Расчет тепловой нагрузки здания: Расчет тепловой нагрузки на отопление здания, пример и формулы
Ничего не найдено • Энергоаудит
Энергосбережение на предприятии • Экономия электрической энергии • Скоращение потерь тепла и пара • Сжатый воздух • Двигатели • ЧРП • Котлы • Производство
Мероприятия по энергосбережению: • для Учреждений • для Предприятий • для МКД • Организационные • Типовые • Электроэнергия • Тепло • Вода • Топливо
Экономия электроэнергии на предприятии за счет Оптимизации: Договор • Ценовые категории • Тариф на передачу • Сокращение мощности • Сокращение потерь • Учет
В этой статье мы расскажем про передовые технологии энергосбережения. Технологии, которые снизят затраты, повысят комфорт, сократят потери
Пошаговая инструкция как заключить энергосервисный контракт: Условия • Особенности • Цена • Требования • Примеры • Оплата • Шаблоны • ФЗ №44 • ФЗ №261
На розничном рынке электроэнергии цена электроэнергии для юр лиц зависит от мощности, ценовой категории, уровня напряжения, графика работы, договора
Правильно выбранная ценовая категория электроэнергии = Ниже стоимость • Ценовые категории 1 – 6 • Как выбрать и сократить затраты на электроэнергию
Как формируется стоимость мощности электроэнергии • За какую мощность вы платите • Пример расчета • Как сократить потребление мощности • Виды мощности
Как рассчитать тарифы на электроэнергию для юридических лиц • 2020 • Активная электроэнергия • Мощность • Услуги по передаче • Сбытовая надбавка • Инструкция
Поставщик электроэнергии: Гарантирующий поставщик • Энергосбытовая организация (ЭСО) • Сетевая организация • Генерирующая компания
УЗНАТЬ: Как сделать отчет о тепловых испытаниях отопительных систем с определением теплозащитных свойств ограждающих конструкций для Ростехнадзора
Смотрите – как определить фактические тепловые потери в тепловых сетях • Определить необходимость модернизации тепловой сети, трубопроводов и теплоизоляции
Как обследование отопления здания помогло разобраться почему в здании холодно • Обследование здания склада DHL • Расчет тепловых потерь • Решение
Посмотреть: Тепловизионный контроль электрощитовых в гостинице • Дефекты • Результаты тепловизионного обследования электрощитовых • Отчет • Рекомендации
Пример: Как провести Обследование Котельной перед Модернизацией Котлов и Тепловых Сетей. Как повысить Эффективность Котла и Тепловой Сети
ТЕПЛОВИЗИОННЫЙ КОНТРОЛЬ ОТОПЛЕНИЯ • Снимки и термограммы радиаторов с засорами и дефектами • Заключение по комплексному обследованию системы отопления
Обследование наружного освещения для ГИБДД • Система наружного освещения закрытой площадки для обучения соответствует: ГОСТ Р 55706- 2013 Освещение наружное
Тепловизионный контроль ограждающих конструкций загородного дома: Основной Дом • Гараж • Баня • Заключение • Термограммы • Перечень выявленных потерь
Оценка системы освещения школы • Оценка уровня освещенности классов • Заключение о соответствии системы освещения современным требованиям • Рекомендации
Тепловизионный контроль • Электрооборудования • Зданий • Методы • Требования • Проведение обследования • Ограждающие конструкции • Определить дефекты
Расчет тепловой нагрузки на вентиляцию магазина Билла в г. Москва • Тепловые нагрузки на вентиляцию, отопление и ГВС • Согласование договора в МОЭК
Как уменьшить затраты на оплату коммунальных услуг • Ключ к энергосбережению – приборы учета • Экономия энергоресурсов • Счетчики
Заключение о техническом состоянии системы освещения • Проверка на соответствие современным требованиям по освещенности • Рекомендации по модернизации
Отчет по тепловизионному обследованию зданий Министерства Здравохранения России. В ходе обследования были выявлены дефекты стен, цоколя, теплоизоляции
Ничего не найдено • Энергоаудит
Энергосбережение на предприятии • Экономия электрической энергии • Скоращение потерь тепла и пара • Сжатый воздух • Двигатели • ЧРП • Котлы • Производство
Мероприятия по энергосбережению: • для Учреждений • для Предприятий • для МКД • Организационные • Типовые • Электроэнергия • Тепло • Вода • Топливо
Экономия электроэнергии на предприятии за счет Оптимизации: Договор • Ценовые категории • Тариф на передачу • Сокращение мощности • Сокращение потерь • Учет
В этой статье мы расскажем про передовые технологии энергосбережения. Технологии, которые снизят затраты, повысят комфорт, сократят потери
Пошаговая инструкция как заключить энергосервисный контракт: Условия • Особенности • Цена • Требования • Примеры • Оплата • Шаблоны • ФЗ №44 • ФЗ №261
На розничном рынке электроэнергии цена электроэнергии для юр лиц зависит от мощности, ценовой категории, уровня напряжения, графика работы, договора
Правильно выбранная ценовая категория электроэнергии = Ниже стоимость • Ценовые категории 1 – 6 • Как выбрать и сократить затраты на электроэнергию
Как формируется стоимость мощности электроэнергии • За какую мощность вы платите • Пример расчета • Как сократить потребление мощности • Виды мощности
Как рассчитать тарифы на электроэнергию для юридических лиц • 2020 • Активная электроэнергия • Мощность • Услуги по передаче • Сбытовая надбавка • Инструкция
Поставщик электроэнергии: Гарантирующий поставщик • Энергосбытовая организация (ЭСО) • Сетевая организация • Генерирующая компания
УЗНАТЬ: Как сделать отчет о тепловых испытаниях отопительных систем с определением теплозащитных свойств ограждающих конструкций для Ростехнадзора
Смотрите – как определить фактические тепловые потери в тепловых сетях • Определить необходимость модернизации тепловой сети, трубопроводов и теплоизоляции
Как обследование отопления здания помогло разобраться почему в здании холодно • Обследование здания склада DHL • Расчет тепловых потерь • Решение
Посмотреть: Тепловизионный контроль электрощитовых в гостинице • Дефекты • Результаты тепловизионного обследования электрощитовых • Отчет • Рекомендации
Пример: Как провести Обследование Котельной перед Модернизацией Котлов и Тепловых Сетей. Как повысить Эффективность Котла и Тепловой Сети
ТЕПЛОВИЗИОННЫЙ КОНТРОЛЬ ОТОПЛЕНИЯ • Снимки и термограммы радиаторов с засорами и дефектами • Заключение по комплексному обследованию системы отопления
Обследование наружного освещения для ГИБДД • Система наружного освещения закрытой площадки для обучения соответствует: ГОСТ Р 55706- 2013 Освещение наружное
Тепловизионный контроль ограждающих конструкций загородного дома: Основной Дом • Гараж • Баня • Заключение • Термограммы • Перечень выявленных потерь
Как повысить энергоэффективность предприятия: Определяем энергозатратные процессы • Устанавливаем причины • Подбираем мероприятия • Внедряем • Контролируем
Оценка системы освещения школы • Оценка уровня освещенности классов • Заключение о соответствии системы освещения современным требованиям • Рекомендации
Тепловизионный контроль • Электрооборудования • Зданий • Методы • Требования • Проведение обследования • Ограждающие конструкции • Определить дефекты
Расчет тепловой нагрузки на вентиляцию магазина Билла в г.
Москва • Тепловые нагрузки на вентиляцию, отопление и ГВС • Согласование договора в МОЭККак уменьшить затраты на оплату коммунальных услуг • Ключ к энергосбережению – приборы учета • Экономия энергоресурсов • Счетчики
Заключение о техническом состоянии системы освещения • Проверка на соответствие современным требованиям по освещенности • Рекомендации по модернизации
Отчет по тепловизионному обследованию зданий Министерства Здравохранения России. В ходе обследования были выявлены дефекты стен, цоколя, теплоизоляции
Ничего не найдено • Энергоаудит
Энергосбережение на предприятии • Экономия электрической энергии • Скоращение потерь тепла и пара • Сжатый воздух • Двигатели • ЧРП • Котлы • Производство
Мероприятия по энергосбережению: • для Учреждений • для Предприятий • для МКД • Организационные • Типовые • Электроэнергия • Тепло • Вода • Топливо
Экономия электроэнергии на предприятии за счет Оптимизации: Договор • Ценовые категории • Тариф на передачу • Сокращение мощности • Сокращение потерь • Учет
В этой статье мы расскажем про передовые технологии энергосбережения. Технологии, которые снизят затраты, повысят комфорт, сократят потери
Пошаговая инструкция как заключить энергосервисный контракт: Условия • Особенности • Цена • Требования • Примеры • Оплата • Шаблоны • ФЗ №44 • ФЗ №261
На розничном рынке электроэнергии цена электроэнергии для юр лиц зависит от мощности, ценовой категории, уровня напряжения, графика работы, договора
Правильно выбранная ценовая категория электроэнергии = Ниже стоимость • Ценовые категории 1 – 6 • Как выбрать и сократить затраты на электроэнергию
Как формируется стоимость мощности электроэнергии • За какую мощность вы платите • Пример расчета • Как сократить потребление мощности • Виды мощности
Как рассчитать тарифы на электроэнергию для юридических лиц • 2020 • Активная электроэнергия • Мощность • Услуги по передаче • Сбытовая надбавка • ИнструкцияПоставщик электроэнергии: Гарантирующий поставщик • Энергосбытовая организация (ЭСО) • Сетевая организация • Генерирующая компания
УЗНАТЬ: Как сделать отчет о тепловых испытаниях отопительных систем с определением теплозащитных свойств ограждающих конструкций для Ростехнадзора
Смотрите – как определить фактические тепловые потери в тепловых сетях • Определить необходимость модернизации тепловой сети, трубопроводов и теплоизоляции
Как обследование отопления здания помогло разобраться почему в здании холодно • Обследование здания склада DHL • Расчет тепловых потерь • Решение
Посмотреть: Тепловизионный контроль электрощитовых в гостинице • Дефекты • Результаты тепловизионного обследования электрощитовых • Отчет • Рекомендации
Пример: Как провести Обследование Котельной перед Модернизацией Котлов и Тепловых Сетей.
ТЕПЛОВИЗИОННЫЙ КОНТРОЛЬ ОТОПЛЕНИЯ • Снимки и термограммы радиаторов с засорами и дефектами • Заключение по комплексному обследованию системы отопления
Обследование наружного освещения для ГИБДД • Система наружного освещения закрытой площадки для обучения соответствует: ГОСТ Р 55706- 2013 Освещение наружное
Тепловизионный контроль ограждающих конструкций загородного дома: Основной Дом • Гараж • Баня • Заключение • Термограммы • Перечень выявленных потерь
Как повысить энергоэффективность предприятия: Определяем энергозатратные процессы • Устанавливаем причины • Подбираем мероприятия • Внедряем • Контролируем
Оценка системы освещения школы • Оценка уровня освещенности классов • Заключение о соответствии системы освещения современным требованиям • Рекомендации
Тепловизионный контроль • Электрооборудования • Зданий • Методы • Требования • Проведение обследования • Ограждающие конструкции • Определить дефекты
Расчет тепловой нагрузки на вентиляцию магазина Билла в г. Москва • Тепловые нагрузки на вентиляцию, отопление и ГВС • Согласование договора в МОЭК
Как уменьшить затраты на оплату коммунальных услуг • Ключ к энергосбережению – приборы учета • Экономия энергоресурсов • Счетчики
Заключение о техническом состоянии системы освещения • Проверка на соответствие современным требованиям по освещенности • Рекомендации по модернизации
Отчет по тепловизионному обследованию зданий Министерства Здравохранения России. В ходе обследования были выявлены дефекты стен, цоколя, теплоизоляции
расчет часовых и годовых показателей
На чтение 8 мин. Просмотров 1k. Опубликовано Обновлено
Как оптимизировать затраты на отопление? Эта задача решается только комплексным подходом, учитывающим все параметры системы, здания и климатические особенности региона. При этом важнейшей составляющей является тепловая нагрузка на отопление: расчет часовых и годовых показателей входят в систему вычислений КПД системы.
Зачем нужно знать этот параметр
Распределение тепловых потерь в домеЧто же представляет собой расчет тепловой нагрузки на отопление? Он определяет оптимальное количество тепловой энергии для каждого помещения и здания в целом. Переменными величинами являются мощность отопительного оборудования – котла, радиаторов и трубопроводов. Также учитываются тепловые потери дома.
В идеале тепловая мощность отопительной системы должна компенсировать все тепловые потери и при этом поддерживать комфортный уровень температуры. Поэтому прежде чем выполнить расчет годовой нагрузки на отопление, нужно определиться с основными факторами, влияющими на нее:
- Характеристика конструктивных элементов дома. Наружные стены, окна, двери, вентиляционная система сказываются на уровне тепловых потерь;
- Размеры дома. Логично предположить, что чем больше помещение – тем интенсивнее должна работать система отопления. Немаловажным фактором при этом является не только общий объем каждой комнаты, но и площадь наружных стен и оконных конструкций;
- Климат в регионе. При относительно небольших снижениях температуры на улице нужно малое количество энергии для компенсации тепловых потерь. Т.е. максимальная часовая нагрузка на отопление напрямую зависит от степени снижения температуры в определенный период времени и среднегодовое значение для отопительного сезона.
Учитывая эти факторы составляется оптимальный тепловой режим работы системы отопления. Резюмируя все вышесказанное можно сказать, что определение тепловой нагрузки на отопление необходимо для уменьшения расхода энергоносителя и соблюдения оптимального уровня нагрева в помещениях дома.
Для расчета оптимальной нагрузки на отопление по укрупненным показателям нужно знать точный объем здания. Важно помнить, что эта методика разрабатывалась для больших сооружений, поэтому погрешность вычислений будет велика.
Выбор методики расчета
Санитарно-эпидемиологические требования для жилых домовПеред тем, как выполнить расчет нагрузки на отопление по укрупненным показателям или с более высокой точностью необходимо узнать рекомендуемые температурные режимы для жилого здания.
Во время расчета характеристик отопления нужно руководствоваться нормами СанПиН 2.1.2.2645-10. Исходя из данных таблицы, в каждой комнате дома необходимо обеспечить оптимальный температурный режим работы отопления.
Методики, по которым осуществляется расчет часовой нагрузки на отопление, могут иметь различную степень точности. В некоторых случаях рекомендуется использовать достаточно сложные вычисления, в результате чего погрешность будет минимальна. Если же оптимизация затрат на энергоносители не является приоритетной задачей при проектировании отопления – можно применять менее точные схемы.
Во время расчета почасовой нагрузки на отопление нужно учитывать суточную смену уличной температуры. Для улучшения точности вычисления нужно знать технические характеристики здания.
Простые способы вычисления тепловой нагрузки
Любой расчет тепловой нагрузки нужен для оптимизации параметров системы отопления или улучшения теплоизоляционных характеристик дома. После его выполнения выбираются определенные способы регулирования тепловой нагрузки отопления. Рассмотрим нетрудоемкие методики вычисления этого параметра системы отопления.
Зависимость мощности отопления от площади
Таблица поправочных коэффициентов для различных климатических зон РоссииДля дома со стандартными размерами комнат, высотой потолков и хорошей теплоизоляцией можно применить известное соотношение площади помещения к требуемой тепловой мощности. В таком случае на 10 м² потребуется генерировать 1 кВт тепла. К полученному результату нужно применить поправочный коэффициент, зависящий от климатической зоны.
Предположим, что дом находится в Московской области. Его общая площадь составлять 150 м². В таком случае часовая тепловая нагрузка на отопление будет равна:
15*1=15 кВт/час
Главным недостатком этого метода является большая погрешность. Расчет не учитывает изменение погодных факторов, а также особенности здания – сопротивление теплопередачи стен, окон. Поэтому на практике его использовать не рекомендуется.
Укрупненный расчет тепловой нагрузки здания
Укрупненный расчет нагрузки на отопление характеризуется более точными результатами. Изначально он применялся для предварительного расчета этого параметра при невозможности определить точные характеристики здания. Общая формула для определения тепловой нагрузки на отопление представлена ниже:
Где q° — удельная тепловая характеристика строения. Значения нужно брать из соответствующей таблицы, а – поправочный коэффициент, о котором говорилось выше, Vн – наружный объем строения, м³, Tвн и Tнро – значения температуры внутри дома и на улице.
Таблица удельных тепловых характеристик зданийПредположим, что необходимо рассчитать максимальную часовую нагрузку на отопление в доме с объемом по наружным стенам 480 м³ (площадь 160 м², двухэтажный дом). В этом случае тепловая характеристика будет равна 0,49 Вт/м³*С. Поправочный коэффициент а = 1 (для Московской области). Оптимальная температура внутри жилого помещения (Твн ) должна составлять +22°С. Температура на улице при этом будет равна -15°С. Воспользуемся формулой для расчета часовой нагрузки на отопление:
Q=0.49*1*480(22+15)= 9,408 кВт
По сравнению с предыдущим расчетом полученная величина меньше. Однако она учитывает важные факторы – температуру внутри помещения, на улице, общий объем здания. Подобные вычисления можно сделать для каждой комнаты. Методика расчета нагрузки на отопление по укрупненным показателям дает возможность определить оптимальную мощность для каждого радиатора в отдельно взятом помещении. Для более точного вычисления нужно знать среднетемпературные значения для конкретного региона.
Такой метод расчета можно применять для вычисления часовой тепловой нагрузки на отопление. Но полученные результаты не дадут оптимально точную величину тепловых потерь здания.
Точные расчеты тепловой нагрузки
Значение теплопроводности и сопротивление теплопередачи для строительных материаловНо все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.
Что же такое сопротивление теплопередачи (R)? Это величина, обратная теплопроводности (λ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:
R=d/λ
Расчет по стенам и окнам
Сопротивление теплопередачи стен жилых зданийСуществуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.
В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:
- Площадь стен – 280 м². В нее включены окна – 40 м²;
- Материал изготовления стен – полнотелый кирпич (λ=0.56). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт;
- Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт;
- Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
- Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).
Фактически тепловые потери через стены составят:
(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С
Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:
124*(22+15)= 4,96 кВт/час
Расчет по вентиляции
Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:
(480*40*5)/24= 4000 кДж или 1,11 кВт/час
Суммируя все полученные показатели можно найти общие тепловые потери дом:
4,96+1,11=6,07 кВт/час
Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:
(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт
Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.
К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.
Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.
Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.
Расчет тепловой нагрузки отопления здания. Определяем потери
Отопительная система является многокомпонентной схемой, предназначенной для обеспечения требуемых температурных показателей в зданиях. Грамотный расчёт показателей тепловой нагрузки обогрева позволяет минимизировать затраты на оплату энергоносителей и сделать пребывание в здании комфортным вне зависимости от времени года.
Определение тепловой нагрузки
Само определение «Тепловая нагрузка» характеризует получение определённого количества теплоэнергии за одну единицу времени в конкретных условиях. В отопительный сезон такой показатель должен изменяться согласно установленному температурному графику теплоснабжения. Он отражает общий объём теплоэнергии, расходуемой всей отопительной конструкцией на прогрев строений до нормативного температурного уровня в самый холодный период.
Профессиональный расчёт показателя нагрузки необходим в следующих случаях:
- отсутствие приборов учёта;
- сокращение расчётной нагрузки;
- снижение расходов на обогрев здания;
- проектирование индивидуальной системы обогрева;
- изменение состава потребляющего энергию оборудования;
- подтверждение лимита для потребляемой тепловой энергии;
- выявление причин потери тепловой эффективности и перерасхода;
- оптимальное распределение субабонентов, использующих в работе тепло;
- подсоединение к схеме отопления построек и сооружений, потребляющих тепло;
- уточнение тепловых нагрузок и заключение договора со снабжающими организациями.
При определении максимальной почасовой нагрузки на отопление учитывается количество тепла, используемого с целью сохранения нормированных показателей на протяжении одного часа при максимально неблагоприятных внешних воздействиях.
Как рассчитать нагрузку?
Показатель тепловой нагрузки определяется несколькими наиболее важными факторами, поэтому при выполнении расчётных мероприятий в обязательном порядке требуется учитывать:
- общую площадь остекления и количество дверей;
- разницу температурных режимов за пределами и внутри строения;
- уровень производительности, режим эксплуатации системы вентиляции;
- толщину конструкций и материалы, задействованные в возведении строения;
- свойства кровельного материала и основные конструктивные особенности крыши;
- величину инсоляции и степень поглощения солнечного тепла внешними поверхностями.
Практикуется применение нескольких способов вычисления тепловой нагрузки, которые заметно различаются не только степенью сложности, но и точностью полученных расчётных результатов. Важно предварительно собрать необходимые для проектирования и расчётных мероприятий сведения, касающиеся схемы установки радиаторов и места вывода ГВС, а также поэтажный план и экспликацию сооружения.
Формулы расчёта
Исходя из общих потребностей здания в тепловой энергии и технических характеристик постройки, с целью определения оптимального количества теплоты за единицу времени могут использоваться разные стандартные формулы.
При отсутствии приборов учёта: Q = V × (Тх - Тy) / 1000
Обозначение | Параметр |
V | Объём теплового носителя в отопительной системе |
Тх | Показатели температурного режима нагретого теплоносителя (60-65оС) |
Тy | Исходная температура не нагретого теплового носителя |
1000 | Стандартный поправочный числовой множитель |
Схема отопления с замкнутым типом контура:
Qот = α × qо × V × (Тв - Тн. р) × (1 + Kн.р) × 0,000001
Обозначение | Параметр |
α
| Корректирующий погодные характеристики числовой множитель при уличном температурном режиме, отличном от минус 30оС |
V
| Показатели объёма строения в соответствии с наружными замерами |
qо
| Отопительный удельный показатель при температурном режиме -30оС |
tв
| Расчётные показатели внутреннего температурного режима в строении |
tн.р
| Расчётный режим наружного температурного режима для проектирования отопительной системы |
Kн.р | Поправочный числовой множитель в виде соотношения теплопотерь с инфильтрацией и тепловой передачей посредством внешних конструктивных элементов |
Применение поправочного числового множителя
При выполнении расчётов тепловой нагрузки обязательно учитывается поправочный числовой множитель, при помощи которого определяется отличие расчётного температурного режима наружного воздуха для проектов отопительных систем. В таблице представлены поправочные числовые множители для различных климатических зон, расположенных на территории Российской Федерации.
-35оС | -36оС | -37оС | -38оС | -39оС | -40оС |
0,95 | 0,94 | 0,93 | 0,92 | 0,91 | 0,90 |
В других регионах России, где расчётный температурный режим наружных воздушных масс при проектировании отопительной системы находится на уровне минус 31°С или ниже, значения расчётных температур внутри обогреваемых помещений принимаются в соответствии с данными, приведёнными в действующей редакции СНиП 2.08.01-85.
На что обратить внимание при расчётах
В соответствии с действующим СНиП, на каждые 10 м2 обогреваемой площади должно приходится не менее 1 кВт тепловой мощности, но при этом в обязательном порядке учитывается так называемый региональный поправочный числовой множитель:
- зона с умеренными климатическими условиями – 1. 2-1.3;
- территория южных регионов – 0.7-0.9;
- районы крайнего севера – 1.5-2.0.
Кроме прочего, немаловажное значение имеет высота потолочных конструкций и индивидуальные тепловые потери, которые напрямую зависят от типовых характеристик эксплуатируемого строения. Как правило, на каждый кубометр полезной площади затрачивается 40 ватт тепловой энергии, но при выполнении расчётов потребуется также учитывать следующие поправки:
- наличие окна – плюс 100 ватт;
- наличие двери – плюс 200 ватт;
- угловое помещение – поправочный числовой множитель 1.2-1.3;
- торцевая часть здания – поправочный числовой множитель 1.2-1.3;
- частное домовладение – поправочный числовой множитель 1.5.
Практическое значение имеют показатели потолочного и стенового сопротивления, потери тепла через конструкции ограждающего типа и функционирующую вентиляционную систему.
Вид материала | Уровень термического сопротивления |
Кирпичная кладка в три кирпича
| 0,592 м2 × с/Вт
|
Кирпичная кладка в два с половиной кирпича | 0,502 м2 × с/Вт
|
Кирпичная кладка в два кирпича
| 0,405 м2 × с/Вт
|
Кирпичная кладка в один кирпич | 0,187 м2 × с/Вт
|
Газосиликатные блоки толщиной 200 мм
| 0,476 м2 × с/Вт |
Газосиликатные блоки толщиной 300 мм | 0,709 м2 × с/Вт |
Бревенчатые стены толщиной 250 мм | 0,550 м2 × с/Вт |
Бревенчатые стены толщиной 200 мм | 0,440 м2 × с/Вт |
Бревенчатые стены толщиной 100 мм | 0,353 м2 × с/Вт |
Деревянный неутеплённый пол | 1,85 м2 × с/Вт |
Двойная деревянная дверь | 0,21 м2 × с/Вт |
Штукатурка толщиной 30 мм | 0,035 м2 × с/Вт |
Каркасные стены толщиной 20 см с утеплением | 0,703 м2 × с/Вт |
В результате функционирования вентиляционной системы потери тепловой энергии в зданиях составляют порядка 30-40%, через кровельные перекрытия уходит примерно 10-25%, а сквозь стены – около 20-30%, что должно учитываться при проектировании и расчёте тепловой нагрузки.
Средняя тепловая нагрузка
Максимально просто осуществляется самостоятельный расчёт тепловой нагрузки по площади здания или отдельно взятого помещения. В этом случае показатели обогреваемой площади умножаются на уровень тепловой мощности (100 Вт). Например, для здания общей площадью 180 м2 уровень тепловой нагрузки составит:
180 × 100 Вт = 18000 Вт
Таким образом, для максимально эффективного обогрева здания площадью 180 м2 потребуется обеспечить 18 кВт мощности. Полученный результат необходимо разделить на количество тепла, выделяемого в течение одного часа отдельной секцией установленных отопительных радиаторов.
18000 Вт / 180 Вт = 100
В результате можно понять, что в разных по назначению и площади помещениях здания должно быть установлено не менее 100 секций. С этой целью можно приобрести 10 радиаторов, имеющих по 10 секций, или остановить свой выбор на других вариантах комплектации. Следует отметить, что средняя тепловая нагрузка чаще всего рассчитывается в зданиях, оснащённых централизованной системой отопления при температурных показателях теплоносителя в пределах 70-75оС.
Расчёт тепловой нагрузки ГВС
Общие показатели тепловой нагрузки на оборудованную систему горячего водоснабжения в течение года определяются в соответствии со следующей формулой:
Qyhw = 24 Qhw / 1 + khl = (365 – m) × khl + zht + а × (365 – m – zht) × 55 – twcs /55 – twc
Обозначение | Параметр |
khl | Поправочный числовой множитель тепловой потери трубопроводными системами горячего водоснабжения |
twc | Температурные показатели холодной воды (стандарт – 5) |
m | Количество суток без горячего водоснабжения |
zht
| Количество суток в течение отопительного сезона при среднесуточных показателях температуры на улице ниже 8°C |
а
| Поправочный числовой множитель снижения уровня разбора воды в зданиях летом: 0,9 – жилые строения и 1 – здания другого назначения |
twcs | Температурные показатели холодной воды летом (для открытых источников водоснабжения поправочный числовой множитель равен 15) |
Нужно учитывать, что среднюю почасовую тепловую нагрузку на горячее водоснабжение в зданиях необходимо определять не только для зимнего отопительного сезона, но и для неотопительного периода в летние месяцы. При этом важно помнить, что если в процессе проектирования системы отопления выявлено, что оптимизация расходов на оплату энергоносителя – это не приоритетная задача, то вполне допустимо использовать на практике наименее точные и простые в понимании методики расчётов.
Читайте так же:Расчет и определение тепловой нагрузки на отопление: методики расчета, вывод
Тепловая нагрузка подразумевает под собой количество тепловой энергии, необходимое для поддержания комфортной температуры в доме, квартире или отдельной комнате. Под максимальной часовой нагрузкой на отопление подразумевается количество тепла, необходимое для поддержания нормированных показателей в течение часа в самых неблагоприятных условиях.Факторы, влияющие на тепловую нагрузку
- Материал и толщина стен. К примеру, стена из кирпича в 25 сантиметров и стена из газобетона в 15 сантиметров способны пропустить разное количество тепла.
- Материал и структура крыши. Например, теплопотери плоской крыши из железобетонных плит значительно отличаются от теплопотерь утепленного чердака.
- Вентиляция. Потеря тепловой энергии с отработанным воздухом зависит от производительности вентиляционной системы, наличия или отсутствия системы рекуперации тепла.
- Площадь остекления. Окна теряют больше тепловой энергии по сравнению со сплошными стенами.
- Уровень инсоляции в разных регионах. Определяется степенью поглощения солнечного тепла наружными покрытиями и ориентацией плоскостей зданий по отношению к сторонам света.
- Разность температур между улицей и помещением. Определяется тепловым потоком через ограждающие конструкции при условии постоянного сопротивления теплопередаче.
Распределение тепловой нагрузки
При водяном отоплении максимальная тепловая мощность котла должна равняться сумме тепловой мощности всех устройств отопления в доме. На распределение устройств отопления влияют следующие факторы:
- Площадь помещения и высота потолка;
- Расположение внутри дома. Угловыми и торцевыми помещениями теряется больше тепла, чем помещениями, расположенными в середине здания;
- Удаленность от источника тепла;
- Желаемая температура в комнатах.
СНиП рекомендует следующие значения:
- Жилые комнаты в середине дома – 20 градусов;
- Угловые и торцевые жилые комнаты – 22 градуса. При этом за счет более высокой температуры не промерзают стены;
- Кухня – 18 градусов, поскольку в ней имеются собственные источники тепла – газовые или электрические плиты и пр.
- Ванная комната – 25 градусов.
При воздушном отоплении тепловой поток, который поступает в отдельное помещение, зависит от пропускной способности воздушного рукава. Зачастую простейшим способом его регулировки является подстройка положения решеток вентиляции с контролем температуры вручную.
При системе отопления, где применяется распределительный источник тепла (конвектора, теплые полы, электрообогреватели и т.д.), необходимый режим температуры устанавливается на термостате.
Методики расчета
Для определения тепловой нагрузки существует несколько способов, обладающие различной сложностью расчета и достоверностью полученных результатов. Далее представлены три наиболее простые методики расчета тепловой нагрузки.Метод №1
Согласно действующему СНиП, существует простой метод расчета тепловой нагрузки. На 10 квадратных метров берут 1 киловатт тепловой мощности. Затем полученные данные умножаются на региональный коэффициент:
- Южные регионы имеют коэффициент 0,7-0,9;
- Для умеренно-холодного климата (Московская и Ленинградская области) коэффициент равен 1,2-1,3;
- Дальний Восток и районы Крайнего Севера: для Новосибирска от 1,5; для Оймякона до 2,0.
Расчет на примере:
- Площадь здания (10*10) равна 100 квадратных метров.
- Базовый показатель тепловой нагрузки 100/10=10 киловатт.
- Это значение умножается на региональный коэффициент, равный 1,3, в итоге получается 13 кВт тепловой мощности, которые требуются для поддержания комфортной температуры в доме.
Обратите внимание! Если использовать эту методику для определения тепловой нагрузки, то необходимо еще учесть запас мощности в 20 процентов, чтобы компенсировать погрешности и экстремальные холода.
Метод №2
Первый способ определения тепловой нагрузки имеет много погрешностей:
- Разные строения имеют разную высоту потолков. Учитывая то, что обогревается не площадь, а объем, этот параметр очень важен.
- Через двери и окна проходит больше тепла, чем через стены.
- Нельзя сравнивать городскую квартиру с частным домом, где снизу, сверху и за стенами не квартиры, а улица.
Корректировка метода:
- Базовый показатель тепловой нагрузки равняется 40 ватт на 1 кубический метр объема помещения.
- Каждая дверь, ведущая на улицу, добавляет к базовому показателю тепловой нагрузки 200 ватт, каждое окно – 100 ватт.
- Угловые и торцевые квартиры многоквартирного дома имеют коэффициент 1,2-1,3, на который влияет толщина и материал стен. Частный дом обладает коэффициентом 1,5.
- Региональные коэффициенты равны: для Центральных областей и Европейской части России – 0,1-0,15; для Северных регионов – 0,15-0,2; для Южных регионов – 0,07-0,09 кВт/кв. м.
Расчет на примере:
- Объем здания 300 квадратных метров (10*10*3=300).
- Базовый показатель тепловой нагрузки 12000 ватт (300*40).
- С учетом восьми окон и двух дверей тепловая мощность равна 13200 ватт (12000+(8*100)+(2*200)).
- Для частного дома тепловая нагрузка умножается на региональный коэффициент и получается 19800 ватт (13200*1,5).
- 19800*1,3=25740 ватт (с учетом регионального коэффициента для Северных регионов). Следовательно, для обогрева потребуется 28-киловаттный котел.
Метод №3
Не стоит обольщаться – второй способ расчета тепловой нагрузки также весьма несовершенен. В нем весьма условно учтено тепловое сопротивление потолка и стен; разность температур между наружным воздухом и воздухом внутри.
Стоит отметить, чтобы поддерживать внутри дома постоянную температуру необходимо такое количество тепловой энергии, которое будет равняться всем потерям через вентиляционную систему и ограждающие устройства. Однако, и в этом методе расчеты упрощены, так как невозможно систематизировать и измерить все факторы.
На теплопотери влияет материал стен – 20-30 процентов потери тепла. Через вентиляцию уходит 30-40 процентов, через крышу – 10-25 процентов, через окна – 15-25 процентов, через пол на грунте – 3-6 процентов.
Чтобы упростить расчеты тепловой нагрузки, подсчитываются тепловые потери через ограждающие устройства, а затем это значение просто умножается на 1,4. Дельта температур измеряется легко, но взять данные про термическое сопротивление можно только в справочниках. Ниже приведены некоторые популярные значения термического сопротивления:
- Термическое сопротивление стены в три кирпича равно 0,592 м2*С/Вт.
- Стены в 2,5 кирпича составляет 0, 502.
- Стены в 2 кирпича равно 0,405.
- Стены в один кирпич (толщина 25 см) равно 0,187.
- Бревенчатого сруба, где диаметр бревна 25 см – 0,550.
- Бревенчатого сруба, где диаметр бревна 20 сантиметров – 0,440.
- Сруба, где толщина сруба 20 см – 0,806.
- Сруба, где толщина 10 см – 0,353.
- Каркасной стены, толщина которой 20 см, утепленной минеральной ватой – 0,703.
- Стены из газобетона, толщина которой 20 см – 0,476.
- Стены из газобетона, толщина которой 30 см – 0,709.
- Штукатурки, толщина которой 3 см – 0,035.
- Потолочного или чердачного перекрытия – 1,43.
- Деревянного пола – 1,85.
- Двойной деревянной двери – 0,21.
Расчет по примеру:
- Дельта температур в период пика морозов равна 50 градусов: внутри дома плюс 20 градусов, снаружи – минус 30 градусов.
- Потери тепла через один метр квадратный 50/1,85 (показатель термического сопротивления пола из дерева) равно приблизительно 27 ватт. Весь пол будет иметь 27*100=2700 ватт.
- Теплопотери через потолок составляют (50/1,43)*100 и равно приблизительно 3500 ватт.
- Площадь стен (10*3)*4 и равна 120 квадратных метров. К примеру, стены изготовлены из бруса с толщиной 20 см, термическое сопротивление = 0,806. Следовательно, теплопотери составят (50/0,806)*120=7444 ватта.
- Все полученные значения потерь тепла складываются, и получается значение 13644 ватт. Именно такое количество тепла будет терять дом через стены, пол и потолок.
- Далее полученное значение умножается на коэффициент 1,4 (потери на вентиляционную систему) и получается 19101 ватт. Следовательно, для отопления такого дома понадобится 20-киловаттный котел.
Вывод
Как видно из расчетов, способы определения тепловой нагрузки обладают существенными погрешностями. К счастью, избыточный показатель мощности котла не навредит:
- Работа газового котла на уменьшенной мощности осуществляется без падения коэффициента полезного действия, а работа конденсационных устройств при неполной нагрузке осуществляется в экономичном режиме.
- То же относится и к соляровым котлам.
- Показатель коэффициента полезного действия электрического нагревательного оборудования равен 100 процентам.
Обратите внимание! Работа твердотопливных котлов на мощности меньше номинального значения мощности противопоказана.
Расчет тепловой нагрузки на отопление является важным фактором, вычисления которого обязательно необходимо выполнять перед началом создания системы отопления. В случае подхода к процессу с умом и грамотного выполнения всех работ гарантируется безотказная работа отопления, а также существенно экономятся деньги на лишних затратах.
Оцените статью: Поделитесь с друзьями!Расчет тепловой нагрузки на отопление
Как рассчитать тепловую нагрузкуСпросите у любого специалиста, как правильно организовать систему отопления в здании. При этом не важно — жилой это объект или промышленный. И профессионал ответит, что главное — это точно составить расчеты и грамотно выполнить проектирование. Речь, в частности, идет о расчете тепловой нагрузки на отопление. От этого показателя зависит объем потребления тепловой энергии, а значит, и топлива. То есть экономические показатели стоят рядом с техническими характеристиками.
Выполнение точных расчетов позволяет получить не только полный список необходимой для проведения монтажных работ документации, но и подобрать нужное оборудование, дополнительные узлы и материалы.
Тепловые нагрузки — определение и характеристики
Что обычно подразумевают под термином «тепловая нагрузка на отопление»? Это количество теплоты, которое отдают все приборы отопления, установленные в здании. Чтобы избежать лишних трат на производство работ, а также покупку ненужных приборов и материалов, и необходим предварительный расчет. С его помощью можно отрегулировать правила установки и распределения теплоты по всем помещениям, причем сделать это можно экономично и равномерно.
Но и это еще не все. Очень часто специалисты проводят расчеты, полагаясь на точные показатели. Они касаются размеров дома и нюансов строительства, где учитывается разнообразие элементов здания и их соответствие требованиям теплоизоляции и прочего. Именно точные показатели дают возможность правильно сделать расчеты и, соответственно, получить максимально приближенные к идеалу варианты распределения тепловой энергии по помещениям.
Но нередко случаются ошибки в расчетах, что приводит к неэффективной работе отопления в целом. Подчас приходится переделывать в ходе эксплуатации не только схемы, но и участки системы, что приводит к дополнительным расходам.
Какие же параметры влияют на расчет тепловой нагрузки в целом? Здесь необходимо разделить нагрузку на несколько позиций, куда входят:
- Система центрального отопления.
- Система теплый пол, если таковой установлен в доме.
- Система вентиляции — как принудительной, так и естественной.
- Горячее водоснабжение здания.
- Ответвления на дополнительные бытовые нужды. К примеру, на сауну или баню, на бассейн или душ.
Основные характеристики
Профессионалы не упускают из виду ни одну мелочь, которая может повлиять на правильность расчета. Отсюда и достаточно больший список характеристик системы отопления, которые следует принимать во внимание. Вот только некоторые из них:
- Назначение объекта недвижимости или его тип. Это может быть жилое здание или промышленное. У поставщиков тепловой энергии есть нормы, которые распределяются по типу зданий. Именно они часто становятся основополагающими при проведении расчетов.
- Архитектурная часть здания. Сюда можно включить ограждающие элементы (стены, кровля, перекрытия, полы), их габаритные размеры, толщину. Обязательно учитываются всевозможные проемы — балконы, окна, двери и прочее. Очень важно принять во внимание наличие подвалов и чердаков.
- Температурный режим для каждого помещения в отдельности. Это очень важно, потому что общие требования к температуре в доме не дают точной картины распределения тепла.
- Назначение помещений. В основном это относится к производственным цехам, в которых необходимо более строгое соблюдение температурного режима.
- Наличие специальных помещений. К примеру, в жилых частных домах это могут быть бани или сауны.
- Степень технического оснащения. Учитывается наличие системы вентиляции и кондиционирования, горячего водоснабжения, тип используемого отопления.
- Количество точек, через которые проводится отбор горячей воды. И чем больше таких точек, тем большей тепловой нагрузке подвергается система отопления.
- Количество находящихся на объекте людей. От этого показателя зависят такие критерии, как влажность внутри помещений и температура.
- Дополнительные показатели. В жилых помещениях можно выделить количество санузлов, отдельных комнат, балконов. В промышленных зданиях — количество смен работающих, число дней в году, когда работает сам цех в технологической цепочке.
Что включают в расчет нагрузок
Схема отопленияРасчет тепловых нагрузок на отопление проводят еще на стадии проектирования здания. Но при этом обязательно учитывают нормы и требования различных стандартов.
К примеру, теплопотери ограждающих элементов здания. Причем в расчет берутся все помещения в отдельности. Далее, это мощность, которая необходима для нагрева теплоносителя. Приплюсуем сюда количество тепловой энергии, требующейся для нагрева приточной вентиляции. Без этого расчет будет не очень точным. Прибавим также энергию, которая затрачивается на обогрев воды для бани или бассейна. Специалисты обязательно принимают во внимание и дальнейшее развитие теплосистемы. Вдруг через несколько лет вам вздумается устроить в собственном частном доме турецкий хамам. Поэтому необходимо прибавить к нагрузкам несколько процентов — обычно до 10%.
Рекомендация! Рассчитывать тепловые нагрузки с «запасом» необходимо для загородных домов. Именно запас позволит в будущем избежать дополнительных финансовых затрат, которые часто определяются суммами в несколько нулей.
Особенности расчета тепловой нагрузки
Параметры воздуха, а точнее, его температура берутся из ГОСТов и СНиПов. Здесь же подбираются коэффициенты теплопередачи. Кстати, паспортные данные всех видов оборудования (котлы, радиаторы отопления и прочее) берутся в расчет обязательно.
Что обычно включают в традиционный расчет нагрузки тепла?
- Во-первых, максимальный поток тепловой энергии, исходящей от приборов отопления (радиаторов).
- Во-вторых, максимальный расход тепла за 1 час эксплуатации отопительной системы.
- В-третьих, общие тепловые затраты за определенный период времени. Обычно подсчитывают сезонный период.
Если все эти расчеты соизмерить и сопоставить с площадью теплоотдачи системы в целом, то получится достаточно точный показатель эффективности обогрева дома. Но придется учитывать и небольшие отклонения. К примеру, снижение потребления тепла в ночное время. Для промышленных объектов также придется учитывать выходные и праздничные дни.
Методы определения тепловых нагрузок
Проектирование теплого полаВ настоящее время специалисты пользуются тремя основными способами расчета тепловых нагрузок:
- Расчет основных теплопотерь, где учитываются только укрупненные показатели.
- Учитываются показатели, основанные на параметрах ограждающих конструкций. Сюда обычно добавляются потери на нагрев внутреннего воздуха.
- Производится расчет всех систем, которые входят в отопительные сети. Это и отопление, и вентиляция.
Есть еще один вариант, который называется укрупненным расчетом. Его обычно применяют в том случае, когда отсутствуют какие-либо основные показатели и параметры здания, необходимые для стандартного расчета. То есть фактические характеристики могут отличаться от проектных.
Для этого специалисты используют очень простую формулу:
Q max от.=α x V x q0 x (tв-tн.р.) x 10 -6
α — это поправочный коэффициент, зависящий от региона строительства (табличная величина)
V — объем здания по наружным плоскостям
q0 — характеристика отопительной системы по удельному показателю, обычно определяется по самым холодным дням в году
Виды тепловых нагрузок
Тепловые нагрузки, которые используются в расчетах системы отопления и подборе оборудования, имеют несколько разновидностей. К примеру, сезонные нагрузки, для которых присущи следующие особенности:
- Изменение температуры снаружи помещений в течение всего отопительного сезона.
- Метеорологические особенности региона, где построен дом.
- Скачки нагрузки на систему отопления в течение суток. Этот показатель обычно проходит по категории «незначительные нагрузки», потому что ограждающие элементы предотвращают большое давление на отопление в целом.
- Все, что касается тепловой энергии, связанной с системой вентиляции здания.
- Тепловые нагрузки, которые определяются в течение всего года. Например, потребление горячей воды в летней сезон снижается всего лишь на 30-40%, если сравнивать его с зимним временем года.
- Сухое тепло. Эта особенность присуща именно отечественным отопительным системам, где учитывается достаточно большой ряд показателей. К примеру, количество оконных и дверных проемов, количество проживающих или находящихся постоянно в доме людей, вентиляция, воздухообмен через всевозможные щели и зазоры. Для определения этой величины используют сухой термометр.
- Скрытая тепловая энергия. Существует и такой термин, который определяется испарениями, конденсацией и так далее. Для определения показателя используют влажный термометр.
Регуляторы тепловых нагрузок
Программируемый контроллер, диапазон температур — 5-50 CСовременные отопительные агрегаты и приборы обеспечиваются комплектом разных регуляторов, с помощью которых можно изменять тепловые нагрузки, чтобы тем самым избежать провалов и скачков тепловой энергии в системе. Практика показала, что с помощью регуляторов можно не только снизить нагрузки, но и привести систему отопления к рациональному использованию топлива. А это уже чисто экономическая сторона вопроса. Особенно это относится к промышленным объектам, где за перерасход топлива приходится выплачивать достаточно большие штрафы.
Если же вы не уверены в правильности своих расчетов, то воспользуйтесь услугами специалистов.
Давайте рассмотрим еще пару формул, которые касаются разных систем. К примеру, системы вентиляции и горячего водоснабжения. Здесь вам потребуются две формулы:
Qв.=qв.V(tн.-tв.) — это касается вентиляции.
Здесь:
tн. и tв — температура воздуха снаружи и внутри
qв. — удельный показатель
V — внешний объем здания
Qгвс.=0,042rв(tг.-tх.)Пgср — для горячего водоснабжения, где
tг.-tх — температура горячей и холодной воды
r — плотность воды
в — отношение максимальной нагрузки к средней, которая определяется ГОСТами
П — количество потребителей
Gср — средний показатель расхода горячей воды
Комплексный расчет
В комплексе с расчетными вопросами обязательно проводят исследования теплотехнического порядка. Для этого применяют различные приборы, которые выдают точные показатели для расчетов. К примеру, для этого обследуют оконные и дверные проемы, перекрытия, стены и так далее.
Именно такое обследование помогает определить нюансы и факторы, которые могут оказать существенное влияние на теплопотери. К примеру, тепловизорная диагностика точно покажет температурный перепад при прохождении определенного количества тепловой энергии через 1 квадратный метр ограждающей конструкции.
Так что практические измерения незаменимы при проведении расчетов. Особенно это касается узких мест в конструкции здания. В этом плане теория не сможет точно показать, где и что не так. А практика укажет, где необходимо применить разные методы защиты от теплопотерь. Да и сами расчеты в этом плане становятся точнее.
Заключение по теме
Расчетная тепловая нагрузка — очень важный показатель, получаемый в процессе проектирования системы отопления дома. Если подойти к делу с умом и провести все необходимые расчеты грамотно, то можно гарантировать, что отопительная система будет работать отлично. И при этом можно будет сэкономить на перегревах и прочих затратах, которых можно просто избежать.
Тепловая нагрузка в зданиях — Designing Buildings Wiki
Тепловая нагрузка (или тепловая нагрузка) — это термин, который можно использовать по-разному, когда речь идет о строительной физике.
Может использоваться для обозначения количества тепла в единицу времени (обычно более часа), которое требуется для обогрева данного помещения, чтобы поддерживать его при заданной температуре. В плохо утепленных зданиях тепловая нагрузка будет больше, чем в теплоэффективных зданиях.Напротив, в здании с очень высоким уровнем теплового КПД потребность в отоплении может быть практически незначительной. В пассивных домах это около 15 кВтч / (м2a)), что составляет примерно 10% энергии, используемой в обычных зданиях.
Термин «тепловая нагрузка» может также относиться к расчетному количеству тепла, используемому для определения производительности системы охлаждения, позволяющей ей поддерживать температуру ниже требуемого уровня в здании или пространстве. Для этого необходимо учитывать все потенциальные виды деятельности по производству тепла (источники тепла), включая солнечное излучение, людей, машины, освещение, кухни, компьютеры и т. Д. В этом здании или пространстве.
Например, центр обработки данных, в котором размещены компьютеры и серверы, будет производить определенную тепловую нагрузку, обусловленную электрической нагрузкой. Эта тепловая нагрузка должна будет поглощаться и передаваться наружу системой охлаждения здания. После количественной оценки тепловой нагрузки инженеры HVAC могут спроектировать необходимую систему охлаждения, чтобы обеспечить эффективное поддержание желаемой температуры в помещении.
Примерный и готовый метод расчета тепловой нагрузки в офисах, где есть 2-3 рабочих и 3-4 компьютера, дается следующей формулой:
Если пассажиров больше, добавьте 500 БТЕ за каждого дополнительного человека:
Итак, если прибудут четыре дополнительных пассажира, тепловая нагрузка будет:
- 8,460 + (500 x 4) = 10460 БТЕ.
Тепловая нагрузка (и приток тепла) также могут быть выражены в киловаттах (кВт).
- Для преобразования БТЕ в кВт 1 БТЕ = 0,00029307107 кВт.
- Итак, из приведенного выше примера 10460 БТЕ = 3,065 кВт.
Описанный выше метод может дать общее представление о тепловой нагрузке. Для достижения большей точности следует использовать более подробные методы.
Калькулятор нагрузкиHVAC — Highseer
Простой в использовании инструмент HVAC для расчета необходимой тепловой мощности (в БТЕ)
Этот инструмент основан на методе квадратных футов, с добавленными вычислениями для наиболее важных включенных значений, таких как изоляция, окна и другие факторы.
Система предварительно настроена на внутреннюю температуру 72 градуса и наружную температуру 95 градусов.
Выберите свой регион и введите высоту зоны, а также площадь (длина, умноженная на ширину). В инструменте предварительно установлены различные коэффициенты с наиболее часто используемыми значениями, но их можно изменить по желанию, нажав кнопку «Дополнительные факторы», чтобы открыть эти дополнительные поля.
Поскольку большинство кондиционеров поставляются с шагом ½ тонны (6000 БТЕ / час), эта система должна быть достаточно близка к фактическим единицам, которые будут использоваться.
Примечание : Этот инструмент предоставляется строго как быстрый метод вычисления общих условий размера и стоимости. Методы квадратного фута считаются практическим правилом для использования в быстрых вычислениях. Точную тепловую нагрузку можно определить с помощью анализа полной тепловой нагрузки.
Заявление об отказе от ответственности
Рекомендуемые нагрузки в БТЕ были определены добросовестно и предназначены только для общих информационных целей. Мы не несем ответственности и не гарантируем полноту, надежность или точность этой информации.В некоторых приложениях может быть несколько других уникальных факторов, которые существенно влияют на эти значения или даже искажают их. Вы всегда должны консультироваться с лицензированным инженером-проектировщиком для получения наиболее точных измерений и значений, которые могут быть действительно получены только после того, как будет проведена тщательная проверка рабочей площадки и определены все связанные факторы.
Разрешить сценарии!
ЕСЛИ ВЫ ВИДИТЕ ЖЕЛТУЮ ПОЛОСКУ ПОД АДРЕСНОЙ БЛОКОЙ, ВЫ ДОЛЖНЫ НАЖАТЬ ЕГО, ЧТОБЫ РАЗРЕШИТЬ СЦЕНАРИИ. Этот сценарий не причинит вреда вашему компьютеру и не регистрирует никакой информации о вас. Для использования этого калькулятора в вашем браузере должен быть включен JavaScript.
ASHRAE Расчет нагрузки на отопление и охлаждение | Открытия
Метод теплового баланса ASHRAE был впервые определен как предпочтительный метод для расчета нагрузки в Справочнике ASHRAE 2001 г. Основные принципы, а в настоящее время он является наиболее широко применяемым методом расчета нагрузки для нежилых помещений практикующими инженерами-проектировщиками. Стандартный метод теплового баланса ASHRAE включает ряд важных концепций, три из которых описаны ниже.
(1) Включить все поверхности пространства
Существует три «тепловых баланса», показанных на рисунке 1 метода теплового баланса (HB), и два из этих «тепловых балансов» применяются к каждой поверхности пространства или комнаты.
С точки зрения проектирования и разработки есть два важных вывода:
- Точная геометрия модели необходима и должна учитывать все поверхности пространства или комнаты, включая внутренние стены, потолки и полы.В некоторых случаях пол, соприкасающийся с землей, с высокой тепловой массой может даже отводить тепло из помещения во время расчета охлаждающей нагрузки.
- Слежение за солнцем должно быть учтено в во всех пространствах, включая внутренние пространства, которые могут получать солнечное излучение утром или ближе к вечеру, когда угол наклона солнца ниже. Баланс кондуктивного, конвективного и радиационного тепла рассчитывается непосредственно для каждой поверхности в помещении, поэтому отслеживание падающего солнечного излучения имеет решающее значение для точных расчетов солнечного излучения по периметру внутренних пространств и .На Рисунке 1 отчет о нагрузке на охлаждение для внутренней зоны показывает, что 11,5% нагрузки связано с усилением солнечной энергии.
(2) Сумма выигрышей ≠ Нагрузка на охлаждение
Метод теплового баланса ASHRAE утверждает, что «сумма всех мгновенных тепловыделений помещения в любой момент времени не обязательно (или даже часто) равна охлаждающей нагрузке для помещения в то же время ». На рисунке 2 делается попытка передать это явление, демонстрируя временную задержку, связанную с обсуждением «Прирост против нагрузок».
С точки зрения проектирования и разработки есть три важных вывода:
- Разработчикам следует рассмотреть возможность выполнения расчетов охлаждающей нагрузки для помещений и зон с полностью включенным внутренним усилением (например, максимальной вместимостью), чтобы учесть это расчетное условие, независимо от того, насколько редко может происходить такой сценарий. Мы называем эту практику «насыщением» внутренней выгоды для расчетов расчетной охлаждающей нагрузки.
- Обратите внимание, при определении размеров центрального оборудования HVAC (например,грамм. Вентилятор и охлаждающий змеевик AHU) следует учитывать некоторое разнообразие нагрузок. Типичные значения могут составлять 90% для людей, находящихся в помещении, 80% для освещения и 50% для оборудования со штекерной нагрузкой, в зависимости от функции помещения и режима работы. Некоторые исключения могут включать лабораторные, медицинские или фармацевтические приложения, которые могут иметь постоянное требование ACH.
- При прогнозировании годовой энергоэффективности здания / затрат / выбросов углерода мы не поощряем этот подход и вместо этого используем почасовые рабочие профили.
- В то время как типичный расчет нагрузки относится к «расчетному дню», почасовые расчеты для каждого месяца следует рассчитывать, чтобы учесть все влияющие факторы, потому что пиковая нагрузка не обязательно может произойти в месяц пикового внешнего осушения. температура лампы.База данных прогнозов погоды ASHRAE предоставляет эти данные для тысяч мест по всему миру. Расчетные данные включают в себя максимальные внешние температурные условия по сухому термометру для каждого месяца и соответствующие месячные совпадающие температурные условия по влажному термометру, если скрытая нагрузка или меньший угол солнечного света являются влиятельной причиной пикового состояния.
- Все строительные материалы в зданиях обладают теплоемкостью, поэтому тепловая масса каждой строительной конструкции включается в расчеты охлаждающей нагрузки, включая внутренние строительные конструкции.Обзор любых заданных характеристик конструкции в сборе (общий коэффициент теплопередачи, коэффициент сопротивления изоляции) должен также включать тепловую массу конструкции в сборе (легкая, тяжелая).
(3) Проверить результаты на соответствие служебным правилам
Хотя самая последняя версия Руководства ASHRAE — Основы (глава 18) предоставляет исключительные подробности о методе теплового баланса, она не включает много информации о результатах нагрузок и о том, как эти результаты сравниваются с практическими правилами.Существуют различные варианты, позволяющие сообщать и просматривать результаты загрузки.
С точки зрения проектирования и разработки, такая проверка дает три общих результата:
- Сравните с практическими правилами. Общие практические правила будут варьироваться в зависимости от климата и функций пространства (например, коридор или лаборатория). Например, типичные опубликованные значения на основе Справочника ASHRAE:
- Нагрев: ~ 10 БТЕ / ч.фут 2 [31.5 Вт / м 2 ]
- Явное охлаждение
- ~ 15 БТЕ / ч.фут 2 [47 Вт / м 2 ]
- ~ 1,0 куб. Фут / мин / фут 2 [4,5 л / сек / м 2 ]
- Добавьте запас прочности (превышение допустимых значений). В двух отчетах электронной таблицы IESVE, которые отображаются автоматически, включены 10% для явных нагрузок на охлаждение и 10% для нагрузок на отопление. Это может варьироваться от компании к компании и даже от инженера к инженеру в одной компании.Многие факторы могут влиять на факторы безопасности, включая потери при распределении, качество строительства в регионе, использование площадей и пусковые мощности.
- Выбор и размер типов систем HVAC. Например, типичный излучающий пол может обеспечить ощутимое охлаждение ~ 13 БТЕ / ч. фут2 [~ 40 Вт / м²] при отсутствии солнечного излучения и 30 БТЕ / ч.фут2 [~ 90 Вт / м²] ощутимого нагрева в зависимости от на готовом напольном покрытии. В качестве альтернативы, если должна быть выбрана воздушная система, можно выбрать диффузоры и размеры воздуховодов.Следующим шагом является расчет мощности центральной системы HVAC.
Программное обеспечение IESVE использует метод теплового баланса (HB) для расчета охлаждающей и тепловой нагрузки комнат, зон и зданий в соответствии со стандартом 183 ANSI / ASHRAE / ACCA. Чтобы узнать больше о программном обеспечении для расчетов, см. Раздел «Свободные руки» -на обучающем видео: Нагрузки на отопление и охлаждение ASHRAE и определение размеров оборудования HVAC.
Расчет тепловой нагрузки: важность при проектировании HVAC
Расчет тепловой нагрузки — фундаментальный навык для проектировщиков и консультантов HVAC.Учтите, что охлаждение помещений — одна из самых высоких затрат энергии в зданиях, особенно летом. Однако, чтобы правильно рассчитать систему охлаждения помещения, сначала мы должны знать количество тепла, которое необходимо отвести — это как раз и является целью расчета тепловой нагрузки.
Тепло в зданиях может исходить от внутренних источников, таких как электрические приборы, или от внешних источников, таких как солнце. При расчете тепловой нагрузки учитываются все имеющиеся источники и определяется их общий эффект.
Обзор основных источников тепла
Несмотря на то, что существует много способов, которыми может производиться тепло, прямо или косвенно, ниже приведены некоторые из основных источников тепла внутри зданий:
1) Прирост солнечного тепла: Существует три различных способа, которыми солнечное тепло может достигать внутренних помещений — теплопроводность, конвекция и излучение. Электропроводность возникает через стены и крыши, поскольку они подвергаются разнице температур между внутренними помещениями здания и более теплой внешней средой.Конвекция относится к передаче тепла из-за массового движения горячего наружного воздуха или движения воздуха в помещении между поверхностями при разных температурах. Наконец, излучение — это прямая форма передачи тепла, которая происходит, когда солнечный свет проникает в здания через окна или другие прозрачные поверхности. И излучение, и конвекция могут взаимодействовать с теплопроводностью на поверхностях стен и крыш. Для многих зданий солнце является самым большим источником тепла.
Прирост солнечного тепла для конкретной комнаты во многом зависит от ее направления или расположения — учтите, что положение солнца на небе меняется в течение дня.По утрам стены и окна, выходящие на восток, попадают под прямые солнечные лучи. Поверхности, обращенные на юг, подвергаются воздействию прямых солнечных лучей в полдень, а поверхности, обращенные на запад, — во второй половине дня. Стены, выходящие на север, получают наименьшее количество солнечного тепла.
В зависимости от того, как происходит поступление солнечного тепла, его эффекты могут ощущаться немедленно или через определенный период времени. Например, солнечное тепло, проникающее через стеклянные окна (излучение), дает немедленный эффект. С другой стороны, когда теплопроводность происходит через стены, сами стены накапливают тепло, и в ночное время оно продолжает выделяться в помещении.
2) Тепло от людей: Жильцы также являются основным источником тепла внутри зданий. Учтите, что человек ежедневно потребляет сотни калорий в виде пищи, и часть этой энергии выделяется в виде тепла во время метаболических процессов. Тепло, выделяемое людьми, еще выше во время интенсивных физических нагрузок из-за потоотделения.
Учтите, что тепловое воздействие людей также увеличивается в зависимости от плотности населения. В результате человеческий вклад в общую тепловую нагрузку может быть особенно высоким в больших помещениях с кондиционированием воздуха, таких как холлы, аудитории, театры, кинотеатры и аэропорты.
3) Нагрев наружного воздуха: Более теплый воздух за пределами кондиционируемых помещений называется наружным воздухом или атмосферным воздухом. Из-за более высокой температуры наружный воздух имеет тенденцию повышать среднюю температуру в помещении, когда попадает в помещения.
Хотя некоторый воздухообмен является нормальным, когда двери и окна открыты, наружный воздух также может попадать в кондиционируемые помещения через утечки вокруг дверей, окон и других элементов ограждающих конструкций здания. Тепло, удерживаемое наружным воздухом, в значительной степени исходит от солнца, но оно также может исходить от транспортных средств или других зданий.
4) Тепло от электрических и электронных устройств: Внутренние помещения заполнены электрическими и электронными приборами, такими как осветительные приборы, телевизоры, кофеварки, водонагреватели и т. Д. Эти приборы потребляют электроэнергию и выделяют некоторое количество тепла в помещениях с кондиционированием воздуха. . Используйте энергоэффективные приборы, чтобы свести к минимуму их нагревательный эффект.
Ищете инженера-проектировщика HVAC?
Процедура расчета тепловой нагрузки
Для расчета тепловой нагрузки необходимо провести обследование всех помещений в здании и определить все имеющиеся источники тепла.Затем, исходя из рассчитанной тепловой нагрузки, проектировщик HVAC рекомендует тип системы кондиционирования воздуха, подходящий для данной области применения, и ее требуемую мощность. Такой подход помогает владельцам собственности избегать крупногабаритных систем с более высокими начальными и текущими затратами, чем необходимо, а также систем меньшего размера, которые обеспечивают недостаточное охлаждение.
Расчет тепловой нагрузки — это узкоспециализированная, трудоемкая и сложная задача, которую может выполнить только квалифицированный специалист по HVAC. Это также очень важный шаг для достижения оптимальных характеристик здания, обеспечивающий основу для выбора системы кондиционирования воздуха надлежащего типа и мощности для конкретного применения: жилое здание, холл, аудитория, театр, кинотеатр, аэропорт и т. Д.
Если вы владелец недвижимости, учтите, что специалисты по HVAC обычно запрашивают дополнительную информацию, например архитектурные планы здания. Процедура расчета начинается после того, как будут собраны все необходимые данные. Существует два возможных метода расчета тепловой нагрузки: вручную или с помощью программного обеспечения.
Ручной процесс: Данные, собранные в результате обследования здания и дополнительной документации, анализируются с использованием предварительно определенных уравнений и табличных параметров.Точные уравнения и значения таблиц для использования определяются на основе геометрии здания, строительных материалов, а также приборов и строительных систем, находящихся внутри. Основываясь на этих расчетах, проектировщик HVAC рекомендует систему кондиционирования воздуха подходящего типа и вместимости.
Использование программного обеспечения: В настоящее время большинство проектировщиков систем отопления, вентиляции и кондиционирования воздуха используют программное обеспечение, такое как Trace 700 и HAP (программа почасового анализа), для выполнения расчетов тепловой нагрузки. Это по-прежнему требует обширных технических знаний, но многие повторяющиеся и трудоемкие задачи автоматизированы.Все, что вам нужно сделать, это ввести данные, полученные в результате обследования здания, архитектурных планов и другой соответствующей собранной документации. Программа автоматически выполняет расчеты тепловой нагрузки, а также рекомендует требуемую мощность системы кондиционирования, что упрощает и ускоряет процесс.
Расчет тепловой нагрузки выполняется для всех участков здания, а также определяется общая нагрузка на здание. На основе этих расчетов проектировщики и консультанты HVAC могут предоставить технические рекомендации для достижения максимальной производительности.
Заключительные рекомендации
Услуги профессионального дизайна могут показаться расходами, но на самом деле это инвестиции. Хорошо спроектированная система HVAC соответствует охлаждающей нагрузке здания, которое она обслуживает, при оптимальной стоимости владения. Работа с профессионалами также гарантирует соблюдение кодекса и ускоряет оформление документов, что может занять очень много времени в Нью-Йорке.
Если у вашей собственности есть большая площадь на крыше, рассмотрите возможность использования солнечной энергии. В Нью-Йорке есть отличные программы скидок, и вы можете уменьшить эффект солнечного нагрева, получая при этом чистый источник электроэнергии.
Примечание редактора: этот пост был первоначально опубликован в 2017 году и был переработан и обновлен для обеспечения точности и полноты.
Интернет-курсы PDH. PDH для профессиональных инженеров. ПДХ Инжиниринг.
«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии.
курс.
Russell Bailey, P.E.
Нью-Йорк
«Это укрепило мои текущие знания и научило меня еще нескольким новым вещам.
, чтобы познакомить меня с новыми источниками
информации.»
Стивен Дедак, П.Е.
Нью-Джерси
«Материал был очень информативным и организованным. Я многому научился, и они были
.очень быстро отвечу на вопросы.
Это было на высшем уровне. Будет использовать
снова. Спасибо. «
Blair Hayward, P.E.
Альберта, Канада
«Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.
проеду по вашей компании
имя другим на работе «
Roy Pfleiderer, P.E.
Нью-Йорк
«Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что я уже знаком.
с подробной информацией о Канзасе
Городская авария Хаятт.»
Майкл Морган, P.E.
Техас
«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс
.информативно и полезно
в моей работе ».
Вильям Сенкевич, П.Е.
Флорида
«У вас большой выбор курсов, а статьи очень информативны.Вы
— лучшее, что я нашел ».
Russell Smith, P.E.
Пенсильвания
«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр
материал. «
Хесус Сьерра, П.Е.
Калифорния
«Спасибо, что позволили мне просмотреть неправильные ответы.На самом деле
человек учится
от отказов »
John Scondras, P.E.
Пенсильвания
«Курс составлен хорошо, и использование тематических исследований является эффективным.
способ обучения »
Джек Лундберг, P.E.
Висконсин
«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя
студент для ознакомления с курсом
материал до оплаты и
получает викторину «
Арвин Свангер, П.Е.
Вирджиния
«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и
получил много удовольствия «.
Мехди Рахими, П.Е.
Нью-Йорк
«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.
на связи
курс.»
Уильям Валериоти, P.E.
Техас
«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о
.обсуждаемых тем ».
Майкл Райан, P.E.
Пенсильвания
«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»
Джеральд Нотт, П.Е.
Нью-Джерси
«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было
информативно, выгодно и экономично.
Я очень рекомендую
всем инженерам ».
Джеймс Шурелл, P.E.
Огайо
«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и
не на основании какой-то непонятной раздел
законов, которые не применяются
— «нормальная» практика.»
Марк Каноник, П.Е.
Нью-Йорк
«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор.
организация «
Иван Харлан, П.Е.
Теннесси
«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».
Юджин Бойл, П.E.
Калифорния
«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,
а онлайн-формат был очень
Доступно и просто
использовать. Большое спасибо «.
Патрисия Адамс, P.E.
Канзас
«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»
Джозеф Фриссора, P.E.
Нью-Джерси
«Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время
обзор текстового материала. Я
также оценил просмотр
предоставлено фактических случаев «
Жаклин Брукс, П.Е.
Флорида
«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.
испытание действительно потребовало исследования в
документ но ответы были
в наличии «
Гарольд Катлер, П.Е.
Массачусетс
«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов.
в транспортной инженерии, что мне нужно
для выполнения требований
Сертификат ВОМ.»
Джозеф Гилрой, П.Е.
Иллинойс
«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».
Ричард Роудс, P.E.
Мэриленд
«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.
Надеюсь увидеть больше 40%
курс со скидкой.»
Кристина Николас, П.Е.
Нью-Йорк
«Только что сдал экзамен по радиологическим стандартам и с нетерпением ожидаю сдачи дополнительных
курс. Процесс прост, и
намного эффективнее, чем
вынужден ехать «.
Деннис Мейер, P.E.
Айдахо
«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов.
Инженеры получат блоки PDH
в любое время.Очень удобно ».
Пол Абелла, P.E.
Аризона
«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало
время искать где
получить мои кредиты от. «
Кристен Фаррелл, P.E.
Висконсин
«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями
и графики; определенно делает это
проще поглотить все
теорий. »
Виктор Окампо, P.Eng.
Альберта, Канада
«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по
.мой собственный темп во время моего утро
до метро
на работу.»
Клиффорд Гринблатт, П.Е.
Мэриленд
«Просто найти интересные курсы, скачать документы и пройти
викторина. Я бы очень рекомендовал
вам на любой PE, требующий
CE единиц. «
Марк Хардкасл, П.Е.
Миссури
«Очень хороший выбор тем из многих областей техники.»
Randall Dreiling, P.E.
Миссури
«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь
по ваш промо-адрес который
пониженная цена
на 40%. «
Конрадо Казем, П.E.
Теннесси
«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».
Charles Fleischer, P.E.
Нью-Йорк
«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику.
кодов и Нью-Мексико
правила. «
Брун Гильберт, П.E.
Калифорния
«Мне очень понравились занятия. Они стоили потраченного времени и усилий».
Дэвид Рейнольдс, P.E.
Канзас
«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng
при необходимости дополнительно
аттестат. «
Томас Каппеллин, П.E.
Иллинойс
«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали
мне то, за что я заплатил — много
оценено! »
Джефф Ханслик, P.E.
Оклахома
«CEDengineering предлагает удобные, экономичные и актуальные курсы.
для инженера »
Майк Зайдл, П.E.
Небраска
«Курс был по разумной цене, а материал был кратким, а
в хорошем состоянии. «
Глен Шварц, П.Е.
Нью-Джерси
«Вопросы подходили для уроков, а материал урока —
.хороший справочный материал
для деревянного дизайна. «
Брайан Адамс, П.E.
Миннесота
«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»
Роберт Велнер, P.E.
Нью-Йорк
«У меня был большой опыт работы в прибрежном строительстве — проектирование
Building курс и
очень рекомендую .»
Денис Солано, P.E.
Флорида
«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими
хорошо подготовлен. «
Юджин Брэкбилл, P.E.
Коннектикут
«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на номер
.обзор везде и
всякий раз, когда.»
Тим Чиддикс, P.E.
Колорадо
«Отлично! Сохраняю широкий выбор тем на выбор».
Уильям Бараттино, P.E.
Вирджиния
«Процесс прямой, никакой ерунды. Хороший опыт».
Тайрон Бааш, П.E.
Иллинойс
«Вопросы на экзамене были зондирующими и продемонстрировали понимание
материала. Полная
и комплексное ».
Майкл Тобин, P.E.
Аризона
«Это мой второй курс, и мне понравилось то, что мне предлагали курс
поможет по моей линии
работ.»
Рики Хефлин, П.Е.
Оклахома
«Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».
Анджела Уотсон, П.Е.
Монтана
«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».
Кеннет Пейдж, П.E.
Мэриленд
«Это был отличный источник информации о солнечном нагреве воды. Информативный
и отличный освежитель ».
Луан Мане, П.Е.
Conneticut
«Мне нравится подход, когда я подписываюсь и могу читать материалы в автономном режиме, а затем
Вернуться, чтобы пройти викторину «
Алекс Млсна, П.E.
Индиана
«Я оценил объем информации, предоставленной для класса. Я знаю
это вся информация, которую я могу
использование в реальных жизненных ситуациях »
Натали Дерингер, P.E.
Южная Дакота
«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне
успешно завершено
курс.»
Ира Бродский, П.Е.
Нью-Джерси
«Веб-сайт прост в использовании, вы можете скачать материалы для изучения, а потом вернуться.
и пройдите викторину. Очень
удобно а на моем
собственный график «
Майкл Глэдд, P.E.
Грузия
«Спасибо за хорошие курсы на протяжении многих лет.»
Деннис Фундзак, П.Е.
Огайо
«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH
сертификат. Спасибо за создание
процесс простой ».
Фред Шейбе, P.E.
Висконсин
«Положительный опыт.Быстро нашел курс, который соответствовал моим потребностям, и прошел
один час PDH в
один час. «
Стив Торкильдсон, P.E.
Южная Каролина
«Мне понравилось загружать документы для проверки содержания
и пригодность, до
имея платить за
материал .»
Ричард Вимеленберг, P.E.
Мэриленд
«Это хорошее напоминание об ЭЭ для инженеров, не являющихся электротехниками».
Дуглас Стаффорд, П.Е.
Техас
«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем
.процесс, требующий
улучшение.»
Thomas Stalcup, P.E.
Арканзас
«Мне очень нравится удобство участия в викторине онлайн и получение сразу
сертификат. «
Марлен Делани, П.Е.
Иллинойс
«Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру
.много разные технические зоны за пределами
по своей специализации без
надо ехать.»
Гектор Герреро, П.Е.
Грузия
Сделайте расчеты тепловой нагрузки частью вашего процесса подготовки к строительству — Sobieski Services
Проектирование нового дома или бизнес-объекта требует внимательного отношения к факторам, которые повлияют на текущие расходы, связанные с новой структурой. От водопровода до качества воздуха в помещении и энергоэффективности — решения, принятые на этапе подготовки к строительству, окажут значительное влияние не только на уровень комфорта, но и на ежемесячные расходы здания.Одним из наиболее важных аспектов нового строительства является надлежащее отопление нового здания. Чтобы понять, сколько тепла требуется для нового дома, склада, офисного здания или розничного магазина, необходимо, чтобы ваш подрядчик по строительству или HVAC выполнил расчет тепловой нагрузки.
Что такое расчет тепловой нагрузки?
Расчет тепловой нагрузки — это сложный математический метод, позволяющий точно определить, сколько тепла необходимо для поддержания дома или другой конструкции на том уровне, который предпочитают жители.Все конструкции имеют тепловую нагрузку (и соответствующую охлаждающую нагрузку), которая зависит от конструктивных характеристик здания, шагов, которые были предприняты для повышения энергоэффективности конструкции, и предпочтений людей, которые будут проводить в здании свое время в комфорте. .
Что входит в расчет тепловой нагрузки?
Когда ваш эксперт по HVAC проводит расчет тепловой нагрузки, он проведет обширную инспекцию на месте существующего здания или оценку планов предлагаемого строительства.Обладая данными этих процессов, технический специалист сможет произвести точную количественную оценку потребностей в отоплении конструкции. При расчете тепловой нагрузки будут учитываться тепловые характеристики, структурные характеристики, местный климат и география, в том числе:
- Погода и температура в районе, включая сезонные колебания и тенденции
- Форма, размер и направленность конструкции
- Печать или герметичность конструкции
- Существующие утечки воздуха в уплотнениях или воздуховодах или конструктивные особенности воздуховодов, которые могут вызвать потерю энергии
- Расположение и эффективность вентиляционных отверстий, регистров, а также воздуховодов подачи и возврата
- Количество, тип и расположение изоляции
- Количество, расположение и типы окон
- Количество приборов, светильников и других устройств, выделяющих тепло
- Тип строительных материалов, используемых в здании
- Ландшафтный дизайн, включая деревья, кустарники, земляные барьеры или другие элементы, которые могут увеличить или уменьшить количество солнечного света, ветра и других природных элементов, которые могут повлиять на структуру ure
- Энергоэффективность и меры, принятые для ее повышения, такие как герметизация утечек воздуха, установка энергоэффективных окон и добавление изоляции
- Количество людей и их температурные предпочтения
Зачем нужен расчет тепловой нагрузки?
Информация, полученная в результате расчета тепловой нагрузки, жизненно важна, чтобы помочь вам и вашему подрядчику HVAC выбрать правильный размер и мощность отопительного оборудования для новой конструкции.Правильный выбор оборудования HVAC включает в себя выбор и установку систем отопления, которые являются большими и достаточно мощными, чтобы выдерживать тепловую нагрузку конструкции, не будучи чрезмерно крупными или настолько большими, что они неэффективно тратят энергию и тепло. Зная точную тепловую нагрузку здания, вы и ваш подрядчик по ОВКВ сможете выбрать оборудование, которое обеспечит необходимое количество тепла.
Каков источник расчета тепловой нагрузки?
Расчет тепловой нагрузки должен выполняться в соответствии с процедурами, содержащимися в Руководстве J «Расчет нагрузки на жилые помещения», опубликованном Подрядчиками по кондиционированию воздуха Америки (ACCA).В этом руководстве изложены принятые в отрасли процедуры, технические данные и рекомендации по точному расчету тепловой нагрузки.
Дополнительные факторы, которые следует учитывать:
- Используйте самую последнюю версию Руководства J.
- Принимайте и применяйте только экспертную интерпретацию данных тепловой нагрузки.
- Не устанавливайте отопительные системы, размер которых превышает 15 процентов.
- Используйте руководство ACCA, Руководство S, «Выбор оборудования для отопления и охлаждения жилых помещений», для получения достоверной информации и рекомендаций по выбору системы отопления.
Наша цель — помочь обучить наших клиентов сантехнике, HVACR, противопожарной защите и системам сигнализации в механических, коммерческих и жилых помещениях. Для получения дополнительной информации о важности расчета тепловой нагрузки в процессе проектирования строительства и просмотра проектов, над которыми мы работали, посетите наш веб-сайт!
Изображение предоставлено: Gilderic Photography
[PDF] ГЛАВА 3. РАСЧЕТ ТЕПЛОВОЙ НАГРУЗКИ
1 ГЛАВА 3. ПОСТРОЕНИЕ ОЦЕНКИ ТЕПЛОВОЙ НАГРУЗКИ 3.1 Цель оценки тепловой нагрузки 3.2 Нагревательная нагрузка в зависимости от нагрузки на охлаждение …
ГЛАВА 3. ПОСТРОЕНИЕ ОЦЕНКИ ТЕПЛОВОЙ НАГРУЗКИ 3.1 Цель оценки тепловой нагрузки 3.2 Нагревательная нагрузка в зависимости от охлаждающей нагрузки 3.3 Критические условия для проектирования 3.4 Сравнение ручных и компьютерных расчетов 3.5 Оценка тепловой нагрузки 3.6 Оценка охлаждающей нагрузки3.1 Цель оценки тепловой нагрузки
Для оценки потребления энергии количество. Определить мощность оборудования HVAC.Оценить стоимость эксплуатации здания. Для повышения энергоэффективности здания на этапе проектирования.
3.2 Охлаждающая нагрузка и тепловая нагрузка
Высокая солнечная радиация To = 30-35 ℃ (в зоне умеренного климата) Ti = 26 ℃ RH = высокая или низкая
Небольшая солнечная радиация To = -10 ℃ (в зоне умеренной погоды) Ti = 20 ℃ RH = обычно низкая
3.3 Критические условия для проектирования Проектировщик должен выбрать подходящий набор условий для расчета нагрузки: внешняя погода, солнечные эффекты, внутренняя температура и влажность, состояние эксплуатации здания и многие другие факторы Что касается отопления, то критическое расчетное состояние возникает в холодную погоду, когда нагревание осуществляется незначительно или совсем отсутствует за счет лучистой солнечной энергии или внутреннего поступления тепла от фонарей, приборов или людей.Для условий охлаждающей нагрузки критическим расчетным условием является максимальное совпадающее возникновение тепла, влажности, солнечного воздействия и внутреннего тепла от оборудования, света и людей. Чтобы определить максимальную комбинацию отдельных нагрузок, необходимо выполнить несколько оценок для разного времени.
3.3.1 Наружная расчетная температура Наружные погодные условия влияют на нагрузку отопления и кондиционирования воздуха. Исторические экстремальные значения температуры и влажности являются основой для расчетов расчетной нагрузки.Статистические данные, собранные для местоположений по всему миру, используются проектировщиками HVAC. Расчетные наружные температуры выбираются на основе процентной концепции.
Процентная концепция 1) Расчет тепловой нагрузки: процентная концепция предполагает отопительный сезон с декабря по февраль, что составляет 2160 часов в год. Это означает, что погода будет на уровне или выше перечисленных условий только в течение указанного процента 2160 часов в год. Значения в процентах: 99% и 97,5%
2) Расчет нагрузки на охлаждение: лето определяется как период с июня по сентябрь, что составляет 2928 часов. Значения в процентах: 1%, 2.5% и 5%
3.3.2 Расчетная температура в помещении Стандарт ASHRAE 55 определяет летние и зимние зоны комфорта, подходящие для уровней изоляции одежды 0,5 и 0,9 кло [0,078 и 0,14 (м2 · K / Вт), соответственно. Комфортная рабочая температура летом: 23–27 ℃ Комфортная зимняя рабочая температура: 21–25 ℃ Комфортная относительная влажность: 30–60% ASHRAE: Американское общество инженеров по отоплению, холодильной технике и кондиционированию воздуха
3.4 Ручные и компьютерные вычисления Ручной расчет: до определить максимальные нагрузки на отопление и охлаждение в соответствии с размером оборудования HVAC.
Компьютерный расчет (моделирование): для оценки годового потребления энергии путем почасового расчета притока / потери тепла в здании и операций HVAC. Улучшить проектирование здания и схемы эксплуатации систем отопления, вентиляции и кондиционирования воздуха путем сравнения тепловых характеристик нескольких вариантов конструкции.
3.5 Расчет тепловой нагрузки Нагрузка на отопление обусловлена потерями тепла: 1) кондуктивными потерями тепла через ограждающие конструкции (стены, окна, двери, полы, крышу и т. Д.). 2) Инфильтрация, эксфильтрация и вентиляция воздуха.
Инфильтрация, эксфильтрация и вентиляция
Инфильтрация — это неконтролируемое проникновение наружного воздуха в здание через непреднамеренные утечки в оболочке здания (например,g., трещины между секциями стен, стыки между стенами, углы, стык между кровлей и стеной, вокруг окон и дверей). Эксфильтрация — это противоположный процесс. Инфильтрация и эксфильтрация обусловлены разницей давления воздуха, существующей между внутренней частью здания и внешней частью здания по оболочке здания. Эти перепады давления воздуха являются результатом естественных сил (например, ветра и температуры) и геометрии здания, конструкции системы HVAC и герметичности оболочки.
Вентиляция — это процесс «изменения» или замены воздуха в любом помещении для обеспечения высокого качества воздуха в помещении (т.е.е. для контроля температуры, пополнения кислорода или удаления влаги, запахов, дыма, тепла, пыли, переносимых по воздуху бактерий и углекислого газа). Вентиляция используется для удаления неприятных запахов и чрезмерной влажности, подачи наружного воздуха, поддержания циркуляции воздуха внутри здания и предотвращения застоя внутреннего воздуха. Вентиляция включает в себя как воздухообмен наружу, так и циркуляцию воздуха внутри здания. Это один из наиболее важных факторов для поддержания приемлемого качества воздуха внутри зданий.Способы вентиляции здания можно разделить на механические / принудительные и естественные.
3.5.1 Кондуктивная нагрузка нагрева
Q UAt
n
Q Uj Aj (ti to) j 1
Q = тепловая нагрузка (Вт) (ккал / ч) Aj = площадь каждого элемента оболочки (м2) U = общий коэффициент теплопередачи (Вт / м2 · K) (ккал / м2 · ч ℃) ti = расчетная температура воздуха в помещении (K) (℃) to = расчетная температура наружного воздуха (K) (℃)
U-фактор (общий коэффициент теплопередачи)
Rtot
1 д 1 i Rair hi ki ho
(м2K / Вт) (м2чC / ккал)
Где, hi = тепло внутренней поверхности коэффициент передачи (или проводимость пленки) (ккал / м2чС) ho = коэффициент теплопередачи внешней поверхности (ккал / м2чС)
1 U Rtot
(Вт / м2К) (ккал / м2чС)
Полная таблица доступна на сайте класса.
Полную таблицу можно найти на сайте класса.
Полную таблицу можно найти на сайте класса.
Полную таблицу можно найти на сайте класса.
3.5.2 Нагревательная нагрузка инфильтрации
1) Явная тепловая нагрузка
Q 0,24 1,2 CMH (ti to) Где
Q = тепловая нагрузка (Вт) (ккал / ч) 0,24 = удельная теплоемкость сухого воздуха (кДж / кг · K) (ккал / кг ℃) 1,2 = удельный вес воздуха (кг / м3)
CMH = расход воздуха (м3 / ч) ti = температура воздуха в помещении (K) (℃) to = наружный воздух температура (K) (℃)
2) Нагрузка скрытого нагрева
Q 597 1.2 CMH (xi xo) Где
Q = тепловая нагрузка (Вт) (ккал / ч) 597 = скрытая теплота испарения воды при 0 ℃ (кДж / кг) (ккал / кг) 1,2 = удельный вес воздуха (кг / м3)
CMH = воздушный поток (м3 / ч) xi = коэффициент влажности в помещении (кг / кгд) xo = коэффициент влажности наружного воздуха (кг / кгд)
Оценка воздушного потока
Расход воздуха оценивается с использованием метода трещин и метода воздухообмена. 1) Метод трещин — метод трещины более точен, чем метод воздухообмена. — Наружный воздух проникает во внутреннее пространство через трещины вокруг дверей, окон и стыков между стенами и полом и даже через сам строительный материал.- Количество зависит от общей площади трещин, типа трещины и разницы давлений внутри и снаружи. — Расход воздуха рассчитывается по формуле:
CMH CMH на метр метра трещины
2) Метод воздухообмена Большинство проектировщиков предпочитают использовать более простой метод воздухообмена. Поток воздуха в помещении можно измерить в воздухообменах в час
CMH ACH Объем
Где CMH = расход воздуха (м3 / ч) ACH = воздухообмен в час Объем = объем помещения (м3)
Изменения инфильтрационного воздуха в час, происходящие при средних условиях в жилых помещениях Одно стекло, без уплотнителя
Шторм Створка или непромокаемая лента
0.5
0,3
Окна или входные двери с 1 стороны
1
0,7
Окна или входные двери с 2 сторон
1,5
1
Окна или входные двери с 3 сторон
2
1,3
Вестибюли
2
1,3
Вид помещения Без окон и наружных дверей
3.5.3 Нагрев вентиляции Наружный воздух подается системой HVAC для разбавления загрязнителей воздуха и компенсации выхлопных газов.Нагрузка на вентиляцию рассчитывается по тем же уравнениям, что и для инфильтрации. Вентиляция определяется в соответствии со стандартом ASHRAE Standard 62.
Полная таблица доступна на веб-сайте класса.
3.5.4 Разные нагрузки Помимо теплопроводности, инфильтрации и вентиляции, тепловые нагрузки должны учитывать различные факторы, такие как потери через стены ниже уровня земли и плиты на уровне земли.
3.6 Оценка охлаждающей нагрузки Прирост тепла включает теплопроводность, солнечные эффекты, нагрузки наружного воздуха и внутренние тепловые нагрузки.
Компоненты охлаждающей нагрузки здания
3.6.1 Теплоотдача через стены и крышу (непрозрачные)
Простая разница температур между внутренним и наружным воздухом не учитывает солнечное тепло. Наружная поверхность намного теплее окружающего воздуха из-за воздействия солнечного излучения.
Использование для расчета проводимости TETD (общая эквивалентная разница температур) TETD включает солнечные эффекты, а также разницу температур. TETD варьируется в зависимости от ориентации, времени суток, абсорбционных свойств поверхности и тепловой массы конструкции здания
Q UA ( TETD)
n
Q Uj Aj (TETD) j 1
Где Q = охлаждающая нагрузка (Вт) (ккал / ч) U = общий коэффициент теплопередачи (Вт) (ккал / м2ч ℃) A = площадь каждого элемента оболочки (м2) TETD = общая эквивалентная разница температур (℃)
3.6.2 Теплоотдача за счет остекления (прозрачного или полупрозрачного) Остекленные материалы обычно имеют более низкое тепловое сопротивление, чем непрозрачные строительные материалы, и они также пропускают солнечное излучение в пространство. Эти тепловые нагрузки рассматриваются в двух частях: простая кондуктивная теплопередача из-за разницы температур между внутренним и наружным воздухом и приток солнечного тепла.
Q AU (ti to) (SC) (A) (SHGF)
SHGF = коэффициент солнечного тепла (Вт / м2) SC = коэффициент затенения (безразмерный)
SHGF (коэффициент солнечного тепла) количество солнечного тепла, которое будет поступать в прозрачное одинарное окно в заданное время года и время суток, обращенное в указанную ориентацию.
SC (коэффициент затемнения) SC — это отношение солнечного излучения (из-за прямого солнечного света), проходящего через стеклопакет, к солнечной энергии, проходящей через прозрачное флоат-стекло толщиной 3 мм. Это показатель того, насколько стекло теплоизолирует (затеняет) интерьер, когда на панель или окно попадают прямые солнечные лучи.
Причина разницы между величиной мгновенного тепловыделения и мгновенной охлаждающей нагрузкой
3.6.3 Инфильтрация и вентиляция Инфильтрация намного ниже в жаркую погоду, чем в холодную погоду, особенно в многоэтажных зданиях.Зимой эффект стека из-за большой разницы температур между внутренним и наружным воздухом вызывает большую инфильтрацию. Нагрузки явного тепла и скрытого тепла из-за инфильтрации можно рассчитать по формуле:
Qsensible 0,24 1,2 CMH (ti to) Qlatent 597 1,2 CMH (xi xo) Общее тепло, энтальпия (ч) равна сумма явного и скрытого тепла. Энтальпию можно взять из психрометрической диаграммы или таблиц.