Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Jw1779 схема включения: Микросхема для зарядного устройства Li-Ion аккумулятора.

Содержание

Микросхема для зарядного устройства Li-Ion аккумулятора.

Понравились мне мелкие микросхемы для простых зарядных устройств. покупал я их у нас в местном оффлайн магазине, но как назло они там закончились, их долго везли откуда то. Глядя на эту ситуацию, я решил заказать себе их небольшим оптом, так как микросхемы довольно неплохие, и в работе понравились.
Описание и сравнение под катом.

Я не зря написал в заголовке про сравнение, так как за время пути собачка могла подрасти микрухи появились в магазине, я купил несколько штук и решил их сравнить.
В обзоре будет не очень много текста, но довольно много фотографий.

Но начну как всегда с того, как мне это пришло.
Пришло в комплекте с другими разными детальками, сами микрухи были упакованы в пакетик с защелкой, и наклейкой с названием.

Данная микросхема представляет собой микросхему зарядного устройства для литиевых аккумуляторов с напряжением окончания заряда 4.2 Вольта.
Она умеет заряжать аккумуляторы током до 800мА.

Значение тока устанавливается изменением номинала внешнего резистора.
Так же она поддерживает функцию заряда небольшим током, если аккумулятор сильно разряжен (напряжение ниже чем 2.9 Вольта).
При заряде до напряжения 4.2 Вольта и падении зарядного тока ниже чем 1/10 от установленного, микросхема отключает заряд. Если напряжение упадет до 4.05 Вольта, то она опять перейдет в режим заряда.
Так же имеется выход для подключения светодиода индикации.
Больше информации можно найти в даташите, у данной микросхемы существует гораздо более дешевый аналог.
Причем он более дешевый у нас, на Али все наоборот.
Собственно для сравнения я и купил аналог.

Но каково же было мое удивление когда микросхемы LTC и STC оказались на вид полностью одинаковыми, по маркировке обе — LTC4054.

Ну может так даже интереснее.
Как все понимают, микросхему так просто не проверить, к ней надо еще обвязку из других радиокомпонетов, желательно плату и т.п.

А тут как раз товарищ попросил починить (хотя в данном контексте скорее переделать) зарядное устройство для 18650 аккумуляторов.
Родное сгорело, да и ток заряда был маловат.

В общем для тестирования надо сначала собрать то, на чем будем тестировать.

Плату я чертил по даташиту, даже без схемы, но схему здесь приведу для удобства.

Ну и собственно печатная плата. На плате нет диодов VD1 и VD2, они были добавлены уже после всего.

Все это было распечатано, перенесено на обрезок текстолита.
Для экономии я сделал на обрезке еще одну плату, обзор с ее участием будет позже.

Ну и собственно изготовлена печатная плата и подобраны необходимые детали.

А переделывать я буду такое зарядное, наверняка оно очень известно читателям.

Внутри него очень сложная схема, состоящая из разъема, светодиода, резистора и специально обученных проводов, которые позволяют выравнивать заряд на аккумуляторах.

Шучу, зарядное находится в блочке, включаемом в розетку, а здесь просто 2 аккумулятора, соединенные параллельно и светодиод, постоянно подключенный к аккумуляторам.
К родному зарядному вернемся позже.

Спаял платку, выковырял родную плату с контактами, сами контакты с пружинами выпаял, они еще пригодятся.

Просверлил пару новых отверстий, в среднем будет светодиод, отображающий включение устройства, в боковых — процесс заряда.

Впаял в новую плату контакты с пружинками, а так же светодиоды.
Светодиоды удобно сначала вставить в плату, потом аккуратно установить плату на родное место, и только после этого запаять, тогда они будут стоять ровно и одинаково.

Плата установлена на место, припаян кабель питания.
Собственно печатная плата разрабатывалась под три варианта запитки.
2 варианта с разъемом MiniUSB, но в вариантах установки с разных сторон платы и под кабель.

В данном случае я сначала не знал, какбель какой длины понадобится, потому запаял короткий.
Так же припаял провода, идущие к плюсовым контактам аккумуляторов.
Теперь они идут по раздельным проводам, для каждого аккумулятора свой.

Вот как получилось сверху.

Ну а теперь перейдем к тестированию

Слева на плате я установил купленную на Али микруху, справа купленную в оффлайне.
Соответственно сверху они будут расположены зеркально.

Сначала микруха с Али.
Ток заряда.

Теперь купленная в оффлайне.

Ток КЗ.
Аналогично, сначала с Али.

Теперь из оффлайна.


Налицо полная идентичность микросхем, что ну никак не может не радовать 🙂

Было замечено, что при 4.8 Вольта ток заряда 600мА, при 5 Вольт падает до 500, но это проверялось уже после прогрева, может так работает защита от перегрева, я еще не разобрался, но ведут себя микросхемы примерно одинаково.

Ну а теперь немного о процессе зарядки и доработке переделки (да, даже так бывает).
С самого начала я думал просто установить светодиод на индикацию включенного состояния.
Вроде все просто и очевидно.
Но как всегда захотелось большего.
Решил, что будет лучше, если во время процесса заряда он будет погашен.
Допаял пару диодов (vd1 и vd2 на схеме), но получил небольшой облом, светодиод показывающий режим заряда светит и тогда, когда нет аккумулятора.
Вернее не светит, а быстро мерцает, добавил параллельно клеммам аккумулятора конденсатор на 47мкФ, после этого он стал очень коротко вспыхивать, почти незаметно.
Это как раз тот гистерезис включения повторной зарядки, если напряжение упало ниже 4.05 Вольта.
В общем после этой доработки стало все отлично.
Заряд аккумулятора, светит красный, не светит зеленый и не светит светодиод там, где нет аккумулятора.

Аккумулятор полностью заряжен.

В выключенном состоянии микросхема не пропускает напряжение на разъем питания, и не боится закоротки этого разъема, соответственно не разряжает аккумулятор на свой светодиод.

Не обошлось и без измерения температуры.
У меня получилось чуть более 62 градусов после 15 минут заряда.

Ну а вот так выглядит полностью готовое устройство.
Внешние изменения минимальны, в отличие от внутренних. Блок питания на 5 /Вольт 2 Ампера у товарища был, и довольно неплохой.
Устройство обеспечивает тока заряда 600мА на канал, каналы независимые.

Ну а так выглядело родное зарядное. Товарищ хотел попросить меня поднять в нем зарядный ток. Оно и родного то не выдержало, куда еще поднимать, шлак.

Резюме.
На мой взгляд, для микросхемы за 7 центов очень неплохо.
Микросхемы полностью функциональны и ничем не отличаются от купленных в оффлайне.
Я очень доволен, теперь есть запас микрух и не надо ждать, когда они будут в магазине (недавно опять пропали из продажи).

Из минусов — Это не готовое устройство, потому придется травить, паять и т.п., но при этом есть плюс, можно сделать плату под конкретное применение, а не использовать то, что есть.

Ну и в тоге получить рабочее изделие, изготовленное своими руками, дешевле чем готовые платы, да еще и под свои конкретные условия.
Чуть не забыл, даташит, схема и трассировка — скачать.

Надеюсь, что мой обзор был полезен и интересен. 🙂

Как разобрать и что внутри светодиодной лампы 💡

Берём типичную современную светодиодную лампу с цоколем E27 из Леруа Мерлена, купленную «по акции» всего за 35 руб ($0.55), благодаря чему её не жалко разобрать на предмет изучения внутренностей, не дожидаясь когда она сломается.

Сначала нужно как-то оторвать пластиковый матовый плафон, который, как выяснилось, приклеен белым каучуковым объёмным клеем. Для начала просто пытаемся выломать плафон, изгибая лампу в месте соединения плафона с основой. Он может выщелкнуться, если клей приклеился не очень прочно. Если не получилось, делаем так, уперев цоколь, например, под столешницу:

Выгибаем лампу на излом — сформировалась достаточно большая щель между плафоном и основой, в которую можно просунуть нож-скальпель и по кругу прорезать тот резино-силиконовый клей-герметик, что там имеет место быть. Красная метка — это чтобы потом иметь возможность приклеить плафон назад, ровно так как стоял.

