Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Расчет отопления по объему помещения: Самостоятельный расчёт тепловой мощности | Справочник строителя

Содержание

расчет количества секций радиатора по площади и объему помещения, точный расчет количества секций

Вопрос расчета радиаторов отопления част возникает при замене радиаторов, либо в случае если помещение не прогревается до комфортной температуры. Тепловая мощность радиатора отопления достаточная для поддержания комфортной температуры в помещении зависит от многих факторов, таких как тип и толщина стен, тип окон, расположение радиатора, площадь помещения и пр.

Фактически существует три вида расчета радиаторов отопления: по площади помещения, по объему помещения и расчет с учетом приведенных выше факторов. Первые два вида являются приближенными, последний более точный.

Расчет радиатора отопления по площади помещения

Для того чтобы определить мощность радиатора отопления и соответственно необходимое количество секций можно руководствоваться следующим правилом. Для отопления помещения со средней высотой потолка в районе 2,6 м необходимо не менее 100ВТ тепловой мощности на 1 кв. м. помещения.

Получается, что если имеем помещение площадью 15 кв.м. то для ее отопления необходим радиатор мощностью 1500 Вт. Далее необходимо разделить это значение на номинальную мощность одной секции радиатора. Например, для алюминиевого радиатора номинальная мощность 1 секции составляет в среднем 180Вт. Следовательно для обогрева помещения площадью 15 кв.м. необходим радиатор имеющий 9 секций.

Расчет количества секций радиатора по объему помещения

Для расчета радиатора отопления на основе объема помещения принимается среднее значение необходимой мощности для отопления 1 куб.м. помещения в 41 Вт. Эта величина является средней и соответствует средней полосе России, для панельного дома. Для хорошо утепленного дома эта величина может быть уменьшена до 30 Вт.

Так получаем для помешения площадью 15кв.м. при высоте потолка 2,6м объем равен 39куб.м. Умножаем объем на расчетное значение необходимой мощности и получаем, что для отопления помещения требуется радиатор мощностью 1599 Вт.

Соответственно при использовании алюминиевого радиатора отопления необходим радиатор с 9-ю секциями.

Точный расчет радиатора отопления

Точный расчет количества радиаторов отопления базируется не только на площади и объеме помещения, но и на климатических условиях, а так же на возможные потери тепла через стены, пол, потолок и окна.

Р = 100Вт/кв.м. * S * К1 * К2 * К3 * К4 * К5 * К6 * К7, где

Р — мощность радиатора отопления;

S — площадь помещения, кв.м.;

К1 — коэффициент, учитывающий вид остекления:

  • деревянные рамы два стекла — 1,27;
  • двойной стеклопакет — 1,0;
  • тройной стеклопакет — 0,85.

К2 — коэффициент учитывающий теплоизоляцию наружных стен:

  • панельный дом — 1,27;
  • кирпичный дом — 1,0;
  • кирпичный дом с дополнительной теплоизоляцией — 0,85.

К3 — коэффициент учитывающий площадь остекления, определяется как отношение площади остекления к площади помещения в %:

  • 50% — 1,2;
  • 40% — 1,1;
  • 30% — 1,0;
  • 20% — 0,9;
  • 10% — 0,8.

К4 — коэффициент, учитывающий самые неблагоприятные метеоусловия.:

  • -35 градусов — 1,5;
  • -25 градусов — 1,3;
  • -20 градусов — 1,1;
  • -15 градусов — 0,9;
  • -10 градусов — 0,7.

К5 — коэффициент, учитывающий количество стен граничащих с улицей:

  • 1 стена— 1,1;
  • 2 стены— 1,2;
  • 3 стены— 1,3;
  • 4 стены— 1,4.

К6 — учитывает вид помещения расположенное этажом выше:

  • холодный чердак — 1,0;
  • отапливаемый чердак — 0,9;
  • отапливаемое жилое помещение — 0,8

К7 — позволяет учесть высоту потолков:

  • при 2,5 м — 1,0;
  • при 3,0 м — 1,05;
  • при 3,5 м — 1,1;
  • при 4,0 м — 1,15;
  • при 4,5 м — 1,2.

Для того чтобы посмотреть какая разница в величине мощности радиатора отопления между первыми двумя и последним вариантом расчета радиатора отопления примем: площадь 15 кв. м., панельный дом, площадь остекления 10%, минимальная температура -25 градусов, 2 граничащих с улицей стены, высота потолка 2,6м. В результате получаем.

Р=15*100*0,85*1,27*0,8*1,3*1,2*0,8*1=1616 Вт

Соответственно радиатор отопления должен иметь 9 секций.

Как показывают сравнительные расчеты вполне можно для подсчета количества секций радиаторов вполне можно применять упрощенные методы.

Так же следует отметить, что учитывая такие параметры, как перепады температуры в системе отопления, а также способ подключения радиаторов целесообразнее иметь радиатор мощностью примерно на 20% больше, чем требуется. В этом случае, для поддержания оптимальной температуры в помещении необходимо устанавливать регулировочный вентиль. Таким образом можно обеспечить комфортные условия проживания.

Калькулятор расчета мощности конвектора по площади помещения

Подобрать конвектор по параметрам

Стены

Общая длина внешних (холодных) стен помещения м

Высота стены м

Количество слоев материала наружних стен 1 2 3 4 5

Тип материала:

Слой 1 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло

Толщина слоя м

Слой 2 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло
Толщина слоя м

Слой 3 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло

Толщина слоя м

Слой 4 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло
Толщина слоя м

Слой 5 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло

Толщина слоя м

Остекление

Пол

Кровля

0 Вт Тепловая мощность конвектора

Подберите модель

Расчет мощности конвектора: полезные таблицы и формулы

При проектировании системы отопления в квартире или доме важно определить необходимую мощность теплового оборудования.

Для этого нужно знать площадь помещения, высоту потолков, количество внешних стен и окон для применения повышающего коэффициента. Если высота потолков в доме – около 2,7 м, вы легко произведете расчет мощности конвекторов по площади. Согласно нормам СНиП 41-01-2003, 1 кВт тепловой энергии достаточно для обогрева 10 кв. м помещения.

Как рассчитать мощность конвекторов по площади?

В соответствии со строительными нормами номинальная мощность конвектора для комнаты 25 кв. м составит:

(25 кв. м : 10 кв. м) * 1 кВт = 2,5 кВт

или

25 кв. м * 0,1 кВт = 2,5 кВт

Полученный результат приведен без учета особенностей помещения. Для повышения точности вычислений учтите следующие факторы:

  • расположение конвектора под окном снижает теплоотдачу, поэтому для компенсации тепловых потерь выбирайте оборудование на 5 – 10 % мощнее;
  • если окна занимают большую площадь стены (панорамные, французские), а также выходят на север и северо-восток, при расчетах увеличьте результат на 15 %;
  • угловое расположение помещения требует увеличения мощности на 20 %, а при наличии в такой комнате 2 окон полученный результат повышают на 30 %.

Сделать расчеты наиболее точными вам поможет таблица повышающих коэффициентов:

Особенность помещения Коэффициент
Отсутствие утепления стен 1,1
Установка конвектора под окном 1,05
Монтаж конвектора в угловом помещении с 1 окном
1,2
Монтаж конвектора в угловом помещении с 2 окнами 1,3
Наличие однослойных стеклопакетов 0,9
Высота потолков от 2,8 до 3 м 1,05

Произведем расчет мощности электрического конвектора отопления для угловой комнаты с двумя внешними стенами и площадью 18 кв. м:

(18 кв. м * 0,1 кВт) * 1,2 = 2,16 кВт

В некоторых регионах при расчете учитывают климатические особенности, но в средней полосе России погодный коэффициент равен 1,0.

Расчет мощности конвектора по объему помещения

Согласно положениям СП 60.13330.2012, для обогрева помещений с очень высокими и низкими потолками необходимо 41 Вт на 1 куб. м объема. Зная длину, ширину комнаты и высоту потолка, вы сможете рассчитать мощность отопления на калькуляторе по формуле:

abc * 0,041 кВт,

где abc – формула расчета объема;

0,041 кВт – норматив тепловой энергии.

Рассчитаем мощность конвектора для комнаты 3х4 м с потолками 2 м:

(3*4*2) * 0,041 = 0,984 кВт

Для обогрева такой комнаты потребуется конвектор мощностью 1 кВт (без учета повышающих коэффициентов).

Как рассчитать количество батарей для отопления для вашей квартиры

Расчет необходимого количества радиаторов отопления для обогрева помещения производится для каждой комнаты отдельно. Или, в том случае, если комнаты соединены проёмом, дверь между ними постоянно открыта, при расчёте они принимаются за одно помещение. А вот как рассчитать количество секций батарей – узнайте из статьи на нашем сайте.

Расчет количества радиаторов отопления на комнату

Примерный расчёт количества секций радиаторов отопления можно произвести по объему помещения, исходя из того, что на 1 куб. м объема нужно 34 Вт мощности батареи. Например, комната площадью 20 кв. м и с высотой потолка 2,5 м имеет объем 50 куб. м. Значит, для нее нужна суммарная мощность батарей отопления 50 * 34 = 1,7 кВт.

Расчет количества секций радиатора

Мощность 8-секционного радиатора Warmica Lux – 1,48 кВт, 10-секционного – 1,85 кВт. Придётся брать 10-секционный: лучше в тепле, чем в холоде!

Более точный расчет радиаторов отопления по площади производят с учётом множества коэффициентов. Формула расчета количества радиаторов отопления в этом случае выглядит следующим образом:

P=100*S*k1*k2*k3*k4*k5*k6*k7, где

P – суммарная мощность радиаторов, необходимых для обогрева помещения, в Ваттах;

S – площадь помещения в кв. метрах;

Чем больше комната, тем больше секций радиатора отопления нужно для ее обогрева

k1 – коэффициент, вносящий поправку на качество остекления окон, для обычного пакета в два стекла

k1=1,27,

для двойного стеклопакета k1=1,

для тройного k1=0,85;

k2 – коэффициент, характеризующий качество теплоизоляции стен. Для стены в два кирпича принимается равным 1,

для стены с худшей теплоизоляцией – 1,27,

с лучшей теплоизоляцией – 0,85;

Выбирайте радиатор нужной мощности!

k3 – коэффициент, характеризующий отношение площади окон к площади пола в помещении. При отношении Sокон/Sпола= 0,5 k3=1,2ж

при Sокон/Sпола= 0,4 k3=1,1;

при Sокон/Sпола= 0,3 k3=1,0;

при Sокон/Sпола= 0,2 k3=0,9;

при Sокон/Sпола= 0,1 k3=0,8.

k4 – вводит поправку на климатический пояс. Если средняя температура самой холодной недели года в зоне размещения постройки составляет – 35°С, то k4 принимается равным 1,5;

Чем ниже температуры за окном, тем мощнее должен быть радиатор!

если самая холодная температура -25°С, то k4= 1,3;

если -20°С, то k4= 1,1;

если -15°C, то k4= 0,9;

если – 10°С, то k4= 0,7:

k5 вводит поправку на количество стен в помещении, выходящих наружу.

Если одна стена является наружной, то k5=1,1;

если две стены, то k5=1,2;

если три стены, то k5=1,3;

если 4 стены, то k5=1,4.

Радиатор в угловой комнате должен быть мощнее

k6 учитывает тип помещения, находящегося выше обогреваемой комнаты. Если это холодный чердак, то

k6 принимается равным 1;

если отапливаемый чердак, то k6 = 0,9;

если отапливаемое жилое помещение, то k6=0,7.

Коэффициент k7 вводит поправку на высоту потолка. Его надо выбрать из расположенной ниже таблицы:

Высота потолка, м2,53,03,54,04,5
k71,01,051,101,151,20

Но, как понимает читатель, в стандартной квартире с пластиковыми окнами расчет производится элементарным образом: площадь комнаты перемножается на 100 и получается потребная мощность в Ваттах. То есть, для рассмотренной выше комнаты площадью 20 кв. м необходимы батареи общей мощностью 2 кВт. Это немного больше, чем было получено при расчете по объёму, но разница не критична.

В комнате с высоким потолком радиатор должен быть мощнее

Как рассчитать количество батарей отопления в режиме online

Торгующие организации берегут клиентов от лишних умственных усилий и помещают на своих сайтах калькуляторы расчета количества радиаторов отопления. Работа с ними напоминает игру: знай, вводи параметры помещения (площадь, количество наружных стен, размеры окон и т.д.) и получай готовый результат.

Чугунные радиаторы по-прежнему пользуются большой популярностью

На сайте компании «Термал» калькулятор рассчитать количество батарей отопления позволяет даже для разных типов батарей. Впрочем, меняются не характеристики помещения и не количество потребных на его обогрев ватт, а мощность 1 секции радиатора.

Так, если делать расчет количества биметаллических радиаторов отопления, то мощность одной секции принимается равной 220 Вт;

Биметаллические радиаторы имеют растущую популярность

если делать расчет количества радиаторов отопления чугунных, то средняя мощность секции принимается 250 Вт;

если делать расчет количества алюминиевых радиаторов отопления, то средняя мощность секции принимается 180 Вт.

Алюминиевые радиаторы парового отопления привлекательны своей дешевизной

Конечно же, заказчик может скорректировать мощность секции в соответствии с паспортными данными приобретаемого оборудования и более точно рассчитать количество батарей на комнату.

Чтобы самая лютая стужа была нипочём! Расчет радиаторов отопления

Вы просматриваете раздел Расчет, расположенный в большом разделе Установка.

Тщательно продуманная система отопления дома — одна из важнейших задач при строительстве и последующем усовершенствовании жилищных условий, поскольку комфортная температура в помещении не только залог уюта, но и важное условие для человеческой жизни.

Расчёт и подбор необходимо совершать в зависимости от ряда условий, таких как материал радиатора, обогреваемой площади, климатических условий региона и др. Для корректного монтажа отопительной системы можно обратиться к профессионалам, а можно осуществить этот процесс с помощью своих умений и навыков.

Замеры для определения радиаторов отопления

Определение параметров отопления в квартире должно начинаться с получения необходимых данных, снятых путём замера.

Этими данными являются: длина комнаты, ширина комнаты, площадь комнаты, количество внешних стен, высота потолков, количество, дверей, количество окон, площадь каждого из окон.

Определение параметров батарей в зависимости от различных факторов

На расчет радиаторов отопления оказывают влияние множество факторов.

По площади жилого пространства

Приняв искомый параметр как Q, расчёт представляет собой формулу:

Q = S×100 Вт (1), где

S ? площадь пространства, для которого производится подсчёт радиатора, м2;

100 Вт ? величина, принимаемая нормативно, означающая количество тепла, необходимое для 1 м2 жилой площади.

Особенности вычислений с применением уточняющих множителей

Уточняющие множители для этого расчёта ? коэффициенты, учитывающие конструкционные особенности расчётного жилья.

Определение Q с их использованием позволит наиболее точно определить тепловые расходы для каждого индивидуального случая.

Коэффициенты уточняют формулу (1) и приводят её к следующему виду:

Q=S×100Вт×α×β×γ×δ×ε×ζ×η×θ (2), где

α — множитель, учитывающий количество внешних стен, которые увеличивают тепловые потери, принимается равным:

Величина α Кол-во стен
1,0 1
1,2 2
1,3 3
1,4 4

β — множитель, учитывающий степень естественной прогреваемости жилого пространства. Зависит от стороны света, на которую выходит окно. β принимается равным:

Величина β Сторона света
1,1 Север, Восток
1,0 Юг, Запад

γ — множитель, учитывающий местные климатические условия. Зависит от средней минимальной температуры января. Значение уточняется по данным справочников или местной гидрометеослужбы. γ принимается равным:

Величина γ Температура
0,7 до -10°С
0,9 до -15°С
1,1 до -20°С
1,3 от -20°С до -35°С
1,5 от -35°С и ниже

Фото 1. Потери тепла в частном доме. Их нужно учитывать при установке отопительных радиаторов.

δ — множитель, учитывающий наличие стенового утеплителя помещений. δ принимается равным:

Величина δ Уровень утепления
0,85 Высокий
1,0 Средний
1,27 Низкий

ε — множитель, зависящий от высоты потолков жилья. ε принимается равным:

Величина ε Высота потолка
1,0 до 2,7 м
1,05 от 2,8 м до 3,0 м
1,1 от 3,1 м до 3,5 м
1,15 от 3,6 м до 4,0 м
1,2 свыше 4,1 м

ζ — множитель, учитывающий потерю тепла, за счёт помещения, находящегося над расчётным. ζ принимается равным:

Величина ζ Тип помещения сверху
0,8 Отапливаемое
0,9 Утеплённое
1,0 Неотапливаемое

η — множитель, использующий зависимость искомого значения от типа окна, установленного в помещении. η принимается равным:

Величина η Тип окна, стеклопакет
0,85 Трехкамерный
1,0 Двухкамерный
1,27 Рамы двойные обычные

Фото 2. Однокамерные, двухкамерные и трехкамерные стеклопакеты. Тип окна влияет на количество устанавливаемых радиаторов.

θ — множитель, учитывающий при расчёте процентное соотношение площади окна к площади пола. θ принимается равным:

Значение θ Отношение
0,8 10%
0,9 20%
1,0 30%
1,1 40%
1,2 50%

В зависимости от объёма помещения

Учёт объёма жилого пространства позволит получить более точные данные при вычислении отопительного прибора, и формула (1) примет вид:

Q=S×h×41 Вт (3), где

h — высота потолков комнаты, м;

41 Вт ? величина, принимаемая нормативно, означающая количество тепла, необходимое для 1 м3жилой площади.

Внимание! Потери тепла ? неминуемый минус при отоплении квартиры.

Формула расчета теплоотдачи радиаторных приборов для квартир

Теплорасчет для квартиры лучше всего выполнить с учётом общих потерь тепла по формуле:

ТПобщ = V×0,04×ТП0×n0×ТПд×nд (4), где

V — объем расчётного пространства, м3;

0,04 — нормативная величина потерь для 1 м3;

ТП0 — нормативная величина потерь от одного окна, ТП0 = 0,1 кВт;

n0— общее количество окон в квартире;

ТПд — нормативная величина от одной двери, ТПд = 0,2 кВт;

nд — количество дверей в квартире.

Общие теплопотери квартиры определяются также специальным прибором ? тепловизором, который при этом выполняет функцию поиска скрытых строительных дефектов и бракованных материалов.

Фото 3. Тепловизор от производителя Fluke. Прибор позволяет измерить температуру радиаторов отопления.

На общий расчёт также влияет мощность радиатора:

Рст = ТП0/1,5×k (5), где

Рст — мощность радиатора;

1,5 — коэффициент, учитывающий работу прибора при температуре от 50?С до 70?С;

k — коэффициент запаса, применяется равным:

Искомый k Тип жилья
1,2 Квартира
1,3 Частный дом
  • Особенности определения радиаторных приборов для многоэтажного дома

Вычисление проводится по формуле:

Q = S×80 Вт (6), где

80 Вт ? значение, принимаемое нормативно, означающее количество тепла, необходимое на 1 м2 жилой площади, начиная со второго этажа и выше.

Вам также будет интересно:

Вычисление количества радиаторных секций

Для вычисления количества секций радиатора также необходима особая формула.

По площади комнаты

В обеспечении необходимой теплоподачи помещения, одно из важных значений ? количество секций радиатора.

Корректно подобранное, оно обеспечит потребителя необходимым уровнем комфорта при неблагоприятных зимних температурах.

Определение количества секций по площади помещения ведётся по формуле:

nc = S×100 Вт/q0 (7), где

q0 — теплоотдача одной секции радиатора, данные технической документации, комплектующейся вместе с изделием.

По объёму дома

Применение расчёт по объёму позволит более точно определить необходимое количество секций:

nc = V×100 Вт/q0 (8)

  • Особенности определения мощности секции с поправочным коэффициентом:

Для определения поправочного коэффициента необходимо определить температурный напор системы отопления по формуле:

hт = (tвх-tвых/2)-tпом (9), где

tвх— температура на входе радиатора;

tвых — температура на выходе радиатора;

tпом — необходимая температура в помещении.

Следующий шаг ? нахождение поправочного коэффициента k, зависящего от полученного параметра hт по таблице:

hт k hт k hт k hт k
40 0,48 49 0,63 58 0,78 67 0,94
41 0,50 50 0,65 59 0,80 68 0,96
42 0,51 51 0,66 60 0,82 69 0,98
43 0,53 52 0,68 61 0,84 70 1,0
44 0,55 53 0,70 62 0,85 71 1,02
45 0,58 54 0,71 63 0,87 72 1,04
46 0,58 55 0,73 64 0,89 73 1,06
47 0,60 56 0,75 65 0,91 74 1,07
48 0,61 57 0,77 66 0,93 75 1,09

Заключительный этап ? находим параметр мощности секции по формуле:

qс = k×q0 (10).

Самое точное определение мощностного параметра системы отопления в кВт

?

Наиболее точное определение проводится по формуле (2) с учётом уточнённого теплового расчёта:

Мощность, кВт = ((Lд×Lш)×Hп)/2,7))/10 (11), где

Lд — длина комнаты;

Lш — ширина комнаты;

Hп — высота потолка.

Полезное видео

Посмотрите видео, в котором рассказывается, как рассчитать количество секций в батареях отопления.

Правильный расчёт прибора ? залог комфортной температуры

Правильный расчёт теплопотерь, например, через окна и двери, а также подбор радиаторов обеспечит успешное завершение ремонта и будет гарантировать постоянную нормированную температуру в помещении, а, следовательно, и хорошее самочувствие жителей. Серьёзный подход к процессу обеспечивает успех во всех начинаниях.

Расчет отопления. Порядок и примеры расчета размера платы за отопление

Согласно подпункту е) пункта 4 правил, утвержденных Постановлением Правительства Российской Федерации от 06.05.2011 № 354 (далее — Правила), отопление — это подача по централизованным сетям теплоснабжения и внутридомовым инженерным системам отопления тепловой энергии, обеспечивающей поддержание в жилом доме, в жилых и нежилых помещениях в многоквартирном доме, в помещениях, входящих в состав общего имущества в многоквартирном доме, температуры воздуха, указанной в пункте 15 Приложения № 1 к Правилам, а также продажа твердого топлива при наличии печного отопления.

Расчет размера платы за отопление по Правилам можно условно разделить на три категории:

  • Расчет платы за отопление для жилого или нежилого помещения, расположенного в многоквартирном доме;
  • Расчет платы за отопление для коммунальной квартиры;
  • Расчет платы за отопление в жилом доме (домовладении).

Предлагаем ознакомиться с порядком и примерами расчета размера платы за отопление.

Расчет платы за отопление

Порядок расчета размера платы за отопление, который будет рассматриваться в данной статье, действует с 1 января 2019 года и является актуальным в 2020 и 2021 годах.

Расчет платы за отопление

О порядке расчета размера платы за отопление в жилом доме (домовладении, частном доме) согласно правилам расчета размера платы за коммунальные услуги, действующим в 2019 — 2020 годах.

Расчет платы за отопление

В последнее время в Постановление Правительства РФ от 06.05.2011 № 354, которое определяет порядок расчета размера платы за коммунальные услуги, в том числе за услугу по отоплению, были внесены существенные изменения. В данной статье речь пойдет об актуальных методиках расчета размера платы за отопление за период с 2017 года по 2019 год …

Расчет платы за отопление

Расчет размера платы за отопление с 01.06.2013 года должен производиться по правилам расчета, утвержденным Постановлением Правительства Российской Федерации от 06.05.2011 г. № 354 с изменениями Постановления Правительства Российской Федерации от 16.04.2013 № 344 (далее — Правила). С 01.06.2013 года потребители отопления в многоквартирном доме вносят оплату за данную услугу в совокупности без разделения оплаты за отопление . ..

Расчет платы за отопление

Порядок и правила расчета размера платы за отопление в комнате, расположенной в коммунальной квартире многоквартирного дома, зависит от оборудования коммунальной квартиры и многоквартирного дома приборами учета, установленными на тепловую энергию. Размер платы за отопление для потребителей тепловой энергии в комнате, являющейся частью коммунальной квартиры, разделяется на две составляющих …

Порядок и правила расчета размера платы за отопление в многоквартирном доме зависит от оборудования многоквартирного дома (жилого дома), жилых и нежилых помещений приборами учета тепловой энергии. с 01.09.2012 размер платы за отопление в многоквартирном доме должен быть разделен на две составляющих: плата за коммунальную услугу, предоставленную в жилом/нежилом помещении, и плата за коммунальную услугу, предоставленную на общедомовые нужды …

Расчет секций радиаторов: по площади, объему помещений

Радиаторы отопления являются распространенными отопительными приборами. Их устанавливают для экономного расхода газа и для создания комфортного температурного режима в доме. Выбирая качественный радиатор, необходимо учитывать его мощность, материалы изготовления, производителя, стоимость. Перед покупкой отопительного оборудования важно произвести расчет количества секций для радиаторов.

Расчет радиаторов отопления по площади

Расчет количества секций батарей проводится для конкретных целей:

  • Экономической выгоды.
  • Комфортного температурного режима в доме.

Сделать расчет радиатора по площади довольно легко. Для этого применяются разные методики, но суть у них одна — определить тепловые потери помещения и рассчитать количество отопительных приборов, которые справятся с этими потерями.

Самые простые методы позволяют добиться приблизительных данных, а при точном расчете используются специальные коэффициенты, учитывающие особенности помещения (угловая комната, наличие дверей, окон, выход на лоджию).

Популярными способами расчета радиаторов являются:

  • На 1 квадратный метр необходимо 100 Ватт тепла. Из этой формулы легко сделать расчет необходимого количества батарей.
  • Расчет при помощи тепловизора. Это устройство четко зафиксирует, в каких местах в помещение происходят максимальные теплопотери, позволит определить, чем они спровоцированы (трещина в стене, недочеты ремонта).

Высчитывая количество необходимых батарей для помещения, учитываются такие факторы, как:

  1. Потери тепла в помещении.
  2. Мощность секций радиаторов.

Очень важно учитывать высоту потолков, количество оконных и дверных проемов, так как через них выходит большое количество тепла.

Как посчитать секции радиатора по объему помещения

Подсчитывая количество секций батареи для обогрева помещения по площади, стоит учитывать, что чем больше площадь комнаты, тем больше радиаторов необходимо в ней установить. Если в квартире индивидуальная система отопления, потребуется учитывать и то, что чем больше батарей вы установите, тем большее количество теплоносителей будет циркулировать в системе.

Следовательно, у вас будут большие финансовые затраты на поддержание комфортной температуры в доме. Если же речь идет о центральной системе отопления, которые встречаются в городских квартирах, этот показатель можно не учитывать.

Просчитав тепловые потребности помещения, можно легко рассчитать число необходимых батарей.

В паспорте отопительного прибора обязательно должен указываться объем тепла, который он способен обеспечить.

Получившийся показатель необходимого количества секций можно округлить до меньшего или большего значения. Если комната находится между другими помещениями, показатель округляется к меньшему значению, если помещение является угловым или в нем расположено огромное окно, показатель округляется до большего значения.

Зависимость мощности радиаторов от подключения и места расположения

Также мощность отопительных приборов напрямую зависит и от типа подключения батареи. Идеальным вариантом является диагональный тип подключения радиатора. В таком случае потери тепловой мощности будут отсутствовать. А при боковом подключении теплопотери будут достигать 22%. У остальных типов подключения будут наблюдаться средние потери тепла.

Важно: мощность батареи будет уменьшаться при наличии загромождающих конструкций (подоконников, сетчатых экранов).

Определение количества радиаторов для однотрубных систем

Все вышеперечисленные примеры относись к батареям, подключенным к двухтрубной системе отопления. Расчет количества батарей для однотрубной системы будет немного отличаться. Мощность прибора в обеих системах отопления рассчитывается одинаково.

В однотрубных системах число и размеры батарей стоит увеличивать, учитывая их отдаленность от места входа в систему теплоносителя.

Подводя итоги, стоит отметить, что приблизительный расчет количества радиаторов для отопительной системы рассчитать можно довольно легко. При этом необходимо учитывать все влияющие факторы: вид подключения, размеры комнат, другие специфические характеристики. При правильном подсчете нужного количества батарей, в вашем доме всегда будет тепло и уютно — даже в самую стуженую зиму.

Правила расчета радиаторов отопления

Самая полная информация по теме: «правила расчета радиаторов отопления» с полным описанием и комментариями от профессионального мастера.

Правильный расчет количества секций батарей отопления

Очень важно купить современные качественные и эффективные батареи. Но куда важнее правильно произвести расчёт количества секций радиатора, чтобы в холодную пору он должным образом прогревал помещение и не пришлось думать об установке дополнительных переносных отопительных приборов, которые увеличат расход средств на отопление.

Сегодня можно назвать огромное количество СНиПов, которые описывают правила проектирования и эксплуатации отопительных систем в различных помещениях. Но наиболее понятным и простым является документ «Отопление, вентиляция и кондиционирование» под номером 2.04.05.

В нем подробно описаны следующие разделы:

  1. Общие положения, касающиеся проектирования систем отопления
  2. Правила проектирования систем отопления зданий
  3. Особенности прокладки труб отопительной системы

Монтировать радиаторы отопления необходимо также согласно СНиП под номером 3.05.01. Он предписывает следующие правила монтажа, без которых произведенные расчеты количества секций окажутся малоэффективны:

  1. Максимальная ширина радиатора не должна превысить 70% от аналогичной характеристики оконного проема, под которым он устанавливается
  2. Радиатор должен крепиться по центру оконного проема (допускается незначительная погрешность – не более 2 см)
  3. Рекомендуемое пространство между радиаторами и стеной – 2-5 см
  4. Над полом высота не должны быть более 12 см
  5. Расстояние до подоконника от верхней точки батареи – не менее 5 см
  6. В иных случаях для улучшения теплоотдачи поверхность стен покрывают отражающим материалом

Нет тематического видео для этой статьи.

Видео (кликните для воспроизведения).

Следовать таким правилам необходимо для того, чтобы воздушные массы могли свободно циркулировать и сменять друг друга.

Читайте так же, наш сравнительный обзор различных видов радиаторов отопления

Чтобы точно произвести расчёт количества секций отопительного радиатора, необходимых для эффективного и комфортного отопления жилого помещения, следует принимать во внимания его объем. Принцип весьма прост:

  1. Определяем потребность тепла
  2. Узнаем количество секций, способных его отдавать

СНиП предписывает учитывать потребность в тепле для любого помещения – 41 Вт на 1 м. куб. Однако этот показатель весьма относителен. Если стены и пол плохо утеплены, это значение рекомендуют увеличить до 47-50 Вт, ведь часть тепла будет утрачиваться. В ситуациях, когда по поверхностям уже уложен качественный теплоизолятор, смонтированы качественные окна ПВХ и устранены сквозняки – данный показатель можно принять равным 30-34 Вт.

Если в комнате расположены экранированные радиаторы отопления, потребность в тепле необходимо увеличить до 20%. Часть тепловой нагретых воздушных масс не будет пропускаться экраном, циркулируя внутри и быстро остывая.

Формулы расчета количества секций по объему помещения, с примером

Определившись с потребностью на один куб, можно приступит к вычислениям (пример на конкретных цифрах):

  1. На первом шаге рассчитываем объем помещения по простой формуле: [высота]*[длина]*[ширина](3х4х5=60 куб м.)
  2. Следующий этап – определение потребности теплоты для конкретно рассматриваемого помещения по формуле: [объем]*[потребность на м. куб.](60х41=2460 Вт)
  3. В паспорте, прилагаемом к радиатору отопления, необходимо узнать мощность одной секции – средний показатель современных моделей 170 Вт
  4. Определить желаемое количество ребер можно по формуле: [общая потребность в тепле]/[мощность одной секции](2460/170=14. 5)
  5. Округление рекомендуется делать в большую сторону – получаем 15 секций

Многие производители не учитывают, что теплоноситель, циркулирующий по трубам, имеет далеко не максимальную температуру. Следовательно, мощность ребер будет ниже, чем указанное предельное значение (именно ее прописывают в паспорте). Если нет минимального показателя мощности, значит имеющийся для упрощения расчетов занижают на 15-25%.

Предыдущий метод расчета – прекрасное решение для помещений, у которых высота более 2.7 м. В комнатах с более низкими потолками (до 2.6 м) можно воспользоваться другим способом, приняв за основу площадь.

В этом случае, рассчитывая общее количество тепловой энергии, потребность на один кв. м. берут равной 100 Вт. Каких-либо корректировок в него покуда вносить не требуется.

Формулы расчета количества секций по площади помещения, с примером

  1. На первом этапе определяется общая площадь помещения: [длина]* [ширина](5х4=20 кв. м.)
  2. Следующий шаг – определение тепла, необходимого для обогрева всего помещения: [площадь]* [потребность на м. кв.](100х20=2000 Вт)
  3. В паспорте, прилагаемом к радиатору отопления, необходимо узнать мощность одной секции – средний показатель современных моделей 170 Вт
  4. Для определения необходимого количества секций следует воспользоваться формулой: [общая потребность в тепле]/[мощность одной секции](2000/170=11.7)
  5. Вносим поправочные коэффициенты (рассмотрены далее)
  6. Округление рекомендуется делать в большую сторону – получаем 12 секций

Рассмотренные выше методы расчёта количества секций радиатора прекрасно подходят для помещений, высота которых достигает 3-х метров. Если этот показатель больше, необходимо увеличивать тепловую мощность прямо пропорционально росту высоты.

Если весь дом оснащен современными пластиковыми окнами, у которых коэффициент тепловых потерь максимально снижен – появляется возможность сэкономить и уменьшить полученный результат до 20%.

Считается, что стандартная температура теплоносителя, циркулирующего по отопительной системе – 70 градусов. Если она ниже этого значения, необходимо на каждые 10 градусов увеличивать полученный результат на 15%. Если выше – наоборот уменьшать.

Помещения, площадь которых более 25 кв. м. отопить одним радиатором, даже состоящим из двух десятков секций, будет крайне проблематично. Чтобы решить подобную проблему, необходимо вычисленное число секций поделить на две равные части и установить две батареи. Тепло в этом случае будет распространяться по комнате более равномерно.

Если в помещении два оконных проема, радиаторы отопления нужно размещать под каждым из них. Они должны быть по мощности в 1.7 раза больше номинальной, определенной при расчетах.

Купив штампованные радиаторы, у которых поделить секции нельзя, необходимо учитывать общую мощность изделия. Если ее недостаточно, следует подумать о покупке второй такой же батареи или чуть менее теплоемкой.

Очень многие факторы могут оказывать влияние на итоговый результат. Рассмотрим, в каких ситуациях необходимо вносить поправочные коэффициенты:

Нет тематического видео для этой статьи.
Видео (кликните для воспроизведения).
  • Окна с обычным остеклением – увеличивающий коэффициент 1.27
  • Недостаточная теплоизоляция стен – увеличивающий коэффициент 1.27
  • Более двух оконным проемов на помещение – увеличивающий коэффициент 1.75
  • Коллекторы с нижней разводкой – увеличивающий коэффициент 1.2
  • Запас в случае возникновения непредвиденных ситуаций – увеличивающий коэффициент 1.2
  • Применение улучшенных теплоизоляционных материалов – уменьшающий коэффициент 0.85
  • Установка качественных теплоизоляционных стеклопакетов – уменьшающий коэффициент 0.85

Количество вносимых поправок в расчет может быть огромным и зависит от каждой конкретной ситуации. Однако следует помнить, что уменьшать теплоотдачу радиатора отопления значительно легче, чем увеличить. Потому все округления делаются в большую сторону.

Если необходимо произвести максимально точный расчёт количества секций радиатора в сложном помещении – не стоит бояться обратиться к специалистам. Самые точные методы, которые описываются в специальной литературе, учитывают не только объем или площадь комнаты, но и температуру снаружи и изнутри, теплопроводность различных материалов, из которых построена коробка дома, и множество других факторов.

Безусловно, можно не бояться и набрасывать несколько ребер к полученному результату. Но и чрезмерное увеличение всех показателей может привести к неоправданным расходам, которые не сразу, порой и не всегда удается окупить.

Правильный расчёт секций радиаторов отопления — довольно важная задача для каждого домовладельца. Если будет использовано недостаточное количество секций, помещение не прогреется во время зимних холодов, а приобретение и эксплуатация слишком больших радиаторов повлечёт неоправданно высокие расходы на отопление.

Для стандартных помещений можно воспользоваться самыми простыми расчётами, однако иногда возникает необходимость учесть различные нюансы, чтобы получить максимально точный результат.

Для выполнения расчётов нужно знать определённые параметры

  • Габариты помещения, которое необходимо отопить;
  • Вид батареи, материал ее изготовления;
  • Мощность каждой секции или цельной батареи в зависимости от ее вида;
  • Максимально допустимое количество секций выбранной модели радиатора;

По материалу изготовления радиаторы разделяются так:

Материалы радиаторов отличаются своими характеристиками, что влияет на расчёты

Как рассчитать количество секций радиаторов отопления для комнаты

Произвести расчёты можно несколькими способы, в каждом из которых используются определённые параметры.

Предварительный расчёт можно сделать, ориентируясь на площадь помещения, для которого покупаются радиаторы. Это очень простое вычисление, которое подходит для комнат с низкими потолками (2,40-2,60 м). Согласно строительным нормам для обогрева понадобится 100 Вт тепловой мощности на каждый квадратный метр помещения.

Вычисляем количество тепла, которое понадобится для всей комнаты. Для этого площадь умножаем на 100 Вт, т. е. для комнаты в 20 кв. м расчётная тепловая мощность составит 2 000 Вт (20 кв. м*100 Вт) или 2 кВт.

Правильный расчёт радиаторов отопления необходим, чтобы гарантировать достаточное количество тепла в доме

Этот результат нужно разделить на теплоотдачу одной секции, указанную производителем. Например, если она равна 170 Вт, то в нашем случае необходимое количество секций радиатора будет составлять: 2 000 Вт/170 Вт = 11,76, т. е. 12, поскольку результат следует округлить до целого числа. Округление обычно осуществляется в сторону увеличения, однако для помещений, в которых теплопотери ниже среднего, например, для кухни, можно округлять в меньшую сторону.

Обязательно следует учесть возможные теплопотери в зависимости от конкретной ситуации. Разумеется, комната с балконом или расположенная в углу здания теряет тепло быстрее. В этом случае следует увеличить значение расчётной тепловой мощности для комнаты на 20%. Примерно на 15-20% стоит повысить расчеты, если планируется скрыть радиаторы за экраном или монтировать их в нишу.

А чтобы вам было удобнее считать онлайн, мы сделали для вас этот калькулятор:

Более точные данные можно получить, если сделать расчёт секций радиаторов отопления с учётом высоты потолка, т. е. по объёму помещения. Принцип здесь примерно такой же, как и в предыдущем случае. Сначала вычисляется общая потребность в тепле, затем рассчитывают количество секций радиаторов.

Если радиатор будет скрыт экраном, нужно увеличить потребность помещения в тепловой энергии на 15-20%

Согласно рекомендациям СНИП на обогрев каждого кубического метра жилого помещения в панельном доме необходим 41 Вт тепловой мощности. Умножив площадь комнаты на высоту потолка, получаем общий объём, который умножаем на это нормативное значение. Для квартир с современными стеклопакетами и наружным утеплением понадобится меньше тепла, всего 34 Вт на кубический метр.

Например, рассчитаем необходимое количество тепла для комнаты площадью 20 кв. м с потолком высотой 3 метра. Объём помещения составит 60 куб. м (20 кв. м*3 м). Расчетная тепловая мощность в этом случае будет равна 2 460 Вт (60 куб. м*41 Вт).

А как рассчитать количество радиаторов отопления? Для этого нужно разделить полученные данные на указанную производителем теплоотдачу одной секции. Если взять, как и в предыдущем примере, 170 Вт, то для комнаты будет нужно: 2 460 Вт / 170 Вт = 14,47, т. е. 15 секций радиатора.

Производители стремятся указывать завышенные показатели теплоотдачи своей продукции, предполагая, что температура теплоносителя в системе будет максимальной. В реальных условиях это требование соблюдается редко, поэтому следует ориентироваться на минимальные показатели теплоотдачи одной секции, которые отражены в паспорте изделия. Это сделает расчёты более реалистичными и точными.

К сожалению, далеко не каждая квартира может считаться стандартной. Ещё в большей степени это относится к частным жилым домам. Как же произвести расчёты с учётом индивидуальных условий их эксплуатации? Для это понадобится учесть множество различных факторов.

При расчёте количества секций отопления нужно учесть высоту потолка, количество и размеры окон, наличие утепления стен и т. п.

Особенность этого метода состоит в том, что при вычислении необходимого количества тепла используется ряд коэффициентов, учитывающих особенности конкретного помещения, способные повлиять на его способность сохранять или отдавать тепловую энергию.

Формула для расчетов выглядит так:

КТ=100 Вт/кв. м* П*К1*К2*К3*К4*К5*К6*К7, где

КТ — количество тепла, необходимого для конкретного помещения;
П — площадь комнаты, кв. м;
К1 — коэффициент, учитывающий остекление оконных проемов:

  • для окон с обычным двойным остеклением — 1,27;
  • для окон с двойным стеклопакетом — 1,0;
  • для окон с тройным стеклопакетом — 0,85.

К2 — коэффициент теплоизоляции стен:

  • низкая степень теплоизоляции — 1,27;
  • хорошая теплоизоляция (кладка в два кирпича или слой утеплителя) — 1,0;
  • высокая степень теплоизоляции — 0,85.

К3 — соотношение площади окон и пола в помещении:

К4 — коэффициент, позволяющий учесть среднюю температуру воздуха в самую холодную неделю года:

  • для -35 градусов — 1,5;
  • для -25 градусов — 1,3;
  • для -20 градусов — 1,1;
  • для -15 градусов — 0,9;
  • для -10 градусов — 0,7.

К5 — корректирует потребность в тепле с учетом количества наружных стен:

  • одна стена— 1,1;
  • две стены— 1,2;
  • три стены— 1,3;
  • четыре стены— 1,4.

К6 — учет типа помещения, которое расположено выше:

  • холодный чердак — 1,0;
  • отапливаемый чердак — 0,9;
  • отапливаемое жилое помещение — 0,8

К7 — коэффициент, учитывающий высоту потолков:

  • при 2,5 м — 1,0;
  • при 3,0 м — 1,05;
  • при 3,5 м — 1,1;
  • при 4,0 м — 1,15;
  • при 4,5 м — 1,2.

Остается полученный результат разделить на значение теплоотдачи одной секции радиатора и полученный результат округлить до целого числа.

При расчёте количества секций необходимо учесть и потери тепла. В доме тепло может уходить в довольно значительном количестве через стены и примыкания, пол и подвал, окна, кровлю, систему естественной вентиляции.

Причём можно и сэкономить, если утеплить откосы окон и дверей или лоджию, убрав по 1-2 секции, полотенцесушители и плита в кухне также позволяют убрать одну секцию радиатора. Использование камина и системы теплых полов, правильное утепление стен и пола сведет теплопотери к минимуму и также позволит уменьшить размер батареи.

Теплопотери обязательно нужно учесть при расчётах

Количество секций может меняться в зависимости от режима работы отопительной системы, а также от места расположения батарей и подключения системы в отопительный контур.

В частных домах используется автономное отопление, эта система эффективнее централизованной, которая применяется в многоквартирных домах.

Способ подключения радиаторов также влияет на показатели теплоотдачи. Диагональный способ, когда подача воды происходит сверху, считается самым экономичным, а боковое подключение создает потери 22%.

Количество секций может зависеть от режима системы отопления и способа подключения радиаторов

Для однотрубных систем конечный результат также подлежит коррекции. Если двухтрубные радиаторы получают теплоноситель одной температуры, то однотрубная система работает по-другому, и каждая последующая секция получает остывшую воду. В таком случае сначала делают расчёт для двухтрубной системы, а топом увеличивают количество секций с учетом тепловых потерь.

Схема расчёта однотрубной системы отопления представлена ниже.

В случае с однотрубной системой следующие друг за другом секции получают остывшую воду

Если на входе мы имеем 15 кВт, то на выходе остается 12 кВт, значит потеряно 3 кВт.

Для комнаты с шестью батареями потери составят в среднем около 20%, что создаст необходимость добавления двух секций на батарею. Последняя батарея при таком расчёте должна быть огромных размеров, для решения проблемы применяют монтаж запорной арматуры и подключение через байпас для регулировки теплоотдачи.

Некоторые производители предлагают более простой способ получить ответ. На их сайтах можно найти удобный калькулятор, специально предназначенный для того чтобы сделать данные вычисления. Чтобы воспользоваться программой, нужно ввести необходимые значения в соответствующие поля, после чего будет выдан точный результат. Или же можно воспользоваться специальной программой.

Такой расчёт количества радиаторов отопления включает практически все нюансы и базируется на довольно точном определении потребности помещения в тепловой энергии.

Корректировки позволяют сэкономить на покупке лишних секций и оплате счетов за отопление, обеспечат на долгие годы экономичную и эффективную работу системы отопления, а также позволяют создать комфортную и уютную атмосферу тепла в доме или квартире.

Материал актуализирован 29. 03.2018

При планировании капитального ремонта в вашем доме или же квартире, а так же при планировке постройки нового дома необходимо произвести расчет мощности радиаторов отопления. Это позволит вам определить количество радиаторов, способных обеспечить теплом ваш дом в самые лютые морозы. Для проведения расчетов необходимо узнать необходимые параметры, такие как размер помещений и мощность радиатора, заявленной производителем в прилагаемой технической документации. Форма радиатора, материал из которого он выполнен, и уровень теплоотдачи в данных расчетах не учитываются. Зачастую количество радиаторов равно количеству оконных проемов в помещении, поэтому, рассчитываемая мощность разделяется на общее количество оконных проемов, так можно определить величину одного радиатора.

Следует помнить, что не нужно производить расчет для всей квартиры, ведь каждая комната имеет свою отопительную систему и требует к себе индивидуальный подход. Так если у вас угловая комната, то к полученной величине мощности необходимо прибавить еще около двадцати процентов. Такое же количество нужно прибавить, если ваша система отопления работает с перебоями или имеет другие недостатки эффективности.

Расчет мощности радиаторов отопления может осуществляться тремя способами:

Согласно строительным нормами и другими правилами необходимо затрачивать 100Вт мощности вашего радиатора на 1метр квадратный жилплощади. В таком случае необходимые расчеты производятся при использовании формулы:

С*100/Р=К , где

К– мощность одной секции вашей радиаторной батареи, согласно заявленной в ее характеристике;

С– площадь помещения. Она равна произведению длины комнаты на ее ширину.

К примеру, комната имеет 4 метра в длину и 3.5 в ширину. В таком случае ее площадь равна:4*3.5=14 метров квадратных.

Мощность, выбранной вами одной секции батареи заявлена производителем в 160 Вт. Получаем:

14*100/160=8.75. полученную цифру необходимо округлить и получается что для такого помещения потребуется 9 секций радиатора отопления. Если же это угловая комната, то 9*1.2=10.8, округляется до 11. А если ваша система теплоснабжения недостаточно эффективна, то еще раз добавляем 20 процентов от первоначального числа: 9*20/100=1.8 округляется до 2.

Итого: 11+2=13. Для угловой комнаты площадью 14 метров квадратных, если система отопления работает с кратковременными перебоями понадобиться приобрести 13 секций батарей.

Примерный расчет – сколько секций батареи на квадратный метр

Он базируется на том, что радиаторы отопления при серийном производстве имеют определенные размеры. Если помещение имеет высоту потолка равную 2.5 метра, то на площадь в 1.8 метров квадратных потребуется лишь одна секция радиатора.

Подсчет количества секций радиатора для комнаты с площадью в 14 метров квадратных равен:

14/1.8=7.8, округляется до 8. Так для помещения с высотой до потолка в 2.5м понадобится восемь секций радиатора. Следует учитывать, что этот способ не подходит, если у отопительного прибора малая мощность (менее 60Вт) ввиду большой погрешности.

Объемный или для нестандартных помещений

Такой расчет применяется для помещений с высокими или очень низкими потолками. Здесь расчет ведется из данных о том, что для обогрева одного метра кубического помещения необходима мощность в 41ВТ. Для этого применяется формула:

К=О*41 , где:

К- необходимое количество секций радиатора,

О-объем помещения, он равен произведению высоты на ширину и на длину комнаты.

Если комната имеет высоту-3.0м; длину – 4.0м и ширину – 3.5м, то объем помещения равен:

3.0*4.0*3.5=42 метра кубических.

Расчитывается общая потребность в тепловой энергии данной комнаты:

42*41=1722Вт, учитывая, сто мощность одной секции составляет 160Вт,можно расчитать необходимое их количество путем деления общей потребности в мощности на мощность одной секции: 1722/160=10.8, округляется до 11 секций.

Если выбраны радиаторы, которые не делятся на секции, от общее число нужно поделить на мощность одного радиатора.

Округлять полученные данные лучше в большую сторону, так как производители иногда завышают заявленную мощность.

При длительном проживании в доме многие люди сталкиваются с необходимостью замены системы отопления. Некоторые владельцы квартир в определённый момент решают выполнить замену изношенного радиатора отопления. Чтобы после выполнения необходимых мероприятий в доме была обеспечена теплая атмосфера, необходимо правильно подойти к задаче расчета отопления для дома по площади помещения. От этого во многом зависит эффективность работы системы отопления. Чтобы обеспечить это, нужно правильно произвести расчет количества секций устанавливаемых радиаторов. В этом случае теплоотдача от них будет оптимальной.

Если количество секций будет недостаточным, то необходимый прогрев комнаты никогда не произойдет. А по причине недостаточного количества секций в радиаторе возникнет большой расход тепла, что негативным образом отразится на бюджете владельца квартиры. Определить потребность конкретного помещения в отоплении можно, если произвести простые расчеты. А для того чтобы они казались точными, при их выполнении необходимо принимать во внимание целый ряд дополнительных параметров.

Для того чтобы правильно рассчитать радиаторы отопления для определенного помещения, необходимо, прежде всего, принимать во внимание площадь комнаты. Самый простой способ — ориентироваться на сантехнические нормы, согласно которым для отопления 1 кв. м. требуется 100 Ватт мощности радиатора отопления. Следует не забывать и о том, что этот метод может использоваться для помещений, у которых высота потолков стандартная, то есть, варьируется от 2,5 до 2,7 метра. Выполнение расчетов с использованием этого метода позволяет получить несколько завышенные результаты. Помимо этого при его использовании во внимание не принимаются следующие особенности:

  • число окон и тип пакетов, установленных в помещении;
  • количество наружных стен, расположенных в помещении;
  • материалы изготовления стен и их толщина;
  • тип и толщина используемого утеплителя.

Тепло, которое для создания комфортной атмосферы в помещении должны давать радиаторы: для получения оптимальных расчетов необходимо взять площадь помещения и умножить ее на тепловую мощность радиатора.

Скажем, если комната имеет площадь 18 кв. м., то для неё потребуется батарея мощностью 1800 ватт.

18 кв. м. х 100 Вт = 1800 Вт.

Полученный результат необходимо разделить на количество тепла, которое в течение часа выделяет одна секция радиатора отопления. Если в паспорте изделия указывают, что этот показатель равен 170 Вт, то далее расчеты будут такими:

1800 Вт / 170 Вт = 10,59.

Полученный результат необходимо округлить до целого. В результате получаем 11. Это означает, что в помещение с такой площадью оптимальным решением будет установка радиатора отопления с одиннадцатью секциями.

Следует сказать, что подобный метод отлично подходит только помещений, которые получают тепло от централизованной магистрали, где циркулирует теплоноситель с температурой 70 градусов Цельсия.

Существует еще один способ, который по своей простоте превосходит предыдущие. Применять его можно для расчета количества отопления в квартирах панельных домов. При его использовании учитывается то, что одна секция в состоянии обогреть площадь 1,8 кв. м., то есть, при выполнении расчетов площадь помещения следует разделить на 1,8. Если комната имеет площадь 25 кв. м., то для обеспечения оптимального отопления потребуется 14 секций в радиаторе.

25 кв. м. / 1,8 кв. м. = 13,89.

Однако у такого метода расчета имеется один нюанс. Его нельзя использовать для приборов пониженной и повышенной мощности. То есть, для тех радиаторов, у которых отдача одной секции варьируется в диапазоне от 120 до 200 Вт.

Метод расчета отопления для комнат с высокими потолками

Если в помещении потолки имеют высоту более 3 метров, то применение перечисленных выше способов не дает возможности правильно рассчитать потребность в отоплении. В таких случаях необходимо использовать формулу, которая учитывает объем помещения. В соответствии с нормативами СНиП, для обогрева одного кубического метра объема помещения требуется 41 Ватт тепла.

Отталкиваясь от этого, для обогрева помещения, площадь которого составляет 24 кв. м., а высота потолков не менее 3 метров, расчеты будут следующие:

24 кв. м. х 3 м = 72 куб. м. В результате получаем общий объем помещения.

72 куб. м. х 41 Вт = 2952 Вт. Полученный результат — суммарная мощность радиатора, который обеспечит оптимальный обогрев комнаты.

Теперь необходимо рассчитать количество секций в батарее для комнаты такой площади. В том случае если в паспорте к изделию указано, что теплоотдача одной секции составляет 180 Вт, при расчетах необходимо общую мощность батареи разделить на это число.

В итоге получаем 16,4. Потом результат нужно округлить. В результате имеем 17 секций. Батареи с таким количеством секций вполне хватит для создания теплой атмосферы в комнате площадью 72 м 3 . Выполнив несложные вычисления, получаем нужные нам данные.

Выполнив расчет, следует провести корректировку полученного результата, принимая во внимание особенности комнаты. Они должны учитываться следующим образом:

  • для комнаты, являющейся угловой, с одним окном при расчетах к полученной мощности батареи необходимо добавить 20% дополнительно;
  • если в помещении имеется два окна, то должна быть выполнена корректировка в сторону увеличения на 30%;
  • в случаях, когда монтаж радиатора выполняется в нише под окном, его теплоотдача несколько снижается. Поэтому необходимо добавить к его мощности 5%;
  • в комнате, в которой окна выходят на северную сторону, к мощности батареи необходимо дополнительно добавить 10%;
  • украшая батарею в своей комнате специальным экраном, следует знать, что он крадет у радиатора некоторое количество тепловой энергии. Поэтому дополнительно необходимо прибавить к радиатору 15%.

В помещении, для которого производится расчет потребности в отоплении, может быть и другая специфика. Важными становятся следующие показатели:

  • температура циркулирующего в радиаторах отопления теплоносителя не должна быть ниже 70 градусов. Если уровень температуры меньше, то число секций в приборе отопления необходимо увеличить;
  • в том случае, если между двумя помещениями дверь отсутствует, следует выполнить расчет их общей площади, а потом рассчитать количество радиаторов, необходимых для оптимального обогрева;
  • в помещениях, в которых на окнах установлены стеклопакеты, потери тепла сведены к минимуму. Поэтому при выборе радиатора отопления можно устанавливать изделие с меньшим количеством секций.

Каждый знает, что каждая климатическая зона имеет свои потребности в обогреве. Поэтому при разработке проекта необходимо принимать во внимание эти показатели.

У каждой климатической зоны имеются свои коэффициенты, которые необходимо использовать при расчетах.

Для средней полосы России этот коэффициент равен 1. Поэтому он не используется при расчетах.

В северных и восточных регионах страны коэффициент равен 1,6.

В южной части страны этот показатель варьируется от 0,7 до 0,9.

При выполнении расчетов необходимо на этот коэффициент умножить тепловую мощность. А потом на теплоотдачу одной секции разделить полученный результат.

Расчет отопления в помещении очень важен для обеспечения теплой атмосферы в жилище в зимнее время. Больших сложностей с выполнением расчетов обычно не возникает. Поэтому каждый владелец может осуществить их самостоятельно, не прибегая к услугам специалистов. Достаточно найти формулы, которые используются для расчетов.

В этом случае можно сэкономить на приобретении радиатора, так как вы будете избавлены от необходимости платить за ненужные секции. Установив их на кухне или в гостиной, в вашем жилище будет царить комфортная атмосфера. Если вы неуверены в точности своих расчетов, из-за которых вы не подберете оптимальный вариант, то следует обратиться к профессионалам. Они правильно произведут расчеты, а после качественно выполнят установку новых радиаторов отопления или грамотно проведут монтаж системы отопления.

Расчет количества секций радиаторов отопления: по площади и объему

Рассчитать нужную площадь поверхности отопительного прибора, т.е. его размер и количество секций, исходя из объема или площади помещения, типа радиатора и схемы подключения к трубам.

Формулы позволяют получать результат разной степени точности, поскольку учитывают различное количество параметров.

Содержание:

Для жилых помещений вычисляют необходимое количество приборов и мощность каждого.

Средние стандартные значения мощности секции радиаторов из разных материалов:

  • Стальные – 110-150- Вт
  • Чугунные – 160 Вт;
  • Биметаллические – 180 Вт;
  • Алюминиевые – 200 Вт.

Количество самих приборов обычно соответствует количеству окон в помещении, возможна установка дополнительных радиаторов на глухие холодные стены.

Все расчеты необходимой мощности отопительных приборов основаны на строительных нормах, принятых на сегодняшний день:

Например, площадь комнаты 25 метров, 25 умножаем на 100 (Вт). Получается 2500 Вт, или 2,5 кВт.

Стальной радиатор обладает небольшой мощностью

Полученную величину делим на мощность одной секции выбранной модели радиатора, допустим она равна 150 Вт.

Таким образом, 2500 / 150, получается 16,7. Результат округляется в большую сторону, поэтому 17. Значит для отопления такой комнаты потребуется 17 секций радиатора.

Округление можно произвести в меньшую сторону, если речь идет о помещениях с маленькими тепло потерями или дополнительными источниками тепла, например кухня.

Это очень грубый и округленный расчет, поскольку здесь не учитываются никакие дополнительные параметры:

  • Толщина и материал стен здания;
  • Тип утеплителя и толщина его слоя;
  • Количество наружных стен в помещении;
  • Количество окон в помещении;
  • Наличие и тип стеклопакетов;
  • Климатическая зона, диапазон температур.
  • К результату следует прибавить 20%, если в комнате есть балкон или эркерное окно;
  • Если в комнате два полноценных оконных проема или две наружные стены(угловое расположение), то к этой полученной величине следует прибавить 30%.
  • Если планируется монтаж декоративных экранов для радиаторов или загородок, прибавляют еще 10-15%.
  • Установленные качественные стеклопакеты позволят отнять от итога 10-15%.
  • Понижение температуры теплоносителя на 10 градусов (норма +70) потребует увеличения количества секций или мощности радиатора на 18%.
  • Особенности системы отопления — если теплоноситель подается через нижнее отверстие, а выходит через верхнее, то радиатор недодает около 7-10% мощности.
  • Для того, чтобы сделать некоторый запас мощности, на случай нетипичного похолодания и проч. принято добавлять к итоговому результату 15%.
  • Для средней полосы России коэффициент не используется (он принят за 1).
  • Для северных и восточных регионов применяют коэффициент 1,6.
  • Южные регионы 0,7- 0,9, в зависимости от минимальных и среднегодовых температур.

Таким образом, чтобы сделать поправку на климатическую зону, нужно полученный результат тепловой мощности умножить на необходимый коэффициент.

Автор статьи: Борис Купинов

Здравствуйте. Меня зовут Борис. Я уже более 7 лет работаю прорабом в строительной компании. Я считаю, что в настоящее время являюсь профессионалом в своей области и хочу помочь всем посетителям сайта решать разнообразные вопросы. Все материалы для сайта собраны и тщательно переработаны с целью донести как можно доступнее всю нужную информацию. Перед применением описанного на сайте желательна консультация с профессионалами.

✔ Обо мне ✉ Обратная связь Оцените статью: Оценка 3.1 проголосовавших: 38

Сколько БТЕ вам нужно для обогрева дома, магазина, гаража и т. Д.!

Обогреватель какого размера мне нужен для обогрева дома, гаража или рабочего места? Это кажется относительно простым и понятным вопросом. Однако ответ далеко не прост — требуется глубокое погружение в науку об энергии, пространственной геометрии, климатологии и строительных технологиях.

Ответ на распространенный вопрос «Сколько БТЕ мне нужно, чтобы обогреть мой дом?» начинается с понимания производства энергии и британской тепловой единицы.Одна БТЕ — это количество энергии, необходимое для повышения температуры одного фунта воды на 1 градус по Фаренгейту. Сама по себе мера очень мала, но это базовый расчет, на котором строится использование энергии. В 2018 году США использовали около 101,3 квадриллиона БТЕ энергии.

Расчет количества БТЕ, необходимого для обогрева помещения

С точки зрения системы отопления и охлаждения, основной расчет заключается в том, сколько вы хотите добавить или удалить из воздуха внутри здания.Это может зависеть от ряда других переменных, таких как площадь в квадратных футах и ​​климат, но отправной точкой является то, на сколько градусов вы хотите изменить внутреннюю температуру и сколько БТЕ для этого потребуется. Существуют калькуляторы, которые помогут домовладельцам определить размер квартиры правильного размера, но есть и некоторые практические правила, которым можно следовать. Например, для комнаты площадью 300 квадратных футов обычно требуется 7000 БТЕ для поддержания комфортной температуры, в то время как для комнаты площадью 1000 квадратных футов требуется 18000 БТЕ.

Простая формула для определения ваших потребностей в отоплении:

(желаемое изменение температуры) x (кубические футы пространства) x 0,13 = БТЕ, необходимые в час.

Какие факторы могут повлиять на ваши потребности в отоплении?

1. Климат и погода

Климат также играет роль в определении ваших потребностей в энергии. Более теплый климат в южной части Соединенных Штатов, считающейся зоной 1 или 2, требует 30-40 БТЕ на квадратный фут.Средняя часть страны — зона 3 и 4 — требует от 40 до 45 британских тепловых единиц на квадратный фут, в то время как северные районы зоны 5 требуют до 60 британских тепловых единиц на квадратный фут. Проще говоря, чем холоднее или теплее внешний воздух, тем больше энергии вам потребуется для изменения внутренней температуры здания. Как только вы узнаете свою климатическую зону и соответствующие требования в BTU для вашего региона, вы сможете найти общее число для своего дома. Например, в зоне 3–4, для которой обычно требуется 40–45 БТЕ на квадратный фут, вы можете определить, что для дома площадью 2500 квадратных футов потребуется печь от 100000 до 112000 БТЕ.

2. Средняя квадратная и куб.м.

Еще одна переменная в определении ваших потребностей в энергии — это пространство — как в квадратных, так и в кубических футах. Естественно, что чем больше пространство, тем больше потребность, но при этом важно не впадать в большее — лучшее отношение. Покупка негабаритного обогревателя или кондиционера создает другой набор проблем. — например, нагрузка на компрессоры, которые часто включаются и выключаются, чрезмерный шум и общее снижение эффективности.

Используя нашу формулу выше, рабочее пространство площадью 1000 квадратных футов при высоте потолка 8 футов означает, что вы будете обогревать 8000 кубических футов пространства. Если температура на улице 30 ° F, а вы хотите, чтобы в вашем гараже была 70 ° F, желаемое изменение температуры составляет 40 ° F. Эти два числа, умноженные на 0,33, показывают, что вам потребуется чуть больше 42 500 БТЕ в час, чтобы поддерживать рабочее пространство под углом 70 градусов.

Поскольку пропан — чистое и эффективное топливо, которое содержит более чем в два раза больше энергии, чем природный газ, он является естественным выбором для систем отопления в любом климате.Например, печь на природном газе мощностью 100 000 БТЕ сжигает около 97 кубических футов газа в час, в то время как пропановая печь того же размера сжигает 40 кубических футов за час. Чем выше рейтинг эффективности вашего обогревателя или кондиционера, тем больше энергии используется для обогрева или охлаждения.

3.

Строительный материал и качество

На этот расчет также влияют качество и тип строительного материала, а также возраст дома.Дополнительные окна, пропускающие больше солнечного света или холодного воздуха, меняют расчет, как и использование теплоизоляции по всему дому. Старые дома, в которых сквозняк или плохо изолированы, потребуют дополнительной тепловой мощности. Кондиционеры в домах с несколькими окнами, выходящими на юг, также потребуют повышенной мощности для охлаждения воздуха, нагретого солнечным светом.

Установщики должны измерить весь дом, принимая во внимание планировку комнат, расположение окон, потенциальную тень, изоляцию и климатические данные, чтобы прийти к правильным расчетам нагрузки на отопление и охлаждение для определения системы отопления или охлаждения подходящего размера.

По вопросам отопления обращайтесь в Ferrellgas

Хотя нет простого ответа на вопрос о системе отопления или охлаждения подходящего размера для вашего дома, магазина или гаража, с учетом нескольких простых элементов и расчетов легко выбрать подходящий блок для вашей конструкции. Небольшая информация о вашем здании, вашем климате и ваших потребностях в отоплении и охлаждении может помочь вам найти решение, которое обеспечит вам и вашей семье комфорт в любое время года.

Чтобы узнать, какие пропановые решения лучше всего подходят для обогрева вашего помещения, свяжитесь с вашим местным офисом Ferrellgas, где наши специалисты могут дать вам отличную цену на пропан и определить, какие варианты лучше всего подходят для вашего дома, бизнеса или фермы. .

Калькулятор

БТЕ

Калькулятор БТЕ переменного тока

Используйте этот калькулятор для оценки потребности в охлаждении типичной комнаты или дома, например для определения мощности оконного кондиционера, необходимого для многоквартирного помещения или центрального кондиционера для всего дома.


Калькулятор БТЕ переменного тока общего назначения или отопления

Это калькулятор общего назначения, который помогает оценить количество БТЕ, необходимое для обогрева или охлаждения помещения. Желаемое изменение температуры — это необходимое повышение / понижение температуры наружного воздуха для достижения желаемой температуры в помещении. Например, в неотапливаемом доме в Бостоне зимой температура может достигать -5 ° F. Чтобы достичь температуры 75 ° F, требуется повышение температуры на 80 ° F. Этот калькулятор может делать только приблизительные оценки.

Что такое БТЕ?

Британская тепловая единица или BTU — это единица измерения энергии. Это примерно энергия, необходимая для нагрева одного фунта воды на 1 градус по Фаренгейту.1 БТЕ = 1055 джоулей, 252 калории, 0,293 ватт-часа или энергия, выделяемая при сжигании одной спички. 1 ватт составляет примерно 3,412 БТЕ в час.

БТЕ часто используется в качестве ориентира для сравнения различных видов топлива. Несмотря на то, что они являются физическими товарами и измеряются соответствующим образом, например, по объему или баррелям, их можно преобразовать в БТЕ в зависимости от содержания энергии или тепла, присущего каждому количеству. БТЕ как единица измерения более полезна, чем физическая величина, из-за внутренней ценности топлива как источника энергии.Это позволяет сравнивать и противопоставлять множество различных товаров с внутренними энергетическими свойствами; например, один из самых популярных — это природный газ к нефти.

БТЕ также можно использовать с практической точки зрения как точку отсчета для количества тепла, которое выделяет прибор; Чем выше рейтинг прибора в БТЕ, тем выше его теплопроизводительность. Что касается кондиционирования воздуха в домах, даже несмотря на то, что кондиционеры предназначены для охлаждения домов, БТЕ на технической этикетке относятся к тому, сколько тепла кондиционер может удалить из соответствующего окружающего воздуха.

Размер и высота потолка

Очевидно, что меньшая по площади комната или дом с меньшей длиной и шириной требуют меньшего количества БТЕ для охлаждения / обогрева. Однако объем является более точным измерением, чем площадь для определения использования БТЕ, потому что высота потолка учитывается в уравнении; каждый трехмерный кубический квадратный фут пространства потребует определенного количества использования БТЕ для охлаждения / нагрева соответственно. Чем меньше объем, тем меньше БТЕ требуется для охлаждения или нагрева.

Ниже приводится приблизительная оценка холодопроизводительности, которая потребуется системе охлаждения для эффективного охлаждения комнаты / дома, основанная только на площади помещения / дома в квадратных футах, предоставленной EnergyStar.губ.

Охлаждаемая площадь (квадратных футов) Необходимая мощность (БТЕ в час)
от 100 до 150 5000
от 150 до 250 6000
от 250 до 300 7000
от 300 до 350 8000
от 350 до 400 9000
от 400 до 450 10000
от 450 до 550 12000
от 550 до 700 14000
от 700 до 1000 18000
от 1000 до 1200 21000
от 1200 до 1400 23000
от 1400 до 1500 24000
от 1500 до 2000 30 000
от 2000 до 2500 34000

Состояние изоляции

Термическая изоляция определяется как уменьшение теплопередачи между объектами, находящимися в тепловом контакте или в диапазоне радиационного воздействия. Важность изоляции заключается в ее способности снижать использование БТЕ за счет максимально возможного управления неэффективным ее расходом из-за энтропийной природы тепла — оно имеет тенденцию течь от более теплого к более холодному, пока не исчезнет разница температур.

Как правило, новые дома имеют лучшую изоляционную способность, чем старые дома, благодаря технологическим достижениям, а также более строгим строительным нормам. Владельцы старых домов с устаревшей изоляцией, решившие модернизировать, не только улучшат способность дома к утеплению (что приведет к более дружественным счетам за коммунальные услуги и более теплым зимам), но также оценят ценность своих домов.

R-значение — это обычно используемая мера теплового сопротивления или способности теплопередачи от горячего к холодному через материалы и их сборку. Чем выше R-показатель определенного материала, тем более он устойчив к теплопередаче. Другими словами, при покупке утеплителя для дома продукты с более высоким значением R лучше изолируют, хотя обычно они дороже.

Принимая решение о правильном вводе условий изоляции в калькулятор, используйте обобщенные допущения.Бунгало на пляже, построенное в 1800-х годах без ремонта, вероятно, следует отнести к категории бедных. Трехлетний дом в недавно построенном поселке, скорее всего, заслуживает хорошей оценки. Окна обычно имеют более низкое тепловое сопротивление, чем стены. Следовательно, комната с большим количеством окон обычно означает плохую изоляцию. По возможности старайтесь устанавливать стеклопакеты для улучшения теплоизоляции.

Повышение или понижение желаемой температуры

Чтобы найти желаемое изменение температуры для ввода в калькулятор, найдите разницу между неизменной наружной температурой и желаемой температурой.Как правило, температура от 70 до 80 ° F является комфортной температурой для большинства людей.

Например, дом в Атланте может захотеть определить использование БТЕ зимой. Зимой в Атланте обычно держится около 45 ° F с шансом иногда достигать 30 ° F. Желаемая температура обитателей — 75 ° F. Следовательно, желаемое повышение температуры будет 75 ° F — 30 ° F = 45 ° F.

Дома в более суровых климатических условиях, очевидно, потребуют более радикальных изменений температуры, что приведет к увеличению использования БТЕ.Например, для обогрева дома зимой на Аляске или охлаждения дома летом в Хьюстоне потребуется больше БТЕ, чем для обогрева или охлаждения дома в Гонолулу, где температура обычно держится около 80 ° F круглый год.

Прочие факторы

Очевидно, что размер и пространство дома или комнаты, высота потолка и условия изоляции очень важны при определении количества БТЕ, необходимого для обогрева или охлаждения дома, но следует учитывать и другие факторы:

  • Количество жителей, проживающих в жилых помещениях.Тело человека рассеивает тепло в окружающую атмосферу, поэтому требуется больше БТЕ для охлаждения и меньше БТЕ для обогрева комнаты.
  • Постарайтесь разместить конденсатор кондиционера в самой тенистой стороне дома, обычно к северу или востоку от него. Чем больше конденсатор подвергается воздействию прямых солнечных лучей, тем тяжелее он должен работать из-за более высокой температуры окружающего воздуха, который потребляет больше БТЕ. Размещение его в тенистом месте не только повысит эффективность, но и продлит срок службы оборудования.Можно попробовать разместить вокруг конденсатора тенистые деревья, но имейте в виду, что конденсаторам также необходим хороший окружающий воздушный поток для максимальной эффективности. Убедитесь, что соседняя растительность не мешает конденсатору, не блокируя поток воздуха в агрегат и не забивая его.
  • Размер конденсатора кондиционера. Единицы слишком большие, крутые дома слишком быстро. Следовательно, они не проходят запланированные циклы, которые были специально разработаны для работы вне завода. Это может сократить срок службы кондиционера.С другой стороны, если агрегат слишком мал, он будет работать слишком часто в течение дня, а также переутомиться до изнеможения, потому что он не используется эффективно, как предполагалось.
  • Потолочные вентиляторы могут помочь снизить потребление БТЕ за счет улучшения циркуляции воздуха. Любой дом или комната могут стать жертвой мертвых зон или определенных участков с неправильной циркуляцией воздуха. Это может быть задний угол гостиной за диваном, ванная без вентиляции и большого окна или прачечная. Термостаты, помещенные в мертвые зоны, могут неточно регулировать температуру в доме.Работающие вентиляторы помогают равномерно распределять температуру по всей комнате или дому.
  • Цвет крыш может повлиять на использование БТЕ. Более темная поверхность поглощает больше лучистой энергии, чем более светлая. Даже грязно-белые крыши (с заметно более темными оттенками) по сравнению с более новыми, более чистыми поверхностями привели к заметным различиям.
  • Уменьшение КПД отопителя или кондиционера со временем. Как и у большинства бытовых приборов, эффективность обогревателя или кондиционера снижается по мере использования.Кондиционер нередко теряет 50% или более своей эффективности при работе с недостаточным количеством жидкого хладагента.
  • Форма дома. В длинном узком доме больше стен, чем в квадратном доме такой же площади, что означает потерю тепла.

Пример расчета теплопотерь из помещения

Простой пример, примененный к двухквартирному дому

Предпосылки для расчета теплопотерь от собственности описаны на отдельной странице этого сайта, прежде чем рассматривать этот пример, Взгляните на страницу о калибровке, чтобы понять основные принципы.

Для этого примера, помимо размеров, указанных на вышеприведенных чертежах, также необходимо знать:

  1. Высота всех номеров составляет 8 футов.
  2. Все внешние стены представляют собой полости размером 11 дюймов без изоляции.
  3. Партийная стена из полнотелого кирпича 9 дюймов.
  4. Внутренние стены все оштукатурены, кирпич 4,5 дюйма, штукатурка.
  5. Пол подвесной брус.
  6. Все остекление UVPC с двойным остеклением.
  7. Наружная расчетная температура до 30 ° F.
  8. Температура в прилегающем участке неизвестна, поэтому предположим, что разница температур составляет 5 ° F.
  9. Расчетные температуры для комнаты — смотрите на этой странице.
  10. Большие окна имеют размер 10 футов на 4 фута, меньшие окна — 4 фута на 4 фута.
  11. Крыша — фетр с утеплителем 100 мм.
  12. План не в масштабе !!

В этом примере мы подробно рассмотрим отдельную комнату (гостиную).

  1. Рассмотрим по очереди 4 стены и вычислим площадь каждого типа ткани:
    • Передняя стенка:
      1. Общая стена 14 футов x 8 футов = 112 квадратных футов
      2. Окно 10 футов x 4 фута = 40 квадратных футов
      3. Стена пустотелая So — 112-40 = 72 кв. Фута
    • Стена для вечеринок:
      1. Общая площадь стен 15 футов x 8 футов = 120 квадратных футов
    • Стена в столовую:
      1. На этой стене нет разницы температур, поэтому нет потока тепловой энергии, поэтому нет необходимости рассчитывать площадь.
    • Стена в зал:
      1. Общая стена 15 футов x 8 футов = 120 квадратных футов
      2. Дверь обрабатывается как стенная
    • Площадь потолка и пола:
      1. 15 футов x 14 футов = 210 квадратных футов:
  2. Используя приведенные выше цифры, значения U (см. Эту страницу) и температура разница между стеной / потолком / полом может быть рассчитана (площадь x значение U x разница температур).

    площадь
    (футы)

    Значение U

    темп.
    разница

    всего

    Передняя стенка: полость

    72

    0.18

    40

    518,4

    Окно

    40

    0,51

    40

    816

    Стена для вечеринок

    120

    0,38

    5

    228

    Стенка столовой

    0. 39

    0

    0

    Стенка зала

    120

    0,39

    10

    468

    Потолок

    210

    0,29

    5

    304,5

    Этаж

    210

    0.12

    40

    1008

    Полная потеря ткани =

    3342,9

    Таким образом, общие потери тепла через ткань здания составляют 3345 БТЕ

  3. Теперь рассчитаем потери тепла из-за воздухообмена.
    • объем помещения = 14 x 15 x 8 = 1,680 кубических футов
      воздухообмен = 1 в час (в зависимости от комнаты — см. Эту страницу)
      , поэтому потеря тепла через воздухообмен составляет
      1,680 х 1 х 0.02 x 40 = 1344 БТЕ
  4. Складываем результаты 2 и 3 вместе, получаем общую потерю тепла за час:
    • 3345 + 1344 = 4689 БТЕ / час

Это расчеты для салона, теперь необходимо провести расчеты для всех остальных комнат в доме. Обратите внимание, что если тепловые «потери» происходят через внутренние стены или пол / потолок, одна комната будет теряет тепло, в то время как другая комната получает его. В расчетах набирающее тепло помещение покажет отрицательные теплопотери. именно для этой части строительной ткани.

потеря ткани

Потери при замене воздуха

Всего

(БТЕ / час)

Столовая

3391

3046

6437

Гостиная

3343

1344

4687

Кухня

1714

941

2655

Прихожая

1501

1250

2751

Спальня 1

1162

666

1828

Спальня 2

1678

588

2266

Спальня 3

1009

134

1143

Ванная

2192

1129

3321

Всего на дом = 25 088

Результаты расчетов для всех комнат в примере дома показаны на правильно. Это указывает количество тепла, которое необходимо произвести в каждой комнате для поддержания расчетной температуры. Нет только это необходимо для определения подходящего размера радиаторов, это также необходимо для определения размеров труб на водяной основе. центральное отопление.

Когда все значения сложены, последняя цифра указывает на размер котла, необходимый для обогрева дома (примечание: не учитывается дополнительное отопление, необходимое для горячего водная система).

Подробные расчеты для полного дома показаны на другом страница на этом сайте.


В этих упрощенных расчетах не учитывается тепло, производимое жителями или их жителями. деятельность (например, приготовление пищи, стирка и т. д.). Его можно изменить, улучшив (т.е. уменьшив) количество воздухообмена за счет увеличения исключение сквозняков, улучшенная изоляция ткани или принятие более низкой расчетной температуры в любой из комнат.

Вообще нет смысла пытаться слишком точно рассчитать показатели теплопотерь, его основная цель указывает размер необходимых радиаторов и бойлера. Знание этих значений теплопотерь должно гарантировать, что выбранный радиаторы и бойлер не должны быть ни занижены, ни завышены; некоторое завышение рейтинга будет неизбежным, поскольку окончательный расчет Цифра не будет полностью соответствовать номинальной мощности любого радиатора или бойлера.

Как рассчитать допустимую нагрузку на системы отопления, вентиляции и кондиционирования воздуха для больших домов

Расчет допустимой нагрузки для систем отопления, вентиляции и кондиционирования воздуха не всегда так прост, как вы думаете. Хотя общие квадратные метры — это обычно первое, о чем думают люди, важно учитывать общие кубические футы при расчетах грузоподъемности системы отопления, вентиляции и кондиционирования воздуха.

Также необходимо, чтобы домовладельцы принимали во внимание тот факт, что каждый дом индивидуален. Региональные погодные условия, изоляция, воздушный поток, марка и модель оборудования и другие факторы, в конечном итоге, влияют на то, сколько кубических футов способна обработать система HVAC.

Если вы живете в Ричмонде, штат Вирджиния, и хотите получить точную оценку того, сколько блоков HVAC нужно установить в вашем доме, обратитесь к специалисту Howell, чтобы получить точное измерение.

Как рассчитать кубические футы в большом доме

Вычислить кубические футы внутри вашего дома довольно просто.Общее практическое правило — умножайте квадратные футы на высоту потолка. Если у вас есть чердак, сводчатые потолки или особенно высокие потолки, могут потребоваться другие расчеты. Но вы должны иметь приблизительное представление о кубических футах в вашем доме, используя этот базовый расчет.

Для расчета кубического пространства в комнате со сводчатыми потолками рассчитайте пространство до точки, в которой начинается свод. Затем, в зависимости от угла свода, умножьте квадратные футы комнаты на высоту сводчатой ​​области, а затем разделите полученное значение пополам.Добавьте пространство в сводчатой ​​области к пространству под сводчатой ​​областью, и вы получите приблизительную оценку кубических футов в комнате со сводчатым потолком.

Если вы живете в доме площадью 5 000 квадратных футов и имеете потолки высотой 10 футов на всех этажах, в вашем доме, вероятно, будет примерно 50 000 кубических футов воздушного пространства. Чем выше потолок, тем больше кубических футов воздуха будет в вашем доме.

Вот ссылка на очень простой калькулятор объема, который позволит вам рассчитать кубические футы для каждой комнаты.

Почему имеет значение грузоподъемность системы отопления, вентиляции и кондиционирования воздуха

Если вы живете в большом доме и подумываете надеть пристройку, первое, что вам следует сделать, — это обратиться в компанию, занимающуюся климатом. Важно выяснить, сможет ли ваша система справиться с лишним пространством. В противном случае вам может потребоваться увеличить мощность вашей системы отопления, вентиляции и кондиционирования воздуха в дополнение к любому проекту по благоустройству дома, который вы планируете.

ОВК и ремонт дома

Если вы не принимали во внимание мощность HVAC при планировании или запуске проекта ремонта, вы, скорее всего, столкнетесь с некоторыми проблемами HVAC, которые часто возникают в больших домах. Вы также можете столкнуться с неожиданными и дорогостоящими расходами в самом конце проекта ремонта.

Нет ничего хуже, чем узнать постфактум, что ваша система HVAC нуждается в добавлении еще одного блока, чтобы иметь возможность справиться с лишним пространством. Если вы не планировали соответственно, вы можете обнаружить это на собственном горьком опыте, потому что ваша нынешняя система внезапно перестает эффективно нагревать и охлаждать дом. Или вы можете начать чувствовать холодные и горячие точки в различных частях вашего дома.

Или ваши счета за электроэнергию могут внезапно резко возрасти, потому что система перенапрягает себя, чтобы учесть добавленное пространство. В любом случае, это то, что вы должны планировать в самом начале любого проекта ремонта.

Если вы думаете о мощности HVAC для проекта ремонта большого дома в Ричмонде, свяжитесь с одним из наших технических специалистов по HVAC, чтобы он дал вам профессиональную оценку.

Практическое правило для расчета мощности HVAC

Если вы живете в Ричмонде, штат Вирджиния, мы находимся в зоне 7 по погоде и температуре. Нам повезло, что мы живем в зоне с умеренным климатом, поэтому здесь обычно не бывает слишком жарко или слишком холодно в течение длительного времени. Ваша зона имеет огромное влияние на то, сколько тонн мощности HVAC потребуется вашей системе.

В общих чертах, вы можете оценить потребность в 1 тонне системы отопления, вентиляции и кондиционирования воздуха на каждые 400–800 квадратных футов пространства. Однако эту приблизительную оценку ни в коем случае нельзя использовать в качестве окончательного расчета. Каждый дом индивидуален. Получите профессиональное мнение, прежде чем принимать какие-либо решения относительно вашей системы HVAC.

Если у вас есть возможность, вы захотите иметь больше емкости, чем вам нужно, а не меньше. Это поможет вашей системе не перенапрягаться в нормальных условиях и учесть любую потерю емкости, которая происходит с течением времени. Тепловые насосы серии York Affinity оснащены системами Energy Star мощностью от 2 до 5 тонн.

Не пытайтесь самостоятельно определить допустимую нагрузку на систему отопления, вентиляции и кондиционирования воздуха

Легко попасть в ловушку, пытаясь самостоятельно вычислить допустимую нагрузку на систему отопления, вентиляции и кондиционирования воздуха. Сделайте себе одолжение и обратитесь за помощью к профессионалу. Подумайте о том, чтобы получить оценки от нескольких уважаемых HVAC-компаний в Ричмонде, штат Вирджиния.

Свяжитесь с Howell’s Heating & Air, чтобы узнать больше о допустимой нагрузке HVAC для больших домов или получить оценку способности системы расширяться в результате ремонта дома. Мы те, кто позвонит, если вам нужны надежные услуги HVAC в Глен-Аллене или где-либо еще в этом районе. Свяжитесь с нами сегодня!

5-ступенчатый расчет тепловых потерь

Расчет тепловой нагрузки необходим до начала установки системы лучистого отопления, поскольку разные типы систем лучистого отопления имеют разные значения мощности в BTU.
Типичный расчет тепловой нагрузки состоит из расчета потерь тепла на поверхности и потерь тепла из-за инфильтрации воздуха. И то, и другое следует делать отдельно для каждой комнаты в доме, поэтому неплохо начать с плана этажа с размерами всех стен, полов, потолка, а также дверей и окон.

Ниже приведен пример 5-шагового руководства по расчету поверхностных теплопотерь:

Шаг 1 — Расчет дельты T (расчетная температура):

Дельта T — это разница между расчетной температурой в помещении (T1) и расчетной температурой снаружи (T2), при этом расчетная температура в помещении обычно составляет 68–72 ° F в зависимости от ваших предпочтений, а расчетная температура наружного воздуха является типичным минимумом в течение отопительного сезона.Первый можно получить, позвонив в местную коммунальную компанию.
Предполагая, что T1 равно 72F, а T2 равно –5F, Delta T = 72F - (-5F) = 72F + 5F = 77F


Шаг 2 — Расчет площади поверхности:

Если расчет выполняется для внешней стены с окнами и дверями, расчет теплопотерь окна и двери должен выполняться отдельно.

Площадь стены = Высота x Ширина — Площадь двери — Площадь окна
Площадь стены = 8 футов x 22 фута - 24 квадратных фута - 14 квадратных футов = 176 квадратных футов - 38 квадратных футов = 138 квадратных футов

Шаг 3 — Рассчитайте U-значение:

Используйте справочник «Типичные значения R и U» для получения значения R стены.

Значение U = 1 / значение R
Значение U = 1 / 14,3 = 0,07

Шаг 4 — Расчет теплопотерь поверхности стены:

Потери тепла с поверхности можно рассчитать по следующей формуле:

Поверхностные тепловые потери = U-значение x Площадь стены x Delta T
Поверхностные тепловые потери = 0,07 x 138 квадратных футов x 77F = 744 BTUH
(U-значение основано на предположении, что деревянная каркасная стена 2×4 со стекловолокном 3,5 дюйма изоляция)

Шаг 5 — Рассчитайте общую потерю тепла стеной:

Выполните шаги с 1 по 4, чтобы рассчитать теплопотери отдельно для окон, дверей и потолка.
Теплопотери двери = 0,49 x 24 кв. Футов x 77F = 906 BTUH
(значение U основано на предположении, что дверь из цельного дерева)
Потери тепла на окне = 0,65 x 14 кв. Футов x 77F = 701 BTUH
(Значение U основано на предположении, что окно состоит из двух панелей)
Потери тепла на потолке = 0,05 x 352 квадратных фута x 77F = 1355 BTUH
(Значение U основано на предположении, что изоляция из стекловолокна 6 дюймов. 22 футов x 16 футов)

Теперь сложите все числа вместе:
Общие тепловые потери стены = Потери стены + Потери окна + Потери двери + Потери потолка
Общие тепловые потери стены = 744 BTUH + 906 BTUH + 701 BTUH + 1352 BTUH = 3703 BTUH


Всегда следует учитывать скорость инфильтрации воздуха.
Для расчета потерь тепла в помещении из-за инфильтрации воздуха можно использовать следующую формулу:

Потери тепла при инфильтрации воздуха = Объем помещения x Дельта теплоносителя x Изменения температуры воздуха в час x 0,018
Где объем помещения = длина x ширина x высота

изменения воздуха в час учитывают утечку воздуха в комнату.
Например: Потери тепла при инфильтрации воздуха = (22 фута x 16 футов x 8 футов) x 77F x 1,2 x 0,018 = 4683 BTUH

Для фактических расчетов обратитесь к подрядчику или разработчику системы.


Расчет охлаждающей нагрузки — холодильная камера

Расчет охлаждающей нагрузки

Расчет охлаждающей нагрузки для холодильных камер. В этой статье мы рассмотрим, как рассчитать охлаждающую нагрузку для холодного помещения. Сначала мы рассмотрим источники тепла, а затем рассмотрим рабочий пример того, как выполнить расчет охлаждающей нагрузки холодильной камеры в упрощенном примере. Прокрутите вниз, чтобы просмотреть видеоурок.

Нужна бесплатная программа для расчета холодильной камеры?
Загрузите Coolselector®2 бесплатно -> Щелкните здесь
С Danfoss вы можете построить устойчивые и эффективные холодильные камеры.Их широкий ассортимент продукции и передовой опыт применения на рынке позволяют вам думать наперед и соответствовать будущим нормам по хладагентам и энергопотреблению. Экологически чистые и опережайте конкурентов без ущерба для производительности
.

Узнайте больше о решениях для холодных камер здесь

Что такое холодная комната?

Холодильная камера используется для хранения скоропортящихся продуктов, таких как мясо и овощи, чтобы замедлить их порчу и сохранить их максимально свежими как можно дольше. Тепло ускоряет их порчу, поэтому продукты охлаждаются за счет отвода тепла.

Для отвода тепла мы используем систему охлаждения, поскольку это позволяет точно и автоматически контролировать температуру, чтобы сохранить товары как можно дольше.

Система охлаждения — Холодильная камера

Чтобы отвести тепло, нам нужно знать, какова будет охлаждающая нагрузка. Охлаждающая нагрузка меняется в течение дня, поэтому в большинстве случаев рассчитывается средняя холодопроизводительность и рассчитывается холодопроизводительность.

Источники тепла для холодных помещений

Откуда берется все тепло, которое нам нужно отводить?

Нагрузка трансмиссии

Обычно 5-15% приходится на нагрузки передачи. Это тепловая энергия, передаваемая через крышу, стены и пол в холодное помещение. Тепло всегда течет от горячего к холодному, и внутри холодной комнаты, очевидно, намного холоднее, чем вокруг, поэтому тепло всегда пытается проникнуть в пространство из-за этой разницы в температуре. Если холодильная камера подвергается воздействию прямых солнечных лучей, тогда теплопередача будет выше, поэтому потребуется дополнительная поправка, чтобы учесть это.

Загрузка продукта

Затем у нас есть нагрузки продукта, на которые обычно приходится 55-75% охлаждающей нагрузки. Этим объясняется тепло, которое попадает в холодную комнату при поступлении новых продуктов. Это также энергия, необходимая для охлаждения, замораживания и дальнейшего охлаждения после замораживания. Если вы просто охлаждаете продукты, вам нужно учитывать только явную тепловую нагрузку. Если вы замораживаете продукт, вам необходимо учитывать скрытую теплоту, так как происходит фазовый переход. В течение этого времени используется энергия, но вы не увидите изменения температуры, пока продукт переходит в состояние жидкости и льда.Для дальнейшего охлаждения продуктов ниже точки замерзания требуется дополнительная энергия, что также является явным теплом. Вы также должны учитывать упаковку, поскольку она также будет охлаждаться. Наконец, если вы охлаждаете фрукты и овощи, значит, эти продукты живы и будут выделять тепло, поэтому вам придется учитывать и его удаление.

Внутренняя нагрузка

Следующее, что нужно учитывать, — это внутренние нагрузки, которые составляют около 10-20%. Это тепло, выделяемое людьми, работающими в холодильной камере, освещении и оборудовании, таком как автопогрузчики и т. Д.Поэтому для этого вам нужно будет подумать, какое оборудование будет использоваться сотрудниками для перемещения продуктов в магазин и из магазина, сколько тепла они и оборудование будут выделять, а также продолжительность дня.

Нагрузка на оборудование

Затем нам необходимо рассмотреть холодильное оборудование в помещении, на которое будет приходиться около 1-10% от общей охлаждающей нагрузки. Для этого мы хотим узнать номинальные характеристики двигателей вентиляторов и оценить, как долго они будут работать в течение каждого дня, а затем мы также хотим учитывать любое тепло, передаваемое в пространство от размораживания испарителя.

Инфильтрационная тепловая нагрузка

Последнее, что нам нужно учитывать, — это инфильтрация, которая снова добавляет 1-10% к охлаждающей нагрузке. Это происходит, когда дверь открывается, так что происходит передача тепла в пространство через воздух. Другое соображение — вентиляция. Фрукты и овощи выделяют углекислый газ, поэтому в некоторых магазинах потребуется вентилятор, этот воздух необходимо охладить, поэтому вы должны учитывать это, если он используется.

Расчет охлаждающей нагрузки — Пример работы холодильной камеры

Рассмотрим упрощенный пример расчета холодопроизводительности холодильной камеры.Теперь, если вы делаете это на реальном примере, я рекомендую вам использовать программное обеспечение для проектирования, такое как приложение Danfoss coolselector, для обеспечения скорости и точности. Скачать здесь -> http://bit.ly/2Ars6yF

Нагрузка трансмиссии

  • Размеры нашей холодильной камеры: 6 м в длину, 5 м в ширину и 4 м в высоту.
  • Окружающий воздух: 30 ° c при относительной влажности 50%, внутренний воздух: 1 ° ° C при относительной влажности 95%
  • Стены, крыша и пол изолированы 80-миллиметровым полиуретаном со значением U 0.28 Вт / м 2 .K
  • Температура грунта составляет 10 ° C.

Просто обратите внимание, что производитель должен сообщить вам, какое значение u для изоляционных панелей, если нет, то вам необходимо рассчитать это.

Для расчета нагрузки передачи воспользуемся формулой

Q = U x A x (Выходная температура — Входная температура) x 24 ÷ 1000.

  • Q = тепловая нагрузка кВтч / день
  • U = значение U изоляции (мы уже знаем это значение) (Вт / м 2 .K)
  • A = площадь поверхности стен, крыши и пола (мы рассчитаем это) (м 2 )
  • Temp in = Температура воздуха внутри помещения ( ° C)
  • Temp out = Внешняя температура температура воздуха ( ° C)
  • 24 = Часы в день
  • 1000 = преобразование из ватт в кВт.

Вычислить «A» довольно просто, это просто размер каждой внутренней стены, поэтому введите числа, чтобы найти площадь каждой стены, крыши и пола.

Сторона 1 = 6 м x 4 м = 24 м 2
Сторона 2 = 6 м x 4 м = 24 м 2
Сторона 3 = 5 м x 4 м = 20 м 2
Сторона 4 = 5 м x 4 м = 20 м 2
Крыша = 5 м x 6 м = 30 м 2
Этаж = 5 м x 6 м = 30 м 2

Затем мы можем использовать эти числа в формуле, которую мы видели ранее, вам нужно будет рассчитать пол отдельно от стен и крыши, так как разница температур под полом отличается, поэтому теплопередача будет другой.

Стены и крыша

Q = U x A x (Температура на выходе — Температура на входе) x 24 ÷ 1000
Q = 0,28 Вт / м 2 .K x 113 м 2 x (30 ° C — 1 ° C) x 24 ÷ 1000
Q = 22 кВтч / сутки

[113 м 2 = 24 м 2 + 24 м 2 + 20 м 2 + 20 м 2 + 30 м 2 + 30 м 2 ]

Этаж

Q = U x A x (Температура на выходе — Температура на входе) x 24 ÷ 1000
Q = 0,28 Вт / м 2 . K x 30 м 2 x (10 ° C — 1 ° C) x 24 ÷ 1000
Q = 1.8 кВтч / сутки

Если пол не изолирован, вам нужно будет использовать другую формулу, основанную на эмпирических данных .

Суммарный дневной приток тепла от передачи = 22 кВтч / день + 1,8 кВтч / день = 23,8 кВтч / день

Помните, что если ваша холодная комната находится под прямыми солнечными лучами, вам также необходимо учитывать энергию солнца.

Загрузка товара — Обмен товара

Далее мы рассчитаем охлаждающую нагрузку от обмена продуктов, то есть тепла, поступающего в холодную комнату от новых продуктов с более высокой температурой.

В этом примере мы будем хранить яблоки, мы можем найти удельную теплоемкость яблок, но помните, что если вы замораживаете продукты, продукты будут иметь другую удельную теплоемкость при охлаждении, замораживании и переохлаждении, поэтому вы Мне нужно будет это учесть и рассчитать отдельно, но в этом примере мы просто охлаждаемся.

Каждый день прибывает 4000 кг новых яблок при температуре 5 ° C и удельной теплоемкости 3,65 кДж / кг. ° C.

Тогда мы можем использовать формулу

Q = m x Cp x (Temp enter — Temp store) / 3600.

  • Q = кВтч / день
  • CP = удельная теплоемкость продукта (кДж / кг. ° C)
  • m = масса новых продуктов каждый день (кг)
  • Temp enter = температура продуктов на входе ( ° C)
  • Temp store = температура внутри хранилища (° C)
  • 3600 = преобразовать из кДж в кВтч.

Расчет

Q = mx Cp x (ввод температуры — накопитель температуры) / 3600
Q = 4000 кг x 3,65 кДж / кг. ° C x (5 ° C — 1 ° C) / 3600.
Q = 16 кВтч / день

Загрузка продукта — Дыхание продукта

Затем мы вычисляем дыхание продукта, это тепло, выделяемое живыми продуктами, такими как фрукты и овощи.Они будут выделять тепло, поскольку они еще живы, поэтому мы охлаждаем их, чтобы замедлить их разрушение и сохранить их дольше.

В этом примере я использовал в среднем 1,9 кДж / кг в день, но этот показатель меняется со временем и с температурой. В этом примере мы используем эмпирические значения, чтобы упростить расчет, поскольку эта охлаждающая нагрузка не считается критической. Если вы должны были рассчитать критическую нагрузку, вам следует использовать более высокую точность. В этом примере в магазине хранится 20 000 кг яблок.

Для расчета воспользуемся формулой

Q = м x соответственно / 3600

  • Q = кВтч / день
  • m = масса продукта на складе (кг)
  • соответственно = теплота дыхания продукта (1,9 кДж / кг)
  • 3600 = преобразует кДж в кВтч.

Q = m x соответственно / 3600
Q = 20,000 кг x 1,9 кДж / кг / 3600
Q = 10,5 кВтч / день

Для раздела продуктов мы суммируем обмен продукта, равный 16 кВтч / день, и дыхательную нагрузку, равную 10.5 кВтч / день, чтобы получить общую нагрузку продукта 26,5 кВтч / день.

Внутренняя тепловая нагрузка — Люди

Далее мы рассчитаем внутренние нагрузки от людей, работающих в холодильной камере, поскольку люди выделяют тепло, и нам необходимо это учесть.

По нашим оценкам, 2 человека работают в магазине по 4 часа в день, и мы можем посмотреть вверх и увидеть, что при этой температуре они будут выделять около 270 Вт тепла в час внутри.

Мы будем использовать формулу:

Q = люди x время x тепло / 1000

  • Q = кВтч / день
  • человек = сколько людей внутри
  • time = продолжительность времени, которое они проводят внутри каждый день на человека (часы)
  • тепла = тепловые потери на человека в час (ватт)
  • 1000 только конвертировавших мощность в кВт

Расчет:

Q = люди x время x тепло / 1000
Q = 2 x 4 часа x 270 Вт / 1000
Q = 2.16 кВтч / сутки

Внутренняя тепловая нагрузка — Освещение

Затем мы можем рассчитать количество тепла, выделяемого освещением, это довольно просто сделать, и мы можем использовать формулу

Q = лампы x время x мощность / 1000

  • Q = кВтч / день,
  • лампы = количество ламп в холодильной камере
  • время = часы использования в день
  • мощность = номинальная мощность ламп
  • 1000 = преобразует ватты в кВт.

Если у нас есть 3 лампы по 100 Вт каждая, работающие 4 часа в день, расчет будет:

Q = лампы x время x мощность / 1000
Q = 3 x 4 часа x 100 Вт / 1000
Q = 1.2кВт / день

Для общей внутренней нагрузки мы просто суммируем нагрузку на людей (2,16 кВтч / день) и нагрузку на освещение (1,2 кВтч / день), чтобы получить значение 3,36 кВтч / день.

Нагрузка оборудования — двигатели вентиляторов

Теперь мы можем рассчитать тепловыделение двигателями вентилятора в испарителе. Для этого мы можем использовать формулу:

Q = вентиляторы x время x мощность / 1000

  • Q = кВтч / день
  • вентиляторы = количество вентиляторов
  • time = суточные часы работы вентилятора (часы)
  • мощность = номинальная мощность двигателей вентиляторов (Вт)
  • 1000 = преобразование из ватт в кВт.

В этом испарителе холодильной камеры мы будем использовать 3 вентилятора мощностью 200 Вт каждый и рассчитываем, что они будут работать 14 часов в день.

Расчет:

Q = вентиляторы x время x мощность / 1000
Q = 3 x 14 часов x 200 Вт / 1000
Q = 8,4 кВтч / день

Нагрузка оборудования — двигатели вентиляторов

Теперь рассчитаем тепловую нагрузку, вызванную размораживанием испарителя. Чтобы вычислить это, мы воспользуемся формулой:

Q = мощность x время x циклы x эффективность

  • Q = кВтч / день,
  • мощность = номинальная мощность нагревательного элемента (кВт)
  • время = время оттаивания (часы)
  • цикла = сколько раз в день будет выполняться цикл оттаивания
  • эффективность = какой % тепла будет передаваться в пространство.

В этом примере в нашей холодильной камере используется электрический нагревательный элемент мощностью 1,2 кВт, он работает в течение 30 минут 3 раза в день, и, по оценкам, 30% всей потребляемой энергии просто передается в холодную комнату.

Q = мощность x время x циклы x эффективность
Q = 1,2 кВт x 0,5 часа x 3 x 0,3
Q = 0,54 кВтч / день

Общая нагрузка оборудования равна тепловой нагрузке вентилятора (8,4 кВтч / день) плюс тепловая нагрузка оттайки (0,54 кВтч / день), которая, следовательно, равна 8,94 кВтч / день

Инфильтрационная нагрузка

Теперь нам нужно рассчитать тепловую нагрузку от проникновения воздуха. Я собираюсь использовать упрощенное уравнение, но в зависимости от того, насколько важны ваши вычисления, вам может потребоваться использовать другие более полные формулы для достижения большей точности. Воспользуемся формулой:

Q = изменения x объем x энергия x (выходная температура — входная температура) / 3600

  • Q = кВтч / день
  • изменения = количество изменений объема в день
  • volume = объем холодильной камеры
  • energy = энергия на кубический метр на градус Цельсия
  • Temp out — это температура наружного воздуха
  • Temp in — температура воздуха внутри
  • 3600 — это просто перевести из кДж в кВтч.

По нашим оценкам, будет 5 изменений объема воздуха в день из-за открытой двери, объем рассчитан как 120 м 3 , каждый кубический метр нового воздуха обеспечивает 2 кДж / ° C, воздух снаружи составляет 30 ° C и воздух внутри 1 ° C

Q = изменения x объем x энергия x (выходная температура — температура на входе) / 3600
Q = 5 x 120 м 3 x 2 кДж / ° C x (30 ° C — 1 ° C) / 3600
Q = 9,67 кВтч / день

Общая охлаждающая нагрузка

Для расчета общей охлаждающей нагрузки просто просуммируем все рассчитанные значения

Нагрузка трансмиссии: 23. 8 кВтч / день
Нагрузка продукта: 26,5 кВтч / день
Внутренняя нагрузка: 3,36 кВтч / день
Нагрузка на оборудование: 8,94 кВтч / день
Инфильтрационная нагрузка: 9,67 кВтч / день
Итого = 72,27 кВтч / день

Фактор безопасности

Затем мы должны применить коэффициент запаса прочности к расчету, чтобы учесть ошибки и отклонения от проекта. Обычно, чтобы покрыть это, к расчету прибавляют от 10 до 30 процентов, в этом примере я использовал 20%, так что хорошо, просто умножьте охлаждающую нагрузку на коэффициент запаса прочности, равный 1.2, чтобы получить общую холодопроизводительность 86,7 кВтч / день

Расчет холодопроизводительности

Последнее, что нам нужно сделать, это рассчитать холодопроизводительность, чтобы справиться с этой нагрузкой. Обычный подход состоит в том, чтобы усреднить общую суточную нагрузку на охлаждение по времени работы холодильной установки. Для этого я предполагаю, что устройство будет работать 14 часов в день, что довольно типично для магазина такого размера и типа. Таким образом, общая холодопроизводительность 86,7 кВтч / день, разделенная на 14 часов, означает, что холодильная установка должна иметь мощность 6 единиц.2 кВт, чтобы удовлетворить эту охлаждающую нагрузку.

Означает ли больший объем больше нагрузки на отопление и охлаждение?

Что происходит с тепловой и охлаждающей нагрузкой, когда вы герметизируете чердак? Изоляция и воздушный барьер на потолке под чердаком исключают чердак. Этот объем воздуха не участвует в кондиционировании дома. Но когда вы перемещаете ограждение на линию крыши (обычно путем установки теплоизоляции из аэрозольной пены под настилом крыши), теперь объем чердака включается в ограждение здания.Иногда я слышу, как люди говорят, что нагрузки будут выше из-за дополнительной громкости. Действительно ли наличие большего количества воздуха внутри увеличивает нагрузку?

Обновление расчета нагрузки

Чтобы разобраться в этой проблеме, давайте посмотрим, что входит в расчет нагрузки. Чтобы сделать это правильно, вы должны учитывать все способы, которыми тепло входит в дом или выходит из него. Вот они:

  1. Нагрузка шкафа — Отсюда большая часть нагрузки по обогреву и охлаждению. Это тепло, которое проходит через стены, окна, двери, потолки и полы.Это также лучистое тепло, которое проходит (в основном) через окна, также известное как прямое солнечное излучение.
  2. Инфильтрационная нагрузка — Воздух, просачивающийся через ограждение здания, на самом деле является подкатегорией нагрузок ограждения. Но стоит выделить его, если только по той причине, что он введен отдельно в расчет.
  3. Нагрузка на вентиляцию — Наружный воздух, который вы вводите для вентиляции, добавляет тепла (как ощутимого, так и скрытого) летом и приводит к потере тепла зимой.
  4. Нагрузки системы — Когда вы размещаете систему отопления или охлаждения в безусловном пространстве, в системе наблюдается приток тепла летом и потеря тепла зимой. То же самое и с распределительной системой, независимо от того, используете ли вы воздух или воду. Изоляция и герметизация воздуховодов, а также изоляция труб помогают снизить эти прибыли или убытки, но вам все равно придется учитывать это дополнительное тепловыделение или потерю при подсчете общих нагрузок.
  5. Нагрузки для осушения и увлажнения — Все осушители выделяют тепло.Большинство из них сбрасывают это тепло в пространство, которое вы осушаете. (Исключением является Ultra-Aire SD12 *, осушитель сплит-системы.) Увлажнителям требуется тепло для испарения воды. Иногда это тепло исходит от самой системы отопления, и в этом случае оно увеличивает тепловую нагрузку.
  6. Внутренние нагрузки — Люди выделяют тепло. Свет излучает тепло. Приборы выделяют тепло. Вы уловили идею. Все эти вещи тоже включены.

Введя все соответствующие детали рассматриваемого дома, вы получите нагрузки для каждой комнаты, каждой зоны и всего дома.

При чем здесь воздух?

Итак, какая из этих нагрузок связана с большим объемом воздуха для нагрева и охлаждения? Ну, на самом деле парочка из них. Когда воздух проникает в дом, его необходимо нагреть или охладить. То же самое с вентиляцией, за исключением того, что в этом случае «утечка» является преднамеренной.

Но вопрос здесь в том, как увеличение громкости влияет на нагрузку. Когда вы герметизируете чердак и переносите его в кондиционированное пространство, дополнительный воздух на чердаке ничего не добавляет к нагрузке.Если небрежная работа с распылительной пеной привела к тому, что чердак стал негерметичным, то проникновение на чердак действительно увеличивает нагрузку, но мы говорим не об этом.

Теперь, когда вы герметизируете чердак, у вас может быть больше тепловая и охлаждающая нагрузка, но это не из-за дополнительного объема воздуха внутри кондиционируемого помещения. Когда вы перемещаете ограждение к линии крыши, вы также увеличиваете площадь дома. Это может увеличить нагрузку на корпус. Но если вы переместили свою систему отопления, вентиляции и кондиционирования воздуха из некондиционируемого помещения в кондиционируемое, вы можете получить меньшую нагрузку.В жарком климате это может быть значительным.

Еще один фактор, увеличивающий нагрузки при инкапсулировании чердака, — это уровень изоляции. Часто подрядчики будут использовать более низкое значение R для изоляции на линии крыши, чем на нижнем потолке. (Мартин Холладей написал об этом статью несколько лет назад на сайте Green Building Advisor. Он называется . Можно сэкономить на теплоизоляции, говорит Айсинен ). Например, в большей части Джорджии требуется R-30 для потолков, но вы можете установить изоляцию из распыляемой пены. на линии крыши всего R-19.

Корреляция не причинно-следственная связь

Проблема здесь может быть в том, что люди, которые считают, что больший объем означает большую нагрузку, путают корреляцию с причинно-следственной связью. Эй, я понял. Все мои друзья в штате Мэн стараются сократить потребление маргарина, потому что это повысит их шансы остаться в браке. Посмотрите на график ниже, и вы тоже убедитесь. (Посетите веб-сайт «Ложные корреляции», чтобы узнать больше об этих интересных связях.)

Погодите, нет! Это корреляция между двумя переменными, но нет ни малейшего доказательства того, что между ними существует причинно-следственная связь.Одинаковый кондиционируемый объем и нагрузки на отопление и охлаждение. Мы знаем, какие факторы влияют на тепловую или охлаждающую нагрузку. Когда вы увеличиваете размер дома за счет инкапсуляции чердака или подвального помещения, на нагрузки влияют дополнительная площадь поверхности и уровни изоляции, а не объем.

* Полная информация о компании Therma-Stor, производящей осушители воздуха Ultra-Aire, размещена в блоге Energy Vanguard.

Статьи по теме

Влажность на чердаке из пеноматериала

Конструкция ОВКВ выполнена правильно — руководство J, S, T и D

3 причины для удаления изоляции чердачного пола в чердаке из пенопласта

Вопрос №1, который следует задать, прежде чем наносить пену на чердак

Проникновение происходит на поверхности, а не в объеме

ПРИМЕЧАНИЕ: Комментарии модерируются.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *