Теплый пол улитка расчет – Программа для расчета теплого пола
Программа для расчета теплого пола
Улитка – быстрая и простая раскладка
петель тёплого пола
Легкая и простая программа для расчётов при укладке тёплых полов.
Полезна как профессионалам так и самостоятельным строителям.
Позволяет существенно ускорить планирование и сэкономить на материале
Программа позволяет быстро и удобно рисовать петли теплого пола, при этом рисование происходит по
сетке, которая задается при создании нового проекта –
и после этого проектирование происходит с привязкой к этой сетке, что позволяет избежать
произвольных изгибов, невозможных при выполнении работ.
Выходит достаточно быстро и точно
Кроме петель в программе есть возможность рисования комнат –
это сделано для того, чтобы можно было быстро посчитать площадь помещения в котором будет производится укладка,
а также для того, чтобы знать количество подложки, которое будет использоваться.
Подложки бывают разных видов: либо металлическая сетка, либо пластик либо специальные варианты.
Улитка позволяет с достаточной точностью оценить предстоящие финансовые затраты.
В течении получаса специалист, находясь прямо на объекте, произведёт замеры и строит план помещения,
набросывет петли теплых полов и получает предварительную смету — то есть все очень оперативно.
Нет необходимости изучать какие-то специализированные CAD-ы, которые хотя и позволяют многое, но
требуют длительного обучения — для того чтобы в ней начать отрисовывать хотя бы примитивные теплые полы в ванной комнате
нужно не один год осваивать эту систему!
При создании петли указывается цвет, толщина линии — важные трассы делаются легко различимыми.
В программе придусмотрена динамическая смета — при расчете сметы можно ввести стоимость метра трубы и сразу видеть итоговую сумму.
Важная функция программы — вывод проекта на печать на любое количества страниц.
Проект можно распечатать с любой детализацией, после чего будет произведена печать на нескольких страницах
которые можно склеить и получить большую схему.
После получения регистрационного ключа пользователь будет иметь доступ к своим проектам с любого компьютера где установлена данная программа и где есть выход в интернет. В перспективе планируется реализация простого просмотрщика прямо из интернета через браузер пользователя либо через андроид-приложение.
ЗАГРУЗИТЬ (Win) xn——8kcrdunc0agdpocn2fwc.xn--p1ai
Тепловой и гидравлический расчет теплого пола.
Примерное кол-во тепла, необходимое для обогрева помещения.Единицы измерения — Ватт. Теплопотери помещения Вт
При указании площади учитывать необходимые отступы от стен.
Единицы измерения — квадратные метры.
Площадь теплого пола м2
Назначение рассчитываемого помещения Назначение помещения Постоянное пребывание людейПостоянное пребывание людей (Влажное помещение)Временное пребывание людейВременное пребывание людей (Влажное помещение)Детское учреждение
Необходимая температура воздуха в рассчитываемом помещении.
Единицы измерения — градусы цельсия.
Требуемая t°С воздуха в помещении °С
Температура воздуха в нижерасположенном помещении.
Единицы измерения — градусы цельсия. t°С воздуха в нижнем помещении °С
Шаг укладки трубы ТП.
Единицы измерения — сантиметры.
Шаг трубы
1015202530см
Тип труб используемых в системе ТП, внешний диаметр и толщина стенок. Тип труб Металлопластиковые 16х1.5Металлопластиковые 16х2.0Металлопластиковые 20х2.0Металлопластиковые 26х3.0Металлопластиковые 32х3.0Металлопластиковые 40х3.5Полиэтиленовые 16х2.2Полиэтиленовые 16х2.0Полиэтиленовые 20х2.0Полиэтиленовые 25х2.3Полиэтиленовые 32х 3.0Полипропиленовые 16х1.8Полипропиленовые 16х2.7Полипропиленовые 20х1.9Полипропиленовые PPR 20х3.4Полипропиленовые 25х2.3Полипропиленовые PPR 25х4.2Полипропиленовые 32х3.0Полипропиленовые PPR 32х5.4Полипропиленовые PPR 40х6.7Полипропиленовые PPR 50х8.3Полипропиленовые PPR-FIBER 20х2.8Полипропиленовые PPR-FIBER 20х3.4Полипропиленовые PPR-FIBER 25х3.5Полипропиленовые PPR-FIBER 25х4.2Полипропиленовые PPR-FIBER 32х4.4Полипропиленовые PPR-FIBER 32х5.4Полипропиленовые PPR-FIBER 40х5.5Полипропиленовые PPR-FIBER 40х6.7Полипропиленовые PPR-FIBER 50х6.9Полипропиленовые PPR-FIBER 50х8.3Полипропиленовые PPR-ALUX 20х3.4Полипропиленовые PPR-ALUX 25х4.2Полипропиленовые PPR-ALUX 32х5.4Полипропиленовые PPR-ALUX 40х6.7Полипропиленовые PPR-ALUX 50х8.3Медные 10х1Медные 12х1Медные 15х1Медные 18х1Медные 22х1Медные 28х1Медные 35х1.5Стальные ВГП легкие 1/2″Стальные ВГП обыкновенные 1/2″Стальные ВГП усиленные 1/2″Стальные ВГП легкие 3/4″Стальные ВГП обыкновенные 3/4″Стальные ВГП усиленные 3/4″Стальные ВГП легкие 1″Стальные ВГП обыкновенные 1″Стальные ВГП усиленные 1″
Температура теплоносителя на выходе из котла в систему ТП.
Единицы измерения — градусы цельсия.
Температура теплоносителя на входе°С
Температура теплоносителя на входе в котел из системы ТП. В среднем ниже на 5-10°С температуры теплоносителя на входе в систему ТП.
Длина трубы от котла до рассчитываемого помещения «туда-обратно».
Единицы измерения — метры.
Длина подводящей магистрали ⇄метров
Слои НАД трубами:
↑ НетБетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплители мм
↑ НетБетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплителиКовролин (0.07 λ Вт/м К)Линолеум многослойный ρ1600 (0.33 λ Вт/м К)Линолеум многослойный ρ1800 (0.38 λ Вт/м К)Линолеум на тканевой основе ρ1400 (0.23 λ Вт/м К)Линолеум на тканевой основе ρ1600 (0.29 λ Вт/м К)Линолеум на тканевой основе ρ1800 (0.35 λ Вт/м К)Паркет (0.2 λ Вт/м К)Ламинат (0.3 λ Вт/м К)Плитка ПВХ (0.38 λ Вт/м К)Плитка керамическая (1 λ Вт/м К)Пробка (0.047 λ Вт/м К) мм
↥ БетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплителиРаствор гипсоперлитовый ρ600 (0.23 λ Вт/м К)Раствор гипсоперлитовый поризованный ρ400 (0.15 λ Вт/м К)Раствор гипсоперлитовый поризованный ρ500 (0.19 λ Вт/м К)Раствор известково-песчаный ρ1600 (0.81 λ Вт/м К)Раствор сложный (цемент+песок+известь) ρ1700 (0.87 λ Вт/м К)Раствор цементно-перлитовый ρ1000 (0.3 λ Вт/м К)Раствор цементно-перлитовый ρ800 (0.26 λ Вт/м К)Раствор цементно-песчаный ρ1800 (0.93 λ Вт/м К)Раствор цементно-шлаковый ρ1200 (0.58 λ Вт/м К)Раствор цементно-шлаковый ρ1400 (0.64 λ Вт/м К) мм
Слои ПОД трубами (начиная от трубы):
↧ НетБетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплители мм
↓ НетБетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплителиАрмопенобетон (0.13 λ Вт/м К)Асбест (0.08 λ Вт/м К)Асбозурит ρ600 (0.15 λ Вт/м К)Битумокерамзит (0.13 λ Вт/м К)Битумоперлит ρ400 (0.13 λ Вт/м К)Изделия перлитофосфогелиевые ρ200 (0.09 λ Вт/м К)Изделия перлитофосфогелиевые ρ300 (0.12 λ Вт/м К)Каучук вспененный Аэрофлекс ρ80 (0.054 λ Вт/м К)Каучук вспененный Кайманфлекс ST ρ80 (0.039 λ Вт/м К)Каучук вспененный Кайманфлекс ЕС ρ80 (0.039 λ Вт/м К)Каучук вспененный Кайманфлекс ЕСО ρ95 (0.041 λ Вт/м К)Куцчук вспененный Армафлекс ρ80 (0.04 λ Вт/м К)Маты алюминиево-кремниевые волокнистые Сибрал ρ300 (0.085 λ Вт/м К)Маты из супертонкого стекловолокна ρ20 (0.036 λ Вт/м К)Маты минераловатные Парок (0.042 λ Вт/м К)Маты минераловатные Роквул ρ35 (0.048 λ Вт/м К)Маты минераловатные Роквул ρ50 (0.047 λ Вт/м К)Маты минераловатные Флайдер ρ11 (0.055 λ Вт/м К)Маты минераловатные Флайдер ρ15 (0.053 λ Вт/м К)Маты минераловатные Флайдер ρ17 (0.053 λ Вт/м К)Маты минераловатные Флайдер ρ25 (0.05 λ Вт/м К)Маты стекловолоконные ρ150 (0.07 λ Вт/м К)Маты стекловолоконные ρ50 (0.064 λ Вт/м К)Опилки древесные (0.08 λ Вт/м К)Пакля ρ150 (0.07 λ Вт/м К)Пенопласт ППУ ρ80 (0.025 λ Вт/м К)Пенопласт ПХВ-1 ρ100 (0.052 λ Вт/м К)Пенопласт ПХВ-1 ρ125 (0.064 λ Вт/м К)Пенопласт ЦУСПОР ρ50 (0.025 λ Вт/м К)Пенопласт ЦУСПОР ρ70 (0.028 λ Вт/м К)Пенопласт карбамидный Мэттэмпласт (пеноизол) ρ20 (0.03 λ Вт/м К)Пенопласт резольнофенолфор3дегидный ρ100 (0.076 λ Вт/м К)Пенопласт резольнофенолфор3дегидный ρ40 (0.06 λ Вт/м К)Пенопласт резольнофенолфор3дегидный ρ50 (0.064 λ Вт/м К)Пенопласт резольнофенолфор3дегидный ρ75 (0.07 λ Вт/м К)Пенополистирол ρ100 (0.052 λ Вт/м К)Пенополистирол ρ150 (0.06 λ Вт/м К)Пенополистирол ρ40 (0.05 λ Вт/м К)Пенополистирол Пеноплекс ρ35 (0.03 λ Вт/м К)Пенополистирол Пеноплекс ρ43 (0.032 λ Вт/м К)Пенополистирол Радослав ρ18 (0.043 λ Вт/м К)Пенополистирол Радослав ρ24 (0.041 λ Вт/м К)Пенополистирол Стиродур 2500С ρ25 (0.031 λ Вт/м К)Пенополистирол Стиродур 2800С ρ28 (0.031 λ Вт/м К)Пенополистирол Стиродур 3035С ρ33 (0.031 λ Вт/м К)Пенополистирол Стиродур 4000С ρ35 (0.031 λ Вт/м К)Пенополистирол Стиродур 5000С ρ45 (0.031 λ Вт/м К)Пенополистирол Стиропор PS15 ρ15 (0.044 λ Вт/м К)Пенополистирол Стиропор PS20 ρ20 (0.042 λ Вт/м К)Пенополистирол Стиропор PS30 ρ30 (0.04 λ Вт/м К)Пенополиуретан ρ40 (0.04 λ Вт/м К)Пенополиуретан ρ60 (0.041 λ Вт/м К)Пенополиуретан ρ80 (0.05 λ Вт/м К)Пенополиуретан Изолан 101 (2) ρ70 (0.027 λ Вт/м К)Пенополиуретан Изолан 101 (3) ρ70 (0.028 λ Вт/м К)Пенополиуретан Изолан 105 (2) ρ70 (0.025 λ Вт/м К)Пенополиуретан Изолан 105 (3) ρ70 (0.027 λ Вт/м К)Пенополиуретан Изолан 123 (2) ρ75 (0.028 λ Вт/м К)Пенополиуретан Изолан 123 (3) ρ75 (0.028 λ Вт/м К)Пенополиуретан Изолан 18М ρ65 (0.026 λ Вт/м К)Пенополиуретан Изолан 210 ρ65 (0.025 λ Вт/м К)Пенополиуретан Корунд ρ70 (0.027 λ Вт/м К)Пеностекло ρ200 (0.09 λ Вт/м К)Пеностекло ρ300 (0.12 λ Вт/м К)Пеностекло ρ400 (0.14 λ Вт/м К)Перлитопластбетон ρ100 (0.05 λ Вт/м К)Перлитопластбетон ρ200 (0.06 λ Вт/м К)Плиты минераловатные прошивные на синтетическом связующем ρ125 (0.07 λ Вт/м К)Плиты минераловатные прошивные на синтетическом связующем ρ50 (0.06 λ Вт/м К)Плиты минераловатные прошивные на синтетическом связующем ρ75 (0.064 λ Вт/м К)Плиты базальтовые ТермоЛайт ρ40 (0.044 λ Вт/м К)Плиты базальтовые ТермоЛайт ρ55 (0.043 λ Вт/м К)Плиты базальтовые Термовент ρ90 (0.04 λ Вт/м К)Плиты базальтовые Термокровля ρ110 (0.04 λ Вт/м К)Плиты базальтовые Термокровля ρ160 (0.043 λ Вт/м К)Плиты базальтовые Термокровля ρ185 (0.045 λ Вт/м К)Плиты базальтовые Термокровля ρ210 (0.045 λ Вт/м К)Плиты базальтовые Термомонолит ρ130 (0.041 λ Вт/м К)Плиты базальтовые Термопол ρ150 (0.041 λ Вт/м К)Плиты базальтовые Термостена ρ70 (0.043 λ Вт/м К)Плиты базальтовые Термофасад ρ150 (0.043 λ Вт/м К)Плиты камышитовые ρ200 (0.09 λ Вт/м К)Плиты камышитовые ρ300 (0.14 λ Вт/м К)Плиты минераловатные ППЖ ρ200 (0.054 λ Вт/м К)Плиты минераловатные Роквул ρ100 (0.045 λ Вт/м К)Плиты минераловатные Роквул ρ150 (0.047 λ Вт/м К)Плиты минераловатные Роквул ρ200 (0.05 λ Вт/м К)Плиты минераловатные Флайдер ρ15 (0.055 λ Вт/м К)Плиты минераловатные Флайдер ρ17 (0.053 λ Вт/м К)Плиты минераловатные Флайдер ρ20 (0.048 λ Вт/м К)Плиты минераловатные Флайдер ρ30 (0.046 λ Вт/м К)Плиты минераловатные Флайдер ρ35 (0.046 λ Вт/м К)Плиты минераловатные Флайдер ρ45 (0.045 λ Вт/м К)Плиты минераловатные Флайдер ρ60 (0.045 λ Вт/м К)Плиты минераловатные Флайдер ρ75 (0.047 λ Вт/м К)Плиты минераловатные Флайдер ρ85 (0.05 λ Вт/м К)Плиты минераловатные на крахмальном связующем ρ125 (0.064 λ Вт/м К)Плиты минераловатные на крахмальном связующем ρ200 (0.08 λ Вт/м К)Плиты минераловатные на синтетическом и битумном связующем ρ100 (0.07 λ Вт/м К)Плиты минераловатные на синтетическом и битумном связующем ρ200 (0.08 λ Вт/м К)Плиты минераловатные на синтетическом и битумном связующем ρ300 (0.09 λ Вт/м К)Плиты минераловатные на синтетическом и битумном связующем ρ350 (0.11 λ Вт/м К)Плиты минераловатные на синтетическом и битумном связующем ρ50 (0.06 λ Вт/м К)Плиты минераловатные полужесткие ρ90 (0.045 λ Вт/м К)Плиты минераловатные полужесткие гидрофобизированные ρ100 (0.045 λ Вт/м К)Плиты минераловатные фасадные ПФ ρ180 (0.053 λ Вт/м К)Плиты стекловолоконные ρ50 (0.064 λ Вт/м К)Плиты торфяные ρ200 (0.064 λ Вт/м К)Плиты торфяные ρ300 (0.08 λ Вт/м К)Плиты торфяные Геокар ρ380 (0.072 λ Вт/м К)Плиты фибролитовые ρ300 (0.14 λ Вт/м К)Плиты фибролитовые ρ400 (0.16 λ Вт/м К)Плиты фибролитовые ρ600 (0.23 λ Вт/м К)Плиты фибролитовые ρ800 (0.3 λ Вт/м К)Полиэтилен вспененный (0.044 λ Вт/м К)Полиэтилен вспененный Пенофол ρ60 (0.04 λ Вт/м К)Пух гагчий (0.008 λ Вт/м К)Совелит ρ400 (0.087 λ Вт/м К)Шевелин (0.045 λ Вт/м К)Эковата ρ40 (0.043 λ Вт/м К)Эковата ρ50 (0.048 λ Вт/м К)Эковата ρ60 (0.052 λ Вт/м К) мм
↓ НетБетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплителиАсфальтобетон ρ2100 (1.05 λ Вт/м К)Бетон тяжелый ρ2400 (1.51 λ Вт/м К)Железобетон ρ2500 (1.69 λ Вт/м К)Плиты железобетонные пустотные при потоке сверху-вниз (1.11 λ Вт/м К)Плиты железобетонные пустотные при потоке снизу-вверх (1.27 λ Вт/м К)Силикатный бетон ρ1800 (1.16 λ Вт/м К) мм
stroy-calc.ru
Тёплый пол улитка: как укладывать
При обустройстве тёплых полов, каким бы ни был греющий контур, важно не только выбрать правильный материал для кабеля или трубопровода, но и уложить систему в пол. Укладывать обогрев под напольное покрытие не так просто, как может показаться.
Схем монтажа всего две, «улитка» или «змейка», но также есть и множество их комбинаций. Это связано с особенностями самого помещения, используемыми материалами и множеством других факторов.
Змейка или улитка, именно схема обустройства обогрева напольного покрытия важна для обеспечения комфорта проживания. Рассмотрим, как делается теплый пол улитка или змейка, особенности расположения контура и нюансы тестирования системы в каждом случае.
Читайте в статье:
Как вычислить шаг при укладке контура?
Когда обустраивается греющий кабель, то схема улиткой не нужна, достаточно придерживаться простой змейки с определенным шагом. Владелец часто сталкивается с проблемой вычисления расстояния между проводами, расположенными рядом на полу.
Шаг укладки – промежуток между соседними витками уложенного греющего кабеля. В некоторых схемах он одинаков по всей длине системы, иногда его принудительно занижают возле стен снаружи.
Расчет шага определить довольно легко – при дополнении к традиционному радиаторному отоплению шаг укладки составляет 0,2 – 0,3 метра. При отделке плиткой шаг выбирается в 0,2 метра, поскольку этот материал теплоемкий и требует продолжительного нагрева.
Линолеум и ламинат не любят перегрева и слишком высоких температур, их предел тепла – 27 градусов. Шаг укладки должен быть не более 30 см. При монтаже кабеля шаг между витками напрямую зависит от его мощности, под плитку нужен более мощный обогрев, под ламинат или линолеум – с минимальной производительностью.
Основные схемы монтажа системы нагрева полов
Из существующих схем монтажа выделяются две классические, от которых начали свое существование многочисленные комбинации. Теплый пол змейка отличается небольшой длиной греющего контура – кабеля или трубопровода, а также легкостью монтажа.
При укладке схемы в виде змейки контур имеет множество петель, изгибов – для водяного пола это чревато сильным перепадом градуса теплоносителя на входе и выходе.
Теплый пол улитка в температурном плане более равномерный, но требует на треть больше максимальной длины трубопровода или кабеля. Укладка теплого пола улиткой в несколько раз сложнее змейки.
Теплый пол улитка
Спиральный теплый пол улитка очень популярен среди владельцев жилья за счет своей экономичности и производительности по отдаче тепла помещению. Этот вариант выполняется сразу по всему периметру, при этом укладка производится с краев по направлению к центру. Радиус постепенно сокращается, а затем меняет направление.
Главное преимущество схемы улиткой заключается в распределении теплоносителя по кабелю или трубопроводу равномерно. Теплопотери минимизируются, поэтому в полу нет тепловых ям.
Также стоит отметить длину шага от 1 см и более. Теплый пол улитка – надежный способ укладки, в котором чередуются остывшие и горячие трубы. Отопление помещения равномерное и постепенное.
Теплый пол змейкой
Укладка теплого пола змейкой чревата потерей тепла из-за нагрева теплоносителя только с одной стороны. Энергия воды теряется в процессе циркуляции по длине контура. Схема монтажа змейкой приводит к горячей поверхности в одном конце комнаты и прохладе в противоположном от смесителя конце.
Сложность монтажа теплого пола змейкой имеет несколько причин:
- Процесс монтажа должен выполняться исключительно профессионалом с опытом работ и достаточными знаниями;
- При укладке трубопровод допускает изгибы на 180 градусов, что требует шага в 20 см. У монтажа улиткой шаг на половину меньше – всего 10 см! Решением этой проблемы может стать обустройство кольца на конце петли, но этот вариант слишком сложный.
Разницу температур внутри контура можно снизить, если сделать змейку двойной (меандр), но сложность монтажа только возрастет. Оптимальный вариант – совмещение змейки с другими способами. В таком случае энергия будет распределяться равномернее, а температурный перепад будет не так заметен.
Комбинированный способ
Совмещение или дублирование нескольких схем укладки составляет комбинированный способ монтажа. К примеру, пара змеек и несколько улиток друг за другом. При хорошей планировки помещения схемы смешиваются для лучшей производительности.
Владелец может сделать зоны с разными температурами, в центре более горячие полы, а на входе – прохладные. В местах с более высокой температурой нужна улитка, в холодных – змейка. Комбинировать можно и сами системы нагрева пола – водяную и электрическую.
Такое сочетание будет особенно удобным при холодных дня в летнее время, когда не запускается система отопления всего дома. Перед началом работ стоит нарисовать схему на бумаге, чтобы просчитать ее слабые места и возможные сложности в монтаже.
Как правильно укладывать контур по схеме?
Любой теплый пол при укладке требует неспешной работы и строгого следования инструкции. При качественном выполнении работ система будет работать долго без необходимости замены оборудования. Рекомендуется сразу делать все расчеты для укладки, по ним же покупается необходимый материал.
При составлении схемы расположения контура необходимо учесть несколько моментов:
- Контур нельзя прокладывать в местах расстановки мебели или сантехники, любых массивных предметов. Это не только испортит напольное покрытие, но и основание этих предметов;
- Чтобы поддерживать давление в системе стабильным, длина контура диаметром 20 мм не должна превышать 120 метров. При диаметре в 16 мм максимальная длина системы теплого пола – 100 метров. Для одного контура требуется не менее 15 кв. метров помещения;
- Если комната большая, то в ней устанавливается не один контур, а несколько. Длина каждого из них не должна отличаться друг от друга (не более 15 метров), желательно выбрать равную длину;
- При шаге в 15 см в процессе монтажа расход труб для водяного теплого пола будет 6,7 метров труб на каждый квадратный метр помещения. Если шаг снизить до 10 см, то на квадратный метр будет приходиться 10 метров трубопровода;
- Если обустраивается водяной контур, то минимальный радиус загиба труб должен равняться 5 ее диаметрам.
Нюансы укладки греющего кабеля
Греющий кабель в основании теплого пола – система универсальная, которая в зависимости от заданной мощности может применяться под любым покрытием. Кабель отличается от других способов возможностью изменения мощностей для каждого квадратного метра комнаты.
Монтаж выполняется по любой из схем на основание из бетона, подготовленное и выровненное. После укладки контура система заливается стяжкой на 3-5 см.
На бетонное основание также укладывается подложка с теплоотражающей поверхностью. Это необходимо для того, чтобы обогрев не уходил вниз, в сторону перекрытия. Сверху крепится монтажная лента.
Как основу для фиксации греющего кабеля применяют арматурная сетка, особенно в случаях невозможности крепления монтажных лент. Специалисты рекомендуют делать схему змейкой на всем метраже комнаты, за исключением мест, где будет мебель или ковер.
Фиксация производится на монтажной ленте, при этом контур не должен пересекаться ни в одной из своих частей. Это важно для соблюдения равномерности прогрева и отсутствия избыточного отопления. Кабель выбирает от 4 сантиметров и более.
Принимая во внимания все правила, ограничения на использование, достоинства и недостатки возможных нагревательных систем для пола, владелец принимает решение о выборе нужной схемы и способа ее укладки.
seti.guru
Расчет теплого пола: водяного, электрического, таблицы, примеры
Подогрев пола — удивительно комфортная вещь. Понимаешь это побывав в доме с таким отоплением и невольно задумываешься о том, а не сделать ли себе. Чтобы принять решение, да и выбрать способ подогрева, нужно прикинуть объем работ, материалов и стоимость всей затеи. Поможет в этом расчет теплого пола. Это только часть всего что надо. Ведь нужны будут еще термостаты, датчики температуры, в водяном полу — коллекторы и расходомеры.
Содержание статьи
Теплый или комфортный пол
Сразу стоит разобраться в терминологии и в назначении подогрева пола. Могут быть две ситуации:
Это разделение неофициальное, но так будет проще понять, какой именно подход вам выбрать при расчете и проектировании. А подходы разные, так как требования отличаются.
Теплопотери что это и где их взять
Расчет теплого пола делают по каждому помещению, в котором он будет уложен. Основан он на том, что вы знаете теплопотери дома в целом и в каждом помещении конкретно. Теплопотери — это то количество тепла, которое требуется возместить, чтобы поддерживать определенную/желаемую температуру. Теплопотери зависят от толщины и материала стен, от типа окон/дверей, от того как сделан пол, отапливаемое внизу помещение или нет, какой потолок, чердак, как это все утеплено. В общем, критериев масса. Учитывается все это в теплотехническом расчете.
Количество тепла для поддержания нужной температуры очень зависит от материала наружных стен и утепленияТеплотехнический расчет можно сделать самостоятельно (есть достаточное количество калькуляторов, методик), можно заказать в строительной организации. Для примерных прикидок можно воспользоваться усредненными нормами. Так считают, что для отопления одного квадратного метра в Средней полосе России требуется 100 Вт на квадратный метр площади. Это при условии, что утепление — среднее, высота потолков — 2,2-2,7 м, наружных стен не более чем две.
Примерные теплопотери для разных технологий строительстваЕсли утепление ниже среднего или потолки выше, регион более северный — эти показатели приводят к увеличению теплопотерь. Соответственно, наоборот, чем менее суровые зимы и лучше утепление, тем меньше требуется тепла. Подкорректировав таким образом норму, можно сделать более-менее точный расчет теплого пола, но всегда лучше взять с запасом — чтобы не мерзнуть.
Расчет водяного теплого пола
Водяной теплый пол — это трубы, уложенные в конструкции пола, по которым бежит теплоноситель. Это сложная система с большим количеством материалов и узлов. Обустройство водяного теплого пола — длительная и дорогостоящая затея. Но, в процессе эксплуатации, тепло обходится дешевле. По этим причинам водяной подогрев пола, обычно, делают в качестве основного или дополнительного источника тепла. Слишком много возни и затрат «только ради комфорта», но бывают и такие варианты. Водяной комфортный пол делают в процессе капитального ремонта или строительства. В таком случае слишком большой разницы нет.
Расчет водяного теплого пола проводят по каждой комнатеМетодика расчета водяного пола как основного источника тепла
При планировании теплого пола стоит заранее определиться с тем, где будут стоять крупные предметы мебели. Делать подогрев под шкафом или диваном не слишком разумно. К тому же это может повредить мебели. Определив зоны без подогрева, высчитываем «площадь рабочей поверхности» теплого пола. Этот тот участок, на котором будут укладываться трубы. В случае с водяным полом этим можно пренебречь, так как перегрев пола ни к чему не приведет. Если вы знаете, что теплопотери большие, то разумнее за «рабочую» принимать всю площадь. Так как метраж трубы получится большим, а ее надо как-то уложить.
Наиболее популярные схемы укладки труб водяного теплого пола. Оптимальный — улиткаДалее расчет теплого пола водяного типа такой:
- Выясняем какую температуру будем поддерживать в помещении.
- Находим теплопотери помещения.
- Делим теплопотери на «рабочую» поверхность. Получаем сколько тепла должны получать с квадратного метра площади теплого пола.
В принципе, уже тут можно подбирать диаметр трубы теплого пола, разрабатывать схему и шаг укладки труб, рассчитывать режимы работы котельного оборудования. Но стоит еще учесть тип напольного покрытия. Каждое покрытие «отбирает» часть тепла. Какие-то больше (ламинат, линолеум), какие-то меньше (плитка). Соответственно, требуется учесть и эти теплопотери.
Максимальная температура пола в зависимости от назначения помещенияПри расчетах надо будет определить температуру пола. Она не должна превышать нормы. Они регламентированы СНиПом. Выдержка приведена в таблице. Указаны максимально допустимые значения. Можно, конечно, и больше — если вы теплолюбивы, но закладывают более высокие значения редко. Если при расчетах оказывается, что температура пола слишком высока, надо либо уменьшать срочно теплопотери, либо устанавливать дополнительные источники тепла. Так расчет теплого пола помогает оптимально организовать отопление.
Пример расчета и подбора параметров водяного теплого пола
Пусть надо сделать подогрев пола в помещении площадью 18,2 квадратных метров (в таблице это помещение под номером 8) и теплопотерями 1,37 кВт. Для начала рассчитываем сколько тепла должен давать квадратный метр подогреваемого пола. Переводим К Вт в ватты. Для этого умножаем цифру на 1000. Получаем 1370 Вт. Теперь делим на площадь комнаты (или отапливаемой части, если они отличаются). В нашем случае 1370 Вт / 18,2 м² = 75 Вт/м². То есть, нам надо получать 75 Вт тепла с каждого квадратного метра.
Пример расчета теплопотерь по помещениямИдем на сайт выбранного производителя труб для теплого пола и смотрим, какие трубы вам подходят. Найти эти данные не так просто, так как зависит от толщины стяжки и рабочих температур теплоносителя. Исходя из этого считают теплоотдачу одного квадратного метра. Для простоты можно воспользоваться готовыми данными, сведенными в таблице. Например, для PE-X трубы диаметром 16 мм и толщиной стенки 2 мм.
В спальне нам нужна температура пола около 26°C, будет уложен ламинат. Теперь смотрим в таблице соответствующий столбик. Видим, что обеспечить такой режим можно только с шагом укладки трубы 100 мм и температуре подачи и обратки 50 и 40°C. С таким шагом при схеме укладки змейкой на один квадратный метр уйдет 9 метров трубы. А на всю площадь потребуется 9 м*18,2 = 163,8 метра трубы. Это очень длинный контур. Придется на одну комнату делать несколько контуров, а это дополнительные расходы на оборудование (гребенка, смесительные клапана, термостаты и т.д.). «Нормальной» считается длина одного контура 60-70 метров. Так что придется делать 2 контура.
Расчет трубы PE-X диаметром 16 мм и толщиной стенки 2 мм для теплого полаЕсть еще несколько вариантов. Первый — использовать трубу большего диаметра. 20 мм или 22-24 мм. Тогда можно будет уменьшить шаг укладки, сократить расход трубы и сделать меньшее количество контуров. Второй — сделать стяжку теплого пола с повышенной теплопроводностью. Для этого в раствор добавляют специальные добавки.
Если использовать «средние показатели»
На основании работы многих полов с водяным подогревом, опытным путем выведены «средние показатели» для различных напольных покрытий. Так известно, что используя трубу 16 мм в диаметре, с шагом 250 мм, со слоем ЦСП 30 мм над поверхностью трубы можно получить такое количество тепла:
- 50-65 Вт с квадрата если напольное покрытие керамическая плитка.
- 25-35 Вт с квадратного метра если использован ламинат.
- 35-45 Вт для линолеума, предназначенного под укладку на теплый пол.
Если использовать эти данные расчет теплого пола вообще простой. Берете квадратуру комнаты, умножаете на количество тепла, которое можно «снять» с квадрата. Если цифра больше либо равна теплопотерям, значит можно делать так *шаг 250 мм, труба 16 мм, ЦСП толщиной 30 мм над трубой. Если полученное значение меньше, можно проблему решить следующими способами:
- Добавить другой тип отопления.
- Взять большего диаметра трубу.
- Уменьшить шаг укладки трубы.
- Улучшить теплопроводность стяжки.
- Улучшить теплоизоляцию.
В принципе, можно применить один из вариантов, можно несколько. Самый здравый — улучшить теплоизоляцию, но сделать это далеко не просто, не быстро и далеко не дешево. Но это вложение позволит сэкономить на счетах за отопление, так что в длительной перспективе это самый разумный выход.
Как рассчитать как рассчитать мощность теплого пола для комфорта
Если теплый пол лишь для комфорта, особенно заботиться о его мощности нет необходимости. Надо исходить из комфортной температуры пола.
Средние температуры пола для разных покрытий, которые люди считают комфортнымиВообще для создания комфортной температуры шаг укладки трубы теплого пола берут 250 мм (межосевое расстояние). Выбирают любую схему укладки. Важно сделать пол без явно выраженных перепадов температур. Это достигается, если над трубой слой стяжки будет порядка 30-35 мм. Можно и больше, прогрев будет равномернее, но система будет более инерционной (дольше будет греться и остывать). Вообще, система водяного подогрева пола очень гибкая. Одну задачу можно решить несколькими способами. Важно найти оптимальное решение.
Как рассчитать электрический теплый пол
Методика расчета аналогична тому, что написано про водяной пол. Необходимо знать теплопотери и способ использования подогрева пола, мощность одного метра греющего элемента. В данном случае все несколько проще, потому что электрические материалы для нагрева пола имеют конкретную цифру, которой производители обозначают максимальную теплоотдачу. Больше заявленной цифры они выдать не в состоянии. Потому расчет теплого пола с электрическим подогревом более прост и понятен. Тем не менее, остается достаточное количество переменных величин. Это толщина стяжки, ее теплопроводность, теплопроводность финишного напольного покрытия. Их тоже надо учитывать.
Расчет зависит от мощности обогревателя на квадратный метрЭффективная площадь обогрева
Расчет теплого пола с электроподогревом начинают с определения эффективной зоны обогрева и ее площади. Большая часть нагревательных элементов не переносит перегрева (резистивные кабели, маты из резистивных кабелей, пленочные нагреватели и инфракрасные маты). Исключение — саморегулирующиеся греющие кабели, но они стоят дорого, поэтому их применяют редко. Хотя, есть и сами кабели и маты из них.
Еще раз: электрические греющие элементы пола укладывают только на той площади, где не будет стоять мебель и/или сантехника, лежать ковры и т.д. То есть, электрический теплый пол кладут там, где будет постоянный и определенный расход тепла.
Чтобы рассчитать кабель для теплого пола надо сначала определиться с площадью, на которой он будет укладыватьсяПеред началом расчета предполагаемые места под мебель/сантехнику/ковры очерчиваем, считаем оставшуюся площадь. Это и будет эффективная площадь обогрева. Ее дальше используем в расчетах.
Как рассчитать метраж греющего кабеля для пола
Методика расчета основывается на том количестве тепла, которое надо восполнить (теплопотери) и эффективной площади отопления. Теплопотери делим на эффективную площадь обогрева. Получаем требуемую тепловую мощность, которую мы должны получить с квадратного метра площади с уложенным нагревательным элементом.
Например, площадь комнаты 16 квадратов, на 4 квадратах будет располагаться мебель. Обогреваемая зона — 16 кв. м — 4 кв. м = 12 кв. м. Теплопотери помещения — 1100 Вт. Узнаем сколько надо мощности с одного метра: 1100 Вт / 12 м² = 92 Вт/м².
Расчет греющего кабеля по площади помещения и мощности метраДалее смотрим мощность кабелей для обогрева пола. Например, мощность одного метра — 30 Вт. Чтобы получить 92 Вт на квадратном метре, надо уложить чуть больше чем три метра кабеля. Вполне реальная задача. При разработке схемы, помните, что лучше, чтобы для стяжки высотой 3-4 см расстояние между проводами не превышало 25 см. Иначе пол будет иметь ярко выраженные «полосы» — чередующиеся зоны тепла и холода.
Есть и другой способ. Купить готовый набор кабеля определенной мощности. Ищите подходящую мощность и площадь укладки. Имеете все в комплекте.
Расчет теплого пола с кабельными матами
Суть расчета не изменяется. Также нужны теплопотери и эффективная площадь укладки. Это тот же кабель, но предварительно закрепленный на полимерной сетке. Такой обогревательный элемент проще в укладке. Применяется чаще всего под плитку. Просто раскатывается на подготовленное основание, сверху кладется плитка на специальный клей.
Греющие маты продаются обычно в готовом к укладке видеС полом такого типа все просто. Он продается кусками определенной мощности на определенную площадь. Всего-то и надо, что найти тот вариант, который вам подходит.
Рассчитаем пленочный теплый пол
Пленочный нагревательный элемент продают комплектами и на метры. Подбираете метраж и мощность так, чтобы он давал требуемое количество тепла. Полотнища пленки должны укладываться вплотную друг к другу. Это необходимо, чтобы избежать «полосатости» температур.
Теплый пол пленочный. Расчет очень прост: подбираем мощность и ширину так, чтобы давали они требуемое количество теплаШирина пленочного теплого пола — 30 см, 50 см, 80 см и 100 см. Вполне можно в одном помещении использовать разные по ширине. Важно чтобы нагревательные элементы не перегревались.
chudopol.ru
Расчет теплого пола для водяного отопления
Я приветствую моего постоянного читателя и предлагаю вашему вниманию статью об устройстве теплого пола – практически идеального по комфортности способа обогреть дом или квартиру.
Но трубопроводы, размещенные в полу, – сложная инженерная система, намного более сложная, чем традиционная радиаторная система. Поэтому для монтажных работ обязательно потребуется расчет теплого пола, и в этой статье я расскажу, как выполнить расчеты и какие правила монтажа при этом необходимо учитывать.
Способы установки теплого пола
Монтаж водяного теплого пола выполняется двумя способами: настильным и в бетонной стяжке. Оба способа имеют свои преимущества и недостатки.
Бетонный
Чаще всего встречается монтаж теплого пола в цементно-песчаной стяжке. Такая стяжка хотя и медленно прогревается, поскольку имеет большую массу, но обладает хорошей теплопроводностью. Конечно, цемент и песок не сравнить с металлами, но настолько быстрая теплоотдача для теплого пола и не требуется. Большая инерционность позволяет создать равномерный обогрев помещения снизу, практически не зависящий от скачков температуры теплоносителя при включении-выключении котла.
Конструктивно теплый пол имеет следующие слои:
- Гидроизоляцию.
- Теплоизоляцию.
- Трубопровод, залитый цементно-песчаным раствором.
- Напольное покрытие.
Недостатком бетонного способа – большой вес, значительный объем трудоемких «мокрых» работ, большой срок созревания раствора – 4 недели. Только полностью созревший бетон приобретет нормативную прочность и не будет выделять влагу.
Настильный
Настильный вариант монтажа отопления используется в деревянных домах или в домах с деревянными перекрытиями. Способов сборки теплого пола существует множество:
- Укладка утеплителя и трубопроводов между лагами. Годится для пола первого этажа на плитном фундаменте.
- Монтаж всех конструкций по черновому полу.
- Использование готовых модулей из полистирола и ОСП.
- Устройство пазов для труб с помощью досок, полос ОСП, фанеры и других доступных материалов. Этот вариант более дорогостоящий, чем использование цемента и песка.
Монтаж по сравнению с бетонным методом более легкий и чистый, но трудоемкость также достаточно велика. Процесс упрощает применение пенополистирольных модулей с пазами под трубопровод.
Способ требует больших расходов на отопление – трубы покрываются досками или ОСП, имеющими невысокую теплопередачу, поэтому температура теплоносителя должна быть выше.
Какой способ лучше
Укладка теплого пола в цементном растворе предпочтительнее по двум причинам:
- Напольное покрытие укладывается на прочную и идеально ровную поверхность. При укладке настильным способом и покрытии из ламината, плитки или линолеума необходимо настил с трубопроводами перекрывать дополнительно ОСП, фанерой, тонкой доской 25 мм. Увеличиваются расходы на отопление и монтаж.
- Трубы в стяжке удалены от напольного покрытия, прогревается сначала стяжка, затем стяжка передает тепло покрытию. Несколько сантиметров цементного раствора имеют немалую инерционность, и поверхность прогревается практически равномерно. При настильной укладке и поверхность прогревается менее равномерно – в морозы при повышении температуры теплоносителя это может быть некомфортно.
Применение того или иного способа монтажа чаще всего определяется материалом строительных конструкций помещения, которое будет отапливаться.
На бетонные перекрытия или плиту фундамента практичнее всего уложить утеплитель и залить раствор (если конструкции перекрытия выдержат). Стяжка имеет минимальную толщину 70 мм, ее вес составляет примерно 150 кг на 1 м² перекрытия.
В доме при устройстве отопления на втором этаже необходимо обратиться к специалисту-строителю и посчитать, выдержит ли перекрытие нагрузку от стяжки. По этой же причине при устройстве отопления в бетонной стяжке в квартире требуется согласование с коммунальными организациями, у которых на балансе находится ваш дом.
При заливке плитного фундамента в частном доме, при строительстве нового и термомодернизации старого жилья также необходимо сделать расчет дополнительной нагрузки.
Необходим расчет, на какую высоту можно поднять уровень пола. Подъем напольного покрытия примерно на 150 мм приведет к понижению уровня потолка и уменьшению высоты дверей, да и окна опасно приблизятся к полу. При настильном способе можно сделать конструкции меньшей высоты.
При монтаже теплого пола в здании с деревянными перекрытиями и на первых этажах вообще вариантов нет: доступен только настильный способ. Нагружать деревянные перекрытия стяжкой невозможно, к тому же полы из досок на лагах прогибаются при динамической нагрузке, и любой раствор рано или поздно потрескается. Зато в пространство между лагами отлично укладывается утеплитель – повышение уровня пола будет не столь критичным.
В идеальном случае устройство теплого пола учитывают еще на этапе проектирования строительных конструкций жилья. Расчет отопительной системы также лучше доверить профессионалам – при погрешностях подсчетов в комнате может быть недостаточно тепло, а увеличить мощность системы практически нереально. Это не традиционная система с радиаторами, где можно добавить греющий элемент в любой точке системы.
Способы укладки трубы для теплого пола
Существуют 4 основных способов укладки трубопроводов:
- Змейка. Трубопровод теплого пола размещается параллельно. Прогрев помещения неравномерный.
- Угловая змейка. Труба укладывается в углу с поворотом, участки располагаются параллельно первым отрезкам.
- Двойная змейка. Начало и конец контура укладываются параллельно. Из всех змеек обеспечивает относительно равномерный прогрев помещения.
- Улитка, ракушка, спираль. Начало и конец контура укладывается параллельно и по спирали. Улитка обеспечивает равномерное распределение тепла.
Какой способ укладки стоит выбрать
Способ определяется в зависимости от формы и площади помещений.
Для небольших помещений типа коридоров, ванных комнат, санузлов удобнее использовать змейку, для небольших комнат с одной наружной стеной – двойную змейку. В больших помещениях целесообразнее использовать улитку или комбинированные способы.
При комбинировании обычно змейкой прокладывают теплый пол вдоль наружных стен или в углу, отсекая холодный воздух от наружных стен и окон. Улиткой размещают трубопроводы в основной части достаточно большого помещения.
При укладке теплого пола необходимо учитывать, что нельзя размещать коммуникации под мебелью. Желательно монтировать трубы с меньшим шагом в местах работы или отдыха, игровых зонах, детских комнатах, возле письменных и компьютерных столов, мягких уголков, фортепиано, местах, где что-либо мастерят, шьют и т.д.
Исходные данные для расчета
Для правильного расчета теплопотерь через пол, крышу, стены, окна, двери необходимо обращаться к квалифицированным строителям. При подсчетах учитываются:
- Площадь и планировка здания, состав помещений – количество ванных, детских, вспомогательных и буферных помещений.
- Материал стен, потолка, фундамента.
- Утепление дома, перекрытий и фундамента.
- Конструктив и отделка стен определяет кратность воздухообмена и потери тепла на нагрев воздуха, поступающего при вентиляции помещения.
- Количество, площадь и конструкция окон и дверей.
- Этажность здания, наличие цокольного этажа, гаража или подвала, конструктив второго этажа (мансарда или полноценный этаж).
- Климат региона (средние и минимальные зимние температуры).
- Количество людей, проживающих в доме.
- Наличие дополнительных систем отопления и источников тепла (печей, каминов, радиаторной системы).
Определение параметров теплого пола
Основные параметры системы теплого пола – диаметр труб, длина и количество контуров, расстояние между трубами, температура теплоносителя на входе и на выходе контура. Конечная цель всех теплотехнических расчетов – определение параметров системы, обеспечивающих комфортный температурный режим в доме. Выяснение теплопотерь здания (комнаты), необходимой тепловой мощности системы отопления – промежуточные цели расчетов.
Методика расчета потерь тепла
Для частных домов площадью от 50 до 150 кв. м вполне можно воспользоваться примерными расчетами. Следует иметь в виду, что эти примерные расчеты верны для современных утепленных домов – из пено- или газобетона, керамического блока или утепленных теплоизоляционными материалами слоем не меньше 200 мм.
Для старых домов с толщиной стены «в два кирпича», «в один шлакоблок» эти данные не подходят. Если собираетесь в дальнейшем утеплить дом, а пока дошла очередь только до заливки плитного фундамента внутри старого дома и устройства теплого пола, то можно воспользоваться этими данными, но временно отапливать и с помощью водяного теплого пола, и радиаторами. При сильных морозах или в северных регионах России одного напольного отопления может не хватить.
Данные для ориентировочных расчетов теплопотерь отдельных комнат в частном доме:
- Для комнаты с 1 окном и 1 внешней стеной принимают теплопотери 100 Вт с 1 м² площади.
- Для комнаты с 1 окном и 2 наружными стенами принимают теплопотери 120 Вт с 1 м².
- Помещение с 2 окнами и 2 внешними стенами – теплопотери 130 Вт с 1 м².
Теплопотери каждой комнаты высчитывают, умножив площадь на потери 1 м² и коэффициент 1,2 – потери на нагрев стяжки и нижележащих конструкций. Если ваш дом находится в северных районах или Сибири, увеличьте потери еще на 20% (коэффициент 1,2). Рассчитанные по площади потери умножают на оба коэффициента (т.е. на 1,44).
По более точной формуле получают расчет теплопотерь через конструкции дома. В интернете полно онлайн-калькуляторов, с помощью которых можно рассчитать точно все теплопотери дома.
Общие теплопотери равны сумме потерь через пол, стены, окна и потолок и потерь на нагрев поступающего воздуха.
Qобщ = Qтп + Qв
Формула для расчета теплопотерь через конструкции (параметр определяется отдельно для всех стен и других элементов – потолка, окон, дверей):
Q = 1/R * ∆t* S *k
- R – сопротивление теплопередаче – табличное значение. Можно рассчитать как отношение толщины конструкции и коэффициента теплопроводности материала конструкции (табличное значение).
- ∆t — разница температур внутри и снаружи здания, ∆t = tв — tн, tн – применяют минимальную зимнюю температуру в вашей местности.
- S – площадь конструкции (наружная, с захватом углов здания).
- k – коэффициент, зависящий от ориентированности наружной стены по сторонам света. Для юга и юго-запада k равен 1, для запада и юго-востока – 1,05, для остальных направлений – 1,1.
Коэффициенты теплопроводности несложно найти в справочниках, ниже в таблице приведены коэффициенты некоторых ходовых материалов.
Наименование материала | Коэффициент теплопроводности, Вт/(м*°С) |
Бетон | 1,5 |
Красный пустотелый кирпич | 0,35 |
Керамические блоки | 0,14 |
Силикатный кирпич | 0,7 |
Газобетон | 0,12-0,3 |
Древесина | 0,1-0,15 |
Пенополистирол | 0,028-0,043 |
ОСП | 0,14 |
Железобетон | 1,69 |
Соответствующие коэффициенты для окон можно узнать у организации-производителя или установщика.
Необходимое тепло на нагрев воздуха
Для более точного расчета мощности системы теплого пола необходимо также учитывать тепло, необходимое для нагрева воздуха, поступающего в помещение и удаляемого через вентиляцию:
- V – объем комнаты, м³.
- K – воздухообмен.
- С – удельная теплоемкость воздуха, при 20 °С равна 1005 Дж/кг*К.
- P – плотность воздуха при нормальных условиях (давлении 1 атм и температуре 20 °С), Р=1,2250 кг/м³.
- Δt – разница температур в помещении и вне его.
- 3600 – для перевода МДж в кВт*ч: 1 кВт*ч= 3,6 МДж.
- 1,1 – коэффициент для учета потерь через щели, двери и т.д.
Воздухообмен для всех жилых помещений принимают кратным единице в час. Для помещений с повышенной влажностью – ванных, саун, санузлов – кратным 2.
Например, для комнаты площадью 20 м, высотой 3 м, при температуре вне помещения -20°С, в помещении +20°С, тепло, необходимое для нагрева воздуха, будет равно:
Расчеты проводят для самой холодной зимней температуры.
Пример расчета
Рассчитаю для примера сумму теплопотерь комнаты с одним окном, одной наружной стеной, площадью 20 м², высотой 3 м. Площадь окна 2 м², площадь наружной стены 12 м², стены – газобетон толщиной 300 мм. Ориентация – северо-запад. Пол и потолок утеплены пенополистиролом слоем 200 мм. Самая холодная температура зимой -20°С.
R – сопротивление теплопередаче газобетона – равен 0,3/0,15 = 2, где 0,3 – толщина стены, 0,15 – коэффициент теплопроводности.
- Qнар. стены = 1/R * ∆t* S *k = (1*40*10*1,1)/2= 440 Вт.
- Qокна = 1/R * ∆t* S * k = (1*40*2*1,1)/0,5 = 176 Вт.
- Q потолка = 1/R * ∆t* S * * k = (1*40*20*1,1)/67= 14 Вт, где R для слоя пенополистирола = 0,2/0,03 = 67.
Если для утепления используется толстый слой пенополистирола или минваты, то сопротивлением остальных конструктивных элементов стены, пола или потолка можно пренебречь.
Q потолка = Q пола= 14 Вт
Общие теплопотери равны сумме потерь через пол, стены, окна и потолок и потерь на нагрев поступающего воздуха.
Qобщ = Qтп + Qв= 440+176+14+14+887= 1531 Вт
Расчет необходимой мощности контура (см. ниже):
Qк= Qобщ*1,2 = 1531*1,2= 1837 Вт
Расчет мощности контура
Расчет необходимой мощности контура (и котла) теплого пола производится с учетом потерь:
Qк= Qобщ*1,2,
где коэффициент 1,2 применяется для учета потерь тепла (например, на нагрев стяжки, коллектора и т.д.).
Расчет необходимого количества труб
Точный расчет количества труб зависит от множества параметров: температуры и скорости теплоносителя, материала, диаметра и толщины стенки труб, необходимой мощности системы, числа контуров в помещении, мощности насоса. Поэтому точный расчет лучше доверить специалистам.
Для примерных расчетов предлагаю таблицу.
Шаг, см | Диаметр, мм | Средняя температура теплоносителя, °С | Количество трубы на 1 м², м.п. | Количество трубы на 20 м², м.п. |
10 | 20 | 31,5 | 10 | 200 |
36 | 32,5 | |||
15 | 20 | 33,5 | 6,7 | 134 |
36 | 35 | |||
20 | 20 | 36,5 | 5 | 100 |
36 | 37,5 | |||
25 | 20 | 38,5 | 4 | 80 |
36 | 40 | |||
30 | 20 | 41,5 | 3,4 | 68 |
При расчетах теплого пола отталкиваются от частоты укладки, обеспечивающей использование теплоносителя с температурой 37°С, тогда на поверхности пола температура не будет превышать нормативные 26°С. Длину трубопровода на 1 м² берут из таблицы – 5 м.п. на 1 м². Реальную пересчитывают с помощью коэффициентов.
Для угловых комнат с одним окном умножают эту длину на 1,2; с двумя окнами – на 1,3. Умножают на региональный коэффициент. Для центральных районов России – 1,2-1,3, для Сибири и Севера – 1,5-2, для южных – 0,7-0,9.
Например, для угловой комнаты площадью 24 м² с двумя окнами и в холодном регионе России протяженность трубопровода будет:
Выбор шага укладки
Шаг укладки зависит от получившейся длины трубопровода (см. выше). Сначала рассчитывается, сколько метров надо отопить – отапливаемая площадь комнаты за вычетом мебели, например, 20 м²). Затем рассчитывается фактическая длина трубы на один квадратный метр пола:
При раскладке труб по полу шаг можно варьировать – при шаге в 15 см в зоне мягкого уголка будет немного теплее, а при шаге 20 см в центре помещения – немного прохладнее.
Расчет циркуляционного насоса
Для выбора подходящего циркуляционного насоса необходимо определить основные параметры – напор и расход (производительность). Расход теплоносителя рассчитывается по сумме расхода всех контуров. Напор принимается максимальный в самом протяженном контуре.
Для вычисления производительности в системах с теплоносителем-водой используют следующую формулу:
Рк = 0,86*Pн/(tпр – tобр), где
- Pн — мощность отопительного контура, кВт, складывают мощность всех контуров.
- tобр — температура теплоносителя в обратке.
- tпр — температура подачи.
Разницу температур принимают обычно равной 5 °С.
Напор насоса рассчитывают по самому длинному контуру. Используют формулу:
∆ Н = L х Q² / k, где
- ∆ Н – гидравлические потери.
- L – длина контура.
- Q – расход воды в л/с.
- k – коэффициент расхода, для приближенных расчетов частного дома принимают 0,3-0,4 л/с.
Напор насоса должен быть равен или немного больше значения гидравлических потерь. Для обеспечения различных режимов работы обычно выбирают трехскоростные насосы, причем выбор осуществляют по параметрам при работе на второй скорости (чтобы был запас мощности на случай холодов).
Рекомендации по выбору толщины стяжки
Минимальная толщина стяжки – 50 мм над системой теплого пола. Она же и оптимальная. 50 мм стяжки обеспечивают достаточно прочное покрытие и в то же время ограничивают инерционность системы.
Большая толщина стяжки чрезмерно нагружает конструкцию и давит на трубопроводы, а также увеличивает трудозатраты и время вызревания бетона. Поэтому без необходимости не следует утолщать стяжку.
Применение более толстой стяжки оправдано только в том случае, если необходимо выровнять разноуровневый пол или в производственных помещениях с большой динамической нагрузкой на пол. При толщине заливки 80-100 мм желательно прокладывать трубопроводы в защитном чехле из гофры.
Нежелательно и уменьшать толщину стяжки менее 40 мм над уровнем теплого пола – слой раствора защищает трубы от давления мебели и от нагрузки при движении людей или крупных животных.
Этапы установки пола
До укладки утеплителя пол необходимо тщательно выровнять. Затем укладывается утеплитель, гидроизоляция, трубы, заполняются теплоносителем, опрессовываются, заливаются раствором. После созревания раствора монтируется напольное покрытие.
Установка теплоизоляции
В качестве теплоизоляции используют прочный вспененный экструдированный (экструзионный) полистирол (пеноплекс, пенопласт, пенополистирол) с плотностью не менее 30-35 кг/м³. Пенополистирол обладает не только высокой прочностью, но и не впитывает влагу, не гниет, плохо поддерживает горение.
Толщина пенополистирола в межэтажных перекрытиях должна составлять не менее 100 мм, на фундаменте – не менее 200 мм. Иногда применяют специальные плиты для теплого пола с пазами под трубопроводы и покрытые фольгой. Вдоль стены закрепляется демпферная лента или полоска пенофола подходящего размера.
Установка гидроизоляции
На теплоизоляционные плиты укладывают гидроизоляционную пленку. Бывают варианты с разметкой в виде квадратов, фольгированные.
Укладка и закрепление труб
На гидроизоляцию укладывают трубы теплого пола в соответствии со схемой. Гибку труб при укладке выполняют при помощи шаблона или трубогиба, нужно следить, чтобы не было перегибов, трещин, складок.
Желательно составить схему и сделать расчеты так, чтобы длина контуров не превышала 100 м. При увеличении метража насос не будет продавливать теплоноситель, и температура этого контура уменьшится.
Если теплоизоляционные плиты не имеют пазов, то трубы крепят к плитам специальными шпильками или скобами, или с помощью монтажных планок с замками. Трубопровод, даже с водой, имеет меньшую плотность, чем цементный раствор, и при заливке будет подниматься («всплывать») наверх. Поэтому теплый пол нужно закреплять в нижнем положении.
Опрессовка
После укладки коммуникации обрезают возле коллектора, с помощью фитингов присоединяют к коллектору, заполняют трубопровод водой. Давление доводят до 0,6 МПа (придется использовать отдельный насос) и оставляют систему с водой на сутки-двое. В первые дни объем воды в трубопроводе может немного увеличиваться. Температуру также доводят до рабочей. Несколько раз стравливают воздух и добавляют воду.
Заливка бетонным раствором
После опрессовки укладывают сетку с ячейкой 50×50 мм и заливают систему раствором. Трубопровод при этом должен быть заполнен теплоносителем под давлением 0,3 МПа, или 3 атм. Для приготовления раствора используют специальную смесь или в обычную цементно-песчаную смесь добавляют пластификаторы для теплого пола.
Желательно накрыть стяжку полиэтиленом или увлажнять поверхность раствора. Но в больших комнатах увлажнять невозможно, поэтому применение полиэтилена предпочтительней. Уже через 10 дней по стяжке можно пройти, но стелить напольное покрытие можно только через 3 недели – до того раствор будет выделять влагу.
Как и где необходимо устанавливать коллекторный шкаф
Коллекторный шкаф устанавливают либо в котельной, либо в подсобных помещениях – коридорах, кладовых. Оптимальное место – в центре отапливаемого этажа (чтобы уменьшить длину коммуникаций). В большом доме придется устанавливать больше одного коллекторного шкафа. При выборе места следует учитывать, что в узле подмеса находится насос, который при работе негромко шумит. Поэтому в жилых комнатах коллекторные шкафы не устанавливают.
Заключение
До свидания, мой любимый читатель. В этой статье описаны принципы расчета системы теплого пола. Если вы собрались монтировать отопление своими руками, сможете и рассчитать систему. Хотя для большого дома лучше доверить расчеты специалистам. Приводите на сайт новых читателей, делитесь интересной информацией с друзьями в соцсетях.
vseotrube.ru
Оптимальный шаг укладки теплого пола: Виды труб и расчет
Водяной теплый пол уже достаточно долгое время занимает лидирующие места на потребительском рынке. Он достаточно надежен и экономичен при эксплуатации, имеет качественный обогрев здания и удобен при использовании. Но все эти качества напрямую зависят от правильного расчета рабочего материала, на который влияет шаг укладки труб водяного теплого пола.
Виды трубопроводов для водяной системы
В настоящее время потребительский рынок предлагает несколько вариантов материалов и комплектующих для водяной системы отопления. При выборе трубопровода для теплого пола, нужно отталкиваться от их стоимости, характеристик и срока эксплуатации.
Рассмотрим самые распространенные виды трубопроводов и их характеристики.
Полипропиленовые
В магазине стройматериалов можно встретить два варианта труб из полипропилена, такие как металлополимерные и полимерные. Характеризуются они хорошей устойчивостью к коррозии, стойкостью к абразивному действию теплоносителя и прочному верхнему слою, который не деформируется при контакте с цементным раствором. Производители металлопластиковых трубопроводов гарантируют, что они прослужат около 40 – 45 лет, полимерные изделия более – 50 лет.
Полиэтиленовые
Отличительной особенностью этих труб заключается в том, что для провидения монтажа не понадобятся комплектующие соединения. Стыковка изделий осуществляется с применением паяльника. Для эластичности трубопровода, достаточно будет прогреть его феном. Полиэтиленовые изделия надежны и прочны, но для водяного пола они должны обязательно иметь армирующий слой. В среднем срок эксплуатации трубопровода составляет – 50 лет.
Нержавеющие
Гофрированные трубы из этого материала считаются самыми долговечными, срок их эксплуатации до сих пор не установлен. Они не поддаются коррозии, не деформируются от высокой температуры и не перемерзают при заморозках. Гибкость материала, позволяет трубопровод укладывать шагом разной величины, что упрощает монтажные работы. Единственным недостатком нержавеющих труб считается то, что их уплотнительные резинки имеют эксплуатационный срок всего 30 лет.
Медные
По отзывам потребителей, трубы из этого материала имеют самую высокую теплоотдачу. С ними можно использовать такие теплоносители как тосол или антифриз. Они удобны в эксплуатации. За счет своего оптимального размера, при монтаже не снижается прочность бетонной стяжки. Срок их эксплуатации около 60 лет.
Помимо приведенных характеристик, при выборе труб для укладки теплого пола, необходимо обратить на их технические параметры. Они должны соответствовать следующим требованиям:
- Линейное расширение не более — 0, 055 мм/мК;
- Теплопроводность не менее – 0,43 Вт/мК;
- Диаметр – от 1,6 см до 2 см.
Также стоит обратить внимание на их предназначение. Многие новички допускают большую ошибку, выбирая для теплых полов, обычные водопровода для горячей воды. Поэтому, перед покупкой очень важно ознакомиться с прилагаемой инструкцией, где можно будет убедиться, что изделие подходят для системы отопления.
Способы укладки труб под напольным покрытием
Укладку теплоносителей водяного пола, можно выполнить несколькими способами. Самыми распространенными укладками считаются «улитка» и «змейка». Каждый вид имеет свои преимущества и недостатки, поэтому стоит рассмотреть их более подробно.
Улитка
Такой метод укладки еще называют – ракушка. Выполняется контур по полу в форме спирали так, чтобы между теплоносителями проходила обратка, по которой будет протекать остывшая жидкость. Такой способ монтажа достаточно прост, для того чтобы его выполнить без услуг специалиста. Однако, при большом шаге укладки водяного теплого пола, появятся холодные зоны на основании помещения. Поэтому шаг между трубопроводами не должен превышать 10 см.
Змейка
Такой монтаж теплоносителей может выполняться обычной или двойной укладкой по всей площади помещения в виде колец. Самостоятельно выполнить такую укладку достаточно сложно, поэтому были разработаны специальные маты для крепления труб со специально фиксирующими элементами. Поэтому при выборе этого метода, стоит быть готовым к дополнительным затратам. Но если учесть то, что шаг укладки труб теплого пола выполняется на большем расстоянии, можно будет значительно сэкономить на затратах трубопроводов.
И так, определившись с выбором и укладки труб водяного теплого пола, можно непосредственно приступить к подготовке расчета длины рабочего материала, для определенной комнаты помещения.
Данные для расчета длины трубопровода
Для того, чтобы рассчитать длину трубопроводов для определенного пространства помещения понадобятся следующие данные: диаметр теплоносителя, шаг укладки трубы теплого пола, обогреваемая поверхность.
Длина трубы для контура
Длина теплоносителя напрямую зависит от внешнего диаметра трубы. Поэтому, если на начальном этапе упустить этот момент расчета, появятся затруднения с циркуляцией воды, что в свою очередь приведет к некачественному обогреву пола. Рассмотреть допускаемые нормы сечения трубы теплого пола и его длинны можно по следующей схеме.
Внешний диаметр трубы | Максимальная величина трубы |
1,6 – 1,7 см. | 100 – 102 м. |
1,8 – 1,9 см. | 120 – 122м. |
2 см. | 120 – 125 м. |
Но так, как контур должен быть выполнен из цельного материала, на количество контуров для обогревающей площади, будет влиять шаг укладки водяного теплого пола.
Шаг укладки теплого пола
От шага укладки будет зависеть не только длина трубопровода, но и мощность теплоотдачи. Поэтому при правильно произведенном монтаже теплоносителей можно будет сэкономить на потребляемой энергии теплых полов.
Рекомендуемый шаг укладки труб теплого пола считается 20 см. Этот показатель обуславливается тем, что при его применении происходит равномерный обогрев пола, а также упрощаются монтажные работы. Помимо этого показателя также допускаются следующие нормы: 10 см. 15 см. 25 см. и 30 см.
Приведем наглядный пример, расход трубопровода при оптимальном шаге теплого пола.
Шаг, см. | Расход рабочего материала на 1 кв.м., м. |
10 — 12 | 10 – 10,5 |
15 — 18 | 6,7 – 7,2 |
20 — 22 | 5 – 6,1 |
25 — 27 | 4 – 4,8 |
30 — 35 | 3,4 – 3,9 |
При более плотной укладке повороты изделия будут петлеобразные, что затруднит циркуляцию теплоносителя. А при большем шаге монтажа прогрев помещения будет не равномерным.
Онлайн калькулятор для расчета
Так как контур теплого пола должен максимально захватывать общую площадь помещения, необходимо составить схему его расположения. Для этого понадобится миллиметровый лист бумаги и карандаш. Схема составляется в следующем порядке:
- На бумаге рисуется общая площадь помещения.
- Измеряются размеры габаритной мебели и напольной электротехники.
- В соответствующем расположении все измерения переносятся на бумагу.
- Категорически запрещено, чтобы теплоноситель проходил с близким расположением к стенам, поэтому вдоль всей нарисованной площади делается отступ в 20 см.
Заштриховав все нанесенные измерения и отступы, можно визуально посчитать площадь помещения, где будут располагаться теплоносители.
Итак, зная все необходимые данные, можно приступить к непосредственному расчету рабочего материала системы отопления.
Высчитывается длина по следующей формуле:
Д = Р/Т ˟ k, где:
Д – длина трубы;
Р – обогреваемая площадь помещения;
Т – шаг трубы для теплого водяного пола;
k – показатель запаса, находящийся в промежутке 1,1-1,4.
Рассмотрев всю последовательность расчета трубопровода для водяной системы, можно сделать вывод, что выполнить его не так уж и сложно. При его выполнении самое главное придерживаться рекомендуемых норм шага укладки контуров и площадь обогреваемой поверхности. Если же упустить эти показатели из вида, можно будет не только переплатить при покупке рабочего материала, но и не получить желаемого обогрева жилого помещения. АдминАвтор статьи Понравилась статья? Поделитесь с друзьями:
tepliepol.ru
Калькулятор расчета длины трубы для теплого пола
Подогрев напольного пространства используется как для создания дополнительного источника тепла, так и для устройства полноценного обогрева. Последнее решение особенно актуально для помещения без возможности проводки центрального отопления.
Ниже располагается форма калькулятора расчета трубы для теплого пола. Для проведения расчетных операций достаточно заполнить основные поля и выбрать предполагаемый шаг укладки.
[CP_CALCULATED_FIELDS id=”25″]
В основе калькулятор лежит формула, которая базируется на общей площади помещения. То есть для выполнения расчетных операций достаточно знать лишь длину и ширину помещения, а также расстояние, через которое будут монтироваться обогревательные элементы.
Данный калькулятор можно использовать как для расчета длины трубы теплого водяного пола, так и для электрических кабельных обогревательных систем. Важно – онлайн программа не учитывает количество трубы, которое потребуется для соединения с коллекторным узлом. Расчеты справедливы только для схемы укладки под названием “змейка”.
Какие типы труб использовать
Металлопластик обладает идеальным соотношением цены к качеству
Устройство теплого водяного пола можно сделать с использованием труб разного типа. Выбор соответствующего типа зависит от таких качеств, как теплопроводность, гибкость и долговечность.
В общих случаях принято использовать трубы из следующих материалов:
- металлопластик – полиэтиленовая труба усиленная алюминиевой прослойкой. Слой алюминия обеспечивает жесткость, прочность и увеличивает теплообменные качества. Металлопластик достаточно легко сгибается для формирования необходимых углы и изгибы;
- полипропилен – прочные, жесткие и надежные трубы. Помимо теплого пола применяются для сооружения канализаций. Изготавливаются из статического сополимера с маркировкой PP-R;
- сшитый полиэтилен – трубы из полиэтилена, сшитого на молекулярном уровне. В результате получается цельная труба со структурой в виде трехмерной сетки. Имеют высокую прочность и устойчивость к химическим растворителям. Легко гнуться, выдерживают рабочую температуру до 95 °C;
- медь – дорогие и технологически сложные в укладке. Обладают наиболее высокой теплопроводностью, но подвержены процессам коррозии. При плохом соединении очень быстро дают течь.
Если не вдаваться в детальное сравнение всех плюсов и минусов, то наиболее оптимальным типом труб являются изделия из металлопластика. Их отличает сравнительно низкая стоимость, простота укладки и высокая надежность.
Схема укладки труб
Три наиболее популярных схемы укладки обогревательных элементов
Как было сказано выше расчет количества трубы теплого пола при помощи калькулятора справедлив только для укладки “змейка” и “обратная змейка”. Помимо данной схемы существует, как минимум, две другие.
“Змейка” – это наиболее простая схема, которая хорошо подходи для небольших помещений прямоугольной формы. Наиболее часто используется при монтаже водяного пола, который будет выступать в качестве дополнительного обогрева помещения.
Главный минус такой схемы в неравномерности прогрева. То есть наибольшая температура прогрева будет в местах, где расположены изгибы, идущие от коллектора. По мере удаления теплоноситель остывает, что выражается в потере его температуры.
“Улитка” или укладка по спирали лишена данных минусов, так как в данном случае комбинируются теплые и холодные изгибы. Тем самым достигается равномерность прогрева пола по всей его площади.
“Обратная змейка” частично имеет похожий принцип. Внешний рукав – это трубы от коллектора, а внутренний – трубы с остывающим теплоносителем. Визуальное представление каждой из схем можно увидеть на фото выше.
На что влияет шаг укладки
Расстояние между трубами влияет на мощность и равномерность прогрева напольного пространства
Шаг укладки напрямую влияет на степень теплоотдачи от контура. Чем меньше шаг, тем большее количество трубы поместится на единицу площади. Уменьшение и увеличения шага позволяет подобрать наиболее оптимальную мощность теплого пола под конкретные условия.
Стандартная градация при укладке – это увеличение шага на 5 см. Минимальное расстояние между изгибами равно 10 см, что достаточно для отопительных систем, выступающих в роли центрального и единственного отопления.
Шаг в 20 и более сантиметров используется только при создании теплых полов для временного и дополнительного обогрева. Допускается использование неравномерного расположения рукава.
К примеру, это часто применяется в угловых помещения, когда требуется проложить рукав от коллектора вдоль холодных стен. Далее по мере удаления от угловых сопряжений шаг увеличивается. В итоге получается, что наибольшая температура прогрева будет у холодной стены.
В калькуляторе расчета длины трубы уже включена величина шага от 10 до 40 см. При необходимости можно выбрать значение “Произвольная величина” и внести свои данные. Все вносимые данные имеют размерность в метрах. Для разделения следует использовать “точку”.
Читайте также:
otdelkaexp.ru