Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Стабилизатор напряжения на котел: какой лучше, как выбрать хороший стабилизатор для настенного и даже двухконтурного отопительного котла

Содержание

6 лучших стабилизаторов напряжения для газового котла — Рейтинг 2020

Обновлено: 26 марта 2020

27598

В частном секторе скачки напряжения не редкость. Их высокое значение способно вывести из строя электронику газового котла, а низкие показатели содействуют отключению аппаратуры и остановке отопления. Рейтинг стабилизаторов напряжения для газового котла, составленный с учетом характеристик приборов и отзывов пользователей, поможет вам выбрать модель обеспечивающую бесперебойную работу отопительного оборудования.

Подборка товаров осуществлена на основе отзывов, мнений и оценок пользователей, размещенных на различных ресурсах в сети интернет. Вся информация взята из открытых источников. Мы не сотрудничаем с производителями и торговыми марками и не призываем к покупке тех или иных изделий. Статья носит информационный характер.

Лучшие настенные стабилизаторы напряжения для газового котла

Стабилизаторы напряжения настенного типа выпускаются с релейным и электронным способом стабилизации.

Редко можно встретить механическое исполнение, ввиду увеличенных размеров внутренних частей, плохо подходящих для компактного корпуса с размещением на стене.

Такое оборудование способно обеспечивать последующую работу газового котла при входящем напряжении 140-270 В, но у каждой конкретной модели этот показатель свой, что важно учитывать при выборе. На выходе стабилизаторы способны поддерживать постоянно 202-238 В. Их скорость стабилизации напрямую зависит от типа стабилизатора и варьирует от 20 до 100 в/с.

  
РЕСАНТА LUX АСН-500Н/1-Ц RUCELF КОТЁЛ-600 РЕСАНТА LUX АСН-1000Н/1-Ц RUCELF КОТЁЛ-1200
 
 
Активная мощность, Вт  500  600  1000  1200
Входное рабочее напряжение, В 140-260 150-250 140-260 150-250
Габариты (ШхВхГ), мм
260х110х200 135х203х93 206х230х133 135х203х93
Время отклика, мс 7 10 7 10
Вес, кг 2,6 2,4 4 3

РЕСАНТА LUX АСН-500Н/1-Ц

Небольшой стабилизатор релейного типа, способный справляться с входным напряжением 140-260 В. Время отклика составляет 7 мс. Выдает синусоиду без искажений. Индикация цифровая и хорошо видна в темное время.

 

+ Плюсы РЕСАНТА LUX АСН-500Н/1-Ц

  1. Очень маленький корпус 260х110х200 мм легко разместить в неприметном месте.
  2. Абсолютно бесшумная работа в режиме ожидания или небольшой корректировки (не считая момента скачка напряжения, когда он срабатывает).
  3. Добротно собранный корпус, без щелей и скрипов.
  4. Интуитивно понятное управление.
  5. При проверке вольтметром показывает значения 200-240 В, что говорит о небольшой погрешности.
  6. Обильная перфорация на корпусе для естественного охлаждения.
  7. Разрешена эксплуатация при температуре 0-45 градусов — можно оставлять в неотапливаемом доме до глубокой осени.

 

- Минусы РЕСАНТА LUX АСН-500Н/1-Ц

  1. Наличие одной розетки разрешает подключить к нему только котел — можно использовать тройник, но это не всегда удобно.
  2. Если блокирует скачек напряжения, то громко щелкает, поэтому рядом со спальней его вещать нельзя.
  3. Малый запас по мощности.
  4. Скорость стабилизации 35 в/с не сама высокая.
  5. Чтобы посмотреть показатели входного и выходного напряжения необходимо нажимать кнопку на корпусе — без этого на дисплее показывается только один из параметров.

Вывод. Этот стабилизатор напряжения подойдет для небольшого домика с газовым котлом малой мощности. Показатель активной мощности 500 Вт обеспечит его бесперебойную работу.

 

RUCELF КОТЁЛ-600

Модель с релейным типом стабилизации. Диапазон входного напряжения составляет 150-250 В. Погрешность корректировки не более 8%. Прибор оснащен цифровой индикацией и защитой от импульсных перенапряжений.

 

+ Плюсы RUCELF КОТЁЛ-600

  1. Стальной корпус служит гораздо дольше и не боится случайных ударов.
  2. Быстрое время отклика в 10 мс надежно защищает отопительное оборудование.
  3. Очень компактный — можно разместить на любой стене, не привлекая особого к нему внимания.
  4. Если сам перегревается, то отключается, но это происходит редко.
  5. Тихая работа при небольших просадках напряжения.
  6. В режиме ожидания расходует 2 Вт, поэтому его использование не сказывается на счетах за электричество.
  7. Цена доступнее китайских аналогов.

 

- Минусы RUCELF КОТЁЛ-600

  1. На экране отображается только одно значение — либо входящее напряжение, либо исходящее.
  2. Наличие одной розетки уже не позволит подключить к нему напрямую насос для отопления и котел одновременно — потребуется вставлять тройник, загромождающий корпус.
  3. Присутствует погрешность в 8%, поэтому для техники, которой принципиально наличие 220 В, может не хватать напряжения.
  4. Только 4-е ступени стабилизации (обмоток), поэтому точность показателей при скачках относительная.

Вывод.  Данный стабилизатор напряжения имеет габариты корпуса 135х203х93 мм, что не потребует много места на стене. Модель специально предназначена для стабилизации напряжения газовых котлов.

 

РЕСАНТА LUX АСН-1000Н/1-Ц

Релейный стабилизатор с мощностью 1000 Вт. Способен обеспечить работу последующего оборудования в цепи при входном напряжении 140-260 В. Отличается скоростью стабилизации 35 в/с. Настенный блок сразу отображает поступающее и выходящее напряжение на экране.

 

+ Плюсы РЕСАНТА LUX АСН-1000Н/1-Ц

  1. Стабильная работа в любое время суток и при использовании соседями различного инструмента.
  2. Мгновенное срабатывание защиты при сильном скачке напряжения (выше 260 В).
  3. Защищен от грозы и можно продолжать эксплуатацию несмотря на сверкающие молнии.
  4. Нет присущего такой технике гула.
  5. Габариты 206х230х133 мм легко разместить в прихожей или котельной.
  6. Цифровая индикация сразу показывает все интересующие параметры — размер цифр большой, а изображение четкое.
  7. Подробная инструкция в комплекте.

 

- Минусы РЕСАНТА LUX АСН-1000Н/1-Ц

  1. При работе издает долгое время запах пластмассы, поэтому понадобиться часто проветривать.
  2. Масса 4 кг требует надежного закрепления, и стена из гипсокартона для него уже не подойдет.
  3. Пластиковый корпус хлипкий.
  4. Если вокруг будет мало воздуха для проветривания, то прибор начнет перегреваться.

Вывод. Этот стабилизатор напряжения подойдет для обустройства отопления в доме, где применяется газовый котел и отдельный циркуляционный насос. У стабилизатора есть 2-е розетки для одновременного подключения этих приборов и запас мощности в 1000 ВА, чтобы покрыть их потребности по энергопотреблению.

 

RUCELF КОТЁЛ-1200

Один из лучших стабилизаторов отечественного производства с мощностью 1200 Вт. Стабильно выдает 202-238 В, при поступающих 150-250 В. Допускается предельное напряжение в 130 В или 265 В.

 

+ Плюсы RUCELF КОТЁЛ-1200

  1. Снабжен множеством видов защиты (от грозы, перегрева, замыкания).
  2. Отклик на скачок 10 м/с.
  3. Высокий КПД 97%.
  4. Легкий вес 3 кг разрешает крепить стабилизатор на любую стену.
  5. Можно эксплуатировать при температуре 0-45 градусов.
  6. Аккуратный вид не испортит интерьер комнаты.
  7. Металлический корпус долговечен и прочен.

 

- Минусы RUCELF КОТЁЛ-1200

  1. Отсутствует предохранитель внутри.
  2. Красный огонек цифровой индикации очень яркий и может мешать при размещении на стене, на которую часто смотрят (например, на кухне недалеко от телевизора).
  3. Показывает только количество вольт на выходе — чтобы узнать нынешнее входящее напряжение требуется нажатие кнопки внизу корпуса.
  4. Единственная розетка нуждается в тройнике для подключения другой аппаратуры.
  5. Органы управления снизу, что не очень удобно — требуется наклоняться для точного попадания вилки в розетку или нащупывать кнопки.

Вывод. Если нужно защитить производительный мощный котел, и при этом нет отдельной котельной, где бы можно было разместить стабилизатор, то такая модель самая лучшая. Запас мощности прибора составляет 1200 Вт, а скорость срабатывания достигает 100 в/с.

 

Лучшие напольные стабилизаторы напряжения для газового котла

Напольное размещение расширяет возможности для производителей по оснащению стабилизаторов, потому что отпадает необходимость в компактном корпусе или малом весе. Часто в этой категории можно найти очень мощные модели до 2000 Вт, но встречаются и довольно компактные на 500-600 Вт.

Напольные стабилизаторы можно установить под столом, на столе, или специальной полке. Нередко их размещают в нише или тумбочке. Это избавляет владельцев от необходимости сверлить стены и прокладывать провода с кабель-каналами. КПД таких моделей варьирует от 85 до 97%. Взаимодействие с диапазоном входящего напряжения может быть от 140 до 270 В.

  
РЕСАНТА ACH-500/1-Ц Daewoo Power Products
DW-TZM1kVA
 
 
Активная мощность, Вт  500  1000
Входное рабочее напряжение, В 140-260 140-270
Габариты (ШхВхГ), мм 110х133х134 306х363х433
Время отклика, мс 7 20
Вес, кг 2,5 3,16

РЕСАНТА ACH-500/1-Ц

Компактная модель с вытягивающейся резиновой ручкой для переноса. Относится к релейному типу и имеет мощность 500 В. Скорость срабатывания 35 в/с. Работает с диапазоном напряжения 140-260 В.

 

+ Плюсы РЕСАНТА ACH-500/1-Ц

  1. На цифровом дисплее видно издалека отображающиеся значения.
  2. Стальной корпус прочен и убережет ключевые детали при падении или ударе.
  3. Бесшумная работа разрешает использовать недалеко от входа в спальню.
  4. Простая установка и подключение.
  5. Долго работает без поломок.
  6. КПД 97%.
  7. Резиновые ножки обеспечивают устойчивое положение даже на вибрирующей скользкой поверхности.
  8. Время отклика 7 мс.

 

- Минусы РЕСАНТА ACH-500/1-Ц

  1. Первое время издает при работе неприятный запах.
  2. Дизайн очень простой, почти «советский».
  3. Если нет места на полу или другой поверхности, то придется мастерить полку.
  4. Короткий сетевой шнур, который большинству пользователей пришлось удлинять.
  5. Только одна розетка.

Этот стабилизатор напряжения станет лучшим для небольшой котельной в частном доме, где его можно установить  непосредственной близости от котла. Габариты 110х133х134 мм и вес 2. 5 кг нисколько это не затруднят. Хозяевам не придется ничего сверлить и прикручивать. Перфорация в два ряда на корпусе содействует активному естественному охлаждению.

 

Daewoo Power Products DW-TZM1kVA

Стабилизатор выпускается в двух цветах лицевой панели: оранжевом и черном. Корпус полностью из металла и снабжен ручкой для транспортировки. На дисплее сразу отображаются два значения напряжения: входное и выходящее.

 

+ Плюсы Daewoo Power Products DW-TZM1kVA

  1. Много функций самозащиты.
  2. Информативная цифровая индикация.
  3. Один из самых больших диапазонов по входящему напряжению.
  4. Легкий вес 3 кг не затрудняет транспортировку.
  5. Качественная сборка корпуса, с точной подгонкой всех деталей, убережет внутренние узлы от пыли.

 

- Минусы Daewoo Power Products DW-TZM1kVA

  1. Не очень маленькие габариты 306х363х433 мм, требующие достаточно места для размещения.
  2. Минимальная рабочая температура разрешена от +5 градусов, поэтому, в случае установки в котельной, она должна быть достаточно утеплена.
  3. Время срабатывания 20 мс.
  4. Присутствует погрешность в 8%, что важно учитывать при подборе к конкретному котлу.
  5. Громкие щелчки при работе.

Вывод. Эта модель стабилизатора лучшая для установки в котельной рядом с мощным котлом. Подходит для районов, где часто наблюдаются скачки напряжения. Максимальный верхний предел для преобразования составляет 270 В. Два ряда перфорации для вентиляции уберегут ее от перегрева, а металлический корпус не даст повредить внутренние узлы.

 

Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Какой стабилизатор напряжения лучше для газового котла

Бурное развитие технологий сопровождается появлением новых моделей, казалось бы, привычной бытовой техники, но уже имеющей значительно расширенные функциональные возможности. Не является в этом плане исключением и отопительное оборудование. Не поддаются никакому сравнению традиционные газовые или твердотопливные котлы с простейшей автоматикой, не имевшие «конкурентов» еще каких-то пятнадцать лет назад, и их современные «собратья» с электронным управлением.

Какой стабилизатор напряжения лучше для газового котла

Такое оборудование — очень удобно в эксплуатации, поддаётся точным регулировкам и программированию режимов работы, дает немалый эффект экономии в плане расходования энергоносителей. И все же есть одно «но» — ему самому необходимо электропитание, причем – беспрерывное и весьма сбалансированное. То есть для того, чтобы быть уверенным в корректности работы электронной и электромеханической части современного отопительного котла, рекомендуется не пожалеть денег на еще одно приобретение — стабилизатор напряжения.

Проблем с приобретением таких приборов в наше время нет. Напротив, широкий ассортимент способен даже поставить в тупик неопытного потребителя. Поэтому предлагаем разобраться в вопросе: какой стабилизатор напряжения лучше для газового котла? Давайте рассмотрим эту проблему с нескольких сторон: необходимость такого оборудования, разновидности стабилизаторов по принципу работы, оценочные критерии для правильного выбора и обзор моделей, составленный по отзывам потребителей.

Стоит ли игнорировать рекомендации по установке стабилизатора напряжения на газовый котел?

Если «полистать» страницы интернет-форумов, то, судя по многочисленности вопросов, можно убедиться, что далеко не все хозяева домов и квартир в полной мере понимают значимость стабилизации питания газового отопительного оборудования. Мало того, некоторые из них усердно проталкивают свою наполненную скепсисом позицию, что, дескать, установка стабилизатора – это некий «откат в прошлое», к эпохе первых ламповых телевизоров. Мол, современная техника ушла далеко вперед, да и системы энергоснабжения уже не те, что были раньше. Поэтому покупка стабилизатора, с их точки зрения – это «деньги на ветер».

Получается, что такие скептики невольно сами становятся «глашатаями» критикуемого ими «отката». Да, конечно, никто не мешает подобным «критикам» приобретать газовые котлы с обычной механической автоматикой, основанной на термопаре. Это старая, проверенная годами эксплуатации схема, о которой нельзя сказать ничего плохого.

Современные бытовые газовые котлы дают своим хозяевам множество «преференций», но при этом требуют к себе соответствующего береженого отношения

Но человек, идущий в ногу со временем, приобретающий современный котел, все же вправе рассчитывать на большее. И современное газовое оборудование открывает немало новых возможностей:

  • Уходит в прошлое оборудование с нерегулируемой или регулируемой ступенчато интенсивностью сжигания газа. Реализована «умная» схема модуляции горения, когда в текущий момент времени автоматика сама задействует только необходимое количество горелок и управляет высотой языков пламени на них.
  • В развитие указанной выше функции, электронные «мозги» котлов способны самостоятельно вести мониторинг изменений внешних и внутренних условий, на улице и в помещениях, чутко реагировать на изменения, без вмешательства пользователя вырабатывать и запускать самый оптимальный, экономичный алгоритм функционирования всей системы отопления в целом. Это поддерживает наиболее комфортные условия в квартире или доме с минимально возможным расходом газа.
  • Системы плавного розжига и уменьшения интенсивности горения в конце цикла набора нужной температуры теплоносителя в контурах резко снижают число перезапусков котла, что значительно увеличивает долговечность оборудования.
  • Современные системы отопления часто делаются многоконтурными, с разными показателями температур на отдельных участках. Электронные блоки управления способны сохранять в памяти заданные параметры, поддерживать требуемые режимы работ с программированием как по часам, так и по дням недели. То есть система отопления будет работать с нужной отдачей именно тогда, когда это действительно требуется.
  • Электроника котлов способна руководить и циркуляционными насосами системы, с тем расчетом, чтобы обеспечивалось оптимальное распределение выработанной тепловой энергии по всей протяженности контуров отопления.
  • Заботится автоматика и о безопасности самого оборудования. Помимо стандартного набора ступеней защиты (от затухания, падения давления газа, недостаточной тяги, перегрева и т.п.), реализован еще целый ряд функций. Так, даже при длительном отсутствии владельца, система будет защищена от замерзания. При простоях блок управления самостоятельно периодически тестирует электромагнитные краны и циркуляционные насосы, производя кратковременные запуски или переключения. То есть резко снижается вероятность застоя в контурах, прикипания уплотнений, заклинивания клапанов.

Согласитесь, впечатляет. Но электроника требует стабильного электропитания. И стоимость стабилизаторов по сравнению с ценами на котел — не столь высока, чтобы отказываться от указанных преимуществ.

Теперь несколько слов по второму пункту возражений, о том, что стабилизация напряжения — не столь уж необходима.

Да, действительно, система энергоснабжения постоянно развивается, и частые перебои в ее работе становятся редкостью. Встроенные импульсные блоки питания стали менее чувствительны к нестабильности напряжения – этот параметр, кстати, обычно указывается в паспортах оборудования, например, 220 В  ± 20%. Но беда в том, что от скачков напряжения все равно никто полностью не застрахован, а они нередко могут выходить за допустимые пределы.

Цены на стабилизаторы

стабилизатор

  • Одна из причин кроется в том, что, зачастую, развитие линий электропередач и сети трансформаторных подстанций просто не поспевает за насыщением быта современного человека домашней техникой. В часы пикового потребления напряжение в электросети из-за этого может значительно «проседать» и, наоборот, скачкообразно увеличиваться при резком снижении общей нагрузки. В этом, кстати, каждый может убедиться самостоятельно, проведя мониторинг с помощью обычного вольтметра в течение нескольких дней в разное время суток.
  • Не являются редким исключением населенные пункты или загородные поселки, в которых состояние электросетей вообще далеко от нормы. Обычное явление – кто-то включил сварочный трансформатор, и у всех соседей моргает освещение. Кстати, современный тренд на массовое загородное строительство часто приводит к тому, что, казалось бы, благоприятная еще год назад обстановка с энергоснабжением в поселке имеет явную тенденцию к ухудшению.
  • События недавних лет лишний раз доказали, что даже в самых благоприятных условиях свои «поправки» способна внести стихия. Ледяные дожди, ураганные ветры – все это может привести к падениям деревьев или обрывам проводов ЛЭП. А насколько опасны перекосы фаз при таких обрывах – знает любой электрик.
Кто может гарантировать, что именно на вашем участке линии электропередач не случится подобной неприятности?
  • К аварийным ситуациям может привести и некомпетентное вмешательство человека. Не секрет, что есть любители показать свое «умение» на общем щитке в подъезде. Газеты пестрят объявлениями «мастеров», которым когда-то кто-то сказал, что они разбираются в электротехнике. Небрежность, неграмотность или просто ошибочные действия таких «профессионалов» способны закончиться дикими скачками напряжения – со всеми вытекающими последствиями. Нельзя исключить и просто проявлений вандализма – таких случаев немало сплошь и рядом.

А какие могут быть последствия?

Если очень «повезет», то сильные перепады напряжения вызовут временные перебои в работе системы отопления, снизят функциональные возможности дорогостоящего оборудования, приведут к сбоям в запрограммированных режимах работы. Это уже не сильно хорошо, и зачастую заканчивается вызовом специалистов для восстановления работоспособности электроники. Но случаются ситуации и похуже. Работники ремонтных сервисных мастерских могут подтвердить, что поступают к ним котлы и с полностью прогоревшими электронными платами, требующими сложного ремонта или полной замены. А иногда чрезвычайные ситуации и вовсе могут привести к локальному возгоранию – а это, с учетом расположенной рядом газовой магистрали – прямой путь к пожару.

От блока электроники осталась спекшаяся расплавленная груда – еще хорошо, что не закончилось пожаром!

Подобных неприятностей, ведущих в сложному ремонту или необходимости полной замены газового котла, можно избежать установкой стабилизатора напряжения. И пренебрегать таким приобретением, полагаясь на «советы бывалых» — как раз и будет проявлением технической отсталости. Кстати, многие производители котлов напрямую заявляют о необходимости стабилизированного питания, и отсутствие стабилизатора становится причиной отказа в выполнении гарантийных обязательств. Так что есть над чем задуматься…

Как устроены стабилизаторы напряжения?

Функции стабилизатора напряжения уже должны быть понятны из названия самого прибора. Тем не менее, не будет лишним их сформулировать еще раз:

  • Прибор должен реагировать на уровень входного напряжения в сети и вносить коррективы, для подачи на подключённое оборудование питания, максимально приближенного к номинальным показателям.
  • Если уровень входного напряжения выходит за пределы допустимого для данного стабилизатора диапазона, должна сработать защита, полностью разрывающая электрическую цепь.
  • При возвращении входных показателей в рамки функциональных возможностей стабилизатора, работа прибора должна возобновиться, сразу или с определённой задержкой.
Прибор должен обеспечивать и стабилизацию, и защитное отключение при выходе из допустимого диапазона входного напряжения, и автоматическое включение после нормализации параметров

Срабатывание защиты в большинстве приборов обеспечивается наличием реле напряжения. А вот стабилизация напряжения может выполняться по-разному.

Если быть точнее, то сам процесс выработки нормализованного напряжения на выходе в подавляющем большинстве приборов основан на принципе работы трансформатора. Изменением количества витков на обмотках в текущий момент времени можно превратить трансформатор в повышающий или понижающий, в зависимости от входного напряжения. И разнообразие типов стабилизаторов как раз и кроется в реализации этого принципа изменения параметров задействованных обмоток.

Цены на стабилизаторы для газового котла

стабилизатор для газового котла

  • Самыми распространенными на сегодняшний день являются стабилизаторы напряжения релейного типа. С трансформатора выведено несколько контактов, которые коммутированы через электромеханические переключатели – реле. В зависимости от уровня входного напряжения производится переключение реле, с таким расчетом, чтобы на выходе получить показатель, максимально близко приближенный к номиналу в 220 вольт.

Стабилизатор напряжения для газового котла как выбрать

Многие современные газовые котлы представляют собой очень сложный «организм», высокоэффективную и стабильную работу которых во многих режимах обеспечивает их «мозг» — электронный блок автоматического контроля и управления и связанная с ним система электромагнитных клапанов и кранов. Кроме того, уже в самой конструкции котла может быть предусмотрен, или в непосредственной близости от него устанавливается циркуляционный насос, обеспечивающий перемещения теплоносителя по контурам отопления. Ну а газовым котлам с закрытой камерой сгорания, помимо этого, требуется еще и работа вентиляторов, обеспечивающих принудительную подачу воздуха для горения газа и отвод продуктов сгорания через коаксиальный дымоход.

Стабилизатор напряжения для газового котла как выбрать

Все эти электромеханические и электронные блоки, модули и устройства для корректной своей работы требуют стабильного питания. Однако, было бы верхом легкомыслия напрямую подключать котел к бытовой сети 220 вольт. Ни для кого не секрет, насколько может отличаться напряжение в ней от заявленных параметров, а подобные отклонения, или того хуже – резкие скачки в ту или иную сторону, приводят к нестабильности работы оборудования или даже к фатальному выходу его из строя. Значит, необходим стабилизатор напряжения для газового котла как выбрать который и будет рассказано в настоящей публикации.

Насколько необходим стабилизатор напряжения для газового котла?

Обязательно отыщутся скептики, которые поставят под сомнение саму необходимость оснащения котла стабилизатором напряжения. По всей видимости, в представлении таких людей все еще рисуются старые модели отопительного оборудования, вся автоматика которых сводилась к биметаллическим датчикам нагрева, отключающим или открывающим подачу газа на горелку по мере достижения теплоносителем определенных порогов температуры. Однако, современный котел – это совсем иной уровень. Электроника отопительных газовых агрегатов открывает широчайшие возможности по обеспечению максимальной эффективности наряду с высокой экономичностью и обеспечением безопасности эксплуатации оборудования.

Панели управления современных газовых котлов – насыщенность функциональными опциями, системами контроля и обеспечения безопасности
  • Ступенчатое регулирование уровней нагрева постепенно вытесняется модулированием пламени – автоматика сама определяет количество необходимых в текущий момент задействованных горелок и высоту пламени в них.
  • Современные котлы оснащены функцией плавного розжига, снижения интенсивности горения при наборе последних нескольких градусов до установленного уровня – все это позволяет снизить число перезапусков оборудования, обеспечивает чрезвычайно плавную его работу.
  • Полезной опцией становится постциркуляция насоса – после выключения горелок обеспечивается перемещение теплоносителя еще в течение нескольких минут, для достижения ровного нагрева на всех участках контура отопления.
  • Современные электронные схемы оснащаются «искусственным интеллектом» — погодозависимая автоматика самостоятельно отслеживает текущие изменения погоды, анализирует взаимосвязь условий на улице и в квартире, и вырабатывает наиболее оптимальный алгоритм работы системы отопления. все это дает солидный эффект экономии ресурсов.
  • Многие котлы рассчитаны на обеспечение теплом нескольких контуров отопления с различными температурными показателями. Все эти установки могут быть занесены в память устройства с программированием по дням недели и часам в течение суток – наиболее комфортные условия будут создаваться в те периоды, когда они действительно востребованы.
  • Автоматика современного котла никогда не допустит замерзания воды в системе во время длительного отсутствия хозяев. Мало того, если оборудование не использовалось в течение какого-то периода, блок управления самопроизвольно даст команду на переключение электромагнитных кранов в несколько положений, на кратковременный пуск циркуляционного насоса – чтобы не создавалось прикипаний, залипаний клапанов, застойных явлений в контурах и т.п.
  • Ну и, безусловно, все современные котлы насыщены уровнями безопасности, призванными исключить создание аварийных ситуаций при тех или иных отклонениях от нормы – падении тяги, давления в газовой магистрали или в контурах отопления, при случайном затухании и в других нештатных случаях.

Однако, весь этот богатый и полезный функционал становится доступным исключительно при стабильной подаче электропитания.

Безусловно, любое современное оборудование способно работать в определенном диапазоне входного напряжения – это указывается в технической документации изделия, например: 220 ± 15%. Но, к сожалению, даже эти рамки не дают гарантии бесперебойного функционирования автоматики – перепады напряжения бывают куда более значительными. И будет еще большой удачей, если такой перепад всего лишь вызовет временный сбой в работе системы отопления (что, конечно, уже само по себе крайне нежелательно). Гораздо хуже бывает, когда нестабильное входное напряжение приводит к перегоранию элементов электронной схемы, а то и полному прогоранию печатных плат. В этом случае уже не обойтись без дорогостоящего ремонта, а при определенных неблагоприятных обстоятельствах – даже без полной замены оборудования.

Возможные последствия перепадов сетевого напряжения – выгоревшие платы блоков электронного управления котлами

 

И все это часто случается из-за того, что хозяева пренебрегли установкой стабилизатора входного напряжения.

Не следует надеяться на то, что, мол, в нашем доме (населенном пункте) перепадов напряжения не бывает, или же они настолько редки и незначительны, что это не стоит того, чтобы приобретать дополнительное оборудование. Это – глубочайшая ошибка, чреватая серьезными последствиями. Ведь природа перепадов напряжения может быть различной, и никто не застрахован от такого «катаклизма».

  • Развитие или модернизация линий электропередач зачастую не поспевает за уровнем потребления – насыщенность современной жизни человека электроприборами разительно отличается от показателей даже десятилетней давности, а многие ЛЭП имеют куда более «почтенный» возраст. Нет никакой гарантии, что через год-другой линия энергоснабжения, сегодня кажущаяся безупречной, будет так же хорошо справляться с возрастающей день ото дня нагрузкой.
Даже самые надежные линии электропередач не застрахованы полностью от стихийных явлений
  • Никто не может предвидеть аварии стихийного характера. Ураганный ветер, наледь на проводах, падение деревьев и многие другие случайности – и вот обрыв провода, с сопровождающимся мгновенным резким перекосом фаз и, соответственно, скачком напряжения.
  • Нельзя никогда исключать и «человеческий фактор». Неквалифицированные действия какого-нибудь «умельца» — соседа, полезшего самостоятельно в распределительный щит в подъезде, ошибка или небрежность электрика, не до конца неправильно смонтированная внутридомовая разводка, вандальные проявления отдельных «особей» и другие причины – все это тоже дает весьма высокую вероятность резкого скачка напряжения питания, которое может стать фатальным для электроники котла.

Одним словом, если рачительный хозяин действительно желает обезопасить свое оборудование от непредвиденных обстоятельств, он обязательно приобретет стабилизатор напряжения для газового котла, не обращая внимание на скепсис окружающих или «добрых советчиков». И вопрос лишь в том, как выбрать оптимальны прибор, который в максимальной степени обеспечит и бесперебойность работы оборудования, и безопасность его эксплуатации.

Грамотно проложенные внутридомовые электрические сети – залог безопасности!

Прокладка домашней или квартирной электрической проводки не терпит небрежности, пренебрежения существующими нормами и правилами, непродуманных решений. Как правильно организовать электропроводку в доме – читайте в специальной публикации нашего портала. А еще одна статья подробно расскажет об оптимальном монтаже электрического распределительного щита.

Функции стабилизаторов напряжения, разновидности и особенности устройства

Функции стабилизатора для отопительного оборудования просты и понятны. При перепадах сетевого напряжения в определенном диапазоне своих возможностей прибор должен выдать на оборудование питание с характеристиками, соответствующими норме или максимально приближенной к ней. В том случае, если скачки или падения настолько велики, что выходят за пределы заложенных возможностей стабилизатора, его схема должна полностью прервать цепь питания – до возвращения входных показателей в установленный диапазон. Таким образом, обеспечивается корректное функционирование всего подключённого к стабилизатору оборудования и исключается выход его из строя при недопустимо больших перепадах.

Вниманию потребителей представлен широкий ассортимент приборов такого принципа действия, в самом разном исполнении и в большом диапазоне эксплуатационных возможностей.

Ассортимент предлагаемых в продаже стабилизаторов напряжения – очень широк

Но если за функцию аварийного отключения прибора в большинстве случаев отвечает схожее по действию устройство – предохранительное реле напряжения, то вопрос стабилизации напряжения решаться может по-разному. Так, различают стабилизаторы электромеханического, релейного и электронного принципа действия.

  • В электромеханических стабилизаторах выравнивание напряжение до необходимого уровня выполняется путем перемещения токосъемных угольных щеток по круговой обмотке автотрансформатора. Перемещение подвижной части осуществляется с помощью встроенного сервопривода.
Принципиальная схема электромеханического стабилизатора напряжения

1 – витки обмотки автотрансформатора;

2 – токосъемная угольная щетка;

3 – сервопривод.

Подобная схема хорошо себя зарекомендовала – она отличается высокой точностью стабилизации (в пределах ± 3%), а цена на такие приборы – из категории наиболее доступных. Однако, есть у электромеханических приборов ряд особенностей, которые ограничивают их использование именно с газовым оборудованием.

Дело в том, что между угольной щеткой и токосъемный коллектором автотрансформатора может происходить искрение, особенно усиливающееся по мере износа этого узла. А в котельной категорически запрещено использование электроприборов, у которых может отмечаться искрение – просто их соображений безопасности. Можно, конечно, вынести стабилизатор и в жилую зону, но его работа сопровождается слышимым шумом, что не всем придется по вкусу. Кроме того, быстродействие такого стабилизатора все же оставляет желать лучшего – полное время реакции на перепад напряжения доходит даже до 2 секунд, что многовато для чувствительной электроники современного котла.

Кроме того, не отличаются подобные приборы и особой долговечностью – просто из-за наличия кинематики и узлов трения.

Вывод – от применения электромеханического стабилизатора в связке с газовым котлом имеет смысл отказаться или же применять с соблюдением особых мер предосторожности.

стабилизатор напряжения для газового котла

  • Релейные стабилизаторы устроены иначе. Переключение между обмотками трансформатора, обеспечивающее изменение напряжения в сторону нормы, производится с помощью реле – их может быть от четырёх — пяти до десятка и более (чем больше – тем выше уровень стабилизации). Искрения контактов в таких приборах не бывает – каждое резе заключено в герметичный корпус.
Принципиальное устройство небольшого релейного стабилизатора напряжения

1 – выводы обмотки автотрансформатора

2 – группа реле, обеспечивающих переключение между выводами.

Такие приборы имеют, конечно, свои недостатки, и в первую очередь это – ступенчатость регулировки и не слишком выдающиеся показатели точности выходного напряжения – обычно в диапазоне ± 8%, чего, впрочем, вполне достаточно для большинства приборов.

Но зато релейные стабилизаторы отличаются быстротой реагирования на перепады в сети, способностью стойко переносить перегрузки мощности, широким диапазоном допустимого входного напряжения. Такие устройства служат долго и безотказно, а цена их – невысока. Можно отнести у условным недостаткам легкий шумовой фон от срабатывания и переключения реле, но в условиях котельной вряд ли это будет существенным.

На настоящее время именно релейные стабилизаторы относятся к категории наиболее востребованных потребителями.

  • Большим шагом вперед стало появление стабилизаторов чисто электронного действия. В них роль ключей для переключения между обмотками выполняют полупроводниковые элементы – симисторы или тиристоры, чем обеспечивается максимальное быстродействие приора, несопоставимое даже с релейной схемой.
В электронных стабилизаторах роль ключей выполняют полупроводниковые элементы – тиристоры или симисторы

Полное отсутствие «механики» не только ускоряет процесс стабилизации, но и делает прибор наиболее долговечным среди всех имеющихся разновидностей. Точность стабилизации напрямую зависит от количества ступеней регулирования – в этом прослеживается аналогия с релейными приорами. Плюс ко всему, электронные стабилизаторы – наиболее компактные, абсолютно бесшумные, неприхотливые к внешним условиям эксплуатации.

Безусловно, стабилизатор такого типа будет самым лучшим решением при любых условиях эксплуатации – значимых недостатков, сравнимых хоть в чем-то с другими типами, в нем просто не наблюдается. Единственное, что может остановить потенциального покупателя – это достаточно высокая цена на такие изделия.

Существуют и иные типы стабилизатором, в том числе – и высокотехнологичных, с двойным инверторным преобразованием напряжения и практически идеальным плавным его выравниванием. Однако, для котельного оборудования подобные приборы видятся все же избыточной роскошью.

Как правильно выбрать стабилизатор напряжения для газового котла

Диапазон возможностей стабилизатора

Первым критерием выбора всегда является рабочий диапазон стабилизатора, то есть верхняя и нижняя границы, в пределах которых прибор будет способен довести напряжение до нормального значения.

Самым разумным решением будет перед выбором и приобретением стабилизатора все же провести небольшое «исследование» в своем доме или квартире. Оно заключается в том, чтобы проследить динамику изменения сетевого напряжения в различные дни и часы, в периоды пиковой утренней и вечерней нагрузки, в «спокойном» ночном состоянии и т.п. Такой мониторинг даст возможность точнее определиться с имеющимся диапазоном перепадов, и сложившаяся картина позволит правильно выбрать нужный стабилизатор.

Выполнить это – совсем несложно, но для замера потребуется мультитестер, прибор, который есть у многих хороших хозяев. Стоит он – недорого, а завести его в своем «арсенале» не помешает никому.

Перед проведением замеров необходимо правильно установить положение переключателя мультитестера (вольтметра)

Перед проведением замера обязательно нужно проследить, чтобы переключатель был установлен именно на переменное напряжение (на разных приборах это может быть обозначено значками V~ или АСV, и верхний предел – порядка 600 или 750 Вольт. Целесообразно будет сделать небольшую табличку, по дням недели и по часам, и провести замеры, например, в 6.00, 9.00, 14.00, 18.00, 21.00 и 24.00. Несколько дней подобного мониторинга – и вся картина динамики изменений будет перед глазами, то есть сразу примерно определятся верхняя и нижняя границы диапазона. Останется эти границы расширить еще на 10÷15 вольт в каждую сторону, чтобы создать резерв, и рабочий диапазон стабилизатора можно считать определённым.

Наличие защиты при предельных перепадах напряжения, функция рестарта

Это – чрезвычайно важные опции, о которых не следует забывать, и которые, к сожалению, могут просто отсутствовать на некоторых стабилизаторах низкой ценовой категории.

Прибор должен полностью отключить цепь питания, если входные напряжения выходят за рамки эксплуатационного диапазона – так он сохраняет и самого себя, и подключенное к нему оборудование.

Даже на инфографике данного стабилизатора показаны возможности его автоматического отключения и перезапуска

Вместе с тем, стабилизатор должен иметь функцию рестарта. То есть, в аварийно выключенном состоянии автоматика отслеживает входные параметры, и когда напряжение в сети возвращается в допустимый диапазон значений, прибор запускается самостоятельно, продолжая подавать стабилизированное питание на котел. Перезапуск может происходить с определенной задержкой, установленной пользователем – чтобы исключить частые пуски и выключения при балансировании напряжения на границе диапазона.

Отсутствие такой опции нежелательно – это чревато серьезными последствиями. Например, во время длительного отсутствия хозяев случился резкий перепад, и стабилизатор напряжения отключился. Каким бы ни был «умным» газовый котел, при полном отсутствии электропитания его автоматика не сможет обеспечить хотя бы минимальный подогрев системы отопления, и это может закончиться размораживанием системы.

стабилизатор напряжения RUCELF

Вольтамперная характеристика стабилизатора

Этот параметр нередко называют мощностью стабилизатора, и это, в определенной степени, не лишено смысла, так как он также определяется произведением силы тока на напряжение. Разница в деталях, с точки зрения физики, и этот параметр стабилизатора говорит, скорее, не о полезной мощности, а о параметрах тока, которые он способен поддерживать.

Правда, исходными величинами для определения вольтамперной характеристики все же является именно мощность, но только подключённых к его цепи приборов потребления. В нашем случае это будет сам котел со своей электронной схемой и, возможно, встроенными вентиляторами, один или несколько циркуляционных насосов (например, если система отопления подразумевает несколько контуров, работающих независимо друг от друга) и, возможно, другое оборудование системы, например, автоматика коллекторно-распределительных узлов.

Казалось бы, все просто: необходимо просуммировать значения номинальной мощности подключенных приборов – и получить искомый результат. На самом деле все обстоит несколько сложнее. Дело в том, что многие электроприборы, имеющие индуктивные катушки, потребляют дополнительную мощность, необходимую для создания условий работы, например, тех же электромагнитных полей. Обычно это выражается соотношением:

Wп = Wн / cos φ

где:

Wп – необходимая полная мощность;

– номинальная полезная мощность прибора;

сos φ – коэффициент мощности, который обычно указывается в паспортах электроприборов наряду с их номинальной мощностью.

У приборов, имеющих электропривод, значение коэффициента может составлять порядка 0,5 ÷ 0,75, то есть значение полной мощности – превышать номинал в 1,3÷1,4 раза. Для циркуляционных насосов и котлов с принудительной подачей воздуха и вытяжкой не будет большой ошибкой ориентироваться на увеличение вольтамперной характеристики в полтора раза по сравнению с номинальной мощностью.

Кроме того, в момент запуска приборов всегда присутствуют высокие пусковые токи, которые вообще могут превышать номинал в 3÷4 раза, и это также следует учитывать.

Есть и еще один нюанс. При трансформации напряжения происходит неизбежная потеря мощности – энергия не может браться «с неба». Существует специальный коэффициент трансформации, который учитывает и это явление, и зависит он от уровня входного напряжения:

Уровень входного напряжения130 В150 В170 В190 В200 В220 В230 В250 В270 В
Коэффициент трансформации1.771.551.351,201.151.051,101.351.55

Чтобы не затруднять читателя самостоятельными расчетами, ниже размещен калькулятор, который позволяет с требуемым уровнем точности определить необходимую вольтамперную характеристику стабилизатора напряжения

Калькулятор расчета вольтамперной характеристики стабилизатора напряжения для газового котла

Перейти к расчётам

Расчет произведен с уже заложенным необходимым резервом мощности

Скорость реакции и стабилизации напряжения

С этим показателем все понятно – чем быстрее электроника прибора реагирует на изменение входного напряжения и вырабатывает адекватные сигналы – тем лучше. Обычно она измеряется в миллисекундах (мс) и у качественных приборов составляет всего около 5 мс. Впрочем,, и показатель в 20 мс является вполне приемлемым. А вот если он уже выше – стоит задуматься, так как реакция «слабовата».

В паспортах многих стабилизаторов указывается еще и скорость выравнивания напряжения. Она уже измеряется в вольтах в секунду (В/с, /с).  Хорошим считается показатель выше 100 Вт/с – стабилизация будет происходить практически мгновенно.  Если скорость невысока, порядка 10÷20 В/с, то при больших перепадах напряжения электроника котла может работать некорректно.

Дополнительная оснащенность, исполнение, габариты прибора

Очень удобной опцией стабилизатора является цифровая индикация входного и стабилизированного напряжения – всегда есть возможность вести визуальный контроль. Впрочем, стоит ли переплачивать за это, или просто приобрести прибор с обычной светодиодной индикацией режимов работы – решать самому владельцу.

стабилизатор напряжения БАСТИОН

Разные варианты индикации: цифровой дисплей, стрелочные вольтметры или просто светодиоды, сигнализирующие о режиме работы прибора – выбор за покупателем

А вот системы защиты прибора должны быть в обязательном порядке. Имеется в виду защита от перегрева, перегрузки, от короткого замыкания – прибор должен уметь «беречь сам себя». На это стоит обратить внимание.

Обычно в параметрах стабилизатора указывается и диапазон рабочих температур. Он достаточно широк, и его нижний предел, как правило, составляет +5 °С – вполне приемлемая величина для любой котельной. Серьезнее следует отнести

Стабилизатор напряжения для газового котла как выбрать

Наверное, никого не надо уже убеждать в том, что система отопления, работающая по принципу принудительной циркуляции теплоносителя, работает значительно эффективней, легче поддаётся точным настройкам, что в итоге приводит к существенной экономии на расходе газа. Кроме того, современные газовые котлы оснащаются электронными многоуровневыми система управления, контроля и обеспечения безопасности эксплуатации, что предельно упрощает пользование ими, минимизирует необходимость регулярного вмешательства человека в процесс создания комфортных условий в доме или квартире.

Стабилизатор напряжения для газового котла как выбрать

Однако, чтобы обеспечивался весь этот «пакет удобств» котельное оборудование должно получать стабильное электропитание. И подключать его напрямую к сети – легкомысленный подход, который может привести к некорректной работе или даже к более печальным последствиям – выходу оборудования из строя. Потенциальная опасность кроется в возможных нестабильных показателях уровня входного напряжения. Выход один – устанавливать стабилизатор напряжения для газового котла как выбрать который – будет рассмотрено в настоящей публикации.

Почему стабилизатор должен стать обязательным элементом системы?

Содержание статьи

К сожалению, далеко не все владельцы автономных систем отопления с современным газовым оборудованием в полной мере представляют, насколько важен стабилизатор. Очень часто можно встретить мнения, что «у меня газовый котел уже 20 лет, и я вполне обходился без всякой электроники и без стабилизатора», «у нас никогда не бывает перепадов напряжения», или «подумаешь, не будет какое-то время работать электроника контроля – на общей работоспособности системы это не скажется».

Все эти, и им подобные мнения – глубоко ошибочны, и даже порочны. Давайте разбираться.

А. Сторонникам «работы по старинке» ответить проще всего. Отвергать достижения технического развития – не самая умная позиция. Возможно, это оттого, что многие просто даже не представляют, какие удобства предоставляют современные автоматизированные газовые котлы, и несколько это отличается от того, к чему они «привыкли».

Панели управления современного газового отопительного оборудования с возможностями программирования режимов работы

  • Мало того что перемещение теплоносителя обеспечивается циркуляционным насосом (или каскадом насосов). Специальные опции обеспечивают режим постциркуляции, когда после выключения горелок котла насосы продолжают работать еще определённое время, обеспечивая максимально равномерное распределение тепла, не допуская зон с контрастным уровнем температуры.
  • Если котлы старой конструкции были «заточены» на одновременное включение всех горелок, то функции модулирования пламени позволяют запускать только необходимое их количество, одновременно регулируя и интенсивность горения (высоту языков пламени).
  • Частые перезапуски котла – не слишком для него полезны, и с этим «пороком» успешно справляется функции плавного розжига и снижения интенсивности горения газа при приближении к верхнему порогу нагрева теплоносителя, установленному пользователем. Система начинает работать намного плавнее и экономичнее.
  • Современные котлы могут обеспечивать теплом сразу несколько различных по принципу и температурному режиму контуров отопления. Причем установки для каждого из контуров можно задать индивидуально. Мало того, возможность программирования позволяет внести недельный режим работы, с градацией по входным и рабочим дням – система станет поддерживать в помещениях оптимальную температуру только тогда, когда это действительно требуется, и снижать интенсивность нагрева на тот период, когда наличия людей в квартире (доме) не предполагается.
  • Более «продвинутые» котлы оснащены микропроцессорными системами, которые способны оценивать внешние условия (температуру в помещениях и на улице), анализировать взаимосвязь между ними и запускать в действие наиболее благоприятный для текущих условий алгоритм общего функционирования автономного отопления.
  • Наконец, любое современное газовое оборудование постоянно следит за уровнем безопасности своей работы. Причем это касается очень многих аспектов. Безусловно, сработает система защиты при случайном затухании горелки, при недостаточной тяге в дымоходе, при низком давлении газа в подающей магистрали, при утечке (падении давления) в отопительном контуре. Кроме того, специальная функция никогда не допустит промерзания системы (в ней всегда будет поддерживаться положительная температура), а многие котлы еще и следят за состоянием электромеханической части – даже при длительных простоях для предотвращения закисания будут происходить переключения клапанов и перепускных кранов, кратковременный пуск циркуляционных насосов.

Удобно? – Безусловно! Стоит ли этот функционал установки стабилизатора напряжения? – Наверное, ответ очевиден!

Б. Утверждение, что «у нас никогда не бывает перепадов напряжения» вообще не выдерживает никакой критики. Оно является характерным примером алогизма – «никогда раньше не было» вовсе не означает «никогда и не будет впредь». Вся беда в том, что это явление не всегда зависит только от человеческого фактора – могут вмешаться и стихийные причины. Судите сами:

  • Даже самые надежные ЛЭП не могут быть абсолютно застрахованы от природных катаклизмов. «Ледяные дожди», падение старых деревьев, ураганные порывы ветра, явления сейсмического характера – все это может вызвать обрывы проводов, сопровождающиеся или падением напряжения, или, что еще страшнее – перекосом фаз с такими скачками, которые могут мгновенно вывести электронику из строя.

Оборванные провода ЛЭП – достаточно частое явление при «ледяных дождях»

  • Развитие сети ЛЭП нередко просто не поспевает за растущим числом потребителей энергии, особенно на фоне современного строительного бума. К стабильно работающей линии электропередач могут быть подключены новые появившиеся загородные поселки, а иногда – и производственные мощности, и в часы пикового потребления могут возникнуть никогда ранее не наблюдавшиеся проблемы.
  • Ну и, конечно, пресловутый человеческий фактор – последствия работы неквалифицированных «специалистов», а то и вовсе соседа, возомнившего себя электриком, некачественный монтаж или заводской брак в используемых материалах и элементах внутридомовой разводки, не изжитые по сей день явления вандализма – вполне возможные причины появления нестабильности в,  казалось бы, безупречной ранее линии питания.

В. И третье возражение: мол, временные перепады — ничего страшного. Это как сказать. Безусловно, любая электрическая бытовая техника имеет определенный эксплуатационный запас – диапазон напряжения, в пределах которого перепады напряжения не привнесут каких-либо неудобств. Но вот если скачки значительные, то все может закончиться некоренной работой оборудования – недостаточным напором в контурах, нехваткой воздуха в камере сгорания при его принудительной подаче, разбалансировкой системы, а при неблагоприятных стечениях обстоятельств – и серьезной аварией, выходом электроники из строя, с необходимостью дальнейшего проведения дорогостоящего ремонта (и это еще – в лучшем случае).

Сгоревшие электронные платы котлов – возможные последствия сильных скачков напряжения

Особенно опасны в таких случаях обрывы «нулевого» провода в трехфазной линии, которыми обычно осуществляется подводка к многоэтажным зданиям с большим количеством абонентов. Как видно из схемы, показанной ниже, в этом случае происходит эффект встречных фаз с диким скачком напряжения и с практически гарантированным выходом электроники из строя, а иногда заканчивается и более серьезными авариями, на грани пожароопасности.

Обрыв нулевого провода в трехфазной сети может вызвать очень печальные последствия.

Так как большинство современных стабилизаторов напряжения снабжено функций полного аварийного отключения питания при перепадах напряжения, превышающих стабилизирующие возможности прибора, таких последствий вполне можно избежать.

Вывод – гораздо дешевле будет один раз потратиться на стабилизатор (цена на который не идет ни в какое сравнение со стоимостью современного газового котла), и быть спокойным за сохранность своего оборудования.

Надеемся, что скептиков удалось убедить, поэтому переходим к более пристальному рассмотрению стабилизаторов напряжения.

Возможно, вас заинтересует информация о том, как устроены газовые котлы отопления настенные двухконтурные цены отзывы

Устройство основных типов стабилизаторов напряжения

Основные задачи стабилизатора напряжения, наверное, уже стали всем понятны по ходу изложения. Итак, это:

  • Обеспечение на выходе их прибора стабильного показателя напряжения, необходимого для корректной работы газового котла и связанного с ним оборудования системы отопления.
  • Встроенное реле напряжения должно полностью обесточивать систему в том случае, если уровень перепадов напряжения выходит за рамки функциональных возможностей стабилизатора.
  • В идеале, после нормализации входного напряжения (до допустимого уровня на входе в стабилизатор), автоматика должна самостоятельно осуществить перезапуск системы (по желанию пользователя).

Функция выравнивания напряжения – общая для всех типов стабилизаторов, но вот ее исполнение обеспечивается в различных типах приборах по разному.

Релейные стабилизаторы напряжения

Сразу отметим, что в любом стабилизаторе напряжения подобного назначения главным элементов является трансформатор. Первичная его обмотка подключена ко входу линии питания, а вот вторичная имеет несколько контуров или выводов (от 4÷5 и до нескольких десятков, от этого зависит точность стабилизации). В зависимости от уровня входного напряжения, прибор самостоятельно переключается на ту обмотку, в которой в данный момент наводится напряжение, которое имеет максимально близкое значение к требуемой величине в 220 вольт.

В релейных стабилизаторах переключение между контурами вторичной обмотки происходит с помощью группы реле.

Устройство релейного стабилизатора напряжения

1 – трансформатор с несколькими выходами вторичной обмотки.

2 – реле, обеспечивающее переключение между обмотками трансформатора.

Достоинства таких приборов:

  • Каждое реле заключено в герметичный корпус, что исключает возможность открытого искрения.
  • Релейные стабилизаторы отличаются очень высокой скоростью реакции на изменение входного напряжения.
  • Им не особо страшны перегрузки мощности, а диапазон стабилизации – достаточно широк.
  • Приборы такого класса – очень долговечны, безотказно служат в течение многих лет.
  • Релейные стабилизаторы легко поддаются ремонту – замена реле не является сверхсложной задачей.
  • Невысокая цена подобных устройств делает их очень востребованными среди потребителей.

О недостатках можно сказать следующее:

  • Выраженная ступенчатость регулирования выходного напряжения, и связанная с этим не слишком высокие показатели точности стабилизации. Для подобных приборов обычным явлением будет стабилизация в пределах ±7÷8% от номинального значения. Впрочем, у большинства устройств современной электронной техники допустимые величины перепада напряжения еще шире – в рамках ±10÷15%, так что возможностей релейного стабилизатора должно быть достаточно.
  • Некоторые пользователи отмечают легкий шумовой фон от срабатывающих реле. Если такой прибор расположен в жилой зоне, то людей с чутким слухом это может раздражать. Разумнее будет разместить его в котельной.

Стабилизаторы с полупроводниковыми ключами

Эти стабилизаторы во многом схожи с релейными, но вот только роль ключей для переключения между обмотками выполняют не электромеханические элементы – реле, а полупроводниковые – тиристоры или симисторы.

Устройство стабилизатора напряжения с полупроводниковыми ключами

1 — трансформатор

2 – каскад полупроводниковых ключей.

Установить большее количество уровней стабилизации в релейных приборах зачастую не позволяют соображения компоновки – сложно разместить в компактном корпусе значительное количество достаточно крупных элементов – реле. А вот с полупроводниковыми ключами – картина иная, так как места они занимают значительно меньше, и можно модно установить их намного больше.

Понятно, что полное отсутствие каких бы то ни было механических элементов резко понимает надежность прибора. Большое количество ключей обеспечивает высокую точность стабилизации наряду с ее высокой скоростью. Такие приборы – наиболее компактные, совершенно бесшумные и самые неприхотливые к условиям эксплуатации. Наверное, справедливым будет сказать, что такие стабилизаторы с полупроводниковыми ключами являются самым оптимальным решением для насыщенного электроникой котельного оборудования.

Правда, нужно быть готовым к тому, что стоимость у их повыше, чем у их «конкурентов». Но это должно оправдаться долговечностью и удобством использования. Благодаря применению стабилизатора напряжения поддается регулировке расход газа в котле.

Электромеханические стабилизаторы напряжения

Эта группа приборов имеет принципиально другое устройство. Естественно, главным преобразователем все равно является трансформатор, но он всегда имеет характерную торообразную форму, и на верхней грани его вики лишены изоляции – она выполняет роль кольцевой контактной площадки-коллектора.

По этому кольцу перемещается токосъемная графитовая щетка, приводимая в движение электродвигателем – сервоприводом. В зависимости от уровня входного напряжения, электронная схема прибора выбирает оптимальное положение щетки для выдачи на выходе напряжения, близкого к номинальному значению.

Принципиальная схема устройства электромеханического стабилизатора напряжения

1 – торообразный автотрансформатор;

2 – графитовый токосъемник, перемещающийся по окружности вместе с подвижным узлом;

3 – сервопривод, обеспечивающий перемещение токосъемного узла.

Подобное приборы отличаются очень хорошими показателями точности стабилизации – обычно получаемая величина напряжения отличается от номинала не более, чем на ± 3%. По уровню стоимости такие стабилизаторы также входят в разряд вполне доступных. Тем не менее, использование их с газовым оборудованием все же не приветствуется. Причин тому – несколько.

  • Во-первых, перемещение токосъемной графитовой щетки по обмотке часто сопровождается искрением. Это явление будет нарастать по мере износа трущихся деталей, а особенно – в условиях повышенной влажности воздуха. Располагать прибор с искрообразованием в помещении газовой котельной – весьма спорное решение с точки зрения обеспечения безопасности.
  • Во-вторых, работа такого стабилизатора сопровождается шумом – пусть и не сильным, но способным вызвать раздражение, если разместить его в жилой зоне.
  • В-третьих, наличие трущихся частей делает подобный прибор не особо долговечным – просто по причине постепенного износа токосъемного узла.
  • И, наконец, в-четвертых, скорость стабилизации все же оставляет желать лучшего – при больших перепадах напряжения до вывода на номинальное значение может пройти даже несколько секунд, а для точной электроники современных газовых котлов это все же многовато.

Безусловно, это не категоричный запрет на использование таких приборов для обеспечения питания котельного оборудования – с соблюдением мер безопасности подобный вариант тоже вполне приемлем. Просто, возможно, имеет смысл тщательнее рассмотреть более приемлемое и безопасное решение.

В продаже встречаются и более современные стабилизаторы напряжения, работа которых строится на многоступенчатом инверторном преобразовании тока. Такие приборы способны выдать практически идеальную синусоиду, но стоимость их достаточно высока, и вряд ли есть смысл приобретать их только для обеспечения питания котельного оборудования.

Особенности выбора стабилизатора напряжения для газового котла

Итак, стабилизатор напряжения для газового котла, однозначно, необходим. Но вот как правильно выбрать модель по ее параметрам, чтобы гарантированно обеспечивалась нормальная работа системы отопления? Существует целый ряд критериев выбора – рассмотрим их подробнее.

Функциональный диапазон стабилизатора напряжения.

Эта характеристика всегда указывается в паспорте прибора. Она дает понятие о том, в каком диапазоне входных напряжений стабилизатор способен работать – выдавать на выходе близкое к требуемому номиналу значение. Например: Uвх мах = 260 В; Uвх min = 140 В.

Как определиться с нужным значением? Можно, конечно, приобрести прибор с максимально возможным диапазоном, но будет ли это рентабельным, ведь с возрастание функциональных возможностей стабилизатора растет и стоимость.

Если в месте проживания перепады напряжения носят постоянный характер (например, приходятся на характерные часы пик или отклонение от номинала вообще считается «нормой», то можно экспериментальным путём определить, какой рабочий диапазон прибора потребуется. Для этого необходимо вооружиться вольтметром (мультитестером).

При проведении замеров не забывайте, что имеете дело с опасным для жизни напряжением. Чтобы не получить электротравму или не лишиться тестера, лишний раз следует проконтролировать, что на приборе установлено именно переменное напряжение, и что диапазон измерения соответствует ожидаемым значениям (на различных приборах может устанавливаться по-разному, например, АСV или же ~V с верхним пределом измерений порядка 500 – 700 вольт).

Не забудьте проверить правильность установок измерительного прибора!

Ограничиваться одним измерением – нельзя, не поможет в представлении реальной картины. Лучше всего – составить небольшую табличку, и вносить в нее полученные значения – несколько раз в сутки и в течение нескольких дней, в том числе – рабочих и выходных. Например, вот так (взято по итогам собственных измерений):

Время замераРезультаты измерений по дням и часам, вольт
ПонедельникСредаПятницаСубботаВоскресенье
6.00218215218211201
8.00195188190198205
12.00205211199202199
15.00215201204223200
18.00189178179195189
21.00193183202189178
24.00221219225206208

Вот теперь картина будет получена в полной наглядности – не составит труда определиться с динамикой изменения уровня напряжения в сети, чтобы правильно подобрать требуемый стабилизатор. Безусловно, диапазон следует несколько расширить, скажем, на 15 вольт вверх и вниз – и уже по полученным значениям выбирать оптимальную модель.

Важен еще один момент – при выборе стоит руководствоваться рабочим диапазоном стабилизатора. В паспортных данных может указываться, кроме него, еще и предельный диапазон – следует правильно понимать, что это – предельно допустимые значения, но долго в таком режиме прибор работать не сможет.

Система автоотключения при выходе из предельного диапазона, возможность перезапуска

Очень важные функции, направленные на обеспечение безопасности и сохранности подключенного к стабилизатору оборудования. Не следует приобретать дешевое изделие, в котором таковых возможностей не предусмотрено.

Смысл аварийного отключения заключается в том, что если входное напряжение выходит за границы предельно допустимого, прибор автоматически отключается, разрывая цепь питания. Этим самым он обеспечивает сохранность всей подключенной к нему техники, да и свою собственную.

Вместе с тем важно, чтобы прибор умел самостоятельно включаться и входить в рабочий режим после того, как входное напряжение вновь окажется в допустимых рамках – это даст гарантию того, что система отопления не будет в случае временных сильных скачков полностью обесточена, например, пли длительном отсутствии хозяев дома. Но для того чтобы не допустить частых пусков оборудования, когда уровень входного напряжения по каким-либо причинам балансирует на допустимой грани, предусматривается задержка перезапуска – такая опция может быть с регулировкой времени задержки.

Мощностные параметры стабилизатора напряжения

Этот критерий выбора зависит от того, какую нагрузку планируется «повесит» на стабилизатор напряжения. Если рассуждать несколько упрощённо, то можно говорить о мощности прибора. Но так как сам стабилизатор полезной нагрузкой не является, то корректнее будет именовать ее вольт-амперной характеристикой (на ватты (Вт), а вольт-амперы (ВА)).

Одним словом, этот параметр показывает, какую подключенную нагрузку стабилизатор сможет «потянуть» без потери своих функциональных качеств. А так как речь сейчас идет о системе отопления, то сюда могут войти:

  • Потребляемая мощность самого газового котла: электронной схемы управления и контроля, электромеханических устройств – клапанов, кранов и т.п., а во многих моделях – встроенных циркуляционных насосов и вентиляторов принудительной подачи воздуха в камеру сгорания закрытого типа. Суммарная номинальная потребляемая мощность обязательно должна быть указана в паспорте котла.

Настенный газовый котел со встроенным циркуляционным насосом

  • В сложных многоконтурных системах отопления часто не ограничиваются только встроенным насосом (если он предусмотрен в конкретной модели) – устанавливают и внешние, причем бывает и  несколько штук. Целесообразно их также подключить к стабилизированному питанию, чтобы вся система работала «в унисон».
  • Аналогичная ситуация может быть и с дополнительной аппаратурой управления и контроля, которая устанавливается на отдельных контурах, требующих индивидуального режима работы.

Простое суммирование номинальных мощностей подключённых к стабилизатору приборов даст ошибочный результат. Это объясняется несколькими причинами.

— Суммарное потребление многих электроприборов складывается из значения полезной активной и реактивной мощностей. Есть специальная зависимость, учитывающая так называемый коэффициент мощности (сos φ) – формулу приводить не будем, скажем лишь, что фактическое потребление может отличаться от номинального в 1,3÷1,5 раза, и особенно это присуще приборам, в которых используются электроприводы.

— Запуск большинства электроприборов сопровождается пусковым скачком тока, что тоже необходимо учитывать при определении суммарной нагрузки.

— Наконец, никто не отменял закон сохранения энергии. Если стабилизатор «вытягивает» на номинал сильно «просевшее» напряжение, то в чем-то должна быть и потеря. А она – именно в мощности. Есть так называемый коэффициент трансформации, который указывает, какую поправку в вольт-амперную характеристику трансформатора необходимо вносить.

Чтобы не утомлять читателя формулами и таблицами, предлагаем ему воспользоваться специальным калькулятором, в программе которого уже заложены все необходимые соотношения:

Калькулятор расчета необходимой вольт-амперной характеристики стабилизатора напряжения для газового котла

Перейти к расчётам

типы, характеристики, особенности и критерии выбора

Одним из самых нужных бытовых устройств в загородном доме является система отопления, состоящая из газового котла с электронным блоком управления и, возможно, циркуляционного насоса для ротации теплоносителя.

Система отопления является весьма требовательной к качеству напряжения, поэтому стабилизатор напряжения для газового котла должен отвечать достаточно жёстким требованиям.

Для чего нужен стабилизатор в системе отопления?

В частных домах обычно устанавливаются отопительные котлы зарубежного производства, которые могут очень легко отказать в том случае, если напряжение сети будет значительно отличаться от номинала. В загородной местности такие отклонения случаются  постоянно, но даже если дом расположен в черте города, никакая техника не застрахована от сильных отклонений сети. Чаще всего броски напряжения происходят в вечернее время, когда закрывается большинство учреждений и предприятий, не имеющих ночной смены.

Блок управления импортного газового котла очень чувствителен даже к небольшим изменениям напряжения. Там имеется система автоматики, которая при бросках напряжения сети может заблокировать работу котла отопления, а его разблокировка и перезапуск могут выполнить только мастера из сервисного центра.

Циркуляционный насос, который является составной частью отопительных систем, так же нуждается в стабильном напряжении сети, поэтому использование автономной системы обогрева без стабилизатора напряжения вообще недопустимо в принципе. Чтобы понять, какой стабилизатор напряжения лучше для газового котла, нужно ознакомиться с характеристиками разных типов устройств.

Виды современных стабилизаторов

Некоторые типы стабилизаторов, которые еще недавно пользовались большим спросом, в современной практике не применяются как устаревшие. Промышленностью выпускаются стабилизаторы трёх основных типов. Основным элементом у них является силовой трансформатор, а вся разница заключается в механизме коррекции напряжения сети:

  • Стабилизаторы релейного типа;
  • Электронные стабилизаторы;
  • Электродинамические стабилизаторы.

Релейные стабилизаторы

В стабилизаторах релейного типа изменение напряжения сети осуществляется за счёт коммутации обмоток трансформатора с помощью реле. Количество реле определяет число ступеней регулировки, которое у качественных моделей может достигать девяти.

Качественные релейные стабилизаторы, например, от российской компании «Энергия», обеспечивают на выходе форму сигнала близкую к классической синусоиде, что позволяет использовать такие устройства для питания циркуляционных насосов. Скорость коммутации обычно не превышает 10 мс, а точность находится в интервале 8-10 %, что соответствует параметрам нормальной электросети.

Стабилизаторы электронного типа

Электронный стабилизатор конструктивно отличается от релейного стабилизатора только системой отвечающей за коррекцию напряжения. Коммутация обмоток и, соответственно, изменение напряжения на выходе устройства обеспечивается не электромеханическими реле, а полупроводниковыми ключами.

Скорость срабатывания и реакция на изменение напряжения на входе выполняется за более короткий промежуток времени, чем у релейного стабилизатора. Эта величина может находиться в интервале от 4 до 6 мс.

Электронный стабилизатор выполняет не плавную, а дискретную стабилизацию, поэтому точность установки обычно не превышает 6-8 %. Некоторые модели могут выдавать гладкую синусоиду, но недорогие стабилизаторы сильно искажают форму выходного сигнала, что ограничивает их применение в системах отопления.

Сервоприводный стабилизатор

Электродинамический или сервоприводный стабилизатор регулирует величину напряжения на выходе с помощью серводвигателя. На его роторе установлена графитовая щётка, которая может перемещаться по неизолированной обмотке тороидального трансформатора, увеличивая или уменьшая напряжение на выходе. Управление работой двигателя осуществляется блоком контроля напряжения.

Такой стабилизатор обеспечивает плавную и точную коррекцию напряжения. Отклонение от номинала может не превышать 1-2%. Главным недостатком такого устройства является низкая скорость нормализации напряжения. Сервоприводные стабилизаторы, в отличие от других моделей, не имеют ограничения по нагрузке и могут работать с очень мощными потребителями.

Выбирая стабилизатор для газового котла, следует учитывать требования к параметрам напряжения сети, которые можно найти в технической документации на устройство. Некоторые модели очень критично реагируют даже на небольшие перебои в энергоснабжении. При пропадании напряжения микроконтроллер газового котла может отключить всю систему. Для перезапуска блока автоматики потребуется вмешательство специалистов.

Если электронная система управления котлом допускает пропадание фазы на 10-40 мс, то оптимальным вариантом для такого оборудования будет применение релейного стабилизатора. Если требования более жёсткие, придётся выбирать качественный электронный стабилизатор на тиристорах, что будет несколько дороже.

Критерии выбора стабилизатора

Стабилизаторы напряжения кроме достоинств и недостатков, свойственных каждому типу имеют общие технические характеристики:

  • Число фаз;
  • Допустимая мощность нагрузки;
  • Скорость нормализации напряжения;
  • Точность установки;
  • Входной диапазон напряжения;
  • Форма выходного напряжения;
  • Интервал рабочих температур.

Индивидуальные системы отопления обычно рассчитаны для питания от однофазной сети. Мощность нагрузки – это важнейшая характеристика любого стабилизатора. Этот параметр определяет, какие по мощности нагрузки можно будет подключить к блоку стабилизации.

Определение требуемой мощности стабилизатора

Для определения требуемой мощности стабилизатора нужно отдельно подсчитать активную и реактивную нагрузки. В данном случае схема управления это активная нагрузка, а вентилятор и циркуляционный насос – реактивная. Мощность компактного отопительного котла обычно варьируется от 50 до 200 ватт, а циркуляционный насос может иметь мощность 100-150 ватт. Часто в документации указывается тепловая мощность насоса.

Чтобы узнать полную мощность, нужно тепловую мощность разделить на косинус фи, а если он не указан, то на коэффициент 0,7 (Р тепловая/Cos ϕ или на 0,7). В момент включения насоса потребляемый ток возрастает примерно в три раза. Это продолжается не более пяти секунд, но учитывать пусковой ток нужно обязательно, поэтому результат умножается на три.

После подсчёта всех мощностей данные суммируются и умножаются на поправочный коэффициент 1,3. В результате формула будет выглядеть следующим образом:

Мощность стабилизатора = Мощность блока автоматики + (мощность насоса*3 + мощность вентилятора*3)*1,3.

Самым быстрым стабилизатором является электронное устройство на тиристорах, а самым медленным – электромеханический прибор с серводвигателем. Сервоприводный стабилизатор не успеет отработать мгновенное изменение напряжения сети, и блок управления котла выйдет из строя.

Точность установки напряжения не является важным параметром, поскольку даже дешёвый стабилизатор для газового котла обеспечивает точность ± 10 %, а эта величина соответствует отечественному стандарту.

Современные стабилизаторы могут нормально работать в диапазоне от 105-110 вольт до 250-265 вольт, что вполне достаточно даже для неблагополучной сельской местности. Форма выходного напряжения играет важнейшую роль при работе с реактивной нагрузкой. Искажённая синусоида вызывает перегрев электродвигателя и полный его отказ.

Самым неприхотливым стабилизатором по отношению к температуре, является электронный прибор с тиристорным управлением. Его можно эксплуатировать в диапазоне от -40 до +50 градусов.

Заключение

Подводя итоги, можно сделать однозначный вывод – лучший стабилизатор для газового котла — это тиристорный прибор с микропроцессорным управлением, который обеспечивает на выходе ровную синусоиду.

В большом доме со сложной системой отопления, обычно имеется несколько насосов для перемещения теплоносителя, поэтому специалисты рекомендуют в таких случаях, установить два стабилизатора, один из которых будет обеспечивать качественным напряжением автоматику котла отопления, а другой работать только на циркуляционные насосы. Это намного повысит надёжность системы.

Стабилизатор напряжения для котла: какой выбрать?

В этой статье наш сайт “Все-электричество” расскажет про стабилизаторы для котла. В последнее время многие люди устанавливают в своем доме электрические котлы. Именно этот вид техники позволяет быстро отопить ваш дом. Эта электрическая техника потребляет большое количество электроэнергии. Именно поэтому вам необходимо установить стабилизатор напряжения для котла.

Сейчас многие люди используют котлы изготовлением, которых занимались иностранные производители. Эти котлы считаются достаточно качественными, но для них необходима подача стабильного напряжения.

Стабилизатор напряжения для котла

Этот вид техники позволяет надежно защитить свой котел от перепадов напряжения. Эти устройства обычно рассчитаны на нестабильную электроэнергию. Сейчас на рынке вы сможете найти широкий ассортимент этих товаров.

Если вы желаете, чтобы ваш выбор был надежным и качественным, тогда вам следует учесть определенные факторы. К основным факторам на сегодняшний день можно отнести:

  1. Для подключения к котлу лучше всего использовать релейный стабилизатор. Его скорость срабатывания считается достаточно высокой.
  2. Рассчитывать мощность этого устройства необходимо исходя из мощности котла. При выборе этой техники вам также необходимо помнить, что ее мощность может падать и поэтому ее лучше выбирать с запасом.
  3. Выбор стабилизатора для подключения газового котла должен обосновываться на точности выхода тока. Обычно цифра номинального напряжения не должна превышать 4%.

Важно знать! Если котел имеет электрический насос, тогда помните, что подключать ее к стабилизатору следует отдельно. Электродвигатель боится перепадов напряжения и поэтому выпрямитель напряжения его спасет. Если вы думаете, что защита будет ненадежной, тогда следует использовать УЗО.

В целом стабилизаторы напряжения для газовых и твердотопливных котлов могут отличаться повышенной мощностью. Если вам будет интересно, тогда читайте про трехфазные стабилизаторы.

Расположение стабилизатора

Обычно современные котлы могут крепиться на стене. Это создает комфорт и значительное удобство. При выборе стабилизатора для котла вам обязательно следует учесть то, что он должен иметь крепление для стены.

Также он должен иметь специальное табло, на котором вы точно сможете увидеть поступление входящего и выходящего тока. При необходимости вы можете сделать стабилизатор напряжения своими руками.

Нужен ли стабилизатор?

Стабилизатор нужен каждому человеку. Он пригодиться, если вы не запитаны от электростанции европейского уровня. Чтобы понять какое электричество поступает в ваш дом, следует проверить напряжение в розетке. Проводить проверку необходимо с 19 до 23 часов.

Чтобы сделать правильные измерения вам необходимо использовать мультиметр. Во время проведения замеров, вам следует переключить это устройство в режим замера переменного тока. Если вы увидите заметные перепады напряжения, тогда сможете понять, что стабилизатор необходим. Если вы желаете надежно защитить свою технику, тогда также можете использовать источник бесперебойного питания.

У нас можно прочесть про: тирристорные стабилизаторы напряжения.

Что такое автоматический регулятор напряжения? Значение, принцип работы и применение

Автоматический регулятор напряжения предназначен для регулирования напряжения. Он принимает колебания напряжения и преобразует их в постоянное напряжение. Колебания напряжения в основном возникают из-за изменения нагрузки на систему питания. Колебания напряжения вызывают повреждение оборудования энергосистемы. Колебанием напряжения можно управлять, установив оборудование для контроля напряжения в нескольких местах, например, рядом с трансформаторами, генератором, фидерами и т. Д., Регулятор напряжения предусмотрен более чем в одной точке энергосистемы для управления колебаниями напряжения.

В системе питания постоянного тока напряжение может контролироваться с помощью составных генераторов в случае фидеров одинаковой длины, но в случае фидеров разной длины напряжение на конце каждого фидера поддерживается постоянным с помощью усилителя фидера. В системе переменного тока напряжение можно контролировать с помощью различных методов, таких как повышающие трансформаторы, индукционные регуляторы, шунтирующие конденсаторы и т. Д.,

Принцип работы регулятора напряжения

Работает по принципу обнаружения ошибок. Выходное напряжение генератора переменного тока, полученное через трансформатор напряжения, затем выпрямляется, фильтруется и сравнивается с эталоном. Разница между фактическим и опорным напряжением называется напряжением ошибки . Это напряжение ошибки усиливается усилителем и затем подается на основной или пилотный возбудитель.

Таким образом, усиленные сигналы ошибки управляют возбуждением основного или пилотного возбудителя посредством понижающего или повышающего действия (т.е.е. контролирует колебания напряжения). Управление выходом возбудителя ведет к контролю напряжения на клеммах главного генератора.

Применение автоматического регулятора напряжения

Основные функции АРН следующие.

  1. Он контролирует напряжение системы и приближает работу машины к стабильному установившемуся режиму.
  2. Он разделяет реактивную нагрузку между генераторами, работающими параллельно.
  3. Автоматические регуляторы напряжения снижают перенапряжения, возникающие из-за внезапного отключения нагрузки в системе.
  4. Увеличивает возбуждение системы в условиях неисправности, так что максимальная мощность синхронизации существует во время устранения неисправности.

Когда происходит резкое изменение нагрузки в генераторе переменного тока, необходимо изменить систему возбуждения, чтобы обеспечить такое же напряжение при новых условиях нагрузки. Сделать это можно с помощью автоматического регулятора напряжения. Аппаратура автоматического регулятора напряжения работает в поле возбудителя и изменяет выходное напряжение возбудителя и ток возбуждения.Во время резких колебаний АРВ не дает быстрого ответа.

Для быстрого реагирования используются быстродействующие регуляторы напряжения на основе принципа , превышающего отметку . В соответствии с принципом перерегулирования, когда нагрузка увеличивается, возбуждение системы также увеличивается. Перед увеличением напряжения до значения, соответствующего повышенному возбуждению, регулятор снижает возбуждение до надлежащего значения.

Строительные, рабочие и проектные типы

Так же, как ситуации, в которых нам нужно регулировать напряжение в наших конструкциях, существуют сценарии, в которых нам нужно регулировать ток, который подается в определенную часть нашей цепи.В отличие от преобразования (перехода от одного уровня напряжения к другому), которое обычно является одной из основных причин регулирования напряжения, регулирование тока обычно заключается в поддержании постоянного тока, который подается, независимо от изменений сопротивления нагрузки или входного напряжения. Цепи (встроенные или нет), которые используются для обеспечения постоянного тока , называются (постоянными) регуляторами тока и очень часто используются в силовой электронике.

Хотя регуляторы Current использовались в нескольких приложениях на протяжении многих лет, возможно, до недавнего времени они не были одной из самых популярных тем в обсуждениях проектирования электроники.Текущие регуляторы теперь достигли своего рода повсеместного статуса благодаря их важным приложениям в светодиодном освещении среди других приложений.

В сегодняшней статье мы рассмотрим эти регуляторы тока и исследуем лежащие в их основе принципы работы, их конструкцию, типы и применение, среди прочего .

Принцип действия регулятора тока

Работа регулятора тока аналогична работе регулятора напряжения с основным отличием в параметре, который они регулируют, и величине, которую они изменяют для обеспечения своего выхода.В регуляторах напряжения ток изменяется для достижения необходимого уровня напряжения, в то время как регуляторы тока обычно включают изменения напряжения / сопротивления для достижения необходимого выходного тока. Таким образом, хотя это возможно, обычно трудно одновременно регулировать напряжение и ток в цепи.

Чтобы понять, как работают регуляторы тока, необходимо быстро взглянуть на закон Ома;

  В = ИК или I = В / П  

Это означает, что для поддержания постоянного тока на выходе эти два свойства (напряжение и сопротивление) должны поддерживаться постоянными в цепи или настраиваться таким образом, чтобы при изменении одного значения другого соответственно регулировалось для сохранения такой же выходной ток.Таким образом, регулирование тока включает в себя регулировку напряжения или сопротивления в цепи или обеспечение неизменности значений сопротивления и напряжения независимо от требований / воздействий подключенной нагрузки.

Регулятор тока рабочий

Чтобы правильно описать, как работает регулятор тока, рассмотрим приведенную ниже принципиальную схему.

Переменный резистор в приведенной выше схеме используется для обозначения действия регулятора тока.Предположим, что переменный резистор автоматизирован и может автоматически регулировать собственное сопротивление. Когда схема находится под напряжением, переменный резистор регулирует свое сопротивление, чтобы компенсировать изменения тока из-за изменения сопротивления нагрузки или напряжения питания. Относительно базового класса электричества вы должны помнить, что при увеличении нагрузки, которая по сути является сопротивлением (+ емкость / индуктивность), происходит эффективное падение тока, и наоборот. Таким образом, когда нагрузка в цепи увеличивается (увеличение сопротивления), а не падение тока, переменный резистор уменьшает свое собственное сопротивление, чтобы компенсировать повышенное сопротивление и обеспечить одинаковые токи.Таким же образом, когда сопротивление нагрузки уменьшается, переменное сопротивление увеличивает свое собственное сопротивление, чтобы компенсировать уменьшение, таким образом поддерживая значение выходного тока.

Другой подход к регулированию тока состоит в том, чтобы подключить достаточно высокий резистор параллельно нагрузке так, чтобы в соответствии с законами основного электричества ток протекал по пути с наименьшим сопротивлением, который в этом случае будет проходить через нагрузку с только «незначительное» количество тока, протекающего через резистор высокого номинала.

Эти изменения также влияют на напряжение, так как некоторые регуляторы тока поддерживают ток на выходе, изменяя напряжение. Таким образом, практически невозможно регулировать напряжение на том же выходе, на котором регулируется ток.

Конструкция регуляторов тока

Регуляторы тока

обычно реализуются с использованием стабилизаторов напряжения на основе микросхем, таких как MAX1818 и LM317, или с использованием пассивных и активных компонентов, таких как транзисторы и стабилитроны.

Проектирование регуляторов тока с использованием регуляторов напряжения

Для разработки регуляторов тока с использованием регулятора напряжения на основе IC метод обычно включает настройку регуляторов напряжения с постоянным сопротивлением нагрузки, и обычно используются линейные регуляторы напряжения, поскольку напряжение между выходом линейных регуляторов и их землей обычно составляет Таким образом, жестко регулируемый, фиксированный резистор может быть вставлен между выводами так, чтобы фиксированный ток протекал к нагрузке.Хороший пример дизайна, основанного на этом, был опубликован Budge Ing в одной из публикаций EDN в 2016 году.

Используемая схема использует линейный стабилизатор LDO MAX1818 для создания стабилизированного источника постоянного тока на стороне высокого напряжения. Источник питания (показанный на изображении выше) был разработан так, что он питает RLOAD постоянным током, который равен I = 1,5 В / ROUT. Где 1,5 В - это предустановленное выходное напряжение MAX1818 , но его можно изменить с помощью внешнего резистивного делителя.

Для обеспечения оптимальной производительности конструкции напряжение на входной клемме MAX1818 должно быть до 2,5 В, а не выше 5,5 В, поскольку это рабочий диапазон, указанный в техническом паспорте. Чтобы удовлетворить это условие, выберите значение ROUT, которое позволяет от 2,5 В до 5,5 В между IN и GND. Например, при нагрузке, скажем, 100 Ом при 5 В VCC, устройство правильно работает с ROUT выше 60 Ом, так как это значение допускает максимальный программируемый ток 1,5 В / 60 Ом = 25 мА. Тогда напряжение на устройстве будет равно минимально допустимому: 5 В - (25 мА × 100 Ом) = 2.5В.

Другие линейные регуляторы, такие как LM317, также могут использоваться в аналогичном процессе проектирования, но одно из основных преимуществ , которые имеют микросхемы типа MAX1818 по сравнению с другими, заключается в том, что они включают тепловое отключение, которое может быть очень важным в текущем регламенте , поскольку температура микросхемы имеет тенденцию к нагреванию при подключении нагрузок с высокими требованиями к току.

Для регулятора тока на базе LM317 рассмотрите схему ниже;

LM317 сконструированы таким образом, что регулятор продолжает регулировать свое напряжение до тех пор, пока напряжение между его выходным выводом и его регулировочным выводом не станет равным 1.25 В и как таковой делитель обычно используется при реализации в ситуации регулятора напряжения. Но для нашего случая использования в качестве регулятора тока он на самом деле очень упрощает нам задачу, потому что, поскольку напряжение постоянно, все, что нам нужно сделать, чтобы сделать ток постоянным, - это просто вставить резистор последовательно между выводами Vout и ADJ. как показано на схеме выше. Таким образом, мы можем установить выходной ток на фиксированное значение, которое задается:

  I = 1,25 / R 
 

Значение R является определяющим фактором значения выходного тока.

Чтобы создать регулятор переменного тока, нам нужно только добавить переменный резистор в схему вместе с другим резистором, чтобы создать делитель на регулируемом выводе, как показано на изображении ниже.

Работа схемы такая же, как и в предыдущей, с той разницей, что ток можно регулировать в цепи, поворачивая ручку потенциометра для изменения сопротивления. Напряжение на R составляет;

  В = (1 + R1 / R2) x 1.25  

Это означает, что ток через R определяется выражением;

  I  R  = (1,25 / R) x (1+ R1 / R2). 
 

Это дает цепи диапазон тока I = 1,25 / R и (1,25 / R) x (1 + R1 / R2)

Зависит от установленного тока; Убедитесь, что номинальная мощность резистора R может выдерживать ток, протекающий через него.

Преимущества и недостатки использования LDO в качестве регулятора тока

Ниже приведены некоторые преимуществ для выбора подхода линейного регулятора напряжения.

ИС регулятора
  1. имеют защиту от перегрева, которая может пригодиться при подключении нагрузок с повышенными требованиями к току.
  2. ИС регулятора
  3. имеют больший допуск для больших входных напряжений и в значительной степени поддерживают высокое рассеивание мощности.
  4. Подход ИС регулятора предполагает использование меньшего количества компонентов с добавлением лишь нескольких резисторов в большинстве случаев, за исключением случаев, когда требуются более высокие токи и подключены силовые транзисторы.Это означает, что вы можете использовать одну и ту же микросхему для регулирования напряжения и тока.
  5. Уменьшение количества компонентов может означать сокращение стоимости внедрения и времени разработки.

Недостатки:

С другой стороны, конфигурации, описанные в рамках подхода ИС регулятора, позволяют протекать тока покоя от регулятора к нагрузке в дополнение к регулируемому выходному напряжению. Это приводит к ошибке, которая может быть недопустимой в некоторых приложениях.Однако это можно уменьшить, выбрав регулятор с очень низким током покоя.

Еще одним недостатком подхода к регулятору IC является отсутствие гибкости в конструкции.

Помимо использования микросхем регуляторов напряжения, регуляторы тока также могут быть спроектированы с использованием желейных деталей, включая транзисторы, операционные усилители и стабилитроны с необходимыми резисторами. Стабилитрон используется в схеме, вероятно, просто, как будто вы помните, что стабилитрон используется для регулирования напряжения.Конструкция регулятора тока с использованием этих частей является наиболее гибкой, поскольку их обычно легко интегрировать в существующие схемы.

Регулятор тока на транзисторах

В этом разделе мы рассмотрим два дизайна. В первом будут использованы только транзисторы, а во втором - операционный усилитель и силовой транзистор .

Для модели с транзисторами рассмотрим схему ниже.

Регулятор тока, описанный на схеме выше, является одной из простейших конструкций регулятора тока. Это регулятор тока низкого напряжения ; Подключал после нагрузки до земли. Он состоит из трех основных компонентов; управляющий транзистор (2N5551), силовой транзистор (TIP41) и шунтирующий резистор (R). Шунт, который по сути представляет собой резистор малой мощности, используется для измерения тока, протекающего через нагрузку. При включении цепи на шунте отмечается падение напряжения.Чем выше значение сопротивления нагрузки RL, тем выше падение напряжения на шунте. Падение напряжения на шунте действует как триггер для управляющего транзистора, так что чем выше падение напряжения на шунте, тем больше транзистор проводит и регулирует напряжение смещения, приложенное к базе силового транзистора, для увеличения или уменьшения проводимости с помощью резистор R1, действующий как резистор смещения.

Как и в других схемах, переменный резистор может быть добавлен параллельно шунтирующему резистору для изменения уровня тока за счет изменения величины напряжения, приложенного к базе управляющего транзистора.

Регулятор тока с операционным усилителем

Для второго варианта конструкции рассмотрим схему ниже;

Эта схема основана на операционном усилителе , и, как и в примере с транзистором, также использует шунтирующий резистор для измерения тока. Падение напряжения на шунте подается в операционный усилитель, который затем сравнивает его с опорным напряжением, установленным стабилитроном ZD1.Операционный усилитель компенсирует любые расхождения (высокие или низкие) в двух входных напряжениях, регулируя свое выходное напряжение. Выходное напряжение операционного усилителя подключается к мощному полевому транзистору, и проводимость зависит от приложенного напряжения.

Основное различие между этой конструкцией и первым из них является источник опорного напряжения осуществляется диодом Зенера. Обе эти конструкции являются линейными, и при высоких нагрузках будет выделяться большое количество тепла, поэтому к ним следует присоединить радиаторы для отвода тепла.

Преимущества и недостатки

Основным преимуществом этого подхода к проектированию является гибкость, которую он предоставляет проектировщику. Детали могут быть выбраны, а конструкция сконфигурирована по вкусу без каких-либо ограничений, связанных с внутренней схемой, которая характерна для подхода, основанного на регуляторе на основе ИС.

С другой стороны, этот подход имеет тенденцию быть более утомительным, трудоемким, требует большего количества деталей, громоздких, подверженных сбоям и более дорогих по сравнению с подходом на основе регуляторов.

Применение регуляторов тока

Регуляторы постоянного тока находят применение во всех видах устройств, от цепей питания до цепей зарядки аккумуляторов, драйверов светодиодов и других приложений, где необходимо регулировать постоянный ток независимо от приложенной нагрузки.

Вот и все для этой статьи! Надеюсь, вы узнали одну или две вещи.

До следующего раза!

Общие сведения о работе регулятора напряжения

Регулятор напряжения генерирует фиксированное выходное напряжение заданной величины, которое остается постоянным независимо от изменений входного напряжения или условий нагрузки.Существует два типа регуляторов напряжения: линейные и импульсные.

В линейном регуляторе используется устройство активного (BJT или MOSFET) прохода (последовательное или шунтирующее), управляемое дифференциальным усилителем с высоким коэффициентом усиления. Он сравнивает выходное напряжение с точным эталонным напряжением и регулирует проходное устройство для поддержания постоянного выходного напряжения.

Импульсный стабилизатор преобразует входное постоянное напряжение в коммутируемое напряжение, подаваемое на силовой MOSFET или BJT переключатель. Отфильтрованное выходное напряжение переключателя мощности возвращается в схему, которая управляет временем включения и выключения переключателя питания, так что выходное напряжение остается постоянным независимо от изменений входного напряжения или тока нагрузки.

Каковы некоторые топологии импульсного регулятора?

Существует три распространенных топологии: понижающая (понижающая), повышающая (повышающая) и понижающая-повышающая (повышающая / понижающая). Другие топологии включают обратноходовые, SEPIC, Cuk, двухтактные, прямые, полные мостовые и полумостовые топологии.

Как влияет на конструкцию регулятора частоты коммутации?

Более высокие частоты переключения означают, что в стабилизаторе напряжения можно использовать катушки индуктивности и конденсаторы меньшего размера. Это также означает более высокие коммутационные потери и больший шум в цепи.

Какие потери происходят с импульсным регулятором?

Потери происходят из-за мощности, необходимой для включения и выключения полевого МОП-транзистора, которые связаны с драйвером затвора полевого МОП-транзистора. Кроме того, потери мощности полевого МОП-транзистора возникают из-за того, что переключение из состояния проводимости в состояние непроводимости занимает конечное время. Потери также связаны с энергией, необходимой для заряда и разряда емкости затвора MOSFET между пороговым напряжением и напряжением затвора.

Каковы обычные применения линейных и импульсных регуляторов?

Рассеиваемая мощность линейного регулятора прямо пропорциональна его выходному току при заданном входном и выходном напряжении, поэтому типичный КПД может быть 50% или даже ниже.Используя оптимальные компоненты, импульсный регулятор может достигать КПД в диапазоне 90%. Однако выходной шум линейного регулятора намного ниже, чем импульсный стабилизатор с такими же требованиями к выходному напряжению и току. Обычно импульсный регулятор может управлять более высокими токовыми нагрузками, чем линейный регулятор.

Как импульсный регулятор управляет своим выходом?
Для импульсных регуляторов

требуются средства для изменения выходного напряжения в ответ на изменения входного и выходного напряжения.Один из подходов - использовать ШИМ, который управляет входом в соответствующий выключатель питания, который контролирует время его включения и выключения (рабочий цикл). Во время работы отфильтрованное выходное напряжение регулятора подается обратно на ШИМ-контроллер для управления рабочим циклом. Если отфильтрованный выходной сигнал имеет тенденцию к изменению, обратная связь, подаваемая на ШИМ-контроллер, изменяет рабочий цикл, чтобы поддерживать постоянное выходное напряжение.

Какие проектные характеристики важны для ИС регулятора напряжения?

Среди основных параметров - входное напряжение, выходное напряжение и выходной ток.В зависимости от приложения могут быть важны другие параметры, такие как пульсирующее напряжение на выходе, переходная характеристика нагрузки, выходной шум и КПД. Важными параметрами линейного регулятора являются падение напряжения, PSRR (коэффициент отклонения источника питания) и выходной шум.

Рекомендации

Загрузить средства проектирования управления питанием

Инструмент для проектирования регуляторов напряжения ADIsimPower ™

Основы электроники: регулятор напряжения

Создание регулятора напряжения

Теория предыстории: как работает регулятор напряжения?


Название говорит само за себя: регулятор напряжения.Аккумулятор в вашем автомобиле, который заряжается от генератора переменного тока, розетка в вашем доме, которая обеспечивает все необходимое вам электричество, сотовый телефон , который вы, вероятно, будете держать под рукой каждую минуту дня, им всем требуется определенное напряжение, чтобы функция. Колеблющиеся выходы, выходящие за пределы ± 2 В, могут вызвать неэффективную работу и, возможно, даже повредить ваши зарядные устройства. Колебания напряжения могут происходить по разным причинам: состояние электросети, включение и выключение других приборов, время суток, факторы окружающей среды и т. Д.Из-за необходимости постоянного постоянного напряжения введите регулятор напряжения.

Регулятор напряжения - это интегральная схема (ИС), которая обеспечивает постоянное фиксированное выходное напряжение независимо от изменения нагрузки или входного напряжения. Это можно сделать разными способами, в зависимости от топологии схемы внутри, но для того, чтобы этот проект оставался базовым, мы в основном сосредоточимся на линейном регуляторе. Линейный регулятор напряжения работает, автоматически регулируя сопротивление через контур обратной связи, учитывая изменения как нагрузки, так и входа, при этом сохраняя постоянное выходное напряжение.

ИС регулятора напряжения в корпусе ТО-220 С другой стороны, переключающие регуляторы
, такие как понижающий (понижающий), повышающий (повышающий) и понижательно-повышающий (повышающий / понижающий), требуют еще нескольких компонентов, а также повышенной сложности как различные компоненты повлияют на результат. Импульсные регуляторы намного более эффективны с точки зрения преобразования энергии, где эффективность играет большую роль, но линейные регуляторы очень хорошо работают как регуляторы напряжения в низковольтных приложениях.

В зависимости от приложения, стабилизатору напряжения может также потребоваться больше внимания для улучшения других параметров, таких как пульсирующее напряжение на выходе, переходная характеристика нагрузки, падение напряжения и выходной шум.Такие приложения, как аудиопроекты, более чувствительны к шуму и помехам, поэтому потребуется дополнительная фильтрация, особенно в импульсных регуляторах, где пульсации на выходе могут быть значительными. Большую часть информации, включая схемы, можно найти в техническом описании микросхемы регулятора напряжения, с которой вы работаете, в разделе «Примечания по применению».


Указания по применению для регулятора 7805T
Afrotechmods также имеет информативное видео по работе с автоматическим регулятором напряжения

EA07 на 6 ампер для одно- или трехфазного генератора

Особенности Характеристики Загрузки Габаритные размеры Поворот изображения

Характеристики

  • Широкий диапазон измеряемого напряжения от 80 до 350 В переменного тока для однофазного измерения
  • Широкий диапазон входной мощности от 80 до 270 В переменного тока, принимает мощность от основной или вспомогательной обмотки
  • Светодиод индикации защиты от понижения частоты
  • Светодиод защиты от перенапряжения и индикации
  • Подавление электромагнитных помех

Технические характеристики

  • Вход датчика
  • от 80 до 350 В перем. Тока, 1 фаза, 50/60 Гц
  • Потребляемая мощность
  • Напряжение от 50 до 270 В переменного тока
    Частота 50/60 Гц
  • Выход
  • Напряжение 63 В постоянного тока при 220 В переменного тока на входе
    Постоянный ток 6 А Макс.Прерывистый 7А в течение 10 секунд
  • Регулировка напряжения
  • Менее +/- 1% (при регулировании двигателя 4%)
  • Нарастающее напряжение
  • Остаточное напряжение выше 5 В перем. Тока 25 Гц
  • Подавление электромагнитных помех
  • Внутренняя фильтрация электромагнитных помех
  • Регулировка внешнего напряжения
  • Макс.+/- 7% при 100 кОм потенциометр 1/2 Вт
  • Рассеиваемая статическая мощность
  • Макс. 5 Вт
  • Защита от перегрузки
  • от 40 до макс. Vdc от 0,3 до 20 секунд
  • Защита от пониженной частоты
  • Диапазон регулировки от 42 до 60 Гц
  • Сопротивление обмотки возбуждения
  • Сопротивление постоянному току от 10 до 100 Ом

Функции управления АРН

  • STAB
  • Регулировка устойчивости
  • AMP.
  • Настройка чрезмерного возбуждения
  • Гц.
  • Настройка пониженной частоты
  • U / F
  • Настройка точки перегиба защиты от пониженной частоты
  • O / E
  • Светодиод индикации перегрузки

Окружающая среда

  • Рабочая температура
  • от -40 до +60 ° C
  • Температура хранения
  • от -40 до +80 ° C
  • Относительная влажность
  • Макс.95%
  • Вибрация
  • 1,5 ГГц при 5–30 Гц
    5,0 ГГц при 30–500 Гц

Физические характеристики

  • Размеры
  • 97,8 (Д) x 92,0 (Ш) x 38,0 (В) мм

Размеры

Вращающееся изображение

  • Все названия и номера производителей используются только для справки и не подразумевают, что какая-либо часть является продуктом этих производителей.

Система управления котлом | Судовой инженер

Система управления котлом
На панели управления котла предусмотрены устройства управления, контроля и блокировки
требуется для безопасной работы котла. Эта панель управления управляет
выполнение всех функций, необходимых для автоматической работы котла
и обеспечивает центральный пункт управления для ручного управления. Система управления также
имеет сеть аварийных сигналов, которые выдают предупреждение при возникновении неисправности
во время работы котла.
В случае возникновения серьезной неисправности, которая сделает его небезопасным
для продолжения работы котла система автоматического управления котлом
отключает котел в аварийном режиме, немедленно отключая
подача мазута в котел.
Панели управления
Панель удаленной индикации консоли ECR
Эта панель индикации установлена ​​в диспетчерской двигателя и имитирует
системы контроля и основные средства управления на котле и стороне котла
панель управления.
Консоль ECR имеет следующие элементы:
Индикатор уровня в барабане
Индикатор давления в паровом барабане
Индикатор дыма
Выключатель аварийной остановки
Лампа хода горелки
Выключатель проверки ламп
Панель управления котлом со стороны котла
Эта панель управления устанавливается на стороне котла. Он содержит систему питания
блок питания, регулятор последовательности работы горелки, автомат
контроллер котла и различные необходимые релейные блоки.
На панели управления установлены следующие сигнализации:
Отказ источника питания переменного тока
Неактивно устройство управления запуском горелки
Ручное отключение
Отключение вентилятора FD
Неисправность пилотного насоса
Уровень барабана низкий-низкий
Низкое давление распыления
Сбой зажигания
Сбой пламени
Пламя глаза аномальное
Неисправность клапана поршня горелки
ФО давление низкое-низкое
Низкое давление управляющего воздуха
Система управления горелкой
Панель управления котлом (BCP) выполняет ряд функций, связанных с
с котлом с системой управления котлом (BMS) автомат
контроль горения (ACC) и контроль питательной воды (FWC).Есть два
котлов, и они управляются по принципу главный / подчиненный с помощью одного из котлов
назначается системой управления ведущим, а другой - ведомым.
В нормальных условиях главный котел будет работать для питания
потребности судна в паре, но если он не может удовлетворить потребность, ведомый котел
запущен и переходит под контроль системы управления котлом. Котлы
также может работать совместно с экономайзером; обычно это означает, что
экономайзер работает в море, и один из котлов выбран как
подача воды и паросборник для экономайзера.Котел
работал бы, если бы экономайзер не мог поддерживать давление пара ни при каких
причина.
Система управления котлом управляет дистанционным, ручным и автоматическим
работы одной горелки с одним горлом, которая предусмотрена в своде
паровой котел. Этот блок содержит программируемое управление последовательностью, которое управляет
продувка топки, пилотная горелка и автоматическая работа поршня горелки
клапан. Это осуществляется путем подключения к системе защиты котла и
ACC.Кроме того, он передает команды автоматической настройки
количество воздуха для горения и количество жидкого топлива в ACC для запуска / остановки
горелка. В основе работы котла лежит контроль горения, потому что если
что-то не так с котлом, его водоснабжением или горением
системе, топливо должно быть отключено, и это предотвратит возникновение любой проблемы. более серьезный.
Имеется три режима работы котла, один - 18к (подача пара на
18кг-см2), второй - режим 7к (подача пара 7кг / см2) и третий -
- это режим IGS (работает система инертного газа).
В порту во время выгрузки груза будет выбран режим 18k, но в море только
режим 7k обычно требуется при установке котла на жидком топливе
обеспечение поддержки экономайзера отходящего тепла. В некоторых случаях прерывистый
сжигание жидкого топлива на котле может потребоваться для поддержания давления пара и котла
панель управления организует это. Выбор режима 18k или 7k -
выполняется переключателем и выбором определенного режима авто-
автоматически изменяет уставку на регуляторе давления (PIC).
Процедура подготовки системы управления котлом
а) Включите силовые выключатели на панели управления котла.
б) Проверьте работу каждой контрольной лампы и зуммера с помощью зуммера
и выключатель проверки ламп на панели управления.
c) Подайте воздух ко всем устройствам управления.
г) Сбросьте аварийный сигнал блокировки котла.
д) Убедитесь, что все сигнальные лампы не горят.
Метод эксплуатации
Существует три режима работы горелки: AUTO (автоматический), MAN (ручной)
и режим HARD MAN (Hard Manual).Горелка обычно эксплуатируется в модели
. Режимы AUTO и MAN используются только в экстренных случаях, когда
Режим АВТО не работает. Режим HARD MAN допускает репозицию-
Переключатели горелки и режим MAN предназначены для работы в ручном режиме.
Выбор рабочих режимов
Режим HARD MAN
При работе в этом режиме оператор всегда должен находиться у котла и
способен следить за ситуацией и обеспечивать ручное вмешательство в управление.
Действуют следующие блокировки:
Уровень воды в барабане низкий-низкий
Датчик пламени (пилотная горелка и основная горелка)
Порядок действий
а) Убедитесь, что котел и горелка находятся в рабочем состоянии.
б) Запустите топливный насос и нагнетательный вентилятор в MAN
. Режим.
c) Переведите выключатель горелки из положения ВЫКЛ в положение HARD MAN
. должность.
г) Установите контроллер давления топлива и воздушный контроллер на MAN
. Режим.
д) Продуть печь. Для этого необходимо вручную установить воздушный контроллер
работает, а входная заслонка нагнетательного вентилятора должна быть полностью
открыт. Печь необходимо продувать не менее 3 минут.
е) Убедитесь, что температура топлива находится в требуемом диапазоне.
ж) Вручную управлять воздушным регулятором и давлением топлива
регулятора и настроить впускную лопатку нагнетательного вентилятора и мазут
регулирующий клапан в открытое положение зажигания.
h) Откройте дополнительную дверцу для рабочих переключателей HARD MAN. Установить
переключатель пилотной горелки в положение MANU ON и зажгите
пилотная горелка. Если пилотная горелка не загорелась через 15 секунд,
переключатель пилотной горелки должен быть установлен в положение АВТО, и процесс
началось снова с пункта e) выше, «Очистить печь».
i) Если пилотная горелка работает правильно, зажигается основная горелка.
Переключатель топливного клапана установлен в положение MANU ON, а основная горелка
. должен загореться. Если основная горелка не зажигается по прошествии
Через 10 секунд переключатель топливного клапана должен быть установлен в положение АВТО и
процедура началась снова с пункта «e» выше «Очистить
. печь ».
j) При правильной работе основной горелки переключатель пилотной горелки
сбрасывается на АВТО.
(Примечание! При тушении основной горелки переключатель топливного клапана должен находиться в положении
вернулся в АВТО.)
Когда требуется продувка горелки, необходимо использовать выключатель продувки горелки и
это должно быть установлено на MANU ON.
Байпас температуры топлива
Перепускной выключатель температуры жидкого топлива находится внутри дополнительной двери. В этом обходе
В этом режиме отключена пусковая блокировка для аварийного сигнала низкой температуры топлива. Это
используется при запуске котла в холодном состоянии при отсутствии пара
для отопления. При использовании тяжелого масла класса «A» переключатель установлен в положение BYPASS.
Автоматический режим
Это режим, который обычно используется.Все операции, включая
команды зажигания и гашения работают автоматически.
а) Установить топливные насосы, нагнетательный вентилятор и контроллеры
в режим АВТО.
б) Переведите переключатель горелки из положения ВЫКЛ. в положение АВТО.
При остановке этот переключатель необходимо вернуть в положение ВЫКЛ.
Для основной горелки
должна быть выполнена следующая последовательность событий. зажигание.
а) Когда переключатель горелки переведен в положение АВТО,
запускается программный таймер.
б) После задержки в 5 секунд включается нагнетательный вентилятор и
клапан распыления пара открывается.
c) Еще через 20 секунд входная заслонка принудительной тяги начнет работать до
переместите в полностью открытое положение, чтобы продуть печь. Это
для полного открытия требуется около 30 секунд.
г) Таймер продувки (2P) запускается, когда переключатель горелки установлен на
перемещен в положение АВТО, и время, установленное на этом таймере, составляет 60
секунд. По истечении 60 секунд нагнетательный вентилятор
Впускная заслонка начинает постепенно закрываться до положения зажигания.При этом
точка будет эффективно продумана печь.
e) Пилотная горелка зажигается через 35 секунд после пункта «d».
f) Когда пламя пилотной горелки обнаруживается глазами пламени,
электрический воспламенитель перестает искрить.
ж) Главный топливный клапан открывается через 5 секунд после того, как пилотная горелка нагревается до
загорелся.
з) Пилотная горелка гаснет через 15 секунд после того, как она погасла. воспламеняется (позиция «е»).
i) Программный таймер останавливается в положении блокировки (градация 85)
5 секунд после гашения пилотной горелки.
j) В случае отказа розжига или пропадания пламени автомат горения
переходит в последовательность вымирания.
k) Последовательность гашения начинается, когда горелка CUT
Сработали БЛОКИРОВКИ (см. Пункт 'j' выше) или если
переключатель горелки переведен из положения АВТО в положение ВЫКЛ.
1) Программный таймер запускается из положения блокировки.
m) Пилотная горелка зажигается через 2 секунды после пункта 1) выше.
n) Клапан продувки горелки открывается, и горелка продувается примерно в течение
6 секунд.Горелка продувается при нормальной блокировке и
загорается пилотная горелка.
o) Начинается период дополнительной продувки, и вход
нагнетательного вентилятора лопатка начинает полностью открываться, когда горелка
завершает цикл продувки.
p) По истечении установленного времени (60 секунд) на таймере дополнительной продувки
завершено, входная заслонка нагнетательного вентилятора начинает закрываться на
положение зажигания, которое занимает около 30 секунд.
q) Вытяжной вентилятор останавливается через 30 минут.
(Примечание! Если пропадание пламени происходит во время нормальной работы, важно, чтобы
Причина сбоя выясняется до того, как будет предпринята попытка перезапуска
котла.)
Автоматический контроль горения
Эта система автоматически регулирует подачу топлива и воздуха в топку
. для поддержания заданного давления пара в котле. Регулировка топлива
подача осуществляется с помощью пневматического регулирующего клапана топлива, в то время как
подача воздуха регулируется с помощью приточной заслонки нагнетательного вентилятора.
Подача топлива автоматически прекращается при выходе из строя наддувного вентилятора
или из-за высокого или низкого уровня воды в корпусе котла. Система ACC -
с электропневматическим управлением.
Используемая система автоматического регулирования горения (ACC) -
тип измерения давления мазута / давления воздуха.
ACC удерживается в заданном положении зажигания до
горелка зажигается.
После розжига горелки скорость горения фиксируется на уровне
положение розжига до тех пор, пока давление в котле не достигнет заданного значения -
минное давление 5 кг.см2. Этот период называется «пропариванием».
Когда период пропаривания завершен, система ACC переходит на
АВТОМАТИЧЕСКИЙ РАБОТА и скорость горения могут регулироваться с помощью
система.
Во время пропаривания можно изменять скорость горения
путем работы регулятора давления мазута в режиме MANU.
Соотношение воздух / топливо можно изменить до + 20% путем изменения
шкала соотношения воздуха. Этот диск обычно устанавливается в положение 1.
MAN Mode.
Этот режим выбран для ручного запуска котла, чтобы увидеть
что все этапы выполнены правильно.Используется, когда котел
обычно работает автоматически как средство проверки запуска
процедура. Процедура такая же, как и при запуске HARD MAN, но без переключателей
за дополнительной дверью HARD MAN заменены.
Контроль питательной воды.
Это контроллер двухэлементного типа; оба имеют пропорциональный и интегральный
(P + I) контроль. Он измеряет расход пара, а также уровень воды в
котла и регулирует подачу питательной воды в соответствии с изменениями этих значений.
Операция P + I выполняется при сравнении сигналов от двух отдельных
системы. Один из сигналов генерируется разницей воды
установленный и зафиксированный в паровом барабане котла. Другой - от
сравнение измеренного расхода пара из потока пара
передатчик и рабочий сигнал на регулирующий клапан питательной воды. В ECON
(экономайзер) режим изменения уровня воды из-за качки судна и
качка учитывается с учетом уровня скользящей средней в
паровой барабан.

Система ведущий-ведомый.
Два котла являются независимыми блоками, но система управления
спроектирована так, что они работают как выделенная пара, причем один из них является главным котлом, а другой
- подчиненным. Это означает, что главный котел обеспечивает потребности судна в паре
до тех пор, пока потребность не превысит его мощность, а затем подчиненный котел
начнет работу. Подчиненный котел будет поддерживаться в состоянии готовности
к такой ситуации и должен иметь ту же температуру, что и главный котел
, чтобы избежать задержек с выходом из строя.
a) Главный котел управляется включением переключателя ВКЛ / ВЫКЛ
и индикатора давления таким образом, чтобы давление пара отдельного котла
сохраняло заданное значение. Активация
осуществляется так же, как и в обычной однокотловой установке.
b) Когда потребность в паре главного котла превышает 80% от его мощности
, включается подчиненный котел. Он отключается, когда
потребность в паре составляет 30% от общей мощности двух котлов.
Скорость сгорания для ведомого котла такая же, как и для главного котла
, так как главный котел осуществляет общее управление.
c) В дополнение к включению / выключению ведомого котла от контроллера
ведущий-ведомый, ведомый котел может также выполнять свое собственное включение-выключение горения
из-за давления в котле.
Подчиненный котел сохраняет преимущественное управление сгоранием из-за
давления внутри котла, и это давление является собственным установленным давлением ведомого котла
и не зависит от давления
, установленного для главного котла.
d) Ограничитель нижнего уровня срабатывает в течение 15 минут после запуска ведомого котла
, чтобы предотвратить феномен включения / выключения
на ведомом котле.
e) Давление в ведомом котле должно превышать 11 кг-см2 в порядке
для работы конфигурации ведущий-ведомый.
f) В дополнение к работе «ведущий-ведомый» можно выбрать режим
PARA, в котором оба котла могут отключаться независимо.
В этом случае котлы будут работать вместе, каждый под собственным независимым управлением
, а не как пара ведущий-ведомый.
Система безопасности и управления.
В систему безопасности и управления включены рабочие функции или системы под-
, которые автоматически реагируют на изменение состояния за пределами диапазона, установленного до
.Отказ большинства подсистем вызывает визуальный сигнал тревоги на главной панели управления
, а также может вызвать звуковой сигнал. В большинстве случаев сбой
подсистемы требует ручного сброса отключения перед перезапуском подсистемы
. Это обеспечивает защиту персонала на корабле и
для установки котла, поскольку причина отказа подсистемы может включать на
больше, чем эта конкретная подсистема.

Режим доливки инертного газа.
Режим дозаправки системы инертного газа (IGS) используется для того, чтобы котел
работал с минимальной нагрузкой, чтобы IGS могла работать правильно.Требуется минимальная нагрузка котла
25%, чтобы дымовые газы не содержали
кислорода более 5%; поток дымовых газов при минимальном расходе составит 10 300 м3 / ч
при температуре 5 ° C. Следующие элементы будут заблокированы и, следовательно, не смогут работать с
в этом режиме.
Минимальная нагрузка котла ограничена 30% или более, если работает сброс пара.
.
Горит лампа IGS.
Байпас автоматической остановки горелки.
Клапан подачи пара к сажеобдувкам заблокирован на ПОЛНОЕ ЗАКРЫТИЕ.

Авария котла и срабатывания.
Описание.

Аварийный режим.
Котлы могут эксплуатироваться в аварийном режиме, когда регулятор последовательности горелок
не работает.
a) Запустите вентилятор FD, затем полностью откройте входную лопатку вентилятора FD и выполните
продувку печи в течение 3 минут.
б) Убедитесь, что температура ВО находится на заданном уровне,
эквивалентно 15 сСт.
c) Установите регулирующий клапан FO и вход вентилятора FD в положение ЗАЖИГАНИЕ ОТКРЫТО
соответственно.
d) Осторожно зажгите пилотную горелку и не превышайте 15 секунд
времени розжига.

e) Убедитесь, что пилотная горелка загорелась, и откройте клапан поршня FO
, чтобы подать масло в основную горелку.
f) Не держите поршневой клапан FO открытым более 10 секунд.
g) Если основная горелка не зажигается, печь должна быть продумана до
до повторной попытки розжига.
(Примечание! Во время аварийного режима работы котла
необходимо постоянно следить.)
FO Температурный байпас
При сжигании HFO в аварийном режиме этот байпас должен работать.
Паровой пресс. Режим 7 кг-см2 (старт-стоп) 6,5 кг-см2 - 9,5 кг-см2
Запуск ведомого котла разрешен 11,0 кг-см2
Ведомый котел (старт-стоп) 12,6 кг-см2 - 4,6 кг-см2



Обдуватели сажи
Вспомогательные обдувки котла
Количество комплектов:

По два на каждый котел

Обдувку сажи необходимо проводить через регулярные промежутки времени, чтобы гарантировать, что поверхности теплопередачи
очищены от отложений, поскольку они замедляют теплопередачу и могут образовывать
опасность пожара.
На каждом котле установлено два обдувателя, которые должны работать ежедневно, когда используются котлы
, с учетом расположения резервуара и местного законодательства
, касающегося загрязнения и чистого воздуха. Они должны работать, когда
выходит из порта, до отключения котла. Сажеобдувочные аппараты оснащены патрубком для продувки воздухом
, воздух подается от нагнетательного патрубка нагнетательного вентилятора
. Этот продувочный или герметизирующий воздух обеспечивает чистоту сопел во время работы котла
и обеспечивает герметизацию герметичных стеновых коробов для предотвращения утечки
выхлопных газов котла в машинное пространство.Обратные клапаны предотвращают попадание пара
в воздуховоды.
Обдуватели сажи разрешается использовать только тогда, когда имеющееся давление пара
превышает 8 кг / см2. Изолирующий клапан, расположенный в паропроводе между клапаном подачи пара сажи
(T25V) и распределительной линией сажи
, открывается только соответствующим реле давления, если давление пара
превышает 8 кг / см2.
Перед операцией запросите разрешение у моста и уведомите мост о завершении
.
Порядок работы вспомогательного котла для обдувки сажи
a) Котел должен работать как минимум на 50% от полной нагрузки, а нагнетательный вентилятор
должен работать на высокой скорости во время периода продувки сажи
. Давление пара должно превышать 8 кг / см2.
b) Слегка приоткрыв слив (клапан котла №1 T29V и клапан котла №2
T28V), откройте запорный клапан пара (T25V) на коллекторе сажеобдувочного аппарата
.
c) Когда трубопровод достаточно нагреется, закройте сливной клапан, а
полностью откройте запорный клапан.
d) Включите обдувку, повернув маховик по часовой стрелке на
. Обдувка очищает поверхности нагрева котла за счет подачи пара
из ряда форсунок, установленных по длине элемента обдувки
. Кулачок и пусковое устройство, встроенные в головку обдувки
, регулируют паровую дугу, выходящую из сопел
при вращении элемента обдувки.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *