Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Расчет мощности радиаторов отопления: Как произвести расчет секций радиаторов отопления

Содержание

как рассчитать мощность самостоятельно, фото и видео подсказки

Содержание:

1. Особенности самостоятельного расчета мощности батарей отопления

2. Порядок расчета мощности радиаторов

3. Биметаллические отопительные радиаторы

4. Алюминиевые отопительные радиаторы

5. Стальные пластинчатые отопительные радиаторы

6. Чугунные отопительные радиаторы

7. Порядок расчета тепловой мощности

Каждого владельца квартиры или дома интересует, какое минимальное количество секций радиатора требуется для полноценного обогрева жилых и подсобных помещений, исходя из их площади. Чтобы получить ответ на данный вопрос, необходимо знать, как рассчитать мощность батареи отопления. Существуют как простые варианты вычислений, так и сложные формулы расчетов.


Особенности самостоятельного расчета мощности батарей отопления

Нижеприведенные способы, как рассчитать мощность радиаторов отопления, предназначаются для хозяев частных домовладений и жильцов квартир, а не для специалистов в сфере теплотехники.

Поэтому инструкция будет по возможности простой и понятной, чтобы в ней мог разобраться каждый человек, который планирует монтировать отопительную конструкцию своими руками.

Чем проще расчет мощности батарей, тем большей будет величина погрешности. Но с другой стороны для потребителей главной целью является обеспечение достаточной тепловой мощности. Ничего нет плохого в том, что в сильнейший зимний мороз данный параметр окажется больше, чем требуется.

У квартирах, жильцы которых платят за отопление в зависимости от площади, тепло не бывает лишним. А в домах, где имеются счетчики потребляемой тепловой энергии, несложно установить регулировочные дроссели и регуляторы температурного режима, приобрести которые можно в любой момент. Читайте также: «Счетчики тепловой энергии для квартиры».

Что касается частных домов, то при наличии собственного котла излишняя мощность не приведет к финансовым потерям, поскольку все современные газовые и электрические теплоагрегаты оснащены термостатами, регулирующими теплоотдачу в соответствии с температурой в помещении (подробнее: «Тепловой расчет помещения и здания целиком, формула тепловых потерь»).


Даже в том случае, когда при проведении самостоятельных расчетов будет допущена серьезная ошибка, но в большую сторону, владельцу жилья она будет стоить нескольких излишне купленных секций батареи. Согласно последним данным, раз в несколько лет на отечественных просторах зимой сотрудники гидрометцентров фиксируют экстремально низкие температуры. По мнению специалистов, подобные явления в связи с изменением климата на планете будут происходить все чаще. По этой причине, делая расчет мощности батарей отопления, не следует опасаться ошибок в большую сторону.

Порядок расчета мощности радиаторов

Способ выполнения вычислений, как правило, зависит от того, какое оборудование планируется использовать. Если это электрические отопительные приборы, то у них имеются сопроводительные документы, в которых производители указывают их эффективную тепловую мощность.

При отсутствии паспорта на продукцию соответствующая информация имеется на сайте изготовителя. Нередко там же может находиться калькулятор, с помощью которого можно сделать расчет батарей отопления для конкретного объема помещения, а также определить основные параметры будущей отопительной конструкции.

Но при этом следует учитывать такой нюанс: практически всегда производители закладывают в компьютерную программу по вычислению величины теплоотдачи радиатора (конвектора или батареи) определенную разницу температур между помещением и теплоносителем — обычно на уровне 70 градусов Цельсия. К сожалению, для российских систем теплообеспечения такой параметр пока является недосягаемым.


В конце концов, потребители могут воспользоваться простым, правда, не очень точным расчетом, позволяющим узнать мощность батарей отопления с учетом количества секций.

Биметаллические отопительные радиаторы

Когда производится расчет биметаллического радиатора, такого как на фото, выполняют его, исходя из габаритных параметров секции (детальнее: «Как рассчитать количество секций: биметаллические радиаторы отопления»).

В качестве примера взяты данные, имеющиеся на сайте завода «Большевик»:

  • для секций, у которых межосевое расстояние составляет 500 миллиметров, теплоотдача находится на уровне 165 ватт;
  • для 400-миллиметровых секций — 143 ватта;
  • для 300-миллиметровых секций — 120 ватт;
  • для 250-миллиметровых секций — 102 ватта.

Алюминиевые отопительные радиаторы

Чтобы ознакомиться с величиной мощности алюминиевых отопительных радиаторов, взяты данные для изделий ТМ Calidor и Solar от итальянских производителей:

  • секция, имеющая межосевое расстояние 500 миллиметров, отдает максимум 182 ватта;
  • 350-миллиметровые секции имеют теплоотдачу 145-150 ватт.

Стальные пластинчатые отопительные радиаторы

Как узнать мощность батареи отопления, если это стальные радиаторы пластинчатого типа, ведь у них отсутствуют секции? В данном случае при проведении расчетов учитывают длину стального пластинчатого радиатора отопления и межосевое расстояние.

Помимо этого, производители рекомендуют обращать внимание на способ подключения батареи. Дело в том, что вариант врезки в отопительную систему влияет на тепловую мощность в процессе эксплуатации радиатора.


Все, кого интересует величина теплоотдачи стальных пластинчатых батарей, могут посмотреть таблицу модельного ряда продукции ТМ Korad, изображенную на фото.

Чугунные отопительные радиаторы

С данными отопительными приборами все гораздо проще, поскольку у всех отечественных (российских) чугунных радиаторов межосевое расстояние подводок стандартно и составляет 500 миллиметров. Мощность чугунных радиаторов отопления при стандартной разнице температур, равной 70 градусам, равна 180 ватт на одну секцию.

Порядок расчета тепловой мощности

Знание тепловой мощности одной секции позволит узнать необходимое их количество, но как вычислить этот параметр.

В данной статье будут рассмотрено несколько вариантов, как сделать необходимые расчеты в зависимости от разных переменных:

Расчет мощности по площади

В его основе лежат санитарные нормы, согласно которым на 10 «квадратов» помещения должен приходиться 1 киловатт тепловой энергии (100 ватт на м²). При проведении расчета необходимо учитывать поправочный коэффициент, соответствующий определенному региону России. Например, для Якутии и Чукотки он равен 2, для Дальнего Востока составляет 1,6, а для южных областей и республик находится в пределе от 0,7 до 0,9 (прочитайте также: «Как рассчитать батареи отопления — количество и размер»).

Разумеется, что подобный метод не может обеспечить абсолютную точность, поскольку:

  • панорамный способ остекления в одну нитку значительно увеличивает потерю тепла по сравнению с тем, когда стена сплошная;
  • несмотря на то, что расположение квартир внутри здания не учитывают, при наличии теплых стен при одинаковом количестве батарей в них будет намного теплее, чем в угловом помещении, имеющем стену, соприкасающуюся с улицей;
  • расчет верен только в том случае, когда высота потолков не превышает 2,5 — 2,7 метра (стандартный параметр для квартир, построенных в советское время). Уточненных вычислений требуют помещения в сталинках, у которых трехметровые потолки. Кроме этого, в начале 20-го века во многих строящихся домах высота потолков достигала 4 — 4,5 метра.

В качестве примера будет приведен расчет количества секций чугунных батарей для комнаты размером 3 на 5 метров, которая расположена в доме, находящемся в Краснодарском крае.

Порядок действий следующий:

  • сначала определяют площадь 3х5=15м²;
  • потом вычисляют требуемую тепловую мощность отопления — 15м² х100Вт х0,7= 1050 ватт. 0,7 – региональный коэффициент;
  • если мощность каждой секции составляет 180 ватт, тогда потребуется 1050: 180 = 5,83 секции. После округления до целых значений получается 6 секций.

Простые вычисления мощности по объему

Поскольку расчет мощности батареи отопления в зависимости от объема воздуха в помещении учитывает высоту потолка, он является более точным. На один кубометр требуется 40 ватт мощности отопительного оборудования.

Расчет производится для той же комнаты в Краснодарском крае при том, что ее построили с высотой потолков, равной 3,1 метра:

  • прежде всего, вычисляют объем помещения 3х5х 3,1 = 46,5 кубометра;
  • радиаторы должны обладать мощностью 46,5х 40 = 1860 ватт, а с учетом регионального коэффициента 1860х0,7 = 1302 ватта или 8 чугунных секций (1302: 180 =7,23).

Уточненные вычисления мощности по объему

Более точный расчет мощности батарей отопления производят c учетом разных переменных:

  • количества окон и дверей. В среднем теплопотери по причине наличия одного окна стандартного размера составляют 100 ватт, а одной двери – 200 ватт;
  • если помещение располагается в углу здания или в его торце, используют коэффициент 1,1 – 1,3, который зависит от толщины стен и материала их изготовления;
  • для частных домовладений применяют коэффициент 1,5, так как в них отмечаются повышенные теплопотери через крышу и пол, поскольку снизу и сверху нет теплых квартир.

Параметры для вычисления составляют 40 ватт на один кубометр, также учитываются региональные коэффициенты, как и при проведении вычислений, исходя из площади комнаты (подробнее: «Расчет отопления по площади — определяем мощность отопительных приборов»).

Теперь расчет мощности тепла для радиаторов отопления будет выполнен для помещения аналогичного по площади (как в Краснодарском крае), но находящегося в углу частного домовладения в Оймяконе, где средняя температура в январе опускается до — 54 градусов, а температурный минимум за все время наблюдений достигал 82 градусов мороза. Особо неприятный момент заключается в том, что дверь выходит на улицу и имеется окно.

Последовательность вычислений такая:

  • поскольку известна базовая мощность, равная 1860 ватт, к ней прибавляют 300 ватт (окно плюс дверь) и получают 2160 ватт;
  • так как дом частный, происходит потеря тепла за счет холодного пола и крыши — 2160х1,5 = 3240 ватт;
  • угол дома вынуждает использовать коэффициент 1,3 и в итоге получится – 3240х1,3 = 4212 ватт;
  • Оймяконский климат требует применения регионального коэффициента, равного 2 — 4212х2 = 8424 ватта.

Если радиаторы будут чугунными, то количество секций должно быть равным 8424: 180 = 46,8, а с округлением – 47. Поскольку длина секции составляет 93 миллиметра, то батарея растянется на 4,4 метра.

Видео о стандартах расчетов мощности батарей отопления:


Расчет мощности и количества радиаторов отопления

Расчет радиаторов для отопительной системы, хотя это уравнение со многими переменными — это операция, которую необходимо выполнять внимательно, чтобы получить необходимый тепловой комфорт при минимально возможных затратах. Если мы не примем во внимание все факторы, которые будут влиять на наш выбор подходящих радиаторов (объем помещения, теплотвой коэффициент и поправочный коэффициент), мы можем столкнуться с двумя ситуациями, которые создадут дискомфорт, завышая или занижая мощность радиаторов.

Оба варианта создают недостатки. Например, завышение размеров может привести к ненужным ежемесячным расходам. С другой стороны, занижение размеров приведет к перегрузке котла и отопительной системы, что сократит их срок службы. Поэтому размеры радиаторов отопления производятся в зависимости от поверхности помещений и степени их изоляции. Правильный подбор размеров радиаторов позволяет получить тепловой комфорт, не превышающий бюджета, выделенного на отопление.

Роль калибровки и правильного расчета

Задача определения размеров радиаторов — получить необходимое количество тепла для обогрева комнаты. Для этого мы должны произвести правильный расчет в зависимости от поверхности комнаты и ее теплового коэффициента, который определяется объемом нагреваемого воздуха или количеством и размером окон. Таким образом определяется правильный размер радиаторов (их поверхность излучающая тепло).

Тепловой комфорт

Для получения теплового комфорта необходимо, чтобы у радиаторов была правильная поверхность для обогрева помещения без перегрузки котла. Также очень важны другие факторы, такие как материал, из которого изготовлен радиатор, тот, который показывает нам коэффициент теплопередачи, или температура воды в системе. Тепло, излучаемое радиатором, обеспечивается его излучающей поверхностью и должно быть максимально адаптировано к потребностям пользователя. Точнее, лучшие радиаторы поддерживают постоянную температуру независимо от температуры наружного воздуха.

Система отопления/котел

Размеры радиаторов строго зависят и от остальных составных отопительной системы. Выбор котла имеет чрезвычайно важное значение, поскольку именно он приводит в движение всю систему. Правильный подбор радиаторов в соответствии с выбранным котлом приведет к умеренному расходу топлива и соответственно меньшим счетам за отопление.
Очень важно знать мощность котла, который мы хотим установить, чтобы ее хватило на объем, который мы хотим обогреть.

Для того чтобы рассчитать мощность котла, сделаем умножение между площадью комнат, их высотой, калорийностью (количество энергии, Гкал) и поправочным коэффициентом. Коэффициент калорийности зависит от степени теплоизоляции (теплопотерь) дома и поверхности окон, а последний представляет собой показатель преобразования энергии из калорий в ватты (Вт).

Эффективность тепловой установки обеспечивают все составляющие ее частями, не только котла и радиаторы. Важно обратить внимание на тип труб, по которым проходит теплоноситель, а также на термостаты, запускающие систему.

Факторы, влияющие на мощность радиатора

Мощность радиатора зависит от нескольких важных факторов, таких как:

  • размер
  • температура воды в контуре
  • положение в комнате
  • материал радиатора.

Температура воды в системе, в свою очередь, влияет на мощность радиаторов. Лучшие котлы — конденсационные, потому что они обеспечивают оптимальный тепловой комфорт при температуре воды в контуре подачи-обратки в диапазоне 35-55 градусов Цельсия.

Выбирая новые радиаторы для дома, помимо их габаритов, вы также должны понимать, что материал радиатора играет главную роль с точки зрения теплового комфорта. Таким образом, мы должны знать, например, что алюминиевые радиаторы очень быстро нагреваются, но имеют низкую тепловую инерцию, что справедливо и для стальных, в то время как чугунные радиаторы нагреваются дольше, но излучают тепло на более долгое время. Когда мы делаем выбор, нам нужно знать, какой из них нам больше подходит.
Радиаторы лучше размещать таким образом, чтобы излучать тепло в центр комнаты, и не закрывать их мебелью или толстыми шторами, которые не позволяют теплу распространяться в комнату. Кроме того, их содержание играет первостепенную роль. Таким образом, регулярный спуск воздуха и чистка заставят их работать на полную мощность.

Как выполнить расчет поэтапно

Правильный расчет для определения мощности радиаторов производится по объему обогреваемого воздуха в помещении, степени его теплоизоляции и поверхности окон. Расчет состоит из трех этапов. Начнем с расчета объема помещения, а точнее объема нагреваемого воздуха. На следующем этапе мы установим калорийность помещения. В конце мы перейдем к преобразованию калорийной мощности в тепловую с помощью поправочного коэффициента.

1. Объем помещения

Чтобы узнать объем нагреваемого воздуха (V), сделаем умножение поверхности комнаты (длина х ширина) и ее высоты. Итак, если у нас есть комната размером 4 метра на 4 метра с высотой 2,5 метра, расчет объема будет производиться путем умножения трех измерений — 4м х 4м х 2,5м = 40м3.

2. Коэффициент калорийности помещения

Теплотворная способность комнаты определяется степенью ее теплоизоляции, а также поверхностью окон, которые есть. Обычно этот коэффициент имеет значение от 40 до 70 ккал/м3, причем указано, что он ниже, когда комната лучше изолирована. Если у нас слишком много окон или комната не изолирована должным образом, коэффициент будет слишком высоким и сильно повлияет на тепловой комфорт. Для быстрого расчета, если у вас частный дом, вы можете использовать среднее значение 50 ккал/м3.

3. Коэффициент коррекции

Третий этап включает превращение калорий в ватты. Это потому, что калорийность измеряется в калориях, а тепловая мощность — в ваттах. Расчет поправочного коэффициента осуществляется путем преобразования калорий в ватты с использованием индекса (отношения между двумя единицами измерения), значение которого равно 1,163.

Формула расчета

Таким образом, излучаемая мощность радиаторов определяется умножением результатов полученных на трех этапах, указанных выше. Умножим объем комнаты на значение калорийного коэффициента и на указанный выше показатель 1,163.

Выполнение расчетов (примеры)

Мы привели в пример комнату 4х4м высотой 2,5м и получили объем 40м3. Таким образом, мы умножаем эти 40м3 на средний коэффициент калорийности для изолированных помещений 50ккал/м3 и на индекс, который показывает соотношение между калориями и ваттами, и получаем мощность излучения.
Мощность излучения = 40м.куб x 50ккал/м. куб x 1,163Вт/мккал = 2326Вт

Для определения количества радиаторов, их размеров и количества элементов будем руководствоваться результатом, полученным для каждого помещения. Таким образом, для нашей комнаты размером 4х4 м требуется радиатор мощностью более 2326 Вт или два радиатора, чтобы суммировать эту мощность.

Калькулятор мощности радиатора

Итак, смело пользуйтесь формулой расчета мощности
P = Объем x Коэффициент калорийности x Коэффициент коррекции

Таким образом вы сможете правильно подобрать радиаторы.

Тепловая мощность радиатора Формула и калькулятор

Связанные ресурсы: калькуляторы

Тепловая мощность радиатора Формула и калькулятор

Проектирование и проектирование теплопередачи
Проектирование и проектирование теплообменника

Теплопроизводительность радиатора, формула и Калькулятор

Теплопроизводительность радиатора, конвектора, плинтуса, оребренного теплораспределителя или лучистой панели является степенной функцией разницы температур воздуха в помещении и теплоносителя в агрегате.

Теплопроизводительность определяется как:

q = c ( t s — t a ) n

Где:

q = теплопроизводительность, Вт,
c = константа, определенная в ходе испытаний, также может быть получена от производителя,
t s = средняя температура теплоносителя, °C. Для горячей воды используется среднее арифметическое температур воды на входе и выходе,
t a = температура воздуха в помещении, °C. Температура воздуха на высоте 1,5 м над полом обычно используется для радиаторов, а температура поступающего воздуха – для конвекторов, плинтусов и оребренных труб,
n = показатель степени, равный 1,2 для чугунных радиаторов,
1.31 для излучения плинтуса,
1.42 для конвекторов,
1.0 для панелей потолочного отопления и охлаждения пола,
1.1 для панелей напольного отопления и потолочного охлаждения.

Для агрегатов с оребренными трубами n зависит от температуры воздуха и теплоносителя. Поправочные коэффициенты n для преобразования теплопроизводительности при стандартных номинальных условиях в теплопроизводительность при других условиях приведены в таблицах 1.0 и 2.0.

Таблица 1.0 Поправочные коэффициенты с для различных типов тепловых агрегатов

Таблица 19.2 Поправочные коэффициенты с для различных типов тепловых агрегатов [2016С, Гл. 36, Табл. 2]

9

Давление пара
(прибл.),
кПа
(абсолютный)

3

пар
или
Температура воды,
°С

Радиатор
Комната
Темп., °С

Конвектор
Температура воздуха, °С

25

20

15

25

20

15

9,5

45

15,8

55

0,40

0,33

25,0

65

0,40

0,47

0,54

0,33

0,40

0,47

38,6

75

0,54

0,61

0,68

0,47

0,54

0,61

57,9

85

0,68

0,76

0,83

0,61

0,69

0,77

84,6

95

0,83

0,91

0,99

0,77

0,85

0,93

120,9

105

0,99

1,07

1,15

0,93

1,02

1. 11

169,2

115

1,15

1,24

1,32

1.11

1,20

1,30

232,3

125

1,32

1,41

1,50

1,30

1,40

1,50

313,4

135

1,50

1,59

1,68

1,50

1,60

1,70

415,8

145

1,68

1,77

1,86

1,70

1,81

1,92

Таблица 2.0 Поправочные коэффициенты с для различных типов тепловых агрегатов

Таблица 19. 2 Поправочные коэффициенты с для различных типов тепловых агрегатов [2016С, гл. 36, табл. 2]

Давление пара
(прибл.),
кПа
(абсолютное)

пар
или
Температура воды,
°С

Ребристая труба
Температура воздуха,
°С

Плинтус
Температура воздуха,
°С

25

20

15

25

20

15

9,5

45

0,15

0,21

0,26

0,14

0,19

0,24

15,8

55

0,26

0,32

0,37

0,24

0,30

0,36

25,0

65

0,37

0,44

0,50

0,36

0,43

0,49

38,6

75

0,50

0,57

0,64

0,49

0,56

0,63

57,9

85

0,64

0,71

0,78

0,63

0,70

0,78

84,6

95

0,78

0,86

0,94

0,78

0,86

0,94

120,9

105

0,94

1. 01

1,09

0,94

1,02

1.11

169,2

115

1,09

1,18

1,26

1.11

1,20

1,29

232,3

125

1,26

1,34

1,42

1,29

1,38

1,47

313,4

135

1,42

1,51

1,60

1,47

1,57

1,66

415,8

145

1,60

1,69

1,78

1,66

1,76

1,86

Примечание : Используйте эти поправочные коэффициенты для определения номинальных мощностей радиаторов, конвекторов, ребристых труб и плинтусов при условиях эксплуатации, отличных от стандартных.

Стандартные условия для радиатора в США: температура теплоносителя 102°C и комнатная температура 21°C (в центре помещения и на уровне 1,5 м).

Стандартные условия для конвекторов и оребренных труб и плинтусов: температура теплоносителя 102°C и температура поступающего воздуха 18°C ​​при атмосферном давлении 101,3 кПа. Расход воды 0,9м/с для оребренных труб. Приточный воздух при температуре 18°C ​​для конвекторов и ребристых труб или плинтусов соответствует тем же условиям комфорта в помещении, что и комнатная температура воздуха 21°C для радиатора.

Стандартные условия для излучающих панелей: температура теплоносителя 50°C и температура воздуха в помещении 20°C; c зависит от конструкции панели.

Для определения мощности отопительного агрегата в нестандартных условиях умножьте стандартную теплопроизводительность на соответствующий коэффициент для фактической рабочей температуры теплоносителя и температуры воздуха в помещении или на входе. Связанные:

  • Теория теплопроводности, свойства и приложения
  • Теплоемкость стального резервуара
  • Таблицы общего коэффициента теплопередачи и уравнение
  • Уравнение комбинированного общего коэффициента теплопередачи
  • Коэффициент конвективной теплопередачи — теплопередача
  • Таблица коэффициентов конвективной теплопередачи
  • Коэффициент теплопередачи для круглых воздуховодов Температура стенки Уравнение теплопередачи и калькулятор 909:40 Таблица общего коэффициента теплопередачи
  • Общий коэффициент теплопередачи через трубы теплообменника Уравнение

Взято из ресурсов предоставленных:

Карманный справочник ASHRAE по HVAC SI, 2013

Мощность радиаторов отопления, как определить своими руками, инструкции, фото, видео

Грамотно устроенная система отопления обеспечит жилье с необходимой температурой и будет комфортно во всех помещениях в любую погоду. Но чтобы передать тепло воздушному пространству жилых помещений, нужно знать необходимое количество батарей, не так ли?

Рассчитать это поможет расчет радиаторов отопления, основанный на расчетах тепловой мощности, требуемой от установленных отопительных приборов.

Вы когда-нибудь делали такой расчет и боитесь ошибиться? Мы поможем вам разобраться в формулах — в статье описан подробный алгоритм расчета, проанализированы значения отдельных коэффициентов, используемых в процессе расчета.

Чтобы вам было проще разобраться в тонкостях расчета, мы подобрали тематические фотографии и полезные видео, объясняющие принцип расчета мощности отопительных приборов.

Упрощенный расчет компенсации тепловых потерь

Любые расчеты основаны на определенных принципах. В основу расчета необходимой тепловой мощности батарей положено понимание того, что исправно функционирующие отопительные приборы должны полностью компенсировать тепловые потери, возникающие при их эксплуатации из-за особенностей отапливаемых помещений.

Для жилых помещений, расположенных в хорошо утепленном доме, расположенном, в свою очередь, в умеренном климатическом поясе, в ряде случаев подходит упрощенный расчет компенсации тепловых утечек.

Для таких помещений расчеты основаны на нормативной мощности 41 Вт, необходимой для обогрева 1 куб.м. жизненное пространство.

Чтобы тепловая энергия, выделяемая отопительными приборами, направлялась именно на обогрев помещений, необходимо утеплить стены, чердаки, окна и полы.

Формула для определения тепловой мощности радиаторов, необходимой для поддержания оптимальных условий проживания в помещении, выглядит следующим образом:

Q = 41 x V ,

Где V — объем отапливаемого помещения в кубометрах.

Полученный четырехзначный результат можно выразить в киловаттах, уменьшив его из расчета 1 кВт = 1000 Вт.

Параметры биметаллических радиаторов

Технические параметры биметаллических радиаторов определяются особенностями их конструкции — в легком алюминиевом корпусе находится стержень из антикоррозионной стали, контактирующий с теплоносителем. Такой симбиоз материалов придает им антикоррозийную стойкость, высокую теплоотдачу и малый вес, что облегчает процесс монтажа.

К недостаткам относятся высокая стоимость и низкая пропускная способность.

Исходя из вышеизложенного, полуметаллические радиаторы можно использовать для частных домов с индивидуальным отоплением, но только биметаллические радиаторы выдерживают агрессивную водную среду центрального отопления.

Конструктивно данные виды отопительных приборов делятся на монолитные и секционные. Первые в два раза превосходят второй тип по сроку службы и в три раза — по рабочему давлению. И, как следствие, по себестоимости.

Практический пример расчета тепловой мощности

Исходные данные:

  1. Угловая комната без балкона на втором этаже двухэтажного шлакоблочного оштукатуренного дома в безветренном районе Западной Сибири.
  2. Длина помещения 5,30 м Х ширина 4,30 м = площадь 22,79 кв.м.
  3. Ширина окна 1,30 м Х высота 1,70 м = площадь 2,21 кв. м.
  4. Высота помещения = 2,95 м.

Последовательность расчета:

Площадь помещения в кв.м.: S = 22,79
Ориентация окна — Юг: R = 1,0
Количество внешних стен составляет два: K = 1,2
Насильственность. Насильственность — Внешняя стена — Стандарт:
. = 1,0
Минимальная температура — до -35 ° C: T = 1,3
Высота комнаты — до 3 м: H = 1.05
UpstaR. W = 1,0
Рамы — стеклопакеты однокамерные: G = 1,0
Отношение площадей окна и помещения — до 0,1: Х =
Положение радиатора — под подоконником: Y = 1,0
Соединение радиатора — Диагональ: Z = 1,0
(не забывайте, чтобы Muldly, 100.
(не забудьте, чтобы Muldly 100). Q = 2 986 Вт

Ниже описано, как рассчитать количество секций радиатора и необходимое количество батарей. Он основан на полученных результатах тепловой мощности с учетом размеров предполагаемых мест установки отопительных приборов.

Вне зависимости от результата, в угловых комнатах рекомендуется оборудовать радиаторами не только оконные ниши. Батареи следует устанавливать у «глухих» наружных стен или у углов, подвергающихся наибольшему промерзанию из-за уличного холода.

Как выбрать чугунный радиатор

На какие характеристики радиатора следует обратить внимание при выборе радиаторов? В первую очередь это:

  • рабочее давление;
  • рабочая температура в системе отопления, для которой рассчитывается теплопередача;
  • теплопередача;
  • площадь теплоизлучающей поверхности;

Первый из этих показателей определяет давление теплоносителя (воды), которое может выдержать радиатор. Чем выше этажность здания, тем оно должно быть прочнее. Второй обозначает, с какой температурой теплоноситель подается в радиатор и с какой выходит из него для последующего нагрева. Итак, показатель 90/70 означает, что вода, поступающая в первую секцию батареи, имеет температуру 90 градусов. а на выходе из его последней секции — 70 град. Теплоотдача – это показатель, показывающий, сколько тепла отдает секция радиатора за время остывания воды в ней от температуры на входе (например, 90 градусов) до температуры на выходе (например, 70 градусов).

Особого внимания заслуживает форма приобретенного радиатора. Не секрет, что предубеждение к чугунным радиаторам вызвано тем, что при упоминании о них многие вспоминают знакомую с детства «чугунную гармошку» под окном. Ведь обычные «ребристые батареи» имеют небольшую и малоэффективную площадь нагрева (теплообмена) — так для сечения привычного радиатора МС 140 этот показатель равен 0,23 кв. м.

Часть тепла поступающего теплоносителя теряется «по пути» от котла отопления до батареи водяного отопления, т. к. для таких систем используются массивные подводящие трубы. Кроме того, для нагрева воды до расчетной температуры 90 градусов. подходят только паровые котлы большой мощности. Поэтому в частных домах система отопления иногда работает в более низком температурном режиме.

Однако современные чугунные радиаторы как по внешнему виду, так и, соответственно, по параметрам могут существенно отличаться от своих предшественников – «гармошек». Сохраняя все достоинства традиционных чугунных батарей, он лишен многих их недостатков. Итак, радиатор минского производства 1К60П-500 собран из плоских пластин, каждая из которых имеет небольшую площадь нагрева (0,116 м) и малую мощность (70 Вт).

Однако собранный из них радиатор, по сути, представляет собой нагревательную панель, которая (в отличие от ребристых батарей) дает широкий направленный тепловой поток. Другие производители также предоставляют широкий выбор таких радиаторов.

Преимущество современных чугунных радиаторов в том, что многие модели позволяют собирать батареи необходимой мощности из отдельных секций.

Радиаторы, реализуемые в сборе (например, Коннер, СТИ Бриз и некоторые другие) формируются из числа секций, предназначенных для помещений различной площади на основании инженерного расчета необходимой тепловой мощности на квадратный метр помещения.

Например, вы можете приобрести один радиатор по 4-6-8-12 секций или два радиатора по 4 (6, 8 секций).

Удельная тепловая мощность батарейных секций

Еще до выполнения общего расчета необходимой теплоотдачи отопительных приборов необходимо решить, какие сборно-разборные батареи из какого материала будут установлены в помещениях.

Выбор должен основываться на характеристиках системы отопления (внутреннее давление, температура теплоносителя). При этом не следует забывать о сильно различающейся стоимости покупаемой продукции.

О том, как правильно рассчитать необходимое количество разных батарей для отопления, пойдет речь далее.

При температуре теплоносителя 70°С стандартные 500 мм секции радиаторов из разнородных материалов имеют неодинаковую удельную теплоотдачу «q».

  1. Чугун — q = 160 Вт (удельная мощность одной чугунной секции). Радиаторы из этого металла подходят для любой системы отопления.
  2. Сталь — q = 85 Вт … Стальные трубчатые радиаторы выдерживают самые суровые условия эксплуатации. Их секции красивы своим металлическим блеском, но обладают наименьшим тепловыделением.
  3. Алюминий — q=200 Ватт … Легкие, эстетичные алюминиевые радиаторы следует устанавливать только в автономных системах отопления, в которых давление менее 7 атмосфер. А вот по теплоотдаче их секции не имеют себе равных.
  4. Биметалл — q = 180 Ватт … Внутренности биметаллических радиаторов изготовлены из стали, а теплоотводящая поверхность из алюминия. Эти батареи выдерживают все виды давления и температурных условий. Удельная тепловая мощность биметаллических секций также на высоте.

Приведенные значения q достаточно условны и используются для предварительных расчетов. Более точные цифры содержатся в паспортах приобретаемых отопительных приборов.

Галерея изображений

Фото из

Преимущества секционного принципа сборки

Основные правила сборки отопительных приборов

Устаревшие чугунные аккумуляторные секции

Окрашенные порошковой краской секции

Сколько весит1 медный радиатор ВАЗ?

Если на старой копейке сдох родной медный радиатор, найти ему замену очень просто и не так дорого, как если брать оригинальный.

Можно смело ставить алюминий для ВАЗ 2103-2106.

Лично я брал себе от производителя LUZAR.

Доработка требует докупки патрубков (квасцы 2106), прямых рук и пары часов свободного времени.

Экономия финансов в 2,5 раза.

Код Лузара LRc 0106

OEM номер: 2106-1301012

Размер сердечника, мм: 450*342*32

Где можно купить
Применяемость для А/М
Торговая марка — LRc — Luzar Radiator Cooler

Мы производим сотни моделей радиаторы охлаждения двигателя для автомобилей. Радиаторы выпускаются практически для любых марок на рынке России, различных модификаций, с различными моторами. Постоянно в разработке десятки новых радиаторов охлаждения — для популярных и новейших автомобилей, которые можно купить в России и СНГ.

Радиатор системы охлаждения Теплообменник, предотвращающий перегрев двигателя во время работы. Радиатор охлаждения рассеивает лишнее. подробнее

Торговая марка — LRc — Luzar Радиатор радиатора

Мы производим сотни моделей радиаторов охлаждения двигателя для автомобилей. Радиаторы выпускаются практически для любых марок на рынке России, различных модификаций, с различными моторами. Постоянно в разработке десятки новых радиаторов охлаждения — для популярных и новейших автомобилей, которые можно купить в России и СНГ.

Радиатор системы охлаждения Теплообменник, предотвращающий перегрев двигателя во время работы. Радиатор охлаждения отводит лишнее тепло от двигателя автомобиля через охлаждающую жидкость, тем самым поддерживая оптимальную температуру 85-100°С (в зависимости от марки автомобиля).

По конструкции радиаторы системы охлаждения от LUZAR

Радиаторы охлаждения LUZAR можно разделить на три типа:

  1. Трубчато-пластинчатые, сборные, алюминиевые. Состоит из алюминиевых пластин, через которые проходят алюминиевые трубки, по которым течет теплоноситель. Баки на этих радиаторах сделаны из пластика. Радиаторы охлаждения этого типа применяются для двигателей с небольшой кубатурой — из-за ограниченной теплоотдачи; обладают наилучшей жесткостью и малым весом, а также наименьшей стоимостью.
  2. Лента трубчатая несобранная (паяная), алюминий. Гофрированная алюминиевая лента в таком радиаторе расположена между алюминиевыми плоскоовальными трубками. Баки-радиаторы этого типа могут изготавливаться как из пластика (наиболее распространенный), так и из металла (чаще всего используются радиаторы охлаждения грузов). Конструкция неразборных (паянных) алюминиевых радиаторов охлаждения наиболее универсальна, что позволяет создавать теплообменники с любыми заданными характеристиками. Они имеют малый вес и относительно высокую жесткость, а также оптимальную цену.

Лента трубчатая несобранная (паяная), медно-латунная. Конструкция очень близка к типу 2 — между медными плоскоовальными трубками расположены медные полоски, сложенные в виде «гармошки». При этом баки на таких радиаторах охлаждения используются латунные — с целью повышения общей жесткости конструкции. Медные радиаторы охлаждения — благодаря высокой удельной теплоемкости меди — обладают отличными показателями теплопередачи. Однако из-за высокой мягкости меди радиаторы охлаждения из этого металла вынуждены иметь узкую трубку и большой интервал (шаг) между трубками, что накладывает серьезные ограничения на максимальную эффективность. Также у медных радиаторов самая высокая цена и самая низкая жесткость на кручение, изгиб и внутреннее давление. В связи с этим медные радиаторы «устарели» и постепенно выводятся из употребления.

LUZAR: гарантия и надежность

Мы производим радиаторы по стандартам производителей автомобилей. Каждое изделие проходит испытания избыточным давлением и агрессивной средой, чтобы на этапе производства можно было выявить коррозионные дефекты и протечки.

Продукция LUZAR распространяется через магазины-партнеры, список которых можно найти в разделе «Где купить?» Раздел. В этих же магазинах вы сможете обменять радиатор охлаждения, если обнаружите брак или несовместимость с вашим автомобилем.

На вопросы по производству, упаковке, установке и реализации отвечают наши менеджеры по телефону 8-800-555-8965.

Технические характеристики

Описание товара

Каталожная группа. Система охлаждения Двигатель

Описание Радиатор

ООО «Оренбургский радиатор» занимается разработкой, внедрением и серийным производством радиаторной продукции, которая используется в производстве тракторов, комбайнов, сельскохозяйственной техники, а также отечественных автомобилей и грузовые автомобили.

Уже среди выпускаемой продукции насчитывается более 500 наименований продукции, пользующейся спросом не только в России, но и за рубежом (в Белоруссии, Казахстане, Украине, Польше, Венгрии, Туркменистане, Германии, Чехии, Пакистане и др. .).

automotocity.com

Расчет количества секций радиатора

Сборно-разборные радиаторы из любого материала хороши тем, что отдельные секции можно складывать или убирать для достижения расчетной тепловой мощности.

Для определения необходимого количества «N» секций батарей из выбранного материала следуйте формуле:

N = Q/q ,

Где:

  • Q = рассчитанная ранее необходимая тепловая мощность приборов для обогрева помещения,
  • q = удельная тепловая мощность отдельной секции батарей, предназначенных для установки.

Рассчитав общее необходимое количество секций радиаторов в помещении, нужно понять, сколько батарей нужно установить. Этот расчет основан на сравнении размеров предполагаемых мест установки отопительных приборов и размеров батарей с учетом подачи.

элементы батареи соединяются ниппелями с разнонаправленной наружной резьбой с помощью радиаторного ключа, при этом в места соединений устанавливаются прокладки

Для предварительных расчетов можно вооружиться данными о ширине секций разных радиаторов :

  • чугун = 93 мм,
  • алюминий = 80 мм,
  • биметалл = 82 мм.

При изготовлении сборно-разборных радиаторов из стальных труб производители не придерживаются определенных стандартов. Если вы хотите поставить такие аккумуляторы, следует подойти к вопросу индивидуально.

Вы также можете воспользоваться нашим бесплатным онлайн калькулятором для расчета количества секций:

Увеличенный радиатор охлаждения — DRIVE2

Всем привет, наконец-то мы воплотили нашу старую идею в металле, а точнее в меди. Увеличенный радиатор охлаждения.

Полный размер

В интернете и просто в личном общении много людей, которые жалуются на нагрев двигателей, особенно в горах. В основном это владельцы автомобилей «автомат» с разными моторами.

Решено начать с изготовления самого большого радиатора с тремя рядами сот (есть вариант с двумя) толщиной 70 мм по сотам (двухрядный имеет толщину 46 мм по сотам)

стандартный алюминий толщиной 35 мм в сотах.

Были опасения, что такая толщина не влезет в стандартный моторный отсек, но как оказалось все влезает, не без усилий конечно.

Ставим этот радиатор на патруль в комплектации с двигателем тд42т и АКПП. Технические данные автомобиля Лифт 2″, шины 35″ м/т, главные пары в редукторах 4.375.

Рассказ в мелких деталях здесь особого смысла не имеет, т.к. для товара будет составлена ​​своего рода инструкция по установке с фото и отправлена ​​тем, кто собирается устанавливать наш товар

Короче, нужно внимательно, без отслаивания, а совсем чуть-чуть, подогните нижние края «брызговиков» (арок) в районе нижней части радиатора, подрежьте диффузор в нескольких местах (если он сохранился) и подрежьте верхнюю и нижние патрубки охлаждения для компенсации толщины радиатора (в случае с двухрядным радиатором все проще).

Также мы провели тесты, повесив датчики температуры на входе и выходе радиатора, чтобы иметь объективную оценку происходящего и понять, стоит ли игра выделки и потраченных денег. И конечно оба взвешивали))). Стандартный радиатор имеет вес 8 кг. Медный 23 кг.

Для начала замерили работу штатного радиатора, затем увеличенного медного.

И так первое фото, это работа штатного радиатора, температура воздуха на улице минус 5

Второе фото, температура медного радиатора, температура наружного воздуха 0, к машине прицеплен прицеп с грузом 400 кг.

Полноразмерный

Равномерное движение на скорости 60-80 Стандартный радиатор.

Полноразмерный

Плавный ход на скоростях 60-80 Увеличенный радиатор

Полные

www.drive2.ru

Повышение эффективности теплообмена при обогреве помещения радиатором


3 900 наружная стена также интенсивно нагревается в области за радиатором. Это приводит к дополнительным ненужным потерям тепла.

Для повышения эффективности отвода тепла от радиатора предлагается экранировать обогреватель с наружной стены теплоотражающим экраном.

На рынке представлены разнообразные современные теплоизоляционные материалы с фольгированной теплоотражающей поверхностью. Фольга предохраняет подогретый батареей теплый воздух от соприкосновения с холодной стеной и направляет его внутрь помещения.

Для корректной работы границы установленного отражателя должны превышать габариты излучателя и выступать на 2-3 см с каждой стороны. Зазор между утеплителем и поверхностью теплозащиты должен быть 3-5 см.

Для изготовления теплоотражающего экрана можно посоветовать Изоспан, Пенофол, Алуф. Из купленного рулона вырезается прямоугольник необходимых размеров и закрепляется на стене в месте установки радиатора.

Экран, отражающий тепло обогревателя, лучше всего крепить к стене силиконовым клеем или жидкими гвоздями

Рекомендуется отделить лист утеплителя от наружной стены с небольшим воздушным зазором, например , используя тонкую пластиковую решетку.

Если отражатель соединяется из нескольких кусков изоляционного материала, то стыки со стороны фольги должны быть проклеены металлизированным скотчем.

Радиаторы стальные

Отопительные приборы из стали представлены на рынке в широком ассортименте. Конструктивно они делятся на панельные и трубчатые.

В первом случае панель крепится на стену или на пол. Каждая часть состоит из двух сварных пластин, между которыми циркулирует теплоноситель. Все элементы соединяются точечной сваркой. Такая конструкция значительно увеличивает теплоотдачу. Для увеличения этого показателя несколько панелей соединяют между собой, но в этом случае батарея становится очень тяжелой – радиатор из трех панелей по весу равен чугуну.

Во втором случае конструкция состоит из нижнего и верхнего коллекторов, соединенных друг с другом вертикальными трубами. Один такой элемент может содержать максимум шесть трубок. Для увеличения поверхности радиатора несколько секций можно соединить вместе.

Оба типа являются прочными нагревательными приборами с хорошей теплоотдачей.

Радиаторы трубчатые стальные по конструктивному назначению могут изготавливаться в виде перегородок, лестничных ограждений, рам зеркал.

Таблица теплопередачи стальных радиаторов отопления размещена далее в статье.

Сильные и слабые стороны алюминиевых радиаторов

Перечень положительных характеристик алюминиевых батарей:

  1. Экономичность.
  2. Легкий вес. То, сколько весит алюминиевая батарея, значительно упрощает установку и снятие устройств.
  3. Возможность регулировки температуры.
  4. Самый высокий КПД среди всех бытовых радиаторных обогревателей.
  5. Презентабельный внешний вид, позволяющий использовать алюминиевые радиаторы как в обычных домах, так и в престижных заведениях.

Слабые стороны:

  1. Слабость стыковых швов (иногда бывают протечки).
  2. Неравномерное распределение тепла: в основном аккумулируется ребристой частью профилей.
  3. Слабая конвекционная циркуляция.
  4. Малый срок службы. Те же чугунные батареи служат гораздо дольше, чем 15-20 лет.
  5. Могут образовываться внутренние газы.
  6. Чрезмерная реакционная способность алюминия. Это самый большой недостаток данного типа батарей, из-за которого наличие малейших примесей в теплоносителе может спровоцировать разрушительные процессы на внутренних стенках.
  7. Низкая устойчивость к перепадам давления.

Учитывая все эти недостатки, сфера применения алюминиевых радиаторов ограничена автономными системами отопления, которые имеют стабильно низкое давление и химически нейтральный теплоноситель. Что касается установки батарей такого типа в обычных квартирах, то на это есть даже специальный запрет со стороны соответствующих органов.

Радиатор отопления, сравнение нескольких типов

для каждого из них есть определенные условия

  1. Секционный чугунный радиатор.
  2. Алюминиевый нагреватель.
  3. Устройства нагревательные биметаллические секционные.

Сравним разные типы отопительных приборов по параметрам, влияющим на их выбор и установку:

  • Величина тепловой мощности отопительного прибора.
  • При каком рабочем давлении. происходит эффективная работа устройства.
  • Требуемое давление для опрессовки секций батареи.
  • Занимаемый объем теплоносителя одной секцией.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *