Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Требования к сопротивлению изоляции – ГОСТ Р 50571.16-2007

Содержание

2.4.2 Требования к электрической прочности и сопротивлению изоляции

Требования к электрической прочности и сопротивлению изоляции регламентируются ГОСТ 12.2.091-94.Изоляция между корпусом и изолированными от корпуса электрическими цепями, доступ к которым возможен без вскрытия амперметра должна выдерживать в течении 1 минуты действие испытательного напряжения переменного тока частотой 50 Гц значение которого на пределах измерения составляет:

1й,2й пределы – 1,5 кВ;

3й,4й,5й,6й пределы – 2 кВ.

Сопротивление изоляции между корпусом и изолированными электрическими цепями должно быть не менее:

20 МОм – в нормальных условиях применения;

5 МОм – при верхнем значении температуры окружающего воздуха в рабочих условиях применения и относительной влажности воздуха не более 80 %;

2 МОм – при температуре окружающего воздуха (20±5)°С и при верхнем значении относительной влажности воздуха, соответствующей рабочим условиям применения.

Электрическая изоляция цепи питания и выходных цепей амперметра выдерживает без пробоя испытательное напряжение переменного тока частотой (50±1) Гц (среднеквадратическое значение).

2.4.3 Требования к конструктивному устройству

  • единицы измеряемой величины, наносимой на СИ должна соответствовать ДСТУ 3651.0-97, ДСТУ 3651.1-97, ДСТУ 3651.2-97;

  • шкала устройства должна соответствовать ГОСТ 5365-83, ГОСТ 26.008-85, ГОСТ 26.020-80;

  • кабель сетевого питания СИ должен быть длиной не менее 1,5 м; штепсельную вилку выбирают по ГОСТ 7396.1-89;

  • в цепи электропитания устройства должны быть установлены плавкие предохранители, доступ к которым должен быть обеспечен без вскрытия СИ;

  • габаритные размеры устройства 140х195х105мм;

      1. Требования к электропитанию

Питание амперметра осуществляется от сети переменного тока частотой 50 Гц и напряжением (220±22) В.

Предельное отклонение частоты питающей сети и содержание гармоник регламентируется ГОСТ 13109-87.

2.4.5 Требования к надежности

Согласно ГОСТ 27883-88 устанавливаем показатели надежности:

– средняя наработка на отказ ;

– вероятность безотказной работы за 1000 ч ;

– средний срок службы 10 лет;

– среднее время на восстановление .

2.4.6 Требования к безопасности при монтаже, эксплуатации и ремонте

Требования безопасности при монтаже, эксплуатации и ремонте регламентируются ГОСТ 12.2.091-94, ГОСТ 22261-94 и ГОСТ 12.2.007.0-75.

Металлические части изделия, доступные для прикасания к ним обслуживающего персонала, которые могут оказаться под напряжением в результате повреждения изоляции и не имеющих других видов защиты, подлежат защитному заземлению по ГОСТ 12.1.030-81.

Все внешние части СИ, находящиеся под напряжением свыше 42 В по отношению к корпусу, должны быть защищены от случайных касаний во время работы СИ.

2.4.7 Требования к помехозащищенности

Разрабатываемый прибор должен сохранять свои метрологические характеристики и работоспособность при воздействии на него индустриальных радиопомех, не превышающих норм, предусмотренных в «Общих нормах допустимых индустриальных радиопомех» (1.87-9.87-ЕСКД).

Требования к помехозащищенности к воздействию внешних помех регламентируется ГОСТ 29156-91, ГОСТ 29191-91.

studfiles.net

Методика измерения сопротивления изоляции / Справка / Energoboard

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий документ разработан для электротехнического персонала электролабораторий, электротехнических участков промышленных объектов, проводящих работы по измерению сопротивления изоляции электрооборудования, проводов и кабелей в действующих и реконструируемых электроустановках для всех потребителей электроэнергии независимо от их ведомственной принадлежности.

2. НО  РМАТИВНЫЕ ССЫЛКИ

В настоящем документе используются ссылки на следующие нормативные документы:

  • Правила технической эксплуатации электроустановок потребителей 1992 г.;
  • Правила техники безопасности при эксплуатации электроустановок потребителей 1994 г.;
  • Правила устройства электроустановок 1986 г.;
  • Нормы испытания электрооборудования и аппаратов электроустановок потребителей 1982 г.;
  • Нормы испытания электрооборудования 1978 г.;
  • ГОСТ 26567-85. Преобразователи электроэнергии полупроводниковые. Методы испытаний;
  • ГОСТ 3345-76. Кабели, провода и шнуры. Метод определения электрического сопротивления изоляции;
  • ГОСТ 3484-88. Трансформаторы силовые. Методы электромагнитных испытаний;
  • ГОСТ 3484.3-83. Трансформаторы силовые. Методы измерений диэлектрических параметров изоляции.

 

3.ОПРЕ ДЕЛЕНИЯ

3.1. В настоящей методике используются термины, установленные в ГОСТ 3345-76, ГОСТ 3484.3-83, ГОСТ 3484.1-88, ГОСТ 16504, ГОСТ 23875.

Распр е  дел ительное устройство — распределительное устройство генераторного напряжения электростанции или вторичного напряжения понизительной подстанции района (предприятия), к которому присоединены сети района (предприятия).

Обозн а  чения и сокращения:

  • ВН — обмотки высшего напряжения;
  • СН — обмотки среднего напряжения;
  • НН — обмотки низкого напряжения;
  • НН1, НН2 — обмотки низшего напряжения трансформаторов с расщепленной обмоткой;
  • R15 — пятнадцатисекундное значение сопротивление изоляции в МОм;
  • R60 — одноминутное значение сопротивление изоляции в МОм;
  • ПЭЭП — правила эксплуатации электроустановок потребителей;
  • ПТБЭЭП — правила техники безопасности при эксплуатации электроустановок потребителей;
  • ПУЭ — Правила устройства электроустановок.

4. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

4.1 Измеряемые показатели

Сопротивление изоляции измеряют мегомметрами (100-2500В) со значениями измеренных показателей в Ом, кОм и МОм.

4.2 Средства измерений

К средствам измерения изоляции относятся мегомметры: ЭСО 202, Ф4100, М4100/1-М4100/5, М4107/1, М4107/2, Ф4101. Ф4102/1, Ф4102/2, BM200/G и другие, выпускаемые отечественными и зарубежными фирмами.

4.3 Требования к квалификации

К выполнению измерений сопротивления изоляции допускается обученный электротехнический персонал, имеющий удостоверение о проверке знаний и квалификационную группу по электробезопасности не ниже 3-й, при выполнении измерений в установках до 1000 В, и не ниже 4-й, при измерении в установках выше 1000 В.

К обработке результатов измерений могут быть допущены лица из электротехнического персонала со средним или высшим специальным образованием.

Анализ результатов измерений должен проводить персонал, занимающийся вопросами изоляции электрооборудования, кабелей и проводов.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

  1. При выполнении измерений сопротивления изоляции должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019.80, ГОСТ 12.2.007-75, Правилами эксплуатации электроустановок потребителей и Правилами техники безопасности при эксплуатации электроустановок потребителей.
  2. Помещения, используемые для измерения изоляции, должны удовлетворять требованиям взрыво- и пожарной безопасности по ГОСТ 12.01.004-91.
  3. Средства измерений должны удовлетворять требованиям безопасности по ГОСТ 2226182.
  4. Измерения мегомметром разрешается выполнять обученным лицам из электротехнического персонала. В установках напряжением выше 1000 В измерения производят по наряду два лица, одно из которых должно иметь по электробезопасности не ниже IV группы. Проведение измерений в процессе монтажа или ремонта оговаривается в наряде в строке «Поручается». В установках напряжением до 1000 В измерения выполняют по распоряжению два лица, одно из которых должно иметь группу не ниже III. Исключение составляют испытания, указанные в п. БЗ.7.20.
  5. Измерение изоляции линии, могущей получить напряжение с двух сторон, разрешается проводить только в том случае, если от ответственного лица электроустановки, которая присоединена к другому концу этой линии, получено сообщение по телефону, с нарочным и т.п. (с обратной проверкой) о том, что линейные разъединители и выключатель отключены и вывешен плакат «Не включать. Работают люди».
  6. Перед началом испытаний необходимо убедиться в отсутствии людей, работающих на той части электроустановки, к которой присоединен испытательный прибор, запретить находящимся вблизи него лицам прикасаться к токоведущим частям и, если нужно, выставить охрану.
  7. Для контроля состояния изоляции электрических машин в соответствии с методическими указаниями или программами измерения мегомметром на остановленной или вращающейся, но не возбужденной машине, могут проводиться оперативным персоналом или, по его распоряжению, в порядке текущей эксплуатации работниками электролаборатории. Под наблюдением оперативного персонала эти измерения могут выполняться и ремонтным персоналом. Испытания изоляции роторов, якорей и цепей возбуждения может проводить одно лицо с группой по электробезопасности не ниже III, испытания изоляции статора — не менее чем два лица, одно из которых должно иметь группу не ниже IV, а второе — не ниже III.
  8. При работе с мегомметром прикасаться к токоведущим частям, к которым он присоединен, запрещается. После окончания работы необходимо снять остаточный заряд с проверяемого оборудования посредством его кратковременного заземления. Лицо, производящее снятие остаточного заряда, должно пользоваться диэлектрическими перчатками и стоять на изолированном основании.
  9. Производство измерений мегомметром запрещается: на одной цепи двухцепных линий напряжением выше 1000 В, в то время когда другая цепь находится под напряжением; на одноцепной линии, если она идет параллельно с работающей линией напряжением выше 1000 В; во время грозы или при ее приближении.
  10. Измерение сопротивления изоляции мегомметром осуществляется на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегомметра. При снятии заземления необходимо пользоваться диэлектрическими перчатками.

6. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

  1. Измерения изоляции должны проводиться в нормальных климатических условиях по ГОСТ 15150-85 и при нормальном режиме питающей сети или оговоренных в заводском паспорте — техническом описании на мегомметры.
  2. Значение электрического сопротивления изоляции соединительных проводов измерительной схемы должно превышать не менее чем в 20 раз минимально допускаемое значение электрического сопротивления изоляции испытуемого изделия.
  3. Измерение проводят в помещениях при температуре 25±10 °С и относительной влажности воздуха не более 80%, если в стандартах или технических условиях на кабели, провода, шнуры и оборудование не предусмотрены другие условия.

7. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

 

  1. Проверяют климатические условия в месте измерения сопротивления изоляции с измерением температуры и влажности и соответствие помещения по взрыво- пожароопасности для подбора, к соответствующим условиям, мегомметра.
  2. Проверяют по внешнему осмотру состояние выбираемого мегомметра, соединительных проводников, работоспособность мегаомметра согласно техническому описанию на мегомметр.
  3. Проверяют срок действия госповерки на мегомметр.
  4. Подготовку измерений образцов кабелей и проводов выполняют согласно ГОСТ 3345-76.
  5. При выполнении периодических профилактических работ в электроустановках, а также при выполнении работ на реконструируемых объектах в электроустановках подготовку рабочего места выполняет электротехнический персонал предприятия, где выполняется работа согласно правилам ПТБЭЭП и ПЭЭП.

8. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

Отсчет значений электрического сопротивления изоляции при измерении проводят по истечении 1 мин с момента приложения измерительного напряжения к образцу, но не более чем через 5 мин, если в стандартах или технических условиях на конкретные кабельные изделия или на другое измеряемое оборудование не предусмотрены другие требования.

Перед повторным измерением все металлические элементы кабельного изделия должны быть заземлены не менее чем за 2 мин.

Электрическое сопротивление изоляции отдельных жил одножильных кабелей, проводов и шнуров должно быть измерено:

  • для изделий без металлической оболочки, экрана и брони — между токопроводящей жилой и металлическим стержнем или между жилой и заземлением;
  • для изделий с металлической оболочкой, экраном и броней — между токопроводящей жилой и металлической оболочкой или экраном, или броней.

Электрическое сопротивление изоляции многожильных кабелей, проводов и шнуров должно быть измерено:

  • для изделий без металлической оболочки, экрана и брони — между каждой токопроводящей жилой и остальными жилами, соединенными между собой или между каждой токопроводящей; жилой и остальными жилами, соединенными между собой и заземлением;
  • для изделий с металлической оболочкой, экраном и броней — между каждой токопроводящей жилой и остальными жилами, соединенными между собой и с металлической оболочкой или экраном, или броней.

При по ниженном сопротивлении изоляции кабелей проводов и шнуров, отличной от нормативных правил ПУЭ, ПЭЭП, ГОСТ, необходимо выполнить повторные измерения с отсоединением кабелей, проводов и шнуров от зажимов потребителей и разведением токоведущих жил.

При измерении сопротивления изоляции отдельных образцов кабелей, проводов и шнуров, они должны быть отобраны на строительные длины, намотанные на барабаны или в бухты, или образцы длиной не менее 10 м, исключая длину концевых разделок, если в стандартах или технических условиях на кабели, провода и шнуры не оговорена другая длина. Число строительных длин и образ цов для измерения должно быть указано в стандартах или технических условиях на кабели, провода и шнуры.

9. ИЗМЕРЕНИЕ ИЗОЛЯЦИИ ПРЕОБРАЗОВАТЕЛЕЙ

9.1. Измерение электрического сопротивления, изоляции преобразователей проводят в соответствии с требованиями настоящего стандарта, а при воздействии климатических факторов измерение сопротивления изоляции проводят с учетом ГОСТ/16962-71.

Средства измерений: мегомметры и омметры по ГОСТ 16862-71.

Измерение электрического сопротивления изоляции проводят:

  • в нормальных климатических условиях; при верхнем значении температуры окружающей среды после установления в преобразователе теплового равновесия;
  • при верхнем значении относительной влажности.

Сопротивление изоляции измеряют между электрически не соединенными между собой цепями, электрическими цепями и корпусом. В ТУ или конструкторской документации на преобразователи конкретных серий и типов указывают выводы, между которыми должно быть измерено сопротивление и значение постоянного напряжения, при котором проводится это измерение. Если один из выводов или элементов по схеме соединен с корпусом, то эта цепь на время испытаний должна быть разъединена.
При измерении сопротивления изоляции преобразователей должны выполняться следующие условия:

Таблица 1.

Номинальное напряжение цепи, В Напряжение измерительного прибора, В
До 100 включительно
Свыше 100 до 500 включительно
Свыше 500 до 1000 включительно
Свыше 1000
100
250-1000
500-1000
2500
  • перед испытаниями преобразователь должен быть отсоединен от внешних питающих сетей и нагрузки;
  • входные (выходные) выводы преобразователя, конденсаторы, связанные с силовыми цепями, а также анодные, катодные и выводы управления силовых полупроводниковых приборов должны быть соединены между собой или зашунтированы;
  • контакты коммутационной аппаратуры силовых цепей должны быть замкнуты или зашунтированы;
  • электрические цепи, содержащие полупроводниковые приборы и микросхемы, необходимо отключить и, при необходимости, подвергнуть испытаниям отдельно;
  • напряжение измерительного прибора при измерении сопротивления изоляции в зависимости от номинального (амплитудного) значения напряжения цепи выбирают по табл. 1.

При необходимости сопротивление изоляции измеряют при более высоких напряжениях, но не превышающих испытательное напряжение цепи.

Измерение сопротивления изоляции преобразователей, состоящих из нескольких шкафов, допускается проводить отдельно по каждому шкафу.

Если измеряют сопротивление изоляции каждого шкафа и (или) конструктивного узла преобразователя, то значение сопротивления изоляции каждого шкафа и (или) конструктивного узла должно быть указано в ТУ на преобразователи конкретных серий и типов.

Величины минимально-допустимых сопротивлений изоляции для силовых кабелей, выключателей, выключателей нагрузки, разъединителей, вентильных разрядников, сухих реакторов, измерительных трансформаторов, КРУ 6-10 кВ внутренней установки, электродвигателей переменного тока, стационарных, передвижных и комплектных испытательных устройств приведены в табл. 2.

10. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

10.1. Если измерение для кабельных изделий проводилось при температуре, отличающейся от 20 °С, а требуемое стандартами или техническими условиями на конкретные кабельные изделия, значение электрического сопротивления изоляции нормировано при температуре 20 °С, то измеренное значение электрического сопротивления изоляции пересчитывают на температуру 20°С по формуле:

R20=KRt,

где R20 — электрическое сопротивление изоляции при температуре 20 °С, МОм;
Rt — электрическое сопротивление изоляции при температуре измерения, МОм;
К — коэффициент для приведения электрического сопротивления изоляции к температуре 20 °С, значения которого приведены в приложении к настоящему стандарту.

При отсутствии переводных коэффициентов арбитражным методом является измерение электрического сопротивления изоляции при температуре (20±1)°С.

10.2. Пересчет электрического сопротивления изоляции R на длину 1 км должен быть проведен по формуле:

R=R20L,
где R20 — электрическое сопротивление изоляции при температуре 20 °С, МОм;
L — длина испытуемого изделия без учета концевых участков, км.

Коэффициент К приведения электрического сопротивления изоляции к температуре 20 °С.

Погрешность величины сопротивления изоляции подсчитывают по рекомендациям, указанным в технических описаниях и инструкциях по эксплуатации на мегомметры с учетом внешних влияющих факторов.

11. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Результаты измерений вносятся в протоколы испытания кабелей до и свыше 1000 В, а также в протоколы по профилактическим наладочным работам по устройствам РЗА и электрооборудования.

Таблица 2.


Наименование измерений сопротивления изоляций
Нормируемое значение, Мом, не менее Напряжения мегомметра, В Указания
Кабели силовые выше 1000 В Не нормируется 2500 При испытании повышенным напряжением сопротивление изоляции R60 должно быть одинаковым до и после испытаний
Кабели силовые до 1000В 1 1000  
Масляные выключатели:      
1. Подвижных и направляющих      
частей выполненных из органического материала. 3-10кВ, 300 2500  
15-150кВ 1000    
220кВ 3000    
2. Вторичных цепей, в том числе
включающих и отключающих катушек.
1 1000  
З.Выключатели нагрузки: измерение сопротивления изоляции включающей и отключающей катушек 1 500-1000 Сопротивление изоляции силовой части не измеряется, а испытывается повышенным напряжением промышленной частоты
4. Разъединители, короткозамыкатели и отделители:     Производится только при положительных температурах окружающего воздуха
1 .Поводков тяг, выполненным      
из органических материалов      
3-10кВ 300 2500  
15-150кВ 1000 2500  
220кВ 3000 2500  
Измерение сопротивления элемента
вентильного разрядника на напряжение:
    Сопротивление разрядника или
его элемента должно
отличаться не более чем на
30% от результатов измерения
выше 3 кВ и выше   2500
менее 3 кВ   1000 на заводе-изготовителе или предыдущих измерений при эксплуатации
Сухие реакторы. Измерение сопротивления обмоток относительно
болтов крепления
0,5 1000-500 После капитального ремонта.
0,1 1000-500 В эксплуатации
Измерительные трансформаторы
напряжения выше 1000В:
Не нормируется. 2 500 При оценке состояния вторичных обмоток можно ориентироваться на следующие средние значения сопротивления исправной обмотки: у встроенных ТТ — 10 МОм,
у выносных ТТ- 50 МОм
первичных обмоток,
вторичных обмоток
Не ниже 1 вместе с под- соединенными
цепями
1000
КРУ 3-10кВ: первичны е цепи
вторичны е цепи
300 2 500 Измерение выполняется при
полностью собранных цепях
1 500-1000 В
Э лектродвигатели переменного
тока вы ше 660 В
Не   Должны учитываться при необходимости сушки.
нормируется 2500
обм. статора. до 660 В 1 1000
Обмотки статора у эл. двигателей
на напряжение вы ше 3000 В
или мощность более 3000 кВТ
R60/R15 2500 Производится у синхронны х
двигателей и асинхронных двигателей с фазным ротором напряжением 3000 В и выше или
мощностью выше 1000 кВт
Не нормиру- 1000В
Обмотки ротора ется  
Стационарные, передвижные, переносные комплектные испытательные установки. Не нормируется 2500
Измерение изоляции цепей и
аппаратуры напр. выше 1000В.
   
Цепей и аппаратуры на напряжение
до 1000 В
1 1000
Машины постоянного тока:     Сопротивление изоляции обмоток
измерение изоляции обмоток и бандажей до 500В, 0,5 500 измеряется относительно корпуса, а бандажей — относительно корпуса и
выше 500В   1 000 удерживаемых им обмоток вместе с соединенными с ними цепями и кабелями
Силовые и осветительные электропроводки 0,5 1000  
Распределительные устройства,
щиты и токопроводы
0,5 1000  
Вторичны е цепи управления,
защиты и автоматики
Шинки постоянного тока
1 500-1000  
10 500-1000  
Каждое присоединение вторичных
цепей и цепей питания приводов
выключателей
1 500-1000  
Цепи управления, защиты, автоматики, телемеханики, возбуждения
машин пост. тока на напряжение
500-1000В, присоединенным к цепям главных РУ
1 500-1000 Сопротивление изоляции цепей
напряжением до 60 В, нормаль
но питающихся от отдельных
источников, измеряется мегом-
метром на 500 В и должно быть не менее 0,5 МОм
Цепи, содержащие устройства с
микроэлектронными элементами:
     
выше 60 В 0,5 500  
60 и ниже 0,5 100  

 

energoboard.ru

измерение сопротивления изоляции в электроустановках

В электролаборатории “Электротехника” вы можете заказать измерение сопротивления изоляции в электроустановках до и свыше 1000В.

Цель проведения испытаний

Измерения в электроустановках до и свыше 1000В  проводятся с целью проверки соответствия сопротивления изоляции установленным нормам.

Нормы сопротивления изоляции

  • В соответствии с гл.1.8 ПУЭ (Правила устройства электроустановок) для электроустановок напряжением до 1000 В допустимые значения сопротивления изоляции:

Испытуемый элемент

Напряжение мегаомметра, В

Наименьшее допустимое значение сопротивления изоляции, МОм

Шины постоянного тока на щитах управления и в распределительных устройствах (при отсоединенных цепях)

500-1000

10

Вторичные цепи каждого присоединения и цепи питания приводов выключателей и разъединителей

500-1000

1,0

Цепи управления, защиты, автоматики и измерений, а также цепи возбуждения машин постоянного тока, присоединенные к силовым цепям

500-1000

1,0

Вторичные цепи и элементы при питании от отдельного источника или через разделительный трансформатор, рассчитанные на рабочее напряжение 60 В и ниже

500

0,5

Электропроводки, в том числе осветительные сети

1000

0,5

Распределительные устройства, щиты и токопроводы (шинопроводы)

500-1000

0,5

  • Согласно ПТЭЭП (Правила технической эксплуатации электроустановок потребителей), Приложение 3; 3.1 (таблица 37), минимально допустимые значения сопротивления изоляции электроустановок напряжением до 1000 В :

Наименование элемента

Напряжение мегомметра, В

Наименьшее допустимое значение сопротивления изоляции, МОм

Электроизделия и аппараты на номинальное напряжение, В:
– до 50
– свыше 50 до 100
– свыше 100 до 380
– свыше 380

100
250
500-1000
1000-2500

0,5

Распределительные устройства, щиты и токопроводы

1000-2500

1,0

Электропроводки, в том числе осветительные сети

1000

0,5

Вторичные цепи распределительных устройств, цепи питания приводов выключателей и разъединителей, цепи управления, защиты, автоматики, телемеханики и т. п.

1000-2500

1,0

Краны и лифты

1000

0,5

Стационарные электроплиты

1000

1,0

Шинки постоянного тока и шинки напряжения на щитах управления

500-1000

10

Цепи управления, защиты, автоматики, телемеханики, возбуждения машин постоянного тока на напряжение 500-1000 В, присоединенных к главным цепям

500-1000

1,0

Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на напряжение, В:
– до 60
– выше 60

100
500

0,5

Силовые кабельные линии

2500

0,5

Обмотки статора синхронных электродвигателей

1000

1,0

Вторичные обмотки измерительных трансформаторов

1000

1,0

Требования к проведению измерений сопротивления изоляции

  • Измерение производится мегаомметром с выходным напряжением 500, 1000, 2500 В.
  • Измерение сопротивления изоляции кабелей (за исключением кабелей бронированных) сечением до 16 мм2 производится мегаометром на 1000 В, а выше 16 мм2 и бронированных — мегаометром на 2500 В; измерение сопротивления изоляции проводов всех сечений производится мегаометром на 1000 В.
  • Если электропроводки, находящиеся в эксплуатации, имеют сопротивление  менее 1 МОм, то заключение об их пригодности дается после испытания их переменным током промышленной частоты напряжением 1 кВ.
  • Измерение сопротивления изоляции электрических машин и аппаратов следует производить при температуре изоляции не ниже +5° C (кроме случаев, оговоренных специальными инструкциями.).

Измерение сопротивления изоляции силовых кабелей и электропроводок

Начало замеров сопротивления изоляции начинается с проверки кабеля на напряжение – оно должно отсутствовать. Заземление на 2-3 минуты снимает с токоведущей жилы остаточные заряды, и можно приступать к работе. Пыль, грязь, другие посторонние субстанции затрудняют точное измерение сопротивления изоляции, поэтому кабель нужно от них очистить. Сверка с заводским паспортом дает нашим экспертам величину предполагаемого сопротивления изоляции, исходя из чего, выбирается предел измерений. После контрольной проверки – определения показаний на шкалах мегаомметра при замкнутых и разомкнутых проводах – прибор допускается эксплуатацию. При разомкнутых проводах стрелка должна указывать на бесконечность, при замкнутых – на ноль.

Измерение сопротивления изоляции начинается с проверки каждой фазы относительно заземления. Если показания выявят нарушения изолирующей функции, проводится замер относительно земли изоляции каждой фазы, а также между двумя фазами. Количество замеров варьируется: для трехжильного кабеля могут быть проведены 3-6 замеров, для пятижильного – 4, 8 или 10. Поскольку существует несколько схем, в паспорте замеров обязательно указывать схему, по которой выполнялись работы.

Граничные показатели мегаомметра – 15 и 60 секунд с момента присоединения к исследуемому объекту, из них вычисляется и коэффициент абсорбции, то есть влажности изоляции. Если значения явно не соответствуют ожидаемому, рекомендуется повторно снять остаточное напряжение, наложив заземление, переключить предел и повторить замер. По правилам техники безопасности измерения сопротивления изоляции электрооборудования, эту операцию требуется проводить в диэлектрических перчатках. Помимо этого, строго рекомендуется соблюдать правила измерений, указанные в п.п. 1.7.81, 2.1.35 ПУЭ: «Нулевые рабочие и нулевые защитные проводники должны иметь изоляцию, равноценную изоляции фазных проводников»; «как со стороны источников питания, так и со стороны приемника, нулевые проводники должны быть отсоединены от заземленных частей», «схема испытания… имеет различия лишь в количестве замеров (4 или 8, вместо 3 или 6) и в отсутствие необходимости использовать зажим «Экран» на мегаомметрах»; «измерение сопротивления изоляции силовых и осветительных электропроводок производится при снятом напряжении, выключенных выключателях, снятых предохранителях, отключенных электроприемниках, аппаратах, вывернутых электролампах».

 

Измерение сопротивления изоляции силового электрооборудования

Как и для изоляции кабелей, для электрических аппаратов и машин большое значение имеет температура. Так, для изоляции класса А характерно увеличение сопротивления изоляции в полтора раза при понижении температуры на каждые 10 градусов. Изоляция класса В увеличивает сопротивление в два раза при повышении температуры на 10 градусов. Поэтому установлены температурные пределы для измерения сопротивления изоляции электрооборудования, а также разработаны специальные коэффициенты: для электрических машин – Кт, для трансформаторов – Кз, которые можно посмотреть в таблице. Нормы для сопротивления изоляции приведены в двух документах: для уже работающих установок – в ПТЭЭП, для находящихся в процессе ввода в эксплуатацию – в ПУЭ.

Помимо изоляции проводки, при измерении сопротивления изоляции электрооборудования, замеряется и сопротивление относительно корпуса и наружных металлических частей при выключенном двигателе. Как правило, такие замеры проводятся для переносных электроинструментов. Если корпус инструмента выполнен из диэлектрика, его перед измерением оборачивают металлической фольгой и соединяют с контуром заземления. Для переносных трансформаторов дополнительно проводятся замеры сопротивления изоляции между корпусом и обмотками. А также между обмотками, при этом вторичную обмотку надо закоротить на корпус. Измерения сопротивления изоляции электрооборудования включают в себя и измерения сопротивления изоляции автоматических выключателей и устройств защитного отключения.

Оформление результатов замеров сопротивления изоляции

Результаты измерений заносятся в протокол. На основании сравнения результатов измерений  делается заключение о соответствии параметров требованиям ПУЭ и ПТЭЭП. Протоколы сводятся в отчёт, который утверждается руководителем лаборатории. К отчёту прилагается дефектная ведомость, в которую заносятся все дефекты, обнаруженные при измерении.

etl46.ru

Требования к изоляции бытовых и промышленных выключателей

Безопасная эксплуатация всех видов электротехнического оборудования напрямую зависит от фактического состояния изоляционных материалов, которые заложены в конструкцию токоведущих частей каждого установочного изделия. Если будет нарушена изоляция выключателей, возможен сбой электроподачи, пожар и даже несчастный случай.

Мы расскажем все о видах изоляции, обеспечивающих полноценную безопасность пользования коммутирующими приборами. В предложенной нами статье подробно описаны природные и синтетические, обычные и усиленные варианты. Приведены особенности маркировки, даны советы покупателям.

Содержание статьи:

Изоляционная защита электрооборудования

Изоляционные материалы обеспечивают защиту окружающих людей и животных от электроударов. Условие одно: нужно правильно подобрать расходный диэлектрик, его форму, толщину, параметры рабочего напряжения (оно может быть разным, как и конструкция прибора).

Кроме того, существенное влияние на качество изоляторов могут оказывать производственные или бытовые условия эксплуатации сложного электротехнического устройства. Качество изоляции, толщина и степень электросопротивления должны соответствовать фактическому влиянию окружающей среды и стандартным условиям эксплуатирования.

Для проверки изоляционных свойств по кабелю подают испытательное напряжение, а затем с помощью мультиметра или тестера снимают показания сопротивления изоляции электроустройства

Информация о том, как проверяют напряжение в электрической розетке, содержится в , с которой мы рекомендуем ознакомиться.

В состав электрической изоляции может входить как определенной толщины слой диэлектрика, так и конструкционная форма (корпус), выполненная из диэлектрического материала. Диэлектриком покрывается вся поверхность токоведущих элементов оборудования или же только те токоведущие элементы, которые изолированы от других частей конструкции.

Виды изоляционных материалов

Производители, выпускающие современные электрические выключатели, которые используются в жилых, офисных и промышленных зданиях, различают следующие виды электротехнической изоляции: рабочую (основную), дополнительную, двойную, усиленную.

Рабочая (основная) изоляция

Это, по своей сути, главная защита электрических установок, которая обеспечивает им нормальную и стабильную работу, без возникновения коротких замыканий, защищает потребителей от прямого контактирования с токоведущими частями.

Рабочей изоляцией, согласно нормативам, должна быть покрыта вся поверхность проводов, кабелей, других элементов, по которым проходит электрический ток. Например, шнуры электрических приборов всегда покрыты изоляцией.

Поливинилхлоридные трубки-кембрики применяют в качестве недорогого и быстрого способа по изоляции токоведущих частей проводов, подходящих к электрическим приборам

Она должна гарантировать устойчивость против всех потенциальных, внешних воздействий, которые могут возникнуть в процессе эксплуатирования электровыключателей в случае синхронного воздействия силовых полей, термического нагрева, механического трения, агрессивных проявлений окружающей среды.

Перечисленные факторы негативно влияют на электрические характеристики диэлектрических (изоляционных) материалов, также из-за них может состояться необратимое ухудшение полезных качеств, то есть изоляция будет подвержена быстрому износу.

Недорогой и доступный всем изоляционный материал. Производится из ПВХ, имеет разные размеры как по длине, так и по ширине. Цветовая гамма может быть разной, клеевой состав стойкий, сцепление крепкое и устойчивое к истиранию

Если речь идет о промышленной эксплуатации выключателей, то персонал предприятия должен периодически проверять интенсивность изнашивания изоляционных конструкций, своевременно проводить профилактические мероприятия по контролю их защитных свойств.

Ответственное поддержание высокого уровня сопротивления изоляции уменьшает потенциально возможные замыкания на землю, корпус, сводит к нулю удары током.

Показатель сопротивления характеризует текущее состояние качества изоляции между 2 проводящими элементами, дает указание по риску протечек тока. Щадящий, неразрушающий характер такого контроля полезен при отслеживании износа и состаривания слоев изоляции

В небольших, мало разветвленных электросетях сопротивление изоляции – это основной фактор безопасности. Контроль основной изоляции бывает приемо-сдаточным, проведенным сразу после монтажных работ или ре­монта, или периодическим, проводимым в ходе эксплуатации оборудования не реже 1 раза в год.

В очень влажных цехах контроль осуществляется от 2 до 4 раз за год в постоянном режиме. Замеры выполняют цифровым измерительным прибором по контролю изоляции – мегаомметром.

Прибор измерительный, универсальный. Предназначен не только в качестве определителя фактического состояния сопротивления изоляции, но и для проверки ее электрической прочности. С ним специалисты испытывают изоляционные слои оборудования на пробои электричества

Периодический контроль сопротивления изоляции на установленных выключателях выполняется на производственных площадках, где оборудование с течением времени подвергается негативному воздействию едких паров химических веществ, влаги, пыли и повышенных температур. При этом изоляция выключателей может нарушена. Приборы с поврежденной изоляцией опасны для жизни человека.

Отраслевые ПУЭ (Правила  устройства электроустановок), принятые в России,  требуют осуществлять регулярный замер показаний сопротивления изоляции, которая присутствует в се­тях электропитания от 1кВ и выше.

Сопротивление диэлектрических материалов в сети осветительных установ­ок на участке между 2-мя смежными предохранителя­ми, между любым про­водом и землей, а также между любыми двумя  проводами должно быть не < 0,5 МОм.

Данный показатель не применим на практике к воздушным проводам внешних электроустройств, к установкам, которые находятся в предельно влажных помещениях, потому что сопротивление в них непостоянно и зависит от показателей влажности воздуха.

Следует особо отметить, что если для таких установок нет норм по изоляции, то такой фактор руководство предприятий должно учитывать и принять все меры по безопасной эксплуатации устройств и более внимательно контролировать текущее состояние материалов изоляции.

Если вы используете в работе электроинструмент с двойной изоляцией, то потребуется ежемесячно испытывать его изоляцию мегаомметром. Если инструмент выдается на предприятии работникам, то проверку на отсутствие короткого замыкания на корпус следует выполнять специальным прибором – мультиметром

Согласно ПУЭ, измерение сопро­тивления электроизоляции следует проводить напряжением не менее 500 В, а испытание изоляции многожильных кабелей напряжением 6—10 кВ.

Определение целостности токоведущих жил кабеля, проверку мегомметром на их соответствие фазам, должны проводить не менее 2 человек. Правила требуют, что один из них должен иметь допуск не ниже IV группы, а второй: не ниже III группы.

Причины устройства дополнительной защиты

Дополнительную изоляцию помещают в электро­установках, имеющих рабочее напряжение до 1 кВ. Это независимая изоляция, которая будет смонтирована вместе с основной изоляцией оборудования, чтобы в сложных и опасных случаях эксплуатации защитить выключатели при косвенном прикосновении с повреждающими элементами.

Главным образом, она выполняет функцию противодействия электроударам, если случится повреждение основного слоя изоляции. Практический пример дополнительной изоляции – это пластмассовый корпус выключателя, втулки-изоляторы, кембрики, пластиковые трубки и другие типы диэлектриков.

Для этого вида изоляции применяются материалы, которые отличаются по своим физическим свойствам от стандартных форм диэлектриков, являющихся основной изоляцией электроприборов.

Для пропитки стеклолакоткани применяют лаки на масляной, полиэфирной, полиэфирно-эпоксидной, кремний-органической основе или же с применением фторопласта или резины. Все они отлично создают на ткани лаковые, диэлектрические поверхности

Это производится с учетом того, что даже в самых неблагоприятных условиях работы или способах хранения электрооборудования были бы маловероятны повреждения основной, рабочей и дополнительной изоляции одновременно.

Преимущество двойной изоляции

Такая потенциальная опасность для людей, как поражение электрическим током в момент косвенного контакта с элементами оборудования, может быть существенно снижена посредством монтажа двойной изоляции.

Эти прочные защитные материалы используются в электротехнических устройствах, где имеется напряжени­е до 1 кВ. Здесь ставят 2 степени защиты – основную и дополнительную. Двойную изоляцию производители устанавливают в разные электротехни­ческие приборы: ручные светильники, ручной электрический инструмент, в разделительные трансформаторы.

На производстве находятся в эксплуатации много типов выключателей, которые по ГОСТу должны иметь как двойную, так и усиленную изоляцию, конкретный случай зависит от сложности технологии производства

Практический смысл двойной изоляции заключен в том, что кроме основного, диэлектрического слоя. помещают второй изоляционный слой на токоведущие части выключателей. Он предохраняет человека от касания к металлическим, проводящим ток которые вполне могут оказаться под высоким напряжением.

Чтобы избежать этого, металлические корпуса высокотехнологичного электрооборудования покрывают слоем изолятора, рукоятки, кнопки и панели управления делают на основе диэлектриков.

В бытовых приборах изолируют также кнопки, провода и корпусную оболочку, изготовленную из металла. Недостатком такого рода покрытий считается относительно высокая механическая хрупкость: существует теоретическая возможность разрушения изоляционного слоя от многократных механи­ческих воздействий.

Из-за этого металли­ческие, нетоковедущие части электрических устройств могут оказаться под напряжением. Поэтому очень важно производить замеры физического состояния изоляции соответствующими приборами, в соответствии с электрической схемой.

Принципиальная схема электрической цепи, приведенная для измерения утечки тока в изоляции, согласно ГОСТ МЭК 60335-1-2008, с учетом потребностей национальной экономики РФ

Следует отметить тот факт, что разрушение второго слоя изоляции никак не сможет повлиять на основную работу приборов и, как правило, в момент проверки не выявляется. Двойную изоляцию имеет смысл применять для тех видов электрического оборудования, которые в бытовой эксплуатации не будут подвергаться механическим ударам и давлению на токоведущие части.

Наиболее надежную защиту людей будет обеспечивать способ двойной изоляции на том оборудовании, у которого корпус выполнен из непроводящего, изоляционного материала: он служит гарантией от опасного поражения электрическим током.

Токонепроводящий корпус приборов защитит от тока не только при пробоях диэлектрика внутри изделия, но при случайном контакте человека с токонесущими элементами. В случае разруше­ния корпуса будет нарушено конструктивное расположение деталей и элементов, и прибор перестанет работать.

Если в нем есть защита, то она сработает автоматически и отключит неисправное изделие от сети. В ме­таллическом корпусе устройств функцию дополнительной изоляции выполняют специальные втулки.

Через них сетевой кабель проходит в корпус, а изолирующие прокладки отделяют электродвигатель оборудования от корпуса. Паспортная табличка электротехнического прибора с двойной изоляцией несет изображение специального знака: квадрат, находящийся внутри другого квадрата.

Для чего нужна усиленная изоляция?

В условиях производства бывают моменты, когда двойную изоляцию достаточно проблематично применить по конструктивным особенностям электроустройств. Например, в выключателях, щёткодержателях и др. Тогда приходится использовать другой вид защиты – это усиленная изоляция.

Усиленная изоляция ставится на электроустановки с номинальным напряжением до 1 кВ. Она способна обеспечить такую степень защиты от поражения электротоком, которая  равноценна свойствам двойной изоляции.

Согласно требованиям ГОСТ Р 12.1.009-2009 ССБТ, усиленная изоляция может иметь несколько слоев диэлектрика, каждый из которых нельзя испытывать отдельно на пробой КЗ, а только в целой форме.

Соответствие изоляции нормативным требованиям по предельным значениям, установленным в результате проведения испытаний. Порядок проведения и предельные значения регламентированы ГОСТ МЭК 60335-1-2008

Природные и синтетические диэлектрики

Изоляционные материалы, а иначе, диэлектрики, по своему происхождению подразделяются на естественные (слюда, дерево, латекс) и синтетические:

  • пленочные и ленточные изоляторы на основе полимеров;
  • электроизоляционные лаки, эмали – растворы плёнкообразующих веществ, изготовляемые на основе органических растворителей;
  • изоляционные компаунды, в жидком состоянии твердеющие сразу после нанесения на токопроводящие элементы. Данные вещества не содержат в своем составе растворителей, по своему назначению подразделяются на пропиточные (обработка обмоток электроприборов) и заливочные составы, которыми заливают кабельные муфты и полости приборов и электроагрегатов с целью герметизации;
  • листовые и рулонные изоляционные материалы, которые состоят из непропитанных волокон как органического, так и неорганического происхождения. Это могут быть бумага, картон, фибра или ткань. Их изготавливают древесины, натурального шелка или хлопка;
  • лакоткани с изоляционными свойствами – особые пластичные материалы на тканевой основе, пропитанные электроизоляционным составом, который после затвердевания формирует пленку-изолятор.

Синтетические диэлектрики имеют важные для надежной работы приборов электрические и физико-химические характеристики, заданные конкретной технологией их производства.

Они широко используются в современной электротехнике и электронной промышленности для выпуска на рынок следующих видов изделий:

  • диэлектрические оболочки кабельной и проводниковой продукции;
  • каркасы электротехнических изделий, таких как катушки индуктивности, корпуса, стойки, панели и т.п.;
  • элементы электроустановочной арматуры – распределительные короба, розетки, патроны, кабельные разъемы, переключатели и др.

Также производятся радиоэлектронные печатные платы, включая панели, используемые под расшивку проводников.

Классификация изоляционных материалов

Электротехническая изоляция в бытовых приборах подразделяется на соответствующие классы:

Приборы с классом изоляции «0» имеют рабочий изоляционный слой, но без применения элементов для заземления. В их конструкции нет зажима для соединения защитного проводника.

Приборы с изоляцией класса «0I» имеют изоляцию + элемент для зануления, но в них содержится провод для соединения с источником питания, у которого нет зануляющей жилы.

Изоляция имеет специальную маркировку. Заземление указывается в виде отдельного значка в месте подключения проводника. Это делается для того, чтобы выравнивать потенциалы. Проводник желто-зеленого цвета присоединяется к контактам розетки, люстры и т. п

Приборы с изоляцией класса «I» содержат 3-х жильный шнур и вилку с 3 контактами. Электроустанововчные устройства этой категории подлежат .

Электроприборы, имеющие изоляцию класса «II», то есть двойную или усиленную, часто встречаются в бытовой эксплуатации. Подобная изоляция надежно защитит потребителей от поражения электрическим током, если в приборе случится повреждение основной изоляции.

Изделия, укомплектованные прочной двойной изоляцией, обозначается в силовом оборудовании знаком В, означающим: «изоляция в изоляции». Приборы, содержащие такой знак, нельзя занулять и заземлять.

Все современные электрические приборы, имеющие изоляцию класса «III», могут осуществлять свою работу в сетях электропитания, где есть номинальное напряжение не выше 42 В.

Абсолютную безопасность при активизации электрооборудования предоставляют , с особенностями устройства, принципом работы и видами которых ознакомит рекомендуемая нами статья.

Выводы и полезное видео по теме

Видеоролик содержит инструктаж по использованию популярной марки мегаомметра:

Небольшой видеообзор изоляционных материалов и способы защиты токонесущих частей электроустановочной фурнитуры:

Особые виды изоляции применяются при оборудовании промышленных выключателей, например, воздушного или масляного типа. В быту они не используются. Если пришлось столкнуться с нарушением работы изоляции выключателей на производстве, следует обратиться к специалистам, обслуживающим электроустановки.

Пишите, пожалуйста, комментарии, в расположенном ниже блоке. Делитесь полезной информацией по теме статьи, которая пригодится посетителям сайта. Задавайте вопросы по спорным и неясным моментам, размещайте фотоснимки.

sovet-ingenera.com

Требования к контролю и профилактике изоляции электроустановок и электрозащитных средств

2.1. Требования к контролю и профилактике изоляции электроустановок и сетей

От состояния изоляции в первую очередь зависит степень безопасности эксплуатации электроустановок. При повреждении изоляции могут возникать замыкания токоведущих частей между собой (так называемые «короткие замыкания»), ведущие к пожарам и выходу из строя электрооборудования, а также замыкания на землю, при которых возникает опасность поражения людей электрическим током. Поэтому при эксплуатации электроустановок необходимо осуществлять:

— испытание изоляции токоведущих частей повышенным напряжением промышленной частоты;

— постоянный (непрерывный) контроль состояния изоляции;

— периодическую проверку (измерение сопротивления) изоляции мегаомметром.

Испытание изоляции повышенным напряжением применяется в электроустановках напряжением выше 1000 В. Объем и сроки испытаний, а также величины испытательных напряжений устанавливаются Правилами эксплуатации электроустановок потребителей (ПЭЭП).

Непрерывный контроль состояния изоляции проводится в сетях напряжением до 1000 В с изолированной нейтралью. Такие сети применяются в шахтах и на торфоразработках.

Периодические проверки сопротивления изоляции силовой электропроводки напряжением до 1000 В с помощью мегаомметра осуществляют:

— в помещениях с повышенной опасностью и особо опасных – не реже одного раза в год;

— в помещениях без повышенной опасности – не реже одного раза в два года.

Измерение сопротивления изоляции осветительных электропроводок осуществляется не реже одного раза в три года.

Правила устройства электроустановок (ПУЭ) требуют, чтобы сопротивление изоляции электрической сети на участках между двумя смежными аппаратами защиты (предохранителями, автоматическими воздушными выключателями и т.п.) или за конечными аппаратами защиты между проводом и землей, а также между любыми проводами было не менее 0,5 МОм (рис. 1).

Рис. 1. Схема для измерения удельного сопротивления грунта:

R и RЗ – потенциальные электроды; RХ и RВтоковые электроды

Если сопротивление изоляции в силовых и осветительных сетях напряжением до 1000 В окажется ниже 0,5 МОм (например, 0,4 МОм), то изоляцию следует испытать в течение одной минуты переменным напряжением промышленной частоты 1000 В (от специального трансформатора) или с помощью мегаомметра напряжением 2500 В. Если в ходе этого испытания величина сопротивления изоля-ции не уменьшилась, то проводка может эксплуатироваться до ее за-мены во время ближайшего планового или капитального ремонта, в противном же случае проводка должна быть заменена незамедлительно.

Допустимые значения величин сопротивления изоляции электроустановок напряжением до 1000 В приведены в прил. 3.

Сопротивление изоляции измеряется мегаомметрами типа Ml 101; М4100; ЭС0202; Ф4102-М1 и др. Измерения производятся как между двумя изолированными друг от друга токоведущими проводниками, так и между проводником и землей (корпусом). При измерении больших сопротивлений, например, изоляции кабеля или приборов с электрическим экраном, необходимо пользоваться схемой, предусматривающей экранирование от утечки токов (рис. 2).

Измерительное напряжение должно быть не ниже номинального напряжения электроустановки. Перечисленные выше мегаомметры генерируют напряжение 100; 250; 500; 1000 и 2500 В.

При выполнении измерений величины сопротивления изоляции в действующих электроустановках последние следует отключить от сети, вывесить плакат «Не включать, работают люди!», проверить отсутствие напряжения, снять предохранители с плавкими вставками на концах проверяемого участка цепи.

2.2. Требования к контролю и профилактике изоляции электрозащитных средств

При выполнении работы без снятия напряжения вблизи и на токоведущих частях, находящихся под напряжением, электротехнический персонал должен использовать электрозащитные средства. Электрозащитные средства служат для изоляции человека от токоведущих частей электрооборудования, находящихся под напряжением, а также для изоляции человека от земли (при прикосновении человека, стоящего на земле, к токоведущим частям электроустановок или к металлическим корпусам электрооборудования с поврежденной изоляцией).

Электрозащитные средства подразделяются на основные и дополнительные. Основными называются средства защиты, изоляция которых способна длительное время выдерживать рабочее напряжение электроустановок и которые позволяют прикасаться к токоведущим частям, находящимся под напряжением, и работать на них. Дополнительными называются средства защиты, которые сами по себе не могут при рабочем напряжении электроустановки обеспечить защиту от поражения током, а применяются совместно с основными электрозащитными средствами для уменьшения тока, протекающего через тело человека, до безопасной величины. Также дополнительные средства защиты служат для защиты от напряжения прикосновения и напряжения шага.

К основным электрозащитным средствам в электроустановках напряжением выше 1000 В относятся изолирующие и измерительные штанги, изолирующие и электроизмерительные клещи, указатели напряжения.

К основным электрозащитным средствам в электроустановках напряжением до 1000 В относятся диэлектрические перчатки, слесарно-монтажный инструмент с изолирующими рукоятками, указатели напряжения.

К дополнительным электрозащитным средствам в электроустановках напряжением выше 1000 В относятся диэлектрические перчатки и боты, изолирующие лестницы.

К дополнительным электрозащитным средствам в электроустановках напряжением до 1000 В относятся диэлектрические галоши, диэлектрические ковры, изолирующие подставки.

Изоляция электрозащитных средств подвержена старению и разрушению, поэтому необходимо периодически проводить ее испытания. Электрозащитные средства испытывают повышенным напряжением при приемке в эксплуатацию, а затем периодически:

— диэлектрические перчатки – один раз в шесть месяцев;

— диэлектрические галоши, указатели напряжения и инструмент с изолированными рукоятками – один раз в 12 месяцев;

— измерительные штанги – один раз в 12 месяцев;

— изолирующие штанги и клещи – один раз в 24 месяца;

— диэлектрические боты – один раз в 36 месяцев.

Испытательное напряжение и продолжительность испытаний устанавливаются Правилами применения и испытания средств защиты, используемых в электроустановках. На всех электрозащитных средствах, кроме инструмента с изолирующими рукоятками, должен быть выбит, нанесен несмываемой краской или наклеен штамп с указанием срока следующих испытаний и рабочего напряжения электроустановки. Все средства защиты необходимо осматривать перед применением независимо от сроков периодических осмотров.

Для испытаний электрозащитных средств повышенным напряжением применяются установки АИИ-70 и другие.

studfiles.net

Измерение сопротивления изоляции электрооборудования

Измерение сопротивления изоляции проводов, силового оборудования, кабелей, аппаратов, других элементов электроустановки производятся с целью устранения возможных нарушений соответствия сопротивления установленным нормам.

Измерение сопротивления изоляции проводов, силового оборудования, кабелей, аппаратов, других элементов электроустановки производятся с целью устранения возможных нарушений соответствия сопротивления установленным нормам.

Стандарты измерения изоляции

Измерение сопротивления изоляции электрооборудования до 1000В производится по правилам, установленным п. 612. 3 стандарта МЭК 364-6-61. При измерении сопротивления изоляции проводов ( кабелей) сначала проводят измерения между фазными проводниками всех пар фаз поочередно. Затем измеряется сопротивление изоляции каждого фазного провода относительно земли. Основное условие – отсоединить электроприборы, вывернуть лампы и снять предохранители. В том случае, если к цепи стационарно подключены электронные приборы, то измерение должно проводиться по другой методике: соединяются фазные и нейтральные проводники и измеряется сопротивление между ними и землей. Если не соблюдать это правило при измерении сопротивления изоляции электрооборудования, то есть риск повреждения электронных приборов.

Дополнительно требования к измерению сопротивления изоляции изложены в п. 1. 20 приложения 1 ПТЭЭП и п.413.3 ГОСТ Р 50571.3-94. Они касаются не только состояния системы, в которой проводится измерение. Особое внимание уделяется помещению, в котором проводятся электроизмерительные работы как части электрохозяйства: пол и стены помещения, зоны или площадки, где проводится измерение сопротивления изоляции, должны быть непроводящими. Это необходимо для того, чтобы при прикосновении к частям аппаратуры с разными потенциалами в случае, если изоляция повреждена, не произошло поражения током.

Требования жестко устанавливают расположение токопроводящих частей при измерении сопротивления изоляции: так, открытые проводящие части и сторонние проводящие части разводятся на расстояние. Между открытыми проводящими частями и сторонними проводящими частями должны быть установлены эффективные приборы. Сторонние проводящие части изолируются с определенным напряжением: при измерении сопротивления изоляции электрооборудования при номинальном напряжении электроустановок не выше 500 В – 50 кОм, при напряжении свыше 500 В — 100 кОм. Для того, чтобы измерить изоляцию поверхностей, требуется провести три измерения: в одном метре от сторонних проводящих частей, два других – на большем удалении. Нормативы измерений установлены в МЭК 364-6-61.

Измерения сопротивления изоляции проводится с помощью мегаоомметра, а испытания оборудования с подачей повышенного напряжения промышленной частоты или выпрямленного напряжения в электроустановках до и выше 1 кВ – выполняется только бригадой от двух человек и больше, с группой допуска по электробезопасности у производителя работ — не ниже четвертой ( IV) , у члена бригады –должна быть третья группа ( III) по электробезопасности (ЭБ) ,у охраняющего рабочее место допускается вторая (II) группа по ЭБ. Все испытания электрооборудования, выполняемые с помощью передвижной установки, проводятся по наряду. Допуск к работам в электроустановке осуществляет оперативный персонал, а вне электроустановок – ответственный руководитель работ или производитель работ. Если напряжение в установке ниже 1 кВ, для измерения все равно требуются два работника, один из которых должен иметь допуск по электробезопасности не меньше третьей группы. Измерение сопротивления изоляции может проводиться одним работником с третьей группой по электробезопасности. Ротор работающего генератора в части измерения сопротивления изоляции проверяется двумя работниками третьей и четвертой группой по электробезопасности. После подключения мегаоомметра к токоведущим частям надо снять заземление. Заземление необходимо для снятия заряда с токоведущих частей.

В соответствии с нормативным документом «Правила по охране труда при эксплуатации электроустановок» (ПОТ), список мероприятий по измерению сопротивления изоляции электрооборудования определяет лицо, выдающее наряд или распоряжение. Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормативных документах: Объем и нормы испытаний электрооборудования ( ОиНИЭ, РД (СО) 34.45-51.300-97), Правила устройства электроустановок (ПУЭ), Правил технической эксплуатации электроустановок потребителей (ПТЭЭП). В ГОСТ Р 50571.16-99 также указаны нормируемые величины сопротивления изоляции электроустановок.

Важно, чтобы соблюдался температурный режим и уровень влажности, допустимый при измерении сопротивления: температура изоляции не должна подниматься выше +35 градусов Цельсия и опускаться ниже +5 градусов. Степень увлажненности рассчитывается по формуле Kабс=R60/R15, где R60 – измеренное сопротивление изоляции через 60 секунд после приложения напряжения мегаоомметра, R15 – через 15 секугд. Отношение этих двух величин называется коэффициентом абсорбции. Практика измерения сопротивления изоляции электрооборудования показывает, что оптимальная влажность воздуха для достижения коэффициента абсорбции, отличающегося от заводских показателей не более, чем на 20%, должна быть не выше 80%. Коэффициент абсорбции не должен превышать величину 1,3 (нормируется в ПТЭЭП) при температуре от +10 до +30 градусов Цельсия. Если по результатам измерений электрооборудование имеет коэффициент абсорбции ниже 1,3- оно подлежит сушке.

Измерение сопротивления изоляции электроустановок производится с помощью цифровых измерителей с преобразованием напряжения, либо мегаоомметры генераторного типа. Ежегодная поверка приборов проводится органами Госстандарта РФ, в Санкт-Петербурге — ФГУ Тест –Санкт Петербург, или ВНИИМ им. Д.И.Менделеева о чем выдаются свидетельства о проверке. Если проверка не проведена в срок, прибор к эксплуатации не допускается. Измерение сопротивления изоляции групповых кабельных линий электропроводок проводится мегаоомметрами на 1 кВ для магистральных кабелей — на напряжение 2,5 кВ . Для измерения сопротивления изоляции электрооборудования после монтажа значения напряжения мегаомметра (0,5 или 1 кВ) указаны в НД ПУЭ ,глава 1.8 в таб. 1.8.34. Заключение о непригодности проводки делается в случае, если после измерения сопротивления изоляции выясняется, что сопротивление менее нормируемого значения.

Порядок измерения сопротивления изоляции

В настоящее время наиболее распространены мегаомметры типа М4100 (пяти модификаций М4100/1-М4100/5). Мегаомметры серии Ф. 4100, с электронным питанием от электросети, рассчитаны на номинальное рабочее напряжение 100, 500, 1000 (Ф4101, Ф4102). Мегаоомметры ЭС-0202/1Г (на 100, 250, 500 В) и ЭС0202/2Г (500, 1000 и 2500) уже не выпускаются, тем не менее, мегаомметры типа M l101 М, МС-05, МС-06 используются с большим успехом. Минимальный класс точности приборов – четвертый. Измерение сопротивления изоляции электроустановок происходит путем присоединения мегаоомметров к схеме. Присоединение проводится с помощью гибких одножильных проводов. Сопротивление изоляции этих проводов, длина которых должна составлять не менее 2-3 метров, должна составлять 100 Мом. Концы проводов маркируются, на них со стороны мегаоомметра надеваются оконцеватели, а противоположные концы снабжаются зажимами типа «крокодил», при этом зажимы снабжаются специальными щупами или изолированными ручками. Провода при измерении сопротивления изоляции электроустановок «не должны касаться друг друга, почвы, заземленных конструкций, оболочек кабелей. При измерении сопротивления изоляции относительно земли зажимы «з» (земля) соединяются с заземленным корпусом аппарата, заземленной металлической оболочкой кабеля или с защитным заземлением, а зажим «л» (линия) — к проводнику тока».

Измерение сопротивления изоляции силовых кабелей и электропроводок

Начало измерения сопротивления изоляции начинается с проверки кабеля на напряжение – оно должно отсутствовать. Заземление на 2-3 минуты снимает с токоведущей жилы остаточные заряды, и можно приступать к работе. Пыль, грязь, другие посторонние субстанции затрудняют точное измерение сопротивления изоляции, поэтому кабель нужно от них очистить. Сверка с заводским паспортом дает нашим экспертам величину предполагаемого сопротивления, исходя из чего, выбирается предел измерений. После контрольной проверки – определения показаний на шкалах мегаоомметра при замкнутых и разомкнутых проводах – прибор допускается эксплуатацию. При разомкнутых проводах стрелка должна указывать на бесконечность, при замкнутых – на ноль.

Измерение сопротивления изоляции начинается с проверки каждой фазы относительно заземления. Если показания выявят нарушения изолирующей функции, проводится замер относительно земли изоляции каждой фазы, а также между двумя фазами. Количество замеров варьируется: для трехжильного кабеля могут быть проведены 3-6 замеров, для пятижильного – 4, 8 или 10. Поскольку существует несколько схем, в паспорте замеров обязательно указывать схему, по которой выполнялись работы.

Граничные показатели мегаомметра – 15 и 60 секунд с момента присоединения к исследуемому объекту, из них вычисляется и коэффициент абсорбции, то есть влажности изоляции. Если значения явно не соответствуют ожидаемому, рекомендуется повторно снять остаточное напряжение, наложив заземление, переключить предел и повторить замер. По правилам техники безопасности измерения сопротивления изоляции электрооборудования, эту операцию требуется проводить в диэлектрических перчатках. Помимо этого, строго рекомендуется соблюдать правила измерений, указанные в п.п. 1.7.81, 2.1.35 ПУЭ: «Нулевые рабочие и нулевые защитные проводники должны иметь изоляцию, равноценную изоляции фазных проводников»; «как со стороны источников питания, так и со стороны приемника, нулевые проводники должны быть отсоединены от заземленных частей», «схема испытания… имеет различия лишь в количестве замеров (4 или 8, вместо 3 или 6) и в отсутствие необходимости использовать зажим «Экран» на мегаомметрах»; «измерение сопротивления изоляции силовых и осветительных электропроводок производится при снятом напряжении, выключенных выключателях, снятых предохранителях, отключенных электроприемниках, аппаратах, вывернутых электролампах».

Измерение сопротивления изоляции силового электрооборудования

Как и для изоляции кабелей, для электрических аппаратов и машин большое значение имеет температура. Так, для изоляции класса А характерно увеличение сопротивления изоляции в полтора раза при понижении температуры на каждые 10 градусов. Изоляция класса В увеличивает сопротивление в два раза при повышении температуры на 10 градусов. Поэтому установлены температурные пределы для измерения сопротивления изоляции электрооборудования, а также разработаны специальные коэффициенты: для электрических машин – Кт, для трансформаторов – Кз, которые можно посмотреть в таблице. Нормы для сопротивления изоляции приведены в двух документах: для уже работающих установок – в ПТЭЭП, для находящихся в процессе ввода в эксплуатацию – в ПУЭ.

Помимо изоляции проводки, при измерении сопротивления изоляции электрооборудования, замеряется и сопротивление относительно корпуса и наружных металлических частей при выключенном двигателе. Как правило, такие замеры проводятся для переносных электроинструментов. Если корпус инструмента выполнен из диэлектрика, его перед измерением оборачивают металлической фольгой и соединяют с контуром заземления. Для переносных трансформаторов дополнительно проводятся замеры сопротивления изоляции между корпусом и обмотками. А также между обмотками, при этом вторичную обмотку надо закоротить на корпус. Измерения сопротивления изоляции электрооборудования включают в себя и измерения сопротивления изоляции автоматических выключателей и устройств защитного отключения.

Правила измерения регулируются ГОСТ Р 50345-99 и ГОСТ Р 50030.2-99, которых рассматриваются разные типы УЗО и АВ, первый устанавливает правила измерений для аппаратов с минимальным сопротивлением изоляции 2 или 5 МОм (п.п. 1,2 и п.3 — соответственно), второй документ устанавливает правила измерений для аппаратов с минимальным сопротивлением изоляции не менее 0,5 МОм. Согласно ГОСТам, измерение сопротивления изоляции электрооборудования такого типа производятся:

  1. Между каждым выводом полюса и соединенными между собой противоположными выводами полюсов при разомкнутом состоянии выключателя или УЗО;
  2. Между каждым разноименным полюсом и соединенными между собой оставшимися полюсами при замкнутом состоянии выключателя или УЗО;
  3. Между всеми соединенными между собой полюсами и корпусом, обернутым металлической фольгой.

При работе с измерительными приборами в части замеров сопротивления изоляции УЗО и АВ, необходимо помнить о разнице параметров выходного напряжения и наибольшего значения измеряемого сопротивления у разных видов измерительных приборов: только в семействе мегаомметров Ф4100 насчитывается пять разных типов.

Все виды измерений сопротивления изоляции электрооборудования проводятся нашими специалистами в точном соответствии с требованиями ГОСТ Р, ПТЭЭП, ПУЭ , ОиНИЭ и других нормативных документов, оформляются протоколами со всеми необходимыми приложениями. Электроизмерительная лаборатория имеет все разрешительные документы для проведения видов работ.

www.gorod812.com

ГОСТ 3345-76 Кабели, провода и шнуры. Метод определения электрического сопротивления изоляции. Гост сопротивление изоляции


Измерение сопротивления изоляции электрооборудования

Измерение сопротивления изоляции проводов, силового оборудования, кабелей, аппаратов, других элементов электроустановки производятся с целью устранения возможных нарушений соответствия сопротивления установленным нормам.

Измерение сопротивления изоляции проводов, силового оборудования, кабелей, аппаратов, других элементов электроустановки производятся с целью устранения возможных нарушений соответствия сопротивления установленным нормам.

Стандарты измерения изоляции

Измерение сопротивления изоляции электрооборудования до 1000В производится по правилам, установленным п. 612. 3 стандарта МЭК 364-6-61. При измерении сопротивления изоляции проводов ( кабелей) сначала проводят измерения между фазными проводниками всех пар фаз поочередно. Затем измеряется сопротивление изоляции каждого фазного провода относительно земли. Основное условие – отсоединить электроприборы, вывернуть лампы и снять предохранители. В том случае, если к цепи стационарно подключены электронные приборы, то измерение должно проводиться по другой методике: соединяются фазные и нейтральные проводники и измеряется сопротивление между ними и землей. Если не соблюдать это правило при измерении сопротивления изоляции электрооборудования, то есть риск повреждения электронных приборов.

Дополнительно требования к измерению сопротивления изоляции изложены в п. 1. 20 приложения 1 ПТЭЭП и п.413.3 ГОСТ Р 50571.3-94. Они касаются не только состояния системы, в которой проводится измерение. Особое внимание уделяется помещению, в котором проводятся электроизмерительные работы как части электрохозяйства: пол и стены помещения, зоны или площадки, где проводится измерение сопротивления изоляции, должны быть непроводящими. Это необходимо для того, чтобы при прикосновении к частям аппаратуры с разными потенциалами в случае, если изоляция повреждена, не произошло поражения током.

Требования жестко устанавливают расположение токопроводящих частей при измерении сопротивления изоляции: так, открытые проводящие части и сторонние проводящие части разводятся на расстояние. Между открытыми проводящими частями и сторонними проводящими частями должны быть установлены эффективные приборы. Сторонние проводящие части изолируются с определенным напряжением: при измерении сопротивления изоляции электрооборудования при номинальном напряжении электроустановок не выше 500 В – 50 кОм, при напряжении свыше 500 В — 100 кОм. Для того, чтобы измерить изоляцию поверхностей, требуется провести три измерения: в одном метре от сторонних проводящих частей, два других – на большем удалении. Нормативы измерений установлены в МЭК 364-6-61.

Измерения сопротивления изоляции проводится с помощью мегаоомметра, а испытания оборудования с подачей повышенного напряжения промышленной частоты или выпрямленного напряжения в электроустановках до и выше 1 кВ – выполняется только бригадой от двух человек и больше, с группой допуска по электробезопасности у производителя работ — не ниже четвертой ( IV) , у члена бригады –должна быть третья группа ( III) по электробезопасности (ЭБ) ,у охраняющего рабочее место допускается вторая (II) группа по ЭБ. Все испытания электрооборудования, выполняемые с помощью передвижной установки, проводятся по наряду. Допуск к работам в электроустановке осуществляет оперативный персонал, а вне электроустановок – ответственный руководитель работ или производитель работ. Если напряжение в установке ниже 1 кВ, для измерения все равно требуются два работника, один из которых должен иметь допуск по электробезопасности не меньше третьей группы. Измерение сопротивления изоляции может проводиться одним работником с третьей группой по электробезопасности. Ротор работающего генератора в части измерения сопротивления изоляции проверяется двумя работниками третьей и четвертой группой по электробезопасности. После подключения мегаоомметра к токоведущим частям надо снять заземление. Заземление необходимо для снятия заряда с токоведущих частей.

В соответствии с нормативным документом «Правила по охране труда при эксплуатации электроустановок» (ПОТ), список мероприятий по измерению сопротивления изоляции электрооборудования определяет лицо, выдающее наряд или распоряжение. Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормативных документах: Объем и нормы испытаний электрооборудования ( ОиНИЭ, РД (СО) 34.45-51.300-97), Правила устройства электроустановок (ПУЭ), Правил технической эксплуатации электроустановок потребителей (ПТЭЭП). В ГОСТ Р 50571.16-99 также указаны нормируемые величины сопротивления изоляции электроустановок.

Важно, чтобы соблюдался температурный режим и уровен

10i5.ru

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *