Расчет сопротивления теплого пола: Тепловой и гидравлический расчет теплого пола.
Тепловой и гидравлический расчет теплого пола.
При указании площади учитывать необходимые отступы от стен.
Единицы измерения — квадратные метры.
Площадь теплого пола м2
Назначение рассчитываемого помещения Назначение помещения Постоянное пребывание людейПостоянное пребывание людей (Влажное помещение)Временное пребывание людейВременное пребывание людей (Влажное помещение)Детское учреждение
Необходимая температура воздуха в рассчитываемом помещении.
Единицы измерения — градусы цельсия.
Требуемая t°С воздуха в помещении
°С
Температура воздуха в нижерасположенном помещении.
Если помещение отсутствует, указывать 0.
Единицы измерения — градусы цельсия.
t°С воздуха в нижнем помещении
°С
Шаг укладки трубы ТП.
Единицы измерения — сантиметры.
Шаг трубы
1015202530см
Температура теплоносителя на выходе из котла в систему ТП.
Единицы измерения — градусы цельсия.
Температура теплоносителя на входе°С
Температура теплоносителя на входе в котел из системы ТП. В среднем ниже на 5-10°С температуры теплоносителя на входе в систему ТП.
Единицы измерения — градусы цельсия.
Температура теплоносителя на выходе°С
Единицы измерения — метры. Длина подводящей магистрали ⇄ метров
Примерное кол-во тепла, необходимое для обогрева помещения.
Единицы измерения — Ватт.
Теплопотери помещения Вт
Слои НАД трубами:
↑ НетБетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплители мм
↑ НетБетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплителиКовролин (0.07 λ Вт/м К)Линолеум многослойный ρ1600 (0.33 λ Вт/м К)Линолеум многослойный ρ1800 (0.38 λ Вт/м К)Линолеум на тканевой основе ρ1400 (0.23 λ Вт/м К)Линолеум на тканевой основе ρ1600 (0.29 λ Вт/м К)Линолеум на тканевой основе ρ1800 (0.35 λ Вт/м К)Паркет (0.2 λ Вт/м К)Ламинат (0.3 λ Вт/м К)Плитка ПВХ (0.38 λ Вт/м К)Плитка керамическая (1 λ Вт/м К)Пробка (0.047 λ Вт/м К) мм
↥ БетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплителиРаствор гипсоперлитовый ρ600 (0. 23 λ Вт/м К)Раствор гипсоперлитовый поризованный ρ400 (0.15 λ Вт/м К)Раствор гипсоперлитовый поризованный ρ500 (0.19 λ Вт/м К)Раствор известково-песчаный ρ1600 (0.81 λ Вт/м К)Раствор сложный (цемент+песок+известь) ρ1700 (0.87 λ Вт/м К)Раствор цементно-перлитовый ρ1000 (0.3 λ Вт/м К)Раствор цементно-перлитовый ρ800 (0.26 λ Вт/м К)Раствор цементно-песчаный ρ1800 (0.93 λ Вт/м К)Раствор цементно-шлаковый ρ1200 (0.58 λ Вт/м К)Раствор цементно-шлаковый ρ1400 (0.64 λ Вт/м К) мм
Слои ПОД трубами (начиная от трубы):
↧ НетБетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплители мм
↓ НетБетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплителиАрмопенобетон (0.13 λ Вт/м К)Асбест (0.08 λ Вт/м К)Асбозурит ρ600 (0.15 λ Вт/м К)Битумокерамзит (0. 13 λ Вт/м К)Битумоперлит ρ400 (0.13 λ Вт/м К)Изделия перлитофосфогелиевые ρ200 (0.09 λ Вт/м К)Изделия перлитофосфогелиевые ρ300 (0.12 λ Вт/м К)Каучук вспененный Аэрофлекс ρ80 (0.054 λ Вт/м К)Каучук вспененный Кайманфлекс ST ρ80 (0.039 λ Вт/м К)Каучук вспененный Кайманфлекс ЕС ρ80 (0.039 λ Вт/м К)Каучук вспененный Кайманфлекс ЕСО ρ95 (0.041 λ Вт/м К)Куцчук вспененный Армафлекс ρ80 (0.04 λ Вт/м К)Маты алюминиево-кремниевые волокнистые Сибрал ρ300 (0.085 λ Вт/м К)Маты из супертонкого стекловолокна ρ20 (0.036 λ Вт/м К)Маты минераловатные Парок (0.042 λ Вт/м К)Маты минераловатные Роквул ρ35 (0.048 λ Вт/м К)Маты минераловатные Роквул ρ50 (0.047 λ Вт/м К)Маты минераловатные Флайдер ρ11 (0.055 λ Вт/м К)Маты минераловатные Флайдер ρ15 (0.053 λ Вт/м К)Маты минераловатные Флайдер ρ17 (0.053 λ Вт/м К)Маты минераловатные Флайдер ρ25 (0.05 λ Вт/м К)Маты стекловолоконные ρ150 (0.07 λ Вт/м К)Маты стекловолоконные ρ50 (0.064 λ Вт/м К)Опилки древесные (0.08 λ Вт/м К)Пакля ρ150 (0.07 λ Вт/м К)Пенопласт ППУ ρ80 (0.
↓ НетБетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплителиАсфальтобетон ρ2100 (1.05 λ Вт/м К)Бетон тяжелый ρ2400 (1.51 λ Вт/м К)Железобетон ρ2500 (1.69 λ Вт/м К)Плиты железобетонные пустотные при потоке сверху-вниз (1.11 λ Вт/м К)Плиты железобетонные пустотные при потоке снизу-вверх (1.27 λ Вт/м К)Силикатный бетон ρ1800 (1.16 λ Вт/м К) мм
Расчет водяного теплого пола, онлайн калькулятор теплопотери
Исходные данные
Длина помещения | м | Шаг укладки трубы | см | ||
Ширина помещения | м | Длина подводящей магистрали (суммарная) | м | ||
Желаемая температура воздуха | °С | Утеплитель | Экструдированный пенополистиролПенополистирол (пенопласт)Минеральная вата | ||
Температура подачи | °С | Толщина утеплителя | см | ||
Температура обратки | °С | Толщина стяжки над трубой | см | ||
Температура в нижнем помещении | °С | Финишное покрытие | ЛинолеумЛаминатПаркетКовролинКафельная плитка | ||
Труба | PEX-AL-PEX 20×2 (Металлопластик)PEX-AL-PEX 20×2,25 (Металлопластик)PEX 14×2 (Сшитый полиэтилен)PEX 16×2 (Сшитый полиэтилен)PEX 16×2,2 (Сшитый полиэтилен)PEX 17×2,0 (Сшитый полиэтилен)PEX 18×2 (Сшитый полиэтилен)PEX 18×2,5 (Сшитый полиэтилен)PEX 20×2 (Сшитый полиэтилен) |
Воздух040Подача080Обратка080
Результаты расчета
Площадь помещения | м2 |
Материалы
Длина демпферной ленты | м | |
Длина трубы | м | |
Объем раствора стяжки | м3 | |
Цемент | кг | |
Песок | кг | |
Пластификатор | л | |
Фибра | кг |
Температура поверхности пола
040 | 040 | 040 |
Максимальная температура поверхности пола | Минимальная температура поверхности пола | Средняя температура поверхности пола |
°С | °С | °С |
Тепловой поток
Тепловой поток вверх | Вт | |
Тепловой поток вниз (теплопотери) | Вт | |
Суммарный тепловой поток | Вт | |
Удельный тепловой поток вверх | Вт/м2 | |
Удельный тепловой поток вниз (удельные теплопотери) | Вт/м2 | |
Суммарный удельный тепловой поток | Вт/м2 |
Теплоноситель
Расход теплоносителя | кг/с | |
Скорость теплоносителя | м/с | |
Перепад давления | бар |
Желаемая температура воздуха
Это комфортная для жильцов температура в помещении. Желаемая температура — очень индивидуальный параметр, ведь кому-то нравится высокая температура в помещении, а кому-то прохлада.
Европейские нормы указывают, что в спальне, кабинете, гостиной, столовой и кухне оптимальной является температура 20-24°С; в туалете, кладовой, гардеробной — 17-23°С; в ванной — 24-25°С.
Усредненно можно задать 20°С.
Вверх
Температура подачи / температура обратки
Температура подачи — температура теплоносителя в подающем коллекторе. Т.е. на входе в контур теплого пола.
Температура обратки — температура теплоносителя в обратном коллекторе (на выходе из контура).
Для того, чтобы теплый пол отапливал помещение, он должен отдавать тепло, т.е. температура подачи должна быть выше температуры обратки. Оптимально, если разница температуры подачи и обратки составляет 10°С (например, подача — 45°С, обратка — 35°С).
Для обогрева помещения температура подачи должна быть выше желаемой температуры в помещении.
Вверх
Температура в нижнем помещении
Эта температура необходима для учета тепла, идущего вниз, т.е. теплопотерь.
Если теплый пол располагается над помещением (нижний этаж, подвал), то используется температура, поддерживаемая в нем. Если пол располагается над грунтом или на грунте, то для расчета используется температура воздуха для самой холодной пятидневки года. Этот показатель автоматически подставляется для выбранного города.
Вверх
Шаг укладки труб теплого пола
Это расстояние между трубами, залитыми в стяжку пола. От шага укладки зависит теплоотдача теплых полов — чем меньше шаг, тем больше удельная теплоотдача, и наоборот.
Оптимальный шаг укладки труб теплого пола лежит в пределах 10-30 см. При меньшем шаге возможна отдача тепла из подачи в обратку. При большем — неравномерный прогрев пола, когда на поверхности пола над трубой ощущается тепло, а между трубами — холод.
Вверх
Длина подводящей магистрали теплого пола
Это сумма длин труб от подающего коллектора до начала контура теплого пола и от конца контура до обратного коллектора.
При размещении коллектора теплого пола в том же помещении, где и теплые полы, влияние подводящей магистрали незначительно. Если же они находятся в разных помещениях, то длина подводящей магистрали может быть большой и ее гидравлическое сопротивление может составлять половину сопротивления всего контура.
Вверх
Толщина стяжки над трубами теплого пола
Назначение стяжки над трубами теплых полов — воспринимать нагрузку от людей и предметов в отапливаемом помещении и равномерно распределять тепло от труб по поверхности пола.
Минимально допустимая толщина стяжки над трубой составляет 30 мм при наличии армирования. При меньшей толщине стяжка будет обладать недостаточной прочностью. Также, малая толщина стяжки не обеспечивает равномерный нагрев поверхности пола — возникают полосы горячего пола над трубой и холодного между трубами.
Заливать стяжку толще 100 мм не стоит, т.к. это увеличивает инерционность теплых полов, исключает возможность быстрого регулирования температуры пола. При большой толщине изменение температуры поверхности пола будет происходить спустя несколько часов, а то и суток.
Исходя из этих условий, оптимальная толщина стяжки теплого пола — 60-70 мм над трубой. Добавление в раствор фибры и пластификатора позволяет уменьшить толщину до 30-40 мм.
Вверх
Максимальная температура поверхности пола
Это температура поверхности пола непосредственно над трубой контура. По нормативным требованиям этот параметр не должен превышать 35°С.
Вверх
Минимальная температура поверхности пола
Это температура поверхности пола на равном расстоянии от труб (посередине).
Вверх
Средняя температура поверхности пола
Этот параметр является основным критерием расчета теплого пола в плане комфорта для жильцов. Он представляет собой среднее значение между максимальной и минимальной температурой пола.
По нормам в помещениях с постоянным нахождением людей (жилые комнаты, кабинеты и т. д.) средняя температура пола должна быть не выше 26°С. В помещениях с повышенной влажностью (ванные, бассейны) или с непостоянным нахождением людей температура пола может составлять до 31°С.
Температура пола в 26°С не обеспечивает ожидаемого комфорта для ступней. В частном доме, где никто не вправе владельцу указывать какой температурой обогревать жилье, можно настраивать среднюю температуру пола в 29°С. При этом ступни будут ощущать комфортное тепло. Поднимать температуру выше 31°С не стоит — это приводит к высушиваю воздуха.
Вверх
Тепловой поток вверх
Тепловой поток вверх — тепло, отдаваемое теплым полом на обогрев помещения.
Если водяной теплый пол является единственным источником тепла, то тепловой поток вверх должен немного превышать теплопотери помещения.
При использовании теплого пола в комбинации с радиаторами, он компенсирует лишь некоторую часть теплопотерь.
Вверх
Тепловой поток вниз
Это тепло, уходящее в перекрытие и нижнее помещение, т. е. тепловые потери. Тепловой поток вниз должен быть как можно меньше. Добиться этого можно увеличением толщины утеплителя.
Вверх
Суммарный тепловой поток
Мощность теплого пола, включающая полезное тепло (обогрев помещения) и теплопотери (тепловой поток вниз).
Вверх
Удельный тепловой поток вверх
Полезное тепло, идущее на обогрев помещения, выделяемое каждым квадратным метром теплого пола.
Вверх
Удельный тепловой поток вниз
Теплопотери каждого квадратного метра теплого пола.
Вверх
Суммарный удельный тепловой поток
Количество тепла, выделяемого каждым квадратным метром теплого пола, на обогрев помещения и на теплопотери вниз.
Вверх
Расход теплоносителя
Величина расхода необходима для правильной балансировки нескольких контуров теплых полов, подключенных к одному коллектору. Полученное значение нужно выставить на шкале расходомера.
Вверх
Скорость теплоносителя
От скорости движения теплоносителя по трубе теплого пола зависит акустический комфорт в отапливаемом помещении. Если скорость теплоносителя превышает 0,5 м/с, то возможно образование посторонних звуков от циркуляции теплоносителя. Снижения скорости теплоносителя можно добиться увеличением диаметра трубы или уменьшением ее длины.
Вверх
Перепад давления
По перепаду давления в контуре теплого пола (между подающим и обратным коллектором) подбирается циркуляционный насос. Напор насоса должен быть не меньше, чем перепад давления в самом нагруженном контуре. Если напор насоса ниже перепада давления в контуре, то следует выбрать более мощную модель или уменьшить длину контура.
Вверх
Ускоренный курс по закону Ома для обогрева полов
На уроке физики в старшей школе, пока вы мечтали или вырезали свои инициалы на парте, учитель, вероятно, объяснял тонкости закона Ома. Я тоже не обращал внимания. Я подумал про себя: «Мне никогда не понадобится это знать, не говоря уже о том, чтобы применять это к чему-либо!» Я был неправ. Как оказалось, закон Ома — это клей, который скрепляет электрический теплый пол.
Омметры могут использоваться для измерения сопротивленияЗакон Ома — один из самых важных и основных законов, регулирующих электрические цепи. Он демонстрирует взаимосвязь между напряжением, силой тока и сопротивлением цепи. Это обычно описывается следующей простой формулой:
I = V/R
I означает интенсивность или силу тока в амперах. V представляет собой напряжение, а R представляет собой сопротивление цепи. Эту формулу также можно выразить следующим образом:
V = I x R и R = I/V
Эта формула заложена в конструкции кабелей для обогрева пола – это математика, которая согревает ваш пол. Когда напряжение подается на резистивный кабель, оно создает силу тока. В более широком смысле, умножение напряжения на силу тока приведет к созданию мощности (тепла). Мощность — это представление энергии, выделяемой данной цепью.
TempZone Flex Roll с контролем и проверкой контураДавайте взглянем на математику, которая входит в состав Warmly Yours TempZone Flex Roll. Для наших целей я выбрал двухжильный TempZone Flex Roll на 120 В переменного тока с размерами 1,5 на 4 дюйма. Этот рулон покроет 6 квадратных футов площади пола и создаст 90 Вт. 90 ватт, разделенные на эти шесть футов, дадут нам 15 ватт на квадратный фут. Сопротивление этой схемы составляет 160 Ом, и потребляет около 0,75 ампер. Если мы подставим эти числа в формулу закона Ома, мы увидим, как эти числа соотносятся.
.75 = 120 разделить на 160 или указать, сила тока равна напряжению, деленному на сопротивление деленное на 0,75 или заявленное, сопротивление равно напряжению, деленному на силу тока.
Мощность в ваттах можно вычислить, взяв напряжение и умножив его на силу тока. В этом случае 120 В переменного тока, умноженные на 0,75 А, дадут 90 Вт.
Когда дело доходит до устранения неполадок в наших системах, мы рассмотрим схему с точки зрения закона Ома. Это связано с тем, что если какой-либо из компонентов будет изменен, остальная часть системы выйдет из строя (не самый технический термин). Мы начнем с омметра и снимем показания с цепи пола. Если мы получим открытое значение или «0», мы можем подставить это значение в уравнение. Мы видим, что ноль уменьшит все остальные значения до нуля, а это означает, что не будет ни ампер, ни вольт, а, следовательно, и мощности (тепла). Сопротивление очень важно.
Что произойдет, если мат укоротить? Нам часто задают этот вопрос. Мы никогда не можем рекомендовать этот образ действий, и вот математика, стоящая за ним. Когда вы укорачиваете цепь, вы изменяете или уменьшаете сопротивление, и это, конечно же, повлияет на другие значения в уравнении.
Давайте воспользуемся значениями 4-футового рулона TempZone и посмотрим, как они изменятся при укорочении рулона. Давайте представим, что установщик укоротил рулон на 20%, чтобы попытаться разместить его на меньшей площади. Значение сопротивления мата обычно составляет 160 Ом, и если убрать 20% сопротивления, мы получим значение сопротивления 128 Ом. Это повлияет на потребляемую силу тока и выходную мощность. Напряжение останется на уровне 120 В переменного тока, потому что это то, что доступно для схемы от сети дома. Давайте взглянем.
Если мы разделим напряжение (120) на сопротивление (128), новый потребляемый ток будет равен 0,94. если мы возьмем ампер (0,94) и умножим на 120 вольт, мы получим новую мощность этой цепи в 112,8 Вт. Короче говоря, снижение сопротивления приведет к увеличению мощности и силы тока. Кроме того, поскольку мы смотрим на 20% меньше квадратных метров (сейчас 4,8, по сравнению с 6) за счет укорочения мата, мощность на квадратный фут также изменится. Мощность на квадратный фут будет намного выше допустимой мощности в 15 Вт при 23,5 Вт на квадратный фут, что делает этот мат не соответствующим нормам. В дополнение к нарушению кода NEC провод теперь находится под нагрузкой из-за дополнительной мощности и силы тока и, вероятно, выйдет из строя. Мы не можем гарантировать мат, который был изменен таким образом.
Возьмем тот же коврик в исходном состоянии. Что произойдет с этим ковриком, если мы удвоим напряжение? Иногда это происходит, когда предполагается, что для подогрева пола требуется питание 240 В переменного тока. Если мы возьмем напряжение (сейчас 240) и разделим его на сопротивление (160 Ом), мы получим потребление тока 1,5. Умножив ампер на напряжение, получим 360 Вт. Коврик способен покрыть 6 квадратных футов, разделив 360 на эти 6 квадратных футов, вы получите 60 ватт на квадратный фут. Это в 4 раза больше, чем разрешено на квадратный фут мощности. Провод при таком повышенном напряжении долго не протянет.
Если у вас есть дополнительные вопросы о законе Ома или лучистом отоплении в целом, задайте их ниже в комментариях, и мы найдем для вас ответы.
Расскажите нам о своем проекте Наша команда Radiant Experts готова помочь! Просто расскажите нам немного о себе и своем проекте, чтобы начать.
Расчет систем теплого пола
Хотите сэкономить деньги, ограничив свои расходы? Отопление — самая дорогая статья ваших расходов? Если ваш ответ на эти вопросы положительный, Heatingx поможет вам в проектировании, производстве, применении и обслуживании для решения этой проблемы.
Высокие счета в конце месяца очень расстраивают, даже если вы сидите дома, дрожа от холода в зимние месяцы. Чтобы избавиться от этой проблемы, вы можете сэкономить топливо с помощью систем подогрева полов. Поскольку соты не используются в системах напольного отопления, ваши помещения будут расширяться, и у вас будет возможность безопасно обогревать очень просторные помещения. Системы напольного отопления, которые являются идеальным решением всех проблем с отоплением, в последние годы получили более широкое распространение по сравнению с классическими системами.
Как рассчитать теплый пол?
Целью систем напольного отопления является уменьшение разницы температур за счет увеличения площади поверхности и снижения потребления энергии. Эту систему отопления предпочитают не только в домах, но и в таких местах, как мечети, турецкие бани, крыши, бассейны и спортивные залы.
Прежде всего, рассчитываются тепловые потери места, где будет укладываться пол, и выбираются материалы, которые будут использоваться, чтобы получить температуру, которая может компенсировать эти потери. Одним из важных факторов при расчете является материал пола. Термическое сопротивление рассчитывается исходя из материала и толщины, используемых в части между укладываемой трубой и полом.
Средняя температура воды рассчитывается в зависимости от расположения труб. В системах отопления без такого размещения разница температур воды на входе и выходе выбирается в пределах 5-10 градусов. Если разность температур не выбрана на этих значениях, расход воды придется увеличить.