Имеем:

На алюминиевой подложке последовательно соединённые 13 светодиодов потребляют ток 55 мА и имеют напряжение на выводах по 6 В на каждом, 78 на всех. Основа лампы оказалась целиком керамической. Отпаиваем проводки и отвинчиваем подложку:

С обратной стороны подложки серая термопаста, чтобы передавать тепло на керамическую основу для усиления охлаждения. Внутри драйвер (адаптер, блок питания). Чтобы его вытащить, сначала поддеваем ножом кнопку-контакт снизу:

Она механически прижималась к одному из выводов блока питания:

А вот с цоколем возникла проблема:

Он не снимается, а после раскурочивания его,

выяснилось, что он был навинчен на керамическую резьбу основы и приклеен к ней стекловидным клеем. Так что снять его, не повредив, не получится — только так, как на фото. В отличие, кстати, от такой же лампы, но с цоколем E14,

у которой цоколь легко стащить, тем более, что и основа здесь пластиковая [разборка этой лампы и что у неё внутри].

Итак, вожделенный led-драйвер/адаптер_питания извлечён:

Во-первых, отмечаем здесь отсутствие гальванической развязки с электросетью («+ out» на фото-схеме через резистор 4.7к соединён с «+» диодного моста; да и «–» чуть хитрее, но тоже…), так что трогать голыми руками что-либо в этой лампе (особенно светодиоды, на выводах которых, как кажется, всего 6 В) во время измерений во включённом состоянии… как бы не рекомендуется. Заглавный элемент схемы — JW1792 [даташит] — линейный

стабилизатор тока. Так что на выходе эта микросхема выдаёт ток фиксированной силы, в данном случае 55 мА.

Напряжение на выходе без нагрузки (сопротивление мультиметра в соотв. режиме — 1 мОм) равно 300 В. Величина тока устанавливается значением сопротивления резистора возле вывода «GND» микросхемы, здесь — 5.3 Ом, что и даёт 55 мА как теоретически, так и с нагрузкой в виде тех 13 светодиодов.

Мощность одного светодиода получается такой: 6*0.055=0.33 Вт, всех 13-ти — 4.3 Вт. Любопытно, что согласно показаниям ваттметра, лампочка потребляет 4.4 ватта с электросети, т. е. КПД данного драйвера… 98%

Полезные ссылки

  1. Тестирование этой и других ламп из Леруа Мерлена на яркость, CRI, мерцание и т. п. — публикация на сайте ЛампТест.ру
  2. Светодиодные лампы и ленты с CRI больше 85, 90, 95 — видео на Ютубе про то как светит эта лампа в сравнении с тем, что можно купить на Алиэкспрессе
  3. Светодиоды c CRI ≥95 с Алиэкспресса — видео на Ютубе о покупке этих LED и сравнение их цвета/света с другими.
  4. Полный даташит на JW1792 — нашёлся только на forum.cxem.net, приаттаченный к некоторому сообщению. Засекреченный, «конфиденциальный», запрещённый.
  5. Как изменить ток/напряжение с JW1792 — читайте там два отличных комментария-ответа от garik­but и jar-ohty.

Блоки питания, маленькие и очень маленькие

Блоки питания бывают не только на большую мощность, а и совсем маленькие, но от этого не менее полезные.
Сегодня у меня на «операционном столе» четыре представителя этого класса блоков питания, но испытания у них будут такие же как всегда.

Иногда возникает ситуация, когда необходим совсем маломощный блок питания. Например питания совсем маломощного устройства, датчика, ардуино подобного устройства или тому подобного.
Можно конечно поставить большой блок питания, но тогда устройство заметно вырастает в габаритах, потому применяют малогабаритные и соответственно маломощные блоки питания.

Впрочем тесты будут стандартные, как и сам стиль обзора.

Но начну я сегодня не с упаковки, а с того, как эти БП (как минимум пара из них) путешествовали ко мне.

Так получилось, что я изначально отобрал для обзора несколько наиболее интересных на мой взгляд блоков питания, сразу пришли не все, но первая пара была отправлена DHLем за компанию с другим товаром.
Я был несколько удивлен маршрутом их «странствования», хотя пришли они как было заявлено.
Вообще я думал что DHL это фирма с более развитой логистикой, а в итоге они даже мою фамилию написали неправильно, хотя во всех документах она была указана корректно.Блоки питания, маленькие и очень маленькие

Совсем немного об упаковке, чтобы не отвлекать от остального, спрячу под спойлер.
Все платы были упакованы в герметичные антистатические пакетики, три одноразовых, а один с защелкой.
Что странно, дата отправки стоит почти на всех одна и та же, но пришли они с разницей в полтора месяца О_оБлоки питания, маленькие и очень маленькие

Блоки питания действительно очень маленькие. Размеры я приведу по ходу обзора для каждой платы индивидуально, а пока общее фото в сравнении с известным спичечным коробком :)Блоки питания, маленькие и очень маленькие
Для начала самый маломощный представитель.
Ссылка на товар в магазине, цена $3.89.
Сразу сделаю общий комментарий. В магазине предоставлена не вся информация, указанная ниже найдена на других сайтах, но вполне реальна.

Заявлены следующие характеристики:
Входное напряжение — 110 ~ 370V DC, 85 ~ 264V AC
Выходное напряжение — 12V
Выходной ток — 83mA
Мощность нагрузки — 1W
КПД — 80%
Точность поддержания выходного напряжения ±10%
Уровень пульсаций — не более 100мВ
Защита от КЗ и перегрузки выхода с автовосстановлением.
Размеры платы — 26 х 24 х 12мм без выводов, с выводами 26 х 33 х 12мм
расстояние между выводами 220В — 5мм, 12В — 2.5мм, но между входом и выходом расстояние не кратно 2.5мм и составляет 14.3мм

На плате отсутствует предохранитель и входной и выходной фильтры, конструкция предельно простая.
Входной конденсатор 2.2 мкФ (реально 1.9), выходной — 220мкФ (реально 183). Емкость достаточна для нормальной работы.
ШИМ контроллер OB2535, максимальная мощность 5 Ватт.

Блоки питания, маленькие и очень маленькие
Практически все резисторы установлены точные, качество пайки нормальное, замечаний внешне не возникло, параллельно выходному конденсатору установлен керамический.Блоки питания, маленькие и очень маленькие
Схема данного блока питания.
Как я выше писал, это самый простой блок питания из четырех, он не имеет большинства узлов, свойственных большим БП, сделано это в угоду уменьшения размеров.
В данном блоке питания нет привычной цепи обратной связи с оптроном, на таких маленьких мощностях это вполне оправдано. Но на самом деле измерение выходного напряжения есть, хоть и косвенное. Измерение происходит на обмотке питания микросхемы.
Микросхема может работать в двух режимах — стабилизатора напряжения и стабилизатора тока.Блоки питания, маленькие и очень маленькие
Под вторым номером идет немного более мощный блок питания.
Ссылка на товар в магазине, цена $2.72.
Если первый был на одно из самых распространенных напряжений, то этот имеет на выходе гораздо более редкое напряжение в 24 Вольта. Хотя судя по маркировке, есть версия и на 12 Вольт.
Заявленные характеристики:
Входное напряжение — 110 ~ 370V DC, 85 ~ 264V AC
Выходное напряжение — 24V (существует версия 12 В 400мА и 3.3В 500мА)
Выходной ток — 200mA
Мощность нагрузки — 4,8W
КПД — 85%
Уровень пульсаций — не более 100мВ
Размеры платы — 41 х 15 х 17ммБлоки питания, маленькие и очень маленькие
Что интересно, трансформатор на этой плате стоит меньше по габаритам чем на предыдущей, но мощность заявлена заметно больше.
ШИМ контроллер со встроенным высоковольтным транзистором, наименование — THX208, заявленная в даташите мощность 4 Ватта при входном диапазоне 85 ~ 264V. Негусто, так как заявленная мощность БП — 4.8 Ватта.
Входной фильтр и предохранитель отсутствуют, вместо предохранителя стоит перемычка размера 0805. Выходной фильтр также не наблюдается.
Входной конденсатор 4.7мкФ (реально 4.2), выходной 220мкФ (реально 242). Входной совсем впритык, выходной соответствует выходному току.Блоки питания, маленькие и очень маленькие
Все резисторы применены точные, по крайней мере имеют соответствующую маркировку. Это радует, так как применение обычных резисторов обычно чревато уходом выходного напряжения по мере прогрева платы.Блоки питания, маленькие и очень маленькие
В данном варианте уже присутствует обратная связь с применением оптрона и нормальная цепь измерения выходного напряжения с применением стабилитрона TL431.Блоки питания, маленькие и очень маленькие
Третий товарищ смог меня удивить уже на этапе внешнего осмотра, но об этом чуть позже.
Ссылка на товар в магазине, цена $3.05.
Этот БП имеет довольно распространенное напряжение в 5 Вольт. в принципе я 5 Вольт БП и выбирал для обзора именно потому, что они могут быть довольно востребованными, так как сейчас это напряжение используется во многих местах.

Заявленные характеристики.
Входное напряжение — AC 85V — 265V
Выходное напряжение — 5V
Выходной ток — 1000mA
Мощность нагрузки — 5W
КПД — 85%
Точность поддержания выходного напряжения ±0.1V
Уровень пульсаций — не более 150мВ
Размеры платы — 52 х 24 х 18мм

Блоки питания, маленькие и очень маленькие
У этого блока питания отсутствует предохранитель (вместо него перемычка 0 Ом), но уже есть входной и выходной фильтр и резистор ограничивающий пусковой ток.
В блоке питания применен ШИМ контроллер AP8012, который имеет встроенный высоковольтный транзистор. мощность данного ШИМ контроллера составляет 5 Ватт (для данного размера микросхемы и диапазона входного напряжения). Также впритык, но тесты покажут кто есть кто.
На этой плате уже присутствует помехоподавляющий конденсатор, причем Y1 класса, как и положено.
БП пришел с небольшим повреждением, на дросселе отломился кусочек пластмассы, так как он был в пакете, то скорее всего «постаралась» почта.Блоки питания, маленькие и очень маленькие
Но удивило меня другое. Я обозревал кучу разных блоков питания, но варистор по входу вижу в них впервые (может во второй раз, не уверен), да еще в таком мелком БП. В мощных и более дорогих БП нет, а здесь поставили, предохранитель бы ему еще 🙁
Входной конденсатор емкостью 4.7мкФ (реально 4.2), выходные 2шт 1000мкФ 10В (реально 2х 1095). Присутствует выходной помехоподавляющий дроссель.Блоки питания, маленькие и очень маленькие
Печатная плата. Как и в прошлых блоках пит

Конструкция и доработка нескольких типов светодиодных ламп

В мои руки попало несколько вышедших из строя, уже широко распространённых светодиодных ламп на напряжение 230 В, в изобилии предлагаемых в наших магазинах. Захотелось выяснить причину их быстрого выхода из строя и внутреннее устройство. Все лампы проработали не более одного года, хотя на упаковках утверждается, что их время непрерывной работы 30000 ч, получается 1250 суток, что составляет более трёх лет. И ведь наверняка сгоревшие лампы не эксплуатировались круглые сутки.

Итак, берём первую лампу под товарным знаком iEK. Кроме товарного знака, на корпусе указаны данные и параметры лампы LED-A60, 230 В, 50/60 Гц, 11 Вт, 4000 К. Как известно, большинство сетевых светодиодных ламп имеют примерно одинаковую конструкцию. К несущему корпусу, в котором расположены драйвер и светодиоды, крепится матовая колба светорассеивателя и металлический резьбовой цоколь лампы. Пробуем сначала снять колбу. Для этого я изготовил тонкий узкий нож из обломка полотна от ножовки по металлу, сделав тонкое остриё на наждачном станке. Осторожно вставляем нож между колбой и корпусом, сначала на небольшую глубину, и проходим по ругу. Далее всё повторяем на большей глубине. При этом можно пробовать покачивать колбу лампы, и когда колба будет покачиваться, отделяем её. Оказалось, что колба крепилась с помощью белого силиконового герметика. При этом следует отметить, что у некоторых ламп колба отделялась сравнительнолегко, а у некоторых — трудно. У одной лампы в герметике осталась часть нижнего пояска колбы. Но главное — соблюдать осторожность, тогда всё должно получиться.

На алюминиевой печатной плате, служащей ещё и теплоотводом, припаяны 12 светодиодов поверхностного монтажа белого свечения типоразмера 3528. Один из светодиодов был с чёрной точкой, как оказалось — сгоревший. Алюминиевая подложка плотно вставлена в корпус, оказавшийся внутри также алюминиевым, поверх покрытым пластиком. Корпус тоже должен выполнять функцию теплоотвода, но площадь соприкосновения тонкой алюминиевой платы корпусом невелика, атеп-лопроводящая паста отсутствует. Плата со светодиодами подпаяна к драйверу двумя проводами. Внешний вид разобранной лампы изображён на рис. 1. Удалив герметик, поддевают ножом и извлекают плату со светодиодами, но вынуть её из корпуса не дают провода, соединяющие драйвер с цоколем лампы. Поддев ножом, извлекают центральный контакт цоколя и разгибают идущий к нему провод. Места кернения резьбовой части цоколя к корпусу высверливаем сверлом диаметром 1,5 мм. Сняв цоколь, можно достать плату драйвера. На ней оказался разрушен оксидный конденсатор с обозначением на плате Е2. Часть элементов на плате для поверхностного монтажа установлена со стороны печатных проводников, а на противоположной стороне установлены дроссель, два оксидных конденсатора и микросхема. Схема драйвера с обозначениями элементов, как на плате, показана на рис. 2. Резистор, условно обозначенный как R1, находится не на плате, а соединяет центральный контакт цоколя лампы с ней. Схема драйвера построена на микросхеме OCP8191 в корпусе ТО-92. Микросхема представляет собой неизолированный квазирезонансный понижающий преобразователь для питания светодиодов со стабилизацией тока. В её состав входят MOSFET транзистор с максимальным напряжением сток-исток 550 В и узел управления. В микросхеме есть различные виды защиты: от перегрева, от короткого замыкания в нагрузке, от превышения максимального тока. Ток через светодиоды задают резисторами RS1 и RS2.

Рис. 1. Внешний вид разобранной лампы

 

Рис. 2. Схема драйвера

 

После замены конденсатора Е2 на исправный ёмкостью 2,2 мкФ на напряжение 400 В и замыкании контактов сгоревшего светодиода лампа заработала. Был замерен ток через светодиоды, он оказался равен 120 мА, что мне кажется несколько завышенным. Ёмкость конденсатора С3 и индуктивность дросселя были замерены на плате. Применённые светодиоды начинают слабо светить при напряжении 7 В, а при напряжении 8 В и токе 2 мА светят уже ярко. Судя по этому, в одном корпусе расположены два или три последовательно включённых кристалла. Тип светодиодов остался неизвестен.

Следующей «подопытной» стала лампа под торговой маркой General. На ней нанесены следующие обозначения: GLDEN-WA60; 11 Bт; 2700 K, 198-264 B; 50/60 Гц; 73 мА. Матовый светорассеиватель снимают, как и у предыдущей лампы. После этого увидим алюминиевую плату с расположенными на ней семью SMD-светодиодами типоразмера 3528. В отличие от предыдущей лампы, плата припаяна к драйверу и закреплена двумя винтами (рис. 3). Сняв её, увидим, что она была закреплена с помощью винтов на алюминиевом штампованном диске, плотно вставленном в корпус лампы (рис. 4). Заметно, что лампа сделана более качественно, и отвод тепла от светодиодов должен быть лучше.

Рис. 3. Лампа под торговой маркой General

 

Рис. 4. Диск лампы

 

Далее аналогично снимаем цоколь. А вот диск приходится потихоньку выбивать со стороны цоколя, просунув тонкий металлический стержень и уперев его ближе к краю, в ребро диска. Иначе диск будет выгибаться. Только после этого вынимаем плату драйвера. Он построен на аналогичной микросхеме BP9916C в корпусе SOP-8 и представляет собой также неизолированный понижающий преобразователь, позволяющий поддерживать постоянным ток через светодиоды. Схема отличается от предыдущей незначительно, в основном номиналами элементов и их обозначениями на плате, и ещё тем, что после резистора R1, параллельно диодному мосту, установлен керамический конденсатор ёмкостью 0,1 мкФ на напряжение 400 В. Поэтому приводить схему не имеет смысла. Микросхема установлена со стороны печатных проводников. Замкнув контакты неисправного светодиода, удалось восстановить работоспособность лампы. При сопротивлении регулировочных резисторов RS1 и RS2, равных 5,6 и 3,9 Ом, ток через светодиоды равен 130 мА.

Потом была вскрыта светодиодная лампа с товарным знаком ASD и с обозначениями на корпусе: LED-A60, 11 Вт, 220 В, 4000 К, 990 лм. Разборка лампы такая же, как и в предыдущих случаях. Вид лампы без матового светорассеивателя показан на рис. 5. На алюминиевой плате, которая просто вставлена в корпус, установлены 18 SMD-светодиодов типоразмера 3528. Площадь теплового контакта с корпусом, как и в первой лампе, очень мала. Плата со светодиодами припаяна непосредственно к плате драйвера. Эти светодиоды, как и в предыдущих лампах, начинают светить при напряжении 7 В, а при 8 В светятся достаточно ярко при токе 2 мА. Следовательно, их параметры должны быть схожими. Драйвер этой лампы построен на микросхеме BP9918C в миниатюрном корпусе для поверхностного монтажа SOT23-3. Эта микросхема аналогична микросхемам в предыдущих лампах и обладает схожими параметрами. Схема драйвера отличается отсутствием резистора R1, вместо которого на плате сделан тонкий змеевидный печатный проводник, а также номиналами некоторых элементов и обозначениями на плате. При сопротивлении резисторов RS1 и RS2, равных соответственно 13 и 10 Ом, ток через светодиоды — 55 мА, что примерно вдвое меньше, чем у предыдущих ламп.

Рис. 5. Вид лампы без матового светорассеивателя

 

Исходя из всего изложенного, напрашивается вывод, что причиной быстрого выхода из строя этих ламп является завышенный ток светодиодов и недостаточное их охлаждение и, следовательно, перегрев.

Было решено восстановить эти лампы, при этом постараться продлить срок их службы. Для начала были уменьшены токи светодиодов. В первой лампе — путём замены резисторов RS1 и RS2 (4,7 и 3,9 Ом) на два резистора сопротивлением по 10 Ом каждый. Ток через светодиоды со 120 мА уменьшился до 50 мА. Во второй лампе резистор сопротивлением 3,9 Ом был заменён резистором сопротивлением 10 Ом. Ток через светодиоды уменьшился с 130 до 85 мА. В третьей лампе взамен резистора сопротивлением 13 Ом установлен резистор сопротивлением 30 Ом. Ток через светодиоды при этом уменьшился с 50 до 40 мА. Светоотдача при этом упала незначительно, хотя всё по местам может расставить только дальнейшая опытная эксплуатация.

Кроме того, у первой и третьей ламп под светодиодами, на свободной стороне платы, были подложены толстые металлические шайбы, улучшающие тепловой контакт с корпусом. Везде была нанесена теплопроводная паста КПТ-8. Металлические цоколи ламп были приклеены к корпусу эпоксидным клеем, нанесённым в места высверленных отверстий. В корпусе, рядом с цоколем лампы, были просверлены вентиляционные отверстия, улучшающие охлаждение. Правда, при этом применять лампы во влажных помещениях будет нельзя. Если лампы планируется применять в закрытых светильниках, светорассеивающие колбы можно не устанавливать, соблюдая осторожность при установке самих ламп. В противном случае колбы приклеивают белым силиконовым герметиком, как было до этого. Посмотрим, как эти доработки повлияют на долговечность ламп.

И в заключение рассмотрим совершенно другую светодиодную лампу, ещё не бывшую в эксплуатации. Это лампа торговой марки ASD, предназначенная для подключения к переменно-му или постоянному напряжению 12 В. На корпус нанесены следующие обозначения: LED-JC, 5 ВТ, AC/DC, 12 В, цоколь G4, 3000 К. Эта небольшая лампа разбирается несложно. Снимают прозрачный пластиковый колпак, закрывающий светодиоды. Он крепится к корпусу на защёлках, которые очень хрупкие. Поэтому отгибать надо не сами защёлки, а часть корпуса колпака, к которому эти защёлки прикреплены. Для этого в корпусе колпака сделаны прорези, сразу не бросающиеся в глаза, но позволяющие поддеть отвёрткой и раздвинуть защёлки. Сняв колпачок, видно, что светодиоды и другие элементы установлены на гибкой печатной плате, которая с внутренней стороны покрыта слоем липкой ленты, поэтому просто снимают её.

Далее вынимают гибкую плату и отпаивают провода, соединяющие её с цоколем. После этого можно подробно рассмотреть конструкцию лампы. Её внешний вид показан на рис. 6. Материал её корпуса похож на керамику, видимо, чтобы не оплавился при нагреве светодиодов и, возможно, хоть как-то отводил тепло от них. Материал — довольно хрупкий, легко скалывается.

Рис. 6. Конструкция лампы

 

Схема драйвера этой лампы представлена на рис. 7. Он собран на микросхеме U1 в корпусе SOP 8. К сожалению, однозначно идентифицировать микросхему не удалось. На разных лампах неизменной была надпись на корпусе 1086. Светодиоды в лампе типоразмера 3528, с номинальным напряжением 3,4 В. Все остальные элементы — для поверхностного монтажа. При подключении к источнику напряжением 12 В выяснилось, что лампа потребляет ток 280 мА. При увеличении напряжения до 14 В ток через лампу возрос до 290 мА, а при снижении напряжения питания до 10,2 В он уменьшился до 270 мА.

Рис. 7. Схема драйвера

 

При питании лампы номинальным напряжением 12 В уже после семи минут работы, при касании корпуса или светодиодов пальцем, трудно удержать его на них — обжигает. Причина — в слишком плотном расположении светодиодов и в небольшом корпусе. Ручаться после этого в продолжительной работе этой лампы я бы не стал, если только не переделать лампу, снабдив светодиоды и драйвер дополнительными теплоотводами.

Автор:  П. Юдин, г. Уфа

Схема включения STR W6754 — RadioRadar

Микросхема STR W6754 – это универсальный квазирезонансный (импульсный) регулятор напряжения с обратной связью, который может работать с входным током мощностью до 100 Вт. Эта микросхема применяется для быстрого построения эффективных ИБП/SMPS (импульсных блоков питания).

 

Особенности STR W6754

Микросхема уже имеет в составе интегрированное управление первичным напряжением (схема с лавинным питанием МОП-транзисторов).

  • Благодаря построению на базе полевого транзистора, STR W6754 обладает низким уровнем шума (эффект особо хорошо проявляется при очень низких частотах) и обеспечивает максимально плавное переключение.
  • Функция нижнего пропуска минимизирует увеличение рабочей частоты при небольших нагрузках (чтобы повысить эффективность всей системы питания во всём диапазоне нагрузок).
  • Охватывает диапазон мощности ниже 160 Вт для 230 В переменного тока на входе. Или 100 Вт для универсального входа (от 85 до 264 В переменного тока).
  • Эта микросхема может использоваться в различных устройствах: от DVD и VCR-плееров до адаптеров переменного тока в сотовых телефонах и цифровых камерах.
  • Есть автоматический режим ожидания (функция, которая запускается самой микросхемой, при этом существенно уменьшается потребляемая мощность, особенно на небольших нагрузках).
  • Есть режим ожидания, запускаемый по управляющему сигналу (вы можете снизить мощность вручную или по сигналу от другого узла прибора).
  • Есть несколько вариантов встроенной защиты, в том числе: гарантия отсутствия лавинного эффекта для MOSFET, циклическое ограничение тока, блокировка пониженного напряжения с гистерезисом и защита от перенапряжения (защищает источник питания во время перегрузки или неисправности).
  • Защита от перенапряжения активируется после небольшой задержки. Защёлка может быть сброшена путем включения источника питания.
  • Низкий пусковой ток и режим ожидания с низким энергопотреблением.

 

Основные характеристики и преимущества

  • Прочный МОП-транзисторна 650 В
  • Упрощенное поглощение перенапряжения
  • Не требуется снижение VDSS
  • 0,96 Ω Максимальное значение rDS (включено)
  • Два режима работы с автоматическим переключением (квазирезонансный режим для нормальной работы и пакетный режим для работы в режиме ожидания или при легких нагрузках)
  • Автоматический или ручной запуск в режиме ожидания
  • Входная мощность <0,1 Вт без нагрузки
  • Низкий рабочий ток (около 6 мА)
  • Функция автоматического смещения
  • Стабильная операция активации без создания помех
  • Внутренняя цепь таймера выключения
  • Встроенный привод постоянного напряжения
  • Несколько защит (импульсная защита от перегрузки по току, защита от перегрузки с автоматическим восстановлением, фиксирующая защита от перенапряжения, блокировка пониженного напряжения с гистерезисом)
  • Соответствует RoHS (не содержит вредных веществ)

 

Внешний вид и размеры

STR-W6754 поставляется в полностью отлитом пластиковом корпусе высокой мощности в формате TO-220 с фланцем.

Рис. 1. Микросхема STR W6754

 

А так выглядит сама микросхема вживую.

Рис. 2. Внешний вид микросхемы STR W6754

 

Назначение контактов

Функциональная схема, соотнесённая с контактами микросхемы.

Рис. 3. Функциональная схема микросхемы STR W6754

 

1. D – сток встроенного полевого транзистора.

2. (отсутствует)

3. S/GND – общий контакт (исток полевого транзистора).

4. Vcc – вход для управляющего напряжения.

5. SS/OLP – мягкийстарт (SoftStart).

6. FB – контакт обратной связи.

7. OCP/BD – контроль нижнего порога напряжения (Over Current Protection/Bottom Detection)

 

Типовая схема включения

Производитель приводит общую для всей серии STRW675X схему включения.

Рис. 4. Схема включения

 

Эта микросхема используется в составе многих шасси популярных марок телевизоров, например, в LG CT-21S45VE или в шасси GP-3 (телевизор Panasonic TC-21Z88RQ) (полные схемы шасси находится здесь).

 

Замена / аналоги STR W6754

На замену могут подойти любые другие микросхемы из серии STR W6750 (например, W6753 или W6756).

Если позволяет выходная мощность, можно рассмотреть микросхемы из серии STR-W6550. Но здесь может потребоваться изменение обвязки.

Автор: RadioRadar

Микросхема iX1779СЕ — ШИМ-контроллер для ипульсных блоков питания


Рис. 1. Принципиальная типовая схема импульсного блока питания на микросхеме iX1779СЕ, силовой ключ 2SD1883.

Принцип работы блока питания на микросхеме iX1779СЕ

Принцип работы микросхемы iX1779СЕ рассмотрим на примере импульсного блока питания телевизоров Sharp (шасси: SP-70).


Рис. 2. Принципиальная схема импульсного блока питания на основе широтно-импульсного преобразователя типа iX1779СЕ.

В телевизоре используется импульсный блок питания (БП) на основе широтно-импульсного преобразователя IC751 типа iX1779СЕ (см. рис. 2). Блок питания формирует два стабилизированных напряжения: 115В для схем разверток и 12 В для питания остальных узлов.

Выпрямленное напряжение сети 300 В подается на выходной каскад преобразователя на ключевом транзисторе Q701 типа 2SD1884. Параллельно выпрямленное напряжение сети через стабилизатор 13 В на стабилитроне D715 подается для питания задающего генератора в IC751, который запускается при напряжении 9 В. Частота задающего генератора в составе IC751 определяется элементами R706 и С711. После появления управляющих импульсов начинает работать ключевой каскад, и из его импульсов во второй обмотке 3-5 Т701 формируется основное питание для микросхемы iX1779СЕ IC751. Это же напряжение после выпрямления поступает на вход усилителя ошибки 7 IC751, который управляет частотой задающего генератора для стабилизации формируемых напряжений. Резистором R711 можно изменять опорное напряжение ошибки и тем самым регулировать напряжение 115 Вольт. Резистор R718 в цепи эмиттера силового ключа Q701 типа 2SD1884 служит для формирования контрольного напряжения цепи защиты от перегрузок по току. Это напряжение поступает на вход микросхемы ШИМ контроллера iX1779СЕ (вывод 3), и при превышении определенного уровня прохождения импульсов на базу силового ключа Q701 блокируется. После этого схема блока питания снова повторит попытку запустится.

На входе импульсного блока питания имеются фильтры для снижения уровня помех в соответствии со стандартами электромагнитной совместимости бытовой аппаратуры.

Руководство по эксплуатации мотоциклов

PDF, электрические схемы и коды неисправностей

Некоторые руководства по эксплуатации мотоциклов TVS в формате PDF находятся над страницей — Jupiter, Phoenix, Star City, XL100 .

История компании TVS Motor на рынке мотоциклов насчитывает 34 года, и пока между ними и известным японцем сложилось плодотворное сотрудничество. компания Suzuki .

На протяжении почти 20 лет роскошный альянс TVS-Suzuki мог похвастаться лидирующими позициями в области мопедов и скутеров на рынке страны.

На сегодняшний день TVS имеет более пятисот официальных представителей и около двух с половиной тысяч центров продаж и обслуживания.

Модель TVS Apache была признана мотоциклом года в 2007 году по версии различных известных журналов, а также получила приз за самый изысканный дизайн. Все эти замечательные награды были бы невозможны, если бы специалисты компании не работали постоянно в сфере инноваций.

Между немецким автомобильным гигантом BMW и производителем мотоциклов из Индии TVS плотный бизнес. отношения завязались.

При этом договор подписали две компании еще в 2013 году, но только сейчас появляются первые отчеты об условиях сотрудничества, выгодных для обеих сторон. В центре будущего В работе лежит концептуальная модель TVS — неподражаемая Draken .

Среди известных нам фактов о сотрудничестве двух успешных компаний можно отметить то, что разработчики с обеих сторон работают над созданием мотоцикла объемом менее пяти сотен. кубические сантиметры.

Это направление — совершенно новое для каждой из сторон — BMW ранее не приходилось заниматься техникой с двигателями менее шестисот пятидесяти кубических сантиметров. Компания TVS не разрабатывала скутеры с мотоциклами с двигателями более двухсот сантиметров.

В планах немецких и индийских предприятий в ближайшее время начать выпуск первого мотоцикла на базе концепта TVS Draken . Эта концептуальная разработка была недавно представили на специальном автосалоне в Нью-Дели.

Все технические подробности нового мотоцикла пока узнать невозможно, но компании приоткрыли завесу секретности, сказав, что он будет базироваться на некой универсальной платформе. в природе он будет использоваться позже для производства других мотоциклов.

Согласно соглашению, подписанному между компаниями в прошлом году, предполагается, что индийская сторона будет заниматься производством оборудования, а немецкая сторона сконцентрируется на техническая экспертиза.

Обозначения на электрических схемах — Обозначения символов электропроводки

> Символ Edraw> Обозначение символа электрической схемы

На электрических схемах используются упрощенные символы для обозначения выключателей, ламп, розеток и т. Д.Вот стандартная легенда символов проводки, показывающая подробную документацию по общим символам, которые используются в схемах электропроводки, домашних планах электропроводки и схемах электропроводки.

Обозначения на электрических схемах

Электрическая распределительная коробка

Однополюсный переключатель

Трехпозиционный переключатель

Переключатель 1P

2P переключатель

Переключатель 4P

Переключатель 1DP

Переключатель 2DP

Водопроводный кран

Lum.потолочное крепление

Encl потолочный светильник

настенный светильник

Автоматический выключатель

Многоцветная полоса

Световая полоса

Светильник

Наружное освещение

Розетка Singleplex

Дуплексная розетка

Двойная дуплексная розетка (Quad)

Розетка с тройной розеткой

Розетка Fourplex

Range Outlet

Выход сушилки

Водонепроницаемая розетка для розетки

Коммутатор и розетка для удобства

Разделенная проводная дуплексная розетка

Разделенная проводная тройная розетка

Двухуровневая розетка специального назначения

Выход для посудомоечной машины

Падение Шнура

Выход вентилятора

Распределительная коробка

Подставка для лампы

Патрон лампы с выключателем

Вытяните переключатель

Выключатель пароотводной лампы

Выход из светового выхода

Часы Outlet

Заглушенный выход

Телевизионный выход

Вытяжной вентилятор

Водонагреватель

Телефонный разъем

Электрический щит

Аккумулятор

Люминесцентные лампы

Распределительная коробка

Модульные люминесцентные лампы

Офисные флюоры

Выключатель со шнуром

Emerg.свет

Emerg. подписать

Переключатели

Диммер

Розетка

Розетка 2

Телефонная розетка

Стерео выход

Потолочный вентилятор

Потолочный вентилятор 2

Комбинированный вентилятор

Сервисные панели

Термостат

Кондиционер

Держите открытый блок

Детектор

Пожарная тревога

Монитор

Аварийная сигнализация

Дверной звонок

Детектор дыма

Вызов

Тел.

Главный контроль

Земля

Линия

провод

Линия разреза

Линия разреза 2

EdrawMax: швейцарский нож для всех ваших потребностей в создании диаграмм

  • С легкостью создавайте более 280 типов диаграмм.
  • Предоставьте различные шаблоны и символы в соответствии с вашими потребностями.
  • Интерфейс перетаскивания и прост в использовании.
  • Настройте каждую деталь с помощью интеллектуальных и динамичных наборов инструментов.
  • Совместимость с различными форматами файлов, такими как MS Office, Visio, PDF и т. Д.
  • Не стесняйтесь экспортировать, печатать и делиться своими схемами.

Как использовать символы схемы подключения

Загрузите Edraw Max, и вы получите все вышеперечисленные символы вместе с инструментами и шаблонами, которые помогут вам быстро создать профессионально выглядящую электрическую схему.

Начать! Вам понравится эта простая в использовании программа для создания диаграмм

EdrawMax — это продвинутый универсальный инструмент для создания диаграмм для создания профессиональных блок-схем, организационных диаграмм, интеллект-карт, сетевых диаграмм, диаграмм UML, поэтажных планов, электрических схем, научных иллюстраций и многого другого.Просто попробуйте, вам понравится!

% PDF-1.4 % 19103 0 объект > endobj xref 19103 378 0000000016 00000 н. 0000027016 00000 п. 0000027277 00000 н. 0000027524 00000 п. 0000027575 00000 п. 0000027672 00000 н. 0000027717 00000 п. 0000027777 00000 п. 0000027865 00000 н. 0000028066 00000 п. 0000028483 00000 п. 0000028826 00000 п. 0000029024 00000 н. 0000029218 00000 п. 0000029375 00000 п. 0000029541 00000 п. 0000029738 00000 п. 0000030168 00000 п. 0000030820 00000 п. 0000030996 00000 п. 0000031335 00000 п. 0000031508 00000 п. 0000031712 00000 п. 0000031898 00000 п. 0000031986 00000 п. 0000032423 00000 п. 0000032612 00000 п. 0000033012 00000 п. 0000033224 00000 п. 0000033724 00000 п. 0000034099 00000 п. 0000034255 00000 п. 0000034463 00000 п. 0000034849 00000 п. 0000035170 00000 п. 0000035335 00000 п. 0000035715 00000 п. 0000036009 00000 п. 0000036524 00000 п. 0000036712 00000 п. 0000037147 00000 п. 0000037828 00000 п. 0000037990 00000 п. 0000038257 00000 п. 0000038489 00000 п. 0000038735 00000 п. 0000038887 00000 п. 0000039026 00000 н. 0000039182 00000 п. 0000039341 00000 п. 0000039658 00000 п. 0000039767 00000 п. 0000039915 00000 н. 0000040001 00000 п. 0000040266 00000 п. 0000040426 00000 п. 0000040689 00000 п. 0000040848 00000 п. 0000040937 00000 п. 0000041153 00000 п. 0000041360 00000 п. 0000041707 00000 п. 0000041942 00000 п. 0000042170 00000 п. 0000042358 00000 п. 0000042553 00000 п. 0000042741 00000 п. 0000042903 00000 п. 0000042994 00000 п. 0000043125 00000 п. 0000043329 00000 п. 0000043494 00000 п. 0000043751 00000 п. 0000043912 00000 п. 0000044128 00000 п. 0000044354 00000 п. 0000044554 00000 п. 0000044696 00000 п. 0000044979 00000 п. 0000045306 00000 п. 0000045500 00000 п. 0000045611 00000 п. 0000045798 00000 п. 0000045983 00000 п. 0000046124 00000 п. 0000046241 00000 п. 0000046522 00000 п. 0000046809 00000 п. 0000046969 00000 п. 0000047251 00000 п. 0000047422 00000 п. 0000047593 00000 п. 0000047703 00000 п. 0000047862 00000 п. 0000048087 00000 п. 0000048316 00000 п. 0000048475 00000 п. 0000048615 00000 н. 0000049082 00000 п. 0000049458 00000 п. 0000050071 00000 п. 0000050216 00000 п. 0000050488 00000 п. 0000050759 00000 п. 0000051026 00000 п. 0000051172 00000 п. 0000051296 00000 п. 0000051875 00000 п. 0000052008 00000 п. 0000052386 00000 п. 0000052559 00000 п. 0000052641 00000 п. 0000052762 00000 н. 0000052938 00000 п. 0000053097 00000 п. 0000053655 00000 п. 0000053812 00000 п. 0000054353 00000 п. 0000054535 00000 п. 0000055105 00000 п. 0000055238 00000 п. 0000055670 00000 п. 0000055815 00000 п. 0000056327 00000 п. 0000056495 00000 п. 0000057037 00000 п. 0000057182 00000 п. 0000057689 00000 п. 0000057833 00000 п. 0000058324 00000 п. 0000058479 00000 п. 0000058768 00000 п. 0000059332 00000 п. 0000059482 00000 п. 0000059981 00000 п. 0000060132 00000 п. 0000060635 00000 п. 0000060807 00000 п. 0000061107 00000 п. 0000061702 00000 п. 0000061850 00000 п. 0000062350 00000 п. 0000062508 00000 п. 0000063034 00000 п. 0000063197 00000 п. 0000063755 00000 п. 0000063920 00000 п. 0000064462 00000 п. 0000064616 00000 п. 0000065185 00000 п. 0000065351 00000 п. 0000065650 00000 п. 0000066240 00000 п. 0000066409 00000 п. 0000066711 00000 п. 0000067345 00000 п. 0000067505 00000 п. 0000067791 00000 п. 0000068386 00000 п. 0000068560 00000 п. 0000069119 00000 п. 0000069267 00000 п. 0000069794 00000 п. 0000069954 00000 н. 0000070249 00000 п. 0000070814 00000 п. 0000070976 00000 п. 0000071549 00000 п. 0000071712 00000 п. 0000072301 00000 п. 0000072463 00000 п. 0000073028 00000 п. 0000073201 00000 п. 0000073801 00000 п. 0000073922 00000 п. 0000074311 00000 п. 0000074455 00000 п. 0000074929 00000 п. 0000075081 00000 п. 0000075587 00000 п. 0000075732 00000 п. 0000076286 00000 п. 0000076428 00000 п. 0000076891 00000 п. 0000077063 00000 п. 0000077656 00000 п. 0000077821 00000 п. 0000078363 00000 п. 0000078529 00000 п. 0000079087 00000 н. 0000079242 00000 п. 0000079541 00000 п. 0000080051 00000 п. 0000080228 00000 п. 0000080803 00000 п. 0000080974 00000 п. 0000081534 00000 п. 0000081686 00000 п. 0000082183 00000 п. 0000082336 00000 п. 0000082627 00000 п. 0000083158 00000 п. 0000083317 00000 п. 0000083898 00000 п. 0000084052 00000 п. 0000084575 00000 п. 0000084730 00000 п. 0000085254 00000 п. 0000085411 00000 п. 0000085703 00000 п. 0000086262 00000 п. 0000086406 00000 п. 0000086691 00000 п. 0000087170 00000 п. 0000087361 00000 п. 0000087767 00000 п. 0000088079 00000 п. 0000088272 00000 п. 0000088673 00000 п. 0000088828 00000 п. 0000089034 00000 п. 0000089221 00000 п. 0000089617 00000 п. 0000089983 00000 н. 00000 00000 п. 0000090938 00000 п. 0000091114 00000 п. 0000091598 00000 п. 0000091757 00000 п. 0000092260 00000 п. 0000092421 00000 п. 0000092941 00000 п. 0000093093 00000 п. 0000093597 00000 п. 0000093740 00000 п. 0000094241 00000 п. 0000094381 00000 п. 0000094842 00000 п. 0000094989 00000 п. 0000095466 00000 п. 0000095697 00000 п. 0000096024 00000 п. 0000096769 00000 п. 0000096963 00000 п. 0000097270 00000 п. 0000097938 00000 п. 0000098099 00000 п. 0000098392 00000 п. 0000098951 00000 п. 0000099103 00000 п. 0000099594 00000 п. 0000099725 00000 н. 0000100234 00000 н. 0000100376 00000 н. 0000100839 00000 н. 0000100992 00000 н. 0000101502 00000 н. 0000101656 00000 н. 0000102173 00000 п. 0000102313 00000 н. 0000102801 00000 п. 0000102956 00000 п. 0000103244 00000 н. 0000103812 00000 н. 0000103973 00000 п. 0000104533 00000 н. 0000104682 00000 н. 0000105167 00000 п. 0000105313 00000 п. 0000105840 00000 н. 0000105985 00000 п. 0000106258 00000 н. 0000106812 00000 н. 0000106957 00000 п. 0000107447 00000 н. 0000107595 00000 п. 0000108091 00000 н. 0000108253 00000 н. 0000108810 00000 н. 0000108959 00000 п. 0000109492 00000 п. 0000109641 00000 п. 0000110161 00000 п. 0000110331 00000 п. 0000110910 00000 н. 0000111072 00000 н. 0000111632 00000 н. 0000111800 00000 н. 0000112367 00000 н. 0000112524 00000 н. 0000113023 00000 н. 0000113186 00000 н. 0000113766 00000 н. 0000113915 00000 н. 0000114397 00000 н. 0000114525 00000 н. 0000115020 00000 н. 0000115192 00000 н. 0000115794 00000 н. 0000115963 00000 н. 0000116562 00000 н. 0000116710 00000 н. 0000117223 00000 н. 0000117392 00000 н. 0000117693 00000 н. 0000118315 00000 н. 0000118467 00000 н. 0000118991 00000 н. 0000119162 00000 н. 0000119742 00000 н. 0000119880 00000 н. 0000120359 00000 н. 0000120538 00000 н. 0000121147 00000 н. 0000121311 00000 н. 0000121868 00000 н. 0000122045 00000 н. 0000122655 00000 н. 0000122827 00000 н. 0000123435 00000 н. 0000123611 00000 н. 0000124176 00000 н. 0000124347 00000 п. 0000124925 00000 н. 0000125095 00000 н. 0000125642 00000 н. 0000125822 00000 н. 0000126430 00000 н. 0000126545 00000 н. 0000126904 00000 н. 0000127047 00000 н. 0000127212 00000 н. 0000127849 00000 н. 0000127988 00000 н. 0000128539 00000 н. 0000128651 00000 н. 0000129058 00000 н. 0000129160 00000 н. 0000129493 00000 н. 0000129632 00000 н. 0000130155 00000 н. 0000130282 00000 п. 0000130550 00000 н. 0000130912 00000 н. 0000131043 00000 н. 0000131560 00000 н. 0000131827 00000 н. 0000132189 00000 н. 0000132312 00000 н. 0000132763 00000 н. 0000132866 00000 н. 0000133191 00000 п. 0000133385 00000 н. 0000134157 00000 н. 0000134303 00000 н. 0000134857 00000 н. 0000135003 00000 н. 0000135167 00000 н. 0000135872 00000 н. 0000136023 00000 н. 0000136654 00000 п. 0000136807 00000 н. 0000137454 00000 н. 0000137622 00000 н. 0000138298 00000 н. 0000138409 00000 н. 0000138736 00000 н. 0000138859 00000 н. 0000139171 00000 н. 0000139267 00000 н. 0000139497 00000 н. 0000139621 00000 н. 0000139930 00000 н. 0000140058 00000 н. 0000140382 00000 п. 0000140866 00000 н. 0000140963 00000 н. 0000008012 00000 н. трейлер ] / Назад 14561054 >> startxref 0 %% EOF 19480 0 объект > поток hyiXS # Rd0

Nissan Rogue Service Manual: Электрическая схема — Без интеллектуальной ключевой системы — Система управления кузовом

BCM

Схема электрических соединений

Информация о диагностике ЭБУ
BCM Исходная величина ЗАМЕТКА: Инструмент Signal Tech II (J-50190) может использоваться для выполнения следующих функции.Обратитесь к Signal Tech II. Руководство пользователя для получения дополнительной информации. Активировать …
Базовая проверка
ПРОВЕРКА И РЕГУЛИРОВКА ДОПОЛНИТЕЛЬНОЕ ОБСЛУЖИВАНИЕ ПРИ ЗАМЕНЕ БЛОКА УПРАВЛЕНИЯ (BCM) ДОПОЛНИТЕЛЬНОЕ ОБСЛУЖИВАНИЕ ПРИ ЗАМЕНЕ БЛОКА УПРАВЛЕНИЯ (BCM): Описание ПЕРЕД ЗАМЕНОЙ При замене BCM сохраните или при …
Другие материалы:

Подготовка
Инструмент для коммерческого обслуживания Название инструмента Описание Датчик зазора тормозного барабана Измерение внутреннего диаметра барабана заднего ротора Электроинструмент Ослабление гаек, винтов и болтов …

Описание системы
ОПИСАНИЕ Система охлаждения двигателя Термостат Выход воды Блок цилиндров (корпус термостата) Водозабор Радиатор Помпа Цилиндрический блок Крышка цилиндра открыто Закрыто К электроприводу управления дроссельной заслонкой К маслоохладителю …

Система
Описание системы Когда автомобиль достигает скорости 40 км / ч (25 миль / ч) или выше, BCM получает переданный сигнал от датчиков давления в шинах, установленных на каждом колесе.Если BCM обнаруживает низкий инфляционное давление или система неисправность, он посылает сигнал на счетчик комбинации v …

© 2014-2021 Авторские права www.nirogue.com

C13 / C14 схема подключения фаза / нейтраль / земля «The Wiert Corner — нерегулярный поток оборудования

Схема подключения C13 / C14 под напряжением / нейтралью / заземлением

Автор: jpluimers, 02.12.2016

Edit 20200713: Первоначальная разводка в этой статье была неправильной, спасибо Jules Vape за указание на это в комментариях.

Это правильная проводка в соответствии с IEC 60320 — Википедия: C13 / C14_coupler: Файл: IEC60320 C13.jpg — Википедия

  • Облицовка гнездового разъема:
    • Слева: нейтраль
    • Середина: защитная земля
    • Справа: Live
  • Облицовка домкратом:
    • Осталось: Live
    • Середина: защитное заземление
    • Справа: нейтраль

Та же информация из [WayBack] IEC 60320 (IEC 320) Справочная таблица — Разъемы и вилки IEC 60320 | StayOnline:

IEC-60320 Вилки и разъемы
Рейтинг
Конфигурация
Женский / Мужской
Международный Северная Америка Провода поляков

C13 / C14
250 Вольт
10 А
125/250 Вольт
15 А
3 провода 2 полюса

Цвета проводки

Если вы проводите провод, цвета зависят от того, где вы живете.Я живу в Нидерландах, поэтому применяется эта сокращенная таблица:

IEC (большая часть Европы) Цветовые коды проводки силовой цепи переменного тока.

Функция этикетка Цвет, IEC Цвет, старый IEC
Защитное заземление PE желто-зеленый желто-зеленый
нейтральный N синий синий
Линия, однофазная л коричневый коричневый или черный

Более длинные таблицы и инфографика здесь:

–jeroen

Оригинальная неправильная проводка:

Так что спасибо, но не спасибо Саймону Картеру за эту неверную информацию (на его изображении прямая трансляция и нейтраль поменяны местами):

C14 (вилка; слева) и C13 (розетка; справа)

Просмотр гнезда (линия или шасси) спереди, т.е.е. сторона, в которую входит вилка, соединения:

  • Левый палец: нейтраль
  • Центральный штифт: Земля
  • Правая булавка: Live

Источник: Электроника 2000 | Распиновка | Разъемы IEC

Схема подключения двухпозиционного переключателя

Вот решение для двусторонней коммутации, опубликованное для одного из наших пользователей, который подключил питание к одной из распределительных коробок и не имел радиальной цепи для подбора нейтрали на патроне лампы.

Двухстороннее переключение с подачей питания на коммутатор


Теги: Схема подключения двухпозиционного переключателя, двухпозиционный переключатель, двустороннее переключение

Я включил этот метод двухстороннего переключения для справки, потому что вы можете встретить его в старых домах, но я не рекомендую вам его использовать. Если вы выполняете новую установку или замену двухпозиционной системы переключения, используйте трехпроводной метод управления.

Вы, скорее всего, встретите эту двухстороннюю схему освещения в промышленных / коммерческих условиях, где установка является магистральной / кабельной и используются одножильные проводники.

Рис. 1: Схема двухстороннего переключения света с использованием двухпроводного управления

Недостатки двухпроводной системы управления

Этот подход часто называют «методом экономии кабеля», потому что для него требуется только двухпроводное управление. Это нормально, если выполнено правильно, но вот на что вам нужно обратить внимание: если это используется на лестничной клетке, где у вас есть переключатель наверху и переключатель внизу, существует опасность того, что нейтраль и напряжение будут поступать из разных цепей освещения.См. Fi2 2.

Рис. 2. Двухстороннее переключение с 2-проводным управлением (НЕ ДЕЛАЙТЕ ЭТОГО)

Первая причина — BAD — из соображений безопасности; скажем, мы работаем над освещением наверху, поэтому мы выключаем цепь освещения наверху, думая, что мы в безопасности. НЕПРАВИЛЬНО . Живое напряжение принимается внизу, и все еще есть токоведущие проводники, питающие выключатель наверху, и если кто-то щелкнет выключателем внизу на этой диаграмме, то живое питание также будет распространяться до лампы (вы жареный ребенок !!).

Если вы видите, что этот метод используется у себя дома ИЗОЛИРУЙТЕ ВСЕ ЦЕПИ ОСВЕЩЕНИЯ ПЕРЕД РАБОТОЙ НА ЛЮБОМ ИЗ НИХ . Если вы не уверены, что ИЗОЛИРУЙТЕ ВСЕ ЦЕПИ ОСВЕЩЕНИЯ ПЕРЕД РАБОТОЙ НА ЛЮБОМ ИЗ НИХ.

Примечание: если бы этот метод использовался в длинном коридоре, где оба переключателя находились внизу и, предположительно, нейтраль не была заимствована из другой цепи (НЕ ПРИНИМАЙТЕ ЭТОГО), то этой проблемы безопасности не существовало бы. Но читайте дальше ..

Вы видите, что этот метод предлагается на многих сайтах DIY, но вопросы безопасности редко объясняются должным образом.Вот еще одна причина не делать этого, которую я еще не нашел ни на одном сайте DIY:

Индукционные петли и радиопомехи

Как вы, наверное, знаете, любой проводник с током излучает электромагнитное поле. Преимущество сдвоенных и заземляющих кабелей заключается в том, что токопроводящие и обратные провода всегда находятся в непосредственной близости (в одном кабеле), поэтому возникает эффект компенсации.

Теперь снова рассмотрим Рис. 2, ток питания покидает потребительский блок (плату предохранителей) и проходит по дому к выключателю на нижнем этаже, затем он направляется наверх ко второму выключателю через свет.Путь к нейтрали вполне может пройти вокруг цепи освещения наверху, прежде чем вернуться вниз к потребительскому блоку. BINGO, мы только что превратили наш дом в массивную индукционную петлю , идеально сконструированную, чтобы создавать помехи для самых разных вещей:

  • Слуховые аппараты с индукционной петлей
  • Радиоприемники
  • Мой милый Стратт (это электрогитара, если вы не музыкант)
  • Компьютерные сети

Я думал, что закончил, но пока мы обсуждаем, почему этот метод не очень хорош:

Ошибочное срабатывание устройств безопасности / защиты цепи

Практика «заимствования» нейтрали у цепи, которая не питала звук, вполне может нанести ущерб современному потребительскому устройству, имеющему несколько УЗО или АВДТ.

Итак, подведем итог: если вы не хотите поссать в темноте, потому что ваша жена включила чайник внизу, используйте метод трехпроводного управления🙂


Теги: Схема 2-стороннего освещения, 2-ходовой переключатель, Схема 2-ходового переключателя, электрическая проводка, как подключить свет, как подключить двухсторонний переключатель, Схема подключения света, схема освещения, схема подключения освещения, два переключатель пути

Двухстороннее переключение означает наличие двух или более переключателей в разных местах для управления одной лампой.Они подключены таким образом, что любой переключатель управляет светом. Такое расположение часто встречается на лестницах с одним переключателем наверху и одним переключателем внизу или в длинных коридорах с переключателем на обоих концах.

Здесь у нас есть система двусторонней коммутации, которая использует два однонаправленных двухпозиционных переключателя и трехпроводное управление, показанное старыми цветами кабелей. Аналогичного результата можно достичь, используя двухпроводное управление, которое, хотя и позволяет сэкономить на кабеле, не рекомендуется.Это предпочтительный подход.

Здесь у нас есть схема (Рис. 1), которая позволяет легко визуализировать, как эта схема работает. В этом состоянии лампа выключена, изменение положения любого переключателя приведет к включению лампы под напряжением. Если вы теперь измените положение другого переключателя, цепь снова разомкнется.

Рис.1: Схема подключения двухстороннего переключения (3-проводное управление)

Схема хороша и проста для визуализации принципа того, как это работает, но мало помогает, когда доходит до фактического подключения этого в реальной жизни !!

На рис. 2 ниже показано, как мы достигаем этой конфигурации.Как и любая кольцевая круглая радиальная схема, кабель переключателя от потолочной розетки содержит два провода: постоянное напряжение и переключаемое напряжение. Это кабель C внизу, один провод подключается к L1, а другой к L2 на верхнем коммутаторе.

Кабель D (рис. 2) представляет собой трехжильный кабель с заземлением, это «трехпроводное управление», которое соединяет два переключателя света вместе. COM на первом коммутаторе подключается к COM на втором коммутаторе, L1 на первом коммутаторе подключается к L1 на втором, а L2 на первом коммутаторе подключается к L2 на втором.

Все провода заземления должны подключаться к клемме заземления в задней части переключателя, и если вы используете металлические переключатели, ДОЛЖНА быть петля от этой клеммы заземления к клемме на плате переключателя (см. Примечание A на рис. 2).

Рис. 2: Двухстороннее переключение с использованием 3-проводного управления (показано старым цветом кабеля)

ПРИМЕЧАНИЕ. Синий и желтый провода в кабеле «D» и черный провод в кабеле «C» являются коммутируемыми сроками службы и, следовательно, должны быть помечены красной оболочкой на каждом конце, как показано.

Выключатель сброса от распределительной коробки

Существует вероятность, что если в вашем доме используется проводка этих старых цветов, падение переключателя может происходить из-за кольцевой радиальной цепи освещения, выполненной с помощью распределительных коробок, а не потолочных розеток, как показано на рис.Проводка переключателя такая же, но провод переключателя (кабель C) ведет к другой настройке.

Рис. 3: 3-стороннее переключение, подключенное к схеме радиального освещения с выходом и входом, выполненное с помощью распределительных коробок


Теги: Схема 2-стороннего освещения, 2-ходовой переключатель, Схема 2-ходового переключателя, электрическая проводка, как подключить свет, как подключить двухсторонний переключатель, Схема подключения света, схема освещения, схема подключения освещения, два переключатель пути

Двухстороннее переключение означает наличие двух или более переключателей в разных местах для управления одной лампой.Они подключены таким образом, что любой переключатель управляет светом. Такое расположение часто встречается на лестницах с одним переключателем наверху и одним переключателем внизу или в длинных коридорах с переключателем на обоих концах.

Здесь у нас есть система двусторонней коммутации, в которой используются два однонаправленных двусторонних переключателя и трехпроводное управление, показанное в новых гармонизированных цветах кабелей. Аналогичного результата можно достичь, используя двухпроводное управление, которое, хотя и позволяет сэкономить на кабеле, не рекомендуется.Это предпочтительный подход.

Здесь у нас есть схема (Рис. 1), которая позволяет легко визуализировать, как эта схема работает. В этом состоянии лампа выключена, изменение положения любого переключателя приведет к включению лампы под напряжением. Если вы теперь измените положение другого переключателя, цепь снова разомкнется.

Рис.1: Схема подключения двухстороннего переключения (3-проводное управление)

Схема хороша и проста для визуализации принципа работы двухпозиционного переключателя, но она мало помогает, когда нужно на самом деле подключить это в реальной жизни !!

На рис. 2 ниже показано, как мы достигаем этой конфигурации.Как и любая кольцевая круглая радиальная схема, кабель переключателя от потолочной розетки содержит два провода: постоянное напряжение и переключаемое напряжение. Это кабель C внизу, один провод подключается к L1, а другой к L2 на верхнем коммутаторе.

Кабель D (рис. 2) представляет собой трехжильный кабель с заземлением, это «трехпроводное управление», которое соединяет два переключателя света вместе. COM на первом коммутаторе подключается к COM на втором коммутаторе, L1 на первом коммутаторе подключается к L1 на втором, а L2 на первом коммутаторе подключается к L2 на втором.

Все провода заземления должны подключаться к клемме заземления в задней части переключателя, и если вы используете металлические переключатели, ДОЛЖНА быть петля от этой клеммы заземления к клемме на плате переключателя (см. Примечание A на рис. 2).

Рис. 2: Двухстороннее переключение света (3-проводная система, новые гармонизированные цвета кабелей)

ПРИМЕЧАНИЕ. Серый провод в кабеле «D» — это коммутируемый ток, а синий провод в кабеле «C» и черный провод в кабеле «D» — постоянный срок службы и, следовательно, должны иметь коричневую оболочку на каждом конце, как показано.


Теги: 2-сторонняя схема освещения, 2-ходовой переключатель, Схема подключения 2-стороннего переключателя, электрическая проводка, как подключить свет, как подключить двухсторонний переключатель, Схема подключения освещения, схема освещения, схема подключения освещения, двусторонний переключатель

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *