Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Как рассчитать нагрузку на котельную: Расчет блочно-модульной котельной по площади и объему здания

Расчет блочно-модульной котельной по площади и объему здания

Блочно-модульные котельные — это мобильные котельные установки, предназначенные для обеспечения теплом и горячей водой объектов как жилых, так и производственных назначений. Все оборудование размещено в одном или нескольких блоках, которые потом стыкуются между собой, устойчиво к пожарам и перепадам температуры. Перед тем как остановиться на данном типе энергоснабжения, необходимо правильно провести расчёт мощности котельной.

Блочно-модульные котельные разделяются по виду используемого топлива и могут быть твердотопливными, газовыми, жидко-топливными и комбинированными.

Для комфортного проживания дома, в офисе или на производстве в холодное время года нужно озаботиться хорошей и надёжной системой отопления для здания или помещения. Для правильного расчёта тепловой мощности котельной нужно обратить внимание на несколько факторов и параметров здания.

Здания проектируются таким образом, чтобы минимизировать теплопотери. Но с учётом своевременного износа или технологических нарушений в процессе строительства здание может иметь уязвимые места, через которые тепло будет уходить. Для учёта этого параметра в общем расчёте мощности котельной модульного типа нужно либо избавиться от теплопотерь, либо включить их в расчёт.

Для устранения теплопотерь нужно провести специальное исследование, например, с помощью тепловизора. Он покажет все места, через которые утекает тепло, и нуждающиеся в утеплении или заделке. Если же решено было не устранять теплопотери, то при расчёте мощности котельной модульного типа нужно накинуть на получившуюся мощность процентов 10 для покрытия теплопотерь. Также при расчете необходимо учитывать степень утепленности здания и количество и размер окон и больших ворот. Если имеются большие ворота для заезда фур, например, добавляется около 30 % мощности для покрытия теплопотерь.

Содержание

Расчёт по площади

Самым простым способом узнать необходимое потребление тепла считается расчёт мощности котельной по площади здания. С годами специалисты уже рассчитали стандартные константы для некоторых параметров теплообмена внутри помещения. Так, в среднем для отопления 10 квадратов площади нужно потратить 1 кВт тепловой энергии. Эти цифры будут актуальны для зданий построенных с соблюдением технологий по теплопотерям и высотой потолка не более 2,7 м. Теперь исходя из общей площади здания можно получить необходимую мощность котельной.

Расчёт по объёму

Более точным, нежели предыдущий метод вычисления мощности, считается расчёт мощности котельной по объёму здания. Здесь можно учесть сразу и высоту потолков. Согласно СНиПам, на отопление 1 кубометра в кирпичном здании приходится затратить в среднем 34 Вт. В нашей фирме мы пользуемся различными формулами для расчета необходимой тепловой мощности, учитывающие степень утепленности здания и его месторасположение, а также необходимую температуру внутри здания.

Что ещё необходимо учесть при расчёте?

Для полного расчёта мощности блочно модельной котельной необходимо будет учесть ещё несколько важных факторов. Один из них — это горячее водоснабжение. Для его расчёта необходимо учесть сколько воды будет ежедневно потребляться всеми членами семьи или производством. Таким образом зная количество потребляемой воды, необходимой температуры и учитывая время года, можно рассчитать правильную мощность котельной. В основном принято добавлять к полученной цифре около 20% на нагрев воды.

Очень важным параметром является размещение отапливаемого объекта. Для применения географических данных при расчёте, нужно обратиться к СНиПам, в которых можно обнаружить карту средних температур для летнего и зимнего периодов. В зависимости от размещения нужно применить соответствующий коэффициент. Например, для средней полосы России актуальна цифра 1. А вот северная часть страны имеет уже коэффициент 1,5-2. Так, получив некую цифру при проведении прошлых исследований нужно произвести умножение полученной мощности на коэффициент, в результате станет известна конечная мощность для текущего региона.

Теперь, перед тем, как рассчитать мощность котельной для конкретного дома нужно собрать как можно больше данных. Имеется дом в Сыктывкарской обл., построенный из кирпича, по технологии и соблюдены все меры по избежанию теплопотерь, площадью 100 кв. м. и высотой потолков 3 м. Таким образом полный объем здания составит 300 метров в кубе. Так как дом кирпичный, нужно умножить эту цифру на 34 Вт. Получается 10,2 кВт.

С учётом северного региона, частых ветров и короткого лета, полученную мощность нужно умножить на 2. Теперь получается уже 20,4 кВт нужно затратить для комфортного проживания или работы. При этом необходимо учесть, что какая-то часть мощности пойдёт на нагревание воды, а это как минимум 20%. Но для запаса лучше взять 25% и умножить на текущую необходимую мощность. В результате чего получится цифра 25,5. Но для надёжной и стабильной работы котельной установки нужно ещё взять запас в 10 процентов для того, чтобы ей не приходилось работать на износ в постоянном режиме. Итого получается 28 кВт.

Вот таким не хитрым образом получилась необходимая для отопления и нагрева воды мощность и теперь можно смело выбирать блочно-модульные котельные, мощность которых соответствует полученной цифре в расчётах.

Расчёт тепловой мощности обогревателя для отопления вашего помещения

самая подробная инструкция, подбор производительности по площади дома, по объему отапливаемых помещений частного дома, простая формула и калькулятор для точных расчетов

От тепловой мощности котла зависит эффективность работы системы отопления. При недостаточной теплопроизводительности система отопления не сможет удерживать комфортную температуру. Если речь идет о газовом или жидкотопливном котле, важно не переусердствовать и с запасом мощности, из-за чего нарушится нормальная работа котла, увеличится расход топлива.

Читайте в статье

Что такое мощность котла и как ее узнать

Тепловая мощность котла – это максимальное количество тепловой энергии, передаваемой теплоносителю в процессе сгорания топлива (измеряется в киловаттах/час или просто кВт). Это означает, что котел мощностью 20 кВт при непрерывной работе на максимальной мощности за час выработает и передаст теплоносителю 20 кВт тепловой энергии.

Определить мощность котла можно несколькими способами:

  • поискать список технических характеристик на корпусе котлоагрегата;
  • найти значение в паспорте модели. Если документация не сохранилась, можно поискать электронную версию или изучить предложения интернет-магазинов, которые обязательно указывают в описании модели ее номинальную мощность; Технические характеристики на корпусе котлаМесто расположения технических характеристик на корпусе котла
  • если речь идет о газовом котле, можно узнать примерную теплопроизводительность по расходу газа, для чего необходимо проверить и зафиксировать сколько кубометров котел потребляет при беспрерывной работе на максимальной мощности. Удельная теплота сгорания газа – величина постоянная и равна 9,3 кВт. Также важно учитывать КПД котла (его также можно найти в списке технических характеристик), для старых советских моделей это значения в районе 70-85%, у новых моделей КПД в пределах 86-94%. Итого, максимальная мощность = 9,3 кВт (удельная теплота сгорания природного газа)*0,8 (если КПД 80%)*2,5 куб. м/час (полученный расход газа в час) = 18,6 кВт. Аналогичным способом можно посчитать примерные значения для твердотопливного, жидкотопливного или электрического котла.

Увеличить теплопроизводительность бытового котла без серьезных небезопасных изменений его конструкции невозможно, поэтому к выбору минимально необходимой мощности необходимо подходить ответственно. Если ее будет недостаточно, придется устанавливать дополнительный котлоагрегат или производить утепление стен, пола и потолка, замену окон и дверей в целях снижения теплопотерь.

Способы подбора минимально необходимой мощности котла

Чтобы поддерживать в каждом помещении комфортную температуру, теплопроизводительность системы отопления (соответственно и котла) должна обеспечивать теплопотери дома, которые также измеряются в кВт. То есть теплопроизводительнось котлоагрегата = суммарные тепловые потери дома через стены, пол, потолок, фундамент окна и двери + запас на случай более сильных морозов.

Тепловые потери частного домаНаглядное изображение теплопотерь частоного дома.

Расчет мощности котла отопления по площади дома

Наиболее простой и распространенный способ. Исходя из практики, для среднестатистического частного дома в климатической зоне Подмосковья, с кладкой в 2 кирпича и высотой потолков 2,7 м на каждые 10 м2 необходим 1 кВт тепловой мощности (именно такое соотношение соответствует среднестатистическим теплопотерям). Также мы рекомендуем закладывать запас мощности в 15-25%.

Например, для вышеописанного дома площадью 100 кв. м. минимальная мощность котла = 100 м2 : 10 * 1,2 (20% запаса) = 12 кВт.

Также при расчете мощности котла отопления по площади дома можно делать поправки с учетом утепленности дома. Так, для среднеутепленного дома (наличие 100-150 мм слоя теплоизоляции или стены из бруса) на каждые 10 м2 может приходиться 0,5-0,7 кВт теплопотерь. Для хорошо утепленного дома с небольшой площадью остекления норма составляет 0,4-0,5 кВт на каждые 10 м2.

Поэтому, если ваш случай кардинально отличается от среднестатистичекого вышеописанного дома, стоит рассчитать мощность котла более точным методом с учетом всех особенностей, он описан одним пунктом ниже.

Расчет по объему помещения

Энергонезависимый газовый напольник

Еще один довольно простой способ, основанный на СНиП и обычно применяемый для квартир. За исходную величину берется не площадь, а кубатура отапливаемых помещений. Согласно методике, указанной в СНиП 23-02-2003 «Тепловая защита зданий», норма удельного расхода тепловой энергии:

  • для кирпичного многоквартирного дома – 0,034 кВт/м3;
  • для панельного многоквартирного дома – 0,041 кВт/м3.

Зная эти нормы, площадь квартиры и высоту потолков, можно использовать способ расчета мощности котла отопления по объему помещений.

Например, для квартиры панельного многоквартирного дома площадью 150 кв. м. и высотой потолков 2,7 м (без внешнего и внутреннего утепления стен), минимальная теплопроизводительность = 2,7*150*0,041 = 16,6 кВт.

Из принципа расчета, опять таки, ясно, что весь учет теплопотерь сводится к усредненным значениям и теплопроводности стен из различных материалов. Это значит, что использовать его рационально если внешние стены не утеплены, в квартире имеются не более 4 стандартных окна, радиаторы подключены наиболее эффективным способом, а соседние квартиры отапливаются.

Рассчитываем с учетом всех основных особенностей дома

Подробная формула основывается на площади помещений, однако учитывает все возможные тепловые потери, способ подключения радиаторов, который влияет на КПД системы отопления, а также климатические условия, в которых находится частный дом.

Расчет производится для каждого помещения отдельно, что более правильно. Полученные для каждого помещения значения в дальнейшем можно использовать для подбора мощности радиаторов отопления. Просуммировав необходимую для каждого помещения теплопроизводительность, вы получите значение для всей системы отопления дома, значит – и для котла, который должен обеспечивать ее мощность.

Точная формула для расчета:

Q = 1000 Вт/м2*S*k1*k2*k3…*k10,

  • где Q – показатель теплопроизводительности;
  • S – общая площадь помещения;
  • k1-k10 – коэффициенты, учитывающие теплопотери, климат и особенности установки радиаторов.

Показать значения коэффициентов k1-k10

k1 – к-во внешних стен в помещения (стен, граничащих с улицей):

  • одна – k1=1,0;
  • две – k1=1,2;
  • три – k1-1,3.

k2 – ориентация помещения (солнечная или теневая сторона):

  • север, северо-восток или восток – k2=1,1;
  • юг, юго-запад или запад – k2=1,0.

k3 – коэффициент теплоизоляции стен помещения:

  • простые, не утепленные стены – 1,17;
  • кладка в 2 кирпича или легкое утепление – 1,0;
  • высококачественная расчетная теплоизоляция – 0,85.

k4 – подробный учет климатических условий локации (уличная температура воздуха в самую холодную неделю зимы):

  • -35°С и менее – 1,4;
  • от -25°С до -34°С – 1,25;
  • от -20°С до -24°С – 1,2;
  • от -15°С до -19°С – 1,1;
  • от -10°С до -14°С – 0,9;
  • не холоднее, чем -10°С – 0,7.

k5 – коэффициент, учитывающий высоту потолка:

  • до 2,7 м – 1,0;
  • 2,8 — 3,0 м – 1,02;
  • 3,1 — 3,9 м – 1,08;
  • 4 м и более – 1,15.

k6 – коэффициент, учитывающий теплопотери потолка (что находится над потолком):

  • холодное, неотапливаемое помещение/чердак – 1,0;
  • утепленный чердак/мансарда – 0,9;
  • отапливаемое жилое помещение – 0,8.

k7 – учет теплопотерь окон (тип и к-во стеклопакетов):

  • Стеклопакетыобычные (в том числе и деревянные) двойные окна – 1,17;
  • окна с двойным стеклопакетом (2 воздушные камеры) – 1,0;
  • двойной стеклопакет с аргоновым заполнением или тройной стеклопакет (3 воздушные камеры) – 0,85.

k8 – учет суммарной площади остекления (суммарная площадь окон : площадь помещения):

  • менее 0,1 – k8 = 0,8;
  • 0,11-0,2 – k8 = 0,9;
  • 0,21-0,3 – k8 = 1,0;
  • 0,31-0,4 – k8 = 1,05;
  • 0,41-0,5 – k8 = 1,15.

k9 – учет способа подключения радиаторов:

  • диагональный, где подача сверху, обратка снизу – 1,0;
  • односторонний, где подача сверху, обратка снизу – 1,03;
  • двухсторонний нижний, где и подача, и обратка снизу – 1,1;
  • диагональный, где подача снизу, обратка сверху – 1,2;
  • односторонний, где подача снизу, обратка сверху – 1,28;
  • односторонний нижний, где и подача, и обратка снизу – 1,28.

k10 – учет расположения батареи и наличия экрана:

  • практически не прикрыт подоконником, не прикрыт экраном – 0,9;
  • прикрыт подоконником или выступом стены – 1,0;
  • прикрыт декоративным кожухом только снаружи – 1,05;
  • полностью закрыт экраном – 1,15.

Для большего удобства ниже находится калькулятор, где можно рассчитать те же самые значения быстро выбрав соответствующие исходные данные.

Калькулятор для точного определения тепловой мощности

Расчет необходимой мощности отопительного оборудования производится отдельно для каждого помещения дома. Введите исходные данные или выберите предложенные варианты и нажмите «Рассчитать».

1. Установите значение площади помещения, м²

2. К-во внешних стен помещения

одна две три

3. Внешние стены направлены на:

север, северо-восток или восток юг, юго-запад или запад

4. Степень теплоизоляции внешних стен

простые, не утепленные стены кладка в 2 кирпича или легкое утепление высококачественная расчетная теплоизоляция

5. Уровень температуры в регионе в самую холодную неделю отопительного сезона

-35°С и менее от -25°С до -34°С от -20°С до -24°С от -15°С до -19°С от -10°С до -14°С не холоднее, чем -10°С

6. Высота потолка в расчетном помещении

до 2,7 м 2,8 — 3,0 м 3,1 — 3,9 м 4 м и более

7. Что находится над потолком?

холодное, неотапливаемое помещение/чердак утепленный чердак/мансарда отапливаемое жилое помещение

8. Тип и к-во стеклопакетов

обычные (в том числе и деревянные) двойные окна окна с двойным стеклопакетом (2 воздушные камеры) двойной стеклопакет с аргоновым заполнением или тройной стеклопакет (3 воздушные камеры)

9. Отношение площади остекления к площади пола (К-во окон * высоту окна * ширину окна / площадь пола):

менее 0,1 0,11-0,2 0,21-0,3 0,31-0,4 0,41-0,5

10. Выберите планируемый способ подключения радиаторов отопления

11. Планируемое расположение радиатора и наличие экрана

практически не прикрыт подоконником, не прикрыт экраном прикрыт подоконником или выступом стены прикрыт декоративным кожухом только снаружи полностью закрыт экраном

Служебн. (не учитывается)

Темп К

Запас производительности в зависимости от типа котла

Для стандартного одноконтурного котла, вне зависимости от вида используемого топлива, мы всегда рекомендуем закладывать запас мощности 15-25%, в зависимости от температуры в самую холодную декаду и утепленности дома. Однако в некоторых случаях требуется несколько больший запас:

  • 20-30% запаса, если котел двухконтурный. Большинство моделей работает по принципу приоритета ГВС, это значит, что в момент активации точки потребления горячей воды котел не греет отопительный контур, для работы на два контура требуется более высокая производительность;
  • 20-25% запаса, если в доме организована или планируется приточно-вытяжная вентиляция без рекуперации тепла.

Также часто используется схема с подключением бойлера косвенного нагрева (особенно в связке с твердотопливными котлами). В таком случае излишек мощности может превышать 40-50% (показатель рассчитывается по ситуации). Стоит понимать, что любом из случаев предусмотренный запас не «простаивает», а используется будь то в целях нагрева горячей воды, восполнения более высоких теплопотерь или нагрева буферной емкости.

Напольный газовый котел с бойлером косвенного нагреваВысокий белый бак справа от котла – накопительный бойлер косвенного нагрева, постоянно поддерживающий большой объем горячей воды.

Почему не стоит подбирать котел со слишком большим запасом мощности

С недостатком теплопроизводительности все предельно понятно: система отопления попросту не обеспечит желаемый уровень температуры даже при беспрерывной работе. Однако, как мы уже упоминали, серьезной проблемой может стать и переизбыток мощности, последствиями которого являются:

  • более низкий КПД и повышенный расход топлива, особенно на одно- и двухступенчатых горелках, не способных плавно модулировать производительность;
  • частое тактование (вкл/выкл) котла, что нарушает нормальную работу и снижает ресурс горелки;
  • попросту более высокая стоимость котлоагрегата, учитывая, что производительность, за которую была произведена повышенная плата, использоваться не будет;
  • часто больший вес и большие габариты.

Когда чрезмерная теплопроизвоительность все же уместна

Единственной причиной выбрать версию котла гораздо большей мощности, чем нужно, как мы уже упоминали, является использование его в связке с буферной емкостью. Буферная емкость (также теплоаккумулятор) – это накопительный бак определенного объема наполненный теплоносителем, назначение которого – накапливать излишки тепловой мощности и в дальнейшем более рационально распределять их в целях отопления дома или обеспечения горячего водоснабжения (ГВС).

Например, теплоаккумулятор – отличное решение, если недостаточно производительности контура ГВС или при цикличности твердотопливного котла, когда топливо сгорая отдает максимум тепла, а после прогорания система быстро остывает. Также теплоаккумулятор часто используется в связке с электрокотлом, который нагревает емкость в период действия сниженного ночного тарифа на электроэнергию, а днем накопленное тепло распределяется по системе, еще долго поддерживая желаемую температуру без участия котла.

Как рассчитать мощность газового котла в зависимости от площади дома

Многие собственники домов с удовольствием устанавливают в помещении газовые котлы для отопления и горячего водоснабжения, чтобы не зависеть от прихотей плохой погоды и подводных камней, сопряженных с работой коммунальных систем теплоснабжения.

В данной ситуации имеет большое значение — правильный выбор котельного оборудования, для чего потребуется знать, как рассчитать мощность газового котла.

Если она будет превосходить реальные теплопотери объекта, то часть затрат на выработку тепловой энергии, будут потеряны. А агрегаты с невысокой теплопроизводительностью не смогут обеспечить домовладение требуемым объемом тепла.

СодержаниеПоказать

Что такое мощность газового котла

Производительность котлоагрегата или его мощность — это главнейший показатель теплового процесса, от которого напрямую зависит комфортабельность нахождения людей в обогреваемых строениях.

Мощность котлоагрегата — это величина тепловой энергии, передаваемая нагреваемой воде при сжигании энергоносителя в топочном устройстве.

Показатель измеряется в Гкал либо МВт. Для бытовых устройств в паспорте обычно указывается размерность в кВт. Для того чтобы понять физический смысл этого показателя, можно представить такие соотношения:

1 ГКал/час — это 40.0 м3 теплоносителя циркулирующего в течение часа и нагреваемого в котле на 25 С. Переводное соотношение между величинами:

1.0 ГКал = 1.16 МВт.

Расчет мощности газового котла можно получить по формуле:

Мо = (т1 — т2) * Рв/ 1000,

Где:

  • Рв — расход циркулирующей воды, м3/час;
  • т1 — т2 — разница Т воды на входе/выходе из котлоагрегата, С.

Теплопотери могут быть очень высоки

Образец расчета показателя мощности, который проводят перед тем, как выбрать котлоагрегат:

  • Т теплоносителя на подающей линии из котла — 60 С.
  • Т теплоносителя на обратной линии из сети в котел — 40 С.
  • Расход в сети — 1.0 м3/час.

Мо= (60-40)*1/1000=0.02 Гкал. * 1.16 = 0.0232 МВт = 23.2 кВт,

с округлением Мо = 24 кВт.

Многие пользователи, в целях экономии задаются вопросом, как уменьшить мощность газового котла. Из данного примера очевидно, что для того этого потребуется либо снизить перепад температур, либо площадь нагрева.

Вторая величина – постоянная, поэтому можно работать в направлении снижения перепада температур. Это можно выполнить при устройстве надежной системы теплозащиты дома.

Расчет мощности газового котла в зависимости от площади

В большинстве случаев используют ориентировочный подсчет тепловой мощности котлоагрегата по площадям нагрева, например, для частного дома:

  • 10 кВт на 100 кв.м;
  • 15 кВт на 150 кв.м;
  • 20 кВт на 200 кв.м.

Нужно учитывать, что данные нормативы были приняты еще в советские времена и не предусматривают уровень теплоизоляционных характеристик современных строительно-монтажных материалов. Они также не применяемы в районах, климат которых значительно отличается от условий центральных регионов России и Подмосковья.

Подобные вычисления смогут подойти для не очень большого сооружения с утепленным чердачным перекрытием, низкими потолками, хорошей термоизоляцией, окнами с двойным остеклением, но не более того.

По старым расчетам лучше не делать. Источник фото: porjati.ru

К сожалению, данным условиям соответствуют только немногочисленные строения. С тем, чтобы осуществить наиболее обстоятельный расчет показателя мощности котла, необходимо учитывать полный пакет взаимосвязанных величин, в том числе:

  • атмосферные условия в местности;
  • размер жилой постройки;
  • коэффициент теплопроводности стены;
  • фактическую теплоизоляцию здания;
  • систему регулировки мощности газового котла;
  • объем тепла, требуемый для ГВС.

Расчет одноконтурного котла отопления

Подсчет мощности одноконтурного котлоагрегата настенной или напольной модификации котла с применением соотношения: 10 кВт на 100 м2, необходимо увеличить на 15-20%.

Например, необходимо обогреть здание площадью 80 м2.

Расчет мощности газового котла отопления:

10*80/100*1.2 = 9.60 кВт.

В случае, когда в торговой сети не существует требуемого вида устройств, приобретают модификацию с большим размером кВт. Подобный метод пойдет для источников отопления одноконтурного типа, без нагрузки на горячее водоснабжение, и может быть заложен в основу расчета расхода газа на сезон. Иногда вместо жилой площади расчет выполняют с учетом объема жилого здания квартиры и степени утепления.

Для индивидуальных помещений, построенных по типовому проекту, с высотой потолочного покрытия 3 м, формула расчета довольно простая.

Еще один способ расчета ОК котла

В данном варианте учитывают площадь застройки (П) и коэффициент удельной мощности котлоагрегата (УМК), зависящего от климатического места расположения объекта.

Он варьируется в кВт:

  • 0.7 до 0.9 южные территории РФ;
  • 1.0 до 1.2 центральные регионы РФ;
  • 1.2 до 1.5 Московская область;
  • 1.5 до 2.0 северные районы РФ.

Следовательно, формула для расчета выглядит таким образом:
Мо=П*УМК/10

Например, необходимая мощность источника отопления для постройки в 80 м2, расположенного в северном регионе:

Мо = 80*2/10 = 16 кВт

Если собственник будет устанавливать двухконтурный котлоагрегат, для отопления и ГВС, профессионалы советуют добавить к полученному результату еще 20% мощности на подогрев воды.

Как рассчитать мощность двухконтурного котла

Расчет теплопроизводительности двухконтурного котлоагрегата выполняется на основанию такой пропорции:

10 м2 = 1 000 Вт + 20% (теплопотери) + 20% (подогрев ГВС).

В случае, если здание располагает площадью 200 м2, то требуемый размер будет состоять: 20.0 кВт + 40.0% = 28.0 кВт

Это прикидочный расчет, его лучше уточнить по норме водопользования ГВС на одного человека. Такие данные приводятся в СНИПе:

  • ванная комната — 8.0-9.0 л/мин;
  • душевая установка — 9 л/мин;
  • унитаз — 4.0 л/мин;
  • смеситель в мойке — 4 л/мин.

В техдокументации к водонагревателю указывается, какая необходима теплопроизводительность котла, чтобы гарантировать качественный подогрев воды.

Для теплообменника на 200 л будет достаточно нагревателя нагрузкой приблизительно 30.0 кВт. После рассчитывают производительность, достаточную для обогрева, в конце итоги суммируют.

Расчет мощности бойлера косвенного нагрева

Для того, чтобы сбалансировать нужную мощность одноконтурного агрегата работающего на газовом топливе с бойлером косвенного нагрева, нужно установить какой объем теплообменника потребуется, чтобы обеспечить горячей водой жильцов дома. Используя данные по нормам горячего водопотребления легко можно установить, что расход в сутки для семьи из 4-х человек составит 500 л.

Производительность водонагревателя косвенного нагрева напрямую зависит от площади внутреннего теплообменника, чем более размеры змеевика, тем больше тепловой энергии он передает воде в час. Детализовать такие сведения можно, изучив характеристики по паспорту на оборудование.

Источник фото: coolandtheguide.com

Существуют оптимальные соотношения этих величин для среднего диапазона мощности бойлеров косвенного нагрева и время получения заданной температуры:

  • 100 л, Мо — 24кВт, 14 мин;
  • 120 л, Мо — 24кВт,17 мин;
  • 200 л, Мо — 24кВт, 28 мин.

При выборе водонагревателя рекомендуется, чтобы он нагревал воду примерно за полчаса. Исходя из этих требований предпочтительнее 3-й вариант БКН.

Какой запас мощности должен быть

Мощность для подбора источника отопления с бойлером косвенного нагрева при одновременной работе отопления и ГВС определяется по формуле:

М к= (Мо+Мгвс)*Кз,

где:

  • Мк-комбинированная мощность, кВТ;
  • Мо — мощность источника, достаточная для обеспечения отопительной нагрузки дома, кВт;
  • Мгвс — мощность источника нужная для компенсации нагрузки на горячее водоснабжение, кВт;
  • Кз — коэффициент запаса.

В случае поочередного функционирования систем отопления и ГВС:

Мк= Мгвс *Кз

Очень важно! Рассчитывая производительность оборудования по отоплению и ГВС, необходимо учитывать, чтобы мощность БКН никак не превышала аналогичный показатель в котле. По этой причине его необходимо выбирать такой теплопроизводительности в кВт, чтобы он мог с запасом покрыть нагрузку и отопления, и ГВС.

Резерв производительности подсчитывается в зависимости от конструкции нагревательного оборудования.

Для одноконтурных модификаций, запас составляет — 20.0%;
для двухконтурных — 20.0%+20.0%.

Для вышенаведенных примеров теплопроизводительность котла, будет равна.

При одновременной работе систем отопления и ГВС:

Мо = 24 кВт.
Мгвс= 24 кВт.
Кз= 1.4.

Мк= (24+24)* 1.4= 67.2 кВт.

При поочередной работе систем отопления и ГВС:

Мк=24*1.4= 33.6 кВт.

Таким образом выполнить исходный расчет мощности газового источника тепловой энергии не является трудным процессом. Его, возможно, применять для предварительного подбора бойлерного оборудования.

В случае, если же абоненту не хватает ориентировочного расчета эффективности газовых котлов, и необходимо, чтобы теплопотери строения, нагрузка по ГВС и производительность котла были определены более точно, потребуется обратиться к квалифицированным специалистам, чтобы выполнить комплексный проект теплоснабжения дома с разработкой схемы и выбором оборудования.

Расчет мощности твердотопливных котлов отопления

Для того чтобы выбрать котёл, работающий на твёрдом топливе, необходимо обратить внимание на мощность. Данный параметр показывает, какое количество тепла может создать конкретное устройство при подключении к системе отопления. От этого напрямую зависит, можно ли с помощью такого оборудования обеспечить дом теплом в нужном количестве или нет. твердотопливный котел

Например, в помещении, где установлен пеллетный котёл с небольшой мощностью, будет в лучшем случае прохладно. Также не лучшим вариантом является установка котла с избыточной мощностью, потому что он постоянно будет работать в экономном режиме, а это заметно снизит показатель КПД.

Итак, чтобы выполнить расчет мощности котла для отопления частного дома, вам нужно следовать определенным правилам.

Содержание:

  1. Как рассчитать мощность отопительного котла, зная объём отапливаемого помещения
  2. Как рассчитать, сколько тепла необходимо для нагрева воды
  3. Подбор котла по площади частного дома. Как произвести расчёт?
  4. Расчёт реальной мощности котла длительного горения на примере «Купер ПРАКТИК-8»
  5. Сколько энергии дают разные типы горючего
Как рассчитать мощность отопительного котла

Как рассчитать мощность отопительного котла, зная объём отапливаемого помещения?

Тепловая мощность котла определяется по формуле:

Q = V × ΔT × K / 850


  • Q – количество тепла в кВт/ч
  • V – объём отапливаемого помещения в кубометрах
  • ΔT – разница между температурой снаружи и внутри дома
  • К – коэффициент потери тепла
  • 850 – число, благодаря которому произведение трёх вышеуказанных параметров можно перевести в кВт/ч

Показатель К может иметь следующие значения:

  • 3-4 – если конструкция здания упрощённая и деревянная или если оно сделано из профлиста
  • 2-2,9 – у помещения небольшая теплоизоляция. Такое помещение имеет простую конструкцию, длина 1 кирпича равна толщине стены, окна и крыша имеют упрощённую постройку
  • 1-1,9 – конструкция здания считается стандартной. У таких домой двойная кирпичная вкладка и мало простых окон. Кровля крыши обычная
  • 0,6-0,9 – конструкция здания считается улучшенной. Такое здание имеет окна с двойными стеклопакетами, основа пола толстая, стены кирпичные и имеют двойную теплоизоляцию, крыша имеет теплоизоляцию, сделанную из хорошего материала

Ниже приведена ситуация, в которой подбирается котел отопления по объему отапливаемого помещения.

Дом имеет площадь 200 м², высота его стен 3 м, теплоизоляция является первоклассной. Показатель температуры окружающего воздуха рядом с домом не падает ниже -25 °С. Получается, что ΔT = 20 — (-25) = 45 °С. Получается, чтобы узнать количество тепла, которое требуется для отопления дома, необходимо произвести следующий расчёт:

Q = 200 × 3 × 45 × 0,9/850 = 28,58 кВт/ч

Полученный результат пока что не следует округлять, ведь к котлу может быть еще подключена система горячего водоснабжения.

Если вода для мытья нагревается другим способом, то результат, который получен самостоятельно не нуждается в корректировке и эта стадия расчёта является завершающей.

Как рассчитать, сколько тепла необходимо для нагрева воды?

Чтобы произвести расчет расхода тепла в этом случае необходимо самостоятельно прибавить к предыдущему показателю расход тепла для горячего водоснабжения. Для его расчета можно воспользоваться следующей формулой:

Qв = с × m × Δt


  • с – удельная теплоёмкость воды, которая всегда равна 4200 Дж/кг·К,
  • m – масса воды в кг
  • Δt – разница температуры нагретой воды и поступающей воды из водопровода.

К примеру, среднестатистическая семья в среднем потребляет 150 л тёплой воды. Теплоноситель, который нагревает котёл имеет температуру равную 80 °С, а температура воды, поступающей из водопровода равна 10 °С, тогда Δt = 80 — 10 = 70 °С.

Следовательно:

Qв = 4200 × 150 × 70 = 44 100 000 Дж или 12,25 кВт/ч

После необходимо поступить следующим образом:

  1. Допустим, нужно нагреть 150 л воды за один раз, значит ёмкость косвенного теплообменника равна 150 л, следовательно, к 28,58 кВт/ч необходимо прибавить 12,25 кВт/ч. Делается потому что показатель Qзаг меньше 40,83, следовательно, в помещении будет прохладнее ожидаемых 20 °С.
  2. В случае, если нагрев воды происходит порционно, то есть ёмкость косвенного теплообменника составляет 50 л, показатель 12,25 нужно разделить на 3 и далее прибавить самостоятельно к 28,58. После этих расчётов Qзаг равен 32,67 кВт/ч. Полученный показатель это и есть мощность, котла, которая необходима для отопления помещения.

Подбор котла по площади частного дома. Как произвести расчёт?

Такой расчёт является более точным, потому что учитывает огромное количество нюансов. Производится он по следующей формуле:

Q = 0,1 × S × k1 × k2 × k3 × k4 × k5 × k6 × k7


  1. 0,1 кВт – норма необходимого тепла на 1 м².
  2. S – площадь помещения, которое нужно отопить.
  3. k1 показывает тепло, которое потерялось из-за строения окон, и имеет следующие показатели:

  • 1,27 – у окна одинарное стекло
  • 1,00 – окно со стеклопакетом
  • 0,85 – у окна тройное стекло

  1. k2 показывает, тепло которое потерялось из-за площади окна (Sw). Sw относится к площади пола Sf. Его показатели следующие:

  • 0,8 — при Sw/Sf = 0,1;
  • 0,9 — при Sw/Sf = 0,2;
  • 1,0 — при Sw/Sf = 0,3;
  • 1,1 — при Sw/Sf = 0,4;
  • 1,2 — при Sw/Sf = 0,5.

  1. k3 показывает утечку тепла сквозь стены. Может быть следующим:

  • 1,27 – некачественная теплоизоляция
  • 1 – стена дома имеет толщину 2-ух кирпичей или утеплитель толщиной 15 см
  • 0,854 – хорошая теплоизоляция

  1. k4 показывает количество потерянного тепла из-за температуры снаружи здания. Имеет следующие показатели:

  • 0,7, когда tз = -10 °С;
  • 0,9 для tз = -15 °С;
  • 1,1 для tз = -20 °С;
  • 1,3 для tз = -25 °С;
  • 1,5 для tз = -30 °С.

  1. k5 показывает сколько тепла потерялось из-за наружных стен. Имеет следующие значения:

  • 1,1 в здании 1 внешняя стена
  • 1,2 в здании 2 внешних стены
  • 1,3 в здании 3 внешних стены
  • 1,4 в здании 4 внешних стены

  1. k6 показывает количество тепла, которое необходимо дополнительно и зависит от высоты потолка (Н):

  • 1 — для высоты потолка 2,5 м;
  • 1,05 — для для высоты потолка 3,0 м;
  • 1,1 — для высоты потолка 3,5 м;
  • 1,15 — для высоты потолка 4,0 м;
  • 1,2 — для для высоты потолка 4,5 м.

  1. k7 показывает сколько тепла была потеряно. Зависит от типа постройки, которая расположена над отапливаемым помещением. Имеет следующие показатели:

  • 0,8 отапливаемое помещение;
  • 0,9 тёплый чердак;
  • 1 холодный чердак.

В качестве примера возьмем те же исходные условия, кроме параметра окон, которые имеют тройной стеклопакет и составляют 30% от площади пола. Постройка имеет 4 наружных стены, а сверху над ней расположен холодный чердак.

Тогда расчет будет выглядеть так:

Q = 0,1 × 200 × 0,85 × 1 × 0,854 × 1,3 × 1,4 × 1,05 × 1 = 27,74 кВт/ч

Данный показатель необходимо увеличить, для этого нужно самостоятельно добавить количество тепла, которое требуется для ГВС, если она подключена к котлу.

Если нет необходимости выполнять точные расчеты, то можно воспользоваться универсальной таблицей. С помощью нее можно определить мощность котла по площади дома. Например, для отопления помещения 150 кв м подойдет котел с мощностью 19 кВт, а для отопления 200 кв.м. потребуется уже 22 кВт.

Вышеприведённые методы очень полезны, рассчитать мощность котла для отопления дома.

Расчёт реальной мощности котла длительного горения на примере «Куппер ПРАКТИК-8»


Конструкция большинства котлов рассчитана под конкретный вид топлива, на котором будет работать это устройство. В случае использования для котла другой категории топлива, которая не переназначена для него, КПД значительно сократиться. Также необходимо помнить о возможных последствиях использования того топлива, которое не предусмотрено производителем котельного оборудования.

Теперь продемонстрируем процесс расчёта на примере котла «Теплодар», модель «Куппер ПРАКТИК-8». Это оборудование предназначено для системы отопления жилых домов и других помещений, которые имеют площадь меньше, чем 80 м². Также этот котёл является универсальным и может работать не только в закрытых системах отопления, но и в открытых с принудительной циркуляцией теплоносителя. Данный котел обладает следующими техническими характеристиками:

  1. возможность использовать в качестве топлива дрова;
  2. в среднем за час, он сжигает 10 дров;
  3. мощность данного котла составляет 80кВт;
  4. загрузочная камера имеет объём 300л;
  5. КПД равен 85%.

Допустим, что для отопления помещения хозяин использует в качестве топлива дрова осинового дерева. 1 кг данного вида дров даёт 2,82 кВт/ч. За один час, котёл потребляет 15кг дров, следовательно, он выдаёт тепла 2,82 × 15 × 0,87 = 36,801 кВт/ч тепла (0,87 является КПД).

Этого оборудования недостаточно для отопления помещения, которое имеет теплообменник объёмом 150 л, но если ГВС имеет теплообменник объёмом 50 л, то мощности данного котла будет вполне достаточно. Для того чтобы получить нужный результат 32,67 кВт/ч необходимо потратить 13,31 кг осиновых дров. Производим расчёт по формуле (32,67 / (2,82 × 0,87) = 13,31). В данном случае необходимое тепло было определённо методом расчёта по объёму.

Также можно произвести самостоятельный расчёт и узнать время, которое потребуется котлу для того, чтобы сжечь все дрова. 1 л дров осиного дерева имеет вес 0,143 кг. Следовательно, в отделении для загрузки поместится 294 × 0,143 = 42 кг дров. Столько дров будет достаточно для поддержания тепла более чем 3 часа. Это слишком непродолжительное время, поэтому в данном случае необходимо найти котёл, у которого размер топки в 2 раза больше.

Также можно поискать топливный котёл, который рассчитан на несколько видов топлива. Например, котёл от того же производителя «Теплодар», только модели «Куппер ПРО-22», который может работать не только на дровах, но и на углях. В данном случае при использовании разных видов топлива будет разная мощность. Расчёт проводится самостоятельно, учитывая эффективность каждого вида топлива отдельно, а позже выбирается наилучший вариант.

Сколько энергии дают разные типы горючего?

В данном случае показатели будут следующие:

  1. При сгорании 1 кг высушенных опилок или небольшой стружки хвойного дерева выдача 3,2 кВт/ч. При условии, что 1 л высушенных опилок весит 1,100 кг.
  2. Ольха имеет более высокую теплоотдачу и даёт 3 кВт в час, при весе 300 грамм.
  3. Деревья, которые относятся к видам твердолиственных, дают 1 кВт, имея вес 300 грамм.
  4. Уголь из камня даёт почти 5 кВт, при весе 400 грамм.
  5. Торф из Белоруссии даёт 2 кВт, при весе в 340 грамм.

Некоторые производители топлива в информации пишут срок сгорания одной загрузки, но не предоставляют информацию о том, сколько топлива выгорает за 1 час.

В такой ситуации необходимо произвести дополнительные расчёты:

  • Определить максимальную массу горючего, которая способна уместиться в отделении для загрузки горючего.
  • Узнать, сколько тепла может отдать котёл, работающий на данном виде сырья;
  • Какая уровень теплоотдачи будет за 1 час. Данное число необходимо самостоятельно разделить на тот период, за который выгорит всё количество дров.

Подводя итог, можно сказать, что данные, которые будут получены в результате всех расчётов, и будут показывать настоящую мощность твердотопливного котельного оборудования, которую он сможет выдать в течение 1 часа.

Тепловой расчет (на примере котельной больницы)

Тепловой расчет (на примере котельной больницы)

РАСЧЕТ годовой потребности в тепле и топливе на примере котельной Центральной районной больницы.

Приложение №1 к письму Минэкономики России от 27 ноября 1992 г. № ВЕ-261 /25-510

ПЕРЕЧЕНЬ данных, которые должны представляться вместе с ходатайством об установлении вида топлива для предприятий (объединений) и топливо потребляющих установок.

1.Общие вопросы

ВопросыОтветы
Министерство (ведомство) МЗ РФ
Предприятие и его местонахождение (республика, область, населенный пункт) ЦФО
Расстояние объекта до:
А) железнодорожной станции
Б) газопровода (его наименование)
В) базы нефтепродуктов
Г) ближайшего источника теплоснабжения (ТЭЦ котельная), с указанием его мощности, загруженности и принадлежности
Б) 0,950 км
Готовность предприятия к использованию топливно-энергетических ресурсов (действующее, реконструируемое, строящееся, проектируемое) , с указанием его категории Действующее
Документы, согласования,(дата, номер, наименование организации)
А) об использовании природного газа, угля и других видов топлива
Б) о строительстве индивидуальной или расширении действующей котельной (ТЭЦ)
На основании какого документа проектируется, строится, расширяется, реконструируется предприятие.

Задание МЗ РФ

Вид и количество (тыс, тут) используемого в настоящее время топлива и на основании какого документа (дата, номер) установлен расход ,(для твердого топлива указать его месторождение и марку)
Вид запрашиваемого топлива, общий годовой расход (тыс, тут) и год начала потребления
Год выхода предприятия на проектную мощность, общий годовой расход (тыс, тут) в этом году

Природный газ; 0,706; 2011г.

2011г.; 0,706

2. Котельные установки и ТЭЦ

А) Потребность в теплоэнергии

На какие нужды Присоединенная максим. тепловая нагрузка(Гкал/ч) Кол-во часов работы в году Годовая потребность в тепле (тыс.Гкал) Покрытие потребности в тепле тыс.Гкал/год
Сущ Пр. включ.сущ Сущ Пр. включ.сущ. Котельная (ТЭЦ) Вторич. энергоресурсы Стороны
1 2 3 4 5 6 7 8 9

Отопление

1,340 5160 3,367 3,367

Вентиляция

0,000 0,000 0,000 0,000

ГВС

0,300 2800 1,080 1,080

Технологи ческие нужды

0,000 0,000 0,000

Собственные нужды котельной (ТЭЦ)

0,000 0,000 0,000

Потери в тепловых сетях

0,000 0,000 0,000

Итого

1,640 4,447 4,447

Б) Состав и характеристики оборудования котельных, вид и годовой расход топлива

Тип котлов по группам Кол-во Общая мощность Гкал/ч Используемое топливо Запрашиваемое топливо
Вид основного (резервного) Удельный расход кг.у.т/Гкал Годовой расход тыс.т.у.т. Вид основного (резервного) Удельный расход кг.у.т/Гкал Годовой расход тыс.т.у.т.
1 2 3 4 5 6 7 8 9
Действующие
Демонтируемые

Устанавливаемые котлы Vitoplex 100 Viessmann (950кВт)

2 1,630 Природный газ (нет) 158.667 0,536
Резервные

Примечание:

  1. Годовой расход топлива указать общий по группам котлов.
  2. Удельный расход топлива указать с учетом собственных нужд котельной (ТЭЦ)
  3. В графах 4 и 7 указать способ сжигания топлива (слоевой, камерный, в кипящем слое).
  4. Для ТЭЦ указать тип и марку турбоагрегатов, их электрическую мощность в тыс. кВт, годовую выработку и отпуск электроэнергии в тыс. кВт.ч., годовой отпуск тепла в Гкал., удельные расходы топлива на отпуск электроэнергии и тепла (кг/Гкал), годовые расходы топлива производство электроэнергии и тепла в целом по ТЭЦ.
  5. При расходе более 100 тыс. т условного топлива в год должен представляться топливно-энергический баланс предприятия (объединения)

2. Расчет тепловой потребности в тепле и топливе.

2.1 Общая часть

Расчет годовой потребности в топливе для модульной котельной (отопление и горячее теплоснабжения) средней школы, выполнен по Заданию МО. Максимальные зимние часовые расходы тепла на отопление здания определены по укрупненным показателям. Расходы тепла на горячее водоснабжение определены согласно указаниям п. 3.13 СНиП 2.04.01-85 «Внутренний водопровод и канализация зданий». Климатологические данные приняты по СНиП 23-01—99 «Строительная климатология и геофизика». Расчетные усредненные температуры внутреннего воздуха приняты из «Методических указаний по определению расходов топлива, электроэнергии и воды на выработку тепла отопительными Котельными коммунальных теплоэнергетических предприятий». Москва 1994 г.

2.2 Источник тепла

Для теплоснабжения (отопления, горячего водоснабжения) школы предусматривается установка двух котлов Viessmann Vitoplex 100 (Германия) мощностью 950 кВт каждый в специально оборудованной котельной. Общая мощность устанавливаемого оборудования 1,634 Гкал/ч. В качестве основного топлива запрашивается природный газ. Резервное не требуется.

2.3 Исходные данные и расчет

№ п/п

Наименование здания

Расход тепла в Гкал/ч

Отопление

Вентиляция

ГВС

Технология

Итого

1

2

3

4

5

6

7

1

Котельная ТКУ-1,9

1,340

0,000

0,300

0,000

1,640

Итого

1,340

0,000

0,300

0,000

1,640

№ п/п Показатели Формула и расчет
1 2 3
1 Расчетная температура наружного воздуха для проектирования отопления Т(Р.О)= -26
2 Расчетная температура наружного воздуха для проектирования вентиляции Т(Р.В)= -26
3 Средняя температура наружного воздуха за отопительный период Т(СР.О)= -2,4
4 Расчетная усредненная температура внутреннего воздуха отапливаемых зданий Т(ВН.)=20,0
5 Продолжительность отопительного периода П(О)=215 сут
6 Количество часов работы систем отопления в году Z(О)=5160 ч
7 Количество часов работы систем вентиляции в году Z(В)=0 ч
8 Количество часов работы систем горячего водоснабжения в году Z(Г.В)=2800 ч
9 Количество часов работы технологического оборудования в году Z(В)=0 ч
10 Коэфф. одновременности действия и использ. максим . техлогическ. нагрузки K(T)=0,0 ч
11 Коэфф. рабочих дней КRD=5,0
12 Среднечасовой расход тепла на отопление Q(О.СР)= Q(O)*[Т(ВН)-T(CР.O)]/ [Т(ВH)-Т(Р.О))= 1,340* [(20,0)-(-2,4)]/ [(20,0)-(-26,0)]= 0,653 Гкал/ч
13 Среднечасовой расход тепла на вентиляцию Q(B.СР)= Q(B)*[Т(ВН)-T(CР.O)]/ [Т(ВH)-Т(Р.B))= 0,000* [(18,0)-(-2,4)]/ [(18,0)-(-26,0)]= 0,000 Гкал/ч
14 Среднечасовой расход тепла на горячее на горячее водоснабж за отопит. период Q(Г.В.СР)= Q(Г.В)/2,2=0,350/2,2=0,159 Гкал/ч
15 Среднечасовой расход тепла на горячее водоснабж в летний период Q(Г.В.СР.Л)= (Г.В.СР)*[(55-1 5)/(55-5)]*0,8= 0,159*[(55-15)/(55-5)]*0,8=0,102 Гкал/ч
16 Среднечасовой расход тепла на технологию в году Q(ТЕХ.СР)= Q(Т)* К(Т)=0,000*0,0=0,000 Гкал/ч
17 Годовая потребность в тепле на отопление Q(O.ГOД)=24* П(О)* Q(О.СР)=24*215*0,653=3367,01 Гкал
18 Годовая потребность в тепле на вентиляцию Q(В.ГОД)= Z(В)* Q(В.СР)=0,0*0,0=0,00 Гкал
19 Годовая потребность в тепле на водоснабжение Q(Г.В.ГОД)(24* П(О)* Q(Г.В.СР)+24* Q(Г.В.СР.Л)*[350-П(О)])* КRD= (24* 215*0,150 +24* 0,096 *(350-215))* 7/7=1080,43 Гкал
20 Годовая потребность в тепле на технологию Q(Т.ГОД)= Q(ТЕХ.CР)* Z(Т)=0,000*0=0,000 Гкал
21 Общая годовая потребность в тепле Q(ГОД)= Q(О.ГОД)+ Q(В.ГОД)+ Q(Г.В.ГОД)+ Q(Т.ГОД)= 3367,01 + 0,000+1080,43+0,000=4447,44 Гкал
ВСЕГО на существующие здания:
Годовая потребность в тепле на
Отопление
Вентиляцию
Горячее водоснабжение
Технология
Потери в т/с
Собственные нужды котельной

Q(О.ГОД)= 3367,01 Гкал
Q(В.ГОД)= 0,000 Гкал
Q(Г.В.ГОД)= 1080,43 Гкал
Q(Т.ГОД)= 0,000 Гкал
РОТЕР= 0,000 Гкал
SОВS= 0,000 Гкал
ИТОГО: Q(ГОД)=4447,44 Гкал
Удельный расход условного топлива В= 142,8*100/90=158.667 КГ.У.Т./Гкал
Годовой расход условного топлива на теплоснабжение существующих зданий В=705,662 Т.У.Т

Для заказа расчета годовой потребности тепла и топлива предприятия, заполните опросный лист.

Для расчёта стоимости котельной, пожалуйста,
заполните опросный лист на котельную.
Опросный лист можно заполнить в онлайн-режиме или скачать.

По всем возникшим вопросам:
многоканальный телефон: 8 (495) 781-81-55
электронная почта: [email protected]

Вас также может заинтересовать

Отопление промышленных помещенийОтопление промышленных помещений

Отопление любого помещения сама по себе непростая задача, и сложность ее зависит от множества факторов, основным из которых является размер обозначенного помещения.

Что такое деаэратор в котельной?Что такое деаэратор в котельной?

Слово «деаэрация» означает процесс освобождения жидкости от примесей — в частности, от газообразных веществ, к которым относятся кислород и углекислый газ. Деаэратор, в свою очередь, является обязательным для систем водоподготовки в котельных устройством, которое позволяет значительно продлить и улучшить их работу.

Плюсы и минусы крышных газовых котельныхПлюсы и минусы крышных газовых котельных

Крышные газовые котельные в России появились в начале 2000-х и по сей день пользуются определённой популярностью. Основная причина востребованности — низкие теплопотери ввиду отсутствия длинных тепломагистралей, на которых теряется внушительное количество энергии.

Расчёт категории пожарной опасности котельнойРасчёт категории пожарной опасности котельной

Категория пожарной опасности котельной указывается на дверях в соответствии с ППБ 01-03 п. 33. Данное требование касается складских и производственных помещений, включая котельные, лаборатории, архивные и кладовые комнаты. Бытовые, служебные и административные помещения классифицировать по степени пожарной опасности не требуется.

Что представляют из себя блочные котельные технологии?Что представляют из себя блочные котельные технологии?

Блочно-модульная котельная, ещё называемая транспортабельной или мобильной котельной, представляет из себя полностью готовую к эксплуатации установку для обогрева и подачи горячего водоснабжения разным типам объектов: жилым, промышленным, социальным.

СТО 02494733-5.4-02-2006 Расчет тепловых схем котельных

На главную | База 1 | База 2 | База 3
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК «Трансстрой»СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД
Показать все найденные Показать действующие Показать частично действующие Показать не действующие Показать проекты Показать документы с неизвестным статусом
Упорядочить по номеру документаУпорядочить по дате введения
Как рассчитать мощность газового котла в зависимости от площади дома

Многие собственники домов с удовольствием устанавливают в помещении газовые котлы для отопления и горячего водоснабжения, чтобы не зависеть от прихотей плохой погоды и подводных камней, сопряженных с работой коммунальных систем теплоснабжения.

В данной ситуации имеет большое значение — правильный выбор котельного оборудования, для чего потребуется знать, как рассчитать мощность газового котла.

Если она будет превосходить реальные теплопотери объекта, то часть затрат на выработку тепловой энергии, будут потеряны. А агрегаты с невысокой теплопроизводительностью не смогут обеспечить домовладение требуемым объемом тепла.

Что такое мощность газового котла

Производительность котлоагрегата или его мощность — это главнейший показатель теплового процесса, от которого напрямую зависит комфортабельность нахождения людей в обогреваемых строениях.

Мощность котлоагрегата — это величина тепловой энергии, передаваемая нагреваемой воде при сжигании энергоносителя в топочном устройстве.

Показатель измеряется в Гкал либо МВт. Для бытовых устройств в паспорте обычно указывается размерность в кВт. Для того чтобы понять физический смысл этого показателя, можно представить такие соотношения:

1 ГКал/час — это 40.0 м3 теплоносителя циркулирующего в течение часа и нагреваемого в котле на 25 С. Переводное соотношение между величинами:

1.0 ГКал = 1.16 МВт.
Расчет мощности газового котла можно получить по формуле:

Мо = (т1 — т2) * Рв/ 1000,
Где:

Рв — расход циркулирующей воды, м3/час;
т1 — т2 — разница Т воды на входе/выходе из котлоагрегата, С.

Теплопотери могут быть очень высоки

Образец расчета показателя мощности, который проводят перед тем, как выбрать котлоагрегат:

  • Т теплоносителя на подающей линии из котла — 60 С.
  • Т теплоносителя на обратной линии из сети в котел — 40 С.
  • Расход в сети — 1.0 м3/час.

Мо= (60-40)*1/1000=0.02 Гкал. * 1.16 = 0.0232 МВт = 23.2 кВт,

с округлением Мо = 24 кВт.

Многие пользователи, в целях экономии задаются вопросом, как уменьшить мощность газового котла. Из данного примера очевидно, что для того этого потребуется либо снизить перепад температур, либо площадь нагрева.

Вторая величина – постоянная, поэтому можно работать в направлении снижения перепада температур. Это можно выполнить при устройстве надежной системы теплозащиты дома.

Расчет мощности газового котла в зависимости от площади

В большинстве случаев используют ориентировочный подсчет тепловой мощности котлоагрегата по площадям нагрева, например, для частного дома:

  • 10 кВт на 100 кв.м;
  • 15 кВт на 150 кв.м;
  • 20 кВт на 200 кв.м.

Нужно учитывать, что данные нормативы были приняты еще в советские времена и не предусматривают уровень теплоизоляционных характеристик современных строительно-монтажных материалов. Они также не применяемы в районах, климат которых значительно отличается от условий центральных регионов России и Подмосковья.
Подобные вычисления смогут подойти для не очень большого сооружения с утепленным чердачным перекрытием, низкими потолками, хорошей термоизоляцией, окнами с двойным остеклением, но не более того.

По старым расчетам лучше не делать. Источник фото: porjati.ru

К сожалению, данным условиям соответствуют только немногочисленные строения. С тем, чтобы осуществить наиболее обстоятельный расчет показателя мощности котла, необходимо учитывать полный пакет взаимосвязанных величин, в том числе:

  • атмосферные условия в местности;
  • размер жилой постройки;
  • коэффициент теплопроводности стены;
  • фактическую теплоизоляцию здания;
  • систему регулировки мощности газового котла;
  • объем тепла, требуемый для ГВС.

Расчет одноконтурного котла отопления

Подсчет мощности одноконтурного котлоагрегата настенной или напольной модификации котла с применением соотношения: 10 кВт на 100 м2, необходимо увеличить на 15-20%.

Например, необходимо обогреть здание площадью 80 м2.

Расчет мощности газового котла отопления:

10*80/100*1.2 = 9.60 кВт.

В случае, когда в торговой сети не существует требуемого вида устройств, приобретают модификацию с большим размером кВт. Подобный метод пойдет для источников отопления одноконтурного типа, без нагрузки на горячее водоснабжение, и может быть заложен в основу расчета расхода газа на сезон. Иногда вместо жилой площади расчет выполняют с учетом объема жилого здания квартиры и степени утепления.

Для индивидуальных помещений, построенных по типовому проекту, с высотой потолочного покрытия 3 м, формула расчета довольно простая.

Еще один способ расчета ОК котла

В данном варианте учитывают площадь застройки (П) и коэффициент удельной мощности котлоагрегата (УМК), зависящего от климатического места расположения объекта.

Он варьируется в кВт:

  • 0.7 до 0.9 южные территории РФ;
  • 1.0 до 1.2 центральные регионы РФ;
  • 1.2 до 1.5 Московская область;
  • 1.5 до 2.0 северные районы РФ.

Следовательно, формула для расчета выглядит таким образом:
Мо=П*УМК/10

Например, необходимая мощность источника отопления для постройки в 80 м2, расположенного в северном регионе:

Мо = 80*2/10 = 16 кВт

Если собственник будет устанавливать двухконтурный котлоагрегат, для отопления и ГВС, профессионалы советуют добавить к полученному результату еще 20% мощности на подогрев воды.

Как рассчитать мощность двухконтурного котла

Расчет теплопроизводительности двухконтурного котлоагрегата выполняется на основанию такой пропорции:

10 м2 = 1 000 Вт + 20% (теплопотери) + 20% (подогрев ГВС).

В случае, если здание располагает площадью 200 м2, то требуемый размер будет состоять: 20.0 кВт + 40.0% = 28.0 кВт

Это прикидочный расчет, его лучше уточнить по норме водопользования ГВС на одного человека. Такие данные приводятся в СНИПе:

  • ванная комната — 8.0-9.0 л/мин;
  • душевая установка — 9 л/мин;
  • унитаз — 4.0 л/мин;
  • смеситель в мойке — 4 л/мин.

В техдокументации к водонагревателю указывается, какая необходима теплопроизводительность котла, чтобы гарантировать качественный подогрев воды.


Для теплообменника на 200 л будет достаточно нагревателя нагрузкой приблизительно 30.0 кВт. После рассчитывают производительность, достаточную для обогрева, в конце итоги суммируют.

Расчет мощности бойлера косвенного нагрева

Для того, чтобы сбалансировать нужную мощность одноконтурного агрегата работающего на газовом топливе с бойлером косвенного нагрева, нужно установить какой объем теплообменника потребуется, чтобы обеспечить горячей водой жильцов дома. Используя данные по нормам горячего водопотребления легко можно установить, что расход в сутки для семьи из 4-х человек составит 500 л.

Производительность водонагревателя косвенного нагрева напрямую зависит от площади внутреннего теплообменника, чем более размеры змеевика, тем больше тепловой энергии он передает воде в час. Детализовать такие сведения можно, изучив характеристики по паспорту на оборудование.

Источник фото: coolandtheguide.com

Существуют оптимальные соотношения этих величин для среднего диапазона мощности бойлеров косвенного нагрева и время получения заданной температуры:

  • 100 л, Мо — 24кВт, 14 мин;
  • 120 л, Мо — 24кВт,17 мин;
  • 200 л, Мо — 24кВт, 28 мин.

При выборе водонагревателя рекомендуется, чтобы он нагревал воду примерно за полчаса. Исходя из этих требований предпочтительнее 3-й вариант БКН.

Какой запас мощности должен быть

Мощность для подбора источника отопления с бойлером косвенного нагрева при одновременной работе отопления и ГВС определяется по формуле:

М к= (Мо+Мгвс)*Кз,

где:

  • Мк-комбинированная мощность, кВТ;
  • Мо — мощность источника, достаточная для обеспечения отопительной нагрузки дома, кВт;
  • Мгвс — мощность источника нужная для компенсации нагрузки на горячее водоснабжение, кВт;
  • Кз — коэффициент запаса.

В случае поочередного функционирования систем отопления и ГВС:

Мк= Мгвс *Кз
Очень важно! Рассчитывая производительность оборудования по отоплению и ГВС, необходимо учитывать, чтобы мощность БКН никак не превышала аналогичный показатель в котле. По этой причине его необходимо выбирать такой теплопроизводительности в кВт, чтобы он мог с запасом покрыть нагрузку и отопления, и ГВС.
Резерв производительности подсчитывается в зависимости от конструкции нагревательного оборудования.

Для одноконтурных модификаций, запас составляет — 20.0%;
для двухконтурных — 20.0%+20.0%.

Для вышенаведенных примеров теплопроизводительность котла, будет равна.

При одновременной работе систем отопления и ГВС:

Мо = 24 кВт.
Мгвс= 24 кВт.
Кз= 1.4.

Мк= (24+24)* 1.4= 67.2 кВт.

При поочередной работе систем отопления и ГВС:

Мк=24*1.4= 33.6 кВт.

Таким образом выполнить исходный расчет мощности газового источника тепловой энергии не является трудным процессом. Его, возможно, применять для предварительного подбора бойлерного оборудования.
В случае, если же абоненту не хватает ориентировочного расчета эффективности газовых котлов, и необходимо, чтобы теплопотери строения, нагрузка по ГВС и производительность котла были определены более точно, потребуется обратиться к квалифицированным специалистам, чтобы выполнить комплексный проект теплоснабжения дома с разработкой схемы и выбором оборудования.

Процесс нагрева пара — расчет нагрузки

Обычно паровой нагрев используется для

  • , изменения , температуры продукта или жидкости
  • ,
  • , , поддержания температуры продукта или жидкости,

. Преимуществом пара является большое количество тепла. энергия, которая может быть передана. Энергия, выделяемая при конденсации пара в воду, находится в диапазоне 2000 — 2250 кДж / кг (в зависимости от давления) — по сравнению с водой с 80 — 120 кДж / кг (с перепадом температуры 20 — 30 o С ).

Изменение температуры продукта — нагрев продукта с помощью пара

Количество тепла, необходимое для повышения температуры вещества, можно выразить как:

Q = mc p dT (1)

, где

Q = количество энергии или тепла (кДж)

м = масса вещества (кг)

c p = удельная теплоемкость вещества (кДж / кг o C) — Свойства материалов и теплоемкости обычные материалы

dT = повышение температуры вещества ( o C)

Imperial Units? — Проверьте конвертер единиц!

Это уравнение можно использовать для определения общего количества тепловой энергии для всего процесса, но оно не учитывает скорость передачи тепла , которая составляет:

  • количество тепловой энергии, передаваемой за единицу времени

В приложениях непоточного типа нагревается фиксированная масса или одна партия продукта.В применениях типа потока продукт или жидкость нагреваются, когда они постоянно протекают по поверхности теплопередачи.

Безнапорный или периодический нагрев

В непроточных приложениях технологическая жидкость хранится как единая партия внутри бака или сосуда. Паровой змеевик или паровая рубашка нагревает жидкость от низкой до высокой температуры.

Средняя скорость теплопередачи для таких применений может быть выражена как:

q = mc p dT / t (2)

, где

q = средняя теплопередача скорость (кВт (кДж / с))

м = масса продукта (кг)

c p = удельная теплоемкость продукта (кДж / кг. o C) — Свойства материалов и теплоемкости обычные материалы

dT = Изменение температуры жидкости ( o C)

t = общее время, в течение которого происходит процесс нагрева происходит (в секундах)

Пример — время, необходимое для нагрева воды прямым впрыском пара

Время, необходимое для нагрева 75 кг воды (c p = 4,2 кДж / кг o C) от температуры 20 o C до 75 o C с паром, произведенным из котла с мощностью 200 кВт (кДж / с) можно рассчитать путем преобразования уравнения.От 2 до

t = mc p dT / q

= (75 кг) (4,2 кДж / кг o C) ((75 o C) — (20 o C) ) / (200 кДж / с)

= 86 с

Примечание! — когда пар впрыскивается непосредственно в воду, весь пар конденсируется в воду, и вся энергия пара передается мгновенно.

При нагреве через теплообменник имеет значение коэффициент теплопередачи и разность температур между паром и нагретой жидкостью.Увеличение давления пара повышает температуру — и увеличивает теплопередачу. Время разогрева уменьшается.

Общее потребление пара может увеличиться — из-за более высоких потерь тепла или уменьшиться — из-за более короткого времени нагрева, в зависимости от конфигурации фактической системы.

Процессы потока или непрерывного нагрева

В теплообменниках продукт или поток жидкости непрерывно нагревается.

Преимуществом пара является однородная температура поверхности нагрева, так как температура на поверхности нагрева зависит от давления пара.

Средняя теплопередача может быть выражена как

q = c p дТм / т (3)

, где

q = средняя скорость теплопередачи (кВт (кДж) / с))

м / т = массовый расход продукта (кг / с)

с р = удельная теплоемкость продукта (кДж / кг. o C )

dT = изменение температуры жидкости ( o C)

Расчет количества пара

Если мы знаем скорость теплопередачи — количество пара можно рассчитать:

м с = ц / ч e (4)

, где

м с = масса пара (кг / с)

q = расчетная теплопередача (кВт)

h e = энергия испарения пара (кДж / кг)

Энергию испарения при различных давлениях пара можно найти в Паровой стол с единицами СИ или паровой стол с имперскими единицами.

Пример — периодическое нагревание паром

Некоторое количество воды нагревается паром 5 бар (6 бар абс) от температуры 35 o C до 100 o C в течение периода 20 минут (1200 секунд) . Масса воды составляет 50 кг, , а удельная теплоемкость воды составляет 4,19 кДж / кг. o C .

Коэффициент теплопередачи:

q = (50 кг) (4,19 кДж / кг o C) ((100 o C) — (35 o C)) / (1200 с)

= 11.35 кВт

Количество пара:

м с = (11,35 кВт) / (2085 кДж / кг)

= 0,0055 кг / с

= 19,6 кг / ч

Пример — непрерывный нагрев паром

Вода, текущая с постоянной скоростью 3 л / с , нагревается с 10 o C до 60 o C с паром при 8 бар (9 бар абс) .

Скорость теплового потока может быть выражена как:

q = (4.19 кДж / кг. o C) ((60 o C) — (10 o C)) (3 л / с) (1 кг / л)

= 628,5 кВт

Скорость потока пара может выражается как:

м с = (628,5 кВт) / (2030 кДж / кг)

= 0,31 кг / с

= 1115 кг / ч

.

Мощность котла

Мощность котла — мощность парового котла — часто оценивается как мощность в котле, фунт пара в час или BTU.

фунтов Пар доставляется за час

Большие мощности котла часто указываются в фунтах пара, испаряемого в час при определенных условиях пара.

BTU — британские тепловые единицы

Поскольку количество подаваемого пара изменяется в зависимости от температуры и давления, общее выражение производительности котла — это тепло, передаваемое во времени, выраженное в британских тепловых единицах в час.Производительность котлов обычно выражается в кБту / час (1000 БТЕ / час) и может быть рассчитана как

Вт = (ч г — ч ф ) м (1)

, где

Вт = мощность котла (БТЕ / ч, кВт)

ч г = пар энтальпии (БТЕ / фунт, кДж / кг)

ч ф = конденсат энтальпии (БТЕ / фунт, кДж / кг)

м = испаренный пар (фунт / ч, кг / с)

Мощность котла — л.с.

Мощность котла (BHP) составляет

  • количество энергии, необходимое для производства 34.5 фунтов пара в час при давлении и температуре фунтов на квадратный дюйм и 212 o F , с питательной водой при фунтов на квадратный дюйм и 212 o F .

BHP эквивалентно 33 475 БТЕ / ч или 8430 Ккал / ч , и следует отметить, что мощность котла в в 13,1547 раз превышает нормальную мощность.

  • 1 лошадиная сила (котел) = 33445,6 БТЕ (среднее) / час = 140671,6 калорий / мин (термо) = 140469,4 калорий (среднее) / мин = 140742.3 калории (20 o C) / мин 9.8095×10 10 эрг / сек = 434107 фунт-сила-сила / мин = 13,1548 лошадиных сил (мех) = 13,1495 лошадиных сил (электрический) = 13,3372 лошадиная сила (метрическая) = 13,1487 лошадиная сила (вода) = 9809,5 джоулей / сек = 9,8095 киловатт

Мощность (л.с.) можно преобразовать в фунтов пара путем умножения лошадиных сил на 34,5 .

Пример — мощность котла в фунтах паровой конверсии

200 л.с. х 34.5 = 6900 фунтов пара в час

фунтов пара можно преобразовать в л.с., поделив фунт пара в час на 34,5

Пример — Перевод пара в паровую мощность в котле

5000 фунтов пара / 34,5 = Котел мощностью 145 л.с.

Преобразование мощности в лошадиных силах котла (BHP) в КБту / час

922.5
Мощность в котле
(BHP)
(кБту / час)
901
151
6 201
9 301
15 502
20 670
30 1004
45 1507
50 1674
60 2009
70 2344
80 2678
100 3348
  • 1 BHP = 33479 БТЕ / час
  • 1 БТЕ / час = 0.293 Вт
.
Скорость замены воздуха в типичных комнатах и ​​зданиях

Объем свежего воздуха (подпиточного воздуха), необходимый для надлежащей вентиляции помещения, определяется размером и использованием помещения — типично нет. людей в космосе, если курение разрешено или нет, и загрязнение окружающей среды от процессов.

air change rate

В приведенной ниже таблице указаны скорости воздухообмена (воздухообмен в час), обычно используемые в различных типах помещений и зданий.

90 026 Свиньи
Здание / помещение Скорость воздухообмена
— n —
(1 / ч)
Все помещения в целом мин. 4
Сборочные залы 4 — 6
Чердачные помещения для охлаждения 12 — 15
Аудитории 8 — 15
Пекарни 20 — 30
Банки 4 — 10
Парикмахерская Магазины 6 — 10
Бары 20 — 30
Салоны красоты 6 — 10
Котельные 15 — 20
Боулинг 10 — 15
Кафетерии 12 — 15
Церкви 8 — 15
Классы 6 — 20
Клубы 12
Клубы 20 — 30
Коктейльные залы 20 — 30
Компьютерные комнаты 15 — 20
Здания суда 4 — 10
Залы для танцев 6 — 9
Стоматологические центры 8 — 12
Универмаги 6 — 10
Столовые 12 -15
Столовые (рестораны) 12
Магазины одежды 6 — 10
Магазины наркотиков 6 — 10
Машинные отделения 4 — 6
Производственные здания, рядовые 2 — 4
Здания завода, с дымом или влагой 10 — 15
Пожарные части 4 — 10
Литейные заводы 15 — 20
Гальванические заводы 20 — 30
Ремонт гаражей 20 — 30
Гаражное хранение 4 — 6
Дома, ночное охлаждение 10 — 18
Больничные палаты 4 — 6
Ювелирные магазины 6 — 10
Кухни 15 — 60
Прачечные 10 — 15
Библиотеки публичные 4
Обеденные залы 12 -15
Обеды 12 -15
Ночные клубы 20 — 30
Механические цеха 6 — 12
Торговые центры 6 — 10
Медицинские центры 8 — 12
Медицинские клиники 8 — 12
Медицинские учреждения 8 — 12
Мельницы бумажные 15 — 20
Мельницы текстильные общего назначения 4
Мельницы текстильные красильные дома 15 — 20
Муниципальные здания 4 — 10
Музеи 12 -15
Офисы государственные 3
Офисы частные 4
Малярные мастерские 10 — 15
Бумажные фабрики 15 — 20
Фото темных комнат 10 — 15
6 — 10
Полицейские участки 4 — 10
Почтовые отделения 4 — 10
Птичники 6 — 10
Прецизионное производство 10 — 50
Насосные станции 5
Железнодорожные магазины 4
Резиденции 1 — 2
Рестораны 8 — 12
Розничная торговля 6 — 10
Школьные классы 4 — 12
Магазины обуви 6 — 10
Торговые центры 6 — 10
Магазины, машины 5
Магазины, краски 15 — 20
Магазины деревообрабатывающие 5 9 0027
Подстанция электрическая 5 — 10
Супермаркеты 4 — 10
Бассейны 20 — 30
Текстильные фабрики 4
Текстильные фабрики покрасочные цеха 15 — 20
Ратуши 4 — 10
Таверны 20 — 30
Театры 8 — 15
Трансформаторные комнаты 10 — 30
Турбинные комнаты, электрические 5 — 10
Склады 2
Залы ожидания, общественные 4
Склады 6 — 30
Деревообрабатывающие цеха 8

Помните о местных правилах и нормах.

Подача свежего воздуха — подпиточного воздуха — в помещение на основании таблицы, приведенной выше, может быть рассчитана как

q = n V (1)

, где

q = подача свежего воздуха (фут 3 / ч, м 3 / ч)

n = скорость смены воздуха (ч -1 )

V = объем помещения (футы 3 , м 3 )

Пример — Подача свежего воздуха в публичную библиотеку

Подача свежего воздуха в публичную библиотеку объемом 1000 м 3 можно рассчитать как

Q = (4 ч -1 ) (1000 м 3 )

= 4000 м 3 / ч

Калькулятор объема воздуха

Частота замены воздуха в минутах

«Частота замены воздуха» в минутах может быть рассчитана как

9062 2 n м = 60 / n (2)

, где

n м = частота замены воздуха (минуты)

.

Понимание рейтингов котла

Когда дело доходит до выбора и выбора размера вашего котла, многие люди немного сбиваются с толку относительно того, что означают различные оценки и какую оценку вам следует использовать. Посмотрите на спецификацию производителя, и вы увидите рейтинги для ввода, вывода, чистого выпуска, эффективности и так далее.
Первый рейтинг для обсуждения и самый простой — это рейтинг INPUT. Это измерение количества топлива, которое будет сгорать в котле, и оно выражается либо в БТЕ / ч (100 000), либо в МБ / ч (100) (или в случае нефти в галлонах в час 1 галлон в час мазута № 2 равен 140 000). БТЕ / ч).Входные данные — это рейтинг, который вы должны использовать для определения размера вашей газовой системы и вашего вентиляционного отверстия, хотя в современных котлах ModCon вентиляционные отверстия определяются производителем и основаны на длине вентиляционного отверстия. Вход также используется для определения эффективности котла, например; котел с производительностью 150 000 БТЕ / ч и валовой производительностью 135 000 будет иметь расчетную эффективность сгорания 135 000 ÷ 150 000 = .90 × 100 = 90% эфф.
Далее у нас есть мощность котла, которую можно перечислить несколькими способами.Какой из них использовать, действительно зависит от фактической установки не только котла, но и распределительного трубопровода. Сначала давайте посмотрим на различные оценки для выпуска, откуда они берутся, а затем, как их использовать.
1) Валовая мощность IBR: это количество тепловой энергии, фактически передаваемой воде во время работы в стационарном режиме. Предположение этого конкретного рейтинга состоит в том, что любое тепло, теряемое через рубашку котла, теряется впустую и не влияет на нагрузку обогрева здания.Этот рейтинг предполагает, что котел находится в неотапливаемом помещении.
2) Чистая выработка IBR: это еще один произвольный вычет 15% от валовой выработки IBR, который учитывает потери от распределительного трубопровода и необходимые Btus, необходимые для доведения системы до рабочей температуры или других слова подобрать пособия. Это опять-таки предполагает, что эти потери не влияют на тепловую нагрузку здания, и котел и распределительный трубопровод устанавливаются вне отапливаемого пространства.Обратите внимание на 15-процентный вычет, этот процент не изменился за 50 лет, даже до того, как я начал работать, до этого вычет составлял 33 процента. С учетом сегодняшних котлов и использования наружного сброса и использования труб меньшего размера, сколько домов в наши дни устанавливаются с 2-дюймовыми стальными трубами, я думаю, что на это можно посмотреть снова и понизить, чтобы можно было выбрать число, скажем, 10 процентов.
3) Теплопроизводительность: еще один рейтинг, который мы имеем, — это теплопроизводительность, показанная как DOE или CSA.Этот рейтинг, такой как рейтинг валового выхода IBR, определяется как количество тепловой энергии, передаваемой системной воде. Однако предполагается, что тепло, теряемое от рубашки котла, потерь в трубопроводах и допусков на всасывание, будет способствовать тепловой нагрузке здания. Это предположение означает, что котел и трубопровод находятся в отапливаемом помещении. Из-за этого фактора номинальная мощность нагрева всегда будет выше, чем номинальная выходная мощность IBR.
Теперь, когда мы видим, что такое рейтинги и откуда они берутся, давайте посмотрим, как наилучшим образом использовать их для конкретного приложения.
Первый и самый высокий рейтинг — это теплопроизводительность или валовая мощность. Поскольку этот рейтинг учитывает потери рубашки котла и распределительного трубопровода, которые будут использоваться при подаче тепловой нагрузки, эта мощность должна использоваться только в том случае, если 1) котел находится в отапливаемом помещении, и 2) все или большая часть распределительный трубопровод также находится в отапливаемом помещении. В противном случае эти потери не повлияют на тепловую нагрузку здания, и выбранный размер котла может быть недостаточным.
Далее у нас есть валовой выпуск IBR, который рассчитывается без учета потерь в рубашке котла, но не от потерь в трубопроводе и захвате.Поэтому мы будем использовать эту номинальную мощность, когда котел находится в неотапливаемом пространстве, например, в гараже или без обогреваемого пространства для обхода, а трубопровод или большая его часть находятся в отапливаемом пространстве. Разница между теплопроизводительностью CSA / DOE и валовым выпуском IBR довольно незначительна, и любой из них будет приемлемым в этом случае.
Окончательный результат — чистый вывод ИБР. Этот выходной сигнал следует использовать для систем, в которых ни котел, ни распределительный трубопровод не находятся в отапливаемом помещении, например, в гараже, в помещении для ползания или в не отапливаемом подвале.Имейте в виду, что вычет 15 процентов от валового объема производства IBR используется для нормальных систем трубопроводов. Такие системы, как старые чугунные радиаторы или системы с большими участками трубопровода, могут потребовать более 15 процентов от этих потерь. Если вы сомневаетесь, вы всегда можете рассчитать потери из фактической системы трубопроводов, если это необходимо. Кроме того, если производитель котла не предоставляет этот рейтинг, просто уменьшите теплопроизводительность CSA на 15 процентов.
Также многие сегодняшние высокоэффективные котлы имеют очень малые потери в рубашке или даже потери в режиме ожидания, что было проблемой для более старых котлов с атмосферной тягой.
Другими рейтингами, которые вы найдете в литературе производителей, будут рейтинги эффективности, такие как эффективность сгорания, эффективность в устойчивом состоянии и AFUE (ежегодная эффективность использования топлива).
Сначала давайте посмотрим на эффективность сгорания; это мера эффективности котлов при установившемся режиме работы. Это делается путем измерения температуры выхлопных газов, которая очень низкая в современных котлах ModCon, и измерения содержания CO2 в выхлопных газах, когда котел работает в установившемся режиме.Чем ниже температура выхлопных газов и чем выше содержание CO2, тем эффективнее работает прибор.
Следующим будет устойчивая государственная эффективность. Это оценивается путем деления теплопроизводительности на мощность подачи топлива (БТЕ / ч). Например, если у нас есть газовый котел с номинальной потребляемой мощностью 100 000 БТЕ / ч и теплопроизводительностью 85 000, у нас будет КПД в устойчивом состоянии 85%. Это устойчивое состояние можно измерить только тогда, когда котел работает при полной нагрузке, и все условия, такие как температура возвратной воды, температура воздуха, соотношение воздух / топливо и т. Д., Остаются постоянными.Это, конечно, редко случается в полевых условиях и может быть достигнуто только в лаборатории при идеальных условиях.
Ежегодный рейтинг эффективности использования топлива или AFUE — это самый важный рейтинг при сравнении одного прибора с другим или при попытке оценить сезонные эксплуатационные расходы прибора. Этот рейтинг применяется только к котлам с входным рейтингом 300Mbh или меньше. Этот рейтинг достигается с учетом всех аспектов эксплуатации, рабочих и выходных характеристик, частичной нагрузки и т. Д.Стандарт для значений AFUE основан на предположении, что котел установлен в отапливаемом помещении дома, что исключает потери в рубашке, а также мощность котла значительно больше (от 50 до 70 процентов), чем фактическая тепловая нагрузка здания. Итак, две вещи, которые могут изменить фактический рейтинг AFUE, во-первых, когда котел установлен в неотапливаемом помещении, где потери в рубашке являются отработанным теплом, и, во-вторых, чем ближе размер котла к фактической тепловой нагрузке здания, сезонная эффективность может быть выше чем указано.Это одна из причин, по которой важно делать точную оценку потерь тепла в помещении и использовать правильную номинальную мощность котла для конкретного типа установки.
При выборе правильного размера котла еще не учитывается зонирование. При зонировании дома мы уменьшаем требуемую нагрузку на котел, например, если у нас есть дом с четырьмя зонами, достаточно равномерными по размеру, и общая нагрузка составляет 100 МБч, каковы шансы, что все четыре зоны вызывают одновременно. Вполне разумно предположить некоторое разнообразие в работе этого дома, и мне было бы очень удобно исключить наименьшую зону из общей тепловой нагрузки здания и использовать выходную мощность, которая соответствует типу установки для моего выбора котла, где котел находится в отапливаемое пространство.Сегодня на рынке существует система контроля, которая будет контролировать и контролировать разнообразие зон, чтобы обеспечить достаточное тепло для всех зон.

Лео Вайланкур — известный адвокат и тренер по гидронике. Совсем недавно он был с Навьеном в качестве тренера по Западной Канаде.

,

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *