2,710—81 распространяется на электрические схемы и устанавливает типы условных буквенно-цифровых обозначений их элементов. В обозначениях использованы прописные буквы латинского алфавита и арабские цифры, например РЦ — плавкий предохранитель если предохранителей несколько в одной схеме, их обозначают Р1]1, Р1 2 и т. д. Обозначения контакторов, магнитных пускателей и реле начинаются с буквы К КМ — контактор или пускатель ДЛ — токовое (максимальное) реле КК — тепловое реле КР — реле торможения КУ — реле напряжения. Обозначения сопротивлений, реостатов и резисторов начинаются с буквы Я ЯА — сопротивление якоря КЯ — резистор регулировочный (реостат) ЯТ — резистор пусковой ЯР — резистор тормозной и т. д. Часто используют также следующие обозначения УВ —  [c.252]


Устройства, выполненные на основе реле боксования, предназначены для защиты тяговых двигателей от повреждения при электрических перегрузках, возникающих при пробуксовке колесных пар во время трогания и разгона поезда и их юзе при торможении. Устройства защиты от буксования и юза (обозначение на электрической схеме Э1-ЭЗ) выполнены на основе герконовых реле. Вьшоды устройств Э1-ЭЗ подключены к диагонали моста, образованного двумя соседними обмотками якорей двигателей и двумя одинаковыми высокоомными резисторами. При нормальной работе двигателей и отсутствии буксования или юза колесных пар напряжения на соседних коллекторах (как и на резисторах) равны и мост находится в равновесии, т.е. напряжение на выводах 00—02 отсутствует. После на-  [c.33]

Устройства, выполненные на основе реле боксования, предназначены для защиты тяговых двигателей от повреждения при электрических перегрузках, возникающих при пробуксовке колесных пар во время трогания и разгона поезда и их юзе при торможении. Устройства -защиты от буксования и юза (обозначение на электрической схеме Э1-ЭЗ) выполнены на основе герконовых реле. Выводы устройств Э1-ЭЗ подключены к диагонали моста, образованного двумя соседними обмотками якорей двигателей и двумя одинаковыми высокоомными резисторами. При нормальной работе двигателей и отсутствии буксования или юза колесных пар напряжения на соседних коллекторах (как и на резисторах) равны и мост находится в равновесии, т. е. напряжение на выводах 00-02 отсутствует. После начала буксования потенциал точки моста между соседними двигателями (вывод 00) изменится — он может стать больше или меньше потенциала точки между резисторами (вывод 02) в зависимости ог того, какой двигатель буксует.  [c.69]

На рис. 20-2-1 приведена принципиальная схема электронного сигнализатора уровня угля в бункерах, разработанного Уральским отделением ОРГРЭС [85]. На этой схеме приняты следующие обозначения Т — триод полупроводниковый РП— обмотка электромагнитного реле, включенная в цепь коллектора В — выпрямитель, питающий схему постоянным напряжением 24 В Э1 и Э2 — электроды соответственно верхнего и нижнего уровня К — контакты реле РП. Контакты цепей сигнализации и управления на схеме не показаны.  [c.566]

Следовательно, начинать поиск причины неисправности, которая привела к блокированию работы лифтов в режиме парного управления, следует с определения по индексу (буквенному обозначению) отключенного реле РОК в блоке парной работы шкафа управления неисправного лифта. В шкафу управления неисправного лифта определяется состояние релейной аппаратуры. Если включены реле РКД и РПК, а кабина лифта не находится в зоне точной остановки первого этажа (т. е. включено реле 1РИС), то следует проверить наличие напряжения последовательно на шинах 131, 221, 265, 271, 515, 233, 235 и 237. При этом следует иметь в виду, что шины 131, 221, 265, 271, 515, 233 и 235 выведены на зажимы клеммных реек шкафа управления. В случае отсутствия маркировки (плохо различима или стерта) наличие напряжения на шинах 131 и 221 удобно проверить на винтовых зажимах переключателя ВР2-3 на шинах 271 и 515 на зажимах контакта реле РВ2 на шинах 233 и 235 на контакте контактора КВ и на шине 237 — непосредственно на катушке реле РУН. Наличие напряжения на шинах 265 и 271 также удобно проверить на винтовых зажимах клеммной рейки блока парной работы.  [c.160]

Обмотка реле, контактора и магнитного пускателя общее обозначение (а), допускается (б). В обозначении (б) указыв ну тип реле Г — реле тока, Я — реле напряжения и др. (ГОСТ 2.725—68). Например, реле тока (в). Допускается изображать контакты и указывать выводы обмоток (г)  [c.317]

Низковольтное комплектное устройство управления лифтом (НКУ) получает напряжение от вводного устройства. На НКУ монтируют всю аппаратуру защиты и управления, как правило, в металлических щкафах (шкафы управления) реечного исполнения автоматические выключатели, контакторы, реле, нереключатели, выпрямительные устройства, сигнальную арматуру, сопротивления, конденсаторы, средства телефонизации и диспетчеризации, коммутационную аппаратуру. В НКУ пассажирских л1гфтов нового поколения устанавливают также блок понижающих трансформаторов. Обозначения применяемых для основных типов лифтов НКУ приведены в табл. 28— 31 (в табл. не вошли НКУ парного и группового управления лифтами для общественных зданий).  [c.102]

Согласно ГОСТ 1152—65, предприятие-изготовитель при отправке заказчику обязан на видном месте каждого реле несмывающимися красками нанести следующие обозначения наименование или товарный знак завода-изготовителя, тип реле, род тока, год выпуска, заводской номер, напряжение, режим работы, схему внутренних соединений реле. Кроме того, на втягивающей катушке реле должно быть указано обозначение катупжи заводское, номинальные напряжение и ток, марка проволоки и ее диаметр (в мм) и число витков.  [c.213]

Каждый аппарат снабжен заводским щитком, на котором указаны завод-изготовитель, заводской номер аппарата, его тип, номинальные данные, год выпуска и номер государственного стандарта. На катущках реле, контакторов и вентилей или в информационных материалах заводов указано заводское обозначение катушки (номер чертежа), номинальное напряжение, марка провода и его диаметр, а также число витков и сопротивление обмотки при 20° С. Все выводы и зажимы аппаратов имеют маркировку в соответствии с обозначением их на схемах.  [c.192]

Реле напряжения. Реле нулевого напряжения РЭ В-261 устанавливают на электропоезде ЭР9П в цепях переменного тока в качестве датчика напряжения генераторной фазы фазорасщепителя (обозначение по схеме РИФ), датчика напряжения вспомогательной обмотки трансформатора по схеме PH и датчика напряжения двигателей вентиляторов (РНВ).[c.270]

Реле напряжения Р-3100 применяют в качестве реле минимального напряжения контактной сети (обозначение по схеме PH) на электропоезде ЭР2, реле максимального напряжения генератора (по схеА е РМ2) на электропоезде ЭР22В и реле напряжения заряда батареи РНЗ на ЭРЭП (рис. 244).  [c.270]


Реле напряжения Р-302 используют в качестве реле минимального напряжения сети (обозначение по схеме PH) на электропоезде ЭР22В. От реле Р-3100 оно отличается наличием двух мостиковых контактов и при тех же напряжениях срабатывания имеет ток срабатывания 0,037 А и ток отпадания не более 0,013 А.  [c.271]

Схема системы электропуска трактора К-701 рассчитана на питание электродвигателей от аккумуляторных батарей и внешнего источника тока напряжением 24 В. Она обеспечивает предварительную закачку масла в смазочную систему и не срабатывает при отсутствии давления в ней или включенной передаче. С параллельного (12 В) на последовательное (24 В) соединение батареи переводят переключателем К2 (ВКЗО-Б). Контактное устройство переключателя раз.ме-щено в коробке, на ее торце расположены клеммные выводы -1-Б1, -Ь 52, —Б2, РС, М, а на боковой поверхности — клеммы без обозначения для подвода тока в обмотку электромагнита переключателя. Подключение проводов к клеммам показано на схеме (рис. 4.28). Клемма -+- замка-выключателя 82 соединена с указателем тока и клеммой 30 реле К4 блокировки выключателя массы . Реле К4 не позволяет отключить массу аккумуляторной батареи при работающем дизеле и установленном ключе в замке-выключателе в положении /. Питание в обмотку реле К4 подается с клеммы ЮВ замка-выключателя. Клемма СТ выключателя 82 подает ток через выключатель 83 в обмотку реле Кб блокировки пуска при включенной передаче и в обмотку реле К5 блокировки пуска при недостаточно.м давлении в смазочной системе через датчик В аварийного давления масла. В систему включены также реле К1 включения массы аккумуляторных батарей КЗ — контактор для внешних источников с розеткой X.  [c.226]

Лопуснаемое обозначение реле, для указания типа реле вписываются следующие буквы. Например Т-реле тока Н-реле напряжения В-реле ере мени. У-реле указательное П-реле промежуточное Л-реле давления.  [c.353]

На рис. 18, а показано условное обозначение элемента Я. Релейноконтактное исполнение (рис. 18, б) этого элемента заключается в том, что замыкающие контакты 1Р и 2Р, реле 1Р и 2Р соединены последовательно. Ток 1р в цепи контактов будет протекать только в том случае, если на оба реле подано напряжение Ц и 1/ , т. е. 1р —  [c.41]

Электросхема крана для сети напряжением 220 В представлена на рис. VI-42. Для перевода крана на напряжение 380 В электродвигатели и трехфазные тормозные электромагниты переключаются с треугольника на звезду , а тормозные электромагниты однофазного тока одним выводом подключаются к нулевой точке элек Ц)о-двигателя. В схеме приняты следующие обозначения М1—Мо — электродвигатели TI—Тб — тормозные электромагниты ЯРЯ —предохранитель ПРЖ — прожектор на стреле и на кабине MPI— МР4 — максимальные реле защиты двигателей МРО — общее реле максимальной защиты МК — ножная кнопка торможения противо-включением (противотоком) КСЗ — кнопка сигнала АР — аварийный рубильник цепи управления Р — рубильник защитной панели ГР — главный вводной рубильник ВК-2 — ограничитель грузоподъемности ВК-3 — ВК-11 — конечные выключатели ограничения движения механизмов ДСГ — добавочное сопротивление для спуска противовключением (противотоком) СВ — то же, поворот С/С —пусковое сопротивление двигателя каретки СГ—пусковое сопротивление двигателя грузовой лебедки /СД7—/СД2 — контроллер управления двигателями передвижения /С5 — контроллер управления двигателем поворота КК — контроллер управления двигателем каретки КГ — контроллер управления двигателем грузовой лебедки ГР — понизительный трансформатор ЯР —контактор для шунтирования дополнительного сопротивления при противотоке ЛО —главный контактор защитной панели.[c.466]

Реле-регулятор типа РР-5, малогабаритный, представляет собой основание 1 (фиг. 436), на котором на изоляционных прокладках закреплены реле иключепия 2, ограничитель тока регулятора напряжения 4 ж 5. lia корпусе расположены пять выводпых клемм, имеющих буквенные обозначения Е, 3, Я, Ш (две клеммы). Сверху все приборы закрыты крышкой 6, На ннжней части корпуса расположены добавочные сопротивления.  [c.640]

Обозначение и назначение элементов схемы ВБ2 — выключатель блокировочный контроля масляного буфера кабины — выключатель блокировочный контроля масляного буфера противовеса Р/С5 — реле контроля направления вверх РКП — реле контроля направления вниз Р1 — Р6 — реле смещения селекции РПВ — реле промежуточного смещения начала замедления РП9 — реле промежуточного смещения начала замедления РОИ—реле отключения напряжения ДчЗД — датчик замедления вверх для подачи импульса на замедление при движении вверх РЗВ — реле замедления вверх. Исполнительное реле датчика ДчЗВ.  [c.239]

Обозначение и назначение элементов схемы В7 — выключатель управления и освещения S/O — выключатель вентилятора Л/5 — электродвигатель вентилятора Фр — фотореле РВВ — реле блокировки движения вверх Р Я — реле блокировки движенпя вниз — кнопка вызова для движения вверх /С /Я—кнопка вызова для движения вниз — кнопка отмены приказа ЛУБ — лампа сигнальная указателя направления движения вверх ЛУЯ—ла.мпа сигнальная указателя направления движения вниз РРД —реле реверса дверей РБГ-90. РБГ-1 () — реле блокировочное ограничения грузоподъехнюсти i — резисторы, служат для а) снижения напряжения на сигнальных лампах б) уменьшения тока электромагнита тормоза, позволяющего использовать электромагнит в режиме с ЯР = 60% в) равномерного распределения обратного напряжения на диодах г) улучшения условия работы контакторов д) ограничения тока в цепях конденсаторов и являются е) разрядными в схемах с диодами ж) добавочными к кнопкам С — конденсатор для создания необходимых выдержек времени иа реле, параллельно которым они подключены, и для сглаживания пульсаций выпрямленного напряжения Д — диоды для исключения обходных контуров прохождения тока при наличии нескольких приказов и вызовов, а также ликвидации обходных контуров в цепи сигнализации.[c.250]


Схемы

> Стандартные условные обозначения

Условное обозначение однозначно идентифицирует компонент на электрической схеме или на печатной плате. Условное обозначение обычно состоит из одной или двух букв, за которыми следует цифра, например R13, C1002. За номером иногда следует буква, указывающая на то, что компоненты сгруппированы или сопоставлены друг с другом, например R17A, R17B. IEEE 315 содержит список букв обозначения класса для использования в электрических и электронных сборках.Например, буква R — это ссылочный префикс для резисторов в сборе, C — для конденсаторов, K — для реле.

Обозначение

Тип компонента

А

Раздельная сборка или подузел (например, сборка с печатной схемой)

AT

Аттенюатор или изолятор

BR

Аттенюатор или изолятор

К

Конденсатор

CN

Конденсатор сетевой

D

Диод (включая стабилитроны, тиристоры и светодиоды)

DL

Линия задержки

DS

Дисплей

ф

Предохранитель

FB или

FEB

Ферритовый шарик

FD

Контрольная точка

FL

Фильтр

G

Генератор или генератор

GN

Общая сеть

H

Оборудование

HY

Циркулятор или направленный ответвитель

Дж

Jack (наименее подвижный соединитель пары соединителей) | Разъем Jack (разъем может иметь штыревые контакты и / или контакты розетки)

JP

Звено (перемычка)

К

Реле или контактор

л

Индуктор или катушка или ферритовый шарик

LS

Громкоговоритель или зуммер

м

Двигатель

МК

Микрофон

MP

Механическая часть (включая винты и крепеж)

п

Штекер (наиболее подвижный разъем пары разъемов) | Штекерный разъем (разъем может иметь штыревые контакты и / или контакты розетки)

PS

Блок питания

кв.

Транзистор (все типы)

R

Резистор

РН

Резистор сетевой

РТ

Термистор

RV

Варистор

S

Переключатель (все типы, включая кнопочные)

т

Трансформатор

ТК

Термопара

TUN

Тюнер

TP

Контрольная точка

U

Неразъемная сборка (e.г., интегральная схема)

В

Вакуумная трубка

VR

Переменный резистор (потенциометр или реостат)

х

Гнездовой соединитель для другого элемента, кроме P или J, в паре с буквенным обозначением этого элемента (XV для гнезда вакуумной трубки, XF для держателя предохранителя, XA для соединителя узла печатной схемы, XU для соединителя интегральной схемы, XDS для гнезда для освещения, и Т. Д.)

Y

Кристалл или генератор

Z

Стабилитрон

Научитесь интерпретировать однолинейную схему (SLD)

Однолинейную схему (SLD)

Обычно мы изображаем электрическую распределительную систему графическим представлением, которое называется однолинейной схемой (SLD) .Одна линия может отображать всю систему или ее часть. Он очень универсален и всеобъемлющ, поскольку может изображать очень простые цепи постоянного тока или очень сложную трехфазную систему.

Научитесь интерпретировать однолинейную схему — SLD (на фото: пример однолинейной схемы подстанции 66 / 6,6 кВ)

Мы используем общепринятых электрических символов для обозначения различных электрических компонентов и их взаимосвязи в цепи или системе. Чтобы интерпретировать SLD, вам сначала необходимо ознакомиться с электрическими символами. На этой диаграмме показаны наиболее часто используемые символы.

Отдельные электрические символы
Символ Идентификация Пояснение
Трансформатор Представляет различные трансформаторы от жидкостных до сухих. Дополнительная информация обычно печатается рядом с символом, обозначающим соединения обмоток, первичное / вторичное напряжение и номинальные значения кВА или МВА.
Съемный или выкатной выключатель Обычно представляет собой выкатной выключатель среднего напряжения 5 кВ и выше.
Положение съемного или выкатного автоматического выключателя в будущем. Представляет собой конструкцию, оборудованную для установки автоматического выключателя в будущем, обычно называемую положением.
Выкатной выключатель Представляет собой стационарный выключатель низкого напряжения.
Съемный или выкатной автоматический выключатель Представляет собой выкатной выключатель низкого напряжения.
Выключатель Обозначает выключатель в системах низкого или среднего / высокого напряжения (показано открытое положение)
Предохранитель Обозначает предохранители низкого или среднего / высокого напряжения.
Шинный канал Обозначает шинный канал низкого и среднего / высокого напряжения.
Трансформатор тока Представляет собой трансформаторы тока, устанавливаемые в собранном оборудовании. Показано соотношение 4000A к 5A.
Трансформатор потенциала или напряжения Обозначает трансформаторы напряжения, обычно устанавливаемые в собранном оборудовании. Показано соотношение 480 В к 120 В.
Заземление Обозначает точку заземления
Батарея Представляет батарею в комплекте оборудования
Двигатель Представляет двигатель, а также показаны буквой «M» внутри круга. Рядом с символом обычно печатается дополнительная информация о двигателе, такая как мощность в лошадиных силах, частота вращения и напряжение.
Нормально разомкнутый (NO) контакт Может обозначать одиночный или однополюсный переключатель в разомкнутом положении для управления двигателем
Нормально замкнутый (NC) контакт Может представлять одиночный контакт или однополюсный переключатель в замкнутом положении для управления двигателем.
Световой индикатор Буква внутри круга обозначает цвет.Обозначается красный цвет.
Реле перегрузки Защищает двигатель в случае возникновения условий перегрузки.
Конденсатор Представляет собой множество конденсаторов.
Амперметр Обычно отображается буква для обозначения типа счетчика (A = амперметр, V = вольтметр и т. Д.)
Реле мгновенной максимальной токовой защиты Номер устройства обозначает тип реле (50 = мгновенная перегрузка по току, 59 = перенапряжение, 86 = блокировка и т. Д.)
Аварийный генератор Символ часто отображается вместе с переключателем.
Выключатель-разъединитель с предохранителем Обозначение представляет собой комбинацию предохранителя и размыкающего выключателя с выключателем в разомкнутом положении.
Блок управления двигателем низкого напряжения Символ представляет собой комбинацию нормально разомкнутого контакта (переключателя), реле перегрузки, двигателя и устройства отключения.
Пускатель двигателя среднего напряжения Обозначение представляет собой комбинацию выдвижного предохранителя, нормально разомкнутого контакта (переключателя) и двигателя.
Центр счетчика Серия круговых символов, представляющих счетчики, обычно устанавливаемые в общем корпусе.
Центр нагрузки или щит Один автоматический выключатель, представляющий главное устройство, и другие автоматические выключатели, представляющие фидерные цепи, обычно в общем корпусе.
Автоматический выключатель • Автоматический выключатель
• Автоматический выключатель без выключателя
Трансформатор тока с подключенным амперметром Подключенным прибором может быть другой прибор или несколько разных приборов определяется письмом.
Защитные реле, подключенные к трансформатору тока Номера устройств указывают на типы подключенных реле, например:
• 67 — Направленная максимальная токовая защита
• 51 — Максимальная токовая защита с выдержкой времени

Простая электрическая схема

Теперь, что вы знакомы с электрическими символами, давайте посмотрим, как они используются при интерпретации однолинейных диаграмм. Ниже представлена ​​простая электрическая схема .

Рисунок 1 — Простая однолинейная схема

По символам вы можете сказать, что эта однолинейная схема имеет три резистора и батарею. Электричество течет от отрицательной стороны батареи через резисторы к положительной стороне батареи.


Промышленная однолинейная схема

Теперь давайте рассмотрим промышленную однолинейную схему. При интерпретации однолинейной схемы вы всегда должны начинать с вершины , где максимальное напряжение составляет , и постепенно снижаться до самого низкого напряжения.Это помогает поддерживать прямые напряжения и пути их прохождения.

Чтобы пояснить это проще, мы разделили одну строку на три части.

Рисунок 2 — Типичная промышленная однолинейная схема
Area A //

Если начать сверху, вы заметите, что трансформатор подает питание на всю систему. Трансформатор понижает напряжение с 35 кВ до 15 кВ, на что указывают числа рядом с символом трансформатора. После понижения напряжения обнаруживается выкатной выключатель ( a1 ).

Узнали ли вы символ выкатного выключателя ?

Вы можете предположить, что этот автоматический выключатель может выдерживать 15 кВ , поскольку он присоединен к стороне 15 кВ трансформатора, и на однолинейной схеме ничего другого не указано. После выкатного выключателя ( a1 ) от трансформатора он прикрепляется к более тяжелой горизонтальной линии.

Эта горизонтальная линия представляет собой электрическую шину , которая используется для подачи электричества в другие области или цепи.


Область B //

Вы заметите, что еще два выкатных выключателя (b1 и b2) подключены к шине и питают другие цепи, которые находятся на 15 кВ, поскольку не было никаких признаков изменения напряжения в система. Присоединенный к выкатному выключателю ( b1 ) понижающий трансформатор используется для понижения напряжения в этой области системы с 15 кВ до 5 кВ.

SLD, зона B

На стороне 5 кВ этого трансформатора показан разъединитель .Разъединитель используется для подключения или отключения оборудования под ним от трансформатора. Оборудование под разъединителем находится под напряжением 5 кВ , поскольку ничто не указывает на обратное.

Узнаете ли вы оборудование, прикрепленное к нижней стороне разъединителя, как два пускателя двигателя среднего напряжения ?

В зависимости от требований конкретной системы может быть подключено несколько пускателей. Теперь найдите второй выкатной выключатель ( b2 ).Этот автоматический выключатель прикреплен к разъединителю с предохранителем и подключен к понижающему трансформатору. Обратите внимание, что все оборудование ниже трансформатора теперь считается оборудованием низкого напряжения, потому что напряжение было понижено до уровня 600 вольт или ниже .

Последним элементом электрооборудования в средней части схемы является другой автоматический выключатель ( b3 ). Однако на этот раз автоматический выключатель представляет собой фиксированный низковольтный автоматический выключатель , как обозначено символом.

Переходя к нижней части однолинейной схемы, обратите внимание, что автоматический выключатель (b3) в середине подключен к шине в нижней части.


Зона C //

Внизу слева, подключенный к шине, находится еще один стационарный выключатель. Внимательно посмотрите на следующую группу символов.

Узнаете символ автоматического включения резерва?

Также обратите внимание, что кружок, который представляет собой аварийный генератор , прикреплен к автоматическому переключателю.Эта область однолинейной схемы говорит нам о том, что важно, чтобы оборудование, подключенное под автоматическим переключателем, продолжало работать, даже если питание от шины пропало. Из однолинейной схемы видно, что автоматический переключатель резерва подключит аварийный генератор к цепи, чтобы поддерживать работу оборудования, если питание от шины будет потеряно.

SLD, зона C

Цепь управления низковольтным двигателем подключена к автоматическому переключателю через низковольтную шину. Убедитесь, что вы узнали эти символы. Хотя нам неизвестна точная функция управления двигателем низкого напряжения в этой цепи, очевидно, что важно поддерживать оборудование в рабочем состоянии. Письменная спецификация обычно предоставляет подробную информацию о приложении.

С правой стороны третьей зоны есть еще один стационарный выключатель, подключенный к шине. Он прикреплен к центру метров, на что указывает символ , образованный тремя кругами .Это указывает на то, что электрическая компания использует эти счетчики для учета мощности, потребляемой оборудованием ниже центра счетчика.

Ниже центра счетчика находится центр нагрузки или щит, который питает ряд меньших цепей. Это может быть центр нагрузки в здании, который питает свет, кондиционер, отопление и любое другое электрическое оборудование, подключенное к зданию.

Еще несколько слов //

Этот чрезмерно упрощенный анализ однолинейной схемы дает вам представление о том, какую историю рассказывают такие схемы о соединениях электрической системы и оборудовании .

Просто имейте в виду, что, хотя некоторые однолинейные диаграммы могут показаться подавляющими из-за своего размера и большого разнообразия представленного оборудования, все они могут быть проанализированы с использованием одного и того же пошагового метода.

Ссылка // Основы распределения электроэнергии по EATON

Электрические чертежи и обзор схем

Проектирование, установка и устранение неисправностей электрических систем требует использования различных чертежей, чтобы дать инженерам, установщикам и техническим специалистам визуальное представление систем, с которыми они работают.

Электрооборудование и схемы часто выражаются в виде символов и линий, которые представляют различные компоненты и соединения внутри системы. Уровень сложности электрического чертежа будет варьироваться в зависимости от предполагаемого назначения и персонала, работающего с чертежом.

Инженеры-конструкторы и технические специалисты

используют схемы для построения и устранения неисправностей сложных цепей, в то время как операторы предприятий используют однолинейные схемы и схемы стояков для облегчения операций переключения в своей распределительной системе.Умение читать и интерпретировать различные типы электрических чертежей — важный навык, которым должны обладать все электротехники для эффективного выполнения своих задач.

Символы и линии на электрическом чертеже говорят на языке, который все участники должны понимать, чтобы проектировать, строить и устранять неисправности электрических систем. В этой статье мы кратко опишем несколько типов общих электрических схем, встречающихся в полевых условиях, и объясним их назначение.

Схема однолинейная

Однолинейная схема распределительного устройства Medoum-Voltage

. Фотография: General Electric

Когда вам нужен вид энергосистемы с высоты птичьего полета, однолинейная схема часто является первым чертежом, к которому следует обратиться. Эти рисунки, также называемые однолинейными диаграммами, показывают поток электроэнергии или ход электрических цепей и то, как они связаны.

Физические взаимосвязи обычно не учитываются на однолинейной схеме, однако они должны показывать все основные компоненты в энергосистеме и перечислять все важные характеристики. Напряжение системы, полное сопротивление трансформатора, номинальные параметры отключения и ток короткого замыкания — это лишь некоторые из основных элементов, включенных в однолинейную схему.

Эти чертежи должны храниться в главной диспетчерской на предприятии, чтобы помочь в управлении операциями переключения путем определения фидеров и нагрузки, которую они обслуживают. Обычно включаются напряжение системы, частота, фаза и нормальные рабочие положения.

Другие элементы, такие как коэффициенты измерительного трансформатора и защитные реле, можно найти на однолинейной схеме. Если диаграмма не может охватить все задействованные компоненты, можно нарисовать дополнительные диаграммы вместе с основной диаграммой.

Связанные: Обозначения на однолинейных электрических схемах


Трехлинейная схема

Трехпроводная схема шины 4160 В. Фото: NRC.gov

Для более детального представления системы распределения электроэнергии используется трехлинейная диаграмма, показывающая соотношение фаз. В многофазных системах переменного тока эти чертежи иллюстрируют различные соединения для A, B, C, нейтрали и заземления, каждое из которых представлено своей собственной линией.

Трехлинейные схемы дополняют однолинейные, предоставляя базовое визуальное руководство для реальной прокладки кабеля фидера, соединений измерительного трансформатора и защитных устройств.На этих чертежах показано, как соединены фазы и конкретные конфигурации обмоток без учета их физического расположения.


Схема подъема

Схема электрического стояка

. Фото: BGR Engineers.

Чтобы проиллюстрировать электрическую распределительную систему многоуровневого здания, используется диаграмма стояка. Эти чертежи похожи на однолинейные чертежи, но часто фокусируются на том, как энергия перетекает с одного уровня здания на другой.

На схемах

Riser показаны компоненты распределения, такие как стояки шины, шинные вилки, щитовые панели и трансформаторы, от точки входа до небольших ответвлений на каждом уровне.Эти чертежи иногда могут использоваться совместно с системами охранной сигнализации, телекоммуникационными и интернет-кабелями.


Принципиальная схема

Пример электронной принципиальной схемы. Фото: DOE.gov

Основная цель принципиальной схемы — выделить элементы схемы и то, как их функции соотносятся друг с другом. Схемы — чрезвычайно ценный инструмент для поиска и устранения неисправностей, который определяет, какие компоненты включены последовательно или параллельно, и как они соединяются друг с другом.

Компоненты, которые обычно встречаются на принципиальных схемах, включают резисторы, конденсаторы, катушки индуктивности, диоды, логические вентили, контакты предохранителей, переключатели и многое другое.Каждый компонент на принципиальной схеме имеет свой собственный символ, обозначающий его.

Схематические диаграммы должны быть составлены для простоты и легкости понимания без учета фактического физического расположения любого компонента, уделяя внимание только тому, как они соединяются друг с другом. Эти схемы всегда должны быть нарисованы с переключателями и контактами, показанными в обесточенном положении.

Связано: Объяснение схемы управления автоматическим выключателем


Схема электрических соединений

Схема подключения реле датчика нагрузки

Exmpale.Фото: Площадь Д.

Основная цель схемы подключения — показать все компоненты в электрической цепи и расположить их так, чтобы показать их фактическое физическое расположение. В отличие от принципиальной схемы, которую можно рассматривать как концептуальный рисунок, схема подключения предназначена для конечных пользователей и установщиков, которые сосредоточены на подключении и устранении неполадок компонентов.

На схемах подключения

должны быть указаны все части оборудования, устройства и клеммные колодки с их соответствующими номерами, буквами или цветами.Обозначения клемм и соединений между компонентами четко обозначены, чтобы облегчить сборку или ремонт оборудования, показанного на чертеже.


Блок-схема

Пример блок-схемы. Фото: Mercer.edu

Пожалуй, самый простой тип электрических чертежей, блок-схемы представляют основные компоненты сложной системы в виде блоков, соединенных линиями, которые показывают их взаимосвязь. Эти диаграммы не следует путать с однолинейными чертежами, поскольку они не передают никакой технической информации, а только основные компоненты сложной системы.

Блок-схема дает концептуальное представление о том, как завершается процесс, без учета электрических символов или терминов. Каждый блок представляет собой сложную схему, которая может быть объяснена с помощью других чертежей, таких как схемы и электрические схемы.


Логическая схема

Логическая схема реле отказа выключателя. Фото: SEL, Inc.

.

В современных реле защиты используются логические схемы для представления сложных цепей и процессов, в которых сигнал рассматривается в двоичном формате (1 или 0).Логические функции на этих схемах представлены соответствующими символами, тогда как блоки используются для представления сложной логической схемы.

Блоки на логической схеме помечены для лучшего понимания без знания внутренней структуры и соединены линиями, которые представляют входы и выходы для двоичных сигналов. Логические схемы обычно не показывают электрические характеристики, такие как напряжение, ток и мощность.


Расписания

Примеры расписания двигателей и питателей.Фотография: Волусский уезд, Флорида

При перечислении таких позиций, как автоматические выключатели и размеры проводов для конкретного проекта или части распределительного оборудования, используется расписание. Термин «график» может также относиться к датам, в которые должно быть завершено определенное действие, обычно называемое «графиком проекта».

Что касается распределения электроэнергии, то графики часто включаются в чертежи распределительных щитов и щитов, чтобы указать количество автоматических выключателей, их размер и нагрузки, которые они обслуживают.Расписания фидеров используются для определения размера и количества проводов, используемых для входящих и исходящих грузов в рамках строительного проекта.

Расписания

обычно представлены в табличной форме и организованы таким образом, чтобы не требовать пояснений, что упрощает быстрый поиск информации. Информация в расписании обычно не включает однолинейные схемы или схемы соединений, но они обычно идентифицируют эту информацию со справочными чертежами, легендами и примечаниями.


Исполнительные чертежи

Каждый раз, когда строительный проект завершается, «Как построено» представляет собой измененный чертеж, созданный и отправленный подрядчиком, чтобы выделить любые изменения, которые были внесены в первоначальные проектные чертежи в процессе строительства. Эти чертежи являются точным отражением проекта после того, как он был завершен, и должны содержать подробные сведения о форме, размерах и точном расположении всех элементов в рамках проекта.

Любые модификации, независимо от того, насколько они малы, должны быть включены в готовую конструкцию, если они отличаются от указанных в первоначальном плане. Строительные чертежи должны включать в себя записи об утверждениях, чтобы соответствовать внесенным изменениям.


Список литературы

Комментарии

Войдите или зарегистрируйтесь, чтобы комментировать.

ПРИЛОЖЕНИЕ B. Буквы с обозначением класса — Технические исследования

Пункт 0. Буквы с обозначением класса

Для использования при присвоении условных обозначений для электрических и электронных деталей и оборудования, как описано в ANSI / ASME Y14.44, Справочные обозначения для электрических и Электроника, детали и оборудование.

Буквы, обозначающие класс изделия, должны быть выбраны в соответствии со списком в пункте 0.4.

Определенные названия элементов и обозначающие буквы могут относиться как к детали, так и к сборке.

Пункт 0.2.1 Фактическая функция по сравнению с предполагаемой

Если часть служит другой цели, чем ее обычно предназначенная, фактически выполняемая функция должна быть представлена ​​графическим символом, используемым на схематической диаграмме; Буква класса выбирается из списка в пункте 0.4 и должна указывать на его физические характеристики. Например, полупроводниковый диод, используемый в качестве предохранителя, будет представлен графическим символом предохранителя (фактическая функция), но буква класса будет D (класс детали).Если деталь выполняет двойную функцию, применяется буква класса для основных физических характеристик детали.

Пункт 0.2.2 Сборка по сравнению с подсборкой

Термин «подсборка», используемый в данном документе, в равной степени применяется к сборке.

Пункт 0.2.3 Компонент в сравнении с отдельной деталью

Группа деталей не считается подсборкой, если она не является одним или несколькими из следующих:

а) Плагин.

б) Важный элемент, изображенный на отдельной схеме.

c) Многофункциональный элемент.

d) Скорее всего, будет использоваться как заменяемый элемент для целей технического обслуживания.

Пункт 0.2.4 Частные и общие

Буквы A и U (для сборки) не должны использоваться, если более конкретные буквы класса перечислены в пункте 0.4 для конкретного элемента.

Пункт 0.2.5 Неразъемные узлы

Герметичные, встроенные, склепанные или герметично закрытые узлы, модульные узлы, печатные платы, корпуса ИС и аналогичные элементы, которые обычно заменяются как единый элемент поставки, должны рассматриваться как части.Им должна быть присвоена буква класса U, если не применяется более конкретная буква класса.

Частям, специально не включенным в этот список, должна быть присвоена буква или буквы из списка ниже для части или класса, наиболее схожих по функциям.

[1] Буква класса A присваивается на том основании, что элемент является отделяемым. Буква класса U используется, если элемент является неотделимым.

[2] По экономическим причинам узлы, которые принципиально разделяются, могут не иметь такой возможности, но могут поставляться в виде полных узлов.Однако буква класса A должна быть сохранена.

[3] Не буква класса, но используется для идентификации подразделения оборудования в методе нумерации местоположений.

[4] Не буква класса, но обычно используется для обозначения контрольных точек в целях технического обслуживания.

[5] Не буква класса, но обычно используется для обозначения связующей точки на схемах соединений.

[6] Это классное письмо добавлено.

Релейные символы и электромагниты

Обозначения реле / ​​элементов управления электромагнитами

Символ Описание Символ Описание
Реле (катушка)
Общее обозначение
Реле (катушка)
Общее обозначение
Реле Реле с двойной катушкой
Реле с двойной катушкой Две противоположные обмотки рабочего реле
Реле с двойной катушкой Реле максимального тока
Реле быстрого отключения Реле дифференциального тока
Реле медленного возбуждения Реле медленного отключения
Реле высокой скорости, как для включения, так и для отключения Реле максимального напряжения
Быстрое реле Реле срабатывает при неисправном напряжении
Реле с карточным управлением Реле не зависит от AC
Дифференциальное реле Реле поляризованное
+ Инфо
Реле магнитной поляризации Реле с задержкой при отключении
Реле электромагнитное Термореле
Термореле
Полупроводниковое реле
Электронное реле
+ информация
Реле шаговое или импульсное
Реле дистанционного управления Импульсное реле
Остаточное реле Прерывистое реле
Остаток реле Электроклапан / Электромагнитный клапан
+ информация
Реле переменного тока Релейный упор с задержкой срабатывания
Реле механического резонанса
эл. г. 25 Гц
Ступенчатое реле
Реле механической блокировки
Реле с подсветкой

Обозначения измерительных реле

Реле максимального напряжения Реле минимального напряжения
Реле низкого сопротивления Реле отсутствия напряжения
Реле обнаружения с разделенным проводом Реле малой мощности
Реле обнаружения короткого замыкания между катушками Реле обратного тока
Реле обнаружения отказа в трехфазных линиях Реле максимального и минимального тока
Реле блокировки ротора Реле частоты
Реле АПВ Реле максимального тока с двумя измерительными элементами и диапазоном образца
эл. г. Диапазон выборки 1 … 5 А
Реле максимального тока с задержкой срабатывания Измерительное реле
Звездочка заменяется буквами или символами, относящимися к реле

Символы электромагнитов / элементы управления электромагнитным полем

Электромагнит
Электромагнитный привод
+ Инфо
Электромагнит
Электромагнит
Электромагнитный привод
Символ США
Контакт с электромагнитным анкерным механизмом
Герконское реле / ​​Геркон
+ информация

Условные обозначения контактов реле

Открытые контакты
NO — Нормально открытые
+ Информация
Замкнутые контакты
NC — Нормально замкнутые
Открытые контакты
NO — Нормально открытые
Замкнутые контакты
NC — Нормально замкнутые
Открытые контакты
NO — Нормально открытые
Замкнутые контакты
NC — Нормально замкнутые
Контакты рабочие Контакты отдыхающие
Переключающие контакты Переключайте контакты последовательно
Коммутатор / переключатель Коммутатор / переключатель

Обозначения реле с контактами

Реле / ​​соленоид
(катушка и переключатель)
Общий символ
+ информация
Реле / ​​соленоидное управление
Реле / ​​соленоидное управление Реле / ​​соленоид
Катушка и кнопка
Релейный переключатель Контактор
Реле — SPST
Однополюсное, однопозиционное
Реле — SPDT
Однополюсное, двойное соединение
Реле — DPST
Двухполюсное, одинарное соединение
Реле — DPDT
Двухполюсное, двойное соединение
Реле — DPST
Двухполюсное, одинарное соединение
Реле — 3PDT
Трехполюсное, двойное соединение
Реле — 3PST
Трехполюсное, одинарное соединение
Картинная галерея реле и электромагнитов
Загрузить символы

% PDF-1. 4 % 3750 0 объект > эндобдж xref 3750 467 0000000016 00000 н. 0000009696 00000 п. 0000009908 00000 н. 0000009982 00000 н. 0000015820 00000 н. 0000016310 00000 п. 0000016397 00000 п. 0000016485 00000 п. 0000016637 00000 п. 0000016771 00000 п. 0000016906 00000 п. 0000017055 00000 п. 0000017127 00000 п. 0000017241 00000 п. 0000017308 00000 п. 0000017392 00000 п. 0000017476 00000 п. 0000017547 00000 п. 0000017647 00000 п. 0000017718 00000 п. 0000017818 00000 п. 0000017889 00000 п. 0000017989 00000 п. 0000018060 00000 п. 0000018160 00000 п. 0000018232 00000 п. 0000018332 00000 п. 0000018403 00000 п. 0000018503 00000 п. 0000018574 00000 п. 0000018674 00000 п. 0000018745 00000 п. 0000018845 00000 п. 0000018916 00000 п. 0000019016 00000 п. 0000019087 00000 п. 0000019187 00000 п. 0000019258 00000 п. 0000019358 00000 п. 0000019429 00000 п. 0000019529 00000 п. 0000019600 00000 п. 0000019700 00000 п. 0000019771 00000 п. 0000019871 00000 п. 0000019942 00000 п. 0000020042 00000 н. 0000020113 00000 п. 0000020213 00000 п. 0000020284 00000 п. 0000020384 00000 п. 0000020455 00000 п. 0000020555 00000 п. 0000020626 00000 п. 0000020726 00000 п. 0000020797 00000 п. 0000020897 00000 п. 0000020968 00000 н. 0000021039 00000 п. 0000021153 00000 п. 0000021220 00000 н. 0000021341 00000 п. 0000021408 00000 п. 0000021532 00000 п. 0000021599 00000 н. 0000021726 00000 п. 0000021793 00000 п. 0000021953 00000 п. 0000022020 00000 н. 0000022128 00000 п. 0000022252 00000 п. 0000022359 00000 п. 0000022426 00000 п. 0000022498 00000 п. 0000022655 00000 п. 0000022815 00000 п. 0000022931 00000 п. 0000023090 00000 п. 0000023157 00000 п. 0000023256 00000 п. 0000023430 00000 п. 0000023497 00000 п. 0000023617 00000 п. 0000023758 00000 п. 0000023920 00000 п. 0000023987 00000 п. 0000024153 00000 п. 0000024289 00000 п. 0000024449 00000 п. 0000024516 00000 п. 0000024632 00000 п. 0000024791 00000 п. 0000024954 00000 п. 0000025020 00000 н. 0000025117 00000 п. 0000025239 00000 п. 0000025413 00000 п. 0000025479 00000 п. 0000025636 00000 п. 0000025754 00000 п. 0000025881 00000 п. 0000025947 00000 п. 0000026099 00000 п. 0000026165 00000 п. 0000026318 00000 п. 0000026530 00000 п. 0000026636 00000 н. 0000026701 00000 п. 0000026766 00000 п. 0000026923 00000 п. 0000026989 00000 п. 0000027137 00000 п. 0000027203 00000 п. 0000027352 00000 п. 0000027418 00000 п. 0000027566 00000 п. 0000027632 00000 н. 0000027790 00000 н. 0000027856 00000 п. 0000027963 00000 н. 0000028029 00000 п. 0000028189 00000 п. 0000028255 00000 п. 0000028409 00000 п. 0000028475 00000 п. 0000028618 00000 п. 0000028684 00000 п. 0000028837 00000 п. 0000028903 00000 п. 0000029057 00000 н. 0000029123 00000 п. 0000029270 00000 п. 0000029336 00000 п. 0000029480 00000 п. 0000029545 00000 п. 0000029689 00000 п. 0000029754 00000 п. 0000029819 00000 п. 0000029884 00000 п. 0000030047 00000 п. 0000030113 00000 п. 0000030229 00000 п. 0000030336 00000 п. 0000030509 00000 п. 0000030575 00000 п. 0000030681 00000 п. 0000030783 00000 п. 0000030849 00000 п. 0000030949 00000 п. 0000031015 00000 п. 0000031115 00000 п. 0000031182 00000 п. 0000031249 00000 п. 0000031315 00000 п. 0000031443 00000 п. 0000031509 00000 п. 0000031575 00000 п. 0000031641 00000 п. 0000031707 00000 п. 0000031809 00000 п. 0000031934 00000 п. 0000032000 00000 н. 0000032066 00000 п. 0000032254 00000 п. 0000032320 00000 п. 0000032432 00000 п. 0000032536 00000 п. 0000032666 00000 п. 0000032732 00000 п. 0000032880 00000 п. 0000032946 00000 п. 0000033102 00000 п. 0000033168 00000 п. 0000033295 00000 п. 0000033361 00000 п. 0000033427 00000 н. 0000033493 00000 п. 0000033630 00000 п. 0000033763 00000 п. 0000033829 00000 п. 0000033958 00000 п. 0000034024 00000 п. 0000034150 00000 п. 0000034216 00000 п. 0000034337 00000 п. 0000034403 00000 п. 0000034530 00000 п. 0000034596 00000 п. 0000034728 00000 п. 0000034794 00000 п. 0000034907 00000 п. 0000034973 00000 п. 0000035110 00000 п. 0000035176 00000 п. 0000035302 00000 п. 0000035368 00000 п. 0000035498 00000 п. 0000035564 00000 п. 0000035630 00000 п. 0000035696 00000 п. 0000035762 00000 п. 0000035859 00000 п. 0000035963 00000 п. 0000036137 00000 п. 0000036203 00000 п. 0000036317 00000 п. 0000036456 00000 п. 0000036628 00000 п. 0000036694 00000 п. 0000036786 00000 п. 0000036901 00000 п. 0000036967 00000 п. 0000037092 00000 п. 0000037158 00000 п. 0000037277 00000 п. 0000037343 00000 п. 0000037450 00000 п. 0000037516 00000 п. 0000037646 00000 п. 0000037712 00000 п. 0000037833 00000 п. 0000037899 00000 п. 0000038028 00000 п. 0000038094 00000 п. 0000038160 00000 п. 0000038226 00000 п. 0000038351 00000 п. 0000038417 00000 п. 0000038533 00000 п. 0000038599 00000 п. 0000038733 00000 п. 0000038799 00000 п. 0000038917 00000 п. 0000038983 00000 п. 0000039049 00000 н. 0000039115 00000 п. 0000039228 00000 п. 0000039295 00000 п. 0000039414 00000 п. 0000039481 00000 п. 0000039598 00000 п. 0000039665 00000 п. 0000039785 00000 п. 0000039852 00000 п. 0000039974 00000 н. 0000040041 00000 п. 0000040170 00000 п. 0000040237 00000 п. 0000040360 00000 п. 0000040427 00000 п. 0000040560 00000 п. 0000040627 00000 п. 0000040757 00000 п. 0000040824 00000 п. 0000040947 00000 п. 0000041014 00000 п. 0000041133 00000 п. 0000041200 00000 п. 0000041321 00000 п. 0000041388 00000 п. 0000041506 00000 п. 0000041573 00000 п. 0000041691 00000 п. 0000041758 00000 п. 0000041888 00000 п. 0000041955 00000 п. 0000042084 00000 п. 0000042151 00000 п. 0000042272 00000 п. 0000042339 00000 п. 0000042472 00000 п. 0000042539 00000 п. 0000042671 00000 п. 0000042738 00000 п. 0000042872 00000 п. 0000042939 00000 п. 0000043062 00000 п. 0000043129 00000 п. 0000043247 00000 п. 0000043314 00000 п. 0000043428 00000 п. 0000043495 00000 п. 0000043562 00000 п. 0000043629 00000 п. 0000043695 00000 п. 0000043762 00000 п. 0000043829 00000 п. 0000043928 00000 п. 0000044037 00000 п. 0000044166 00000 п. 0000044233 00000 п. 0000044300 00000 п. 0000044367 00000 п. 0000044530 00000 п. 0000044597 00000 п. 0000044750 00000 п. 0000044817 00000 п. 0000044884 00000 п. 0000044951 00000 п. 0000045018 00000 п. 0000045183 00000 п. 0000045250 00000 п. 0000045396 00000 п. 0000045516 00000 п. 0000045676 00000 п. 0000045743 00000 п. 0000045866 00000 п. 0000045999 00000 п. 0000046206 00000 п. 0000046273 00000 п. 0000046362 00000 п. 0000046489 00000 п. 0000046648 00000 н. 0000046715 00000 п. 0000046842 00000 п. 0000046954 00000 п. 0000047124 00000 п. 0000047191 00000 п. 0000047323 00000 п. 0000047437 00000 п. 0000047598 00000 п. 0000047665 00000 п. 0000047787 00000 п. 0000047910 00000 п. 0000047977 00000 п. 0000048120 00000 н. 0000048187 00000 п. 0000048322 00000 п. 0000048389 00000 п. 0000048515 00000 п. 0000048582 00000 п. 0000048649 00000 н. 0000048716 00000 п. 0000048783 00000 п. 0000048850 00000 п. 0000048972 00000 н. 0000049039 00000 п. 0000049106 00000 п. 0000049173 00000 п. 0000049240 00000 п. 0000049308 00000 п. 0000049430 00000 п. 0000049497 00000 п. 0000049564 00000 п. 0000049631 00000 п. 0000049778 00000 п. 0000049845 00000 п. 0000049967 00000 н. 0000050034 00000 п. 0000050101 00000 п. 0000050168 00000 п. 0000050235 00000 п. 0000050367 00000 п. 0000050494 00000 п. 0000050625 00000 п. 0000050692 00000 п. 0000050814 00000 п. 0000050881 00000 п. 0000050948 00000 п. 0000051015 00000 п. 0000051150 00000 п. 0000051217 00000 п. 0000051350 00000 п. 0000051417 00000 п. 0000051549 00000 п. 0000051616 00000 п. 0000051743 00000 п. 0000051810 00000 п. 0000051968 00000 п. 0000052035 00000 п. 0000052189 00000 п. 0000052256 00000 п. 0000052406 00000 п. 0000052473 00000 п. 0000052620 00000 п. 0000052687 00000 п. 0000052837 00000 п. 0000052904 00000 п. 0000052971 00000 п. 0000053038 00000 п. 0000053110 00000 п. 0000053235 00000 п. 0000053335 00000 п. 0000053407 00000 п. 0000053524 00000 п. 0000053594 00000 п. 0000053720 00000 п. 0000053790 00000 п. 0000053903 00000 п. 0000053973 00000 п. 0000054112 00000 п. 0000054182 00000 п. 0000054302 00000 п. 0000054372 00000 п. 0000054494 00000 п. 0000054564 00000 п. 0000054634 00000 п. 0000054706 00000 п. 0000054827 00000 н. 0000054928 00000 п. 0000055000 00000 н. 0000055119 00000 п. 0000055189 00000 п. 0000055322 00000 п. 0000055392 00000 п. 0000055506 00000 п. 0000055576 00000 п. 0000055724 00000 п. 0000055794 00000 п. 0000055915 00000 п. 0000055985 00000 п. 0000056110 00000 п. 0000056180 00000 п. 0000056250 00000 п. 0000056322 00000 п. 0000056355 00000 п. 0000056487 00000 п. 0000056639 00000 п. 0000057300 00000 п. 0000057383 00000 п. 0000059196 00000 п. 0000059446 00000 п. 0000059650 00000 п. 0000059801 00000 п. 0000059983 00000 п. 0000060013 00000 п. 0000060044 00000 п. 0000060297 00000 п. 0000060602 00000 п. 0000062968 00000 п. 0000062992 00000 п. 0000063203 00000 п. 0000063629 00000 п. 0000064032 00000 п. 0000064248 00000 п. 0000080561 00000 п. 0000093460 00000 п. 0000093886 00000 п. 0000094570 00000 п. 0000094690 00000 н. 0000095116 00000 п. 0000095800 00000 п. 0000095954 00000 п. 0000096380 00000 п. 0000097064 00000 п. 0000097216 00000 п. 0000097372 00000 п. 0000097517 00000 п. 0000097943 00000 п. 0000098627 00000 п. 0000098779 00000 п. 0000099205 00000 п. 0000099889 00000 н. 0000100043 00000 н. 0000100199 00000 н. 0000133159 00000 н. 0000133279 00000 н. 0000133427 00000 н. 0000133685 00000 н. 0000133965 00000 н. 0000134072 00000 н. 0000134396 00000 н. 0000134690 00000 н. 0000137442 00000 н. 0000137547 00000 н. 0000010137 00000 п. 0000015796 00000 п. трейлер ] >> startxref 0 %% EOF 3751 0 объект > эндобдж 3752 0 объект > эндобдж 3753 0 объект > / Кодировка> >> / DA (/ Helv 0 Tf 0 г) >> эндобдж 4215 0 объект > ручей HV} PS%! DHHp / nC! Ð [E + Kuf # qA% & lbjqvNT8 «Vʸ [GL {/ $ Oƙq {9ws

INDUSTRIAL CONTROLS — Applied Industrial Electricity

Хотя может показаться странным раскрывать элементарную тему электрических переключателей на столь позднем этапе этой серии книг, я делаю это потому, что в следующих главах исследуется старая область цифровых технологий, основанная на контактах механического переключателя, а не на твердотельных затворах. схем, и тщательное понимание типов переключателей необходимо для предприятия.Изучение функций схем на основе переключателей одновременно с изучением полупроводниковых логических вентилей упрощает понимание обеих тем и создает основу для расширенного опыта обучения булевой алгебре, математике, лежащей в основе цифровых логических схем.

Что такое электрический выключатель?

Электрический выключатель — это любое устройство, используемое для прерывания потока электронов в цепи. Переключатели по сути являются бинарными устройствами: они либо полностью включены («замкнуты»), либо полностью выключены («разомкнуты»).Существует много разных типов переключателей, и в этой главе мы рассмотрим некоторые из них.

Изучите различные типы переключателей

Самый простой тип переключателя — это переключатель, в котором два электрических проводника приводят в контакт друг с другом за счет движения исполнительного механизма. Другие переключатели более сложны и содержат электронные схемы, которые могут включаться или выключаться в зависимости от какого-либо физического стимула (например, света или магнитного поля). В любом случае конечным выходом любого переключателя будет (как минимум) пара клемм для подключения проводов, которые будут либо соединены вместе внутренним контактным механизмом переключателя («замкнут»), либо не соединены вместе («разомкнуты»). .Любой переключатель, предназначенный для управления человеком, обычно называется ручным переключателем , и они производятся в нескольких вариантах:

Тумблеры

Рисунок 9.1 Тумблер

Тумблеры приводятся в действие рычагом, находящимся под углом в одном из двух или более положений. Обычный выключатель света, используемый в бытовой электропроводке, является примером тумблера. Большинство тумблеров остановятся в любом из своих положений рычага, в то время как другие имеют внутренний пружинный механизм, возвращающий рычаг в определенное нормальное положение , что позволяет выполнять так называемое «мгновенное» действие.

Кнопочные переключатели

Рисунок 9.2 Кнопочный переключатель

Кнопочные переключатели — это двухпозиционные устройства, приводимые в действие нажатием и отпусканием кнопки. Большинство кнопочных переключателей имеют внутренний пружинный механизм, возвращающий кнопку в ее «отжатое» или «не нажатое» положение для кратковременного срабатывания. Некоторые кнопочные переключатели поочередно включаются или выключаются при каждом нажатии кнопки. Другие кнопочные переключатели будут оставаться в своем «нажатом» или «нажатом» положении до тех пор, пока кнопка не будет вытянута обратно.Этот последний тип кнопочных переключателей обычно имеет грибовидную кнопку для легкого нажатия и вытягивания.

Селекторные переключатели

Рисунок 9.3 Селекторный переключатель

Селекторные переключатели приводятся в действие поворотной ручкой или каким-либо рычагом для выбора одного из двух или более положений. Как и тумблер, селекторные переключатели могут либо находиться в любом из своих положений, либо содержать механизмы с пружинным возвратом для мгновенного срабатывания.

Джойстик-переключатели

Рисунок 9.4 Джойстик-переключатель

Переключатель-джойстик приводится в действие рычагом, который может свободно перемещаться по более чем одной оси движения. Один или несколько из нескольких переключающих контактных механизмов приводятся в действие в зависимости от того, в какую сторону нажимается рычаг, а иногда и от того, насколько далеко, он нажат. Обозначение из круга и точки на символе переключателя представляет направление движения рычага джойстика, необходимое для приведения в действие контакта. Ручные переключатели-джойстики обычно используются для управления краном и роботом.

Некоторые переключатели специально разработаны для управления движением машины, а не рукой человека-оператора.Эти управляемые движением переключатели обычно называются концевыми выключателями , , потому что они часто используются для ограничения движения машины путем отключения исполнительной мощности компонента, если он перемещается слишком далеко.

Как и ручные выключатели, концевые выключатели бывают нескольких разновидностей:

Концевые выключатели

Рисунок 9.5 Концевой выключатель рычажного привода

Эти концевые выключатели очень похожи на прочные тумблеры или ручные переключатели, оснащенные рычагом, нажимаемым деталью машины. Часто рычаги имеют небольшой роликовый подшипник, предотвращающий износ рычага при многократном контакте с деталью машины.

Бесконтактные переключатели

Рисунок 9.6 Бесконтактный переключатель

Бесконтактные переключатели распознают приближение металлической части машины с помощью магнитного или высокочастотного электромагнитного поля. Простые бесконтактные переключатели используют постоянный магнит для приведения в действие герметичного механизма переключения всякий раз, когда часть машины приближается (обычно на 1 дюйм или меньше).Более сложные бесконтактные переключатели работают как металлоискатель, запитывая катушку с проволокой высокочастотным током и электронным образом отслеживая величину этого тока. Если металлическая часть (не обязательно магнитная) подойдет достаточно близко к катушке, ток увеличится и отключит цепь контроля. Показанный здесь символ для бесконтактного переключателя относится к электронной разновидности, на что указывает ромбовидная рамка, окружающая переключатель. Для неэлектронного бесконтактного переключателя будет использоваться тот же символ, что и для концевого переключателя, приводимого в действие рычагом.Другой вид бесконтактного переключателя — это оптический переключатель, состоящий из источника света и фотоэлемента. Положение машины определяется либо по прерыванию, либо по отражению светового луча. Оптические переключатели также полезны в приложениях безопасности, где лучи света могут использоваться для обнаружения входа персонала в опасную зону.

Различные типы переключателей процесса

Во многих промышленных процессах необходимо контролировать различные физические величины с помощью переключателей. Такие переключатели могут использоваться для подачи сигналов тревоги, указывающих, что параметр процесса превысил нормальные параметры, или они могут использоваться для остановки процессов или оборудования, если эти переменные достигли опасного или разрушительного уровня.Существует много различных типов переключателей процесса.

Переключатели скоростей

Рисунок 9.7 Переключатель скорости.

Эти переключатели определяют скорость вращения вала либо с помощью механизма центробежного груза, установленного на валу, либо с помощью какого-либо вида бесконтактного обнаружения движения вала, такого как оптическое или магнитное.

Реле давления

Рисунок 9.8 Реле давления

Давление газа или жидкости может быть использовано для приведения в действие механизма переключения, если это давление приложено к поршню, диафрагме или сильфону, который преобразует давление в механическую силу.

Реле температуры

Рисунок 9.9 Температурный выключатель

Недорогим механизмом измерения температуры является «биметаллическая полоса»: тонкая полоска из двух металлов, соединенных спиной к спине, причем каждый металл имеет разную скорость теплового расширения. Когда полоса нагревается или охлаждается, разная скорость теплового расширения двух металлов вызывает ее изгиб. Затем изгиб полосы можно использовать для приведения в действие механизма переключающего контакта. В других реле температуры используется латунная колба, заполненная жидкостью или газом, с крошечной трубкой, соединяющей колбу с датчиком давления.Когда баллон нагревается, газ или жидкость расширяются, вызывая повышение давления, которое затем приводит в действие механизм переключения.

Датчик уровня жидкости

Рисунок 9.10 Реле уровня жидкости.

Плавающий объект может использоваться для приведения в действие механизма переключения, когда уровень жидкости в резервуаре поднимается выше определенной точки. Если жидкость электропроводна, сама жидкость может использоваться в качестве проводника между двумя металлическими зондами, вставленными в резервуар на требуемой глубине.Метод проводимости обычно реализуется с помощью специальной конструкции реле, срабатывающего при небольшом токе, протекающем через проводящую жидкость. В большинстве случаев переключать полный ток нагрузки цепи через жидкость нецелесообразно и опасно. Реле уровня также могут быть разработаны для определения уровня твердых материалов, таких как древесная щепа, зерно, уголь или корм для животных, в силосе для хранения, бункере или бункере. Обычной конструкцией для этого применения является небольшое лопастное колесо, вставленное в бункер на желаемой высоте, которое медленно вращается небольшим электродвигателем.Когда твердый материал заполняет бункер на эту высоту, материал предотвращает вращение лопаточного колеса. Отклик крутящего момента маленького двигателя приводит к срабатыванию механизма переключения. В другой конструкции используется металлический стержень в форме «камертона», который вставляется в бункер снаружи на желаемой высоте. Вилка вибрирует на своей резонансной частоте с помощью электронной схемы и узла катушки магнита / электромагнита. Когда бункер заполняется на эту высоту, твердый материал гасит вибрацию вилки, изменение амплитуды и / или частоты вибрации, обнаруживаемое электронной схемой.

Реле расхода жидкости

Рисунок 9. 11 Реле расхода жидкости.

Установленное в трубу реле потока обнаруживает любой расход газа или жидкости, превышающий определенный порог, обычно с помощью небольшой лопасти или лопасти, которую толкает поток. Другие реле потока сконструированы как реле перепада давления, измеряющие падение давления на дросселе, встроенном в трубу.

Ядерный датчик уровня

Рисунок 9.12 Ядерный переключатель уровня.

Другим типом реле уровня, подходящим для обнаружения жидких или твердых материалов, является ядерный переключатель.Состоящие из радиоактивного исходного материала и детектора излучения, они установлены поперек диаметра емкости для хранения твердого или жидкого материала. Любая высота материала, превышающая уровень расположения источника / детектора, будет ослаблять силу излучения, достигающего детектора. Это уменьшение излучения на детекторе может быть использовано для запуска релейного механизма для обеспечения переключающего контакта для измерения, точки срабатывания сигнализации или даже контроля уровня в сосуде.

Источник и детектор находятся вне судна, никакого проникновения, кроме самого радиационного потока.Используемые радиоактивные источники довольно слабые и не представляют непосредственной угрозы здоровью эксплуатационного или обслуживающего персонала.

Все коммутаторы имеют несколько приложений

Как обычно, существует несколько способов реализовать коммутатор для мониторинга физического процесса или для управления оператором. Обычно не существует единого «идеального» переключателя для любого приложения, хотя некоторые из них, очевидно, обладают определенными преимуществами перед другими. Для обеспечения эффективной и надежной работы переключатели должны быть разумно адаптированы к задаче.

  • Переключатель — электрическое устройство, обычно электромеханическое, используемое для контроля непрерывности между двумя точками.
  • Ручные переключатели приводятся в действие от прикосновения человека.
  • Концевые выключатели срабатывают при движении машины.
  • Переключатели процесса срабатывают при изменении какого-либо физического процесса (температуры, уровня, расхода и т. Д.).

Переключатель может быть сконструирован с любым механизмом, приводящим два проводника в управляемый контакт друг с другом.Это может быть так же просто, как позволить двум медным проводам соприкасаться друг с другом движением рычага или путем непосредственного соприкосновения двух металлических полос. Однако хорошая конструкция переключателя должна быть прочной и надежной и не подвергать оператора опасности поражения электрическим током. Поэтому конструкции промышленных переключателей редко бывают такими примитивными. Проводящие части в переключателе, используемом для включения и отключения электрического соединения, называются контактами , контактами . Контакты обычно изготавливаются из серебра или сплава серебро-кадмий, проводящие свойства которого существенно не ухудшаются из-за поверхностной коррозии или окисления. Золотые контакты демонстрируют лучшую коррозионную стойкость, но имеют ограниченную пропускную способность по току и могут «свариваться в холодном состоянии», если соединены вместе с большим механическим усилием. Независимо от выбора металла, контакты переключателя управляются механизмом, обеспечивающим квадратный и равномерный контакт, что обеспечивает максимальную надежность и минимальное сопротивление. Такие контакты могут быть сконструированы так, чтобы выдерживать очень большие количества электрического тока, в некоторых случаях до тысяч ампер. Факторы, ограничивающие допустимую нагрузку на контакт переключателя, следующие:

  • Тепло, выделяемое током через металлические контакты (в замкнутом состоянии).
  • Искра, возникающая при размыкании или замыкании контактов.
  • Напряжение на разомкнутых контактах переключателя (потенциал скачка тока через зазор).

Одним из основных недостатков стандартных переключающих контактов является воздействие на контакты окружающей атмосферы. В красивой, чистой среде диспетчерской это обычно не проблема. Однако большинство промышленных сред не столь благоприятны. Присутствие в воздухе агрессивных химикатов может привести к разрушению контактов и преждевременному выходу из строя.Еще более неприятной является возможность регулярного контактного искрения, вызывающего возгорание легковоспламеняющихся или взрывоопасных химикатов. Когда существуют такие экологические проблемы, для небольших переключателей можно рассмотреть другие типы контактов. Эти другие типы контактов изолированы от контакта с наружным воздухом и поэтому не подвержены тем же проблемам воздействия, что и стандартные контакты. Распространенным типом выключателя с герметичным контактом является ртутный выключатель. Ртуть — металлический элемент, жидкий при комнатной температуре.Будучи металлом, он обладает прекрасными проводящими свойствами. Будучи жидкостью, его можно привести в контакт с металлическими зондами (чтобы замкнуть цепь) внутри герметичной камеры, просто наклонив камеру так, чтобы зонды находились на дне. Во многих промышленных переключателях используются небольшие стеклянные трубки, содержащие ртуть, которые наклоняются в одну сторону, чтобы замкнуть контакт, и в другую сторону, чтобы размыкаться. Помимо проблем, связанных с поломкой трубки и просыпанием ртути (которая является токсичным материалом), а также восприимчивостью к вибрации, эти устройства являются отличной альтернативой открытым контактам переключателя там, где есть проблемы с воздействием окружающей среды.Здесь ртутный переключатель (часто называемый переключателем наклона ) показан в открытом положении, где ртуть не контактирует с двумя металлическими контактами на другом конце стеклянной колбы:

Рисунок 9.13

Рисунок 9.14

Здесь тот же переключатель показан в закрытом положении. Теперь гравитация удерживает жидкую ртуть в контакте с двумя металлическими контактами, обеспечивая электрическую непрерывность от одного к другому: контакты ртутного переключателя непрактично строить в больших размерах, поэтому вы обычно найдете такие контакты, рассчитанные не более чем на несколько ампер. , и не более 120 вольт.Конечно, есть исключения, но это общие ограничения. Другой тип переключателя с герметичным контактом — это герконовый переключатель. Как и у ртутного переключателя, контакты геркона расположены внутри герметичной трубки. В отличие от ртутного переключателя, в котором в качестве контактной среды используется жидкий металл, герконовый переключатель представляет собой просто пару очень тонких магнитных металлических полос (отсюда и название «язычок»), которые контактируют друг с другом путем приложения сильного магнитного поля. вне герметичной трубки. Источником магнитного поля в переключателях этого типа обычно является постоянный магнит, перемещаемый ближе или дальше от трубки с помощью исполнительного механизма.Из-за небольшого размера язычков этот тип контакта обычно рассчитан на более низкие токи и напряжения, чем средний ртутный переключатель. Однако герконы обычно лучше справляются с вибрацией, чем ртутные контакты, потому что внутри трубки нет жидкости, вокруг которой можно было бы разбрызгиваться. Обычно номинальное напряжение и ток контактов переключателя общего назначения выше для любого данного переключателя или реле, если переключаемая электрическая мощность является переменным током, а не постоянным током. Причина этого — тенденция самозатухания дуги переменного тока через воздушный зазор.Поскольку ток в линии электропередачи 60 Гц фактически останавливается и меняет направление 120 раз в секунду, у ионизированного воздуха дуги есть много возможностей потерять температуру, достаточную для прекращения проведения тока, до такой степени, что дуга не возобновится в следующий раз. пиковое напряжение. Постоянный ток, с другой стороны, представляет собой непрерывный, непрерывный поток электронов, который имеет тенденцию лучше поддерживать дугу в воздушном зазоре.

Следовательно, переключающие контакты любого типа подвержены большему износу при переключении заданного значения постоянного тока, чем при таком же значении переменного тока.Проблема переключения постоянного тока усугубляется, когда нагрузка имеет значительную индуктивность, так как при размыкании цепи на контактах переключателя возникают очень высокие напряжения (индуктор делает все возможное, чтобы поддерживать ток в цепи на том же уровне, что и при размыкании цепи). выключатель был замкнут). Как при переменном, так и при постоянном токе искрение контактов можно свести к минимуму, добавив «демпферную» цепь (конденсатор и резистор, соединенные последовательно) параллельно контакту, например:

Рисунок 9.15

Внезапное повышение напряжения на переключающем контакте, вызванное размыканием контактов, будет сдерживаться зарядным действием конденсатора (конденсатор противодействует увеличению напряжения за счет потребления тока). Резистор ограничивает количество тока, который конденсатор разряжает через контакт, когда он снова замыкается. Если бы резистора не было, конденсатор мог бы фактически сделать искрение во время замыкания контактов хуже, чем искрение во время размыкания контактов без конденсатора! Хотя это добавление к схеме помогает уменьшить контактную дугу, оно не лишено недостатков: главным соображением является возможность неисправной (закороченной) комбинации конденсатор / резистор, обеспечивающей постоянный путь для электронов, проходящих через цепь, даже когда контакт разомкнут и ток не желателен. Риск этого отказа и серьезность возникающих последствий необходимо учитывать в отношении повышенного износа контактов (и неизбежного выхода из строя контактов) без демпфирующей цепи. Использование демпферов в цепях переключателя постоянного тока не является чем-то новым: производители автомобилей годами делали это в системах зажигания двигателей, сводя к минимуму искрение через «точки» контакта переключателя в распределителе с помощью небольшого конденсатора, называемого конденсатором . Как вам скажет любой механик, срок службы «точек» дистрибьютора напрямую зависит от того, насколько хорошо работает конденсатор.При всем этом обсуждении уменьшения дугового разряда контактов переключателя можно было бы подумать, что меньший ток всегда лучше для механического переключателя. Однако это не обязательно так. Было обнаружено, что небольшое периодическое искрение может быть полезно для контактов переключателя, поскольку оно защищает контактные поверхности от небольшого количества грязи и коррозии. Если механический переключающий контакт работает со слишком малым током, контакты будут иметь тенденцию к накоплению чрезмерного сопротивления и могут преждевременно выйти из строя! Это минимальное количество электрического тока, необходимого для поддержания контакта механического переключателя в хорошем состоянии, называется током смачивания .Обычно номинальный ток смачивания переключателя намного ниже его максимального номинального тока и намного ниже его нормальной рабочей токовой нагрузки в правильно спроектированной системе. Однако есть приложения, в которых может потребоваться механический переключающий контакт для регулярной обработки токов ниже нормальных пределов тока смачивания (например, если механический селекторный переключатель должен размыкать или замыкать цифровую логическую или аналоговую электронную схему, где значение тока чрезвычайно мало. ). В таких случаях настоятельно рекомендуется использовать позолоченные переключающие контакты.Золото — «благородный» металл и не подвержен коррозии, как другие металлы. В результате такие контакты имеют чрезвычайно низкие требования к току смачивания. Обычные контакты из серебра или медного сплава не будут обеспечивать надежную работу при использовании в такой слаботочной среде!

  • Части переключателя, отвечающие за включение и отключение непрерывного электрического соединения, называются «контактами». Обычно они изготавливаются из коррозионно-стойкого металлического сплава, контакты соприкасаются друг с другом с помощью механизма, который помогает поддерживать правильное выравнивание и расстояние.
  • В ртутных выключателях
  • в качестве подвижного контакта используется кусок жидкой металлической ртути. Запечатанный в стеклянной трубке искра ртутного контакта изолирована от внешней среды, что делает этот тип переключателя идеально подходящим для атмосфер, потенциально содержащих взрывоопасные пары.
  • Герконы — это еще один тип устройства с герметичным контактом, контакт осуществляется двумя тонкими металлическими «язычками» внутри стеклянной трубки, соединенными друг с другом под действием внешнего магнитного поля.
  • Переключающие контакты подвергаются большему давлению при переключении постоянного тока, чем переменного тока.В первую очередь это связано с самозатуханием дуги переменного тока.
  • Сеть резистор-конденсатор, называемая «демпфер», может быть подключена параллельно переключающему контакту для уменьшения дугового разряда.
  • Смачивающий ток — это минимальная величина электрического тока, необходимая для прохождения переключающего контакта, чтобы он мог самоочищаться. Обычно это значение намного ниже максимального номинального тока переключателя.

Любой вид переключающего контакта может быть спроектирован так, что контакты «замыкаются» (обеспечивают непрерывность) при срабатывании или «размыкаются» (прерывают непрерывность) при срабатывании.Для переключателей, в которых есть механизм с пружинным возвратом, направление, в которое пружина возвращает его без приложения силы, называется нормальным положением . Поэтому контакты, которые разомкнуты в этом положении, называются нормально разомкнутыми , а контакты, которые замкнуты в этом положении, называются нормально замкнутыми . Для переключателей процесса нормальное положение или состояние — это то, в котором переключатель находится, когда на него не влияет процесс. Простой способ выяснить нормальное состояние технологического коммутатора — это рассмотреть состояние коммутатора, когда он находится на полке хранения без установки.Вот несколько примеров «нормальных» условий переключения процесса:

  • Переключатель скорости : Вал не вращается
  • Реле давления : нулевое приложенное давление
  • Реле температуры : Температура окружающей (комнатной) температуры
  • Датчик уровня : пустой бак или бункер
  • Реле потока : нулевой расход жидкости

Важно различать «нормальное» состояние коммутатора и его «нормальное» использование в рабочем процессе.Рассмотрим пример реле расхода жидкости, которое служит сигналом низкого расхода в системе охлаждающей воды. Нормальное или исправное состояние системы охлаждающей воды должно иметь довольно постоянный поток охлаждающей жидкости, проходящий через эту трубу. Если мы хотим, чтобы контакт реле потока замыкал в случае потери потока охлаждающей жидкости (например, для замыкания электрической цепи, которая активирует сирену аварийной сигнализации), мы хотели бы использовать реле потока с нормально закрытым а не нормально разомкнутые контакты.При достаточном потоке через трубу контакты переключателя размыкаются принудительно; когда расход падает до аномально низкого уровня, контакты возвращаются в нормальное (закрытое) состояние. Это сбивает с толку, если вы думаете о «нормальном» как о регулярном состоянии процесса, поэтому всегда думайте о «нормальном» состоянии переключателя как о том, в котором он находится, когда находится на полке. Схема условных обозначений переключателей зависит от назначения и срабатывания переключателя. Нормально разомкнутый контакт переключателя нарисован таким образом, чтобы обозначать открытое соединение, готовое замкнуться при срабатывании.И наоборот, нормально замкнутый переключатель изображен как замкнутое соединение, которое будет разомкнуто при срабатывании. Обратите внимание на следующие символы:

Рисунок 9.16 Кнопочный переключатель

Существует также общая символика для любого контакта переключателя, использующая пару вертикальных линий для обозначения точек контакта в переключателе. Нормально разомкнутые контакты обозначаются линиями, не соприкасающимися с ними, а нормально замкнутые контакты обозначаются диагональной линией, соединяющей эти две линии. Сравните два:

Рисунок 9.17 Общее обозначение переключающего контакта

Переключатель слева замыкается при нажатии и размыкается в «нормальном» (не сработавшем) положении. Переключатель справа размыкается при нажатии и замыкается в «нормальном» (не сработавшем) положении. Если переключатели обозначены этими общими символами, тип переключателя обычно указывается в тексте непосредственно рядом с символом. Обратите внимание, что символ слева — , а не , его следует путать с обозначением конденсатора.Если конденсатор необходимо представить в схеме логики управления, он будет показан следующим образом:

Рисунок 9. 18 Конденсатор

В стандартной электронной символике приведенный выше рисунок зарезервирован для конденсаторов, чувствительных к полярности. В символах логики управления этот символ конденсатора используется для любого типа конденсатора , даже если конденсатор не чувствителен к полярности, чтобы четко отличить его от нормально разомкнутого контакта переключателя. При использовании многопозиционных селекторных переключателей необходимо учитывать еще один фактор конструкции: то есть последовательность разрыва старых соединений и создания новых соединений при перемещении переключателя из положения в положение, при этом подвижный контакт последовательно касается нескольких неподвижных контактов.

Рисунок 9.19

Селекторный переключатель, показанный выше, переключает общий контактный рычаг в одно из пяти различных положений на контактные провода с номерами от 1 до 5. Наиболее распространенная конфигурация многопозиционного переключателя, подобного этому, — это когда контакт с одним положением разрывается с до происходит контакт со следующей позицией. Эта конфигурация называется «Разрыв перед сборкой» . В качестве примера, если бы переключатель был установлен в положение номер 3 и медленно вращался по часовой стрелке, контактный рычаг переместился бы из положения номер 3, размыкая эту цепь, переместился бы в положение между номером 3 и номером 4 (оба контура цепи разомкнуты. ), а затем коснитесь позиции 4, замыкая эту цепь.Есть приложения, в которых недопустимо полностью разомкнуть цепь, подключенную к «общему» проводу, в любой момент времени. Для такого применения может быть сконструирована конструкция переключателя с переключением перед разрывом , в которой подвижный контактный рычаг фактически замыкает два положения контакта (между номером 3 и номером 4 в приведенном выше сценарии), когда он перемещается между положениями. . Компромисс здесь заключается в том, что схема должна допускать замыкание переключателя между смежными позиционными контактами (1 и 2, 2 и 3, 3 и 4, 4 и 5), когда ручка переключателя поворачивается из положения в положение. Такой переключатель показан здесь: Рисунок 9.20.

Когда подвижный (е) контакт (ы) может быть приведен в одно из нескольких положений со стационарными контактами, эти положения иногда называют бросками . Количество подвижных контактов иногда называют полюсов . Оба переключателя, показанные выше, с одним подвижным контактом и пятью неподвижными контактами, будут обозначены как «однополюсные пятипозиционные» переключатели. Если два идентичных однополюсных пятипозиционных переключателя были бы механически соединены вместе так, чтобы они приводились в действие одним и тем же механизмом, вся сборка была бы названа «двухполюсным пятипозиционным переключателем»:

Рисунок 9.21 год

Вот несколько распространенных конфигураций переключателей и их сокращенные обозначения:

Рисунок 9.22 Двухполюсный, одноходовой

Рисунок 9.23 Двухполюсный, двунаправленный

Рисунок 9.24 Четырехполюсный, одноходовой

  • Нормальное состояние переключателя — это состояние, в котором он не сработал. Для технологических коммутаторов это состояние, в котором они находятся на полке без установки.
  • Переключатель, который разомкнут в неактивном состоянии, называется нормально разомкнутым .Переключатель, который замкнут, когда не сработал, называется нормально замкнутым . Иногда термины «нормально открытый» и «нормально закрытый» обозначаются аббревиатурой N.O. и N.C. соответственно.
  • Многопозиционные переключатели могут быть как размыкающими перед размыканием (наиболее распространенные), так и переключающими перед размыканием.
  • «Полюса» переключателя относятся к количеству подвижных контактов, в то время как «ходы» переключателя относятся к количеству неподвижных контактов на один подвижный контакт.

Электрический ток через проводник создает магнитное поле, перпендикулярное направлению потока электронов.Если этот проводник свернуть в форму катушки, создаваемое магнитное поле будет ориентировано по длине катушки. Чем больше ток, тем больше напряженность магнитного поля при прочих равных условиях:

Рисунок 9.25

Рисунок 9.26

Рисунок 9.27

Катушки индуктивности реагируют на изменения тока из-за энергии, хранящейся в этом магнитном поле. Когда мы строим трансформатор из двух катушек индуктивности вокруг общего железного сердечника, мы используем это поле для передачи энергии от одной катушки к другой.Однако есть более простые и прямые способы использования электромагнитных полей, чем те, которые мы видели с катушками индуктивности и трансформаторами. Магнитное поле, создаваемое катушкой с токоведущим проводом, можно использовать для приложения механической силы к любому магнитному объекту, точно так же, как мы можем использовать постоянный магнит для притяжения магнитных объектов, за исключением того, что этот магнит (образованный катушкой) может быть включается или выключается путем включения или выключения тока через катушку. Если мы поместим магнитный объект рядом с такой катушкой с целью заставить этот объект двигаться, когда мы запитываем катушку электрическим током, мы получим так называемый соленоид . Подвижный магнитный объект называется якорем , и большинство якорей можно перемещать с помощью постоянного (DC) или переменного тока (AC), питающего катушку. Полярность магнитного поля не имеет значения для притяжения железного якоря. Соленоиды могут использоваться для электрического открытия дверных защелок, открытия или закрытия клапанов, перемещения роботизированных конечностей и даже приведения в действие механизмов электрических переключателей. Однако, если для приведения в действие набора переключающих контактов используется соленоид, у нас есть такое полезное устройство, которое заслуживает собственного названия: реле .Реле чрезвычайно полезны, когда нам необходимо управлять большим током и / или напряжением с помощью слабого электрического сигнала. Катушка реле, которая создает магнитное поле, может потреблять только доли ватта мощности, в то время как контакты, замыкаемые или размыкаемые этим магнитным полем, могут передавать нагрузке в сотни раз больше энергии.

Фактически, реле действует как двоичный (включенный или выключенный) усилитель. Как и в случае с транзисторами, способность реле управлять одним электрическим сигналом с помощью другого находит применение при построении логических функций.Более подробно эта тема будет рассмотрена в другом уроке. На данный момент будет исследована «усилительная» способность реле. На приведенной выше схеме катушка реле питается от источника низкого напряжения (12 В постоянного тока), а однополюсный однопозиционный контакт (SPST) прерывает высокий -цепь напряжения (480 В переменного тока). Вполне вероятно, что ток, необходимый для включения катушки реле, будет в сотни раз меньше номинального тока контакта. Типичные токи обмотки реле значительно ниже 1 А, в то время как номинальные характеристики контактов промышленных реле составляют не менее 10 А.Один узел катушка реле / ​​якорь может использоваться для приведения в действие более чем одного набора контактов. Эти контакты могут быть нормально разомкнутыми, нормально замкнутыми или любой их комбинацией. Как и в случае с переключателями, «нормальным» состоянием контактов реле является то состояние, когда катушка обесточена, точно так же, как вы бы обнаружили реле на полке, не подключенным к какой-либо цепи. Контакты реле могут быть открытыми площадками из металлического сплава, ртутными трубками или даже магнитными язычками, как и в других типах переключателей. Выбор контактов в реле зависит от тех же факторов, которые диктуют выбор контактов в других типах переключателей.Контакты на открытом воздухе лучше всего подходят для сильноточных приложений, но их склонность к коррозии и искрению может вызвать проблемы в некоторых промышленных средах. Ртутные и герконовые контакты не имеют искр и не подвержены коррозии, но их токопроводящая способность ограничена. Здесь показаны три небольших реле (около двух дюймов в высоту, каждое), установленных на панели как часть системы электрического управления на муниципальной водоочистной станции: показанные здесь блоки реле называются «восьмеричным», потому что они подключаются в соответствующие гнезда, электрические соединения закрепляются с помощью восьми металлических штифтов на дне реле. Винтовые клеммы, которые вы видите на фотографии, где провода подключаются к реле, на самом деле являются частью узла розетки, в который вставляется каждое реле. Такая конструкция облегчает снятие и замену реле в случае выхода из строя. Помимо способности позволить относительно небольшому электрическому сигналу переключать относительно большой электрический сигнал, реле также обеспечивают электрическую изоляцию между катушкой и контактными цепями. Это означает, что цепь катушки и цепь контактов электрически изолированы друг от друга.Одна цепь может быть постоянным током, а другая — переменным током (например, в примере схемы, показанной ранее), и / или они могут иметь совершенно разные уровни напряжения между соединениями или между соединениями и землей. Хотя реле по сути являются двоичными устройствами, полностью или полностью выключенными, существуют рабочие условия, при которых их состояние может быть неопределенным, как и в случае с полупроводниковыми логическими вентилями. Для того чтобы реле положительно «втягивало» якорь и приводило в действие контакт (ы), через катушку должен проходить определенный минимальный ток. Эта минимальная величина называется втягивающим током и аналогична минимальному входному напряжению, которое требуется логическому вентилю для обеспечения «высокого» состояния (обычно 2 В для TTL, 3,5 В для CMOS). Однако когда якорь подтягивается ближе к центру катушки, требуется меньший поток магнитного поля (меньший ток катушки), чтобы удерживать его там. Следовательно, ток катушки должен упасть ниже значения, значительно меньшего, чем ток втягивания, прежде чем якорь «выпадет» в подпружиненное положение и контакты вернутся в нормальное состояние.Этот уровень тока называется выпадающим током , и он аналогичен максимальному входному напряжению, при котором вход логического элемента позволяет гарантировать «низкое» состояние (обычно 0,8 В для TTL, 1,5 В для CMOS). Гистерезис или разница между токами включения и отключения приводит к работе, аналогичной работе логического элемента триггера Шмитта. Токи включения и отключения (и напряжения) сильно различаются от реле к реле и указываются производителем.

  • Соленоид — это устройство, которое вызывает механическое движение за счет подачи питания на катушку электромагнита.Подвижная часть соленоида называется якорем .
  • Реле представляет собой соленоид, установленный для приведения в действие контактов переключателя, когда его катушка находится под напряжением.
  • Втягивающий ток — это минимальная величина тока катушки, необходимая для приведения в действие соленоида или реле из его «нормального» (обесточенного) положения.
  • Падение тока — это максимальный ток катушки, ниже которого включенное реле вернется в свое «нормальное» состояние.

Что такое реле с задержкой времени?

Некоторые реле сконструированы с своеобразным механизмом «амортизатора», прикрепленным к якорю, который предотвращает немедленное полное движение, когда катушка находится под напряжением или обесточена.Это дополнение дает реле свойство срабатывания с выдержкой времени . Реле с выдержкой времени могут быть сконструированы так, чтобы задерживать движение якоря при включении катушки, отключении питания или и том и другом. Контакты реле с выдержкой времени должны быть указаны не только как нормально разомкнутые или нормально замкнутые, но и в зависимости от того, действует ли задержка в направлении закрытия или в направлении открытия. Ниже приводится описание четырех основных типов контактов реле с выдержкой времени.

Нормально открытый, закрытый по времени контакт

Во-первых, у нас есть нормально открытый, закрытый по времени (NOTC) контакт.Этот тип контакта обычно разомкнут, когда катушка обесточена (обесточена). Контакт замыкается подачей питания на катушку реле, но только после того, как катушка непрерывно запитана в течение заданного времени. Другими словами, направление движения контакта (закрытие или размыкание) идентично обычному замыкающему контакту, но есть задержка в направлении замыкания . Поскольку задержка происходит в направлении подачи питания на катушку, этот тип контакта также известен как нормально разомкнутый, на — задержка:

Рисунок 9. 28

Ниже приведена временная диаграмма работы этого контакта реле:

Рисунок 9.29

Нормально открытый контакт с синхронизацией по времени

Далее у нас есть нормально разомкнутый контакт с таймером открытия (NOTO). Как и контакт NOTC, этот тип контакта обычно разомкнут, когда катушка обесточена (обесточена), и замкнут при подаче питания на катушку реле. Однако, в отличие от контакта NOTC, синхронизирующее действие происходит при обесточивании катушки, а не при подаче напряжения.Поскольку задержка происходит в направлении обесточивания катушки, этот тип контакта также известен как нормально разомкнутый, выкл. -задержка:

Рисунок 9.30

Ниже приведена временная диаграмма работы этого контакта реле:

Рисунок 9.31

Нормально закрытый контакт с синхронизацией открытия

Далее у нас есть нормально-замкнутый, открывающийся по времени (NCTO) контакт. Этот тип контакта обычно замкнут, когда катушка обесточена (обесточена). Контакт размыкается при подаче питания на катушку реле, но только после того, как на катушку непрерывно подается питание в течение заданного времени. Другими словами, направление движения контакта (закрытие или размыкание) идентично обычному размыкающему контакту, но есть задержка в направлении размыкания . Поскольку задержка происходит в направлении подачи питания на катушку, этот тип контакта также известен как нормально замкнутый, на — задержка:

Рисунок 9.32

Ниже приведена временная диаграмма работы этого контакта реле:

Рисунок 9.33

Нормально закрытый, закрытый по времени контакт

Наконец, у нас есть нормально закрытый, закрытый по времени (NCTC) контакт. Как и контакт NCTO, этот тип контакта обычно замыкается, когда катушка обесточена (обесточена), и размыкается подачей питания на катушку реле. Однако, в отличие от контакта NCTO, синхронизирующее действие происходит при обесточивании катушки, а не при подаче напряжения. Поскольку задержка происходит в направлении обесточивания катушки, этот тип контакта также известен как нормально замкнутый, выкл. -задержка:

Рисунок 9.34

Ниже приведена временная диаграмма работы этого контакта реле:

Рисунок 9.35 Использование реле с задержкой времени

в промышленных логических схемах управления

Реле с выдержкой времени

очень важны для использования в промышленных логических схемах управления. Вот некоторые примеры их использования:

  • Управление мигающим светом (время включения, время выключения): два реле задержки времени используются вместе друг с другом для обеспечения включения / выключения с постоянной частотой импульсов контактов для подачи прерывистой энергии на лампу.
  • Управление автоматическим запуском двигателя: Двигатели, которые используются для питания аварийных генераторов, часто оснащены элементами управления «автозапуск», которые позволяют автоматически запускать двигатель в случае отказа основного источника электроэнергии. Чтобы правильно запустить большой двигатель, необходимо сначала запустить некоторые вспомогательные устройства и дать им некоторое время для стабилизации (топливные насосы, масляные насосы предварительной смазки) перед подачей питания на стартер двигателя. Реле с выдержкой времени помогают упорядочить эти события для правильного запуска двигателя.
  • Управление безопасной продувкой печи: перед безопасным зажиганием печи внутреннего сгорания необходимо запустить воздушный вентилятор на определенное время, чтобы «очистить» камеру печи от любых потенциально воспламеняющихся или взрывоопасных паров.Реле с выдержкой времени обеспечивает логику управления печью с этим необходимым элементом времени.
  • Управление задержкой плавного пуска двигателя: вместо пуска больших электродвигателей путем переключения полной мощности из состояния полной остановки можно переключить пониженное напряжение для более «мягкого» пуска и уменьшения пускового тока. После заданной задержки времени (обеспечиваемой реле задержки времени) подается полная мощность.
  • Задержка последовательности конвейерной ленты: когда несколько конвейерных лент расположены для транспортировки материала, конвейерные ленты должны запускаться в обратной последовательности (последняя первая и первая последняя), чтобы материал не складывался в стопу или медленно -подвижной конвейер.Чтобы разогнать большие ремни до полной скорости, может потребоваться некоторое время (особенно, если используются средства управления двигателем с плавным пуском). По этой причине на каждом конвейере обычно имеется схема задержки по времени, чтобы дать ему достаточно времени для достижения полной скорости ленты перед запуском следующей подачи конвейерной ленты.

Расширенные функции таймера

В более старых механических реле с выдержкой времени использовались пневматические датчики или поршневые / цилиндровые устройства, заполненные жидкостью, для обеспечения «амортизации», необходимой для задержки движения якоря.В более новых конструкциях реле с выдержкой времени используются электронные схемы с цепями резистор-конденсатор (RC) для создания временной задержки, а затем для подачи питания на нормальную (мгновенную) катушку электромеханического реле с выходом электронной схемы. Реле электронного таймера более универсальны, чем более старые механические модели, и менее склонны к выходу из строя. Многие модели предоставляют расширенные функции таймера, такие как «однократный» (один измеренный выходной импульс для каждого перехода входа из обесточенного в возбужденный), «рециркуляционный» (повторяющиеся циклы включения / выключения выходного сигнала до тех пор, пока входное соединение находится в рабочем состоянии. активирован) и «сторожевой таймер» (меняет состояние, если входной сигнал не циклически включается и выключается повторно).

Рисунок 9.36

Рисунок 9.37

Рисунок 9.38

Реле «сторожевого таймера»

«Сторожевой» таймер особенно полезен для мониторинга компьютерных систем. Если компьютер используется для управления критическим процессом, обычно рекомендуется иметь автоматический сигнал тревоги для обнаружения «зависания» компьютера (ненормальная остановка выполнения программы из-за любого количества причин). Простой способ настроить такую ​​систему мониторинга — это заставить компьютер регулярно включать и выключать катушку реле сторожевого таймера (аналогично выходу таймера «повторного цикла»). Если выполнение компьютера останавливается по какой-либо причине, сигнал, который он выдает на катушку реле сторожевого таймера, перестанет циклически повторяться и зависнет в том или ином состоянии. Через некоторое время реле сторожевого таймера «отключится» и сигнализирует о проблеме.

  • Реле с выдержкой времени построены в следующих четырех основных режимах работы контактов:
  • 1: Нормально открытый, закрытый по времени. Сокращенно «NOTC», эти реле открываются сразу после обесточивания катушки и замыкаются, только если катушка постоянно находится под напряжением в течение определенного периода времени.Также называется реле с нормально разомкнутыми контактами и задержкой включения .
  • 2: нормально открытый, открытый по времени. Сокращенно «NOTO», эти реле замыкаются сразу после подачи питания на катушку и размыкаются после того, как катушка была обесточена на определенный период времени. Также называется реле с нормально разомкнутыми контактами и задержкой выключения .
  • 3: нормально закрытый, открытый по времени. Сокращенно «NCTO», эти реле замыкаются сразу после обесточивания катушки и размыкаются, только если катушка постоянно находится под напряжением в течение определенного периода времени.Также называется реле с нормально замкнутыми контактами и задержкой включения .
  • 4: нормально закрытый, закрытый по времени. Эти реле, сокращенно NCTC, размыкаются сразу после подачи питания на катушку и замыкаются после того, как катушка была обесточена на определенный период времени. Также называется реле с нормально замкнутыми контактами и задержкой выключения .
  • Одноразовые таймеры обеспечивают однократный контактный импульс заданной длительности для каждого включения катушки (переход от катушки от к катушке на ).
  • Recycle Таймеры обеспечивают повторяющуюся последовательность импульсов включения-выключения до тех пор, пока катушка находится под напряжением.
  • Watchdog Таймеры приводят в действие свои контакты только в том случае, если катушка не может непрерывно последовательно включаться и выключаться (включаться и выключаться) с минимальной частотой.

Рисунок 9.39

Рисунок 9.40

Рисунок 9.41

Лестничные диаграммы — это специализированные схемы, обычно используемые для документирования промышленных логических систем управления.Их называют «лестничными» диаграммами, потому что они напоминают лестницу с двумя вертикальными направляющими (питание) и таким количеством «ступенек» (горизонтальных линий), сколько нужно представить схем управления. Если бы мы хотели нарисовать простую лестничную диаграмму, показывающую лампу, управляемую ручным переключателем, она выглядела бы так: Обозначения «L 1 » и «L 2 » относятся к двум полюсам 120 В переменного тока. поставка, если не указано иное. L 1 — это «горячий» провод, а L 2 — заземленный («нейтральный») провод.Эти обозначения не имеют ничего общего с индукторами, просто чтобы запутать. Фактический трансформатор или генератор, питающий эту схему, для простоты опущен. На самом деле схема выглядит примерно так: Обычно в схемах промышленной релейной логики, но не всегда, рабочее напряжение для контактов переключателя и катушек реле будет составлять 120 вольт переменного тока. Системы с более низким напряжением переменного и даже постоянного тока иногда строятся и документируются в соответствии с «лестничными» диаграммами: до тех пор, пока все переключающие контакты и катушки реле имеют соответствующие номиналы, действительно не имеет значения, какой уровень напряжения выбран для работы системы. с участием.Обратите внимание на цифру «1» на проводе между переключателем и лампой. В реальном мире этот провод должен быть помечен этим номером с помощью термоусадочных или самоклеящихся этикеток, где бы это было удобно для идентификации. Провода, ведущие к коммутатору, будут иметь маркировку «L 1 » и «1» соответственно. Провода, ведущие к лампе, будут иметь маркировку «1» и «L 2 » соответственно. Эти номера проводов упрощают сборку и обслуживание. Каждый проводник имеет свой уникальный номер провода для системы управления, в которой он используется.Номера проводов не меняются ни на каком соединении или узле, даже если размер, цвет или длина провода меняются при входе в точку соединения или выходе из нее. Конечно, желательно поддерживать одинаковые цвета проводов, но это не всегда практично. Важно то, что любая электрически непрерывная точка в цепи управления имеет один и тот же номер провода. Возьмем, к примеру, этот участок схемы с проводом № 25 в качестве единой, электрически непрерывной точечной резьбы для многих различных устройств: на диаграммах — нагрузочное устройство (лампа, катушка реле, катушка соленоида и т. Д.).) почти всегда рисуется с правой стороны ступени. Хотя электрически не имеет значения, где расположена катушка реле внутри ступени, имеет значение , какой конец источника питания лестницы заземлен, для надежной работы. Возьмем, к примеру, эту схему: здесь лампа (нагрузка) расположена с правой стороны перекладины, как и заземление источника питания. Это не случайность или совпадение; скорее, это целенаправленный элемент хорошей практики проектирования.Предположим, что провод №1 должен был случайно войти в контакт с землей, причем изоляция этого провода была стерта, так что оголенный провод вошел в контакт с заземленным металлическим кабелепроводом. Наша схема теперь будет работать следующим образом: если обе стороны лампы соединены с землей, лампа будет «закорочена» и не сможет получить питание для зажигания. Если бы выключатель замкнулся, произошло бы короткое замыкание, немедленно взорвавшее предохранитель. Однако подумайте, что случится с цепью с такой же неисправностью (провод №1 соприкасается с землей), за исключением того, что на этот раз мы поменяем местами переключатель и предохранитель (L 2 все еще заземлен): на этот раз случайное заземление провода №1 приведет к подаче питания на лампу, а выключатель не подействует.Намного безопаснее иметь систему, которая перегорает предохранитель в случае замыкания на землю, чем иметь систему, которая неконтролируемо включает лампы, реле или соленоиды в случае той же самой неисправности. По этой причине нагрузка (и) всегда должна быть расположена ближе всего к заземленному силовому проводу на лестничной диаграмме.

Рисунок 9.42

Рисунок 9.43

Рисунок 9. 44
  • Релейные диаграммы (иногда называемые «релейной логикой») — это тип электрических обозначений и символов, часто используемых для иллюстрации того, как электромеханические переключатели и реле связаны между собой.
  • Две вертикальные линии называются «рельсами» и прикрепляются к противоположным полюсам источника питания, обычно 120 вольт переменного тока. L 1 обозначает «горячий» провод переменного тока, а L 2 — «нейтральный» (заземленный) провод.
  • Горизонтальные линии на лестничной диаграмме называются «ступенями», каждая из которых представляет уникальную параллельную ветвь цепи между полюсами источника питания.
  • Обычно провода в системах управления маркируются номерами и / или буквами для идентификации.Правило состоит в том, что все постоянно подключенные (электрически общие) точки должны иметь одну и ту же этикетку.

Рисунок 9.45

Рисунок 9.46

Рисунок 9.47

Рисунок 9. 48

Рисунок 9.49

Мы можем построить простые логические функции для нашей гипотетической схемы лампы, используя несколько контактов, и довольно легко и понятно задокументировать эти схемы с дополнительными ступенями к нашей исходной «лестнице».«Если мы используем стандартную двоичную запись для состояния переключателей и лампы (0 для не сработавшего или обесточенного; 1 для сработавшего или запитанного), можно составить таблицу истинности, чтобы показать, как работает логика: Теперь лампа загорится включается, если срабатывает контакт A или контакт B, потому что все, что требуется для включения лампы, — это иметь хотя бы один путь для прохождения тока от провода L 1 к проводу 1. У нас есть простая логическая функция ИЛИ, реализовано только с контактами и лампой. Мы можем имитировать логическую функцию И, подключив два контакта последовательно, а не параллельно: теперь лампа включается только в том случае, если контакт A и контакт B задействованы одновременно. Путь существует для тока от провода L 1 к лампе (провод 2) тогда и только тогда, когда оба контакта переключателя замкнуты. Функция логической инверсии, или НЕ, может быть выполнена на контактном входе, просто используя нормально замкнутый контакт вместо нормально разомкнутого: теперь лампа включается, если контакт не активирован, и отключается, когда контакт активирован . Если мы возьмем нашу функцию ИЛИ и инвертируем каждый «вход» с помощью нормально замкнутых контактов, мы получим функцию И-НЕ.В специальном разделе математики, известном как логическая алгебра , этот эффект изменения идентичности вентильной функции при инверсии входных сигналов описывается теоремой ДеМоргана , которая будет исследована более подробно в следующей главе. быть под напряжением, если любой из контактов не сработал. Он погаснет только в том случае, если оба контакта задействованы одновременно. Аналогичным образом, если мы возьмем нашу функцию И и инвертируем каждый «вход» с помощью нормально замкнутых контактов, мы получим функцию ИЛИ-ИЛИ: шаблон быстро обнаруживается, когда лестничные схемы сравниваются с их аналогами логического элемента:

  • Параллельные контакты эквивалентны логическому элементу ИЛИ.
  • Контакты серии
  • эквивалентны логическому элементу AND.
  • Нормально замкнутые контакты эквивалентны вентилю НЕ (инвертору).
Рисунок 9.50 Рисунок 9.51

Рисунок 9.52

Мы можем создавать функции комбинационной логики, также группируя контакты в последовательно-параллельную схему. В следующем примере у нас есть функция исключающего ИЛИ, построенная из комбинации логических элементов И, ИЛИ и инвертора (НЕ): Верхняя ступень (замыкающий контакт A последовательно с замыкающим контактом B) является эквивалентом верхнего НЕ / И комбинация ворот.Нижняя ступенька (замыкающий контакт A последовательно с замыкающим контактом B) является эквивалентом нижней комбинации ворот НЕ / И. Параллельное соединение между двумя звеньями в проводе номер 2 образует эквивалент логического элемента ИЛИ, позволяя либо звену 1 , либо звену 2 запитать лампу. Чтобы реализовать функцию исключающего ИЛИ, нам пришлось использовать два контакта на каждый вход: один для прямого входа, а другой для «инвертированного» входа. Два контакта «А» физически приводятся в действие одним и тем же механизмом, как и два контакта «В».Общая связь между контактами обозначается меткой контакта. Нет ограничений на количество контактов на переключатель, которое может быть представлено на лестничной диаграмме, поскольку каждый новый контакт на любом переключателе или реле (нормально разомкнутом или нормально замкнутом), используемом на диаграмме, просто помечен одной и той же меткой. Иногда несколько контактов на одном переключателе (или реле) обозначаются составными метками, такими как «A-1» и «A-2», вместо двух меток «A». Это может быть особенно полезно, если вы хотите конкретно указать, какой набор контактов на каждом переключателе или реле используется для какой части цепи.Для простоты я воздержусь от таких сложных обозначений в этом уроке. Если вы видите общую метку для нескольких контактов, вы знаете, что все эти контакты приводятся в действие одним и тем же механизмом. Если мы хотим инвертировать выход какой-либо логической функции, генерируемой переключателем, мы должны использовать реле с нормально замкнутым контактом. Например, если мы хотим активировать нагрузку на основе инверсии, или НЕ, нормально разомкнутого контакта, мы могли бы сделать это: мы назовем реле «реле управления 1» или CR 1 .Когда катушка CR 1 (обозначенная парой скобок на первой ступени) находится под напряжением, контакт на второй ступеньке размыкается , таким образом обесточивая лампу. От переключателя A к катушке CR 1 логическая функция не инвертируется. Нормально замкнутый контакт, приводимый в действие катушкой реле CR 1 , обеспечивает функцию логического инвертора для включения лампы, противоположной состоянию срабатывания переключателя. Применяя эту стратегию инверсии к одной из наших функций инвертированного входа, созданной ранее, такой как OR-to-NAND, мы можем инвертировать выход с помощью реле, чтобы создать неинвертированную функцию: от переключателей к катушке CR 1 , логическая функция — это функция логического элемента И-НЕ.Нормально замкнутый контакт CR 1 обеспечивает одну последнюю инверсию, чтобы превратить функцию И-НЕ в функцию И.

  • Параллельные контакты логически эквивалентны логическому элементу ИЛИ.
  • Контакты серии
  • логически эквивалентны логическому элементу И.
  • Нормально замкнутые (Н.З.) контакты логически эквивалентны вентилю НЕ.
  • Реле должно использоваться для инвертирования выхода функции логического элемента, в то время как простых нормально замкнутых переключающих контактов достаточно для представления входов инвертированного элемента .
Рисунок 9.53 Рисунок 9.54

Рисунок 9.55

Рис. 9.56.

Практическое применение логики переключателя и реле находится в системах управления, где необходимо выполнить несколько условий процесса, прежде чем оборудование будет запущено. Хорошим примером этого является автомат горения для больших топок. Для безопасного запуска горелок в большой печи система управления запрашивает «разрешение» от нескольких переключателей процесса, включая высокое и низкое давление топлива, проверку потока воздуха от вентилятора, положение заслонки выхлопной трубы, положение дверцы доступа и т. Д.Каждое условие процесса называется разрешающим , и каждый разрешающий контакт переключателя подключается последовательно, так что, если какой-либо из них обнаруживает небезопасное состояние, цепь будет разомкнута: если все разрешительные условия соблюдены, CR 1 будет включится, и загорится зеленая лампа. В реальной жизни было бы запитано больше, чем просто зеленая лампа: обычно управляющее реле или соленоид топливного клапана помещали бы в эту ступень цепи, чтобы запитать, когда все разрешающие контакты были «хороши», то есть все замкнуты. .Если какое-либо из разрешающих условий не выполнено, последовательная цепочка контактов переключателя будет разорвана, CR 2 обесточится, и загорится красная лампа. Обратите внимание, что контакт высокого давления топлива нормально замкнут. Это потому, что мы хотим, чтобы контакт переключателя размыкался, если давление топлива становится слишком высоким. Поскольку «нормальное» состояние любого реле давления — это когда к нему прикладывается нулевое (низкое) давление, и мы хотим, чтобы этот переключатель открывался при чрезмерном (высоком) давлении, мы должны выбрать переключатель, который замкнут в своем нормальном состоянии. Другое практическое применение релейной логики — в системах управления, где мы хотим гарантировать, что два несовместимых события не могут произойти одновременно. Примером этого является управление реверсивным двигателем, где два контактора двигателя подключены для переключения полярности (или чередования фаз) на электродвигатель, и мы не хотим, чтобы контакторы прямого и обратного хода включались одновременно: когда контактор M 1 включен под напряжением 3 фазы (A, B и C) подключены непосредственно к клеммам 1, 2 и 3 двигателя соответственно.Однако, когда контактор M 2 находится под напряжением, фазы A и B меняются местами, A идет к клемме 2 двигателя, а B идет к клемме 1 двигателя. Это реверсирование фазных проводов приводит к тому, что двигатель вращается в противоположном направлении. Давайте рассмотрим схему управления этими двумя контакторами: обратите внимание на нормально замкнутый контакт «OL», который представляет собой контакт тепловой перегрузки, активируемый элементами «нагревателя», включенными последовательно с каждой фазой двигателя переменного тока. Если нагреватели станут слишком горячими, контакт изменится из нормального (замкнутого) состояния на разомкнутый, что предотвратит включение любого контактора.Эта система управления будет работать нормально, пока никто не нажимает обе кнопки одновременно. Если бы кто-то сделал это, фазы A и B были бы замкнуты накоротко вместе в силу того факта, что контактор M 1 передает фазы A и B прямо на двигатель, а контактор M 2 меняет их местами; фаза A будет замкнута на фазу B и наоборот. Очевидно, это плохая конструкция системы управления! Чтобы этого не произошло, мы можем спроектировать схему так, чтобы включение одного контактора предотвращало включение другого.Это называется блокировкой , и это достигается за счет использования вспомогательных контактов на каждом контакторе, как таковых: Теперь, когда M 1 запитан, нормально замкнутый вспомогательный контакт на второй ступени будет разомкнут, что предотвращает M 2 от подачи питания, даже если нажата кнопка «Реверс». Аналогичным образом, включение M 1 предотвращается, когда M 2 находится под напряжением. Также обратите внимание на то, как были добавлены дополнительные номера проводов (4 и 5), чтобы отразить изменения проводки.Следует отметить, что это не единственный способ блокировки контакторов для предотвращения короткого замыкания. Некоторые контакторы оснащены опцией механической блокировки : рычагом, соединяющим якоря двух контакторов вместе, так что они физически не могут замыкаться одновременно. Для дополнительной безопасности все же можно использовать электрические блокировки, и из-за простоты схемы нет веских причин не использовать их в дополнение к механическим блокировкам.

  • Переключающие контакты, установленные в ступени релейной логики, предназначенные для прерывания цепи, если определенные физические условия не выполняются, называются разрешающими контактами , потому что для активации системе требуется разрешение от этих входов.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *