Трубы для отопления частного дома: Трубы для отопления частного дома что лучше
Диаметр трубы для отопления частного дома: расчет
Любому профессионалу не составит большого труда определить величину необходимого сечения трубопровода. Для этого существуют специальные таблицы, по которым опытный специалист быстро найдет верный ответ. Намного сложнее обычному владельцу жилья. Он не обладает профессиональными знаниями, а вот желание самостоятельно создать отопительный контур всегда существует. Эта статья поможет правильно определить диаметр трубы для отопления частного дома.
Как сечение трубы влияет на отопительную систему и ее КПД
Высокая эффективность отопительной системы зависит от грамотно разработанного проекта трубопровода. При планировании прокладки труб очень важно правильно рассчитать возможные теплопотери. Нужно стремиться к их максимальному уменьшению. Если этого не сделать, то даже огромные энергетические затраты не помогут нормально функционировать отопительной системе.
Покупая трубы, нужно учитывать некоторые свойства материала изделия:
- физико-химические показатели;
- длину;
- диаметр.
Учет всех этих параметров поможет создать высокоэкономичную отопительную систему, отличающуюся высоким показателем КПД.
Какой диаметр трубы лучше всего использовать для отопления вашего частного дома? От сечения трубы зависят гидродинамические свойства трубопровода. Отсюда следует, что подбор должен осуществляться тщательно, соблюдая все требуемые нормативы.
Существует мнение, что если увеличить диаметр труб для отопления, повысится эффективность отапливающей системы. Однако такое утверждение ошибочно. Когда диаметр неоправданно большой, происходит понижение давления отопительной системы, оно падает до минимальных значений. В результате дом остается вообще без отопления.
Как грамотно подобрать диаметр труб для монтажа трубопровода в собственном коттедже
Выбор диаметра труб для отопления начинается с определения того, как будет происходить подача теплоносителя. Если она осуществляется от централизованной магистрали, проводить расчет нужно аналогично подаче тепла в жилую квартиру.
Если коттедж имеет установленную автономную отопительную систему, то расчет диаметра будет зависеть от вида материала трубы и существующей схемы отопления.
Например, если осуществляется естественная циркуляция воды, необходимо монтировать трубы с определённым диаметром, а если подключен дополнительный насос, то эта цифра будет совсем другой.
Какие параметры необходимо знать, чтобы сделать правильный расчет диаметра
Очень важным считается значение тепловой мощности. От нее зависит то, насколько эффективно будет обогреваться помещение. Обычно этот параметр определяется на стадии проектирования котельной установки. Если этого не сделано, то приблизительное количество теплоты рассчитывается в зависимости от объема комнаты.
Кубометр помещения будет нормально обогреваться за счет 40 Вт. Следовательно, для определения расхода тепла нужно существующий объем помещения умножить на 40. Результат должен получиться в Ваттах.
youtube.com/embed/j1VZfc6k85w» frameborder=»0″ allowfullscreen=»allowfullscreen»/>
Затем определяется вид системы отопления. Он может быть:
- однотрубным;
- двухтрубным.
Второй тип отопительной системы частного дома намного лучше. Он остается самым востребованным и популярным. Однотрубные схемы никто не отменял. Они также применяются в отопительных системах.
Жидкость движется в этих системах по одним и тем же законам, поэтому при определении диаметра трубопровода вид отопления не имеет решающего значения. Намного важнее способ движения теплоносителя. Он может быть нескольких видов:
- конвекционный, или самотечный;
- принудительный: движение осуществляется с помощью циркуляционного насоса.
Эти способы отличаются между собой только движением теплоносителя. При конвекционном методе жидкость перемещается по трубопроводу очень медленно. При принудительном − насос заставляет ее двигаться намного быстрее.
Именно скорость продвижения теплоносителя считается самым важным параметром для расчета такой величины, как диаметр труб отопления. От ее значения зависит пропускная способность магистрали. Рекомендуемая скорость находится в диапазоне 0,3 − 0,7 м/с.
При использовании принудительной системы скорость составляет 0,7 м/с, для конвекционного способа − это 0,3 м/с.
Если скорость жидкости меньше указанного значения, начнется образование воздушных пузырьков. Если диаметр трубопровода будет очень большим, это вызовет значительные затраты.
При высокой скорости трубопровод начнет сильно шуметь, увеличится гидравлическое сопротивление сети, обычный циркуляционный насос с такими условиями может просто не справиться.
Расчет сечения трубы
Чтобы понять методику расчета и познакомиться с таблицей диаметров труб, возьмем типовой расчет монтажа трубопровода комнаты, общей площадью 20 кв. м:
- вычисляется тепловая мощность. Если стены в квартире имеют утепление, высота потолка менее 3 м, то берется 1 кВт на 10 кв. м площади;
- у нас площадь равна 20 кв. м, а это значит, что потребуется 2 кВт мощности;
- к этому значению прибавляются запасные 20 %. В результате получается 2,4 кВт. Следовательно, чтобы в квартире было тепло и уютно, необходимо чтобы отопление имело тепловую мощность не ниже 2,4 кВт;
- если в комнате есть окна, необходимо установить радиаторы отопления. Их количество должно соответствовать числу окон. Например, если имеется 2 окна, требуется установить 2 батареи, мощность каждой из них должна быть не менее 1,2 кВт. Радиаторы устанавливаются под подоконниками. Возможны и другие места в соответствии с дизайном проекта;
- значение мощности отопительных радиаторов разрешается увеличивать, но не уменьшать;
- в таблице в графе внутренних диаметров, необходимо найти величину мощности, равную 2,4 кВт. После этого находится верхний параметр теплового потока. Голубой участок таблицы, показывает оптимальную скорость, с которой движется жидкость;
- такая таблица предназначена для определения необходимых значений двухтрубной отопительной системы. В данном случае учитывается разница между температурой теплоносителя при входе и на его выходе из трубопровода.
После операций с таблицей мы получили следующие значения: чтобы нормально обогреть помещение в 20 кв. м, необходимо чтобы труба имела диаметр 8 мм. Движение теплоносителя будет совершаться со скоростью около 0,6 м/с. При этом расход составит 105 кг/ч, значение тепловой мощности не будет превышать 2453 Вт. Разрешается использовать трубы с сечением 10 мм. Тогда скорость достигнет 0,4 м/с. Расход составит 110 кг/ч. Мощность созданного теплового потока = 2555 Вт.
Теперь вы знаете, какой диаметр трубы выбрать для отопления.
Практические советы
Если неправильно подобрать диаметр трубопровода, возможно появление очень многих проблем:
- протечки;
- высокий расход топлива;
- большие затраты электроэнергии.
Поэтому монтаж такой отопительной системы должен выполняться с учетом всех технологических правил. Для контура из сочетания разнородных труб необходимо сделать специальные расчеты. Отдельно считается пластиковая труба, отдельно металл. Такую задачу должен выполнять только специалист. Самостоятельно рассчитывать диаметр не нужно, ошибка может достигнуть большой величины. Стоимость услуг профессионала намного меньше, чем переделка всех коммуникаций во время отопительного сезона. Все приборы должны подключаться только трубами одинакового сечения.
Похожие статьи:
какие трубы выбрать, как произвести их прокладку и оптимальная схема разводки труб
На чтение 7 мин. Просмотров 1.8k. Обновлено
Еще перед строительством дома важно определиться с видом отопления и смонтировать его так, чтобы не допускать ошибок. Иначе не серьезный подход может в будущем негативно отразиться на его функционировании.
Чтобы исключить деформацию материала, порывы и протечки нужно выбрать оптимальный диаметр трубы для отопления частного дома. Такой параметр выбирается или рассчитывается, при учете целого ряда факторов.
Чтобы выбрать подходящие элементы для монтажа отопительной системы необходимо решить, как будет циркулировать теплоноситель. При отдельном отоплении нужно учесть ее вид, схему конструкции и прокладку.
Выбор составляющих
Сегодня строительный рынок предлагает широкий выбор образцов из различных материалов:
Выбрать необходимые элементы не сложно, если изучить маркировку, где отмечено допустимое давление и температура теплоносителя.
Важность грамотного подбора трубы
Основывать выбор нужно не только на свойствах материала, а также определить правильный диаметр труб для отопительной системы в частном доме. От этого будет зависеть гидродинамика отопления, ее экономичность и эффективное функционирование.
Частые ошибки. Если сечение образцов больше чем нужно это вернее всего приведет к снижению давления, вода перестает нормально циркулировать и обогрев помещения на порядок снизится. Используя составляющие меньшего сечения, чем требуется, система начнет издавать неприятные шумы.
Выбрать все составляющие для прокладки отопления частного дома будет проще, если учесть тот факт, что разные материалы предполагают разный замер сечения.
Образцы из чугуна и стали измеряются по внутреннему диаметру, а пластиковые и медные по наружному. Этот момент является очень важным, если планируется монтировать комбинированное отопление.
При использовании составляющих из разных материалов, чтобы избежать ошибок, самым лучшим и правильным решением станет воспользоваться данными из таблицы соответствия диаметров, которая представлена на нашем сайте.
Смотрите как провести отопление своими руками.
Основные параметры и расчет диаметра
Есть три основных диаметра, которые нужно учитывать. А именно:
- внутренний. Учитывается как показатель пропускной способности теплоносителя;
- внешний. Важный показатель, влияющий на качество монтажа отопительной схемы;
- условный. Стандартное значение, которое округляется и отображается в дюймах.
При вычислении диаметра трубы отопления стоит помнить о шкале измерения данной величины.
В основном этот показатель указывается в дюймах и обозначается в целых числах или долях.
Чтоб не ошибиться при расчете, нужно знать, что дюйм приравнивается к 2,54 см.
Расчет подходящего диаметра
При определении диаметра сечения обязательно нужно знать о тепловой нагрузке. Считается, что для обогрева «одного квадрата» стандартного помещения потребуется использовать 100 Вт тепловой энергии. Учитывая это, проводим следующие расчеты:
25х100 = 2500 Вт = 2,5 кВт
Таким образом для создания тепла в помещении 25 квадратов потребуется использовать 2,5 кВт. После этого по таблице определяется, какой диаметр трубы для отопления частного дома станет оптимальным.
По нашим расчетам самый подходящий размер составляет ½ дюйма и выбрать рекомендуется именно такой диаметр.
Оптимальная температура и давление воды
При выборе автономного отопления придется самостоятельно подбирать подходящую температуру и давление теплоносителя. Это зависит не только от пожеланий, но и от показателя теплопередачи встроенных батарей.
Видео о прокладке отопления, разводке труб
Запомните, что самый низкий коэффициент теплопередачи у чугунных радиаторов, а самый высокий у моделей из алюминия. Подсчет количества батарей и их секций проводиться, учитывая такую величину, как паспортная тепловая мощность.
Такой параметр устанавливается при учете, что температура жидкости не превысит 75 градусов. Такой показатель считается самым оптимальным.
Однако если температура на улице постоянно колеблется в разные стороны, подогрев теплоносителя в автономной системе частного дома необходимо регулировать так, чтобы постоянно поддерживать комфортную температуру и не расходовать лишнее.
Для качественной работы помимо температуры нужно следить за давлением в трубах и выбрать оптимальный диаметр. Нормальным считается давление, что находится в промежутке 1,5-2 атмосферы.
Если этот показатель поднимается до 3, то возможен сбой работы всей схемы и даже протечки и порывы.
Чтобы регулярно проверять давление, при монтаже следует в цепи оставлять место для манометров. Уменьшить напор можно, используя расширительные баки.
Виды отопления
Установка отопительной автономной системы в малоэтажном доме может осуществляться одно и двухтрубными схемами.
Оптимальный вариант должен выбрать заказчик еще на этапе создания проекта, чтобы обеспечить комфортное проживание в своем доме.
Стоит остановиться на методе, когда прокладка труб отопления в частном доме будет менее затратной.
Финансово самой оптимальной будет однотрубная разводка, но если цена не так важна, как эффективность работы, то стоит остановить свой выбор на прокладке двухтрубной схемы.
Ниже рассмотрим более детально каждый вид разводки.
Однотрубная система
Прокладка магистрали такой схемы изготавливается из отопительных приборов подсоединенных один за другим. Жидкость проходит поочередно все элементы системы, отдавая понемногу свою тепловую энергию, поэтому в последнюю секцию он поступает с заниженной температурой.
На микроклимат внутри дома это не повлияет, если последнюю батарею в схеме оснастить большим количеством секций.
На сегодняшний день есть технологии, которые помогают улучшить работу однотрубной схемы отопления. К ним относится наличие:
- регуляторов на батареях;
- вентилей для баланса поступающего теплоносителя;
- термостатических или шаровых клапанов.
Использование такого оборудования помогает поддерживать определенную температуру в помещении частного дома.
Зачастую в малоэтажном доме устанавливают отдельное отопление, которое монтируется по:
- горизонтальной схеме с насосом, что обеспечивает перегонку горячей воды методом нагнетания;
- вертикальной схеме, где жидкость перетекает естественным путем;
- вертикальной схеме с естественной, нагнетающей или комбинированной перегонкой.
Прокладка отопительной разводки может осуществляться над полом или под напольным покрытием. Еще одним важным моментом является теплоизоляция, чтобы сохранить больше тепла.
Горизонтальную магистраль монтируют под небольшим наклоном, чтобы теплоноситель перемещался своим ходом. Батареи наоборот устанавливаются на одном уровне. Для спуска воздуха радиаторы оснащаются специальными кранами.
Данную систему можно не оснащать насосом, так как движение жидкости осуществляется естественным способом.
Недостаток же заключается в использовании составляющих с сечением большого размера и обязательной прокладке системы под уклоном.
Поэтому такой вид разводки не станет украшением интерьера.
Двухтрубная система
Второй вид схемы отопления частного дома – разводка труб двухтрубного вида потребует при монтаже большего количества составляющих. Параллельно с этим увеличится объем монтажных работ и финансовые растраты на оплату.
Такая конструкция способна обеспечить равномерное распределение теплоносителя и облегчит настройку и регулировку работы всей системы.
Использование котлов современного типа от зарубежных производителей желательно для двухтрубной разводки. Нагревается жидкость при помощи двухконтурного котла с использованием газовой энергии.
Очень важно при установке двухтрубной разводки на верхних позициях установить автостравливающие клапаны. Если дом одноэтажный, то такие клапаны необходимы на последней батарее и на «полотенцесушителе».
От того какую схему вы решите выбрать зависит количество составляющих элементов, что потребуются для ее установки. Дома с большой площадью желательно снабжать двухтрубной разводкой и циркуляционным насосом.
Температурный режим при этом можно поддерживать, используя терморегуляторы. Если «квадратура» дома не превышает сотни, то однотрубная конструкция с естественным потоком теплоносителя вполне справится с обогревом всех комнат.
Если подытожить всю вышеизложенную информацию можно уверенно сказать, что во время проектирования отопительной системы и ее монтажа необходимо учитывать каждую мелочь.
Даже минимальная ошибка может отразиться на эффективности работы конструкции.
Чтобы исключить всевозможные неточности лучше доверить проектирование и разводку любой отопительной системы профессионалам, которые правильно подберут диаметр трубы для отопления частного дома, а так же проведут все необходимые расчеты.
разновидности арматуры, достоинства и недостатки
Содержание статьи:
При создании или реконструкции домашнего трубопровода стоит рассматривать качество обогрева, экономичность расхода теплоносителя и стоимость коммунальных платежей в отопительный сезон. Чтобы выбрать трубы для отопления, необходимо учитывать мощность котла, суммарную нагрузку на коммуникации, материал и технические параметры изделий.
Главные критерии подбора труб для отопления
Трубы для отопления выбирают в зависимости от особенностей системы и от площади
Выбрать универсальные трубные изделия невозможно. Если система только проектируется или планируется замена устаревшей магистрали, стоит обращать внимание на такие факторы:
- параметры сечения труб;
- показатель мощности котла и вид топлива;
- общую квадратуру отапливаемых помещений;
- тип прокладки – обустраивается открытым и закрытым способом;
- особенности создания контура – можно выполнить наружное, или открытое расположение, установить в полу или стенах, подвести на радиатор;
- наличие насоса для принудительного движения теплоносителя;
- температурные показатели отдельного участка контура;
- давление в системе – в централизованной системе многоэтажного дома достигает 16 атм., в индивидуальной частного – до 2-3 атм.
Учитывайте наличие неотапливаемых комнат и ремонтопригодность магистрали.
Характеристики материалов
В частном доме или загородном коттедже целесообразен трубопровод из металла (черного, меди, нержавеющей стали) или пластика (полипропилен, полиэтилен со сшивкой, металлопластик). Для сравнения эксплуатационных характеристик труб, предназначенных для отопительных коммуникаций, стоит обратиться к таблице:
Материал | Температура работы, °С | Шероховатость, мм | Вероятность потери давления, гПа/м | Коэффициент линейного расширения, мм/м*град. |
сталь | 130 | 0,07 | 5 | 0,012 |
металлопластик | 95 | 0,004 | 1,5 | 0,025-0,03 |
полиэтилен | 90 | 0,007 | 1,8 | 0,15-0,17 |
полипропилен | 70 | 0,01 | 2 | 0,15-0,17 |
Металлические изделия могут выдержать высокую нагрузку, но внутри дома лучше использовать варианты, выдерживающие температуру горячей воды.
Разновидности материалов труб отопления
Стальные трубы
От типа материала зависит производительность системы, способ ее монтажа и возможность самостоятельного расчета теплопотерь. Производители выпускают металлические и полимерные трубы.
Особенности металлического трубопровода
Для изготовления труб используется черный, нержавеющий или оцинкованный тип стали. Этот металл отличается прочностью и стойкостью к механическим воздействиям. Рабочая температура трассы равняется 130 градусов, а максимальный показатель давления – 30 атм. Сталь не воспламеняется при наличии внутри горячего теплоносителя.
Минусы черного и оцинкованного трубопровода – большой вес, сложность самостоятельного монтажа, большие теплопотери и шероховатость внутреннего слоя, где могут скапливаться отложения. Все типы металла, за исключением нержавейки, необходимо окрашивать.
Металлический тип труб без антикоррозийного слоя эксплуатируется на протяжении 15 лет, со специальным покрытием – до 50 лет.
Специфика изделий из композиционных полимеров
Полипропиленовые изделия
Полимеры бывают полиэтиленовыми, полипропиленовыми и металлопластиковыми. Эти трубы лучше использовать для отопления частного дома по причине длительной эксплуатации – около 30 лет. По системе может циркулировать теплоноситель с температурой 95 градусов.
Композиционные полимеры отличаются пластичностью, что исключает резку трассы, число фитингов. Пластик не подвергается коррозии, поэтому можно сделать скрытый монтаж в стене или организовать теплый пол. Подбирать толщину стенки (от 1,8 до 3 мм) нужно по уровню давления контура.
Недостаток композитов – деформация при перегреве, разрыв при замерзании теплоносителя. Благодаря гладкости внутренних стенок на трубах не образуется налет.
Контур модификаций с антидиффузным слоем не завоздушивается.
Металлопластиковые трубы
Металлопластик
Изделия отличает привлекательный внешний вид и разнообразие диаметров – от 16 до 63 мм. Стенки арматуры бывают толщиной 2-3 мм, допустимая долговременная температура теплоносителя – 95 градусов, кратковременная – 110 градусов.
Конструкция многослойная, что позволяет магистрали выдерживать большую нагрузку. Стандартная металлопластиковая труба состоит из таких элементов:
- внешний слой – сшитый полиэтилен, стойкий к температурным, ударным и химическим воздействиям;
- проклейка – нужна для скрепления материалов;
- армирование – используется гибкий и прочный алюминий;
- внутренний слой – гладкий сшитый полиэтилен.
Армированный слой может достигать 190-300 мкм в толщину, что позволяет выдерживать давление до 8 кПа.
Трасса соединяется посредством опрессовки фитингами или цангами с помощью специального ключа. Способ стыковки подбирает владелец или специалист по монтажу на месте. Материал гибкий, что обеспечивает простоту самостоятельной установки трубогибом.
Изгиб металлопластиковой трубы формируется вручную, с оптимальным радиусом 80-125 мм.
Плюсы и минусы стальных и медных труб
Особенности стального трубопровода
Трубы из углеродистой стали не подвержены коррозии
До конца ХХ века труба из стали была единственным способом обустройства отопления. В настоящее время собственники частных домов предпочитают делать коммуникации из углеродистой стали.
Материал имеет несколько плюсов:
- стойкость к гидравлическим ударам, колебаниям температуры и давления;
- отличные показатели прочности и устойчивости к механическим воздействиям;
- минимальный коэффициент расширения, исключающий компенсаторы;
- хорошая теплопроводность;
- недорогая цена материала даже при покупке расходников.
Стальной тип коммуникаций имеет ряд минусов:
- минимальная стойкость к коррозии;
- шероховатость стенок, в результате которой формируются отложения;
- риски коррозии по причинам протечек;
- большой вес;
- необходимость навыков сварки и специального оборудования для монтажа;
- кропотливость нарезки резьбы при резьбовом соединении;
- пропускание железом блуждающих токов.
Модели с оцинковкой практически не подвергаются коррозии.
Особенности медного трубопровода
Медные трубы выдерживают перепады температур от -200 до +500 градусов
Медная батарея и аналогичная арматура до сих пор используются в частных домах. Причинами их применения являются:
- долговечность – металлический материал не разрушается на протяжении 100 лет;
- высокие показатели герметичности, стойкости к коррозии;
- отсутствие отложений внутри;
- большая теплопроводность;
- диапазон рабочей температуры от -200 до +500 градусов;
- устойчивость к перепадам давления.
Недостаток медного трубопровода – высокая стоимость самого материала.
Медные трубы нельзя комбинировать с изделиями из нелегированной стали – они быстро заржавеют.
Полимерный и металлопластиковый тип арматуры
Характеристики полимерной арматуры
ПП-трубопровод отличается слабой жесткостью
Современные ПП-трубы изготавливаются из нетоксичного синтетического полимера. Они отличаются ударопрочностью, возможностью многократного изгибания, износостойкостью и диэлектрическими свойствами. ПВХ-трубы, применяемые для отопления, могут выдерживать давление до 25 бар при температуре от 0 до +25 градусов и 10 бар при кратковременном нагреве (от 70 градусов и выше).
Полимерный тип арматуры отличается несколькими достоинствами:
- универсальность – такой магистралью оснащается квартира, производственные площади или частный дом;
- простота монтажа своими руками при наличии котла максимальным прогревом теплоносителя до 70 градусов;
- минимальные затраты на комплектующие;
- гладкость внутренней поверхности, где не скапливаются отложения;
- использование простых инструментов для установки;
- длительный период эксплуатации – почти 25 лет;
- красивый внешний вид трассы;
- стойкость к низкой температуре.
Пластиковый тип труб отличается слабой жесткостью, в результате которой магистрали могут провисать, растрескиваться и обрываться.
Показатель КПД домашней системы зависит от армирования ПП-трубы. Производители используют несколько типов армирующего материала:
- Фольгирование – уплотнение делается снаружи, в середине и внутри при помощи несплошных, гофрированных и сплошных листов. Фольга исключает расширение при нагреве.
- Стекловолоконный слой – размещается в середине трубы посредством соэкструзии. Стекловолокно при сварке фитингов создает прочное соединение, которое не расслаивается.
- Композитные смеси – применяются составы, в которых смешиваются полипропилен со стекловолокном. Трубы получают дополнительную прочность и стойкость к механическим воздействиям.
Стекловолоконное армирование – оптимальный вариант для домашнего строительства.
Трубопровод из сшитого полиэтилена
Полипропиленовый вид арматуры – этилен с химической или физической сшивкой молекул. Готовые изделия получают однородную структуру, гибкость и высокую прочность на разрыв. Основные преимущества конструкций:
- хорошие показатели усадки;
- сохранение формы по уровню соединения даже при повышении температуры до 200 градусов;
- износостойкость и сохранение целостности в условиях высокого давления;
- низкий коэффициент расширения при тепловом воздействии;
- возможность прокладки скрытым способом;
- способность фрагментов к запоминанию положения в системе.
Полиэтиленовый тип трубопровода разрушается под воздействием ультрафиолета.
Особенности металлопластиковой арматуры
Соединение металлопластиковых труб
Для производства применяется пластик и каркас из алюминиевой фольги с клеевой связкой. Арматура подходит для комнат, в которых постоянный обогрев. Соединяется с помощью фитингов – разъемных и неразъемных. Резьбовую сцепку должен выполнять только специалист.
Металлополимерный тип системы имеет такие свойства:
- стойкость к коррозии – с теплоносителем вступает в контакт исключительно пластмассовый слой;
- гладкость внутренней поверхности, где не скапливается налет;
- герметичность, что сохраняют фольгирование;
- хорошие показатели гибкости – удобно для комнат любой конфигурации;
- продажа в бухтах по 50-500 м, что исключает переплаты за метр материала, уменьшает количество паек;
- длительность эксплуатации – до 50 лет;
- низкий коэффициент линейного расширения – трубопровод можно монтировать в стену.
Материал не устойчив к УФ-лучам, поэтому укладывается в гофротрубу.
Какие трубы выбрать
Подбирая трубы для отопления, стоит рассмотреть, какие изделия будут лучше по КПД для частного дома, обратить внимание на условия эксплуатации и сложность монтажа.
Полипропилен отличается высокой герметичностью, простотой самостоятельного соединения и небольшим весом. На несущие системы не создается давление, а гладкость стенок исключает образование отложений. Жесткость материала предусматривает использование фитингов для создания поворота. При выходе из строя одной области требуется полностью менять системы.
Металлопластик – надежен, отличается простотой самостоятельной организации магистрали. Соединять изделия можно гаечным ключом, но точки спайки могут повреждаться. Металлопластиковая арматура оправдана, если нужно обогревать дом в постоянном режиме.
При наличии финансовых средств стоит остановить выбор на нержавеющей магистрали со сроком эксплуатации до 100 лет.
Правила выбора размеров
Типоразмеры трубы зависят от квадратуры отапливаемой площади:
- оптимальный диаметр для мест массового скопления людей – 200 мм;
- в небольших домах подойдут изделия 20-30 мм в диаметре;
- при наличии горячего водоснабжения на стояки пускают трубу 25 мм, остальные участки делаются из труб 20 мм;
- центральное отопление выполняется из арматуры 25 мм диаметром;
- для теплого пола подойдут конструкции, диаметр которых от 16 мм.
Для точного расчета параметров стоит обратиться к профессионалам или использовать онлайн-калькулятор.
Специфика монтажа труб отопления в частном доме
Однотрубная система отопления Ленинградка
В частном доме может использоваться однотрубная или двухтрубная система отопления.
Выполнение однотрубной схемы
Принцип обустройства коммуникаций – подключение всех радиаторов на один коллектор. Устройство будет работать на подачу и обратку, а теплоноситель – двигаться по батареям в виде замкнутого кольца.
При организации однотрубной схемы радиаторы быстрее остывают, поэтому понадобится добавлять секции. Диаметр коллектора должен быть больше размера трубы.
Схема реализуется несколькими способами:
- Ленинградка, или горизонтальная – применяются до 5 радиаторов. Большее число элементов не даст нормально прогреваться последним. Коммуникации подойдут для небольшого или дачного дома.
- Вертикальная – понадобятся однотрубные вертикальные стояки. Конструкция оправдана в двухэтажном доме.
Батареи однотрубной системы воздействуют друг на друга, поэтому автоматику подключить проблематично.
Реализация двухтрубной схемы
Главная характеристика коммуникаций – подача теплоносителя на радиаторы по одной трубе и возврат – по другой. Температура топлива при данной разводке не изменяется, поэтому секции не добавляются.
Подключить магистраль можно несколькими способами:
- Тупиковый – вся сеть делится на несколько плеч (ветвей). Тепловой носитель движется по трубам навстречу.
- Попутный – обратный коллектор продолжает подающий. У теплоносителя одно направление, замыкающееся в виде кольца.
- Коллекторный, или лучевой – разводка предусматривает подачу от коллектора на радиатор отдельной трубы. Магистраль скрывается под полом.
При укладке больших труб с уклоном 3-5 мм/1 м возможна самотечная работа системы.
Подбор отопительных труб должен выполняться в зависимости от материалов, возможности постоянного проживания в доме. Производители выпускают несколько видов изделий, отличающихся по стоимости и сложности монтажа.
Какие трубы лучше выбрать устройства для отопления и водопровода в частном доме
Большинство частных домов от обычных квартир отличается в первую очередь наличием автономной системы отопления, хотя сейчас и в квартирах их оборудуют нередко. Кроме этого, часть водопроводных коммуникаций частного дома проходит снаружи – это как минимум участок трубы от места водозабора до дома. И это надо обязательно учитывать при выборе труб для водопровода и отопления.
Рассмотрим существующие виды труб с тем, чтобы разобраться – какие из них лучше подходят и для каких целей, и что все таки лучше выбрать для устройства отопления и водопровода в частном доме.
Разновидности труб для прокладки коммуникаций
Итак, трубы бывают:
- Стальные.
- Медные.
- Пластиковые.
- Металлопластиковые.
Пластиковые трубы, в свою очередь, делятся на:
- Полиэтиленовые.
- Полипропиленовые.
Стальные трубы
Традиционный материал – в большинстве домов старой постройки водопровод и отопление выполнялись стальными трубами. Обладают массой недостатков: достаточно трудоемкий процесс прокладки, сложности в сгибании труб, необходимость нарезки резьбы под фитинги и сгоны, низкое качество соединений, чаще всего при работе со стальными трубами не удается обойтись без сварочных работ.
Стальные трубы: материал со множеством недостатков
И главный, пожалуй наиболее известный недостаток стальных труб – они ржавеют, а это ведет к сильному загрязнению воды, и если в водопроводе это не так ощутимо – все таки вода там является проточной, то в замкнутой системе отопления в частном доме ржавчина постоянно накапливается, и в конечном итоге может привести к закупориванию системы или к выводу из строя котла.
Совет. Если сегодня вы пользуетесь старым стальным трубопроводом, стоит задуматься о его замене – любой вариант, будь-то пластик, металлопластик или медь – гораздо лучше подойдет для отопления или водопровода в частном доме.
Медные трубы
Трубы из меди – традиционно считаются лучшими по своим свойствам. Они обладают высокой механической прочностью, их можно изгибать, при помощи высокотемпературной пайки достаточно несложно получаются высокого качества соединения. Свойства меди таковы, что под воздействием агрессивной среды (воды или воздуха) на поверхности трубы образуется тонкий слой окислов – патина, который, в отличие от ржавчины на железе, не осыпается и не смывается, а наоборот – служит своеобразной защитной пленкой, не дающей проникать агрессивной среде глубже в металл. Поэтому медные трубы абсолютно не подвержены сквозной коррозии, и в медном трубопроводе не образуется отложений – в замкнутой системе из медных труб вода очень долгое время остается чистой.
Медные трубы: наилучший и самый дорогой вариант для коммуникаций в доме
Единственный недостаток трубопровода из меди – его высокая стоимость. Из всех возможных вариантов, пожалуй именно трубопровод из меди – самый дорогой.
Внимание! В случае, если вы планируете использовать в своем частном доме алюминиевые радиаторы отопления, медные трубы вам скорее всего не подойдут – медь с алюминием образуют гальваническую пару, и это провоцирует ускоренное разрушение алюминиевого радиатора.
Полиэтиленовые трубы
Водопроводные и отопительные трубы из обычного полиэтилена практически не производятся, ввиду того, что обычный полиэтилен сильно размягчается при относительно невысоких (50-60С) температурах. Большое распространение получили трубы из сшитого полиэтилена – такие трубы гораздо лучше переносят повышенные температуры. Но за все приходится платить – получив большую термостойкость, сшитый полиэтилен потерял возможность свариваться. Поэтому все соединения в таких трубопроводах выполняются только с помощью обжимных фитингов. Вместе с тем, полиэтиленовый трубопровод достаточно недорог, и его вполне можно применять как для холодного, так и для горячего водоснабжения.
Трубы из полипропилена
Полипропиленовые трубы близки по своим свойствам к трубам из сшитого полиэтилена, но он сплавляется – поэтому у такого трубопровода соединения выполняются путем сваривания труб и фитингов между собой, что повышает надежность соединений.
Трубы из полипропилена: один из самых распространенных вариантов на сегодняшний день
Но в отличие от полиэтиленовых, полипропиленовые трубы не гнутся, поэтому их сложнее транспортировать – они производятся не в бухтах, а в виде мерных отрезков.
Внимание! Любые пластиковые трубы имеют достаточно высокий коэффициент теплового расширения, поэтому на длинных прямых участках таких труб, предназначенных для транспортировки горячей воды, необходимо предусматривать температурную компенсацию, иначе при включении отопления трубу будет выгибать дугой, что может привести к срыву крепежа как самой трубы, так и радиаторов отопления.
Металлопластиковые трубы
Такие трубы представляют собой многослойную конструкцию, где между слоями полимерного материала имеется тонкий слой металла (как правило, для этих целей используется алюминий). Соединения выполняются обжимными либо резьбовыми фитингами, большинство таких труб могут изгибаться, и хотя температурный коэффициент расширения у таких труб все же выше, чем у труб из металла, он значительно меньше, чем у труб чисто пластиковых.
Структура металлопластиковой трубы
Пускай такой трубопровод обойдется дороже, чем пластиковый, все же его стоимость будет значительно ниже медного – и он может быть очень хорошим вариантом, как для водопровода, так и для отопления в частном доме.
Внимание! Существуют пластиковые трубы, армированные металлом – в таких трубах слой металла не сплошной, а представляет собой сетку или решетку. Такие трубы обладают значительно меньшим температурным расширением, чем пластиковые, но все же это – не совсем металлопластиковые трубы, и от диффузии кислорода они ваше отопление не защитят.
Диффузия кислорода
Вряд ли продавцы пластиковых труб расскажут вам об этой проблеме – они предпочитают о ней умалчивать. Но любой полимерный материал подвержен диффузии кислорода – кислород проникает через стенки труб и попадает в воду. И если для водопровода это не имеет особого значения – проточная вода просто не успевает достаточно сильно насытиться кислородом, то для замкнутой системы отопления в частном доме это представляет собой проблему.
Пластиковые трубы подвержены диффузии кислорода: не рекомендуется использовать их для системы отопления в частном доме
Чрезмерно обогащенная кислородом вода становится причиной разрушения крыльчаток насосов, запорных вентилей и вообще всех металлических деталей котла и системы отопления в целом.
Внимание! Именно по причине диффузии кислорода не рекомендуется применение пластиковых труб в автономных системах отопления. Это не касается труб металлопластиковых – сплошная металлическая прослойка в них полностью исключает это явление. Но это в полной мере относится к трубам, армированным металлом – поскольку армирование не сплошное, диффузия кислорода имеет место, хоть и в меньшей степени, чем в обычных пластиковых трубах.
Так что же выбрать для частного дома
Как видно из сказанного выше, для тех, кто не любит экономить, наилучшим выбором является медная труба – проверенное временем решение, не зря заслужившее почетное звание элитного. В остальных случаях достойной заменой медным трубам послужит труба металлопластиковая – она значительно дешевле медной, а по эксплуатационным свойствам уступает ей незначительно. Если есть необходимость в еще большей экономии – водопровод вполне может быть выполнен пластиковыми трубами из сшитого полиэтилена (трубы РЕ-Х), или из полипропилена (РР), а вот автономное отопление выполнять из пластиковых труб крайне нежелательно.
Нелишним будет так же напомнить, что и полиэтилен, и полипропилен – это материалы, для которых губительно ультрафиолетовое излучение. Под действием прямых солнечных лучей они теряют свои пластичные свойства, трескаются и крошатся. Поэтому нужно предусмотреть защиту любых пластиковых и металлопластиковых труб от воздействия солнца.
Видео: Какие выбрать трубы для отопления и водопровода
Двухтрубное отопление частных домов: схема, принцип работы
В нашей статье мы поговорим о двухтрубной системе отопления в частных домах. От этого инженерного проекта будет зависеть, насколько хорошо он будет находиться в помещении. Комфорт — самое главное, чего нужно добиться при строительстве дома. Также включены такие коммуникации, как электричество, вода, канализация и даже доступ в Интернет. Они обязательно должны присутствовать в современном доме, ведь жить без них довольно сложно.
Система отопления
В многоквартирных домах отопление централизованное.Это дает жильцам преимущество — не нужно думать об отоплении в течение всего времени холодов. Конечно, могут быть неудобства как в начале отопительного периода (когда еще жарко), так и после него (при морозах на улице). Но при строительстве в городе придется прибегать к самонагревательной системе. В нашей статье мы рассмотрим, какая система отопления лучше — однотрубная или двухтрубная. Он может быть построен по любой схеме. Также рассмотрим все их характеристики, достоинства и недостатки.
Популярность обеих систем достаточно высока, активно их используют даже опытные разработчики. Но у каждого есть свои плюсы и минусы, о них поговорим дальше. Конструкция систем следующая:
- Отопительный котел. Оформить его может абсолютно любой. Также можно использовать любой вид топлива — от соломы до газа или керосина.
- Насос для циркуляции рабочей жидкости. С ним идет протяжка теплоносителя от котла до самых дальних углов ствола.
Конструкция двухтрубной системы наиболее эффективна и экономична. Также стоит учесть наличие различных автоматов котлов, клапанов и других узлов, помогающих тщательно контролировать все процессы в системе.
Рекомендуется
Наиболее эффективные методы проращивания семян
Несмотря на то, что метод рассады в овощеводстве — процесс очень трудоемкий, его использует большинство садоводов. Посадка семян в открытый грунт — простой и удобный метод, но он эффективен только в определенных климатических зонах.I …
Светоотражающая краска. Сфера применения
Когда машины начали заполнять дороги, их популярность начала набирать светоотражающая краска. Благодаря этой краске как водителям, так и пешеходам становится намного легче избегать аварий в темноте. Назначение краски Светоотражающая краска — материал краски, который …
Однотрубная система
Некоторые строители все еще сомневаются, какая система лучше. Если обратить внимание на практику, то можно увидеть, что многое зависит от того, какой дизайн дома.Например, если в доме нет подвала и только один этаж, то лучший вариант — установка однотрубной системы. К тому же денег на строительство уйдет не очень много.
По этой системе труба от котла к радиаторам. Охлаждающая жидкость закачивается под давлением через насос. Нагретая вода проходит через все батареи. Но в этом случае есть одна мелочь — те радиаторы, которые находятся рядом с котлом, будут нагреваться сильнее, чем те, которые расположены в этом месте.Поэтому однотрубную систему лучше всего устанавливать в небольших домах.
Горизонтальный
При производстве двухтрубной системы вы гарантируете, что все батареи будут прогреваться одинаково. Это немного другой результат. К радиатору подходит отдельная труба, по которой перекачивается вода. Так называемые обратные трубы позволяют собирать охлажденную жидкость и направлять ее в котел для повторного нагрева. Большинство таких конструкций систем отопления используются при строительстве многоэтажных домов.
Есть два типа систем:
- С вертикальной компоновкой.
- С горизонтальной компоновкой.
Горизонталь обычно используется, когда крыша дома плоская и имеет подвал. Вертикальная планировка идеально подходит для строительства домов с благоустроенной мансардой. В этом случае там устанавливается все отопительное оборудование.
Схема подключения двухтрубных систем
При изготовлении двухтрубной системы гарантируется, что все радиаторы будут нагреваться одинаково.Это очень важно, так как значительно повышает комфорт внутри.
Можно выделить такую схему двухтрубной разводки систем отопления:
- Подключение коллектора. Радиаторы идут по две трубы от коллектора.
- Параллельное подключение радиаторов.
Последний вид подключения хорош тем, что дает возможность регулировать температуру в каждой батарее. Но есть недостаток — много труб с изолирующим оборудованием.Но главный недостаток — сложные и дорогостоящие монтажные работы.
Как установка?
Конечно, при изготовлении системы необходимо проводить разделение на определенных этапах. Сначала устанавливаем бойлер. Вынести его в отдельную комнату. Часто для этого обустраивают подвал. Если вы используете естественную циркуляцию, котел необходимо устанавливать ниже труб и радиаторов. После установки котла произвести его соединение с расширительным бачком. Устанавливается максимально высоко — на чердаке или на потолке.
Если в системе есть насос, установку резервуара можно производить где угодно, лишь бы он находился над полом. Но если циркуляция естественная, коллектор нужно ставить чуть ниже емкости. После этого необходимо провести к каждому радиатору от коллектора «горячую» трубу. Похоже на маунт и «возврат». Переверните трубу, чтобы собрать в единый контур, он подключен к котлу.
Однозначно нужно приваривать к уравнительному бачку еще одну трубу — ее нужно делать сверху.Он предназначен для слива лишней воды. При закипании жидкость выталкивается из радиаторов в двухтрубную систему отопления и в бак. Когда охлаждающая вода снова поступает в систему.
Виды двухтрубной системы
Как видно из названия, двухтрубная система имеет две трубки, по которым протекает рабочая жидкость. При охлаждении воды в радиаторе она не поступает сразу в другой, а возвращается в котел для нагрева. В результате на всех вводах в нагреватели температура будет одинаковой.
Монтаж можно осуществить одним из следующих способов:
- Горизонтально — неплохой выбор, если площадь дома не очень большая. Но обязательно установите насосы, они исключают возникновение заторов.
- Вертикальный — идеально подходит для больших домов в несколько этажей. Но использовать насос тоже необходимо, потому что КПД системы в этом случае намного выше.
Разделение конструкций
По направлению потока теплоносителя можно разделить на следующие виды:
- Двухтрубный патрубок схемы — направление движения воды в горячем и холодном контурах разное.Очень похоже на эту конструкцию на одной трубе, но все батареи подключены параллельно. Стоит отметить невысокую стоимость данной конструкции.
- Прямой поток Вода движется в одном направлении в обоих контурах. Такие схемы хороши тем, что в них нет давления.
Преимущества
С помощью любых двухтрубных систем отопления можно быстро и достаточно эффективно произвести распределение тепла по помещению, независимо от того, насколько далеко оно находится от котла. Таким образом при любой температуре теплоносителя постоянна и стабильна.Это довольно удобно, особенно в тех случаях, когда речь идет о домах в два-три этажа.
Можно ли регулировать температуру?
Современная система двухтрубного типа довольно проста, работает по тому же принципу. Используйте одну трубку, называемую коллектором. Охлаждающая жидкость подается на радиаторы индивидуально. Для забора отработанного теплоносителя, температура которого достаточно низкая, используйте трубу, которая называется обратной. Он всегда присутствует в такой системе. Без подключения двухтрубной системы отопления обойтись просто невозможно.
Использование такой системы по всему дому с одинаковой температурой. Однако при необходимости хозяева могут отрегулировать уровень нагрева. Для каждой комнаты устанавливают отдельные органы управления, а также меняют степень обогрева помещения.
Основные компоненты двухтрубной системы
В системе есть две основные группы нагревателей:
- Основные блоки, в которые входят радиаторы, термочиститель, регуляторы давления, воздухоотводчик, запорная арматура. Эти устройства могут быть различной конструкции, все зависит от того, в каком помещении они используются.Все эти компоненты доступны в двухтрубной системе отопления двухэтажного дома и одноэтажного.
- A Устройство для регулировки температуры. В конструкцию двухтрубной системы включены устройства, помогающие контролировать температуру. Например, наиболее популярными можно назвать термостаты, головки блока цилиндров, клапаны, сервоприводы.
Следует отметить, что в конструкции двухтрубной системы отопления много различного оборудования. С одной стороны, это существенное преимущество, так как есть возможность повысить эффективность системы.Но есть недостаток — надежность системы зависит от качества ее худшего компонента.
Как произвести гидравлический расчет отопления?
Перед реализацией проекта необходимо создать схему, в которой нужно учесть все аспекты этой системы. Проверил гидравлический расчет, он определен:
- Расчетный расход воды в различных точках трассы, а также потери напора.
- Оптимальные размеры труб на разных участках.Это необходимо, чтобы при использовании минимального сечения добиться оптимальной скорости циркуляции воды.
- Метод работы арматуры для регулировки. Это сделано для того, чтобы сбалансировать систему при работе в разных режимах.
Расчет отопления
Следует отметить, что сначала нужно подобрать некоторые системы, и только после этого реализовать их гидравлические нарастания. Именно в этих проектах указывается расположение радиаторов отопления и их типовые размеры, рассчитывается тепловой баланс в помещении, конфигурация конструкции.Также учитывает отдельные области, главное кольцо циркуляции, размеры труб, тип, местоположение управления и shutofffittings. Если хотите сэкономить, можно сделать двухтрубную систему отопления из полипропилена. Но это обязательно учтено в дизайне.
Как правило, расчеты проводят такими способами:
- Открывает мониторинг потери давления теплоносителя, учитывает местные сопротивления, имеет клапаны и различное оборудование. Отдельно идет осмотр отдельных частей и системы в целом.Затем необходимо рассчитать оптимальное распределение жидкости в зависимости от тепловых нагрузок и потерь давления.
- Обязательно учитывайте параметры проводимости и сопротивления. На выходе нужно получить максимально точные данные, например, сколько тепла потратит вода на определенных участках. При наличии индикаторов температуры можно вносить существенные изменения в распределение потоков жидкости. Этот метод больше подходит для расчета систем, в которых установлены циркуляционные насосы.
Порядок выполнения монтажных работ
При проектировании необходимо учитывать, какой диаметр двухтрубной системы отопления будет использоваться. Вне зависимости от того, в каком доме вы устанавливаете систему, перечень работ будет следующим:
- Установка радиаторов отопления. Устанавливают комплектующие, арматуру, клапаны Маевского, трубки. Сохраните их для обозначенных областей.
- Если система полностью автономная, необходимо провести установку отопительного котла.Его можно установить или повесить, обязательно подключив к дымоходу. Конечно, для электрических устройств это не нужно.
- Построить распределительную площадку с коллектором, если в доме одна проектная двухтрубная система отопления.
- Запуск трубопровода. Желательно размещать их в полостях каркаса, а также можно обкатывать стены или пол. Главное — сделать так, чтобы их не видели. Учтите, что трубы, расположенные в цементе, нужно изолировать пеноматериалами. В конце каждого прямого участка всегда происходит свободное тепловое расширение.
- Монтаж регулирующей арматуры, насосов и расширительного бака.
- Наконец привязал горшок, он соединил шкаф и радиаторы.
- Целостность подлежит проверке всех без исключения соединений. Обязательно при монтаже контролируется надежность всех компонентов. Затем необходимо проверить систему отопления под давлением. Это достигается с помощью испытательного давления, которое значительно превышает минимальный уровень.
- Заполняет систему жидкостью от всех нагревательных устройств, необходимых для сброса воздуха.
- Регулирующее устройство, которое расположено на радиаторе, позволяет системе балансировки добиться наиболее оптимального распределения охлаждающей жидкости по всем устройствам.
Такой способ монтажа двухтрубной системы отопления в частном доме. Но делать это вам — решать вам. Ведь при небольшой площади постройки все довольно просто — труба. Видеоролики
Трубы отопления и видеоролики
Трубы отопления и видеозаписи | Depositphotos® Трубы и устройства для теплоснабжения жилого комплекса Инспектор и рабочий проверяют систему отопления.Красивая женщина-инженер. Оборудование для измерения давления в трубах теплоснабжения. Завод труб отопления — отопительные клапаны и трубы. Интерьер котельной в жилом доме. Крупным планом. Новые трубы для теплотрасс. Станция хранения и подачи газа. Трубопроводы для транспортировки газа. Запорная арматура и манометр. Нефтегазовое дело. Промышленность добычи природных ресурсов. Производство топлива. Трубопровод, водопровод, ремонт труб, трубы из металла и полипропилена. Трубы и вентили систем отопления.Система водоснабжения и котельные в частном доме. Обрыв трубы, водопровода, ремонта труб, металлических и полипропиленовых труб. Инженер-специалист проверяет данные оборудования системы отопления в котельной. Вид внутри производственного помещения с системой отопления здания, работоспособно. очистка воды. Видеоматериал. Манометр, трубы и краны системы отопления в котельной. Трубы и устройства для теплоснабжения жилого комплекса Работы в городе по замене и демонтажу труб теплотрасс, крановые подъемники, новые трубы для прокладки под дорогой, оборудование Инспектор и рабочий проверяют систему отопления.Красивая женщина инженер Инженер в очках работает в котельной, проверяет обслуживание оборудования системы отопления. Водопровод и котельные в частном доме Манометр — горячая вода В котельной работает инженер в очках, проверяет техническое обслуживание оборудования системы отопления. жилой комплексМанометр — вода — домСтроительство и ремонт — установка межкомнатной перегородки из пазогребневых блоковТрубы и устройства для теплоснабжения жилого комплексаРасмотрщик и рабочий проверяют систему отопления.Красивая женщина-инженер, азиатский инженер по техническому обслуживанию системы управления сточными водами на огромной фабрике, обслуживающий и проверяющий технические данные оборудования системы отопления, жители Таиланда, сломанные трубы, водопровод, ремонт труб, металлические и полипропиленовые трубы. Дым идет из дымовой трубы дома. Труба на крыше. Дымоход. Деревенский дом. Дом с дымоходом. Дым в голубом небе. Дымовые трубы и облака в небе В котельной работает инженер в очках, проверяет техническое обслуживание оборудования системы отопления Ржавые трубы котельной.Старый металлический котел генерирует отопление и доставляет его домой по трубопроводу. С помощью этой системы подается горячая вода или газ. Трубопровод проходит под дорогой. Пожилой мужчина в синем комбинезоне держит в руках пластиковую деталь трубы. Концепция индустрии добычи нефти и газа. инженер человека власти образ жизни и энергии с помощью цифрового планшета. рабочий в каске работает на нефтегазовом заводе. Инженер изучает документы бизнес-отрасли Насосы и оборудование для теплоснабжения жилого комплексаВодопроводы.Водопровод и котельные в частном доме. Строительная площадка с трубами отопления на полу. Помещения без стенТруба котла, Стоковые видеоролики Труба котла и видеозаписи
Труба котла и видеозаписи | Depositphotos® Прибор для измерения давления в трубах. Трубы и краны Клапаны системы отопленияТруб в пожарной насосной станцииУстройство для измерения давления в трубопроводах. Старая необслуживаемая система отопления в производстве. Система полива и дозирования удобрений в промышленной теплицеКотельная в частном доме.Система отопления. Дымоходы металлические.Оборудование металлургического завода. Трубы на заводе. Макро крупным планомЖелтые газовые трубы в котельной. Крупный план манометра на заводе по производству картонной тары. Тепловая электростанция. Панорамный вид изнутри российской теплоэлектростанции. 4K Современное технологическое производственное оборудование. Трубопроводы, насосы, фильтры, датчики, датчики, моторы. резервуар на химическом промышленном заводе. Давление счетчика воды. Современная большая система фильтров внутри завода с желтым освещением. Ремонт газового котла, сварка, резка искровой трубы.оборудование на молочном заводеСовременная большая система фильтрации внутри завода с желтым освещениемТрубка от газового котла. вывоз производился на ул. замерзли сосульки давят на него. авария, ремонт. Устройство давления водыТрубная система, трубопроводы с арматурой, краны на современном заводе, заводское помещение. Интерьер котельной в жилом доме. Датчик температуры в котельной. Датчик температуры в котле для отопления частного дома Котельная или техническое помещение с горячими трубами. Завод по производству труб — отопительная арматура и трубыПромышленные накопительные баки, Современное технологическое промышленное оборудование, Завод биоэтанола, Ряды современных резервуаров из нержавеющей стали на заводе биоэтанолаИнтерьер котельной в жилом доме.Профессиональный сантехник. Ремонт сантехники. Ремонтник, ремонтирующий газовый водонагреватель с помощью отвертки. Рабочие руки фиксируют систему отопления Газовый котел крупным планом Тепловая установка изнутри Азиатский инженер по техническому обслуживанию системы управления сточными водами огромного завода, проверка технических данных оборудования системы отопления, жители Таиланда Большая промышленная котельная, трубы системы центрального отопления и водопроводные трубы с теплоизоляцией. Видеоматериал. Оборудование на электростанции.Пористые структуры в тепловых трубках
1.Введение
Двухфазные системы теплопередачи с капиллярным приводом имеют важные преимущества по сравнению с традиционными однофазными системами. Наиболее значительным преимуществом, связанным с фазовым переходом рабочего тела, является более высокий коэффициент теплопередачи, что приводит к улучшенной теплопередаче. По сравнению с однофазной жидкой системой требуются меньшие массовые расходы для передачи эквивалентных количеств теплового потока для заданного диапазона температур. Лучшие тепловые характеристики и более низкий массовый расход обеспечивают преимущество двухфазной системы в виде меньшей и легкой конструкции и повышенной производительности.Однофазная система требует высокого температурного градиента или высокого массового расхода для передачи большого количества теплового потока, поскольку теплоемкость однофазной системы зависит от изменения температуры рабочей жидкости. Двухфазная система обеспечивает практически изотермический режим работы независимо от тепловой нагрузки.
Кроме того, однофазные системы нуждаются в механических насосах или вентиляторах для циркуляции рабочей жидкости, в то время как в двухфазных системах с капиллярным приводом рабочая жидкость циркулирует без каких-либо дополнительных механических устройств, что делает такие системы более надежными и не потребляющими электроэнергии. .Самая известная двухфазная система с капиллярным приводом — тепловая трубка, ее схема показана на рисунке 1. Концепция тепловой трубки была впервые предложена Гоглером в 1944 году [1] и Трефетеном [2], но не получила широкого распространения до серьезные опытно-конструкторские работы Гровера и его коллеги в лаборатории Лос-Аламоса [3]. Тепловые трубы — это пассивные устройства теплопередачи, которые переносят тепло от одной точки (источника тепла) к другой (радиатор) с чрезвычайно высокой теплопроводностью из-за скрытой теплоты испарения рабочего тела.Как показано на рисунке 1, он состоит из контейнера, рабочего тела, фитильной конструкции и имеет три секции (испарительную, адиабатическую и конденсаторную) [4].
Рисунок 1.
Схема тепловой трубы.
Поскольку одной из наиболее важных частей тепловой трубки HP и петлевой тепловой трубки LHP является пористая фитильная структура, в данной работе основное внимание уделяется экспериментам, влияющим на пористую фитильную структуру на способность теплопередачи тепловой и петлевой тепловых трубок.
2.Тепловая трубка
Тепловая трубка представляет собой устройство теплопередачи, использующее фазовый переход рабочей жидкости для передачи тепла от источника тепла к радиатору и капиллярных сил, возникающих в структуре фитиля, к циркуляции рабочей жидкости. Тепловая трубка состоит из герметично закрытой емкости с фитильной структурой на внутренней поверхности и рабочей жидкости, близкой к температуре насыщения. Тепло, передаваемое через контейнер жидкости в испарителе, вызывает испарение жидкости и прохождение пара через открытую сердцевину испарителя с тепловой трубой.Пар выходит из испарителя через адиабатическую секцию в конденсатор. Там пар конденсируется, и выделяемое тепло передается через структуру фитиля и стенку емкости в окружающую среду конденсатора. Конденсированная жидкость насыщает структуру фитиля и создает капиллярное давление; таким образом жидкость перекачивается обратно в испаритель. Работа тепловой трубы в основном зависит от параметров емкости, рабочей жидкости и конструкции фитиля. Правильный выбор и конструкция основных частей тепловой трубы влияют на ее рабочие характеристики, определяемые ограничениями теплопередачи, эффективной теплопроводностью и осевым перепадом температур.Двухфазная теплопередача рабочей жидкости делает тепловую трубу идеальной для передачи тепла на большие расстояния с очень небольшим перепадом температуры из-за температурной стабилизации почти изотермической поверхности, создаваемой во время работы. Практически изотермические условия работы тепловой трубы связаны с работой рабочей жидкости в термодинамическом насыщенном состоянии, когда тепло переносится с использованием скрытой теплоты парообразования вместо явной теплоты или теплопроводности. Тепло, переносимое с использованием скрытой теплоты парообразования, в несколько раз больше, чем тепло, переносимое явным теплом для геометрически эквивалентной системы.Двухфазная система рабочей жидкости с капиллярным приводом позволяет эффективно передавать большие количества тепла без дополнительных механических насосных систем, уменьшая площадь теплопередачи и, таким образом, экономя материал, стоимость и вес. Широкий диапазон используемых рабочих жидкостей, высокий КПД, малые размеры и вес, а также отсутствие внешних насосов делают тепловые трубы привлекательными вариантами в широком диапазоне приложений теплопередачи [4].
2.1. Конструкция тепловой трубки
В зависимости от типа тепловая трубка может состоять из нескольких основных частей.При разработке тепловых трубок основные компоненты и материалы остались прежними. Самая простая тепловая трубка состоит из двух основных частей: корпуса (контейнера) и рабочего тела. Внутри корпуса тепловой трубы может быть размещена капиллярная структура (фитиль), позволяющая конденсированной жидкой фазе рабочей жидкости растекаться против потока пара из-за капиллярного действия. Такая тепловая трубка называется фитильной тепловой трубкой. Тепловая трубка без капиллярной структуры называется гравитационной тепловой трубкой, потому что она возвращает жидкую фазу из конденсаторной части в испарительную часть, что происходит под действием силы тяжести [5].
2.1.1. Контейнер
Контейнер тепловой трубы может иметь разную форму для разных применений, но чаще всего представляет собой замкнутую трубу круглого, плоского или треугольного сечения. Основная функция контейнера с тепловой трубкой — изолировать рабочую жидкость от внешней среды. Контейнер тепловой трубы должен быть достаточно прочным, чтобы предотвратить внутренние размеры и внутреннее давление в случае сжатия или изгиба. Выбор материала контейнера зависит от многих свойств и должен иметь наиболее подходящую комбинацию (совместимость с рабочей жидкостью и окружающей средой, отношение прочности к весу, теплопроводность, пористость, смачиваемость, обрабатываемость, формуемость, свариваемость или склеиваемость).Материал контейнера должен обладать высокой теплопроводностью, твердым и прочным, но при этом легко поддающимся механической обработке, формованию, а также пайке и сварке. Поверхность материала должна быть хорошо увлажненной, но, по крайней мере, пористой, насколько это возможно, чтобы избежать диффузии газа. Тепловые трубки чаще всего изготавливаются из стали, меди, алюминия и их сплавов. Также используются различные покрытия из стальных материалов [6].
2.1.2. Рабочая жидкость
Поскольку работа тепловой трубы основана на испарении и конденсации рабочей жидкости, ее выбор является важным фактором при проектировании и производстве тепловой трубы.Рабочая жидкость выбирается, в частности, в соответствии с диапазоном рабочих температур тепловой трубы. Поэтому при выборе рабочего тела необходимо соблюдать осторожность, если диапазон рабочих температур рабочего тела лежит в диапазоне рабочих температур тепловой трубы. Тепловая трубка может работать при любой температуре, которая находится в диапазоне от тройной до критической точки рабочего тела. Критерием принятия решения при выборе рабочего тела, в случае рабочих жидкостей с одинаковой рабочей температурой, является соответствующее сочетание термодинамических свойств рабочего тела.Рекомендуемые характеристики, которыми должна обладать рабочая жидкость, — это совместимость с материалом капиллярной структуры и контейнера с тепловой трубкой, хорошая термическая стабильность, смачиваемость капиллярной структуры и контейнера с тепловой трубкой, давление пара в диапазоне рабочих температур, высокое поверхностное натяжение, низкая вязкость жидкая и паровая фаза, высокая теплопроводность, высокая скрытая теплота парообразования, приемлемая температура плавления и точка затвердевания [6]. В таблице 1 показаны типичные рабочие жидкости для тепловых труб, отсортированные по диапазону рабочих температур.
Рабочая жидкость | Точка плавления при атмосферном давлении (° C) | Точка кипения при атмосферном давлении (° C) | Скрытая теплота испарения (кДж кг -1 6) | Полезный диапазон (° C)|||||||
---|---|---|---|---|---|---|---|---|---|---|
Гелий | −271 | −269 | 21 | −271 до −269 | ||||||
Азот | −210 | От 203 до -160 | ||||||||
Аммиак | −78 | −33 | 1360 | −60 до 100 | ||||||
Ацетон | −95 | 57 | 9022 9022 | −98 | 64 | 1093 | 10 до 130 | |||
Этанол | −112 | 78 | 850 | 0 до 130 | ||||||
Вода | 0 | 100 | 2260 | 30 до 200 | ||||||
Меркурий | −39 | 361 | 298 | 250 до 650 | ||||||
9022 9022 9022 Цезий 9022 9022 9022 450 до 900 | ||||||||||
Калий | 62 | 774 | 1938 | 500 до 1000 | ||||||
Натрий | 98 | 895 | 3913 | 9022 9022 9022 9022 9022 Литий 9022 90221340 | 19,700 | от 1000 до 1800 | ||||
Серебро | 960 | 2212 | 2350 | 1800 до 2300 |
Таблица 1.
Типичные рабочие жидкости с тепловыми трубками.
2.1.3. Фитильные структуры
Фитильная структура и рабочая жидкость создают капиллярные силы, необходимые для перекачивания жидкости из конденсатора в испаритель и поддержания равномерного распределения жидкости в капиллярном материале. Фитили для тепловых трубок можно разделить на однородные или составные. Однородные фитили состоят из одного материала и одной конфигурации. Наиболее распространенные типы однородных фитилей — это сетчатый фильтр, металлокерамика и осевая канавка.Композитные фитили состоят из двух или более материалов и конфигураций. Наиболее распространенными типами композитных фитилей являются переменная сетка сита, канавка с сеткой, плита сита с канавками и туннель сита с канавками. Независимо от конфигурации фитиля, желаемые свойства материала и структурные характеристики фитильных конструкций с тепловыми трубками включают высокую теплопроводность, высокую пористость фитиля, малый радиус капилляров и высокую проницаемость фитиля [6].
2.2. Работа тепловой трубы
Для работы тепловой трубы максимальное капиллярное давление должно быть больше, чем полное падение давления в тепловой трубе.
Суммарный перепад давления в тепловой трубе состоит из трех частей:
ΔP л — это перепад давления в фитильной конструкции, необходимый для возврата жидкости из конденсатора в испаритель.
ΔP v — это падение давления в паровой сердцевине, необходимое для потока пара из испарителя в конденсатор.
ΔP г — это падение давления под действием силы тяжести, зависящее от наклона тепловой трубы, которое может быть нулевым, положительным или отрицательным.
Правильная работа тепловой трубки должна соответствовать условию:
ΔPc, max≥ΔPl + ΔPv + ΔPgE1
Если тепловая трубка не соответствует этому условию, она не будет работать из-за высыхания фитиля в секция испарителя. Это состояние называется капиллярным пределом, который определяет максимальный тепловой поток в рабочем диапазоне большинства тепловых труб. Скорость пара в жидкометаллических тепловых трубках может достигать звуковых значений при запуске и при определенных высоких температурах. Тогда производительность тепловой трубы ограничивается скоростью звука, и эффекты сжимаемости необходимо учитывать при расчете падения давления пара.Другими наиболее важными ограничениями являются давление пара или предел вязкости, которые возникают при включении тепловой трубы, когда тепловая труба работает при низкой температуре. Однако давление в конденсаторе не может быть меньше нуля, низкое давление пара жидкости в испарителе приводит к тому, что разность давлений пара между испарителем и конденсатором тепловой трубы недостаточна для преодоления сил вязкости и гравитации. Когда тепловая трубка работает с высокими тепловыми потоками, поток пара может увлекать жидкость, возвращающуюся в испаритель, и вызывать высыхание испарителя.Это состояние называется ограничением уноса. Вышеупомянутые ограничения тепловой трубки относятся к осевому потоку. Во время работы тепловой трубы разница температур радиального теплового потока относительно мала. Когда тепловой поток достигает критического значения, поверхность стенки испарителя покрывается паровой подушкой, что приводит к увеличению разницы температур в испарителе. Ограничение, связанное с радиальным потоком в тепловой трубе, называется пределом кипения [7].
Если предполагаются стабильные свойства жидкости вдоль трубы, равномерная структура фитиля вдоль трубы и пренебрежение перепадом давления из-за потока пара, общий тепловой поток тепловой трубы определяется как
Q = mmax..L.E2
mmax. = Ρl.σlμl.K.Al.2re − ρl.g.lσl.sinθE3
3. Петлевая тепловая трубка
Петлевая тепловая трубка была разработана для решения неотъемлемой проблемы использования длинного фитиля. с малым радиусом пор в обычных тепловых трубках Герасимова и Майданика в 1972 году. LHP — это двухфазное устройство теплопередачи, которое использует испарение и конденсацию рабочей жидкости для отвода тепла и капиллярных сил, возникающих в мелких пористых фитилях для циркуляции жидкости. . На рисунке 2 показана схема LHP.Он состоит из испарителя с фитильной структурой, компенсационной камеры, конденсатора и трубопровода для жидкости и пара. Фитильная конструкция есть только в испарителе и компенсационной камере. Остальные части ЛТН выполнены из гладкостенной трубы. Фитильная структура испарителя имеет мелкие поры для создания капиллярного давления и обеспечения циркуляции рабочей жидкости в контуре. Фитильная конструкция компенсационной камеры имеет более крупные поры для транспортировки рабочей жидкости к испарителю.Тепло, приложенное к испарителю, заставляет эту рабочую жидкость начать испаряться, и пар проталкивается через паропровод к конденсатору из-за капиллярных сил в фитиле испарителя. Пар конденсируется в конденсаторе, и жидкость течет по жидкостной линии в компенсационную камеру. Функция компенсационной камеры заключается в хранении излишков жидкости и в регулировании рабочей температуры петлевой тепловой трубы. Таким образом, рабочая жидкость циркулирует в контуре без внешнего насоса [8, 9].
Рисунок 2.
Схема контура тепловой трубы.
LHP может работать только в том случае, если капиллярное давление, создаваемое в фитиле испарителя, превышает общее падение давления в контуре. Общее падение давления в тепловой трубке контура складывается из перепадов давления на трение в канавках испарителя, паропровода, конденсатора, жидкостной линии, фитиля испарителя и статического падения давления под действием силы тяжести:
ΔPtotal = ΔPgrove + ΔPvap + ΔPcon + ΔPliq + ΔPw + ΔPgE4
Капиллярное давление фитиля испарителя определяется выражением
ΔPcap = 2σ.cosθRE5
где σ — поверхностное натяжение рабочей жидкости, θ — угол контакта между жидкостью и фитилем, а R — радиус кривизны мениска в фитиле. Увеличение тепловой нагрузки на испаритель увеличивает массовый расход и общее падение давления в системе. Реакцией на это является уменьшение радиуса кривизны мениска, так что капиллярное давление будет выше, чем падение давления всей системы. Увеличение тепловой нагрузки приведет к уменьшению радиуса кривизны мениска до радиуса пор фитиля.Максимальная капиллярная перекачиваемость фитиля выражена выражением.
ΔPcap, max = 2σ.cosθRvE6
Дальнейшее увеличение тепловой нагрузки приведет к проникновению пара через фитиль и обезвоживанию системы. Таким образом, при нормальной работе должно всегда выполняться следующее условие [10]:
ΔPtotal≤ΔPcapE7
Уильямс и Харрис [11] исследовали плоские и поперечные свойства ступенчатых металлических войлочных фитилей для применения тепловых труб. Пористость, эффективный радиус пор и проницаемость для жидкости определяли с использованием данных по пропитке, капиллярной порометрии и скорости потока давления, соответственно.Авторы определили, что многие корреляции в литературе для размера пор и проницаемости носят слишком общий характер, повторяя выводы Боннефоя и Охтербека [12] в отношении эффективной теплопроводности.
Holley и Faghri [13] в общих чертах описали методы измерения проницаемости и эффективного радиуса пор, основанные на тесте скорости нарастания.
Обычно испытание скорости подъема требует наблюдения за фронтом жидкости, когда она поднимается в сухом фитиле, частично погруженном в лужу жидкости.Поскольку точное местоположение этого фронта может быть трудно обнаружить, авторы разработали метод, использующий поглощение массы, а не фронт мениска, для определения скорости подъема жидкости в фитиле. Анализируя поднимающийся мениск, авторы разработали серию уравнений, которые можно использовать для численного уменьшения данных о поглощении массы, чтобы получить результаты по проницаемости и размеру пор.
Можно найти несколько соотношений для проницаемости, наиболее распространенным является уравнение Блейка-Козени [14, 15], которое дает проницаемость слоя уплотненных сфер как
K = rv2ε337.51 − ε2E8
, где K — проницаемость, r p — радиус поры, а ε — пористость.
Рен и Ву [16] смоделировали эффект эффективной теплопроводности фитиля в испарителях LHP; Была разработана двумерная осесимметричная модель, дающая результаты, в некоторых отношениях согласующиеся с литературными данными, а именно положение фронта жидкости по отношению к нагретому ребру [17, 18].
Чжао и Ляо [18] представили температурные профили, указывающие на уменьшение утечки тепла для увеличения теплового потока в слое упакованных сфер.
Iverson et al. [19] исследовали тепломассоперенос в спеченных медных фитильных структурах. Образцы фитилей были установлены вертикально, нижняя часть которых была погружена в бассейн с водой. Нагреватель, установленный на задней стороне фитиля, подавал энергию на образец, и результирующие градиенты температуры измерялись вместе с массовым расходом рабочей жидкости.
Большая часть тепловой нагрузки используется при испарении на внешней поверхности фитиля [20]. Остальная часть подводимого тепла (так называемая «утечка тепла») проходит через фитиль и пропорциональна эффективной теплопроводности (ETC) капиллярных фитилей [21].Более низкая теплопроводность пористого фитиля обеспечивает меньшую теплопроводность жидкости внутри внутренней поверхности фитиля и поддерживает рабочую температуру и, следовательно, тепловое сопротивление всего LHP.
Ку [10] и Фурукава [22] разработали простейшую модель утечки тепла LHP, которая использует параметр проводимости, который зависит от геометрии и рабочих условий.
Qe, cc = Ge, ccTe − TccE9
где Q — мощность, G — параметр проводимости, а T — температура испарителя и компенсационной камеры.
В установившемся режиме утечка тепла в компенсационную камеру должна компенсироваться жидкостью, возвращающейся из конденсатора; Уравнение (7) результаты, где ΔT представляет собой переохлаждение возвращающейся жидкости
Qe, cc = m.cpΔTE10
, где m — массовый расход, а c p — удельная теплоемкость.
Чуанг [23] разработал стационарную модель LHP, которая разбивает общую утечку тепла на два отдельных компонента: в осевом направлении от испарителя к компенсационной камере и радиально от источника тепла к сердечнику испарителя.Эти два эффекта связаны между собой тем, что образование пузырьков пара в активной зоне испарителя из-за радиальной утечки уменьшает общий путь теплового потока обратно в компенсационную камеру, увеличивая осевую утечку [10].
Чуанг вывел следующие выражения для осевой и радиальной утечки тепла, соответственно:
Qleak, a = keffATe − TccL + NukfπLTe − Tcc2E11
Qleak, r = 2πkeffLςroriς − 1ΔTWE12
9000 Leak power, где Q39 9039 мощность утечки , k eff — эффективная теплопроводность, A — площадь, L — характерная длина, Nu — число Нуссельта, k f — теплопроводность жидкости, и ς представляет собой безразмерное соотношение адвекции и проводимости, задаваемое формулойς = м.cp2πkeffLE13
В своем анализе и эксперименте Чуанг предположил, что этот параметр равен нулю, то есть чистой проводимости. Для исследованных случаев малой мощности это предположение было верным и привело к низкой ошибке; однако для высоких уровней мощности или низкой проводимости фитиля это предположение теряет силу.
3.1. Фитиль LHP
Фитиль — одна из основных частей петлевой тепловой трубы. Для достижения хорошей теплопередачи LHP ожидается фитильная структура с высокой пористостью и проницаемостью и малым радиусом пор.Наиболее часто используемые фитильные конструкции в петлевых тепловых трубках изготавливаются из спеченных металлов, таких как медь, никель, нержавеющая сталь, титан или полимеры (полипропилен, полиэтилен, ПТФЭ) [24, 25, 26].
Reimbrechta et al. использовали метод спекания порошкового крана с использованием графитовой матрицы для изготовления никелевых фитилей для капиллярных насосов [27]. Это показывает, что графит слабо взаимодействует с никелем за счет спекания никелевых порошков при обычных температурах спекания. Комбинация двух различных методов, спекания холодным прессованием и прямого спекания рыхлого типа, была использована Gongming et al.[28], для разработки фитилей из Ni и Ni-Cu (90% никеля и 10% меди) для петлевых тепловых труб. Они обнаружили, что с помощью метода прямого спекания со средним радиусом пор 0,54 мкм можно получить оптимальную структуру фитиля Ni-Cu. Хуанг и Франчи [29] использовали медную сетку экрана и два порошковых материала (никелевый нитевидный порошок и сферический медный порошок) для изготовления бимодальной структуры фитиля. Но он показал, что эти фитили могут быть неисправными. Саманта и др. [30] разработали металлические конструкции с никелевым фитилем для литья под давлением и провели исследование его физических характеристик в зависимости от времени спекания (30, 60 и 90 мин) и температуры (900, 930 и 950 ° C).Gernert et al. [31] разработали тонкопористую фитильную структуру для LPH. Wu et al. [32] обсуждали влияние кривой температуры спекания на структуру фитиля, изготовленную для LHP. Launay et al. в работе [20] к основным параметрам фитильной структуры относят пористость, диаметр пор и проницаемость. Оптимальная пористость спеченного фитиля находится между 30 и 75%, а оптимальная проницаемость — между 10 -14 и 3 × 10 -13 м 2 . Пористость фитильной структуры уменьшается при повышении температуры спекания или давления формования.Большинство спеченных пористых материалов имеет диаметр пор от 1 до 20 мкм, за исключением меди, диаметр пор которой составляет от 20 до 1000 мкм.
В исх. [33] оптимальным капиллярным фитилем было спекание при 650 ° C в течение 30 минут с использованием техники прямого спекания с 90% никеля и 10% меди. Фитиль достигает пористости 70% и среднего диаметра пор 1,8 мкм. В исх. [10] изготовлены бипористые никелевые фитили. Пористость 77,4% была достигнута методом холодного спекания под давлением при температуре 700 ° C и содержании порообразователя 30% по объему.
Правда и мифы о строительстве каркасных домов
Достаточно привлекательная сумма, необходимая для строительства каркасного дома, а короткие сроки строительства вызывают у многих скептиков сомнения как каркасная технология. И часть этих сомнений, к сожалению, подтверждается, но в большинстве случаев сомнения основаны на мифах. Узнайте, как отличить правду от вымысла
Дело в том, что первые каркасные дома в Украине часто сокращают фирмы-однодневки, которые стремились быстро заработать на проверенных покупателях и строили каркасные дома не по заявленной технологии.Результат такой деятельности был плачевным, и он вызвал появление множества мифов и неверных суждений о строительстве каркасных домов.
Для сравнения в самой Канаде возникновение подобной ситуации просто невозможно. Дело в том, что здесь ведется частное каркасное строительство на государственном уровне, и все строительные процессы проверяются на соответствие утвержденным стандартам и нормам. В этом случае строительство имеет право вести исключительно аттестованные бригады.
Украинское законодательство отличается от канадского, и контроль качества строительства каркасного дома возлагается на заказчика, который для своей выгоды должен понимать суть каркасной технологии и отличать мифы о каркасном строительстве от действительно важных вопросов, которые необходимо быть проверенным.
Мифы о каркасном строительстве
Одно из самых распространенных заблуждений о каркасных домах — это их долговечность. Несмотря на то, что натуральные материалы, составляющие основу каркасного дома — дерево и базальтовый утеплитель, — склонны к естественному старению, их срок службы может быть увеличен до 80 лет и более за счет применения влаго- и парозащитных мембран, которые являются часть конструкции каркасной стены.Однако для этого дерево, из которого строится каркас, следует просушить по требуемой технологии, а утеплители установить без ошибок.
Малая толщина основного «пирога» каркасных стен, включающего хвойные стойки каркаса шириной 140 мм и 150-миллиметровый слой базальтовых утеплителей, вызывает опасения по поводу устойчивости дома к украинским морозам. Однако следует понимать, что канадский климат намного суровее, и толщина стен выбирается исходя из теплопроводности утеплителя и значения минимальных зимних температур в регионе.Канадские дома — это всего лишь разница между высокой энергоэффективностью и способностью экономить тепло. Их можно согреть или охладить за несколько часов, после чего в помещении легко поддерживать заданную температуру с минимальным потреблением энергии.
Использование дерева в качестве основы каркасного дома часто вызывает сомнения в пожарной безопасности постройки и ее устойчивости к вредителям, способным повредить каркас. Здесь используются те же методы защиты, что и при строительстве полностью деревянных построек.