Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Jw1782B в светодиодной лампе: Jw1782b в светодиодной лампе

Схема «энергосберегайки» и переделка драйвера в светодиодный

В предыдущих обзорах уже переделывал драйвер от «энергосберегайки» под светодиодный. Думал, что рассмотрел все варианты. Но нет, есть ещё более простой и надёжный, кардинально упрощающий реализацию. Да, он не лишён недостатков. Возможно, для кого-то эти недостатки очень существенны, кому-то пофиг. Если интересно, заходим.
Вот запасы, я их уже показывал.

Нет, это не моё. Просто набрал на работе списанных лампочек на эксперименты.
В первом своём обзоре заказал на пробу только одну «светоматку». После её удачного опробования заказал ещё три (10 Вт и две по 100 Вт холодного и тёплого цвета свечения). Заказал в декабре 2016 года. Через месяц пришли. На дворе 2018-ый год.

Доставка с предысторией.

Трек типа LP00062014671739 отслеживается только до границы.
На тот момент стоваттную матрицу покупал у продавца за US $1.

77. За ту цену, что рисует сейчас, покупать не стоит.

Заказал ещё не из-за того, что они такие хорошие, а из-за того, что дешёвые и удобные в использовании. На самом деле «светоматки» ПОСРЕДСТВЕННОГО качества на АЛЮМИНИЕВОЙ подложке. Но если использовать не на всю мощность, то послужат долго.
Стандартный пакет с пупыркой внутри, кинули прямо в ящик. Почта Грузии, однако. Наверное, так удобнее.
Метки маркером это я поставил. Там где заводские метки прицепляться и подпаиваться не очень удобно.

Прозвонил мультиметром и нарисовал.
Все характеристики (размеры в том числе) написаны на странице продавца (магазина).

Извините, что так подробно напоминаю, но многим читателям не нравится, когда я делаю ссылки на свои предыдущие обзоры. Очень неудобно перелистывать туда-сюда. Проще читать последовательным текстом.
Размеры можно «заценить» на фоне более понятных предметов.

Кстати, паяются исключительно.

Вот только радиатор алюминиевый.

А вот и схема «энергосберегайки». Она под номером 1. Схемы у разных производителей несущественно отличаются. Присутствуют упрощения или наоборот добавляются элементы для лучшей и более долговечной работы. Но суть одна.

На первом рисунке (схема №1) собственно схема с элементами (красного цвета), которые нужно убрать. На втором, третьем и четвёртом варианты переделки оконечной части под светодиодный драйвер (схема «допилинга»).
У всех этих схем свои недостатки и достоинства. Но у всех есть одно общее преимущество – ничего сверху дросселя МОТАТЬ НЕ НУЖНО, и один существенный недостаток – НЕТ ГАЛЬВАНИЧЕСКОЙ РАЗВЯЗКИ с электрической сетью.
В схеме №4 пульсации самые минимальные и для глаз и для живучести «светокристаллов», но самые большие потери на выпрямительных диодах.
Схема №2 более экономична в этом плане (потери на выпрямительных диодах в два раза меньше), но требует наличия уже двух «светоматок».


Схема №3 самая простая. Никаких выпрямительных диодов, просто подключаем пару «светоматок» встречно параллельно вместо люминесцентной нагрузки. У этой схемы больше всего побочных эффектов, хотя она самая простая в исполнении и у неё наименьшие потери. Ещё один недостаток этой схемы — в случае порчи одной матрицы, вторая выгорает автоматически из-за высокого обратного напряжения.
Кстати, одновременное использование светодиодов холодного и тёплого свечения позволяет добиться более приятного оттенка.
Уже писал, что поверх обмотки дросселя «энергосберегайки» ничего мотать не нужно. Соответственно не нужно подбирать драйвера с большим окном дросселя. Просто подключаемся к освободившимся контактам на плате драйвера.
В качестве донора использую неисправные люминесцентные лампочки («энергосберегайки»).
Для экспериментов у меня осталось несколько 20-тиваттных драйверов.

Размер окна не позволяет ничего подмотать, использую как есть.

Все драйверы от неисправных лампочек, и не факт, что работают.
Но дефект оказался стандартным – вспухший конденсатор сетевого выпрямителя. Именно поэтому я их давно выпаял у всех четырёх. Ставить лучше заведомо бОльшую ёмкость. Чем больше ёмкость, тем меньше пульсации. Я поставил на 10 мкФ.

Собрал макетку.

Выпрямительный мостик я использовал из позапрошлой лабораторки. Он на КД226-ых. Диоды Шоттки здесь не рулят. Слишком большое обратное напряжение. А они, как правило, низковольтные. У меня есть SR5100, но они только на 100 В.
Включил. Работает.

Проверка на пульсации.

Достал осциллограф. Некоторые моменты лучше отсеять сразу. Посмотрю пульсации. Только факты.
Эта информация чисто ознакомительная, хотя для многих и интересная.
На самих диодах смотреть пульсации бессмысленно.

Проверял по методике из ГОСТа.

Эти пульсации считать бессмысленно, они слишком малы. В данном случае я ловил пульсации частотой 100 Гц. Это НЕ последствия преобразования, там другая частота порядка нескольких десятком кГц. Это результат сглаживания по входу выпрямителя 220 В «энергосберегайки». Не зря поставил такую ёмкость.
Решил глянуть на помехи от преобразователя. Подключил уже другой прибор.

Чисто ознакомительно. Пульсации частотой почти 40 кГц на утомляемость глаз не влияют.

С пульсациями разобрались.
Продолжая традиции своих обзоров, измерил КПД получившейся конструкции.

Для его определения необходимо знать, сколько потребляет от сети, и сколько потребляет «светоматки» по постоянному току. Ничего сложного. Мультиметр и ваттметр мне в помощь.
При напряжении 232 В мощность потребления от сети всего 9,8 Вт. Светильник нагружен лишь на половину своей номинальной мощности. Именно поэтому пульсации оказались настолько малы. Я проверил и других драйверах, других фирм. Приблизительно всё тоже самое.
Я не знаю, как правильно назвать – это свойство или особенность подобных драйверов. Номинальную мощность они отдают при падении напряжения в нагрузке ближе к 100 В. Например, при подключении последовательно двух «светоматок» (падение напряжения около 60 В) мощность возрастает до 14 Вт. Для полноценного использования драйвера с максимальным КПД необходима светодиодная сборка на напряжение никак не менее 100 В.
Продолжаю. Ток через матрицу 0,251 А. Напряжение на «светоматках» я тоже измерил. Оно составило 28,28 В.

Мощность по постоянному току (чисто светодиодная) Р=28,28В*0,251А=7,1Вт.
Ƞ=7,1Вт/9,8Вт*100%=72%
Для самоделки очень даже неплохо. Большая часть полезной энергии теряется на выпрямительных диодах, до 10 %.
По яркости соответствует лампе накаливания 75 Вт. Недогруженные светодиоды поражают своим КПД (об этом напомню чуть позже).
После экспериментирования пощупал самые проблемные места. Транзисторы и дроссель/трансформатор были еле тёплые. За них больше не переживаю. Самым нагретым местом была сама матрица. Но и она не была горячей, рука спокойно терпит. Не мудрено при такой мощности…
Кстати, теплоотводящая подложка светодиодов НЕ соединена ни с каким выводом. Это хорошо с учётом отсутствия гальванической развязкой с сетью.
Повторю ещё один эксперимент. Я его уже проделывал и не один раз.

Зависимость «энергоэффективности» матрицы от мощности (тока).

Принцип прост. Я подаю на матрицу ток через калиброванные промежутки (для удобства восприятия) с блока питания, при этом не забываю про напряжение на матрице (т. к. при увеличении тока, хоть и не намного, оно тоже будет увеличиваться) и освещённость. Все данные свёл в таблицу. Остальные данные в таблице – получены путём расчета (перемножением и делением измеренных величин). Это необходимо для получения более наглядных цифр. Ещё раз повторю, показания люксметра сняты для построения графика, не более того.

Экспериментировал в режиме отсечки по току. Блок питания имеет ограничение по напряжению (30В) и току (10А). В данном случае не хватило напряжения для раскачки матрицы на полную. При этом ток ограничился на величине 0,84А. Напряжение больше не росло. Но динамику понятно и по тем цифрам, что имею.

С помощью полученной таблицы и построю график зависимости «энергоэффективности» матрицы от той мощности (тока), которую через неё пропустил.

Как видно из графика, чем выше мощность, проходящая через матрицу, тем ниже «энергоэффективность». Если постараться сказать проще, чем меньше мощность от номинала, тем бОльшая мощность переходит в свет, а не в тепло.

На этом лабораторную работу можно считать оконченной. Работа проведена, вывод сделан. Перехожу к практическим занятиям.
Напомню, что есть у меня светильник на балконе.

Корпус из жести (сталь), будет служить дополнительным теплоотводом.

Всё лишнее убрал.

Я уже вживлял самодельные светильники. После последней лабораторки даже на место уже повесил. Но вот пришла новая идея, и пришлось всё снова демонтировать.

В качестве радиатора использовать алюминиевый лист (толщиной 2мм) от списанной аппаратуры.

Место крепления матрицы к радиатору необходимо очистить от краски и смазать теплопроводящей смазкой.
Особая красота не требуется. Всё будет скрыто плафоном.
Кроме самого драйвера где-то нужно разместить выпрямитель. Затем подключить всё это через клеммник на балконе. А пока всё выглядит так.

Светит обычно, ничего особенного.

И в сборе.

В заключение немного напомню: паять и клепать лампочки — занятие неблагодарное, хотя и интересное. Заводская пайка конечно же надёжней. Гораздо проще пристроить какую-нибудь готовую светодиодную лампочку. Но самоделки работают намного надёжнее. А если руки чешутся – вообще никто не остановит!
Ещё хотел бы предостеречь.
Схема не имеет гальванической развязки с электрической сетью.
В целях безопасности корпус светильника должен быть обязательно заземлён, а все эксперименты должны проводиться с особым вниманием и осторожностью.
Как правильно распорядиться сведениями из моего обзора, каждый решает сам в меру своей испорченности :). Я же при написании своего обзора руководствовался только благими намерениями.
Надеюсь, что хоть кому-то помог. Кому что-то неясно по поводу этой самоделки, задавайте вопросы. С остальным – кидайте в личку, обязательно отвечу.
На этом ВСЁ!
Удачи!

Отзыв о драйвере для LED лампы на микросхеме BP3125

У меня дома уже почти 5 лет трудятся светодиодные лампочки Оптоган, в том числе модели Оптолюкс 12 Вт. Однако уже 2 лампа стала неисправной – замигала как стробоскоп. Так как Оптоган прекратил их производство, было решено восстанавливать лампу с помощью китайского светодиодного драйвера. Для тех, кого это заинтересовало – прошу под кат.

Доказательство покупки:

Для кого это покупалось:

Разбираем нашу лампу, и видим, что светодиодная сборка питается напряжением 26-32 Вольт, силой тока 0,4 А.

Сама сборка состоит из 12 1-ваттных светодиодов производства самой Оптоган (судя по всему, модели OLP-5065F6A-09A). Кому интересно – вот даташит на светодиод.

К слову, о них даже была статья в одном журнале.

Исходя из этих данных и заказываем драйвер, с максимально похожими параметрами.

Размеры драйвера – 42*18*17 мм., входное напряжение – 85 – 265 Вольт, выходное напряжение – 24 – 42 Вольт, сила тока – 300 мА. Рассчитан на мощность сборки 8 – 12 Ватт.

Картинка со страницы товара:

И пара моих фото:

Я не удержался, и до того, как сделал фото, протестировал драйвер и отпаял 2 силиконовых провода на входе. Сама плата собрана аккуратно, флюс отмыт (там где есть следы флюса – паял я).

Производитель драйвера – Dark energy :), версия – 1. 5. построен он на микросхеме BP3125 производства китайской Bright Power Semiconductor (даташит).



Там же приведена типовая схема включения, по которой и собран драйвер. На входе стоит диодный мост и конденсатор на 400 В. 10 мКф, на выходе – кондер на 50 В. и 47 мКф.

К сожалению, я вспомнил о том, что нужно бы померить выходной ток, когда уже все собрал.

Приступим к финишной разборке лампы. Отверткой выковыриваем весь герметик, и вынимаем неисправный драйвер. К сожалению, тут аккуратность не спасает – все равно я снес 2 дросселя. Драйвер оптогана построен на микросхеме LNK403 производства Power Integrators (даташит).


Плату со светодиодами крепим к радиатору на термоклей, берем термоусадку диаметром 18 (лучше возьмите побольше) и обдуваем термофеном. В пластиковом цоколе удаляем остатки клея с помощью дремеля и насадок-наждачек. Клеим супер клеем.


Проверяем – все работает.



Приклеиваем плафон из поликарбоната с помощью клея B-7000, и вкручиваем в люстру.

Недостаток у этого драйвера по сравнению с родным – он включается чуть медленнее, буквально на долю секунды.

К сожалению, люксметра нет, так что проверить яркость не представляется возможным. Невооруженным глазом сильных отличий не замечено. То же касается пульсаций, которые на глаз незаметны.

После ремонта лампа работает уже 2 месяца, за это время проблем с ней не возникло.

В качестве бонуса – начинка лампы Оптоган оптолюкс на 5 Ватт, которая построена на микросхеме lnk457 (даташит).

Начинка Оптолюкс 5 Вт.

Что такое светодиодный драйвер? Как проверить и заменить драйвер светодиода?

ЧТО ТАКОЕ ДРАЙВЕР ДЛЯ СВЕТОДИОДОВ?

Это будущее уже сейчас, и светодиодные фонари взяли верх. Распространенный вопрос, который мы получаем, касается светодиодов и связан с драйвером.

Что это такое?

Зачем они вам?

Как они работают?

Как проверить драйвер светодиода? (перейти в конец этой страницы)

Ваш светодиод сам по себе может быть лучшим, но он не останется таким, если у вас нет хорошего драйвера для светодиодов. Подробнее об общих светодиодах см. в разделе «Как работают светодиоды».

В светодиодном фонаре водитель делает всю тяжелую работу. Будь то светодиодная лампочка кукурузы или светодиодный светильник, у него внутри есть драйвер. Этот драйвер получает ввод от здания в виде переменного или переменного тока и преобразует его в постоянный или постоянный ток. В вашем доме это означает от 120 В переменного тока до 36 В постоянного тока или 48 В постоянного тока. Он работает как гигантский трансформатор. Для этого постоянно требуется очень качественный конечный продукт. Большинство проблем, которые мы наблюдаем при сбоях светодиодов, связаны с драйвером.

Что такое драйвер светодиодов?=»q»>

A: Драйвер светодиода — это регулятор мощности. Технически это схема, которая отвечает за регулирование и подачу идеального тока на светодиод. Драйвер светодиода обеспечивает питание и регулирует переменные потребности светодиодов, обеспечивая постоянное количество энергии, поскольку его свойства меняются в зависимости от температуры. Драйверы светодиодов преобразуют переменный ток высокого напряжения в низкое напряжение.

Если у вас есть хороший светодиод и плохо работающий светодиодный драйвер, ваши светодиодные фонари для высоких пролетов не будут работать долго. Большинство отказов светодиодов происходит не из-за светодиода, а из-за драйвера. Обычно схемы перегорают и выходят из строя.

Драйверы светодиодов обычно должны подавать меньше энергии на светодиоды из-за их эффективного характера, но они также должны быть более точными. Светодиодное освещение спроектировано с высокой точностью и требует соответствующего напряжения для эффективной работы. Современная технология, используемая в драйвере светодиодов, основана на печатной плате и больше похожа на компьютер, чем на электрический регулятор.

 

Что такое балласт для светодиодов?=»q»>

A: Технически этого не существует. HID и другие лампы использовали балласт для увеличения мощности ламп. В светодиодах используется драйвер, который преобразует мощность переменного тока здания в постоянный. Для работы светодиодов требуется постоянный постоянный ток.

  

Балласты и драйверы светодиодов

Балласты и драйверы являются регуляторами мощности для освещения, но они работают по-разному. Оба обеспечивают небольшой буфер между источником света и источником тока, что делает его менее уязвимым к перегрузке электричеством, регулируя напряжение между ними. Хотя оба компонента служат одной и той же цели, между ними есть разница. Балласты являются традиционным компонентом, используемым в металлогалогенных лампах и компактных люминесцентных лампах (CFL), и обычно должны регулировать гораздо большую мощность. Они также использовали старые технологии, такие как магниты, для достижения результатов, хотя более новыми были электронные балласты.

Увидеть водителя внутри светодиодного парковочного фонаря NextGen III

Светодиодный фонарь для парковки NextGen III — распаковка, характеристики и обзор — лучший продаваемый светильник для парковки становится лучше Серия NextGen уже является самой популярной и самой продаваемой лампой для парковки, но теперь она. ..

Драйверы для светодиодов с регулируемой яркостью

Другая важная отличительная черта заключается в том, что драйверы для светодиодов могут включать опцию затемнения светодиодов. Диммируемые драйверы могут быть выполнены различными способами. Для небольших бытовых ламп количество тока, протекающего через светодиодное устройство, определяет светоотдачу. Уровень их яркости регулируется простым управлением током, проходящим через уложенные друг на друга слои полупроводникового материала, закрепленные на подложке. Для светодиодных светильников с более высокой мощностью, таких как светодиодные светильники High Bay, для управления светом используется 0-10 вольт или PMW. В любом случае хороший светодиодный драйвер гарантирует, что светодиод защищен.

 

Электропроводка

Электромонтаж любой цепи очень важен, когда речь идет о производительности, безопасности и экономии электроэнергии. В больших светильниках, таких как светодиодные уличные фонари, напряжение 110 В или 220 В подается прямо на драйвер светодиода с использованием стандартного трехпроводного соединения. Затем светодиод регулирует это в соответствии с правильным напряжением каждого OED. Проводка драйвера светодиода позволяет сэкономить до 70% электроэнергии по сравнению с традиционной люминесцентной лампой. Проводка драйвера делает его более безопасным и дает наилучшие результаты даже при экстремальных температурах.

Как заменить драйвер светодиода?=»q»>

A: Сначала необходимо убедиться, что драйвер исправен, то есть его можно заменить. Если это лампочка, то шансы на то, что она исправна, равны нулю. Они жестко впаяны в лампочку. Для крупных светильников есть приличный шанс. Вам нужно получить доступ к компоненту драйвера и собрать некоторые важные характеристики. Также неплохо проверить ввод и вывод драйвера, чтобы убедиться, что это всего лишь драйвер. Сначала попробуйте модель драйвера и посмотрите, сможете ли вы ее найти. Если нет, вам понадобится эквивалент. Какая номинальная входная мощность? Номинальное напряжение? Каков результат? Постоянный ток или постоянное напряжение? Есть ли диммирование 0-10В на плате. Затем вам нужно будет найти драйвер аналогичного размера, который соответствует входной мощности, напряжению, выходному току и т. д. Если вы найдете совпадение, все готово для их замены. Хорошей новостью является то, что обычно заменить их проще, чем найти их.

Просмотр светодиодного драйвера внутри светильника

Посмотрите это видео, чтобы увидеть, как мы открываем светодиодный светильник и проверяем драйверы в нем. Это пример исправного приспособления, в котором драйверы можно заменить.

Светодиодный фонарь для парковки NextGen III — распаковка, характеристики и обзор — лучший продаваемый светильник для парковки становится лучше

Светодиодный фонарь для парковки NextGen III — распаковка, характеристики и обзор — лучший продаваемый светильник для парковки становится лучше Серия NextGen уже является самой популярной и самой продаваемой лампой для парковки, но теперь она…

Светодиоды без драйверов

Электродвигатели переменного тока без драйверов для светодиодов превратились в важное новое оружие в сфере освещения. Прочтите нашу статью о светодиодах без драйверов, чтобы узнать, почему они становятся все более распространенными, но при этом более рискованными и подверженными сбоям.

 

Резюме

Драйверы светодиодов имеют решающее значение для работы вашего светильника. LEDLightExpert.com использует только высококачественные светодиодные драйверы таких торговых марок, как Meanwell или Invetronics. Вот как мы можем предоставить 5-летнюю гарантию на все светодиодные светильники с высоким световым потоком, потому что мы знаем, что у вас не возникнет проблем.

Как вы тестируете драйвер светодиода?=»q»>

A: Светодиоды требуют постоянного тока и поэтому питаются от постоянного тока. Мощность здания переменного тока. Убедитесь, что входное напряжение на стороне входа соответствует мощности здания. На стороне вывода убедитесь, что o=output соответствует драйверу dc. Обычно это 24dc, 36dc, 48dc или 54dc. Убедитесь, что диммирование и другие провода отключены. Подробнее читайте в нашей полной статье

Как протестировать драйвер светодиодов

Около 10 минут

При диагностике светодиодного светильника первым шагом должно быть питание. Подается ли питание на светодиодный драйвер. Мы объясняем, как тестировать

https://www.ledlightexpert.com/What-is-an-LED-Driver_ep_44-1.html

Необходимые элементы:

Светодиодный светильник, который имеет исправный драйвер

Гайки для проводов

Инструмент для зачистки проводов

Отвертка

Мультиметр

Подготовка

Безопасность прежде всего. Убедитесь, что у вас есть безопасный подъемник или лестница для крепления. Для более высоких установок следует использовать страховочные ремни и зажимы. На выключателе определяют напряжение выключателя. Вам нужно будет знать это для тестирования позже. дважды проверьте, что вы в безопасности, прежде чем продолжить.

Найдите отсек водителя и монтаж проводки

Найдите отсек водителя на приспособлении. Некоторые приборы могут иметь герметичный драйвер или использовать встроенный драйвер (DOB). Эти приспособления не подлежат обслуживанию, и все приспособление необходимо будет заменить. Мы рекомендуем исправные приспособления, когда это возможно, чтобы обеспечить техническое обслуживание. После того, как вы нашли отсек, вам нужно будет найти входные и выходные провода. Многие светильники также имеют диммирование 0-10 В и будут иметь 2 дополнительных провода. Их необходимо проверить, чтобы убедиться, что они не соприкасаются, чтобы завершить тест. Если установлен диммер или провода соприкасаются, это даст вам ложное считывание плохого драйвера.

Проверка входной стороны

Входная сторона драйвера может быть от 100 до 480 В переменного тока в зависимости от здания. Начиная с шага 1, вы будете знать напряжение и сможете соответствующим образом настроить свой измеритель. В большинстве приспособлений используются быстрые зажимы, но некоторые из них представляют собой проволочные гайки.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *