Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Как рассчитать секции отопления: Точный расчет количества радиаторов (секций) отопления

Содержание

Точный расчет количества радиаторов (секций) отопления

Можно провести расчет радиаторов отопления по площади, с помощью калькулятора, размещенного на каком-либо сайте. Но данные не будут точными. Калькуляторов (программ) расчета секций радиаторов отопления много, но точную информацию можно получить только в том случае, если провести расчет вручную индивидуально для каждого помещения.

Упрощенные варианты расчета радиаторов отопления в доме

Первый способ: Расчет по объему комнат

Он прописан в положениях СНиП и применим для панельных домов, Правила предлагают в качестве нормы взять 41 Вт мощности отопления на один кубический метр отапливаемого помещения. Чтобы рассчитать количество необходимых секций достаточно объем комнаты разделить на мощность одной секции устанавливаемых радиаторов (этот параметр указывается производителем в сопроводительной технической документации).

Второй способ: Расчет по площади помещений

Данный способ расчета ориентирован на помещения с потолками до 2500 мм, и за норму берется 100 Вт мощности на один квадрат площади. Для расчёта количества секций необходимо разделить площадь помещения на мощность одной секции (указывается в технической документации радиаторов).

Примерный расчет количества секций радиатора для типового помещения

N=S/P*100, где:

  • N — Количество секций (дробная часть округляется по правилам математического округления))
  • S — Площадь комнаты в м2
  • P — Теплоотдача 1 секции, Ватт

Для этих вариантов расчета применим ряд поправок. Например, если в помещении имеется балкон, или более двух окон, или оно находится на углу здания, то к полученному количеству секций рекомендуется приплюсовать еще 20%. Если при расчете получается конечный результат (количество секций) дробное число, то его следует округлять до целого в большую сторону.

Обратите внимание: полученное значение рассчитано для идеальных условий. То есть, в доме нет дополнительных теплопотерь, сама система отопления работает эффективно, окна и двери герметично закрываются, а соседние помещения также отапливаются. В реальных условиях секций может потребоваться больше

.

Точный расчет необходимого количества секций радиаторов

Выше приведены упрощенные способы расчета радиаторов, которые актуальны для типовых квартир со стандартными параметрами. С их помощью получить адекватный результат для частных жилых домов и квартир в современных новостройках нереально. Для этого следует использовать специальную формулу:
КТ = 100Вт/м2 * S * К1 * К2 * К3 * К4 * К5 * К6 * К7,

Где за основу также берется норма в 100 Вт на квадратный метр, общая площадь помещения и дополняется коэффициентами, значения которых приведены ниже:

K1 — коэффициент, учитывающий остекление оконных проемов:

  • для окон с обычным двойным остеклением: 1.27;
  • для окон с двойным стеклопакетом: 1.0;
  • для окон с тройным стеклопакетом: 0.85;

K2 — коэффициент теплоизоляции стен:

  • низкая степень теплоизоляции: 1.27;
  • хорошая теплоизоляция (кладка в два крипича или слой утеплителя): 1.0;
  • высокая степень теплоизоляции: 0.85;

K3 — соотношение площади окон и пола в помещении:

  • 50%: 1.2;
  • 40%: 1.1;
  • 30%: 1.0;
  • 20%: 0.9;
  • 10%: 0.8;

K4 — коэффициент, позволяющий учесть среднюю температуру воздуха в самую холодную неделю года:

  • для -35°C: 1.5;
  • для -25°C: 1.3;
  • для -20°C: 1.1;
  • для -15°C: 0.9;
  • для -10°C: 0.7;

K5 — корректирует потребность в тепле с учетом количества наружных стен:

  • одна стена: 1.1;
  • две стены: 1.2;
  • три стены: 1.3;
  • четыре стены: 1.4;

K6 — учет типа помещения, которое расположено выше:

  • холодный чердак: 1.0;
  • отапливаемый чердак: 1.0;
  • отапливаемое жилое помещение: 1.0;

K7 — коэффициент, учитывающий высоту потолков:

  • при 2.5 м: 1.0;
  • при 3.0 м: 1.05;
  • при 3.5 м: 1.1;
  • при 4.0 м: 1.15;
  • при 4.5 м: 1.2;

По этой формуле вы сможете рассчитать общее количества тепла, необходимого для того или иного помещения. Для определения количества секций радиаторов, вам необходимо полученный результат разделить на мощность одной секции.


Расчет количества секций радиаторов отопления на 1 кв.м

 При планировании капитального ремонта в вашем доме или же квартире, а так же при планировке постройки нового дома необходимо произвести расчет мощности радиаторов отопления

. Это позволит вам определить количество радиаторов, способных обеспечить теплом ваш дом в самые лютые морозы. Для проведения расчетов необходимо узнать необходимые параметры, такие как размер помещений и мощность радиатора, заявленной производителем в прилагаемой технической документации. Форма радиатора, материал из которого он выполнен, и уровень теплоотдачи в данных расчетах не учитываются. Зачастую количество радиаторов  равно количеству оконных проемов в помещении, поэтому, рассчитываемая мощность разделяется на общее количество оконных проемов, так можно определить величину одного радиатора.

Следует помнить, что не нужно производить расчет для всей квартиры, ведь каждая комната имеет свою отопительную систему и требует к себе индивидуальный подход. Так если у вас угловая комната, то к полученной величине мощности необходимо прибавить еще около двадцати процентов. Такое же количество нужно прибавить, если ваша система отопления работает с перебоями или имеет другие недостатки эффективности.

Расчет мощности радиаторов отопления может осуществляться тремя способами:

Стандартный расчет радиаторов отопления

Согласно строительным нормами и другими правилами необходимо затрачивать 100Вт мощности вашего радиатора на 1метр квадратный жилплощади. В таком случае необходимые расчеты производятся при использовании формулы:

С*100/Р=К, где

К— мощность одной секции вашей радиаторной батареи, согласно заявленной в ее характеристике;

С— площадь помещения. Она равна произведению длины комнаты на ее ширину.

К примеру, комната имеет 4 метра в длину и 3.5 в ширину. В таком случае ее площадь равна:4*3.5=14 метров квадратных.

Мощность, выбранной вами одной секции батареи заявлена производителем в 160 Вт. Получаем:

14*100/160=8.75. полученную цифру необходимо округлить и получается что для такого помещения потребуется 9 секций радиатора отопления. Если же это угловая комната, то 9*1.2=10.8, округляется до 11. А если ваша система теплоснабжения

недостаточно эффективна, то еще раз добавляем 20 процентов от первоначального числа: 9*20/100=1.8 округляется до 2.

 Итого: 11+2=13. Для угловой комнаты площадью 14 метров квадратных, если система отопления работает с кратковременными перебоями понадобиться приобрести 13 секций батарей.

Примерный расчет — сколько секций батареи на квадратный метр

Он базируется на том, что радиаторы отопления при серийном производстве имеют определенные размеры. Если помещение имеет высоту потолка равную 2.5 метра, то на площадь в 1.8 метров квадратных потребуется лишь одна секция радиатора.

Подсчет количества секций радиатора для комнаты с площадью в 14 метров квадратных равен:

14/1.8=7.8, округляется до 8. Так для помещения с высотой до потолка в 2.5м понадобится восемь секций радиатора. Следует учитывать, что этот способ не подходит, если у отопительного прибора малая мощность (менее 60Вт) ввиду большой погрешности.

Объемный или для нестандартных помещений

Такой расчет применяется для помещений с высокими или очень низкими потолками. Здесь расчет ведется из данных о том, что для обогрева одного метра кубического помещения необходима мощность в 41ВТ. Для этого применяется формула:

К=О*41, где:

 К- необходимое количество секций радиатора,

О-объем помещения, он равен произведению высоты на ширину и на длину комнаты.

Если комната имеет высоту-3.0м; длину – 4.0м и ширину – 3.5м, то объем помещения равен:

3.0*4.0*3.5=42 метра кубических.

Расчитывается общая потребность в тепловой энергии данной комнаты:

42*41=1722Вт, учитывая, сто мощность одной секции составляет 160Вт,можно расчитать необходимое их количество путем деления общей потребности в мощности на мощность одной секции: 1722/160=10.8, округляется до 11 секций.

Если выбраны радиаторы, которые не делятся на секции, от общее число нужно поделить на мощность одного радиатора.

Округлять полученные данные лучше в большую сторону, так как производители иногда завышают заявленную мощность.

 

Расчет количества секций биметаллического радиатора

Выбирая радиатор отопления очень важно сразу правильно рассчитать необходимое количество секций. Это создаст в помещении полный комфорт и не нужно будет вносить изменения в систему обогрева.

Выбор приборов отопления достаточно большой, и каждый найдет среди устройств те, которые соответствуют параметрам помещения.


Почему именно биметаллические батареи

Многие потребители ищут формулу, как рассчитать количество секций биметаллического радиатора. Спрос на модели из биметалла достаточно высокий, на это есть немало причин:

  • Универсальность. Модели из биметалла подходят для частных домов, квартир в многоэтажных домах, коммерческих объектов. Они выдерживают любую нагрузку и отличаются надежностью.
  • Устойчивость к коррозии.
  • Превосходная работа на любом теплоносителе.
  • Стильный минималистичный дизайн. Такие батареи гармонируют с любыми интерьерами.
  • Большой выбор конструкций. Есть возможность купить цельную батарею или приобрести определенное количество секций.
  • Хорошая теплоотдача.

Все преимущества таких радиаторов перечислить сразу сложно – это займет немало времени. Основные достоинства биметаллических батарей: надежность, высокое качество, универсальность.

Базовый расчет

Покупая секции поштучно, можно собрать конструкцию нужной мощности. Такая батарея будет полностью отвечать потребностям объекта. Существует базовая формула для расчета нужного количества секций, она применяется в 90% случаев. Именно по ней часто подбирают радиаторы для квартир, частных домов, офисов.

Формула выглядит так:

W = 100 * S / P

В этом расчете S является площадью помещения, а P – мощностью отдельно взятой секции. Число 100 остается неизменным, это количество Вт на 1 м2 площади территории. W – это число секций. Мощность отдельной секции зависит от особенностей конфигурации и составляет 100-200 Вт. Эту информацию надо уточнять в документации к радиатору.

При расчете вычисления производятся последовательно: сначала умножение площади помещения на 100, потом – деление на мощность одной секции. Полученный результат округляется, обычно округление производится в большую сторону, чтобы в помещении было комфортно даже при резком падении температуры.

Эта формула имеет несколько нюансов, поэтому ее нельзя применять везде. Например, подразумевается, что в средней квартире высота потолка не превышает 3 м. Формула работает, если высота потолков в жилище – от 2,2 до 3,0 м. На объектах, которые отличаются по параметрам, требуется другой расчет. Также указанная формула грешит неточностями – она довольно приблизительная. Чтобы вычислить точно необходимое количество тепла, нужно принять во внимание еще множество параметров.

Устанавливая секции в квартире, частном доме, офисе, рекомендуется использовать несколько батарей. Например, если для отопления требуется 18 секций, то лучше поставить 2 радиатора по 9 секций или три по 6. 


Формула для расчета по объему

Как рассчитать количество секций биметаллического радиатора, если высота потолков довольно большая? Для таких случаев придумана специальная формула. Если на объекте потолки выше 2,6 м, можно использовать следующий вид расчетов:

S * H * 41 / P

Батарея подбирается с учетом произведения площади помещения на высоту (S*H). Далее полученное число делится на число 41, если речь идет о панельном доме. Для дома из кирпича можно использовать число 38 – именно сколько Вт нужно на обогрев 1 м3 в доме из более теплого материала. Число P – это мощность секции радиатора.

Если в помещении установлены герметичные пластиковые стеклопакеты, то можно вместо 41 и 38 Вт использовать 34 Вт. Однако этот параметр весьма условный, лучше проконсультироваться со специалистом.

Когда нужна повышенная точность

Для экономии тепла и максимального комфорта требуется повышенная точность при расчетах. Здесь можно применять формулу:

100 * S * ((K1 + K2 + K3 + K4 + K5 + K6 + K7)/7) / P

Число 100 отражает необходимое количество Вт на 1 м2 помещения. Здесь не идет речь о промышленных площадках, которые требуют расчета тепла на 1 м3, но высота потолков отражена в коэффициенте. S – это площадь объекта, для которого производится расчет. Далее учитывается множество различных коэффициентов:

  • поправка на остекление;
  • поправка на теплоизоляцию стен на объекте;
  • соотношение точность площади стеклопакетов к площади пола в квартире, офисе;
  • учет самой холодной температуры;
  • количество наружных стен;
  • учет типа помещения;
  • высота потолка.

Число 7, вынесенное за скобки, обозначает количество коэффициентов, которые были перечислены выше. Вместо P надо вставить значение мощности одной секции. С учетом коэффициентов обычно получается больше секций, чем без дополнительных данных. Зная значение поправок, можно выбрать оптимальный радиатор отопления.

Остекление и теплоизоляция

При проведении точных расчетов по формуле учитываю поправку на остекление теплоизоляцию стен. Если на объекте установлено обычно двойное стекло, то значение поправки будет 1,27. При герметичном двойном стеклопакете параметр К1 равен 1,0. Если установлен тройной герметичный стеклопакет, то К1 равен 0,85. При увеличении количества стекол в стеклопакете параметр снижают на 0,25 пунктов.

Теплоизоляция стен тоже имеет значение, она отражена в коэффициенте К2. При стандартной теплоизоляции помещение плохо защищено от холода, в этом случае параметр составляет 1,27. Улучшенная теплоизоляция в квартире или доме позволяет использовать коэффициент 1,0. Если использована отличная изоляция, то К2 составит 0,85.

Еще один важный пункт – К3. В нем отражено соотношение площади окон к площади пола. Известно, что стекло лучше пропускает холод, чем стена. В квартирах и офисах с большими окнами требуется более мощный обогрев. Когда площадь окон составляет около 40% от площади пола, можно использовать коэффициент 1,1. Далее при снижении площади на каждые 10% параметр уменьшается на 0,1%.

Температура, тип помещения, высота потолков

При выборе радиатора для дома или офиса было бы ошибкой не учитывать климатическую зону, а точнее – наиболее низкую температуру в самый холодный месяц. Если температура опускается до -35, надо использовать коэффициент 1,5. При повышении температуры на 5 градусов параметр К4 можно уменьшать на 0,2. Если температура падает, то коэффициент, наоборот, увеличивается на 0,2.

Также принимается в расчет тип помещения, в котором используется батарея. Если это отапливаемое жилое помещение, то используется параметр 0,8. Коэффициент К6 для неотапливаемых чердаков – 1,0.

К5 обозначает количество наружных стен. Чем больше стен, тем больше «мостиков холода». Если это только одна наружная стенка, то применяется коэффициент 1,1, если четыре – то уже 1,4. Важно обязательно учитывать этот нюанс, чтобы в помещении не было холодно.

Имеет значение и высота потолков в квартире, офисе. Для объектов с высотой потолков 2,5 м используется параметр 1,0. При увеличении высоты на 5 метров коэффициент растет на 0,05. Этого достаточно, чтобы можно было обогреть территорию. Высота потолков прописывается в параметре К7. При расчетах надо обязательно учесть мощность секции радиатора – она может быть разной.

Также можно просто доверить расчет специалистам – они точно не ошибутся и подберут оптимальный по мощности радиатор.

Расчет количества секций радиаторов отопления – для чего это нужно знать

На первый взгляд рассчитать, сколько секций радиатора установить в том или ином помещении – просто. Чем больше комната – тем из большего количества секций должен состоять радиатор. Но на практике то, насколько тепло будет в том или ином помещении зависит от более чем десятка факторов. Учитывая их, рассчитать нужное количество тепла от радиаторов, можно намного точнее.

Общие сведения

Теплоотдача одной секции радиатора указана в технических характеристиках изделий от любого производителя. Количество радиаторов в помещении обычно соответствует количеству окон. Под окнами чаще всего и располагаются радиаторы. Их габариты зависят от площади свободной стены между окном и полом. Нужно учитывать, что от подоконника радиатор должен быть опущен не менее, чем на 10 см. А между полом и нижней линией радиатора расстояние должно быть не меньше 6 см. Эти параметры определяют высоту прибора.

Теплоотдача одной секции чугунного радиатора – 140 ватт, более современных металлических – от 170 и выше.

Можно производить расчет количества секций радиаторов отопления,выходя из площади помещения или же его объема.

По нормам считается, что на обогрев одного квадратного метра помещения нужно 100 ватт тепловой энергии. Если же исходить из объема, то тогда количество тепла на 1 кубический метр будет составлять не менее 41 ватта.

Но ни один из этих способов не будет точным если не учитывать особенностей того или иного помещения, количества и размер окон, материал стен, и многое другое. Поэтому рассчитывая секции радиатора по стандартной формуле, будем добавлять коэффициенты, созданные тем или иным условием.

Площадь помещения – расчет количества секций радиаторов отопления

Такой расчет обычно применяется к помещениям, расположенным в стандартных панельных жилых домах с высотой потолка до 2,6 метра.

Площадь комнаты множится на 100 (количество тепла для 1м2) и делится на указанную производителем теплоотдачу одной секции радиатора. Например: площадь комнаты 22 м2, теплоотдача одной секции радиатора – 170 ватт.

22Х100/170=12,9

Для этой комнаты нужно 13 секций радиатора.

Если же одна секция радиатора будет иметь 190 ватт теплоотдачи, то получим 22Х100/180=11,57 , то есть можно ограничиться 12 секциями.

К расчетам нужно добавить 20% если комната имеет балкон или находится в торце дома. Батарея, установленная в нише, еще на 15% снизит теплоотдачу. Но в кухне будет на 10-15% теплее.

Производим расчеты по объему помещения

Для панельного дома со стандартной высотой потолков, как уже указывалось выше, расчет тепла производится из потребности 41 ватт на 1м3. Но если дом новый, кирпичный, в нем установлены стеклопакеты, а наружные стены утеплены, то нужно уже 34 ватт на 1м3.

Формула расчета количества секций радиатора выглядит так: объем (площадь, умноженная на высоту потолка) умножается на 41 или 34 (в зависимости от типа дома) и делится на теплоотдачу одной секции радиатора, указанного в паспорте производителя.

Например:

Площадь комнаты 18 м2, высота потолка 2, 6 м. Дом – типичная панельная постройка. Теплоотдача одной секции радиатора – 170 ватт.

18Х2,6Х41/170=11,2. Итак, нам нужно 11 секций радиатора. Это при условии, что комната не угловая и в ней нет балкона, в противном случае лучше установить 12 секций.

Посчитаем максимально точно

А вот формула, по которой максимально точно можно сделать расчет количества секций радиатора:

Площадь помещения умноженная на 100 ватт и на коэффициенты q1, q2, q3, q4, q5, q6, q7 и поделенная на теплоотдачу одной секции радиатора.

Подробнее об этих коэффициентах:

q1 – тип остекления: при тройном стеклопакете коэффициент будет 0,85, при двойном стеклопакете — 1 и при обычном остеклении – 1,27.

q2 – теплоизоляция стен:

  • современная теплоизоляция – 0,85;
  • кладка в 2 кирпича с утеплителем – 1;
  • неутепленные стены — 1,27.

q3 – соотношение площадей окон и пола:

  • 10% — 0,8;
  • 30% — 1;
  • 50% — 1,2.

q4 — минимальная наружная температура:

  • -10 градусов – 0,7;
  • -20 градусов – 1,1;
  • -35 градусов – 1,5.

q5 – количество наружных стен:

  • 1 – 1,1;
  • 2 – 1,2;
  • 3 – 1,3.

q6 – тип помещения, которое находится выше расчетного:

  • обогреваемое — 0,8;
  • чердачное обогреваемое — 0,9;
  • чердачное необогреваемое – 1.

q7 – высота потолка:

  • 2,5 – 1;
  • 3 – 1,05;
  • 3,5 – 1,1.

Если будут учтены все вышеперечисленные коэффициенты, посчитать количество секций радиатора в помещении можно будет максимально точно.

Как рассчитать количество радиаторов отопления для помещения

Сегодня для отопления жилищ используются очень разные радиаторы отопления: чугунные старого образца и их современные модификации, алюминиевые и биметаллические (нержавеющая сталь в сочетании с алюминием, реже – с медью) и стальные. Какие радиаторы устанавливать в частном доме или квартире, зависит от параметров теплосети и особенностей вашего жилища. Однако тепло в доме зависит не только от от вида, типа и качества батарей, но и от того, достаточно ли их мощности для отопления помещений определенной площади.

Секционный биметаллический радиатор

Не существует особых правил, как сделать расчет биметаллических радиаторов отопления или чугунных батарей – для всех видов радиаторов он производится одинаково. Имеет значение лишь один показатель: мощность батареи. Он указывается в техническом паспорте отопительного прибора. В некоторых случаях нужно учитывать, что этот параметр может быть завышен, так как заводские технические испытания проводятся при «идеальных» условиях, которые не всегда достижимы в реальной жизни.

Рассчитываем мощность радиатора отопления

Итак, первое, что необходимо знать, собираясь сделать расчет батарей отопления, – это их мощность (для секционных – мощность секции). Второй показатель, необходимый для расчета – площадь помещения. Формула расчета несложна, и его легко провести самостоятельно.

В соответствии со строительными нормами и правилами (СниПу) для полноценного отопления квадратного метра помещения с потолками h = 2,7 метра (средняя высота потолка в типовых зданиях) нужно 100 Вт тепловой энергии. Обозначим количество секций радиатора буквой К; площадь помещения – буквой S, а мощность секции – буквой Р. Тогда расчет радиатора:

Kоличество секций = (Sпомещ. х 100 Вт) / Р

При высоте (h) потолка выше трёх метров формула немного иная:

Количество секций = (Sпомещ. х hпотолка х 40) / Р

Возьмем для примера алюминиевые радиаторы – расчет отопления может выглядеть так. Номинальная мощность секции испанского радиатора Esperado Intenso R 500/100 – 196 Вт. Площадь помещения – 20 кв. м; высота потолка: 1) менее трех метров; 2) три метра и выше.

Подставляем значение в формулу:

а) K = (20 х 100) / 196 = 10,2 секций;

б) К = (20 х 3 х 40) / 196 = 12,24 секций.

Количество секций округлите в большую сторону. То есть в первом случае покупать придется 11 секций, во втором – 13 секций. Если у вас стоят радиаторы отопления биметаллические – расчет секций делается точно так же. При вычислении размера литых секционных батарей (например чугунных) за секцию принимается одно ребро. В этом случае делается расчет количества радиаторов (они выпускаются с разным количеством ребер), а не секций.

Как не ошибиться в расчетах

Расчет количества радиаторов отопления окажется точнее, если перед вычислением стоит уточнить параметры вашей теплосети. При различной ΔТ (разница температур входящего в систему и выходящего теплоносителя) тепловая мощность той же секции различна. К примеру, у Esperado Intenso R 500/100 указанная выше мощность соответствует ΔТ = 70 град.; при ΔТ = 50 град. мощность секции составит 164 ватта. То есть на комнату 20 кв. м придется устанавливать радиатор из (20 х 100) / 164 = 12,19 (то есть 13) секций.

Еще одно правило, которого нужно придерживаться – производить расчёт количества радиаторов на комнату, кухню и другие помещения по отдельности! Суммируются только площади смежных помещений, между которыми нет двери. Это могут быть кухня-гостиная; прихожая-холл и т. д.

Хорошо утепленные стены и стеклопакеты уменьшают теплопотери на 15-20 %. Поэтому делая расчет радиаторов в таких комнатах, можно округлять количество сенкций в меньшую сторону. В угловых и торцевых комнатах, в помещениях с большими окнами и на верхних этажах многоэтажек рекомендуют устанавливать на несколько секций больше, чем получилось в результате расчета.

КАК РАСЧИТАТЬ КОЛИЧЕСТВО СЕКЦИЙ РАДИАТОРА НА ПОМЕЩЕНИЕ

Чтобы грамотно спроектировать отопление дома, нужно знать точное количество секций радиаторов отопления, которые будут установлены во всех помещениях. Расчетом количества секций радиатора мы сегодня и займемся, для этого нам необходимо знать площадь помещения, в котором будет установлен радиатор, и мощность радиаторов в кВт. Пусть, к примеру, это будет комната 20 квадратных метров, а мощность наших радиаторов 203 Вт (это мощный алюминиевый радиатор Royal Thermo Evolution 500).

Согласно «Строительным нормам и правилам» на 1 квадратный метр помещения нужно 100 ватт мощности радиаторов отопления. Таким образом общую площадь помещения в метрах (длину помещения умноженную на ширину помещения в метрах) умножаем на 100 ватт. И получаем количество ватт, необходимое для Вашей площади помещения. Для нашего примера — 20кв.м. умножаем на 100 ватт, получаем 2000 ватт. Полученное число разделим на мощность одной секции радиатора (как правило 170-210 Вт) и получим необходимое число секций радиатора отопления для данного помещения. Если число получилось дробное — округлите его в большую сторону. Для нашего примера 2000 ватт разделим на 203 ватта, получим 9,85 секций. Значит для нашего примера мы должны взять 10 секций радиатора Royal Thermo Evolution 500.

Также если помещение находится на углу дома или в торце, то данное число секций радиаторов умножают на коэффициент 1,2. Например, вместо 10 секций берут 12 секций на такое помещение. Также на этот коэффициент умножают число секций радиаторов для ванной комнаты.

Если вы не знаете мощность секций радиатора, в таком случае исходите из средних стандартных показателей, согласно которым для обогрева 1,8 кв.м помещения необходима 1 секция радиатора. В таком случае для расчета количества секций просто разделите площадь комнаты на 1,8, полученное число округлите в большую сторону. Для нашего примера 20кв.м. разделим на 1,8 и получим 11 секций — требуемое количество секций для нашего помещения.

Если у Вас все таки остались вопросы по расчету количества секций радиатора отопления для помещения звоните нам по тел. +7 3532 22-88-56 и +7 3532 23-04-03.

Как рассчитать количество секций на комнату, расчет батареи

Как рассчитать количество секций радиатора

При модернизации системы отопления кроме замены труб меняют и радиаторы. Причем сегодня они есть из разных материалов, разных форм и размеров. Что не менее важно, имеют они разную теплоотдачу: количество тепла, которые могут передать воздуху. И это обязательно учитывают, когда делают расчет секций радиаторов.

В помещении будет тепло, если количество тепла, которое уходит, будет компенсироваться. Поэтому в расчетах за основу берут теплопотери помещений (они зависят от климатической зоны, от материала стен, утепления, площади окон и т.д.). Второй параметр — тепловая мощность одной секции. Это то количество тепла, которое она может выдать при максимальных параметрах системы (90°C на входе и 70°C на выходе). Эта характеристика обязательно указывается в паспорте, зачастую присутствует на упаковке.

Делаем расчет количества секций радиаторов отопления своими руками, учитываем особенности помещений и системы отопления

Один важный момент: проводя расчеты самостоятельно, учтите, что большинство производителей указывают максимальную цифру, которую они получили при идеальных условиях. Потому любое округление производите в большую сторону. В случае с низкотемпературным отоплением (температура теплоносителя на входе ниже 85°C) ищут тепловую мощность для соответствующих параметров или делают перерасчет (описан ниже).

Расчет по площади

Это — самая простая методика, позволяющая примерно оценить число секций, необходимое для отопления помещения. На основании многих расчетов выведены нормы по средней мощности отопления одного квадрата площади. Чтобы учесть климатические особенности региона, в СНиПе прописали две нормы:

  • для регионов средней полосы России необходимо от 60 Вт до 100 Вт;
  • для районов, находящихся выше 60°, норма отопления на один квадратный метр 150-200 Вт.

Почему в нормах дан такой большой диапазон? Для того, чтобы можно было учесть материалы стен и степень утепления. Для домов из бетона берут максимальные значения, для кирпичных можно использовать средние. Для утепленных домов — минимальные. Еще одна важная деталь: эти нормы просчитаны для средней высоты потолка — не выше 2,7 метра.

Как рассчитать количество секций радиатора: формула

Зная площадь помещения, умножаете ее норму затрат тепла, наиболее подходящую для ваших условий. Получаете общие теплопотери помещения. В технических данных к выбранной модели радиатора, находите тепловую мощность одной секции. Общие теплопотери делите на мощность, получаете их количество. Несложно, но чтобы было понятнее, приведем пример.

Пример расчета количества секций радиаторов по площади помещения

Угловое помещение 16 м2, в средней полосе, в кирпичном доме. Устанавливать будут батареи с тепловой мощностью 140 Вт.

Для кирпичного дома берем теплопотери в середине диапазона. Так как помещение угловое, лучше взять большее значение. Пусть это будет 95 Вт. Тогда получается, что для обогрева помещения требуется 16 м2 * 95 Вт = 1520 Вт.

Теперь считаем количество радиаторов для отопления этой комнаты: 1520 Вт / 140 Вт = 10,86 шт. Округляем, получается 11 шт. Столько секций радиаторов необходимо будет установить.

Расчет батарей отопления на площадь прост, но далеко не идеален: высота потолков не учитывается совершенно. При нестандартной высоте используют другую методику: по объему.

Считаем батареи по объему

Есть в СНиПе нормы и для обогрева одного кубометра помещений. Они даны для разных типов зданий:

  • для кирпичных на 1 м3 требуется 34 Вт тепла;
  • для панельных — 41 Вт

Этот расчет секций радиаторов похож на предыдущий, только теперь нужна не площадь, а объем и нормы берем другие. Объем умножаем на норму, полученную цифру делим на мощность одной секции радиатора (алюминиевого, биметаллического или чугунного).

Формула расчета количества секций по объему

Пример расчета по объему

Для примера рассчитаем, сколько нужно секций в комнату площадью 16 м2 и высотой потолка 3 метра. Здание построено из кирпича. Радиаторы возьмем той же мощности: 140 Вт:

  • Находим объем. 16 м2 * 3 м = 48 м3
  • Считаем необходимое количество тепла (норма для кирпичных зданий 34 Вт). 48 м3 * 34 Вт = 1632 Вт.
  • Определяем, сколько нужно секций. 1632 Вт / 140 Вт = 11,66 шт. Округляем, получаем 12 шт.

Теперь вы знаете два способа того, как рассчитать количество радиаторов на комнату.

Теплоотдача одной секции

Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.

Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500) . Еще более ощутимые отличия могут быть у разных производителей.

Технические характеристики некоторых биметаллических радиаторов. Обратите внимание, что тепловая мощность одинаковых по высоте секций может иметь ощутимую разницу

Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средние значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):

  • Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
  • Алюминиевый — 190 Вт (0,19 кВт).
  • Чугунные — 120 Вт (0,120 кВт).

Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.

Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше

Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м2:

  • биметаллическая секция обогреет 1,8 м2;
  • алюминиевая — 1,9-2,0 м2;
  • чугунная — 1,4-1,5 м2;

Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м2, для ее отопления примерно понадобится:

Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.

Расчет секций радиаторов в зависимости от реальных условий

Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.

Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C, на выходе +60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.

Формула расчета температурного напора системы отопления

Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.

Таблица коэффициентов для систем отопления с разной дельтой температур

При пересчете действуем в следующем порядке. Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов. Только с учетом индивидуальных параметров в помещении будет тепло.

Расчет батарей отопления на площадь

Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная, правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.

Несмотря на современное разнообразие систем отопления различных типов, лидером по популярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто, батареи стоят под окнами и обеспечивают требуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты, основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее, можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.

Расчет батарей отопления на площадь

Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов.

Кратко о существующих типах радиаторов отопления

Современный ассортимент радиаторов, представленных в продаже, включает следующие их виды:

  • Стальные радиаторы панельной или трубчатой конструкции.
  • Чугунные батареи.
  • Алюминиевые радиаторы нескольких модификаций.
  • Биметаллические радиаторы.
Стальные радиаторы

Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.

Стальные радиаторы отопления имеют немало недостатков

Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь. Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации гарантию.

В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.

Чугунные радиаторы

Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно.

Знакомый всем с детских лет чугунный радиатор МС-140-500

Возможно, такие батареи МС-140—500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.

Современные чугунные батареи отопления

В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.

При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:

  • Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
  • Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
  • Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу. Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.

Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.

Алюминиевые радиаторы

Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.

При выборе алюминиевых радиаторов нужно учитывать некоторые важные нюансы

Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя (емкость – не более 500 мл).

Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.

Недостатки алюминиевых радиаторов:

  • Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
  • Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.

Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.

Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.

Биметаллические радиаторы отопления

Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.

Строение биметаллического радиатора отопления

Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.

Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.

Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.

Цены на популярные радиаторы отопления

Радиаторы отопления

Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.

Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.

Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:

  • ТС – трубчатые стальные;
  • Чг – чугунные;
  • Ал – алюминиевые обычные;
  • АА – алюминиевые анодированные;
  • БМ – биметаллические.
ЧгТСАлААБМ
Давление максимальное (атмосфер)
рабочее6-96-1210-2015-4035
опрессовочное12-15915-3025-7557
разрушения20-2518-2530-5010075
Ограничение по рН (водородному показателю)6,5-96,5-97-86,5-96,5-9
Подверженность коррозии под воздействием:
кислороданетданетнетда
блуждающих токовнетдаданетда
электролитических парнетслабоеданетслабое
Мощность секции при h=500 мм; Dt=70 ° , Вт16085175-200216,3до 200
Гарантия, лет1013-10303-10
Видео: рекомендации по выбору радиаторов отопления

Возможно, вас заинтересует информация о том, что собой представляет батарея биметаллическая

Как рассчитать нужное количество секций радиатора отопления

Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.

Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.

Самые простые способы расчета

Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный метр площади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.

Q = S × 100

Q– требуемая теплоотдача от радиаторов отопления.

S– площадь обогреваемого помещения.

Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет:

N = Q/ Qус

N– рассчитываемое количество секций.

Qус – удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.

Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.

Таблица секции

Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2,7 м) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи, исходя из объема помещения. Для этого применяется усредненный показатель – 41 Вт тепловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.

Q = S × h× 40 (34)

где h – высота потолка над уровнем пола.

Дальнейший расчет – ничем не отличается от представленного выше.

Подробный расчет с учетом особенностей помещения

А теперь перейдем к более серьезным расчетам. Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем, подобные нюансы могут иметь весьма важное значение.

Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:

Q = S × 100 × А × В × С × D× Е × F× G× H× I× J

Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по порядку:

А – количество внешних стен в помещении.

Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А:

  • Одна внешняя стена – А = 1,0
  • Две внешних стены – А = 1,2
  • Три внешний стены – А = 1,3
  • Все четыре стены внешние – А = 1,4

В – ориентация помещения по сторонам света.

Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».

Прогреваемость помещений во многом зависит от их расположения относительно сторон света

Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.

Отсюда – значения коэффициента В:

  • Комната выходит на север или восток – В = 1,1
  • Южная или западная комнаты – В = 1, то есть, может не учитываться.

С – коэффициент, учитывающий степень утепленности стен.

Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:

  • Средний уровень — стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом – С = 1,0
  • Внешние стены не утеплены – С = 1,27
  • Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.

D – особенности климатических условий региона.

Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку» — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.

  • — 35 °С и ниже – D= 1,5
  • — 25 ÷ — 35 °С – D= 1,3
  • до – 20 °С – D= 1,1
  • не ниже – 15 °С – D= 0,9
  • не ниже – 10 °С – D= 0,7

Е – коэффициент высоты потолков помещения.

Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е:

  • До 2,7 м – Е = 1,0
  • 2,8 – 3,0 м – Е = 1,05
  • 3,1 – 3,5 м – Е = 1,1
  • 3,6 – 4,0 м – Е = 1,15
  • Более 4,1 м – Е = 1,2

F– коэффициент, учитывающий тип помещения, расположенного выше

Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:

  • холодный чердак или неотапливаемое помещение – F= 1,0
  • утепленный чердак (в том числе – и утепленная кровля) – F= 0,9
  • отапливаемое помещение – F= 0,8

G– коэффициент учета типа установленных окон.

Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G:

  • обычные деревянные рамы с двойным остеклением – G= 1,27
  • окна оснащены однокамерным стеклопакетом (2 стекла) – G= 1,0
  • однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет (3 стекла) — G= 0,85

Н – коэффициент площади остекления помещения.

Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения. В зависимости от полученного результата находим коэффициент Н:

  • Отношение менее 0,1 – Н = 0,8
  • 0,11 ÷ 0,2 – Н = 0,9
  • 0,21 ÷ 0,3 – Н = 1,0
  • 0,31÷ 0,4 – Н = 1,1
  • 0,41 ÷ 0,5 – Н = 1,2

I– коэффициент, учитывающий схему подключения радиаторов.

От того, как подключены радиаторы к трубам подачи и обратки, зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:

Схемы врезки радиаторов в контур отопления

  • а – диагональное подключение, подача сверху, обратка снизу – I = 1,0
  • б – одностороннее подключение, подача сверху, обратка снизу – I = 1,03
  • в – двустороннее подключение, и подача, и обратка снизу – I = 1,13
  • г – диагональное подключение, подача снизу, обратка сверху – I = 1,25
  • д – одностороннее подключение, подача снизу, обратка сверху – I = 1,28
  • е – одностороннее нижнее подключение обратки и подачи – I = 1,28

J– коэффициент, учитывающий степень открытости установленных радиаторов.

Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J:

На теплоотдачу батарей влияет место и способ их установки в помещении

а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0,9

б – радиатор прикрыт сверху подоконником или полкой – J= 1,0

в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1,07

г – радиатор сверху прикрыт подоконником, а с фронтальной стороны — частично прикрыт декоративным кожухом – J= 1,12

д – радиатор полностью прикрыт декоративным кожухом – J= 1,2

⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰

Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.

После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.

Наверняка, многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.

Калькулятор для точного расчета радиаторов отопления

Автор публикации, и он же – составитель калькулятора, надеется, что посетитель нашего портала получил полноценную информацию и хорошее подспорье для самостоятельного расчета.

Возможно, вас заинтересует информация о том, как выбрать электрокотел.

калькулятор расчета: количество секций радиатора для обогрева помещения

При расчете необходимого количества тепла учитываются площадь отапливаемого помещения из расчета из расчета требуемого потребления 100 ватт на квадратный метр. Кроме того учитывается ряд факторов, влияющих на суммарные теплопотери помещения, каждый из этих факторов вносит свой коэффициент в общий результат расчета.

Такая методика расчета включает практически все нюансы и базируется на формуле довольно точного определения потребности помещения в тепловой энергии. Остается полученный результат разделить на значение теплоотдачи одной секции алюминиевого, стального или биметаллического радиатора и полученный результат округлить в большую сторону.

параметры отаплваемого помещения
Площадь комнаты м2
Высота потолка
Количество наружных
стен комнаты
Коэффициент
теплоизоляции стен
Учет типа помещения,
расположенного этажом выше
Количество окон
Коэффициент, учитывающий остекление оконных проемов
Средняя температура
на улице зимой
результат расчета

необходимое количества тепла: Вт количество секций радиатора, выбранного типа:
тип радиатора

теплоотдача 1 секциирабочее давлениедавление опресовкивместительность 1 секциимасса 1 секции
алюминевые, с межосевым расстоянием 500 мм183 Вт20 Бар30 Бар0,27 л1,45 кг
алюминевые, с межосевым расстоянием 350 мм139 Вт20 Бар30 Бар0,19 л1,2 кг
биметалические, с межосевым расстоянием 500 мм204 Вт20 Бар30 Бар0,2 л1,92 кг
биметалические, с межосевым расстоянием 350 мм136 Вт20 Бар30 Бар0,18 л1,36 кг
чугунные, с межосевым расстоянием 500 мм160 Вт9 Бар15 Бар1,45 л7,12 кг
чугунные, с межосевым расстоянием 300 мм140 Вт9 Бар15 Бар1,1 л5,4 кг

Расчет радиаторов отопления

При планировании капитального ремонта в вашем доме или же квартире, а так же при планировке постройки нового дома необходимо произвести расчет мощности радиаторов отопления. Это позволит вам определить количество радиаторов, способных обеспечить теплом ваш дом в самые лютые морозы. Для проведения расчетов необходимо узнать необходимые параметры, такие как размер помещений и мощность радиатора, заявленной производителем в прилагаемой технической документации. Форма радиатора, материал из которого он выполнен, и уровень теплоотдачи в данных расчетах не учитываются. Зачастую количество радиаторов равно количеству оконных проемов в помещении, поэтому, рассчитываемая мощность разделяется на общее количество оконных проемов, так можно определить величину одного радиатора.

Следует помнить, что не нужно производить расчет для всей квартиры, ведь каждая комната имеет свою отопительную систему и требует к себе индивидуальный подход. Так если у вас угловая комната, то к полученной величине мощности необходимо прибавить еще около двадцати процентов. Такое же количество нужно прибавить, если ваша система отопления работает с перебоями или имеет другие недостатки эффективности.

Расчет мощности радиаторов отопления может осуществляться тремя способами:

Стандартный расчет радиаторов отопления

Согласно строительным нормами и другими правилами необходимо затрачивать 100Вт мощности вашего радиатора на 1метр квадратный жилплощади. В таком случае необходимые расчеты производятся при использовании формулы:

С*100/Р=К, где

К- мощность одной секции вашей радиаторной батареи, согласно заявленной в ее характеристике;

С- площадь помещения. Она равна произведению длины комнаты на ее ширину.

К примеру, комната имеет 4 метра в длину и 3.5 в ширину. В таком случае ее площадь равна:4*3.5=14 метров квадратных.

Мощность, выбранной вами одной секции батареи заявлена производителем в 160 Вт. Получаем:

14*100/160=8.75. полученную цифру необходимо округлить и получается что для такого помещения потребуется 9 секций радиатора отопления. Если же это угловая комната, то 9*1.2=10.8, округляется до 11. А если ваша система теплоснабжения недостаточно эффективна, то еще раз добавляем 20 процентов от первоначального числа: 9*20/100=1.8 округляется до 2.

Итого: 11+2=13. Для угловой комнаты площадью 14 метров квадратных, если система отопления работает с кратковременными перебоями понадобиться приобрести 13 секций батарей.

Примерный расчет — сколько секций батареи на квадратный метр

Он базируется на том, что радиаторы отопления при серийном производстве имеют определенные размеры. Если помещение имеет высоту потолка равную 2.5 метра, то на площадь в 1.8 метров квадратных потребуется лишь одна секция радиатора.

Подсчет количества секций радиатора для комнаты с площадью в 14 метров квадратных равен:

14/1.8=7.8, округляется до 8. Так для помещения с высотой до потолка в 2.5м понадобится восемь секций радиатора. Следует учитывать, что этот способ не подходит, если у отопительного прибора малая мощность (менее 60Вт) ввиду большой погрешности.

Объемный или для нестандартных помещений

Такой расчет применяется для помещений с высокими или очень низкими потолками. Здесь расчет ведется из данных о том, что для обогрева одного метра кубического помещения необходима мощность в 41ВТ. Для этого применяется формула:

К=О*41, где:

К- необходимое количество секций радиатора,

О-объем помещения, он равен произведению высоты на ширину и на длину комнаты.

Если комната имеет высоту-3.0м; длину – 4.0м и ширину – 3.5м, то объем помещения равен:

3.0*4.0*3.5=42 метра кубических.

Расчитывается общая потребность в тепловой энергии данной комнаты:

42*41=1722Вт, учитывая, сто мощность одной секции составляет 160Вт,можно расчитать необходимое их количество путем деления общей потребности в мощности на мощность одной секции: 1722/160=10.8, округляется до 11 секций.

Если выбраны радиаторы, которые не делятся на секции, от общее число нужно поделить на мощность одного радиатора.

Округлять полученные данные лучше в большую сторону, так как производители иногда завышают заявленную мощность.

Расчёт количества секций радиатора отопления: рекомендации по подготовке данных для расчета, формулы и калькулятор

На этапе подготовки к капитальным ремонтным работам и в процессе планирования возведения нового дома возникает необходимость расчета количества секций радиатора отопления. Результаты подобных вычислений позволяют узнать количество батарей, которого было бы достаточно для обеспечения квартиры либо дома достаточным теплом даже в наиболее холодную погоду.

Расчёт количества секций радиатора отопления

Порядок расчета может меняться в зависимости от множества факторов. Ознакомьтесь с инструкциями по быстрому расчету для типичных ситуаций, вычислению для нестандартных комнат, а также с порядком выполнения максимально подробных и точных расчетов с учетом всевозможных значимых характеристик помещения.

Расчёт количества секций радиатора отопления

Рекомендации по расчету до начала работы

Чтобы самостоятельно рассчитать нужное количество секций отопительной батареи, вы обязательно должны узнать следующие параметры:

Показатели теплоотдачи, форма батареи и материал ее изготовления – эти показатели в расчетах не учитываем.

Важно! Не выполняйте расчет сразу для всего дома либо квартиры. Потратьте немного больше времени и проведите вычисления для каждой комнаты отдельно. Только так можно получить максимально достоверные сведения. При этом в процессе расчета количества секций батареи для обогрева угловой комнаты к итоговому результату нужно добавить 20%. Такой же запас нужно накинуть сверху, если в работе обогрева появляются перебои либо же его эффективности недостаточно для качественного прогрева.

Расчет радиаторов отопления

Начнем обучение с рассмотрения наиболее часто использующегося метода расчета. Его вряд ли можно считать самым точным, зато по простоте выполнения он определенно вырывается вперед.

Стандартный расчет радиаторов отопления

В соответствии с этим «универсальным» методом для обогрева 1 м2 площади помещения нужно 100 Вт мощности батареи. В данном случае вычисления ограничиваются одной простой формулой:

K=S/U*100

В этой формуле:

Для примера рассмотрим порядок расчета необходимого числа секций батареи для комнаты габаритами 4х3,5 м. Площадь такого помещения составляет 14 м2. Производитель заявляет, что каждая секция выпущенной им батареи выдает 160 Вт мощности.

Подставляем значения в приведенную выше формулу и получаем, что для обогрева нашей комнаты нужно 8,75 секций радиатора. Округляем, конечно же, в большую сторону, т.е. к 9. Если комната угловая, добавляем 20%-й запас, снова округляем, и получаем 11 секций. Если в работе отопительной системы наблюдаются проблемы, добавляем еще 20% к первоначально рассчитанному значению. Получится около 2. То есть в сумме для обогрева 14-метровой угловой комнаты в условиях нестабильной работы отопительной системы понадобится 13 секций батареи.

Расчет алюминиевых радиаторов отопления

Приблизительный расчет для стандартных помещений

Очень простой вариант расчета. Основывается он на том, что размер отопительных батарей серийного производства практически не отличается. Если высота комнаты составляет 250 см (стандартное значение для большинства жилых помещений), то одна секция радиатора сможет обогреть 1,8 м2 пространства.

Площадь комнаты составляет 14 м2. Для расчета достаточно разделить значение площади на упоминавшиеся ранее 1,8 м2. В результате получается 7,8. Округляем до 8.

Таким образом, чтобы прогреть 14-метровую комнату с 2,5-метровым потолком нужно купить батарею на 8 секций.

Важно! Не используйте этот метод при расчете маломощного агрегата (до 60 Вт). Погрешность будет слишком большой.

Подбор радиаторов отопления по тепловой мощности

Расчет для нестандартных комнат

Этот вариант расчета подходит для нестандартных комнат со слишком низкими либо же чересчур высокими потолками. В основу расчета положено утверждение, в соответствии с которым для прогрева 1 м3 жилого пространства нужно порядка 41 Вт мощности батареи. То есть вычисления выполняются по единственной формуле, имеющей такой вид:

A=Bx41,

где:

  • А – нужное число секций отопительной батареи;
  • B – объем комнаты. Рассчитывается как произведение длины помещения на его ширину и на высоту.

Для примера рассмотрим комнату длиной 4 м, шириной 3,5 м и высотой 3 м. Ее объем составит 42 м3.

Общую потребность этого помещения в тепловой энергии рассчитаем, умножив его объем на упоминавшиеся ранее 41 Вт. Результат – 1722 Вт. Для примера возьмем батарею, каждая секция которой выдает 160 Вт тепловой мощности. Нужное количество секций рассчитаем, разделив суммарную потребность в тепловой мощности на значение мощности каждой секции. Получится 10,8. Как обычно, округляем до ближайшего большего целого числа, т.е. до 11.

Важно! Если вы купили батареи, не разделенные на секции, разделите общую потребность в тепле на мощность целой батареи (указывается в сопутствующей технической документации). Так вы узнаете нужное количество отопительных радиаторов.

Расчетные данные рекомендуется округлять в сторону увеличения по той причине, что компании-производители нередко указывают в технической документации мощность, несколько превышающую реальное значение.

Расчет необходимого количества радиаторов для отопления

Расчет секций радиаторов отопления

Расчет секций радиаторов отопления по мощности

Мы предлагаем простой способ расчета, не требующий специального оборудования и потому доступный каждому. Главным показателем в нем является мощность, необходимая на 1 кв. м площади. Стандартный показатель мощности зависит от климатических условий региона. Москва находится в средней полосе России, для которой характерен умеренный климат. Исходя из этого, показатель необходимой мощности для Москвы равняется примерно 100 Вт на 1 кв. м. В районах, лежащих ближе к Северу, этот показатель доходит до 150-200 Вт на 1 кв. м. Этот показатель стоит учитывать при покупке отопительного котла.

Итак, чтобы произвести расчет секций радиаторов отопления, нужно выяснить мощность, которая потребуется от отопительной системы. Одна секция стандартного чугунного радиатора имеет теплоотдачу, приблизительно равную 120-150 Вт. Это значит, что для отопления помещения площадью 20 кв. м хватит двух чугунных радиаторов, каждый из которых будет состоять из восьми секций. Расчет для биметаллических и аллюминевых радиаторов производится точно так же. Их мощность немного больше мощности чугунного радиатора, и равна приблизительно 100-200 Вт. Точные показатели теплоотдачи указываются в технической характеристике каждого конкретного типа радиаторов. Помимо теплоотдачи самого радиатора, важна температура теплоносителя. Совокупность этих двух показателей влияет на итоговую температуру батарей отопления.

Минусы этого метода расчета секций радиаторов отопления

В числе минусов подобного способа расчета можно назвать невозможность учесть дополнительные факторы. Например, помещения с большим количеством окон, а также угловые помещения всегда холоднее остальных комнат. Качество самих окон также сильно влияет на температуру в помещении. Лучше всего тепло удерживается двухкамерными пластиковыми окнами с 5-7-камерными профилями и инфракрасным напылением. В любом случае, наличие двух и более окон означает, что помещение будет терять тепло быстрее.

Выше уже упоминалось о таком показателе, как температура теплоносителя. Возможно, фактическая температура теплоносителя в радиаторах будет значительно ниже той, которая предполагалась. Чтобы этого не произошло, производя расчет секций радиаторов отопления следует дополнительно прибавлять к показателям по 10-30 % на тепловые потери. Вы точно не ошибетесь в расчетах, если не будете гнаться за точностью, а сделаете расчет, исходя из здравого смысла, с хорошим запасом мощности.

Хорошо отапливаемая в зимнее время квартира или собственный дом – необходимое условие для комфортной жизни. Много раз подумайте, прежде чем решите сэкономить, иначе рискуете проводить все зимы, не снимая шерстяных носков и свитера. Лучше не рисковать собственным здоровьем и установить больше радиаторов отопления (батарей). Жар костей не ломит, как гласит народная мудрость, но если зимой в помещении будет все-таки слишком жарко, то можно закрывать батареи защитными экранами, и тогда они будут давать меньше тепла. Конечно, идеальным решением будет полностью автономная отопительная система с возможностью регулирования температуры.

©Obotoplenii.ru

Другие статьи раздела: Радиаторы

  • Панельные радиаторы отопления: описание, расчет, установка
  • Устройство радиаторов встраиваемых в пол
  • Биметаллические радиаторы отопления
  • Чугунный радиатор отопления: характеристики, достоинства и недостатки
  • Пластинчатые радиаторы: варианты радиаторов «гармошка»
  • Можно спрятать радиаторы в пол
  • Типы радиаторов отопления: какие типы радиаторов отопления существуют

Как рассчитать тепловую нагрузку

Важным аспектом при правильном планировании системы центрального кондиционирования является включение расчета BTU, чтобы гарантировать, что ваша система HVAC может адекватно обогревать и охлаждать ваш дом или офис. Прежде чем объяснять , как рассчитать тепловую нагрузку , мы должны ответить на важный вопрос:

Что такое тепловая нагрузка?

Очевидно, что климат снаружи влияет на температуру в помещении. В экстремальных климатических условиях системы HVAC должны усердно работать, чтобы поддерживать комфортную среду.«Тепловая нагрузка» описывает количество охлаждения или нагрева, необходимое для достижения желаемой температуры в доме.

Оценка вашего расчета тепловой нагрузки

Для точного измерения мы рекомендуем обратиться к специалисту по HVAC , потому что существует множество факторов, которые могут иметь значение. Эти факторы включают изоляцию, строительные материалы, количество окон, размер и расположение окон, бытовую технику, электронику (компьютеры, принтеры и т. Д.).все откладывают тепло), сколько людей обычно занимают дома и многое другое. Тепловая нагрузка измеряется в БТЕ (британских тепловых единицах). Одна БТЕ составляет приблизительно 1055 джоулей и определяется количеством энергии, необходимой для нагрева или охлаждения одного фунта воды на один градус. Вот простая в использовании формула . Он не предназначен для того, чтобы быть эталоном истины, но он определенно даст вам представление о том, в каком направлении следует двигаться при планировании вашей системы HVAC:

Формула для расчета тепловой нагрузки

  1. Возьмите квадратный метр вашего дома
  2. Умножьте это на среднюю высоту потолка в вашем доме
  3. Умножается на разницу желаемой температуры и наружной температуры
  4. Умножьте множитель, который означает, что целевое здание представляет собой герметичное сооружение (.135)

Чтобы проиллюстрировать эту точку зрения, вот пример расчета : если вы сталкиваетесь с 30-градусной температурой в вашем регионе и хотите, чтобы она составляла 70 градусов в доме площадью 3000 квадратных футов с 8-футовыми потолками, ваш расчет будет выглядеть так: 3000 x 8 x 40 x 0,135 = 129 600 БТЕ. Имейте в виду, что это очень консервативная оценка , что означает, что вам, вероятно, не понадобится система отопления, вентиляции и кондиционирования, производящая 129 000 БТЕ. Когда вы рассчитываете тепловую нагрузку, вместо того, чтобы обращаться к профессионалу, вы получите менее точную цифру.Для справки: профессиональные расчеты, как правило, находятся в диапазоне 65-80% от того, что рассчитывается по приведенной выше формуле. Пример: профессионал, скорее всего, сочтет, что для этого дома требуется от 80 000 до 100 000 БТЕ. Как говорится, лучше проявить осторожность. Как уже упоминалось, для правильного планирования мы настоятельно рекомендуем вам профессионально измерить тепловую нагрузку.

Купить запчасти и аксессуары для систем отопления, вентиляции и кондиционирования воздуха в Интернете

Помните, что если вам нужно заменить какой-либо компонент вашей системы, PlumbersStock предлагает отличные цены на огромный выбор частей HVAC .Если у вас возникли проблемы с поиском того, что вам нужно, свяжитесь с нами. Не забудьте обновить HVAC tools . Если вы все еще не совсем понимаете, как рассчитать тепловую нагрузку, свяжитесь с нами. Отапливаете ли вы свой дом с помощью котла , печи или просто обогревателя , мы поможем вам.

Ресурсы по теме:
Какой размер системы HVAC необходим?
Какой размер котла купить?

Учебник по физике

На предыдущей странице мы узнали, что делает тепло с объектом, когда оно накапливается или выделяется.Прирост или потеря тепла приводят к изменениям температуры, изменению состояния или выполнения работы. Тепло — это передача энергии. Когда объект приобретается или теряется, внутри этого объекта будут происходить соответствующие изменения энергии. Изменение температуры связано с изменением средней кинетической энергии частиц внутри объекта. Изменение состояния связано с изменением внутренней потенциальной энергии, которой обладает объект. А когда работа сделана, происходит полная передача энергии объекту, над которым она выполняется.В этой части Урока 2 мы исследуем вопрос Как измерить количество тепла, полученного или выделенного объектом?

Удельная теплоемкость

Предположим, что несколько объектов, состоящих из разных материалов, нагреваются одинаково. Будут ли предметы нагреваться одинаково? Ответ: скорее всего, нет. Разные материалы будут нагреваться с разной скоростью, потому что каждый материал имеет свою удельную теплоемкость.Удельная теплоемкость относится к количеству тепла, необходимому для изменения температуры единицы массы (скажем, грамма или килограмма) на 1 ° C. В учебниках часто указывается удельная теплоемкость различных материалов. Стандартные метрические единицы — Джоуль / килограмм / Кельвин (Дж / кг / К). Чаще используются единицы измерения — Дж / г / ° C. Используйте виджет ниже, чтобы просмотреть удельную теплоемкость различных материалов. Просто введите название вещества (алюминий, железо, медь, вода, метанол, дерево и т. Д.).) и нажмите кнопку «Отправить»; результаты будут отображены в отдельном окне.


Удельная теплоемкость твердого алюминия (0,904 Дж / г / ° C) отличается от удельной теплоемкости твердого железа (0,449 Дж / г / ° C). Это означает, что для повышения температуры данной массы алюминия на 1 ° C потребуется больше тепла, чем для повышения температуры той же массы железа на 1 ° C.Фактически, для повышения температуры образца алюминия на заданное количество потребуется примерно вдвое больше тепла по сравнению с тем же изменением температуры того же количества железа. Это связано с тем, что удельная теплоемкость алюминия почти вдвое больше, чем у железа.

Теплоемкость указана из расчета на грамм или на килограмм . Иногда значение указывается на основе на моль , и в этом случае оно называется молярной теплоемкостью. Тот факт, что они указаны из расчета на количество , указывает на то, что количество тепла, необходимое для повышения температуры вещества, зависит от того, сколько вещества имеется.Эту истину, несомненно, знает всякий, кто варил на плите кастрюлю с водой. Вода закипает при температуре 100 ° C на уровне моря и при слегка пониженной температуре на возвышенностях. Чтобы довести кастрюлю с водой до кипения, ее сначала нужно поднять до 100 ° C. Это изменение температуры достигается за счет поглощения тепла горелкой печи. Быстро замечаешь, что для того, чтобы довести до кипения полную кастрюлю с водой, требуется значительно больше времени, чем для того, чтобы довести до кипения наполовину полную. Это связано с тем, что полная кастрюля с водой должна поглощать больше тепла, чтобы вызвать такое же изменение температуры.Фактически, требуется вдвое больше тепла, чтобы вызвать такое же изменение температуры в двойной массе воды.

Удельная теплоемкость также указана на основе на K или на ° C . Тот факт, что удельная теплоемкость указана из расчета на градус , указывает на то, что количество тепла, необходимое для повышения данной массы вещества до определенной температуры, зависит от изменения температуры, необходимого для достижения этой конечной температуры.Другими словами, важна не конечная температура, а общее изменение температуры. Для изменения температуры воды с 20 ° C до 100 ° C (изменение на 80 ° C) требуется больше тепла, чем для повышения температуры того же количества воды с 60 ° C до 100 ° C (изменение на 40 ° C). ° С). Фактически, для изменения температуры данной массы воды на 80 ° C требуется вдвое больше тепла по сравнению с изменением на 40 ° C. Человек, который хочет быстрее довести воду до кипения на плите, должен начать с теплой водопроводной воды вместо холодной.

Это обсуждение удельной теплоемкости заслуживает одного заключительного комментария. Термин «удельная теплоемкость» в некотором роде неверно обозначается и . Этот термин подразумевает, что вещества могут обладать способностью удерживать вещь , называемую теплотой. Как уже говорилось ранее, тепло — это не то, что содержится в объекте. Тепло — это то, что передается к объекту или от него. Объекты содержат энергию в самых разных формах. Когда эта энергия передается другим объектам с разной температурой, мы называем переданную энергию теплом или тепловой энергией .Хотя это вряд ли приживется, более подходящим термином будет удельная энергоемкость.


Связь количества тепла с изменением температуры

Удельная теплоемкость позволяет математически связать количество тепловой энергии, полученной (или потерянной) образцом любого вещества с массой образца и ее результирующим изменением температуры. Связь между этими четырьмя величинами часто выражается следующим уравнением.

Q = m • C • ΔT

где Q — количество тепла, переданного объекту или от него, m — масса объекта, C — удельная теплоемкость материала, из которого состоит объект, а ΔT — результирующее изменение температуры объекта. Как и во всех других ситуациях в науке, значение дельта (∆) для любой величины вычисляется путем вычитания начального значения количества из окончательного значения количества. В этом случае ΔT равно T final — T initial .При использовании приведенного выше уравнения значение Q может быть положительным или отрицательным. Как всегда, положительный и отрицательный результат расчета имеет физическое значение. Положительное значение Q указывает, что объект получил тепловую энергию из окружающей среды; это соответствовало бы повышению температуры и положительному значению ΔT. Отрицательное значение Q указывает, что объект выделяет тепловую энергию в окружающую среду; это соответствовало бы снижению температуры и отрицательному значению ΔT.

Знание любых трех из этих четырех величин позволяет человеку вычислить четвертое количество. Общая задача на многих уроках физики включает решение проблем, связанных с отношениями между этими четырьмя величинами. В качестве примеров рассмотрим две проблемы ниже. Решение каждой проблемы разработано для вас. Дополнительную практику можно найти в разделе «Проверьте свое понимание» внизу страницы.

Пример проблемы 1
Какое количество тепла требуется для повышения температуры 450 граммов воды с 15 ° C до 85 ° C? Удельная теплоемкость воды 4.18 Дж / г / ° C.

Как и любая проблема в физике, решение начинается с определения известных величин и соотнесения их с символами, используемыми в соответствующем уравнении. В этой задаче мы знаем следующее:

м = 450 г
C = 4,18 Дж / г / ° C
Т начальная = 15 ° С
T окончательная = 85 ° C

Мы хотим определить значение Q — количество тепла.Для этого мы использовали бы уравнение Q = m • C • ΔT. Буквы m и C известны; ΔT можно определить по начальной и конечной температуре.

T = T окончательный — T начальный = 85 ° C — 15 ° C = 70 ° C

Зная три из четырех величин соответствующего уравнения, мы можем подставить и решить для Q.

Q = m • C • ΔT = (450 г) • (4,18 Дж / г / ° C) • (70 ° C)
Q = 131670 Дж
Q = 1.3×10 5 J = 130 кДж (округлено до двух значащих цифр)

Пример задачи 2
Образец 12,9 грамма неизвестного металла при температуре 26,5 ° C помещают в чашку из пенополистирола, содержащую 50,0 граммов воды при температуре 88,6 ° C. Вода охлаждается, и металл нагревается, пока не будет достигнуто тепловое равновесие при 87,1 ° C. Предполагая, что все тепло, теряемое водой, передается металлу, а чашка идеально изолирована, определите удельную теплоемкость неизвестного металла.Удельная теплоемкость воды составляет 4,18 Дж / г / ° C.


По сравнению с предыдущей проблемой это гораздо более сложная проблема. По сути, эта проблема похожа на две проблемы в одной. В основе стратегии решения проблем лежит признание того, что количество тепла, потерянного водой (Q вода ), равно количеству тепла, полученного металлом (Q металл ). Поскольку значения m, C и ΔT воды известны, можно вычислить Q water .Это значение Q воды равно значению металла Q . Как только значение металла Q известно, его можно использовать со значением m и ΔT металла для расчета металла Q . Использование этой стратегии приводит к следующему решению:

Часть 1: Определение потерь тепла водой

Дано:

м = 50,0 г
C = 4,18 Дж / г / ° C
Т начальная = 88,6 ° С
Т финал = 87.1 ° С
ΔT = -1,5 ° C (T конечный — T начальный )

Решение для воды Q :

Q вода = m • C • ΔT = (50,0 г) • (4,18 Дж / г / ° C) • (-1,5 ° C)
Q вода = -313,5 Дж (без заземления)
(Знак — означает, что вода теряет тепло)

Часть 2: Определите стоимость металла C

Дано:

Q металл = 313.5 Дж (используйте знак +, так как металл нагревается)
m = 12,9 г
Т начальная = 26,5 ° С
T окончательная = 87,1 ° C
ΔT = (T конечный — T начальный )

Решить для металла C :

Переставьте Q металл = m металл • C металл • ΔT металл , чтобы получить C металл = Q металл / (м металл • ΔT металл )

C металл = Q металл / (м металл • ΔT металл ) = (313.5 Дж) / [(12,9 г) • (60,6 ° C)]
C металл = 0,40103 Дж / г / ° C
C металл = 0,40 Дж / г / ° C (округлено до двух значащих цифр)


Тепло и изменения состояния

Приведенное выше обсуждение и соответствующее уравнение (Q = m • C • ∆T) связывает тепло, получаемое или теряемое объектом, с результирующими изменениями температуры этого объекта. Как мы узнали, иногда тепло накапливается или теряется, но температура не меняется.Это тот случай, когда вещество претерпевает изменение состояния. Итак, теперь мы должны исследовать математику, связанную с изменениями состояния и количества тепла.

Чтобы начать обсуждение, давайте рассмотрим различные изменения состояния, которые можно наблюдать для образца вещества. В таблице ниже перечислены несколько изменений состояния и указаны имена, обычно связанные с каждым процессом.

Процесс

Изменение состояния

Плавка

От твердого до жидкого

Заморозка

От жидкости к твердому веществу

Испарение

От жидкости к газу

Конденсация

Газ — жидкость

Сублимация

Твердое тело в газ

Депонирование

Газ — твердое вещество


В случае плавления, кипения и сублимации к образцу вещества должна быть добавлена ​​энергия, чтобы вызвать изменение состояния.Такие изменения состояния называют эндотермическими. Замораживание, конденсация и осаждение экзотермичны; энергия высвобождается образцом материи, когда происходят эти изменения состояния. Таким образом, можно заметить, что образец льда (твердая вода) тает, когда его помещают на горелку или рядом с ней. Тепло передается от горелки к образцу льда; энергия приобретается льдом, вызывая изменение состояния. Но сколько энергии потребуется, чтобы вызвать такое изменение состояния? Есть ли математическая формула, которая могла бы помочь в определении ответа на этот вопрос? Безусловно, есть.

Количество энергии, необходимое для изменения состояния образца материи, зависит от трех вещей. Это зависит от того, что такое субстанция, от того, сколько субстанции претерпевает изменение состояния, и от того, какое изменение состояния происходит. Например, для плавления льда (твердая вода) требуется другое количество энергии, чем для плавления железа. И для таяния льда (твердая вода) требуется другое количество энергии, чем для испарения того же количества жидкой воды. И, наконец, для плавления 10 требуется другое количество энергии.0 граммов льда по сравнению с таянием 100,0 граммов льда. Вещество, процесс и количество вещества — это три переменные, которые влияют на количество энергии, необходимое для того, чтобы вызвать конкретное изменение состояния. Используйте виджет ниже, чтобы исследовать влияние вещества и процесса на изменение энергии. (Обратите внимание, что теплота плавления — это изменение энергии, связанное с изменением состояния твердое-жидкое.)


Значения удельной теплоты плавления и удельной теплоты парообразования указаны из расчета на количество .Например, удельная теплота плавления воды составляет 333 Дж / грамм. Чтобы растопить 1,0 грамм льда, требуется 333 Дж энергии. Чтобы растопить 10 граммов льда, требуется в 10 раз больше энергии — 3330 Дж. Такое рассуждение приводит к следующим формулам, связывающим количество тепла с массой вещества и теплотой плавления и испарения.

Для плавления и замораживания: Q = m • ΔH плавление
Для испарения и конденсации: Q = m • ΔH испарение

, где Q представляет количество энергии, полученной или высвобожденной во время процесса, m представляет собой массу образца, ΔH плавления представляет собой удельную теплоту плавления (на грамм) и ΔH испарения представляет собой удельную теплоемкость плавления испарение (из расчета на грамм).Подобно обсуждению Q = m • C • ΔT, значения Q могут быть как положительными, так и отрицательными. Значения Q положительны для процесса плавления и испарения; это согласуется с тем фактом, что образец вещества должен набирать энергию, чтобы плавиться или испаряться. Значения Q отрицательны для процесса замораживания и конденсации; это согласуется с тем фактом, что образец вещества должен терять энергию, чтобы замерзнуть или конденсироваться.

В качестве иллюстрации того, как можно использовать эти уравнения, рассмотрим следующие два примера задач.

Пример задачи 3
Элиза кладет в свой напиток 48,2 грамма льда. Какое количество энергии будет поглощено льдом (и высвобождено напитком) в процессе таяния? Теплота плавления воды 333 Дж / г.

Уравнение, связывающее массу (48,2 грамма), теплоту плавления (333 Дж / г) и количество энергии (Q): Q = m • ΔH fusion .Подстановка известных значений в уравнение приводит к ответу.

Q = м • ΔH плавление = (48,2 г) • (333 Дж / г)
Q = 16050,6 Дж
Q = 1,61 x 10 4 Дж = 16,1 кДж (округлено до трех значащих цифр)

Пример Задачи 3 включает в себя довольно простое вычисление типа «подключай и исправляй». Теперь мы попробуем пример задачи 4, который потребует более глубокого анализа.

Пример задачи 4
Какое минимальное количество жидкой воды на 26.5 градусов, которые потребуются, чтобы полностью растопить 50,0 граммов льда? Удельная теплоемкость жидкой воды составляет 4,18 Дж / г / ° C, а удельная теплота плавления льда — 333 Дж / г.

В этой задаче лед тает, а жидкая вода остывает. Энергия передается от жидкости к твердому телу. Чтобы растопить твердый лед, на каждый грамм льда необходимо передать 333 Дж энергии. Эта передача энергии от жидкой воды ко льду охлаждает жидкость.Но жидкость может охладиться только до 0 ° C — точки замерзания воды. При этой температуре жидкость начнет затвердевать (замерзнуть), а лед полностью не растает.

Мы знаем следующее о льду и жидкой воде:

Информация о льду:

м = 50,0 г
ΔH плавление = 333 Дж / г

Информация о жидкой воде:

С = 4.18 Дж / г / ° C
Т начальная = 26,5 ° С
T окончательная = 0,0 ° C
ΔT = -26,5 ° C (T конечный — T начальный )

Энергия, полученная льдом, равна энергии, потерянной из воды.

Q лед = -Q жидкая вода

Знак — указывает, что один объект получает энергию, а другой объект теряет энергию. Мы можем вычислить левую часть приведенного выше уравнения следующим образом:

Q лед = m • ΔH плавление = (50.0 г) • (333 Дж / г)
Q лед = 16650 Дж

Теперь мы можем установить правую часть уравнения равной m • C • ΔT и начать подставлять известные значения C и ΔT, чтобы найти массу жидкой воды. Решение:

16650 Дж = -Q жидкая вода
16650 Дж = -м жидкая вода • C жидкая вода • ΔT жидкая вода
16650 Дж = -м жидкая вода • (4.18 Дж / г / ° C) • (-26,5 ° C)
16650 Дж = -м жидкая вода • (-110,77 Дж / ° C)
м жидкая вода = — (16650 Дж) / (- 110,77 Дж / ° C)
м жидкая вода = 150,311 г
м жидкая вода = 1,50×10 2 г (округлено до трех значащих цифр)


Еще раз о кривых нагрева и охлаждения

На предыдущей странице Урока 2 обсуждалась кривая нагрева воды.Кривая нагрева показывала, как температура воды увеличивалась с течением времени по мере нагрева образца воды в твердом состоянии (т. Е. Льда). Мы узнали, что добавление тепла к образцу воды может вызвать либо изменение температуры, либо изменение состояния. При температуре плавления воды добавление тепла вызывает преобразование воды из твердого состояния в жидкое состояние. А при температуре кипения воды добавление тепла вызывает преобразование воды из жидкого состояния в газообразное.Эти изменения состояния произошли без каких-либо изменений температуры. Однако добавление тепла к образцу воды, не имеющей температуры фазового перехода, приведет к изменению температуры.

Теперь мы можем подойти к теме кривых нагрева на более количественной основе. На диаграмме ниже представлена ​​кривая нагрева воды. На нанесенных линиях есть пять помеченных участков.


Три диагональных участка представляют собой изменения температуры образца воды в твердом состоянии (участок 1), жидком состоянии (участок 3) и газообразном состоянии (участок 5).Две горизонтальные секции представляют изменения в состоянии воды. На участке 2 проба воды тает; твердое вещество превращается в жидкость. В секции 4 образец воды подвергается кипению; жидкость превращается в газ. Количество тепла, передаваемого воде в секциях 1, 3 и 5, связано с массой образца и изменением температуры по формуле Q = m • C • ΔT. А количество тепла, переданного воде в секциях 2 и 4, связано с массой образца и теплотой плавления и испарения формулами Q = m • ΔH fusion (секция 2) и Q = m • ΔH испарение (раздел 4).Итак, теперь мы попытаемся вычислить количество тепла, необходимое для перевода 50,0 граммов воды из твердого состояния при -20,0 ° C в газообразное состояние при 120,0 ° C. Для расчета потребуется пять шагов — по одному шагу для каждого раздела приведенного выше графика. Хотя удельная теплоемкость вещества зависит от температуры, в наших расчетах мы будем использовать следующие значения удельной теплоемкости:

Твердая вода: C = 2,00 Дж / г / ° C
Жидкая вода: C = 4,18 Дж / г / ° C
Газообразная вода: C = 2.01 Дж / г / ° C

Наконец, мы будем использовать ранее сообщенные значения ΔH слияния (333 Дж / г) и ΔH испарения (2,23 кДж / г).

Раздел 1 : Изменение температуры твердой воды (льда) с -20,0 ° C до 0,0 ° C.

Используйте Q 1 = m • C • ΔT

, где m = 50,0 г, C = 2,00 Дж / г / ° C, T начальная = -200 ° C и T конечная = 0,0 ° C

Q 1 = m • C • ΔT = (50.0 г) • (2,00 Дж / г / ° C) • (0,0 ° C — -20,0 ° C)
Q 1 = 2,00 x10 3 Дж = 2,00 кДж

Раздел 2 : Таяние льда при 0,0 ° C.

Используйте Q 2 = m • ΔH сварка

, где m = 50,0 г и ΔH плавление = 333 Дж / г

Q 2 = m • ΔH плавление = (50,0 г) • (333 Дж / г)
Q 2 = 1,665 x10 4 Дж = 16.65 кДж
Q 2 = 16,7 кДж (округлено до 3 значащих цифр)

Раздел 3 : Изменение температуры жидкой воды с 0,0 ° C на 100,0 ° C.

Используйте Q 3 = m • C • ΔT

, где m = 50,0 г, C = 4,18 Дж / г / ° C, T начальный = 0,0 ° C и T конечный = 100,0 ° C

Q 3 = m • C • ΔT = (50,0 г) • (4,18 Дж / г / ° C) • (100,0 ° C — 0,0 ° C)
Q 3 = 2.09 x10 4 Дж = 20,9 кДж

Раздел 4 : Кипячение воды при 100,0 ° C.

Используйте Q 4 = m • ΔH испарение

, где m = 50,0 г и ΔH испарение = 2,23 кДж / г

Q 4 = m • ΔH испарение = (50,0 г) • (2,23 кДж / г)
Q 4 = 111,5 кДж
Q 4 = 112 кДж (округлено до 3 значащих цифр)

Раздел 5 : Изменение температуры жидкой воды со 100.От 0 ° C до 120,0 ° C.

Используйте Q 5 = m • C • ΔT

, где m = 50,0 г, C = 2,01 Дж / г / ° C, T начальная = 100,0 ° C и T конечная = 120,0 ° C

Q 5 = m • C • ΔT = (50,0 г) • (2,01 Дж / г / ° C) • (120,0 ° C — 100,0 ° C)
Q 5 = 2,01 x10 3 J = 2,01 кДж

Общее количество тепла, необходимое для превращения твердой воды (льда) при -20 ° C в газообразную воду при 120 ° C, является суммой значений Q для каждого участка графика.То есть

Q итого = Q 1 + Q 2 + Q 3 + Q 4 + Q 5

Суммирование этих пяти значений Q и округление до нужного числа значащих цифр приводит к значению 154 кДж в качестве ответа на исходный вопрос.


В приведенном выше примере есть несколько особенностей решения, над которыми стоит задуматься:

  • Первое: длинная задача была разделена на части, каждая из которых представляет собой одну из пяти частей графика.Поскольку было вычислено пять значений Q, они были обозначены как Q 1 , Q 2 и т. Д. Этот уровень организации требуется в многоступенчатой ​​задаче, такой как эта.
  • Секунда: внимание было уделено знаку +/- на ΔT. Изменение температуры (или любой величины) всегда рассчитывается как конечное значение величины за вычетом начального значения этой величины.
  • Третий: На протяжении всей проблемы внимание уделялось подразделениям.Единицы Q будут либо в Джоулях, либо в килоджоулях, в зависимости от того, какие количества умножаются. Отсутствие внимания к устройствам — частая причина сбоев в подобных проблемах.
  • Четвертый: На протяжении всей задачи внимание уделялось значащим цифрам. Хотя это никогда не должно становиться основным акцентом какой-либо проблемы в физике, это, безусловно, деталь, на которую стоит обратить внимание.

Здесь, на этой странице, мы узнали, как рассчитать количество тепла, задействованного в любом процессе нагрева / охлаждения и в любом процессе изменения состояния.Это понимание будет иметь решающее значение, когда мы перейдем к следующей странице Урока 2, посвященной калориметрии. Калориметрия — это наука, связанная с определением изменений энергии системы путем измерения теплообмена с окружающей средой.

Проверьте свое понимание

1. Вода имеет необычно высокую удельную теплоемкость. Какое из следующих утверждений логически следует из этого факта?

а.По сравнению с другими веществами горячая вода вызывает сильные ожоги, потому что она хорошо проводит тепло.
б. По сравнению с другими веществами вода при нагревании быстро нагревается до высоких температур.
c. По сравнению с другими веществами, образец воды требует значительного количества тепла, чтобы изменить ее температуру на небольшое количество.

2. Объясните, почему в больших водоемах, таких как озеро Мичиган, в начале июля может быть довольно прохладно, несмотря на то, что температура наружного воздуха около или выше 90 ° F (32 ° C).

3. В таблице ниже описан термический процесс для различных объектов (выделен красным жирным шрифтом). Для каждого описания укажите, набирается или теряется тепло объектом, является ли процесс эндотермическим или экзотермическим, и является ли Q для указанного объекта положительным или отрицательным значением.

Процесс

Получено или потеряно тепло?

Эндо- или экзотермический?

Q: + или -?

а.

Кубик льда помещают в стакан с лимонадом комнатной температуры, чтобы охладить напиток.

г.

Стакан холодного лимонада стоит на столе для пикника под жарким полуденным солнцем и нагревается до 32 ° F.

г.

Конфорки на электроплите выключаются и постепенно остывают до комнатной температуры.

г.

Учитель вынимает из термоса большой кусок сухого льда и опускает его в воду. Сухой лед возгоняется, образуя газообразный диоксид углерода.

e.

Водяной пар в увлажненном воздухе ударяется о окно и превращается в каплю росы (каплю жидкой воды).

4. Образец металлического цинка массой 11,98 грамма помещают в баню с горячей водой и нагревают до 78,4 ° C. Затем его удаляют и помещают в чашку из пенополистирола, содержащую 50,0 мл воды комнатной температуры (T = 27,0 ° C; плотность = 1,00 г / мл). Вода прогревается до температуры 28.1 ° С. Определите удельную теплоемкость цинка.

5. Джейк достает из туалета банку с газировкой и выливает ее в чашку со льдом. Определите количество тепла, теряемого содой комнатной температуры при плавлении 61,9 г льда (ΔH fusion = 333 Дж / г).

6. Теплота сублимации (ΔH сублимация ) сухого льда (твердый диоксид углерода) составляет 570 Дж / г. Определите количество тепла, необходимое для превращения 5,0-фунтового мешка сухого льда в газообразный диоксид углерода.(Дано: 1,00 кг = 2,20 фунта)

7. Определите количество тепла, необходимое для повышения температуры 3,82-граммового образца твердого пара-дихлорбензола с 24 ° C до жидкого состояния при 75 ° C. Пара-дихлорбензол имеет температуру плавления 54 ° C, теплоту плавления 124 Дж / г и удельную теплоемкость 1,01 Дж / г / ° C (твердое состояние) и 1,19 Дж / г / ° C (жидкое состояние).

Общий коэффициент теплопередачи

Теплопередача через поверхность, например стену, может быть рассчитана как

q = UA dT (1)

где

q = теплопередача (Вт (Дж / с), БТЕ / ч)

U = общий коэффициент теплопередачи (Вт / (м 2 K), БТЕ / (фут 2 ч o F) )

A = площадь стены (м 2 , фут 2 )

dT = (t 1 — t 2 )

= разница температур по стене ( o C, o F)

Общий коэффициент теплопередачи для многослойной стены, трубы или теплообменника — с потоком жидкости с каждой стороны стены — можно рассчитать как

1 / UA = 1 / ч ci A i + Σ (s 9012 4 n / k n A n ) + 1 / h co A o (2)

, где

U = общий коэффициент теплопередачи (Вт / (м 2 K), БТЕ / (фут 2 h o F) )

k n = теплопроводность материала в слое n (Вт / (м · K), БТЕ / (час · фут · ° F) )

h ci, o = внутри или снаружи стены индивидуальная жидкость конвекция коэффициент теплопередачи (Вт / (м 2 K), Btu / (фут 2 h o F) )

s n = толщина слоя n ( м, футы)

9 0002 Плоская стена с равной площадью во всех слоях — можно упростить до

1 / U = 1 / h ci + Σ (s n / k n ) + 1 / h co (3)

Теплопроводность — k — для некоторых типичных материалов (проводимость не зависит от температуры)

  • Полипропилен PP: 0.1 — 0,22 Вт / (м · К)
  • Нержавеющая сталь: 16 — 24 Вт / (м · К)
  • Алюминий: 205 — 250 Вт / (м · К)
Преобразовать между Метрические и британские единицы
  • 1 Вт / (м · К) = 0,5779 БТЕ / (фут · ч o F)
  • 1 Вт / (м 2 K) = 0,85984 ккал / (hm 2 o C) = 0,1761 Btu / (ft 2 h o F)

Коэффициент конвективной теплопередачи — h — зависит от

  • тип жидкости — газ или жидкость
  • свойства потока, такие как скорость
  • другие свойства, зависящие от потока и температуры

Коэффициент конвективной теплопередачи для некоторых распространенных жидкостей:

  • Воздух — от 10 до 100 Вт / м 2 K
  • Вода — 500 до 10 000 Вт / м 2 K

Многослойные стены — Калькулятор теплопередачи

Этот калькулятор можно использовать для расчета общего коэффициента теплопередачи и теплопередачи через многослойную стену.Калькулятор является универсальным и может использоваться для метрических или британских единиц при условии, что единицы используются последовательно.

A — площадь (м 2 , фут 2 )

t 1 — температура 1 ( o C, o F)

t 2 — температура 2 ( o C, o F)

h ci — коэффициент конвективной теплоотдачи внутри стены (Вт / (м 2 K), Btu / ( ft 2 h o F) )

s 1 — толщина 1 (м, фут) k 1 — теплопроводность 1 (Вт / (м K) , БТЕ / (час фут ° F) )

с 2 — толщина 2 (м, фут) k 2 — теплопроводность 2 (Вт / (м · К), BTU / (час фут ° F) )

s 3 — толщина 3 (м, фут) k 3 — теплопроводность 3 (Вт / (м · К), БТЕ / (ч · фут · ° F) )

h co — коэффициент конвективной теплопередачи снаружи стены ( Вт / (м 2 K), Btu / (фут 2 h o F) )

Тепловое сопротивление теплопередачи

Сопротивление теплопередачи банка быть выражено как

R = 1 / U (4)

где

R = сопротивление теплопередаче (м 2 K / W, футов 2 h ° F / BTU)

Стена разделена на участки термического сопротивления, где

  • теплопередача между жидкостью и стенкой равна одному сопротивлению
  • сама стена является одним сопротивлением
  • переносом между стенкой и t Вторая жидкость — это тепловое сопротивление.

Поверхностные покрытия или слои «обожженного» продукта добавляют дополнительное тепловое сопротивление стенкам, снижая общий коэффициент теплопередачи.

Некоторые типичные сопротивления теплопередаче
  • статический слой воздуха, 40 мм (1,57 дюйма) : R = 0,18 м 2 K / W
  • внутреннее сопротивление теплопередаче, горизонтальный ток: R = 0,13 м 2 K / W
  • внешнее сопротивление теплопередаче, горизонтальный ток: R = 0,04 м 2 K / W
  • внутреннее сопротивление теплопередаче, тепловой ток снизу вверх: R = 0,10 м 2 K / W
  • внешнее сопротивление теплопередаче, тепловой ток сверху вниз: R = 0.17 м 2 K / W

Пример — теплообмен в теплообменнике воздух-воздух

Пластинчатый теплообменник воздух-воздух площадью 2 м 2 и толщиной стенки 0,1 мм может быть изготовлен из полипропилен PP, алюминий или нержавеющая сталь.

Коэффициент конвекции теплопередачи для воздуха составляет 50 Вт / м 2 K . Внутренняя температура теплообменника составляет 100 o C , а наружная температура 20 o C .

Общий коэффициент теплопередачи U на единицу площади можно рассчитать, изменив (3) на

U = 1 / (1 / h ci + s / k + 1 / h co ) (3b)

Общий коэффициент теплопередачи для теплообменника из полипропилена

  • с теплопроводностью 0,1 Вт / м · К составляет

U PP = 1 / (1 / () 50 Вт / м 2 K ) + ( 0.1 мм ) (10 -3 м / мм) / ( 0,1 Вт / м · K ) + 1/ ( 50 Вт / м 2 K ) )

= 24,4 Вт / м 2 K

Теплопередача

q = ( 24,4 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) — (2 0 o C ))

= 3904 W

= 3.9 кВт

  • нержавеющая сталь с теплопроводностью 16 Вт / м · К :

U SS = 1 / (1 / ( 50 Вт / м 2 K ) + ( 0,1 мм ) (10 -3 м / мм) / ( 16 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

= 25 Вт / м 2 K

Теплопередача

q = ( 25 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) — (2 0 o C ))

= 4000 Вт

= 4 кВт

  • алюминий с теплопроводностью / мK :

U Al = 1 / (1 / ( 50 Вт / м 2 K 90 969) + ( 0.1 мм ) (10 -3 м / мм) / ( 205 Вт / м · K ) + 1/ ( 50 Вт / м 2 K ) )

= 25 Вт / м 2 K

Теплопередача

q = ( 25 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) — (2 0 o C ))

= 4000 Вт

= 4 кВт

  • 1 Вт / (м 2 К) = 0.85984 ккал / (hm 2 o C) = 0,1761 Btu / (ft 2 h o F)

Типичные общие коэффициенты теплопередачи

  • Свободный газ конвекции — свободный газ конвекции: U = 1-2 Вт / м 2 K (типичное окно, воздух из помещения через стекло)
  • Газ без конвекции — принудительная жидкая (проточная) вода: U = 5-15 Вт / м 2 K (типовые радиаторы центрального отопления)
  • Свободная конвекция газа — конденсационный пар Вода: U = 5-20 Вт / м 2 K (типичные паровые радиаторы)
  • Принудительная конвекция (проточная) Газ — Свободная конвекция Газ: U = 3-10 Вт / м 2 K (пароперегреватели)
  • Принудительная конвекция (проточный) Газ — Принудительная конвекция Газ: U = 10-30 Вт / м 2 K (газы теплообменника)
  • Принудительная конвекция (проточный) Газ — Принудительная жидкость (проточная) вода: U = 10-50 Вт / м 2 9 0175 K (газовые охладители)
  • Принудительная конвекция (проточный) Газ — конденсирующийся пар Вода: U = 10-50 Вт / м 2 K (воздухонагреватели)
  • Безжидкостная конвекция — принудительная конвекция Газ: U = 10-50 Вт / м 2 K (газовый котел)
  • Жидкостная конвекция — свободная конвекция Жидкость: U = 25-500 Вт / м 2 K (масляная баня для отопления)
  • Без жидкости Конвекция — принудительный ток жидкости (вода): U = 50 — 100 Вт / м 2 K (нагревательный змеевик в воде в резервуаре, вода без рулевого управления), 500-2000 Вт / м 2 K (нагревательный змеевик в резервуарной воде , вода с рулевым управлением)
  • Конвекция без жидкости — Конденсируемый пар воды: U = 300 — 1000 Вт / м 2 K (паровые рубашки вокруг сосудов с мешалками, вода), 150 — 500 Вт / м 2 K (другие жидкости)
  • Принудительная жидкость (текущая) вода — газ свободной конвекции: U = 10-40 Вт / м 2 K (горючий ст. камера + излучение)
  • Принудительная жидкость (текущая) вода — Свободная конвекционная жидкость: U = 500-1500 Вт / м 2 K (охлаждающий змеевик — перемешиваемый)
  • Принудительная жидкость (текущая) вода — Принудительная жидкость (проточная вода): U = 900 — 2500 Вт / м 2 K (теплообменник вода / вода)
  • Принудительная жидкая (проточная) вода — Конденсирующий пар водяной: U = 1000 — 4000 Вт / м 2 K (конденсаторы водяного пара)
  • Кипящая жидкая вода — свободная конвекция, газ: U = 10-40 Вт / м 2 K (паровой котел + излучение)
  • Кипящая жидкая вода — принудительное течение жидкости (вода) : U = 300 — 1000 Вт / м 2 K (испарение холодильников или охладителей рассола)
  • Кипящая жидкая вода — Конденсируемый пар воды: U = 1500 — 6000 Вт / м 2 K (испарители пар / вода)

Расчет отопления | оборудование ОВК

Расчет отопления

Размер системы отопления напрямую зависит от количества тепла, теряемого домом или зданием. Все конструкции теряют тепло на улицу или в соседние неотапливаемые или частично отапливаемые помещения, когда температура наружного воздуха или прилегающих пространств ниже, чем внутри конструкции. Тепло внутри здания обычно теряется из-за передачи через строительные материалы и инфильтрации вокруг дверей и окон.

Тепловые потери в конструкции должны быть восполнены с той же скоростью, что и потери. Следовательно, очень важно определить правильный размер отопительной системы и номинальную мощность отопительной установки, требуемую системой.Должно быть очевидно, что установка негабаритной отопительной установки будет стоить дороже, чем установка меньшей, и будет обеспечивать больше тепла, чем требуется для конструкции. С другой стороны, малоразмерная отопительная установка не в состоянии обеспечить достаточное количество тепла, особенно в периоды холода. Система отопления и выбор отопительной установки должны быть тщательно спланированы, чтобы адекватно и эффективно восполнить потерянное тепло.

В этой главе будет описано несколько методов расчета теплопотерь, начиная от практических методов и заканчивая более точным методом использования общих коэффициентов теплопередачи (значений U), рассчитанных для различных строительных материалов и комбинаций строительных материалов. какое тепло обычно передается.

ИСПОЛЬЗОВАНИЕ КОЭФФИЦИЕНТОВ ТЕПЛОПЕРЕДАЧИ

Более точные методы расчета теплопотерь в конструкции требуют досконального знания тепловых свойств многих материалов и комбинаций материалов, используемых при ее строительстве. Термин «тепловое свойство» используется здесь для обозначения общего коэффициента теплопередачи (то есть скорости теплового потока через материал). Каждый тип строительного материала (или комбинации материалов) будет иметь свой коэффициент теплопередачи.Прежде чем продолжить, рекомендуется просмотреть разделы главы 3 (ПРИНЦИПЫ ИЗОЛЯЦИИ), которые конкретно относятся к проблеме теплопотери (например, см. ПРИНЦИПЫ ТЕПЛОПЕРЕДАЧИ; ТЕПЛОПРОВОДНОСТЬ; ТЕПЛОВОЙ СОПРОТИВЛЕНИЕ и т. Д.).

ASHRAE и другие органы предлагают следующие основные шаги (в указанной последовательности) для расчета потерь тепла:

1. Определите желаемую температуру воздуха внутри конструкции.

2. Получите расчетную зимнюю наружную температуру для местоположения конструкции из опубликованных списков или в местном бюро погоды.

3. Определите расчетную разницу температур (разницу между температурами, найденными в шагах 1 и 2).

4. Определите в листе потерь тепла каждую комнату или пространство в конструкции.

5. Перечислите каждую структурную секцию в каждой идентифицированной комнате или пространстве, внешняя поверхность которых выходит на улицу или в неотапливаемое или частично отапливаемое пространство.

6. Определите коэффициент теплопередачи (коэффициент теплопередачи) для каждой секции конструкции (например,стены, стекло, потолок и т. д.).

7. Рассчитайте потери тепла на инфильтрацию для каждой идентифицированной комнаты или пространства.

8. Вычислите общей площади для каждой открытой поверхности (т. Е. Общую площадь внешней стены, общую площадь пола и т. Д.).

9. Вычислите площадь каждой двери и окна в стенах и сложите эти числа, чтобы получить общую площадь этих проемов.

10. Вычтите общую площадь дверей и окон из брутто внешней площади стены (полученной на шаге 8), чтобы определить общую чистую внешнюю площадь стены.Введите сумму в таблицу потерь тепла.

11. Умножьте общую чистую площадь стены, определенную на шаге 10, на значение U (шаг 2) на расчетную разницу температур (шаг 3), чтобы получить общие потери тепла для стен (выраженные в британских тепловых тепловых часах).

11. Выполните такие же расчеты для других площадей (полов, потолков и т. Д.), Определенных на шаге 8.

12. Сложите значения потерь тепла, рассчитанные для каждой категории поверхности, и потери тепла на инфильтрацию, чтобы получить общие потери тепла для идентифицированного помещения или пространства.

13. Повторите процедуру, описанную в Шагах 1-11 для каждой идентифицированной комнаты или пространства в конструкции.

14. Сложите различные итоги, чтобы получить общие тепловые потери от конструкции (выраженные в британских тепловых единицах).

Эти пятнадцать основных шагов для расчета теплопотерь предоставляются в качестве полезного справочного материала для более подробного описания процедуры, содержащейся в следующих параграфах.

ВНЕШНЯЯ РАСЧЕТНАЯ ТЕМПЕРАТУРА

В расчетах отопления наружная расчетная температура является самой холодной наружной температурой, ожидаемой для нормального отопительного сезона .Это не самая низкая температура за всю историю наблюдений, а, скорее, самая низкая зафиксированная для конкретного региона за период от трех до пяти лет.

Списки расчетных наружных температур публикуются для отдельных населенных пунктов на всей территории США (Таблица 1). Если местность не включена в список расчетных зимних наружных температур, обратитесь в местное бюро погоды. Использование внешней расчетной температуры из ближайшего населенного пункта в списке может ввести в заблуждение, потому что даже близко расположенные города могут сильно различаться в погодных условиях из-за разной высоты, влияния больших водоемов и других переменных.

ВНУТРЕННЯЯ РАСЧЕТНАЯ ТЕМПЕРАТУРА

Желаемая внутренняя расчетная температура будет зависеть от предполагаемого использования помещения. В большом сооружении, таком как гостиница или больница, будет несколько внутренних расчетных температур, потому что существует более одного типа использования пространства. Например, в больничных кухнях расчетная внутренняя температура обычно составляет около 66 ° F. С другой стороны, температура в палатах будет колебаться от 72 ° F до 74 ° F.

Жилые дома обычно имеют единую внутреннюю расчетную температуру для всей конструкции, при этом наиболее часто используемые температуры составляют 70 ° F или 71 ° F.

РАСЧЕТНАЯ РАЗНИЦА ТЕМПЕРАТУР

Расчетная разница температур — это разница в градусах Фаренгейта между внешней и внутренней расчетными температурами. Он используется в формуле потерь при теплопередаче (см. Ниже) и является решающим фактором при расчетах отопления.

Будьте осторожны, чтобы получить разницу в градусов между

двух температур, а не просто вычитание меньшего значения из большего.Например, если внешняя и внутренняя расчетные температуры составляют -20 ° F и 70 ° F соответственно, расчетная разница температур будет 90 градусов (20 градусов ниже нуля плюс 70 градусов выше нуля).

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ ТЕПЛОПЕРЕДАЧИ

Общий коэффициент теплопередачи или значение U, как его обычно называют, представляет собой конкретное значение, используемое для определения количества тепла, теряемого в различных типах конструкции. Он представляет собой временную скорость теплового потока и выражается в британских тепловых единицах в час на квадратный фут поверхности на градус Фаренгейта разницы температур между воздухом внутри и воздухом снаружи конструктивного элемента.Кроме того, значение U является обратной величиной значений полного теплового сопротивления (значений R) каждого элемента структурного сечения и может быть выражено как:

U = 1 / Rt

Профессиональные организации, такие как Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха (ASHRAE), уже определили значения U для самых разных конструкций полов, потолков, стен, окон и дверей. Таблицы этих значений U доступны в публикациях ASHRAE (e.g проверьте ASHRAE 1972 Handbook of Fundamentals ) , который можно найти во многих библиотеках. Многие производители отопительного оборудования также предоставляют таблицы значений U в своей литературе. При расчете потерь тепла у вас есть возможность выбрать значения U из таблиц, предоставленных производителями и некоторыми профессиональными ассоциациями, или рассчитать их самостоятельно. Последний метод, если все сделано правильно, является более точным.

РАСЧЕТ ПЛОЩАДИ НЕТТО

Определив расчетную разницу температур и вычислив (или выбрав) общий коэффициент теплопередачи для каждого строительного материала или комбинации материалов, теперь вы готовы рассчитать чистую площадь каждой поверхности, открытой снаружи или прилегающей к неотапливаемой или частично отапливаемое пространство.

Лучше всего рассчитывать площадь поверхности, исходя из плана здания. Если его нет в наличии, вам придется произвести свои собственные измерения. Измерения для расчета чистой площади берутся из внутренних поверхностей (т.е. измерения внутри помещения). Вас не будут беспокоить структурные поверхности (например, стены, потолки, полы) между комнатами и пространствами, отапливаемыми при одинаковой температуре, потому что передача тепла не происходит там, где температура постоянна.

Расчет общей площади для каждой поверхности следует производить следующим образом:

1.Умножьте длину комнаты на ширину, чтобы определить площадь пола и потолка.

2. Умножьте длину (или ширину) комнаты на высоту, чтобы определить площадь внешней стены для каждой комнаты.

3. Умножьте ширину двери на высоту двери, чтобы определить площадь поверхности для каждой двери.

4. Умножьте ширину окна на высоту окна, чтобы определить площадь поверхности для каждого окна.

Используете ли вы длину или ширину комнаты при расчете площади внешней стены, будет зависеть от того, какая поверхность стены выходит наружу.В некоторых случаях (например, угловые комнаты) используются оба, и требуется как минимум два отдельных вычисления (например, длина комнаты X высота комнаты и ширина комнаты X высота комнаты).

Сложите расчетную площадь поверхности каждой внешней стены (см. Шаг 2 выше), чтобы получить общей площади стены для конструкции. Вычтите сумму всех площадей дверей и окон из общей площади стен. Результатом будет чистая площадь стенок для конструкции. Умножьте чистую площадь стены на теплопотери в британских тепловых единицах в час на квадратный фут, чтобы рассчитать теплопотери через стены.

ФОРМУЛА ТЕПЛОПЕРЕДАЧИ

Теплопотери (выраженные в британских тепловых единицах) данного помещения определяются путем умножения коэффициента теплопередачи на площадь в квадратных футах на расчетную разницу температур (т. Е. Разницу между расчетными температурами внутри и снаружи помещения). Поскольку система отопления должна подавать количество тепла, равное количеству потерянного тепла, чтобы поддерживать постоянную расчетную температуру в помещении, потери тепла приблизительно равны требуемому количеству тепла.Это можно выразить следующей формулой:

Ht = AU (ti — до)

Где:

Ht = теплопотери, передаваемые через конструкцию (например, крышу, пол, потолок и т. Д.), Выраженные в британских тепловых единицах в час.

Представляет как потерю тепла, так и необходимое количество тепла,

A Площадь конструктивных элементов в квадратных футах,

u Общий коэффициент теплопередачи,

To = Наружная расчетная температура,

Tt = Расчетная температура в помещении.

c; ПОНИЖАЮЩАЯ ОБЩАЯ ПОТЕРЯ ТЕПЛА

Общепринятая процедура расчета общих потерь тепла от конструкции заключается в вычислении потерь тепла для каждой комнаты или пространства отдельно с последующим сложением итогов.

Рабочий лист расчета теплопотерь, который вы используете, должен содержать

Столбец

, в котором можно отдельно выделить каждую комнату или пространство. Под обозначением перечислены те конструктивные элементы, через которые происходят потери при передаче тепла.Если применимо, они будут включать все или большую часть следующего:

1. Стены,

2. Стекло,

2. Потолок,

3. Этаж,

4. Дверь (и).

В дополнение к пяти типам структурных секций, перечисленных выше, каждое идентифицированное помещение или пространство должно также включать линию потерь тепла за счет инфильтрации воздуха. На рисунке 1 показано, как ваш рабочий лист должен выглядеть на этом этапе.

Теперь, когда вы определили комнату или пространство, перечислили структурные секции, через которые происходит потеря тепла, и рассчитали скорость инфильтрации воздуха, вы должны определить чистую площадь поверхности и коэффициент теплопередачи для каждой структурной секции.Также необходимо определить и ввести расчетную разницу температур для каждого конструктивного сечения. За исключением случаев, когда поверхности находятся в частично отапливаемых помещениях (например, гараж, чердак или подвал), каждая структурная секция будет иметь одинаковую расчетную разницу температур. Пример того, как ваш рабочий лист должен выглядеть в этом месте, показан на рис. 2.

Каждая идентифицированная комната или пространство должны также включать в себя расчет

Потери тепла из-за инфильтрации воздуха (см. ИНФИЛЬТРАЦИОННЫЙ ТЕПЛО

УБЫТКА ниже).Количество потерь тепла из-за инфильтрации воздуха будет зависеть от размера, типа и количества окон и дверей, а также других переменных.

Спальня, приведенная в качестве примера на рис. 1, имеет две открытые стены (8 футов X 15 футов и 8 футов X 20 футов). Рекомендуемое количество смен воздуха для комнаты с двумя открытыми стенами составляет 1 час смены в час.

Объем проникновения воздуха в спальню можно рассчитать следующим образом:

Зная, что объем инфильтрации воздуха составляет 1800 кубических футов в час, потери тепла в БТЕ могут быть рассчитаны следующим образом:

Тепловые потери 0.018 X Q (ti — t 0 )

= 0,018 Х 1800 Х 90

2916 британских фунтов

Общая потеря тепла для спальни № 1 (как указано в таблице) составляет БТЕ. Если в одной из внешних стен есть дверь, ее теплопотери также должны быть рассчитаны и внесены в рабочий лист. Кроме того, площадь двери (в квадратных футах) должна быть вычтена из площади поверхности стен, потому что последняя всегда равна чистому значению .

После расчета потерь тепла для каждой комнаты или пространства в конструкции, результаты суммируются, чтобы получить общую потерю тепла (в британских тепловых единицах) для конструкции.

Internal Heat Gain — обзор

Passive Heating

Принципы пассивных систем солнечного отопления хорошо известны, поэтому нет необходимости повторять их здесь. Их производительность можно охарактеризовать двумя простыми показателями:

ΔT¯ = T¯i — T¯o, разница между средней температурой внутри и снаружи T˜i = Timax — T¯i или T¯i − T¯imin i.е. амплитуду или «размах» изменений температуры в помещении.

На рис. 4 показаны эти показатели для некоторых основных типов пассивных систем отопления. Наибольшие значения ΔT¯ обычно сопровождаются большими перепадами температуры. Пики могут стать неприемлемыми, избыточное тепло может быть сброшено (например, путем вентиляции), что уменьшит среднее значение, а значит, и ΔT¯. Прирост тепла в пиковые периоды «не используется». Увеличенная тепловая масса (т. Е. Повышенная теплоемкость) может уменьшить эти колебания.

Рис. 4. Температурные профили для трех типичных пассивных систем

(по Balcomb, 1980). Авторское право © 1980

Выбор системы должен соответствовать требованиям, например, дневной перегрев может быть приемлемым в помещении, используемом только ночью ; или снижение температуры в ночное время ниже зоны комфорта может быть допустимо в помещении, используемом только днем.

Необходим новый подход к дизайну, основанный на осознании того, что мы создаем динамические системы . Устойчивые допущения неадекватны, и наши умственные способности недостаточны, чтобы обрабатывать дискретные величины через их повторяющиеся изменения. Мы должны сделать некоторые абстракции, сравнимые по простоте с допущениями об установившемся состоянии, если мы не хотим увязнуть в деталях. Мы должны посмотреть на образец переменных. Тогда проектная работа превращается в упражнение по сопоставлению с образцом . Приведены характер изменения температуры наружного воздуха (pT) и характер солнечного излучения (pS).Шаблон занятости или шаблон использования (pU) может быть легко установлен. Мы должны вставить между этими наборами строительную систему, которая дала бы образец ответа (pR), необходимый для преодоления разрыва между pU и pT + pS.

В качестве иллюстрации на рис. 5 показан анализ зимнего (июльского) дня в Канберре для школьной комнаты (используется с 8.00 до 18.00 ч) и жилой комнаты (используется с 16.00 до 22.00 ч). Нижняя половина графика показывает влияние окружающей среды, модели pT и pS.Тепловая нейтральность (Tn) рассчитывается по выражению Auliciems, а пределы комфорта ± 2,5 K отмечаются для продолжительности работы, что дает образец использования, pU. Эти шаблоны можно сравнить сначала с точки зрения ΔT¯ и T˜i.

Рис. 5. Сопоставление с образцом (июльский день в Канберре)

Для школьной комнаты (8–18 ч.) Нет необходимости в фазовой задержке: система с прямым усилением даст требуемый pR (1) .

Для жилого помещения (16–22 ч.) Выбор:

(2)

без задержки по фазе, перегрев 14-15 ч.допускается, большое T˜;

(3)

около 6 ч. фазовая задержка, малая T˜i: вероятно, система типа стенка Тромба.

Если цель состоит в том, чтобы получить среднюю температуру в помещении, идентичную нейтральной температуре, Tn = T¯i, то расстояние между Tn и T¯o дает желаемое ΔT¯. В идеале Ti не должен превышать 2,5 К (т.е. 5 К от пика к пику), но мы можем позволить ему превышать или опускаться ниже пределов комфорта в периоды неиспользования.

Для любого здания разумно предположить, что в отсутствие поступления солнечного и внутреннего тепла среднесуточные температуры в помещении и на улице будут одинаковыми.«Дополнительный» (солнечный и внутренний) приток тепла можно легко рассчитать и усреднить за 24 часа (Q¯). Этот прирост вызовет повышение средней температуры в помещении и, как следствие, наружный тепловой поток. Этот наружный тепловой поток должен равняться вышеуказанным «дополнительным» эффектам, из которых можно определить увеличение средней температуры в помещении как

ΔT = Q¯ / q

, где q = q c + q v , удельный коэффициент теплопотерь здания:

q c = Σ (A * U) (A = площадь, U = коэффициент пропускания каждого элемента)

q v = 0.33 * V * N (V = объем помещения, N = количество воздухообменов в час).

В Приложении 3 приведен рабочий пример для отдельной комнаты и показано, как легко манипулировать переменными, пока мы не получим желаемое ΔT¯.

Если известны характеристики запаздывания и коэффициента декремента каждого элемента, отклонение от среднесуточного теплового потока (Q) для любого часа дня может быть легко вычислено, но если этот расчет должен быть повторен в течение 24 часов , он может стать длинным, и предпочтительнее использовать компьютер.Это отклонение в теплопоступлении от среднего будет либо поглощено тканью здания, либо устранено вентиляцией. «Допуск» (Y) — это мера способности элементов здания поглощать периодический приток тепла. Отклонение температуры окружающей среды в помещении от среднесуточного значения будет найдено из

T˜i = Q¯ / [∑ (A * Y) + qv]

Приложение 3 включает расчет этого колебания температуры для одной временной точки, 15.00 ч. , который, скорее всего, будет пиком.

Если мы установим предел допустимого колебания температуры (или отклонения от среднего), выражение можно перевернуть, чтобы определить требуемую проводимость.Для легких элементов пропускная способность практически такая же, как и значение U. Допуск тяжелых строительных элементов частично зависит от их теплоемкости (т. Е. Произведения их массы на удельную теплоемкость материала), но частично также от их проводимости и качества поверхности. Следовательно, это лучшая мера, чем использование только теплоемкости. Табличные данные о допуске доступны во многих публикациях (например, в CIBS Guide), но они также могут быть рассчитаны с помощью довольно длительной матричной операции.

Этот метод сопоставления с образцом является полезным инструментом на этапе эскизного проектирования. После принятия основных проектных решений можно использовать любые другие доступные инструменты (например, метод SLR или некоторые из более сложных программ моделирования теплового отклика).

Теплопроводность: уравнения и примеры — стенограмма видео и урока

Примеры поведения

В нашей повседневной жизни есть всевозможные примеры поведения.Главное — подумать о том, соприкасаются ли предметы физически. Таким образом, кастрюля с кипящей водой, нагреваемая электрической плитой, получает тепловую энергию от плиты посредством теплопроводности. И когда вы дотрагиваетесь до металлического противня в духовке и обжигаетесь, это тоже происходит из-за кондукции.

Уравнение проводимости

В физике все должно иметь уравнение! Это какое-то неписаное правило. Проведение — не исключение. Насколько быстро происходит проводимость, зависит от нескольких факторов: из какого материала сделаны объекты (проводимости), площади поверхности двух соприкасающихся объектов, разницы температур между двумя объектами и толщины двух объектов.

В форме уравнения это выглядит так.

Q свыше т — это скорость теплопередачи — количество тепла, передаваемого за секунду, измеряемое в Джоулях в секунду или ваттах. k — это теплопроводность материала. Например, медь имеет теплопроводность 390, а шерсть — всего 0,04. T1 — это температура одного объекта, а T2 — температура другого.Поскольку это разница температур, вы можете использовать градусы Цельсия или Кельвина, в зависимости от того, что вам удобнее. А d — это толщина интересующего нас материала.

Таким образом, скорость передачи тепла к объекту равна теплопроводности материала, из которого он сделан, умноженному на площадь соприкасающейся поверхности. умножается на разницу температур между двумя объектами, деленную на толщину материала.

Пример расчета

Хорошо, давайте рассмотрим пример.Допустим, вы собираетесь в аквапарк и собираетесь взять с собой охладитель пенополистирола. Общая площадь кулера составляет 1,2 квадратных метра, а толщина стенок — 0,03 метра. Температура внутри кулера — 0 по Цельсию, а в самое жаркое время дня 38 градусов по Цельсию. Сколько тепловой энергии в секунду теряет кулер в это время суток? А сколько тепловой энергии теряется в аквапарке за три часа при температуре 38 градусов? (Примечание: теплопроводность пенополистирола равна 0.01.)

Все, что нам нужно сделать, чтобы решить эту проблему, — это подставить числа в уравнение. Потери тепловой энергии в секунду ( Q / t ) равны теплопроводности пенополистирола ( k ), умноженной на площадь поверхности охладителя ( A ), умноженную на разницу температур между охладитель и внешность ( T2 T1 ), разделенные на толщину пенополистирола. Это 0,01, умноженное на 1,2, умноженное на 38, разделенное на 0.03. Введите все это в калькулятор, и вы получите 15,2 Джоулей в секунду или 15,2 Вт.

Q / t = ((0,01) (1,2) (38-0)) / 0,03 = 15,2 Дж / с или 15,2 Вт

Для второй части вопроса нам нужно выяснить, сколько энергия теряется за три часа. Что ж, у нас есть потери энергии за секунду — 15,2 Джоулей. Итак, нам просто нужно знать, сколько секунд осталось в трех часах. Три часа, умноженные на 60 минут, умноженные на 60 секунд, в сумме дают 10800 секунд.15,2 джоулей в секунду в течение 10 800 секунд … умножьте два числа вместе, и вы получите в общей сложности 164 160 джоулей за три часа.

И все — готово.

Краткое содержание урока

Проводимость — это передача тепловой энергии между двумя объектами, находящимися в прямом физическом контакте. Это один из трех типов теплопередачи, два других — конвекция и излучение. Когда два объекта с разной температурой соприкасаются друг с другом, между ними будет проходить тепловая энергия.Чтобы понять это, мы должны понять, что температура — это средняя кинетическая энергия молекул в веществе. Более горячие материалы содержат молекулы, которые движутся быстрее. Поэтому, когда холодный объект соприкасается с горячим объектом, быстро движущиеся горячие молекулы сталкиваются с более холодными молекулами, распространяя тепло от горячего объекта на холодный объект. Это будет продолжаться до тех пор, пока они не достигнут одинаковой температуры.

Некоторые материалы являются лучшими проводниками, чем другие. Вот почему кафельные полы кажутся такими холодными.Ваши ноги почти всегда теплее пола, но кафельный пол лучше проводит тепло. То, что ваша кожа ощущается как «холодная», — это просто передача тепла от ваших ног к полу, и это происходит намного быстрее с кафельным полом, чем с ковром, хотя обычно они имеют одинаковую температуру.

Уравнение проводимости говорит нам, что скорость теплопередачи ( Q / t ) в Джоулях в секунду или ваттах равна теплопроводности материала ( k ), умноженной на площадь поверхности. соприкасающихся объектов ( A ), умноженное на разницу температур между двумя материалами ( T2 T1 ), разделенную на толщину интересующего нас материала ( d ).Вы можете использовать это, чтобы определить скорость теплопередачи, но если вам дан конкретный период времени ( t ), вы также можете рассчитать общее переданное тепло.

Электроэнергия происходит повсюду вокруг нас: когда вы обжигаетесь на горячем противне, когда вы нагреваете кастрюлю на электрической плите, когда у вас установлена ​​внутренняя изоляция стен. Всякий раз, когда тепло передается между двумя предметами, которые соприкасаются напрямую, это происходит из-за теплопроводности.

Результаты обучения

После того, как вы закончите этот урок, вы должны иметь возможность:

  • определять поведение и определять его повседневные примеры
  • Объясните, как происходит проводимость, и какие факторы влияют на ее скорость.
  • Вспомните уравнение проводимости

Размеры электрических ковриков и кабелей для обогрева пола

Коврики для подогрева пола:


Шаг 1. Создайте план этажа.

Начните с рисования плана отапливаемой зоны на сетке. Обязательно точно отмерьте и укажите все размеры. На плане этажа должны быть указаны расположение и размеры любой мебели и стационарных приспособлений, таких как умывальники, шкафы, прилавки, душевые, ванны, туалеты и т. Д. Под этими приспособлениями нельзя устанавливать ни коврики HeatTech, ни кабель. Четко обведите маркером нагретую область.

Шаг 2: Рассчитайте размер отапливаемой площади.

Рассчитайте общий размер теплого пола, используя данные из шага 1.При необходимости разбейте область на более мелкие части (квадраты, прямоугольники) и сложите их индивидуальные размеры (A, B и C, как показано на образце справа). Запишите результаты. Для матов на 120 В общая площадь пола с подогревом не должна превышать 150 квадратных футов. Для матов на 240 В оно не должно превышать 300 кв. Футов

.

Как видно на примере, все 3 зоны — A, B и C — это зоны, где необходимо отопление. Область непосредственно под раковиной не требует обогрева и поэтому не учитывается при расчете площади.

Показанная буферная зона (где обогрев не является существенным) рекомендуется, но не является обязательной и поэтому не учитывается при расчетах. Эта область может быть использована для установки мата излучающего тепла избыточной длины.
Совет: чтобы вычислить размер треугольника, умножьте его стороны и разделите результат на 2.

Шаг 3: Определите расположение термостата.

Термостат следует размещать дальше от мест, которые могут подвергнуть его разбрызгиванию или разбрызгиванию водой, например, ванны, душевые и раковины.Расположение термостата также важно, поскольку оно определяет начальную точку мата. На показанном примере показано расположение термостата «Т» возле входа.

Шаг 4: Нарисуйте расположение мата на плане этажа.

План этажа важен при выборе коврика для подогрева пола подходящего размера. Учтите, что коврик имеет постоянную ширину 20 дюймов, однако перемещение в более узких местах может быть достигнуто путем обрезки стекловолоконной сетки (не обрезайте нагревательный провод!). Убедитесь, что нагревательный коврик покрывает важные зоны, например, прямо перед душем / ванной / туалетом и в пространстве для ног под шкафами.Любые корректировки покрытия и длины коврика должны производиться в местах, где тепло не требуется, например, за дверью, возле стен или за унитазом. В некоторых областях может потребоваться использование более одного мата, и это также следует отметить на макете.

Для получения дополнительной информации о том, как обрезать и установить электрические коврики для теплого пола, щелкните здесь.

Шаг 5: Выберите нагревательный мат (-а) подходящего размера.

Сложите общую длину коврика для лучистого обогрева и найдите соответствующую длину в таблице с техническими характеристиками продукта.Сравните общую площадь покрытия мата (в квадратных футах) из таблицы с размером обогреваемой площади из шага 2. Она не должна превышать размер обогреваемого пола.

Примечание: можно использовать более простой метод определения размеров, который включает согласование общей площади пола с подогревом с имеющимися размерами ковриков. Этот вариант, хотя и приемлем, менее точен и рекомендуется только для прямоугольных участков с минимальными препятствиями и поворотами или без них.


Кабель для обогрева пола


Шаг 1. Создайте план этажа.

Нарисуйте план обогреваемого помещения, как описано выше в разделе «Коврики для подогрева пола».

Шаг 2: Рассчитайте размер отапливаемой площади.

Следуйте инструкциям, приведенным выше в разделе «Нагревательные маты».

Пример, показанный справа, показывает 5 областей, где требуется обогрев: A, B, C, D и E. Буферная зона (не является частью секции «E») не включается в расчет площади и используется для прокладки избыточного нагревательного кабеля. , если имеется.

Шаг 3: Выберите нагревательный кабель подходящего размера.

Используя данные из таблицы продуктов, выберите нагревательный кабель нужной длины. Обратите внимание, что для большинства установок рекомендуется расстояние между кабелями 3 дюйма. Общее покрытие кабеля на выбранном расстоянии должно быть не меньше размера обогреваемой зоны. Это гарантирует, что не останется лишнего нагревательного кабеля.

В показанном примере общая площадь покрытия кабеля теплого пола (на расстоянии 3 дюймов) превышает площадь обогрева, а это означает, что кабели избыточной длины будут проложены в буферной зоне, указанной на плане этажа.

Советы по установке для обоих типов систем:

  • Настоятельно рекомендуется создать «буферную» зону на плане этажа, где обогрев не является необходимым и которую можно использовать для прокладки оставшегося кабеля или оставить его без обогрева. Примеры буферных зон: за дверью, у стен и за туалетом.
  • Не используйте ленту — клейкую ленту не рекомендуется использовать для крепления кабеля электрического теплого пола, поскольку она не гарантирует правильного расстояния между кабелями и может привести к недостаточной / оставшейся длине кабеля и неравномерной тепловой мощности.Вместо этого используйте кабельные направляющие HeatTech (HTCG-25). Они содержат проволочные крючки, расположенные на расстоянии 1 дюйм, что позволяет проложить кабель точно на расстоянии 2, 3 или 4 дюйма. Направляющие для кабелей включены в каждый комплект кабелей (HTCBLKIT), а дополнительные длины можно приобрести отдельно.

Чтобы получить помощь с определением размеров и выбором продукта, свяжитесь с нашей командой разработчиков по адресу support@heattechproducts.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *