Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Альтернативная энергия это: Инвестиции в альтернативную энергетику | 4 способа

Содержание

Инвестиции в альтернативную энергетику | 4 способа

Альтернативная энергетика уже не считается молодой и революционной отраслью. В направлении появились чёткие векторы развития, мировые лидеры и компании, задающие тренды. Эта промышленность получает всё больше внимания со стороны крупного бизнеса и государств. Инвесторы альтернативной энергетики рассчитывают на стабильный долгосрочный рост и хорошую прибыль.

Продолжают появляться новые технологии и продукты, а количество компаний, ведущих исследования и разработку в области, постоянно растёт. Это стимулирует промышленность в правильном направлении, но создаёт волатильность, поскольку всегда нужно приспосабливаться к новым способам добычи энергии.


В этом списке четыре компании, которые являются глобальными лидерами отрасли. Несмотря на общую волатильность, они предлагают инвесторам стабильность. Их акции подобраны на основе истории положительного роста и рыночной капитализации больше $2 миллиардов.

Инвестиции в альтернативную энергетику позиционируются, как перспективное вложение. В мире на неё ожидается высокий рост спроса.

[Примечание: Цены на акции и показатели в статье, указаны на момент публикации. Актуальные цены акций вы можете увидеть в специальном виджете в конце текста. Перед покупкой акций всегда проводите собственный анализ. Вложение денег несёт риск их потери. Эта статья опубликована с целью обзора, а не призыва к покупке.]

 

1. Atlantica Yield PLC [NASDAQ: AY]

• Цена акции: $20.57
• Рыночная капитализация: $2,051 млрд
• Доходность с начала года: -2,65%
• Коэффициент P/E: отсутствует
• Прибыль на акцию: -0,38
• Дивидендный доход: 6,64%

Atlantica владеет традиционными энергетическими активами, но также работает в сфере возобновляемых источников энергии, объём которых составляет 1,442 мегаватта. Это ветряные и солнечные электростанции. Atlantica Yield PLC базируется в Великобритании, но также имеет отделения в Северной Америке, Алжире, Южно-Африканской Республике, Испании и Южной Америке.

В течение последних 12 месяцев акции компании держались в узком диапазоне. За целый год стоимость этих активов практически не изменилась, оставаясь в районе $21.

 

2. Vestas Wind Systems A/S [OTC: VWDRY]

• Цена акции: $21.29
• Рыночная капитализация: 13,197 млрд
• Доходность с начала года: 0,02%

• Коэффициент P/E: 14,0779
• Прибыль на акцию: 4,6801
• Дивидендный доход: 2,19%

Vestas зарабатывает деньги для себя и своих акционеров за счёт энергии ветра. Компания продаёт ветряные турбины по всему миру и удерживает самую большую долю на этом рынке в мире. Кроме того, компания торгует полноценными электростанциями. Стабильность доходов и прибыли Vestas также обеспечивается обслуживанием собственной продукции.

Если вы хотите совершить инвестиции в альтернативную энергетику Vestas Wind Systems, знайте, что это далеко не новичок сектора – компания была основана в 1898 году. Нынешняя штаб-квартира находится в Дании. Предприятие также работает в Германии, США, Индии, Румынии, Китае, Швеции, Норвегии и Австралии. Количество сотрудников в компании превышает 21 000 человек.

 

3. First Solar Inc. [NASDAQ: FSLR]

• Цена акции: $49.23
• Рыночная капитализация: $5,133 млрд
• Доходность с начала года: -31,25%
• Коэффициент P/E: 24,11
• Прибыль на акцию: 2,07
• Дивидендный доход: отсутствует

Frist Solar – международная альтернативно-энергетическая компания, специализирующаяся на солнечной энергии. Она производит солнечные модули для промышленных объектов и разрабатывает полные гелиоэнергетические проекты для коммунальных, энергетических предприятий и коммерческих организаций. Кроме того, First Solar самостоятельно строит и обслуживает свои системы по добыче солнечной энергии.

First Solar также известна тем, что создаёт недорогие солнечные преобразователи, которые делают электроэнергию более эффективной для производства. Руководство поставило перед собой задачу по наращиванию энергетической эффективности компании в три раза.

После максимумов чуть ниже $70 в конце апреля акции снизились до отметки $49,15, в соответствии с падающим спросом и ценами на солнечные батареи. Эти активы подходят для инвесторов, которые доверяют более широкому тренду и считают, что солнечная энергия может естественным образом оказывать конкурентное давление на традиционные энергетические компании.

 

4. ABB Ltd [NYSE: ABB]

• Цена акции: $23.18
• Рыночная капитализация: $49,926 млрд
• Доходность с начала года: -14,35%
• Коэффициент P/E: 22,66
• Прибыль на акцию: 1,04
• Дивидендный доход: 3,44%

Наряду с разработкой и производством двигателей, генераторов и робототехники, ABB занимается преобразованием солнечной и ветровой энергии, а также разработкой быстрозарядных систем для электромобилей. ABB создаёт продукты и технологии для железнодорожных сетей, коммунальных предприятий, транспортных компаний и промышленных объектов.

Инвесторы, которые видят какое-то взаимодействие альтернативной энергетики с полем традиционных электротехнических услуг, должны сочти ABB хорошим вариантом для вложения денег. Компания работает в 100 странах и известна, как одно из ведущих электротехнических предприятий мира. Подключение альтернативных источников энергии к базовой электросети – целевое направление деятельности ABB.

После ралли в конце января 2018 года акции потеряли землю под ногами и пошли вниз. Инвесторам необходимо внимательно следить за ходом дел ABB, поскольку целесообразно ожидать появление хороших моментов для покупки.


В заключении


Компании, которые представлены в этом обзоре, находятся под влиянием формирующегося мейнстрима на альтернативную энергетику, но у них есть твёрдая репутация и большая история успешной деятельности.

Когда вы делаете инвестиции в альтернативную энергетику не забывайте о повышенной волатильности в этом секторе фондового рынка. Однако шансы на получение хорошего вознаграждения в долгосрочной перспективе довольно высоки.


Читайте: Toyota, Ford, General Motors: как инвестировать в производство беспилотных автомобилей



Источник

Что такое альтернативные источники энергии: разновидности

Ссылка на статью успешно отправлена!

Отправим материал вам на e-mail

В современном быстро развивающемся мире борьба за энергетические ресурсы между развитыми странами является приоритетом внешней политики многих государств, потому быть энергетически независимым − это значит, быть свободным в экономическом и политическом плане. Кроме этого, едва ли не на первом месте у технически развитых стран, стоит вопрос об экологической безопасности нашей планеты, о чём свидетельствует Парижское соглашение о климате от 2015 года и ещё целый ряд международных документов. В контексте этих решений, а также в связи с уменьшением запасов традиционных источников энергии (газ, нефть, уголь и прочие) многие государства начинают всё более активно развивать альтернативные, возобновляемые источники энергии. Что такое альтернативные источники энергии, их виды и способы использования, можно ли сделать своими руками – это тема сегодняшнего обзора.

Альтернативные источники энергии безопасны для экологии нашей планеты

Содержание статьи

Альтернативные источники энергии – что это такое         

Если сформулировать кратко, то альтернативными источниками энергии являются возобновляемые, экологические ресурсы, при преобразовании которых получается электрическая и тепловая энергия, используемая человеком для собственных нужд. Нетрадиционные источники получения электроэнергии − солнце и вода, ветер и геотермальные воды, тепла – земля и солнце.

Виды альтернативных источников энергии                                     

Развитие зелёной энергетики обусловлено развитием технологий, позволивших с большей эффективностью использовать возобновляемые источники энергии, о которых следует поговорить отдельно.

Солнечная энергия

Солнце – это неисчерпаемый источник энергии, который может обеспечить теплом и электричеством всех жителей нашей планеты, однако, для преобразования этой энергии необходимо наличие специальных технических устройств.

Схема работы автономной солнечной станции

  • Электрическая энергия.

Для получения электричества необходима электростанция, основным элементом которой является солнечная батарея (панель). Принцип работы такого устройства (панели) основан на преобразовании солнечного излучения в электрическую энергию, которое происходит при попадании света на фотоэлементы, из которых она и состоит. Электрический ток образуется за счёт создания разности потенциалов внутри фотоэлемента и обусловлен физическими процессами, связанными с «p-n» проводимостью кремний содержащих материалов. Принцип работы солнечной батареи приведён на следующем рисунке.

Разнонаправленное движение электронов и дырок, вызванное солнечным излучением, создаёт разность потенциалов на поверхности фотоэлемента

Для работы подобной электростанции, кроме солнечной панели, потребуется ещё ряд технических устройств:

  • контроллер – обеспечивает работу электростанции в автоматическом режиме, обеспечивая заряд аккумуляторных батарей;
  • аккумуляторная батарея
    – является накопителем энергии, выработанной солнечной панелью;
  • инвертор – преобразует постоянное напряжение в переменное, используемое для подключения бытовых приборов;
  • соединительные провода, а также приборы защиты и автоматики.
  • Тепловая энергия.

Для получения тепловой энергии, которую можно использовать для отопления и горячего водоснабжения, необходимо наличие технических устройств, называемых солнечными коллекторами.

Схема включения солнечного коллектора в систему отопления и ГВС жилого дома

Подобные агрегаты бывают двух типов: плоские и вакуумные. Различаются по конструкции, но по принципу работы схожи между собой. Функция подобных устройств заключается в поглощении энергии солнца и преобразовании её в тепловую энергию, которая, в свою очередь, передаётся теплоносителю в контуре отопления или воде, идущей для горячего водоснабжения потребителей. Для работы данной системы потребуется также циркуляционный насос и бак-накопитель (бойлер), запорная и регулировочная арматура, а также системы автоматики и контроля.

Энергия ветра

Ветер также может служить источником получения электрической энергии, а так как он дует практически всегда и везде, что обусловлено «дыханием» нашей планеты, то и запасы его неисчерпаемы.

Схема включения ветрогенератора в систему электроснабжения загородного дома

 

Сложности получения электрической энергии из кинетической энергии ветра заключаются в его непостоянстве, разнонаправленности и различной величине силы воздушных потоков. Для получения электричества при помощи энергии ветра необходимо наличие ветрогенератора (ветровой энергетической установки).

Ветрогенраторы бывают различных типов:

  • с вертикальной осью вращения – роторные, лопастные и ортогональные;
  • с горизонтальной осью вращения – крыльчатые, турбинные и барабанные.

Разные модели отличаются по скорости вращения лопастей (тихоходные и скоростные) и барабанов, высоте установки и техническим характеристикам. Для работы ветровой установки в системе электроснабжения необходим комплект оборудования, аналогичный тому, что используется с солнечными батареями (контроллер, инвертор).

Статья по теме:

Энергия воды

На планете Земля вода занимает большую часть её поверхности − это моря и океаны, озёра и реки, искусственные водохранилища и прочие водоёмы.

Схематичное изображение гидроэлектростанции плотинного типа

Энергию воды человек научился использовать уже давно, и изначально это была механическая, получаемая в результате движения водной среды. Её потоки приводили во вращение жернова мельницы или иного механического устройства, а человек только регулировал скорость их вращения. В дальнейшем данный вид энергии люди стали использовать для генерации электрической энергии, как на реках с быстрым течением, так и в морях – за счёт приливов и отливов, «функционирующих» с постоянной точностью. Для выработки электрической энергии используются специальные турбины, помещаемые в водную среду, вал которых соединён с генератором, вырабатывающим электрический ток. Потоки воды, направленные на лопасти турбины, вращают её, и это движение передаётся генератору, и, как следствие, вырабатывается электрический ток.

Схема работы приливной электростанции

В приливных станциях работа осуществляется аналогично, с той лишь разницей, что потоки воды движутся разнонаправленно, что вызвано цикличностью периодов «прилив−отлив».

Энергия земли

Энергия нашей планеты также используется человеком для своих нужд, с её помощью можно обогреть дом или подогреть воду, а также осуществить производство электрической энергии.

  • Геотермальная энергетика.

В отдельных регионах нашей планеты внутреннее тепло просто вырывается наружу, что выражается в сейсмической активности, извержениях вулканов и наличии гейзеров. В таких местах вопросы отопления и горячего водоснабжения решаются достаточно просто и не требуют особого описания, а про генерацию электричества подобным образом знают не все.

Варианты устройства геотермальной станции

Для получения электрической энергии сооружается геотермальная электрическая станция, в которой источником энергии служит паровая турбина, приводимая во вращение паром, получаемым или преобразуемым за счёт тепловой энергии земли.

Виды и способы преобразования пара могут быть различными, что обусловлено глубиной залегания геотермальных вод и их химическими характеристиками, а также тепловыми показателями.

  • Тепловой насос.

Тепловой насос − это техническое устройство, позволяющее использовать тепло различных естественных источников для отопления и горячего водоснабжения.

Существует несколько типов таких агрегатов, различающихся по первичному источнику энергии и способу её передачи потребителю: «воздух−вода» и «воздух–воздух», «вода–вода» и «вода–воздух», а также «земля–вода».

Тепловой насос «вода–вода»

Работа теплового насоса «вода–вода», приведённого на рисунке, осуществляется следующим образом:

  • в скважину, расположенную рядом с загородным домом, помещается наружный контур, в котором циркулирует теплоноситель;
  • в здании помещается тепловой насос, к которому подключается наружный контур;
  • при прохождении через насос теплоноситель наружного контура отдаёт своё тепло хладагенту, циркулирующему во внутреннем контуре теплового насоса, при этом хладагент испаряется;
  • внутренний контур здания также подключается к тепловому насосу, и по нему тоже циркулирует теплоноситель;
  • хладагент, циркулируя по тепловому насосу, попадает на испаритель, где и происходит его испарение, при этом тепловая энергия, выделяющаяся в этот момент, передаётся теплоносителю контура отопления или ГВС здания.

Схема работы теплового насоса «воздух–вода»

Статья по теме:

Тепловой насос для отопления дома даёт возможность экологично, безопасно и бесплатно согреть батареи. Принцип его работы и устройство, критерии выбора, обзор производителей и моделей - читайте в публикации.

Биотопливо                                                 

Всем известным видом биотоплива являются дрова, но в силу того, что леса есть не во всех регионах, да и использовать их надо очень осторожно, то их в чистом виде не стоит рассматривать как альтернативное и легко восстанавливаемое топливо.

К альтернативным и возобновляемым видам источников энергии относятся следующие виды биотоплива:

  • твёрдое – топливные брикеты и гранулы (пеллеты), изготавливаемые из опилок и отходов деревообрабатывающих производств, торф;
  • жидкое – биоэтанол и биобутанол, биометанол и биодизель;
  • газообразное – биогаз и биоводород.

Топливные брикеты и пеллеты изготавливаются на специальном оборудовании, а для их сжигания используются твердотопливные котлы, оборудованные специальными колосниковыми решётками, обеспечивающими их горение.

Топливные гранулы – пеллеты, изготавливаются из отходов различных пород дерева

Жидкое топливо получают на специальных предприятиях путём переработки исходного растительного сырья. Биогаз также производится с помощью переработки органических отходов и может быть использован для производства электрической и тепловой энергии. Для этого полученный газ сжигается, а полученное тепло расходуется на теплоснабжение и ГВС, а также на получение пара, обеспечивающего работу специальной турбины, вырабатывающей электрический ток.

Альтернативные источники энергии для частного дома  

Практически все выше перечисленные источники альтернативной энергии могут быть использованы для частного дома или иного сооружения, исключением может быть только производство жидкого биотоплива, что обусловлено высокой стоимостью оборудования, необходимого для его производства. Установки альтернативных источников энергии, используемые для личного потребления, могут выглядеть по-разному, ниже приведены примеры уже реализованных проектов возобновляемых энергетических установок:

  • Солнечная энергетика.

Солнечные электростанции выпускаются в нашей стране и многих технически развитых странах мира. Разные модели отличаются по техническим характеристикам, срокам эксплуатации и стоимости, в связи с чем, всегда есть возможность выбрать станцию в соответствии с необходимостью и финансовыми возможностями. Вот некоторые варианты, успешно реализованные на отечественном рынке.

В удалённых регионах солнечная электростанция может стать основным источником электрической энергии

Отзыв о модели солнечной электростанции «Аbi-solar» мощностью 7,5кВт:

Подробнее на Отзовик: http://otzovik.com/review_4483104.html

Солнечные панели и коллекторы можно разместить рядом, тем самым обеспечить себя теплом и электричеством

Солнечные коллекторы также используются в нашей стране для отопления и горячего водоснабжения домов, но это направление наиболее развито в южных регионах, где климат позволяет пользоваться подобными установками практически круглый год.

Вот некоторые варианты такого применения.

Вакуумный солнечный коллектор может легко разместиться на кровле любого строения

Отзыв о гелиосистеме «Атмосфера», созданной на базе коллектора «СВК-Nano-30»:

Подробнее на Отзовик: http://otzovik.com/review_4503734.html

  • Ветровые установки.

Ветрогенераторы менее распространены среди рядовых потребителей, чем солнечные электростанции, причиной тому является малая ветровая нагрузка в наиболее заселённых регионах нашей страны. Тем не менее, в сети Интернет можно найти фотографии и отзывы об успешном использовании подобных установок.

Ветряк может стать удачным дополнением к солнечной станции, благо параметры работы и комплект необходимого оборудования у них практически идентичны

В местах, где нет централизованного электроснабжения, ветровой генератор и солнечная станция становятся основным источником электрической энергии

Отзыв об использовании ветровой электростанции:

Подробнее на Отзовик: http://otzovik.com/review_98896.html

  • Тепловой насос.

С данным видом оборудования мало кто знаком, но постепенно, в связи со снижением стоимости тепловых насосов, они потихоньку завоёвывают рынок альтернативных источников энергии. Вот некоторые успешно реализованные проекты.

Тепловой насос не занимает много места, но способен полностью обеспечить теплом загородный дом

Тепловой насос «воздух–воздух» внешне похож на кондиционер

  • Получение биогаза.

Получением биогаза можно заняться, имея загородный дом, но при этом следует помнить о соблюдении температурного режима при его производстве и неприятном запахе, образующемся при брожении биомассы. Подобные установки могут себе позволить жители южных регионов, занимающиеся сельским хозяйством, т.к. именно отходы сельскохозяйственных культур служат сырьём при производстве данного вида альтернативного топлива.

Биогазовая установка, работающая на курином помёте, размещена рядом с птичником

Биогазовая установка для частного дома, работающая на отходах злаковых культур

Есть ли будущее у альтернативных источников энергии  

Есть ли будущее у альтернативных источников энергии − это вопрос, интересующий многих энергетиков, экологов и просто активных граждан нашей страны, и ответ однозначный – ДА, будущее есть. В нашей стране в 2009 году была принята и успешно реализуется программа развития альтернативной энергетики в России, сформулированная как «Основные направления государственной политики в сфере повышения энергетической эффективности электроэнергетики на основе использования возобновляемых источников энергии на период до 2020 года». Кроме этого, государство оказывает помощь предприятиям при реализации программы Международной финансовой корпорации (IFC) по развитию возобновляемых источников энергии. Создаются на законодательном уровне экономические рычаги, способствующие распространению «зелёной» энергетики, выражающиеся в установлении льготных тарифов и финансовой помощи при строительстве, налоговых льготах и компенсации части кредитных затрат на строительство.

Развитие рынка альтернативной энергетики в России по установленной мощности (внутренний круг – 2009 год/внешний круг – 2020 год)

Одним из примеров такой помощи является внедрение так называемого «зелёного тарифа» на электрическую энергию. Суть его заключается в том, что значения данного тарифа выше, чем у электроснабжающих организаций, таким образом, государство стимулирует развитие альтернативной энергетики на конкретной территории. Тариф позволяет индивидуальным пользователям и предприятиям, имеющим альтернативные энергетические установки, частично компенсировать затраты на их приобретение и монтаж путём реализации излишков выработанной электрической энергии во внешнюю сеть по более высоким ценам. В настоящее время правительством России утверждены Правила такой реализации и подготовлены проекты Постановлений, определяющих условия предоставления «зелёного тарифа». Закон, в соответствии с которым, будет осуществляться подобная деятельность, находится в разработке в Минэнерго, Минэкономразвития и ФАС и должен быть представлен для рассмотрения в Государственную Думу в 2018 году.

Структура использования возобновляемых источников энергии в России и мире

Альтернативная энергетика для дома своими руками

При наличии свободного времени, желания, а также умения работать ручным инструментом, можно создать установки, с помощью которых использовать альтернативные источники для своих нужд как в виде электрической, так и тепловой энергии.

Это касается всех выше перечисленных видов альтернативной энергетики:

  • солнечная генерация – можно самостоятельно изготовить солнечные батареи, при этом используя фотоэлементы заводского производства, собрать контроллер и инвертор, а также изготовить солнечный коллектор;
  • ветровые установки – электронные устройства (контроллер, инвертор) собираются аналогично, как и для солнечных станций, из запасных частей заводского производства, а ветрогенератор достаточно легко изготавливается из подручных материалов и запасных частей от автомототехники;
  • микро-ГЭС – также можно изготовить из авто-, мотозапчастейи имеющихся материалов, единственным условием успешного строительства будет наличие водоёма, куда следует поместить турбину;
  • биогазовая установка – способен собрать любой сельский житель, условиями для этого будут – наличие необходимого количества биомассы и температура окружающего воздуха, позволяющая происходить процессу её брожения.

Видео: альтернативная энергия для частного дома

Экономьте время: отборные статьи каждую неделю по почте

Просто о сложном: что такое альтернативная энергетика?

Экология потребления.Наука и техника:В то время как большинство концепций альтернативной энергетики не новы, только за последние несколько десятилетий этот вопрос стал, наконец, актуальным. Благодаря усовершенствованию технологий и производства, стоимость большинства форм альтернативной энергии понижалась, в то время как эффективность росла.

За последние годы альтернативная энергетика стала предметом пристального интереса и ожесточенных дискуссий. Под угрозой изменения климата и того факта, что средние мировые температуры продолжают расти с каждым годом, стремление найти формы энергии, которые позволят сократить зависимость от ископаемого топлива, угля и других загрязняющих окружающую среду процессов, естественным образом выросло.

В то время как большинство концепций альтернативной энергетики не новы, только за последние несколько десятилетий этот вопрос стал, наконец, актуальным. Благодаря усовершенствованию технологий и производства, стоимость большинства форм альтернативной энергии понижалась, в то время как эффективность росла. Что же такое альтернативная энергетика, если говорить простыми и понятными словами, и какова вероятность того, что она станет основной?

Очевидно, остаются некоторые споры касательно того, что означает «альтернативная энергия» и к чему эту фразу можно применить. С одной стороны, этот термин можно отнести к формам энергии, которые не приводят к увеличению углеродного следа человечества. Поэтому он может включать ядерные объекты, гидроэлектростанции и даже природный газ и «чистый уголь».

С другой стороны, этот термин также используется для обозначения того, что в настоящее время считается нетрадиционными методами энергетики — энергии солнца, ветра, геотермальной энергии, биомассы и других недавних дополнений. Такого рода классификация исключает такие методы добычи энергии, как гидроэлектростанции, которые существуют больше сотни лет и представляют собой довольно распространенное явление в некоторых регионах мира.

Другой фактор в том, что альтернативные источники энергии должны быть «чистыми», не производить вредных загрязняющих веществ. Как уже отмечалось, это подразумевает чаще всего двуокись углерода, однако может относиться и к другим выбросам — моноксиду углерода, двуокиси серы, окиси азота и другим. По этим параметрам ядерная энергия не считается альтернативным источником энергии, поскольку производит радиоактивные отходы, которые высоко токсичны и должны храниться соответствующим образом.

Во всех случаях, однако, этот термин используется для обозначения видов энергии, которые придут на смену ископаемому топливу и углю в качестве преобладающей формы производства энергии в ближайшее десятилетие.

Виды альтернативных источников энергии

Строго говоря, существует много видов альтернативной энергии. Опять же, здесь определения заходят в тупик, потому что в прошлом «альтернативной энергетикой» называли методы, использование которых не считали основным или разумным. Но если взять определение в широком смысле, в него войдут некоторые или все эти пункты:

Гидроэлектроэнергия. Это энергия, вырабатываемая гидроэлектрическими плотинами, когда падающая и текущая вода (в реках, каналах, водопадах) проходит через устройство, вращающее турбины и вырабатывающее электричество.

Ядерная энергия. Энергия, которая производится в процессе реакций замедленного деления. Урановые стержни или другие радиоактивные элементы нагревают воду, превращая ее в пар, а пар крутит турбины, вырабатывая электричество.

Солнечная энергия. Энергия, которая получается напрямую от Солнца; фотовольтаические ячейки (обычно состоящие из кремниевой подложки, выстроенные в крупные массивы) преобразуют лучи солнца напрямую в электрическую энергию. В некоторых случаях и тепло, производимое солнечным светом, используется для производства электричества, это известно как солнечная тепловая энергия.

Энергия ветра. Энергия, вырабатываемая потоком воздуха; гигантские ветряные турбины вертятся под действием ветра и вырабатывают электричество.

Геотермальная энергия. Эту энергию вырабатывает тепло и пар, производимые геологической активностью в земной коре. В большинстве случаев в грунт над геологически активными зонами помещаются трубы, пропускающие пар через турбины, таким образом вырабатывая электричество.

Энергия приливов. Приливное течение у береговых линий тоже может использоваться для выработки электричества. Ежедневное изменение приливов и отливов заставляет воду протекать через турбины назад и вперед. Вырабатывается электроэнергия, которая передается на береговые электростанции.

Биомасса. Это относится к топливу, которое получают из растений и биологических источников — этанола, глюкозы, водорослей, грибов, бактерий. Они могли бы заменить бензин в качестве источника топлива.

Водород. Энергия, получаемая из процессов, включающих газообразный водород. Сюда входят каталитические преобразователи, при которых молекулы воды разбиваются на части и воссоединяются в процессе электролиза; водородные топливные элементы, в которых газ используется для питания двигателя внутреннего сгорания или для вращения турбины с подогревом; или ядерный синтез, при котором атомы водорода сливаются в контролируемых условиях, высвобождая невероятное количество энергии.

Альтернативные и возобновляемые источники энергии

Во многих случаях альтернативные источники энергии также являются возобновляемыми. Тем не менее эти термины не полностью взаимозаменяемы, поскольку многие формы альтернативных источников энергии полагаются на ограниченный ресурс. К примеру, ядерная энергетика опирается на уран или другие тяжелые элементы, которые необходимо сперва добыть.

В то же время ветер, солнечная, приливная, геотермальная и гидроэлектроэнергия полагаются на источники, которые полностью возобновляемые. Лучи солнца — самый изобильный источник энергии из всех и, хоть и ограниченный погодой и временем суток, является неисчерпаемым с промышленной точки зрения. Ветер тоже никуда не девается, благодаря изменениям давления в нашей атмосфере и вращению Земли.

В настоящее время альтернативная энергетика все еще переживает свою юность. Но эта картина быстро меняется под влиянием процессов политического давления, всемирных экологических катастроф (засух, голода, наводнений) и улучшений в технологиях возобновляемых энергий.

Например, по состоянию на 2015 год, энергетические потребности мира по-прежнему преимущественно обеспечивались углем (41,3%) и природным газом (21,7%). Гидроэлектростанции и атомная энергетика составили 16,3% и 10,6% соответственно, в то время как «возобновляемые источники энергии» (энергии солнца, ветра, биомассы и пр.) — всего 5,7%.

Это сильно изменилось с 2013 года, когда мировое потребление нефти, угля и природного газа составило 31,1%, 28,9% и 21,4% соответственно. Ядерная и гидроэлектроэнергия составляли 4,8% и 2,45%, а возобновляемые источники — всего 1,2%.

Кроме того, наблюдалось увеличение числа международных соглашений относительно обуздания использования ископаемого топлива и развития альтернативных источников энергии. Например, Директиву о возобновляемой энергии, подписанную Евросоюзом в 2009 году, которая установила цели по использованию возобновляемой энергии для всех стран-участниц к 2020 году.

По своей сути, из этого соглашения следует, что ЕС будет удовлетворять не менее 20% общего объема своих потребностей в энергии возобновляемой энергией к 2020 году и по меньшей мере 10% транспортного топлива. В ноябре 2016 года Европейская комиссия пересмотрела эти цели и установила уже 27% минимального потребления возобновляемой энергии к 2030 году.

Некоторые страны стали лидерами в области развития альтернативной энергетики. Например, в Дании энергия ветра обеспечивает до 140% потребностей страны в электроэнергии; излишки поставляются в соседние страны, Германию и Швецию.

Исландия, благодаря своему расположению в Северной Атлантике и ее активным вулканам, достигла 100% зависимости от возобновляемых источников энергии уже в 2012 году за счет сочетания гидроэнергетики и геотермальной энергии. В 2016 году Германия приняла политику поэтапного отказа от зависимости от нефти и ядерной энергетики.

Долгосрочные перспективы альтернативной энергетики являются чрезвычайно позитивными. Согласно отчету 2014 году Международного энергетического агентства (МЭА), на фотовольтаическую солнечную энергию и солнечную тепловую энергию будет приходиться 27% мирового спроса к 2050 году, что сделает ее крупнейшим источником энергии. Возможно, благодаря достижениям в области синтеза, ископаемые источники топлива будут безнадежно устаревшими уже к 2050 году. опубликовано econet.ru 

 

Альтернативная энергетика для дома своими руками обзор лучших эко-технологий

Виды альтернативной энергетики

В зависимости от источника энергии, который в результате преобразования позволяет получать человеку электрическую и тепловую энергии, используемые в повседневной жизни, альтернативная энергетика классифицируется на несколько видов, определяющих способы ее генерации и типы установок служащих для этого.

Энергия солнца

Солнечная энергетика основана на преобразовании энергии солнца, в результате которого получается электрическая и тепловая энергии.

Получение электрической энергии основано на физических процессах, происходящих в полупроводниках под воздействием солнечных лучей, получение тепловой – на свойствах жидкостей и газов.

Для генерации электрической энергии комплектуются солнечные электростанции, основой которой служат солнечные батареи (панели), изготавливаемые на основе кристаллов кремния.

Основой тепловых установок — служат солнечные коллекторы, в которых энергия солнца преобразуется в тепловую энергию теплоносителя.

Мощность подобных установок зависит от количества и мощности отдельных устройств, входящих в состав тепловых и солнечных станций.

Энергия ветра

Ветровая энергетика основана на преобразовании кинетической энергии воздушных масс в электрическую энергию, используемую потребителями.

Основой ветровых установок служит ветровой генератор. Ветровые генераторы различаются по техническим параметрам, габаритным размерам и конструкции: с горизонтальной и вертикальной осью вращения, различным типом и количеством лопастей, а также по месту их расположения (наземное, морское и т.д.).

Сила воды

Гидроэнергетика основана на преобразовании кинетической энергии водных масс в электрическую энергию, которая также используемую человеком в своих целях.

К объектам данного вида относятся гидроэлектростанции различной мощности, устанавливаемых на реках и иных водных объектах. В таких установках, под воздействием естественного течения воды, или путем создания плотины, вода воздействует на лопасти турбины вырабатывающей электрический ток. Гидротурбина, является основой гидроэлектростанций.

Еще один способ получения электрической энергии путем преобразования энергии воды – это использование энергии приливов, посредством строительства приливных станций. Работа таких установок основана на использовании кинетической энергии морской воды в период приливов и отливов, происходящих в морях и океанах под воздействием объектов солнечной системы.

Тепло земли

Геотермальная энергетика, основана на преобразовании тепла, излучаемого поверхностью земли, как в местах выброса геотермальных вод (сейсмически опасные территории), так и в иных регионах нашей планеты.

Для использования геотермальных вод используются специальные установки, посредством которых внутреннее тепло земли преобразуется в тепловую и электрическую энергии.

Использования теплового насоса позволяет получать тепло из поверхности земли, вне зависимости от места его расположения. Его работа основана на свойствах жидкостей и газов, а также законах термодинамики.

Биотопливо

Виды биотоплива различаются по способам его получения, его агрегатному состоянию (жидкое, твердое, газообразное) и видам использования. Объединяющим все виды биотоплива показателем, служит то, что основой для их производства служат органические продукты, посредством переработки которых получается электрическая и тепловая энергии.

Твердые виды биотоплива — это дрова, топливные брикеты или пеллеты, газообразные – это биогаз и биоводород, а жидкие – биоэтанол, биометанол, биобутанол, диметиловый эфир и биодизель.

КОТЛЫ НА БИОТОПЛИВЕ – АЛЬТЕРНАТИВНЫЙ ИСТОЧНИК ОТОПЛЕНИЯ ЧАСТНОГО ДОМА И КВАРТИРЫ

Котлы на биотопливе – распространенные альтернативные источники энергии для частного дома, которые отличает высокое качество исполнения. Биотопливо в виде брикетов и пеллет из сырья растительного происхождения (опилки, стружка, отходы пиломатериалов, лузга подсолнечника) – альтернативное отопление, которое может служить идеальной заменой газовому отоплению в частном доме благодаря высокой теплоотдаче, которая может достигать 6-8 тыс. кКал/кг. Котел для биотоплива – универсальное отопительное устройство с высоким КПД, оснащенное автоматической системой управления, и может с успехом применяться и для отопления другими видами твердого топлива, в том числе углем, дровами, угольными брикетами.

Котлы на биотопливе, как альтернативные источники отопления частного дома, могут использоваться не только для отопления (одноконтурные котлы), но и обеспечивать горячее водоснабжение помещений – для этого можно приобрести двухконтурный котел или добавить к существующему устройству второй контур с бойлером соответствующего типа (проточный или накопительный). Несложное устройство котлов для биотоплива дает возможность обустроить альтернативное отопление дома своими руками, сэкономив, таким образом, часть средств семейного бюджета.

Ветровая энергия

Работа ветра используется человечеством достаточно давно – все парусные суда двигались благодаря его силе, ветряные мельницы благодаря ветру перемалывали зерно в муку.

Использованию потенциала ветра сегодня уделяется большое внимание – современные аналоги ветряных мельниц способны вырабатывать электро- и теплоэнергию в промышленных масштабах. Ветер – источник постоянной энергии, подаренный природой

Ветер – источник постоянной энергии, подаренный природой

Такой подъем в производстве ветрогенераторов стал возможен благодаря появлению новых композитных материалов. Их использование значительно увеличило мощность установок, использующих энергетику ветра, – более чем в 10 раз всего за последнее десятилетие.

Сегодня в России промышленно выпускают ветрогенераторы от самых компактных до огромных, существуют ветрогенераторы с вертикальной и горизонтальной осью вращения. Чтобы собрать для частного загородного дома самое простое устройство, достаточно иметь несколько магнитиков, проволоку и материал для лопастей.

Россия по использованию энергетического потенциала ветра находится на 56 месте в мире, уступая даже Люксембургу (в 3 раза больше мощность ветрогенераторов) и Кипру (в 5 раз больше мощность). При том, что в России огромный потенциал энергии ветра, взять, к примеру, побережье Дальнего Востока.

Преимущества работы ветрогенераторов очевидны:

  • бесплатный источник неисчерпаемой энергии – ветер;
  • ветрогенератор работает постоянно, полученная энергия запасается на аккумуляторных батареях, т. е. имеется всегда;
  • экологическая чистота и бесшумность работы;
  • эффективность работы не зависит от температурного режима – может использоваться в северных широтах, где солнечные батареи малоэффективны;
  • производительность зимой возрастает, так как ветер зимой всегда сильнее;
  • стоимость оборудования для использования энергии ветра значительно ниже, чем у солнечных батарей, т.е. окупаются они значительно быстрее.

При использовании ветрогенератора, этого альтернативного источника энергии для частного дома, следует учитывать следующие правила:

  • для производительной работы установки необходим устойчивый (желательно сильный) ветер, открытое пространство;
  • ветрогенератору необходим профилактический уход – раз в год обязательно проводить техобслуживание согласно инструкции;
  • установка ветрогенераторов проводится на мачте значительной высоты – нужна высотная техника и специалисты по их установке, самостоятельно их монтировать не стоит.

Источники энергии для дома: фото

Кол-во блоков: 22 | Общее кол-во символов: 24523
Количество использованных доноров: 4
Информация по каждому донору:

  1. https://USamodelkina.ru/green-energy/: использовано 14 блоков из 15, кол-во символов 4416 (18%)
  2. https://akbinfo.ru/alternativa/alternativnaja-jenergija-gotovye-reshenija-svoimi-rukami.html: использовано 1 блоков из 2, кол-во символов 10560 (43%)
  3. https://220v.guru/vse-ob-elektroenergii/alternativnyy-istochnik-energii-dlya-chastnogo-doma.html: использовано 1 блоков из 4, кол-во символов 4210 (17%)
  4. https://sad24.ru/postrojki/sobiraem-alternativnyj-istochnik-energii.html: использовано 6 блоков из 8, кол-во символов 5337 (22%)

Отходы в доходы: биогазовые установки

Все альтернативные источники энергии имеют природное происхождение, но получать двойную выгоду можно только от биогазовых установок. В них перерабатываются отходы жизнедеятельности домашних животных и птицы. В результате получается некоторый объем газа, который после очищения и осушения можно использовать по прямому назначению. Оставшиеся переработанные отходы можно продать или использовать на полях для повышения урожайности — получается очень эффективное и безопасное удобрение.

Из навоза тоже можно получать энергию, только не в чистом виде, а в виде газа

Коротко о технологии

Образование газа происходит при брожении, и участвуют в этом бактерии, живущие в навозе. Для выработки биогаза подходят отходы любого скота и птицы, но оптимален навоз КРС. Его даже добавляют к остальным отходам для «закваски» — в нем содержатся именно нужные для переработки бактерии.

Для создания оптимальных условий необходима анаэробная среда — брожение должно проходить без доступа кислорода. Потому эффективные биореакторы — закрытые емкости. Чтобы процесс шел активнее, необходимо регулярное перемешивание массы. В промышленных установках для этого устанавливаются мешалки с электроприводами, в самодельных биогазовых установках это обычно механические устройства — от простейшей палки до механических мешалок, которые «работают» от силы рук.

Принципиальная схема биогазовых установок

В процессе образования газа из навоза участвуют два типа бактерий: мезофильные и термофильные. Мезофильные активны при температуре от +30°C до +40°C, термофильные — при +42°C до +53°C. Более эффективно работают термофильные бактерии. При идеальных условиях выработка газа с 1 литра полезной площади может достигать 4-4,5 литров газа. Но поддерживать в установке температуру в 50°C очень непросто и затратно, хотя затраты себя оправдывают.

Немного о конструкциях

Самая простая биогазовая установка — это бочка с крышкой и мешалкой. В крышке сделан вывод для подключения шланга, по которому газ поступает в резервуар. От такого объема много газа не получите, но на одну-две газовые горелки его хватит.

Более серьезные объемы можно получить от подземного или надземного бункера. Если речь о подземном бункере, то его делают из железобетона. Стенки от грунта отделяют слоем теплоизоляции, саму емкость можно разделить на несколько отсеков, в которых будет происходить переработка со сдвигом во времени. Так как работают в таких условиях обычно мезофильные культуры, весь процесс занимает от 12 до 30 дней (термофильные перерабатывают за 3 дня), потому сдвиг по времени желателен.

Схема бункерной биогазовой установки

Навоз поступает через бункер загрузки, с противоположной стороны делают люк выгрузки, откуда отбирают переработанное сырье. Заполняется бункер биосмесью не полностью  — порядка 15-20%  пространства остается свободным — тут скапливается газ. Для его отвода в крышку встраивается трубка, второй конец которой опускается в гидрозатвор — емкость частично заполненную водой. Таким образом газ осушается — в верхней части собирается уже очищенный, он отводится при помощи другой трубки и уже может подавиться к потребителю.

Использовать альтернативные источники энергии может каждый. Владельцам квартир осуществить это сложнее, а вот в частном доме можно хоть все идеи реализовать. Есть уже даже реальные примеры того. Люди обеспечивают полностью потребности свои и немалого хозяйства.

Электростанция на солнечных батареях

Установка солнечных панелей потребует:

  • Накопители, представляющие из себя фотоэлементы.
  • АКБ – для накопления заряда.
  • Контроллер, который позволит следить за аккумулятором.
  • Устройство для преобразования 12 или 24 В тока в 200 В.
  • Конструктивные и фиксирующие элементы.

Особенности установки на доме

Следует учесть, что угол наклона должен меняться. Зимой альтернативный солнечный накопитель следует переводить в положение с большим углом к горизонту. Делается это для того, чтобы на солнечном коллекторе не скапливался снег. Иначе это приведет к резкому уменьшению эффективности.

Выбирать следует участок крыши дома, которая обращена на южную, восточную или юго-восточную стороны света.

Солнечные коллекторы для нагрева воды

Для получения горячей воды и отопления в частном доме используют альтернативный коллектор, работающий от солнечного тепла. Принцип работы и устройство конструкции:

  1. Короб. Металлический прослужит дольше. Выполненный из плит ОСБ, ДВП, ДСП – более дешевый вариант, но его эксплуатации будет менее длительная. Для увеличения срока службы пропитывают плиту специальными септиками и лаками.
  2. На дно короба укладывается минеральная вата или пенопласт – они служат теплоизоляторами и предотвращают теплопотери.
  3. На плиту укладываются плотными рядами трубы. Лучший материал медь – обладает высокой теплопроводностью. Допускаются металлопластиковые варианты, но их энергоэффективность будет на 20% меньше медных.
  4. Входная часть и выходная снабжаются фиттингами. Они обеспечивают подключение к коммуникациям водоснабжения дома.
  5. Сверху короб закрывается стеклом. Можно также использовать акриловый материал или монолитный поликарбонат. Важный момент – поверхность должна быть не гладкой, а рифленой, для лучшего процесса нагрева. Солярное стекло обладает способностью устранять потери тепла. Оно обеспечивает меньшие энергопотери.

Далее вся альтернативная конструкция подключается к источнику воды, который будет циркулировать внутри помещения.

Солнечные панели собственноручного изготовления

Готовая солнечная панель стоит немалых денег, поэтому ее покупка и установка по карману далеко не каждому. При самостоятельном изготовлении панели расходы можно снизить в 3-4 раза. Прежде чем приступить к устройству солнечной панели нужно разобраться, как все это работает.

Система солнечного электроснабжения: принцип работы

Понимание назначения каждого из элементов системы позволит представить ее работу в целом. Основные составляющие любой системы солнечного электроснабжения:

  • Солнечная панель. Это комплекс соединенных в единое целое элементов, преобразующих солнечный свет в поток электронов. Их основная особенность состоит в том, что они не могут вырабатывать ток высокого напряжения. Отдельный элемент системы способен вырабатывать ток напряжением 0,5-0,55 В. Соответственно одна солнечная батарея способна вырабатывать ток напряжением 18-21 В, что достаточно для зарядки 12-вольтовой аккумуляторной батареи.
  • Аккумуляторы. Одной батареи надолго не хватит, поэтому система может насчитывать до десятка таких устройств.  Количество аккумуляторных батарей определяется мощностью потребляемой электроэнергии. Количество аккумуляторных батарей можно будет увеличить в будущем, добавив в систему необходимое количество солнечных панелей;
  • Контроллер солнечного заряда. Это устройство необходимо для обеспечения нормальной зарядки аккумуляторной батареи. Основное его назначение состоит в недопущении повторной перезарядки батареи.
  • Инвертор. Прибор, требующийся для преобразования тока. Аккумуляторные батареи выдают ток низкого напряжения, а инвертор преобразует его в ток необходимого для функционала высокого напряжения – выходная мощность. Для дома достаточно будет инвертора с выдаваемой мощностью  3-5 кВт.

Если инвертор, аккумуляторные батареи и контроллер заряда лучше приобрести готовыми, то солнечные батареи вполне возможно сделать самому.

Качественный контроллер и правильность подключения помогут как можно дольше сохранять работоспособность аккумуляторных батарей и автономность всей солнечной станции в целом

Виды альтернативных источников энергии.

Энергия ветра, солнца, воды, биотопливо, тепло Земли относительно неисчерпаемы и возобновимы. Преимущества альтернативных источников энергии неоспоримы, поскольку они сохраняют природные ресурсы. Кроме того, они в гораздо большей мере соответствуют требованиям экологической безопасности.

Ветровая энергетика.

Принцип использования силы ветра заключается в превращении кинетической энергии в электрическую, тепловую, механическую. Для получения электрической энергии используют ветровые генераторы. Они могут иметь различные технические параметры, размеры, конструкции, горизонтальную или вертикальную ось вращения. Паруса – классический пример использования силы ветра в морском транспорте, а ветряная мельница – преобразования в механическую энергию.

Диаметр лопастей и высота их расположения определяют мощность ветрогенератора. При силе ветра от 3 м/с генератор начинает вырабатывать ток и достигает максимальной величины при 15 м/с. Сила ветра свыше 25 м/с является критической – генератор отключается.

Гелиоэнергетика — дар Солнца.

Солнечная энергия как альтернативный источник энергии – естественное продолжение жизнетворящей миссии Солнца на нашей планете. Но пока человечество не научилось использовать ее напрямую. В настоящее время в качестве преобразователей солнечной энергии в электрическую применяют солнечные батареи, а для тепловой – солнечные коллекторы. Кроме того, в некоторых случаях используют совмещение двух видов.

Гелиотехнология заключается в нагреве поверхности солнечными лучами и в использовании нагретой воды для горячего водоснабжения, отопления или использования в паровых электрогенераторах. Для преобразования энергии солнца в тепловую используют солнечные коллекторы. Их общая мощность зависит от количества и мощности отдельных устройств, которые включены в систему солнечной или тепловой станции.

Солнечные батареи подразделяют на:

  • кремниевые
  • пленочные

Наибольшим спросом в настоящее время пользуются батареи с использованием кристаллов кремния, а самые удобные – пленочные. Кремниевые панели являются одним из лучших вариантов для частного дома.

ГЭС — использование силы воды.

Принцип действия турбин на гидроэлектростанциях заключается в воздействии силы воды на лопасти гидротурбины, которая вырабатывает электричество. Иногда к альтернативным видам энергии относят лишь те ГЭС, где не использованы мощные плотины, а выработка тока происходит под влиянием естественного течения воды. Это связано со значительным негативным воздействием мощных ГЭС на природные речные ландшафты, их обмелением и катастрофическими наводнениями.

Не вызывает возражений экологов использование естественной энергии морских и океанических приливов. Преобразование кинетической энергии в электрическую в этом случае происходит на специальных приливных станциях.

Геотермальная энергетика — тепло Земли.

Поверхность Земли излучает тепло не только в местах выброса горячих сейсмических источников, как, например, на Камчатке, но и практически во всех регионах планеты. Для извлечения тепла земли используют специальные тепловые насосы, а затем его преобразуют в электрическую энергию или используют как тепловую. Принцип действия установок базируется на законах термодинамики и физических законах поведения жидкостей и газа, в частности, фреона.

Тип конструкции насоса определяет первичный источник энергии, например, « грунт- воздух» или «грунт — вода».

Биотопливо.

Принцип получения биотоплива основан на переработке органических продуктов с помощью специальных установок. В ходе переработки вырабатывается тепловая или электрическая энергия. Виды биотоплива могут иметь жидкое, твердое или газообразное состояние. К твердым, например, относятся топливные брикеты, жидким – биоэтанол, к газообразным – биогаз. К его разновидностям относится свалочный газ, который образуется на свалках. Использование биогаза старых свалок помогает решить проблемы переработки отходов.

Как сэкономить на внедрении “зеленой энергетики”?

Проанализировав финансовую составляющую альтернативных видов отопления, можно прийти к неутешительному выводу – потребуются значительные средства на первоначальном этапе.

Вот спустя 3-7 лет, в зависимости от выбранного способа отопления, станет заметна существенная экономия благодаря энергонезависимой системе.


Выгодно и удобно использовать комбинированные источник альтернативного отопления. Для этого можно подобрать наиболее оптимальную комбинацию для своего дома

Сэкономить на использовании и установке альтернативных установок для выработки тепла можно. Многие домашние мастера с большим энтузиазмом подходят к созданию своими руками аналогов фабричным приборам преобразования альтернативной энергии.

Так, достаточно просто и недорого можно собрать гелиоустановку из шланга, которая послужит дополнительным источником нагрева воды.

Успешно собираются в домашних условиях небольшие ветряки из подручных средств. Также начитанные фермеры, проживающие в сельской местности, сооружают установки по преобразованию биологических отходов растительного и животного происхождения в биогаз.


Самодельные ветрогенераторы вполне работоспособны. Но для их сборки потребуется произвести предварительные расчеты, приобрести расходные материалы, потратить свое время

В дальнейшем он используется для потребностей хозяйства. В зависимости от размера резервуара для сбраживания отходов и площади частного дома, возможно полностью обеспечить хозяйство биогазом для удовлетворения всех нужд.

Виды альтернативного электричества

Всегда перед потребителем стоит выбор, основанный на вопросе, что лучше? И в этом плане подразумевается, во-первых, затраты на приобретение нового вида источника электричества, во-вторых, как долго этот прибор будет работать. То есть, будет ли это выгодно, окупится ли вся затея, а если окупится, то через какой промежуток времени? Скажем так, экономию денежных средств еще никто не отменял.

Как видите, вопросов и проблем и здесь хватает, потому что электричество своими руками – дело не только серьезное, но и достаточно затратное.

Электрогенератор

Начнем именно с этой установки, как с самой простой. Простота ее заключается в том, что вам необходимо приобрести электрогенератор, установить его в надежном закрытом помещении, которое будет соответствовать правилам пожарной безопасности. Далее, проводите подключение электрической сети частного дома к нему, заливаете жидкое топливо (бензин или солярку) и включаете. После чего в вашем доме появляется электричество, которое зависит лишь от наличия топлива в баке генератора. Если продумать автоматическую систему подачи топлива, то вы получаете маленькую тепловую электростанцию, которая от вас будет требовать минимального присутствия.

К тому же электрогенераторы – это надежные и удобные установки, которые работают практически вечно, если правильно их эксплуатировать. Но тут есть один момент. В настоящее время на рынке присутствует два вида генераторов:

Какой лучше? Скажем так, если вам требуется альтернативный источник энергии, который будет эксплуатироваться постоянно, тогда выбирайте дизельный. Если для временного использования, тогда бензиновый. И это еще не все. Дизельный электрогенератор имеет большие габаритные размеры, по сравнению с бензиновым, он сильно шумит при работе и выделяет огромное количество дыма и выхлопных газов. Плюс ко всему он дороже.

Появились недавно на рынке газовые генераторы, которые могут работать и от природного газа, и от сжиженного. Неплохой вариант, экологичный, не требующий специального помещения для установки. Можно к одному генератору подключить, к примеру, сразу несколько газовых баллонов, которые в автоматическом режиме будут подключаться к установке.

Альтернатива углеводородному топливу

Среди трех видов электрогенераторов газовый самый лучший и эффективный. Но стоимость топлива (жидкого или газообразного) – удовольствие не из дешевых, поэтому стоит задуматься над тем, что самостоятельно вырабатывать топливо, вкладывая в него минимум денежных средств. К примеру, биогаз, который можно получить из биомассы.

Кстати, альтернативные виды энергии, которые сегодня называются биологическими, могут заменить практически все альтернативные источники электроэнергии. К примеру:

  • Биогаз получается при помощи брожения навоза, птичьего помета, сельскохозяйственных отходов и так далее. Главное – установить оборудование, которое используется для улавливания метана.
  • Из мусора, к примеру, на свалках, добывается так называемый целлюлозный эталон. Или как его называют специалисты, свалочный газ.

Внимание! Ученые уже подсчитали, что если перерабатывать все свалки мира, то можно получить до 84 миллиардов литров свалочного топлива, которое можно использовать для получения электроэнергии. ИБГУ-1 — установка для получения биогаза

ИБГУ-1 — установка для получения биогаза

  • Из сои и рапса, а точнее, из их семян, вырабатываются жиры, из которых можно получить биосолярку.
  • Из свеклы, сахарного тростника, кукурузы можно изготавливать биоэталон (биобензин).
  • Ученые доказали, что с помощью обычных водорослей можно аккумулировать солнечную энергию.

То есть, существует большой ряд научных разработок, которые выдают альтернативные виды энергии. И многие из них уже получили практическое применение. К примеру, установка ИБГУ-1, с помощью которой из навоза можно получить в сутки до двенадцати кубометров биогаза. Отечественные фермеры по достоинству оценили труд ученых, поэтому это оборудование раскупается быстро.

Альтернативная энергетика для дома своими руками: обзор лучших разработок

Запасы природного топлива не безграничны, а цены на энергоносители постоянно растут. Согласитесь, было бы неплохо взамен традиционных источников энергии использовать альтернативные, чтобы не зависеть от поставщиков газа и электроэнергии в своем регионе. Но вы не знаете, с чего начинать?

Мы поможем вам разобраться с основными источниками возобновляемой энергии – в этом материале мы рассмотрели лучшие эко-технологии. Заменить привычные источники питания способна альтернативная энергия: своими руками можно устроить весьма эффективную установку для ее получения.

В нашей статье рассмотрены простые способы сборки теплового насоса, ветрогенератора и солнечных батарей, подобраны фотоиллюстрации отдельных этапов процесса. Для наглядности материал снабжен видеороликами по изготовлению экологически чистых установок.

Содержание статьи:

Популярные источники возобновляемой энергии

“Зеленые технологии” позволят ощутимо сократить бытовые расходы за счет использования практически бесплатных источников.

Еще с древних времен люди использовали в повседневном обиходе механизмы и устройства, действие которых было направлено на превращение в механическую энергию сил природы. Ярким примером тому являются водяные мельницы и ветряки.

С появлением электричества наличие генератора позволило механическую энергию превращать в электрическую.

Водяная мельница – предшественник насоса автомата, не требующий присутствия человека для совершения работы. Колесо самопроизвольно вращается под напором воды и самостоятельно черпает воду

Сегодня значительное количество энергии вырабатывается именно ветряными комплексами и гидроэлектростанциями. Помимо ветра и воды людям доступны такие источники, как биотопливо, энергия земных недр, солнечный свет, энергия гейзеров и вулканов, сила приливов и отливов.

В быту для получения возобновляемой энергии широко используют следующие устройства:

Высокая стоимость, как самих устройств, так и проведения монтажных работ, останавливает многих людей на пути к получению вроде бы бесплатной энергии.

Окупаемость может достигать 15-20 лет, но это не повод лишать себя экономических перспектив. Все эти устройства можно изготовить и установить самостоятельно.

При выборе источника альтернативной энергии нужно ориентироваться на ее доступность, тогда максимальная мощность будет достигнута при минимуме вложений

Солнечные панели собственноручного изготовления

Готовая солнечная панель стоит немалых денег, поэтому ее покупка и установка по карману далеко не каждому. При самостоятельном изготовлении панели расходы можно снизить в 3-4 раза.

Прежде чем приступить к устройству солнечной панели нужно разобраться, как все это работает.

Галерея изображений

Фото из

Расположение солнечной панели на скатной крыше

Монтаж солнечных батарей на пологую крышу

Конструкция для изменения угла наклона приборов

Формирование угла наклона солнечной батареи

Принцип работы системы солнечного электроснабжения

Понимание назначения каждого из элементов системы позволит представить ее работу в целом.

Основные составляющие любой системы солнечного электроснабжения:

  • Солнечная панель. Это комплекс соединенных в единое целое элементов, преобразующих солнечный свет в поток электронов.
  • Аккумуляторы. Одной надолго не хватит, поэтому система может насчитывать до десятка таких устройств.  Количество аккумуляторных батарей определяется мощностью потребляемой электроэнергии. Количество аккумуляторных батарей можно будет увеличить в будущем, добавив в систему необходимое количество солнечных панелей;
  • Контроллер солнечного заряда. Это устройство необходимо для обеспечения нормальной зарядки аккумуляторной батареи. Основное его назначение состоит в недопущении повторной перезарядки батареи.
  • Инвертор. Прибор, требующийся для преобразования тока. Аккумуляторные батареи выдают ток низкого напряжения, а инвертор преобразует его в ток необходимого для функционала высокого напряжения – выходная мощность. Для дома достаточно будет инвертора с выдаваемой мощностью  3-5 кВт.

Основная особенность солнечных батарей состоит в том, что они не могут вырабатывать ток высокого напряжения. Отдельный элемент системы способен вырабатывать ток напряжением 0,5-0,55 В. Одна солнечная батарея способна вырабатывать ток напряжением 18-21 В, чего достаточно для зарядки 12-вольтового аккумулятора.

Если инвертор, аккумуляторные батареи и контроллер заряда лучше приобрести готовыми, то солнечные батареи вполне возможно сделать самому.

Качественный контроллер и правильность подключения помогут как можно дольше сохранять работоспособность аккумуляторных батарей и автономность всей солнечной станции в целом

Изготовление солнечной батареи

Для изготовления батареи необходимо приобрести солнечные фотоэлементы на моно- либо поликристаллах. При этом нужно учесть, что срок службы поликристаллов значительно меньше, чем у монокристаллов.

Кроме того КПД поликристаллов не превышает 12%, тогда как этот показатель у монокристаллов достигает 25%. Для того, чтобы сделать одну солнечную панель необходимо купить как минимум 36 таких элементов.

Солнечную батарею собирают из модулей. Каждый модуль для бытового использования включает 30, 36 или 72 шт. элементов, соединенных последовательно с источником питания с максимальным напряжением около 50 V

Шаг #1 – сборка корпуса солнечной панели

Начинаются работы с изготовления корпуса, для этого потребуются следующие материалы:

  • Деревянные бруски
  • Фанера
  • Оргстекло
  • ДВП

Из фанеры необходимо вырезать днище корпуса и вставить его в рамку из брусков толщиной 25 мм. Размер днища определяется количеством солнечных фотоэлементов и их размером.

По всему периметру рамки в брусках с шагом 0,15-0,2 м необходимо высверлить отверстия диаметром 8-10 мм. Они требуются для предотвращения перегрева элементов батареи во время работы.

Правильно выполненные отверстия с шагом 0,15-0,20 м предохранят от перегрева элементы солнечной панели и обеспечат стабильную работу системы

Шаг #2 – соединение элементов солнечной панели

По размеру корпуса необходимо при помощи канцелярского ножа вырезать из ДВП подложку для солнечных элементов. При ее устройстве также нужно предусмотреть наличие вентиляционных отверстий, устраиваемых через каждые 5 см квадратно-гнездовым способом. Готовый корпус нужно дважды покрасить и высушить.

Солнечные элементы следует вверх ногами выложить на подложку из ДВП и выполнить распайку. Если готовые изделия уже не были оснащены припаянными проводниками, то работа существенно упрощается. Однако процесс распайки предстоит выполнить в любом случае.

Нужно помнить, что соединение элементов должно быть последовательным. Изначально элементы следует соединять рядами, а уже потом готовые ряды объединять в комплекс путем присоединения к токоведущим шинам.

По завершению элементы нужно перевернуть, уложить как положено и зафиксировать на своих местах при помощи силикона.

Каждый из элементов нужно надежно зафиксировать на подложке с помощью скотча либо силикона, в будущем это позволит избежать нежелательных повреждений

После чего надо проверить величину выходного напряжения. Ориентировочно оно должно находиться в пределах 18-20 В. Теперь батарею следует обкатать в течение нескольких дней, проверить способность зарядки аккумуляторных батарей. Только после контроля работоспособности производится герметизация стыков.

Шаг #3 – сборка системы электроснабжения

Убедившись в безукоризненном функционале, можно выполнить сборку системы электроснабжения. Входные и выходные контактные провода нужно вывести наружу для последующего подключения прибора.

Из оргстекла следует вырезать крышку и закрепить ее саморезами к бортикам корпуса через предварительно просверленные отверстия.

Вместо солнечных элементов для изготовления батареи можно использовать диодную цепь с диодами Д223Б. Панель из 36 последовательно соединенных диодов способна выдавать напряжение 12 В.

Диоды нужно предварительно замочить в ацетоне для удаления краски. В пластиковой панели следует высверлить отверстия, вставить диоды и произвести их распайку. Готовую панель необходимо поместить в прозрачный кожух и герметизировать.

Правильно ориентированные и установленные солнечные панели обеспечивают максимальную эффективность получения солнечной энергии, а также легкость и простоту обслуживания системы

Основные правила установки солнечной панели

От правильности установки солнечной батареи во многом зависит эффективность работы всей системы.

При установке нужно учесть следующие важные параметры:

  1. Затенение. Если батарея будет находиться в тени деревьев или более высоких сооружений, то она не только не будет нормально функционировать, но и может выйти из строя.
  2. Ориентация. Для максимального попадания солнечных лучей на фотоэлементы батарею необходимо направить в сторону солнца. Если Вы живете в северном полушарии, то панель должна быть ориентирована на юг, если же в южном, то наоборот.
  3. Наклон. Этот параметр определяется географическим положением. Специалисты рекомендуют устанавливать панель под углом, равным географической широте.
  4. Доступность. Нужно постоянно следить за чистотой лицевой стороны и вовремя удалять слой пыли и грязи. А в зимнее время панель периодически необходимо очищать от налипающего снега.

Желательно, чтобы при эксплуатации солнечной панели угол наклона не был постоянным. Прибор будет работать по максимуму только в случае прямо направленных на его крышку солнечных лучей.

Летом его лучше располагать под уклоном в 30º к горизонту. В зимнее время рекомендовано приподнимать и устанавливать на 70º.

В ряде промышленных вариантов солнечных батарей предусмотрены устройства слежения за движение солнца. Для бытового применения можно продумать и предусмотреть подставки, позволяющие менять угол наклона панели

Тепловые насосы для отопления

Тепловые насосы являются одним и из наиболее прогрессивных технологических решений в получении для вашего дома. Они не только наиболее удобны, но и экологически безопасны.

Их эксплуатация позволит существенно снизить расходы, связанные с оплатой на охлаждение и обогрев помещения.

Галерея изображений

Фото из

Тепловой насос с забором тепла земли или подземной воды

Внешний блок теплового насоса воздух-вода или воздух-воздух

Взаимосвязь внешней и внутренней составляющих эко-систем

Оборудование внутреннего блока теплового насоса

Классификация тепловых насосов

Тепловые насосы классифицирую по количеству контуров, источнику энергии и способу ее получения.

В зависимости от конечных потребностей тепловые насосы могут быть:

  • Одно-, двух или трехконтурные;
  • Одно- или двухконденсаторные;
  • С возможностью нагрева или с возможностью нагрева и охлаждения.

По виду источника энергии и способу ее получения различают следующие тепловые насосы:

  • Грунт – вода. Применяются в умеренном климатическом поясе с равномерным прогревом земли вне зависимости от времени года. Для монтажа используют коллектор либо зонд в зависимости от типа грунта. Для бурения неглубоких скважин не требуется получения разрешительных документов.
  • . Тепло аккумулируется из воздуха и направляется на нагрев воды. Установка будет уместной в климатических зонах с зимней температурой не ниже -15 градусов.
  • . Монтаж обусловлен наличием водоемов (озера, реки, грунтовые воды, скважины, отстойники). Эффективность такого теплового насоса является весьма внушительной, что обусловлено высокой температурой источника в холодное время года.
  • Вода – воздух. В данной связке в роли источника тепла выступают те же водоемы, но при этом тепло посредством компрессора передается непосредственно воздуху, используемому для обогрева помещений. В данном случае вода не выступает в качестве теплоносителя.
  • Грунт – воздух. В данной системе проводником тепла является грунт. Тепло из грунта через компрессор передается воздуху. В роли переносчика энергии применяют незамерзающие жидкости. Данная система считается наиболее универсальной.
  • . Работа данной системы сходна с работой кондиционера, способного обогревать и охлаждать помещение. Данная система является наиболее дешевой, так как не требует производства земляных работ и прокладки трубопроводов.

При выборе вида источника тепла нужно ориентироваться на геологию участка и возможность беспрепятственного проведения земляных работ, а также на наличие свободной площади.

При дефиците свободного места придется отказаться от таких источников тепла, как земля и вода и забирать тепло из воздуха.

От правильности выбора вида теплового насоса во многом зависит эффективность работы системы и затраты на ее устройство

Принцип работы теплового насоса

Принцип работы тепловых насосов основан на использовании цикла Карно, который в результате резкого сжатия теплоносителя обеспечивает повышение температуры.

По такому же принципу, но с противоположным эффектом, работает большинство климатических устройств с компрессорными установками (холодильник, морозильная камера, кондиционер).

Главный рабочий цикл, который реализуется в камерах данных агрегатов, полагает обратный эффект – в результате резкого расширения происходит сужение хладагента.

Именно поэтому один из наиболее доступных методов изготовления теплового насоса основан на использовании отдельных функциональных узлов, используемых в климатическом оборудовании.

Так, для изготовления теплового насоса  может быть использован бытовой холодильник. Его испаритель и конденсатор будут играть роль теплообменников, отбирающих тепловую энергию из среды и направляющие ее непосредствен на нагрев теплоносителя, который циркулирует в системе отопления.

Низкопотенциальное тепло из грунта, воздуха или воды вместе с теплоносителем попадает в испаритель, где превращается в газ, а далее еще больше сжимается компрессором, в результате чего температура становится еще выше

Сборка теплового насоса из подручных материалов

Используя старую бытовую технику, а точнее, ее отдельные узлы, можно самостоятельно собрать тепловой насос. Как это можн сделать, рассмотрим далее.

Шаг #1 – подготовка компрессора и конденсатора

Работы начинаются с подготовки компрессорной части насоса, функции которой будут отведены соответствующему узлу кондиционера либо холодильника. Данный узел необходимо закрепить с помощью мягкой подвески на одной из стен рабочего помещения там, где это будет удобно.

После этого необходимо изготовить конденсатор. Для этого идеально подойдет бак из нержавеющей стали объемом 100 л. В него необходимо вмонтировать змеевик (можно взять готовую медную трубку от старого кондиционера либо холод

Альтернативная энергия дома - 3 самых выгодных источника: как сделать своими руками

Стоимость электроэнергии в России постоянно растёт, например, в Иркутской области цена киловатта выросла в 3 раза за последние пять лет (с 0,38 до 1,11 р. за кВт). Это подвигает владельцев частных домов искать альтернативные источники энергии. В данной статье рассмотрим самые популярные решения: солнечные панели, тепловой насос и ветрогенератор.

Как сделать солнечные панели

В некоторых европейских странах с помощью солнечных панелей обеспечивается электроэнергия для небольших населенных пунктов.

Принцип работы

Принцип работы данного источника энергии основан на способности фотоэлементов преобразовывать энергию солнечного света в электрическую. Такие устройства состоят из:

  • Солнечных панелей. Представляют собой комплекс элементов, преобразующих поток электронов из поступающего солнечного света.
  • Аккумуляторов. Обычно устанавливается несколько батарей, особенно если речь идёт о большом доме. В процессе эксплуатации можно добавить дополнительных аккумуляторов.
  • Контроллеров. Такие устройства используются для обеспечения оптимальной зарядки аккумуляторов. Их функция заключается в предотвращении перегрева батарей в результате перезарядки.
  • Инверторов. Предназначение этих приборов заключается в преобразовании электрического тока. АКБ генерируют ток с низким напряжением, поэтому возникает необходимость в его преобразовании с помощью инверторов. Для частного использования достаточно мощности 3-5 кВт.

В батареях, предназначенных для использования в частных домах, применяются кремниевые фотоэлементы. Существует две разновидности данных элементов:

  • Поли-кристаллические. Весьма хрупкие, требуют максимально бережного обращения. Характеризуются низким КПД (10-15%), небольшим эксплуатационным периодом (до 20 лет). Единственное достоинство – дешевизна.
Наглядное отличие разновидностей фотоэлементов
  • Моно-кристаллические. Характеризуются надежностью, прочностью, продолжительным сроком службы (при правильной эксплуатации до 50 лет) и высоким КПД (25-30%). Единственный недостаток – относительно высокая стоимость.
Схема работы солнечных панелей

Экономика получения энергии из солнца у себя дома

В большинстве регионов Российской Федерации (кроме Ленинградской области и ещё некоторых субъектов на северо-западе) количество солнечных дней преобладает над пасмурными. Поэтому использование солнечной энергии в таких регионах рационально. При затратах на оборудование среднестатистического частного дома (80 кв.м.) в 100 т.р. они окупаются за 1-2 года.

Отличительная особенность таких источников энергии заключается в том, что они не способны выдавать высокого напряжения. В среднем (зависит от конкретной модели) одна солнечная батарея выдаёт напряжение 18-21 В. Такого тока хватает для подзарядки аккумулятора на 12 вольт. Инвертор, АКБ и контроллер необходимо приобретать готовыми, ибо это довольно сложные с технической точки зрения приборы. Солнечные панели можно изготовить самостоятельно. Как сделать такой альтернативный источник энергии своими руками мы расскажем далее.

Изготовление и сборка корпуса для панелей

Примерно так должен выглядеть корпус

Для создания корпуса солнечной панели понадобятся следующие материалы:

  • Бруски (размер произвольный, оптимальный 25х25 мм).
  • Фанера (или подобный листовой материал, например, OSB).
  • Оргстекло.
  • Силикон.
  • ДВП.

Из фанеры с помощью электролобзика (можно использовать ножовку, но лобзиком быстрее) вырезается днище корпуса. Размер выбирается, исходя из количества фотоэлементов и площади крыши.

Из брусков изготавливается рамка, в которую вставляются листы фанеры. По всему периметру конструкции с шагом 20-25 см сверлятся отверстия диаметром примерно 1 см. Они нужны для предотвращения перегрева конструкции при эксплуатации.

Сборка основных элементов

Из ДВП вырезается подложка по размеру корпуса, изготовленного ранее. После нарезки на листовом материале делаются вентиляционные отверстия с шагом 5-7 см. В конце корпус обрабатывается антисептиком (или специализированной пропиткой для дерева) и покрывается краской в два слоя. Такая мера нужна для предотвращения гниения древесины в результате постоянного воздействия ультрафиолетовых лучей и атмосферных осадков.

Фотоэлементы выкладываются на подложку из ДВП и производится распайка этих элементов последовательным соединением. Отдельные элементы соединяются в ряды, а затем несколько рядов объединяются в единую систему.

После спайки фотоэлементы необходимо перевернуть на другую сторону и зафиксировать силиконом. Затем с помощью мультиметра проверяется величина выходного напряжения. Оптимальное значение: 18-20 В.

Фотоэлементы в сборе

Следующий этап – тестирование. Собранные батареи подключаются на несколько дней. За этот промежуток проверяется их работоспособность. Убедившись в исправности системы, производится герметизация стыков.

Окончательная сборка системы

Первым делом все провода выводятся наружу, чтобы их можно было подключить к приборам. Из оргстекла (можно использовать обычный стеклорез) вырезается крышка. Она закрепляется к краям корпуса саморезами по металлу (у них шляпка больше, что обеспечивает большую прочность конструкции).

Солнечные элементы можно заменить на цепь из диодов типа Д223Б. Солнечная панель, с 36-ю такими диодами обеспечит напряжение около 12В. Перед сборкой конструкции необходимо удалить краску с диодов, замочив их в ацетоне. Далее размещается на пластиковой панели и производится распайка. Собранная конструкция помещается в прозрачный кожух, стыки обрабатываются герметиком.

Если мансардные перекрытия достаточно прочные, можно целиком покрыть крышу солнечными панелями.

Несколько важных правил

Чтобы обеспечить работоспособность изготовленной системы, учитывайте следующие параметры:

  • Солнечные батареи нельзя располагать в тени (от деревьев или построек), в противном случае она не будет оптимально функционировать. Учитывайте это при составлении чертежа.
  • Для обеспечения максимального КПД установки, фотоэлементы должны быть направлены в сторону солнца. Исходя из этого, в северном полушарии батареи необходимо направлять на юг, в южном полушарии на север.
  • Панель желательно размещать под углом, равным географической широте. В таком случае солнечные лучи будут попадать на панели под оптимальным углом.
  • Все элементы конструкции необходимо периодически чистить.
Оптимальное размещение пластин – на скатной крыше дома

Изготовление теплового насоса

Тепловые насосы обеспечивают отопление и горячую воду, используя грунт, воду и даже воздух.

Принцип работы и типология

Насосам необходимо электричество, следовательно, их нужно использовать в сочетании с другим источником энергии. Работают они на веществах вроде фреона. Их специфика заключается в закипании только при низких температурах. В газообразном состоянии, вещество начинает выдавать тепло. Установка состоит из трех частей: внутренний контур, внешний контур и контур насоса.

Внешний в основном закапывают в землю или опускают на дно водоема. Под воздействием внешних факторов циркулирующий фреон начинается нагреваться. Высокое давление насоса внешнего контура, превращает его в газообразное состояние. В итоге температура достигает 70С°.

Схема, наглядно объясняющая принцип работы теплового насоса.

Внутренний выполняет функцию распределителя, он разносит тепло, разогретое в насосе, по всему участку. Коллектор можно установить в любом удобном положении, как горизонтально, так и вертикально (иногда размеры участка не позволяют установить горизонтально).

Контур насоса опускают, в скважины на глубину 1-1,5 метра, предварительно пробурлив. Если же дом расположен подле озера, то прокладка теплообменника проходит в воде.  Отлично подойдет компрессор от кондиционера. 120 л бак будет конденсатором. В бак устанавливается медный змеевик, он нужен для того, чтобы по нему циркулировал фреон. Важно чтобы стенки змеевика были толстыми не менее 1мм. Если проигнорировать данный параметр, то труба при намотке может подвергнуться деформации.

Благодаря такой конструкции, вода начинает прогреваться. Пластиковая бочка объемом в 130-140 литров подойдет для испарителя. В неё монтируется еще один змеевик, а соединять первый и второй бак будет компрессор.

ПВХ труба послужит патрубком испарителя. Он выполняет функцию регулировки жидкости. Испаритель погружают в водоём. Вода непосредственно начинает обтекать его и происходит реакция – испарение фреона. В конденсаторе образуется газ и подает тепло воде, в которой находится змеевик. Помещение начинает греться за счет циркуляции теплоносителя.

Важно знать

Чтобы добиться максимального КПД от используемого прибора, учитывайте эти простые правила:

  • Не обращайте внимания на температуру воды в источнике, главное ее стабильное присутствие.
  • Точные термодинамические расчеты являются гарантией, что система будет продуктивно работать
  • Правильная проектировка и грамотный монтаж насоса, избавят от многих проблем и обеспечат его стабильную работу.
  • Мощность является самым важным показателем отопительной конструкции. Исходя из этого, чем дороже составляющие части отопительной системы, тем выше мощность.
Типы тепловых насосов.

Идеальным условием считается любой водоем, расположенный на участке. Вариант насоса с использование воды, заметно сократит работы на земле. Эксплуатация насоса с использованием тепла земли, напротив, подразумевает немало земляных работ.

Экономика получения такой энергии

Главное отличие теплового насоса, от иных генераторов состоит в том, что до 70% энергии добывается из окружающей среды. Такая добыча энергии считается экологически чистой. Теперь рассмотрим вопрос об экономичности, сделать расчеты очень легко. Для начала посчитаем цену за 1кВт тепла, в определенном регионе.

Вот данные для расчета:

  • Сухие поленья — 4,000 кВт/кг.
  • Влажные поленья — 3,100 кВт/кг.
  • Антрацит — 5,900 кВт/кг.
  • Уголь- 3,050 кВт/кг.
  • Топливо- 11,900 кВт/кг.
  • Мазут — 11,000 кВт/кг.
  • Газ (природный) — 11,000 кВт/м3.
  • Газ (сжиженный)- 22,800 кВт/м3.

Собственно после подсчетов, надо принять существенное решение по эксплуатированию того или иного источника тепла.

Как сделать ветрогенератор

Прародителем таких устройств являются ветряные мельницы, которыми пользовались сотни лет назад. Они позволяют круглый год получать электроэнергию в любых количествах (в зависимости от мощности генератора и погодных условий).

Принцип работы

Стандартная схема работы ветрогенератора.

Ветрогенератор преобразовывает механическую энергию (получаемую за счет вращения генератора) в электроэнергию. На таком принципе основана работа, к примеру, ГЭС (только вместо ветра используется течение). Любой ветрогенератор состоит из:

  • Лопастей, вращающихся элементов, приводящих ротор в движение.
  • Генератора, вырабатывающего переменный ток.
  • Аккумуляторных батарей, служащих средством накопления и оптимизации вырабатываемой электроэнергии.
  • Контролера, призванного перерабатывать переменный ток в постоянный.
  • Инвертора, преобразовывающего постоянный ток в переменный, благодаря которому функционируют бытовые приборы.
  • Мачты, позволяющей поднимать лопасти на необходимую высоту.

Максимальная мощность системы зависит в большей степени от общей площади лопастей. Использование ветрогенераторов рентабельно только для регионов со среднегодовой скоростью ветра от 6 м/сек. Такие показатели имеют всего несколько субъектов РФ.

Среднегодовая скорость ветра в разных регионах РФ

Классификация ветрогенераторов

Существует несколько классификаций данных устройств:

  • По расположению оси: горизонтальные и вертикальные. Первые позволяют совершать автоматизированный поворот в целях поиск ветра. Вертикальные размещаются на земле, имеют меньший КПД, но более просты в обслуживании.
  • По количеству лопастей: одно-, двух-, трех- и многолопастные. Последняя разновидность предназначена для регионов с низкой среднегодовой скоростью ветра. Требует использование специального редуктора, что повышает себестоимость системы. Поэтому многолопастные ветрогенераторы применяются довольно редко.
  • По материалу, из которого изготовлены лопасти: парусные и жесткие. Первые более просты в изготовлении, при этом требуют регулярной замены в связи с низкой прочностью. Жесткие лопасти дороже, сложнее в изготовлении, но более долговечны.
  • По шагу винта: корректируемые и фиксируемые. Первый тип позволяет увеличить диапазон рабочих скоростей, имеет больший вес и крайне сложен в изготовлении. Фиксируемые генераторы проще и практичнее, поэтому они более популярны.

Далее мы рассмотрим, как сделать тихоходный ветрогенератор из использованного автомобильного генератора.

Создание ветрового колеса

Вариант изготовления лопастей из пластика.

Лопасти являются важнейшей частью ветронератора, так как они определяют работоспособность остальных элементов. Изготовить лопасти можно из подручных материалов: ткань, дерево, пластик, поликарбонат, металл и т.д.

Мы рассмотрим технологию изготовления из обычной канализационной ПВХ трубы. В пользу такого материала говорит его устойчивость к влаге, низкая стоимость и простота в обработке. Для изготовления лопастей делаем следующее:

  1. Определяем необходимую длину лопасти. Оптимальный вариант – в 5 раз больше диаметра имеющейся трубы.
  2. Распиливаем ножовкой по металлу или лобзиком трубу вдоль на 4 части. Одна из них в дальнейшем будет использована в качестве шаблона.
  3. Обрабатываем края наждачной бумагой, убирая появившиеся в ходе резки заусеницы.
  4. Закрепляем обработанные лопасти и генератора на алюминиевом диске.

Желательно использовать ПВХ трубу толщиной от 4 см – в таком случае лопасти будут выдерживать сильные порывы ветра. Не делайте лопасти слишком длинными – они менее прочными. Если требуется обеспечить электроснабжение для большого дома, лучше увеличить количество элементов, а не их размеры.

Изготовление мачты

Профессиональный ветрогенератор.

Как и в случае с лопастями, мачту можно изготовить из подручных средств. Мы рекомендуем воспользоваться стальной трубой диаметром не менее 15 см – такой материал достаточно прочен и прост в обработке. Минимальная длина мачты – 7 м.

Если на участке много построек или деревьев, то рекомендуется поднять колесо на 1-1,5 метра. В противном случае не будет обеспечено равномерное движение воздушных потоков. Фиксирующие колышки и мачту необходимо залить бетоном – это обеспечит их надежную фиксацию. В раствор обязательно добавлять арматуру (или другие ненужные металлические элементы).

Манипуляции с автомобильным генератором

Делаем следующее:

  1. Просверливаем отверстия в генераторе, позволяющие зафиксировать магниты в полюсах ротора.
  2. Устанавливаем магниты, чередуя полюса (плюс – минус – плюс и т.д.). Образовавшиеся пустоты заполняем эпоксидной смолой или подобным материалом. Ротор оборачиваем бумагой.
  3. Перематываем катушку по трехфазной схеме, не меняя направление витков.
Подойдет генератор от любого автомобиля.

По завершению работ тестируем генератор. Оптимальный показатель: напряжение 25-30В при 300 об/мин. Если мощность получилась меньше, добавляем витков на катушке.

Шаг №4: завершение сборки конструкции

Поворотная ось генератора изготавливается из металлической трубы с двумя подшипниками, а хвостовая часть из оцинковки (минимальная толщина – 1,2 мм). Также создается рама, позволяющая закрепить генератор к мачте. Лучше использовать профильную трубу.

Важно: расстояние между мачтой и лопастью должно быть не менее 25 см.

Для обеспечения работоспособности системы дополнительно приобретается и устанавливается контроллер, инвертор и АКБ. Ёмкость батарей высчитывается исходя из мощности генератора, которая зависит от трёх факторов: габариты колеса, количество лопастей и среднегодовая скорость ветра.

Заключение

Задумались, какой метод альтернативного электроснабжения выбрать? Если вы живете в регионе с большим количеством ясных дней, оптимально воспользоваться солнечными батареями. Для субъектов со среднегодовой скоростью ветра от 6 м/сек рационально соорудить ветрогенератор. Тепловой насос мы посоветуем тем, у кого есть хотя бы минимальные инженерские навыки, так как подобное устройство сложно в изготовлении и обслуживании.

Альтернативные источники энергии - ветровые, солнечные, гидроэнергетические и другие альтернативные источники энергии для коммерческих и домашних источников энергии

Введение в Altenergy

10¹⁶ ватт - это примерно количество энергии, имеющееся в распоряжении цивилизации, которая может использовать все падающее на планету солнечное излучение от ее родительской звезды - Тип I по шкале Кардашева. Когда известный астрофизик Николай Кардашев впервые попытался измерить уровень технологического прогресса цивилизации в 1964 году, он остановился на потреблении энергии как на лучшей метрике для измерения прогресса в космическом масштабе.

Во многих отношениях энергия является валютой нашей Вселенной, от одноклеточных организмов, плавающих в первобытных бассейнах, до колоний сурикатов в африканской саванне и огромных мегаполисов, таких как Нью-Йорк, Сидней или Пекин. На заре первого тысячелетия нашей эры население Земли составляло всего 150-200 миллионов человек, а к 1000 году нашей эры достигло 300 миллионов. К началу промышленной революции (середина 1700-х годов) ископаемое топливо способствовало быстрому развитию и расширению человеческой цивилизации, достигнув к 1800 году населения в 1 миллиард человек.

Так что же нам остается сегодня?

Современное общество сейчас находится на уровне 0,73 по шкале Кардашева. В то время как у нас есть шанс на Тип 1, неблагоприятные последствия сжигания ископаемого топлива оставили нас в острой необходимости в альтернативе.

Enter, альтернативная энергия - любой источник энергии, альтернативный статус-кво. Возобновляемые источники энергии, не производящие выбросов углекислого газа и других парниковых газов, которые способствуют антропогенному изменению климата.На altenergy.org мы стремимся охватить солнечную энергию, ветер, биомассу, гидроэнергетику, геотермальную энергию и другие углеродно-нейтральные источники энергии, которые помогут человечеству перейти к устойчивому будущему.

Солнечная энергия

Что может быть лучше для достижения статуса Типа I, чем получать энергию прямо из источника - солнечная энергия предполагает использование энергии нашего солнца. От фотоэлектрических (PV) элементов, которые захватывают фотоны и преобразуют их в электричество, до солнечной тепловой энергии (STE), использующей солнечное тепло, солнечная энергия является одним из самых многообещающих альтернативных источников энергии на рынке сегодня.

Энергия ветра

Тысячи лет люди использовали ветер, чтобы толкать паруса, измельчать зерно и перекачивать воду. Сегодня ветряные мельницы используют турбины для преобразования энергии вращения в электричество, которое может надежно поступать в сеть. В более крупном масштабе, согласно прогнозам, к 2030 году ветряные фермы будут обеспечивать до 20% мирового производства электроэнергии.

Биомасса

И биодизель - одни из наиболее широко используемых возобновляемых источников энергии. В отличие от ископаемого топлива, которое производится геологическими процессами, которые могут длиться миллионы лет, под биомассой обычно понимают биотопливо, получаемое с помощью биологических процессов, таких как сельское хозяйство и анаэробное сбраживание.Такие виды топлива, как биоэтанол из кукурузы или биодизель из переэтерификации растительных масел, горят чище, чем обычное ископаемое топливо, и могут помочь странам оставаться в рамках своих углеродных бюджетов.

Приливная сила

Приливы и отливы являются устойчивыми и предсказуемыми, что делает приливную силу жизнеспособным альтернативным источником энергии для регионов, где доступны высокие диапазоны приливов и отливов. Приливная электростанция Ранс во Франции - первая в мире крупномасштабная приливная электростанция, в которой для выработки электроэнергии используются турбины, во многом аналогичные гидроэлектростанциям для плотины.Совсем недавно CETO, волновая электростанция у побережья Западной Австралии, подключенная к сети, использовала серию буев и донных насосов для выработки электроэнергии.

Геотермальная энергия

Приблизительно 1,4 x 1021 джоулей тепловой энергии проходит к поверхности Земли каждый год. Регионы с высоким уровнем геотермальной активности, такие как Исландия и Индонезия, могут использовать эту геотермальную энергию, имеющуюся в магматических каналах и горячих источниках, для вращения турбин, которые вырабатывают электричество или обеспечивают естественное отопление домов.

Мы называем это Альтернативной энергией.

Ежедневно мир производит углекислый газ, который выбрасывается в атмосферу Земли и будет оставаться там через сто лет.

Это повышенное содержание углекислого газа увеличивает тепло нашей планеты и является основной причиной так называемого «эффекта глобального потепления». Один из ответов на глобальное потепление - заменить и модернизировать существующие технологии альтернативами, которые имеют сопоставимые или лучшие характеристики, но не выделяют углекислый газ.Мы называем это альтернативной энергией

.

К 2050 году одна треть мировой энергии должна будет производиться за счет солнечной, ветровой и других возобновляемых источников. Кто сказал? British Petroleum и Royal Dutch Shell, две из крупнейших нефтяных компаний мира. Изменение климата, рост населения и истощение запасов ископаемого топлива означают, что возобновляемые источники энергии должны будут играть более значительную роль в будущем, чем сегодня.

Альтернативная энергия означает источники энергии, которые не имеют нежелательных последствий, например ископаемое топливо или ядерная энергия.Альтернативные источники энергии являются возобновляемыми и считаются «бесплатными» источниками энергии. Все они имеют более низкие выбросы углерода по сравнению с традиционными источниками энергии. К ним относятся энергия биомассы, энергия ветра, солнечная энергия, геотермальная энергия, источники гидроэлектрической энергии. В сочетании с переработкой отходов использование чистых альтернативных источников энергии, таких как использование в домашних условиях систем солнечной энергии, поможет обеспечить выживание человека в 21 веке и далее.

Солнечная энергия

С экологической точки зрения лучше всего подходит солнечная энергия.Фотоэлектрическая система мощностью 1,5 кВт будет удерживать более 110 000 фунтов диоксида углерода, основного парникового газа, в атмосфере в течение следующих 25 лет. Та же самая солнечная система также избавит от необходимости сжигать 60 000 фунтов угля. Благодаря солнечной энергии нет ни кислотных дождей, ни городского смога, ни какого-либо загрязнения.

Человечество сошло с ума, что до сих пор не потрудилось использовать солнечную энергию. Думать об этом. Выйдите на улицу в солнечный день. Свет, падающий на ваше лицо, покинул Солнце всего за 8 минут.За эти 8 минут он проехал 93 миллиона миль. Эти фотоны тянутся, и когда они ударяются о ваш фотоэлектрический модуль, вы можете преобразовать это движение в электричество. Как технология, фотоэлектрические элементы не так хороши, как этот новый внедорожник, о котором нам говорит телевидение. Но во многих отношениях фотоэлектрическая энергия - гораздо более элегантная и сложная технология.

Будь то для вашего бизнеса или для вашего дома, почему бы не инвестировать в солнечные панели. Сегодняшние солнечные панели являются бомбоустойчивыми и часто поставляются с гарантией 25 или более лет.Ваши солнечные батареи могут пережить вас. Они также являются модульными - вы можете начать с небольшой системы и со временем расширять ее. Солнечные панели легкие (весят около 20 фунтов), поэтому, если вы переедете, вы можете взять систему с собой.

Сеточные интерактивные системы и нетто-учет

Некоторые коммунальные предприятия возражают против чистого учета. Обычно вопрос не в деньгах, а в контроле. Они не хотят, чтобы ваш сок попал в их провода, или они не хотят создавать прецедент, который может вернуться и преследовать их. В ближайшее время появятся некоторые технологии распределенной генерации, которые коммунальные предприятия определенно не захотят использовать в чистом счетчике, включая топливные элементы и микротурбины мощностью 50 кВт размером с пивные бочки.

Однако в США и Австралии поставщики электроэнергии все больше поддерживают схемы обратного выкупа солнечной энергии. Кроме того, предприятия теперь могут пользоваться услугами разных поставщиков газа и электроэнергии и делать покупки для наиболее экономичных.

Solar ратует за критику коммунальных предприятий. Но, несмотря на все недостатки, в отрасли было протянуто огромное количество проводов. Редко бывает, что американец, австралиец или европеец находится на расстоянии более 50 футов от электрической розетки.

Это обычное чудо, которое мы принимаем как должное.С инженерной точки зрения сеть - это огромный ресурс. Подключенная к сети фотоэлектрическая система будет более эффективной, возможно, более экологичной и, безусловно, дешевле, чем та, что находится в глуши. Более эффективен, потому что инвертор может отслеживать «кривую максимальной мощности» модулей, а не более низкое напряжение, необходимое для подзарядки батарей.

Возможно, более экологичный, потому что вам не нужны батареи, которые содержат едкие химические вещества, выделяют сернистые газы и со временем изнашиваются. И намного дешевле, потому что с сетью в качестве резервной вам не нужно покупать батареи, контроллер заряда, панель управления или генератор.

Итак, вы скинули до 5000 долларов с типичной автономной системы. Снижение цены имеет решающее значение, потому что никому в сети не нужна фотоэлектрическая энергия, по крайней мере, не так, как это нужно домовладельцу, не подключенному к сети. У нас уже есть сок. Это может быть атомная бомба, может быть угольная электростанция, это может быть гидро (или «воплощенный лосось»), но он там.

Чтобы продавать фотоэлектрические системы, подключенные к сети, вам нужно снизить цену и затем помочь потенциальным клиентам понять, что солнечная энергия для угля, как круассан для Twinkie.На интуитивном уровне многие люди уже понимают ключевое различие между ископаемым топливом и возобновляемой энергией. Один ворует у наших детей, другой - нет.

Текущая стоимость солнечных панелей означает, что сетевые интерактивные системы не окупаются с точки зрения экономии затрат по сравнению с электричеством из сети. Несмотря на это, многие люди с домами, подключенными к электросети, предпочитают устанавливать сетевые интерактивные солнечные системы, поскольку они не создают парниковых газов при выработке электроэнергии, в отличие от электростанций, работающих на угле.

Многочисленные исследования показали, что эквивалентное количество электроэнергии, используемой для изготовления солнечной панели, вырабатывается панелью в течение первых двух лет работы, следовательно, солнечная панель погасит свой «долг» по парниковым газам в течение этого времени.

Энергия ветра

Общества использовали энергию ветра на протяжении тысячелетий. Первое известное использование было в 5000 году до нашей эры, когда люди использовали паруса для навигации по реке Нил. Персы уже использовали ветряные мельницы в течение 400 лет к 900 году нашей эры, чтобы перекачивать воду и перемалывать зерно.

Ветряные мельницы, возможно, были даже разработаны в Китае до 1 года нашей эры, но самая ранняя письменная документация относится к 1219 году. Критяне использовали «буквально сотни ветряных мельниц с парусным ротором [для] перекачивания воды для сельскохозяйственных культур и домашнего скота».

Сегодня люди осознают , что энергия ветра «является одним из самых многообещающих новых источников энергии», который может служить альтернативой электричеству, произведенному на ископаемом топливе. Стоимость ветроэнергетики снижалась на 15% с каждым удвоением установленной мощности во всем мире, а мощность удваивалась три раза в течение 1990-х и 2000-х годов.

По состоянию на 1999 год мировая мощность ветроэнергетики превысила 10 000 мегаватт, что составляет примерно 16 миллиардов киловатт-часов электроэнергии. По данным Американской ассоциации ветроэнергетики, этого достаточно для обслуживания более 5 городов размером с Майами. Пять Майами могут показаться незначительными, но если мы сделаем прогнозируемые шаги в ближайшем будущем, энергия ветра может стать одним из наших основных источников электроэнергии.

Хотя энергия ветра теперь стала более доступной, на более доступной и экологически чистой, у нее есть некоторые недостатки.Энергия ветра страдает от того же недостатка плотности энергии, что и прямое солнечное излучение. Тот факт, что это «очень рассеянный источник», означает, что «требуется большое количество ветряных генераторов (и, следовательно, большие площади суши) для производства полезного количества тепла или электроэнергии.

«Но ветряные турбины нельзя устанавливать повсюду просто потому, что во многих местах недостаточно ветрено для выработки подходящей энергии. Когда подходящее место найдено, строительство и обслуживание ветряной электростанции могут быть дорогостоящими. Это» - очень капиталоемкая технология.«Если процентные ставки, взимаемые за производство оборудования и строительство завода, высоки, то потребителю придется платить больше за эту энергию.

«Одно исследование показало, что если бы ветряные электростанции финансировались на тех же условиях, что и газовые, их стоимость упала бы почти на 40%». К счастью, чем больше построено объектов, тем дешевле энергия ветра.

Но все больше энергии вкладывается в поиски многих других альтернативных источников энергии и обеспечение их жизнеспособности, таких как геотермальная энергия, энергия волн и биомасса!

14 альтернативных источников энергии, которые могут иметь значение

Растут альтернативные источники энергии

В энергетическом секторе ископаемых видов топлива источников были основным источником энергии из-за их относительно низкой цены.Тем не менее, наша потребность в энергии прогнозируется, что вырастет на в будущем, и мы больше не можем полагаться на конечных и , загрязняющих источников энергии. За последнее десятилетие мы увидели положительных сдвигов и в сторону расширения наших мощностей по возобновляемым источникам энергии как на местном, так и на глобальном уровне.

Панели солнечных батарей, ветряных турбин , установленных на суше и на море, и гидроэлектростанций - вот некоторые из альтернативных энергетических технологий , которые обеспечат наши будущие потребности в энергии .Наша зависимость от природного газа и нефти является самой большой причиной экологического ущерба, и в энергетическом секторе только несет ответственность за 1,7% увеличение количества углекислого газа в нашей атмосфере. Таким образом, альтернативные источники энергии будут в центре внимания для предотвращения дальнейшего воздействия изменения климата на нашу планету.

Согласно ежегодной статистике IRENA по возобновляемым мощностям за 2019 год, мировые возобновляемых генерирующих мощностей достигли 2351 ГВт .Из трех альтернативных источников энергии с наибольшим процентом:

1. Гидроэнергетика составляет 1172 ГВт, , что составляет примерно половину от общей суммы.
2. Береговая и морская ветровая энергия занимает второе место с 564 ГВт.
3. Мощность солнечной энергии немного меньше - 480 ГВт, разделенных на солнечную фотоэлектрическую и солнечную тепловую энергию.

Альтернативная энергия источников Прогнозируется до расширение в каждом секторе к 2023 .Электроэнергетический сектор имеет самую большую долю 30% , и на пути декарбонизации электрификация станет основным энергоносителем , большая часть которого будет производиться за счет возобновляемых источников энергии.

Отопление занимает второе место с 12%, а сектор транспорта идет последним с лишь 3,8% альтернативных источников энергии, требующих улучшения.

В инфографике ниже GreenMatch выделяет текущую и будущую область альтернативных источников энергии, а также дает обзор инвестиций и будущих прогнозов на нашем пути к устойчивому будущему .

Если вы хотите использовать эту инфографику, используйте код для встраивания ниже:

Получить код для встраивания

 14 альтернативных источников энергии

Инвестиции в 2019 году замедляются?

В соответствии с планом реализации, установленным Парижским соглашением , совокупные инвестиции в экологически чистую энергию должны составить долларов США, 110 трлн ., или около 2% (среднего) годового валового внутреннего продукта за этот период.

Увеличение тяги к альтернативным источникам энергии снизило затраты, особенно на солнечную энергию. Согласно отчету REN21 о состоянии возобновляемой энергетики за 2019 год, глобальные инвестиции в новые мощности достигли 288,9 млрд долларов США. , без учета гидроэнергетики свыше 50 МВт.

Китайское правительство прекратило свои схемы субсидирования , потому что солнечная энергия теперь считается доступной по цене и приводит к недостаточному развертыванию солнечной энергии в Китае.В результате цифры показывают на 11% меньше инвестиций по сравнению с 2017 годом.

Аналогичным образом, в апреле 2019 года схема льготных тарифов в Великобритании прекратила действие для новых заявителей, желающих использовать альтернативную энергию.

Инвестиции Прогноз предусматривает стабилизацию и рост инвестиций для следующего обзора. До сих пор Китай является крупнейшим инвестором по странам. Снижение их расходов на солнечную энергию на , на из-за субсидии значительно повлияло на общее количество, демонстрируя явное доминирование на рынке возобновляемых источников энергии.

Объем будущих альтернативных источников энергии

Более широкое внедрение альтернативных источников энергии зависит от еще более эффективных возобновляемых технологий и реструктуризации электроэнергетической отрасли. С использованием возобновляемых источников энергии, производство чистой энергии возможно на уровне , , с такими технологиями, как солнечные панели , тепловые насосы и котлы на биомассе.

Чтобы в полной мере использовать энергию, которая в основном зависит от погоды или от времени, нам еще предстоит придумать лучшие решения для хранения энергии .

Землепользование и рост населения

При росте населения заявлено на 9,7 млрд. к 2050 г. - г. более широкое использование крупных солнечных ферм может оказаться не лучшим решением, поскольку они занимают много земли. Минимизация площади земель имеет решающее значение или разрабатывает более эффективных технологий, таких как преобразователи энергии ветра .

Энергия ветра в настоящее время является одним из наиболее важных альтернативных источников энергии в Великобритании и обеспечивает примерно 4 млн.дома. Оффшорный ветер все еще недостаточно развит из-за дорогостоящего обслуживания и расположения в глубоких водах, но в будущем мы сможем более эффективно вырабатывать энергию из океанов и глубинных вод .

Недостатки в конструкции существующих ветряных турбин ограничивают потенциал использования энергии ветра, неспособного преодолевать ветры на больших высотах. Будущая бортовая технология может стать лидером с гораздо более многообещающим радиусом действия от до 500 м , где ветры на сильнее .

Один из наиболее дорогостоящих проектов на ранней стадии включает в себя получение солнечной энергии из пространства . Прототип состоит из оптических отражателей, фотоэлементов, преобразующих солнечный свет в энергию, и схемы, преобразующей электричество в радиочастоты. Затем встроенная антенна будет передавать энергию обратно на Землю.

В будущем этот инновационный альтернативный источник энергии сможет удовлетворить потребности в энергии нашего растущего населения без ограничений, используя постоянный солнечный свет из космоса.

Хранение зеленой энергии

Эффективный аккумулятор жизненно важен для более широкого внедрения альтернативных источников энергии. Солнечная фотоэлектрическая энергия зависит от прямого солнечного воздействия, а это означает, что значительных энергии идет неиспользованных или тратится впустую из-за отсутствия встроенных солнечных батарей.

В будущем водород будет движущим источником энергии. В настоящее время большая часть производится из ископаемого топлива. Однако излишков альтернативной энергии также используется для производства газообразного водорода.Области применения универсальны - газообразный водород можно подавать в сеть природного газа или с помощью топливных элементов для обратного преобразования в электричество. Водород может быть широко использован в транспортном секторе, когда мы сможем предложить менее дорогостоящих решений для более широкого внедрения таких альтернативных источников энергии.

Водород имеет самую высокую плотность из всех видов топлива, что делает его более подходящим для распределения и хранения. Его стабильный химический состав также означает, что может удерживать энергию на лучше, чем любая другая среда.

В будущем создание инфраструктуры снабжения и хранения позволит более эффективно использовать водорода. В планы на будущее для водорода входит строительство подземной системы хранения , где излишки энергии ветра, например, могут быть преобразованы в водород посредством электролиза .

Альтернативная энергетика и инфраструктура

Наша текущая глобальная инфраструктура адаптирована только для ископаемого топлива. Строительство нового займет годы и огромных ресурсов и ресурсов.В последние годы автономных технологий , основанных на альтернативной энергии, смогли обеспечить питание удаленных объектов в виде мини- или локальных сетей.

Полная децентрализация сети предоставит клиентам возможность продавать электроэнергию обратно в сеть, а получит контроль над необходимой и потребляемой энергией . Однако Великобритания еще далека от полной децентрализации из-за масштабов необходимых преобразований.

Ряд из предприятий , однако, можно считать пионерами в проведении автономной реструктуризации в Великобритании, например, UPS и некоторые из гигантов розничной торговли и супермаркетов .

Расширение масштабов альтернативной энергетики откроет еще рабочих мест в секторе устойчивой энергетики. Рост и внедрение во всех секторах потребуют лет планирования и значительных инвестиций .

Чтобы гарантировать будущее без дальнейших выбросов парниковых газов, мы можем начать с введения более запретов на будущие проекты по ископаемому топливу и более строгие цели по выбросам .

Написано Рамона Гошева Контент-писатель Рамона - автор контента в GreenMatch, уделяющий большое внимание экологическим вопросам и устойчивости.Она получила образование в области творчества и письма для СМИ, а также имеет опыт создания мероприятий и создания контента для различных сред.

Учебное пособие по альтернативным источникам энергии для нашего будущего и за его пределами

Учебное пособие по альтернативным источникам энергии для нашего будущего и не только Статья Учебники по альтернативной энергии 14.06.2010 08.02.2020 Учебники по альтернативной энергии

Поделитесь / добавьте в закладки с:

Будущее альтернативной энергетики

Энергия является основой жизни человека и играет важную роль везде, где человек живет или работает.Качество жизни, уровень жизни и процветание нации варьируются прямо пропорционально увеличению того, как мы используем энергию, практически без какой-либо активности или момента, которые не зависят от какой-либо формы энергии для ее работы.

Мировые потребности в электричестве растут с угрожающей скоростью, каждое мгновение дня мы используем все больше и больше энергии из-за все более широкого и широкого использования электрических и электронных устройств как на работе, так и дома. Таким образом, существует значительный потенциал для разработки различных типов Альтернативных источников энергии , которые помогут подпитывать нашу постоянно растущую зависимость от энергии и особенно от энергии ископаемого топлива.

Энергия Солнца питает Землю

Но что мы подразумеваем под «альтернативной энергией», что такое альтернативная энергия? Большинство из нас думает об альтернативной энергии как о солнечных панелях на крыше, которые превращают энергию солнца в горячую воду или электричество. Но альтернативная энергия - это гораздо больше. Некоторые из этих альтернативных источников энергии отнюдь не новы, поскольку на протяжении сотен лет люди использовали ветер, воду и солнце для всех видов использования, включая приготовление пищи, отопление, сельское хозяйство и транспорт.

Хотя некоторые формы современных альтернативных источников энергии на самом деле являются лишь новыми разработками давно существующих и хорошо зарекомендовавших себя технологий, таких как ветряные турбины для энергии ветра или водяные колеса для гидроэнергетики, но другие виды альтернативной энергии являются действительно новыми, такими как атомная энергия, этанол. биотопливо и фотоэлектрическая энергия.

Выражение «энергия» часто используется без особых размышлений и применяется в различных контекстах. Проще говоря, Energy - это способность выполнять работу, способность добиваться результатов.Но на самом деле он делает гораздо больше. Энергия - один из самых ценных наших ресурсов, и он всегда существовал в той или иной форме. Почти вся энергия, доступная нам здесь, на Земле, изначально была получена из энергии, созданной Солнцем, которое представляет собой не что иное, как один гигантский термоядерный реактор. Но как только эта энергия покидает Солнце, она преобразуется в другие формы энергии на Земле, такие как тепло и свет, генерирующие ветер, дождь, реки и волны, которые мы можем использовать в качестве альтернативного источника энергии.

Термин «альтернативная энергия» относится к любой форме энергии, которая является альтернативой более традиционным трем источникам ископаемого топлива: нефти, природному газу и углю.Но выражение альтернативных источников энергии обычно используется для сравнения нефтяного масла во всех его различных формах с другими формами возобновляемой энергии. Хотя ни одна из этих «альтернатив» не кажется полностью равной нефти с точки зрения ее гибкости и энергосодержания, нефть, как и другие формы ископаемого топлива, является ограниченным ресурсом и в конечном итоге будет исчерпана. Отсюда необходимость использования альтернативных источников энергии.

Три типа ископаемого топлива: уголь, нефть и природный газ являются наиболее важными видами топлива, которые мы используем сегодня, и современный мир в значительной степени полагается на эти невозобновляемые источники для удовлетворения большинства своих энергетических потребностей.Но эти источники энергии не будут работать вечно, и с сокращением глобальных запасов ископаемого топлива, увеличивающейся угрозой их постоянной безопасности, в сочетании с их вкладом в изменение климата, которое оказалось основной причиной экологических проблем и вредного углекислого газа ( CO 2 ), теперь мы должны рассмотреть альтернативы.

Даже если бы у нас были неограниченные запасы ископаемого топлива, использование альтернативных источников энергии намного лучше для окружающей среды, планеты и жизни человека в целом.Преимущества Альтернативная энергия заключается в том, что она возобновляемая, устойчивая или потенциально устойчивая и экологически безопасная. Мы часто думаем об альтернативных энергетических технологиях как о «чистых» или «зеленых», потому что они производят очень мало или вообще не производят загрязняющих веществ.

Однако недостатками альтернативной энергии являются их низкая плотность, более высокие начальные инвестиционные затраты и изменчивость источников, требующих накопления энергии или некоторой формы альтернативной резервной энергии, такой как генератор, когда солнце не светит или ветер не светит. дуть.

Осознавая, что с практической точки зрения нефть - это конечный продукт, все большее внимание уделяется тому, какие альтернативные источники энергии доступны для замены нефти. Поскольку спрос на альтернативные источники энергии увеличивается с каждым годом из-за потребности в чистых и возобновляемых источниках энергии.

Альтернативные формы энергии повсюду вокруг нас - ветер, волны и приливы, а также энергия Солнца - изобильный источник силы. В настоящее время существует шесть основных форм альтернативной энергии, которые можно разделить на две категории: возобновляемые или невозобновляемые источники энергии из одного или нескольких из следующих.

  • Возобновляемая энергия: Возобновляемая энергия может быть определена как энергия, полученная из естественных и постоянных источников энергии, возникающих в непосредственной близости, таких как солнечная энергия (солнечная энергия). Эта энергия постоянно пополняется быстрее, чем расходуется, что делает этот тип энергии «бесконечным ресурсом».

    Возобновляемая энергия проходит через окружающую среду в виде тока (ветер), электромагнитного излучения (солнечный свет) или потока (вода), независимо от того, существует ли устройство для перехвата или использования этой энергии.Такую энергию также можно назвать «зеленой энергией» или «устойчивой энергетикой».
  • Невозобновляемая энергия: Невозобновляемая энергия, с другой стороны, определяется как энергия, полученная из невозобновляемых статических источников энергии. Эти энергоресурсы остаются погребенными под землей, если они не высвобождаются в результате взаимодействия человека. Невозобновляемые источники энергии обычно называют ископаемыми видами топлива, которые включают уголь, нефтяное масло, природный газ и некоторые виды радиоактивного ядерного топлива.

    Этот энергетический ресурс расходуется быстрее, чем он может быть восполнен естественными системами Земли, что делает этот вид энергии «конечным ресурсом».Невозобновляемая энергия - это запасенная потенциальная энергия, и требуется внешнее воздействие, такое как горение, чтобы инициировать подачу энергии для практических целей. Такие источники энергии обычно называют «конечными поставками» или «коричневой энергией».

Наиболее распространенным источником «альтернативной энергии», доступным сегодня, является гидроэнергетика, за которой следуют энергия ветра и солнца. Далее следует обзор различных видов альтернативной энергии, но сначала мы должны различать альтернативную энергию и возобновляемый источник энергии.Альтернативная энергия относится к любой форме энергии, которая является альтернативой традиционным ископаемым видам топлива, таким как нефть, природный газ и уголь. Возобновляемая энергия - это формы альтернативной энергии, которые возобновляются естественными процессами Земли, такими как солнечный свет от солнца или ветер из воздуха, и поэтому являются экологически чистыми.

В то время как мы намерены в этих учебных пособиях по альтернативной энергии охватить все типы альтернативных источников энергии и возобновляемых источников энергии, мы начнем с обзора возобновляемых источников энергии.Шесть основных видов возобновляемой энергии:

  • 1. Гидроэнергетика: Самая давно используемая форма альтернативной энергии и энергии, существующая тысячи лет назад. Плотины и водяные колеса используют потенциальную и кинетическую энергию воды в качестве источника энергии для измельчения кукурузы и производства муки. На гидроэнергетику приходится почти пятая часть всей электроэнергии, вырабатываемой в мире с помощью плотин и гидроэнергетики. Использование энергии, содержащейся в воде, текущей вниз с холма на более низкую высоту, является высокоэффективным, но ограниченным необходимостью подходящих природных ресурсов, таких как горы, озера и сила тяжести.
  • 2. Солнечная энергия: Солнечный свет содержит в тысячи раз больше доступной энергии, чем люди могут когда-либо использовать, но использование его может быть дорогостоящим. Один из распространенных методов - фотоэлектрические элементы. Они превращают солнечный свет в электричество, но работают только с максимальной эффективностью немногим более 20 процентов. Они также дороги в производстве и покупке. В системах солнечного отопления используются плоские панели для улавливания солнечного тепла для нагрева бытовой горячей воды с помощью больших коммерческих установок, использующих зеркала для отражения солнечного тепла на центральный поглотитель тепла для максимальной эффективности.
  • 3. Энергия ветра: Еще одна хорошо зарекомендовавшая себя форма альтернативной энергии, используемая сотнями лет мельницами и ветряными мельницами. Вид массивных ветряных турбин, мягко кружащихся на вершине большого холма или возвышенности, теперь становится все более распространенным явлением. Однако такие турбины и связанные с ними ветряные электростанции вызвали множество дискуссий среди защитников окружающей среды, при этом некоторые зеленые активисты утверждали, что длинные линии ветряных турбин наносят ущерб естественной красоте сельской местности, производят экологический шум и могут убить слишком много птиц своими постоянно вращающимися лопастями.
  • 4. Волновая и приливная энергия: хотя они все еще находятся в стадии разработки, это две океанические технологии с высоким потенциалом для обеспечения чистого, бесплатного альтернативного источника энергии в будущем. Энергия волн использует кинетическую энергию приливов и отливов океанических волн и приливов, удерживая воду в приливных заграждениях или в подводных туннелях, которая затем используется для вращения приливных турбин. В приливной энергии также используются большие турбины, прикрепленные к морскому дну или чуть ниже поверхности волн, чтобы улавливать энергию сильных приливных течений.
  • 5. Ядерная энергия: Ядерная энергия не является строго возобновляемым источником энергии, но может рассматриваться как альтернативная форма энергии по сравнению с ископаемым топливом. В мире имеется ограниченное количество урана, который необходимо как добывать, так и очищать, поэтому многие считают его невозобновляемым источником энергии, однако конструкция современных ядерных реакторов становится более безопасными и эффективными, чем те, которые использовались в прошлом, ядерная энергия становится достаточно мощной, чтобы оказать реальное влияние на сокращение использования ископаемого топлива.
  • 6. «Альтернативные» ископаемые виды топлива. Многие считают, что на Земле осталось достаточно ресурсов нефти, угля и природного газа, чтобы их хватило на нас как минимум еще на 500 лет, и что более чистое и эффективное сжигание ископаемого топлива - это путь вперед. Предложения включают «хранение» вредных выбросов углекислого газа глубоко под землей, смешивание и совместное сжигание угля с биомассой, а также улучшение способов добычи и сжигания ископаемого топлива. Для многих это наиболее реальный способ сохранить наши невозобновляемые источники энергии и окружающую среду.

Достаточно ли альтернативной энергии

Наша интерпретация Альтернативная энергия лучше, потому что «альтернативные источники энергии» или «альтернативные источники энергии» могут иметь другое значение, гораздо более широкое, чем просто Альтернатива или Возобновляемая энергия . Альтернативная энергия - это источники энергии, которые отличаются друг от друга или являются альтернативой, или заменой традиционного ископаемого топлива. Большинство источников «альтернативной энергии» зависят от очевидных, естественных источников энергии, и в этих источниках энергии нет ничего нового.

Люди всегда использовали солнце для освещения своих домов, сушки одежды или обогрева пищи на протяжении тысяч лет, но многие альтернативные или возобновляемые источники энергии, особенно гидроэлектроэнергия, ветер и солнечная энергия, уже обеспечивают значительное количество энергии или энергии. по крайней мере, в ближайшем будущем способны обеспечить значительное количество зеленой энергии. Эти источники энергии имеют много преимуществ перед ископаемым топливом, но также имеют свои ограничения.

Может ли Альтернативные источники энергии заполнить пробел? На энергетическую проблему нет простых ответов, даже лучшие энергетические технологии будущего могут быть сложными, опасными и дорогими.Однако одно можно сказать наверняка: все способы заставить энергию в той или иной степени навредить Земле. Следовательно, независимо от того, откуда берется наша энергия, мы не должны тратить ее зря.

Жить более энергоэффективной жизнью легко, потому что ученые и инженеры работают над более эффективными холодильниками, автомобилями, фарами и другими устройствами и т. Д. Мы все можем внести свой вклад в экономию значительного количества энергии, просто выключив свет. Телевизор и другие электрические устройства, когда мы их не используем. Со временем мы все можем по-разному выбирать, сколько энергии использовать и как ее использовать.Более энергоэффективный мир - это мир, который легче снабжать энергией, независимо от ее источника.

В следующем уроке о Альтернативная энергия мы рассмотрим различные типы ископаемого топлива, потребляемого в настоящее время.

Что такое альтернативная энергия? (с иллюстрациями)

Альтернативная энергия - это название, данное любому типу энергии, используемому для замены другого источника энергии, часто из-за негативных последствий его использования. Типы альтернативных источников энергии на протяжении всей истории включали уголь, нефть и алкоголь.В 21 веке эти альтернативные источники включали биоэнергетику и биотопливо, такие как пальмовое масло, этанол и другие низкоуглеродные альтернативы.

Сахарный тростник можно использовать для производства этанола, разновидности альтернативной энергии.

В средние века и в период Возрождения с 1200-х по 1500-е годы уголь использовался как первый источник альтернативной энергии. Когда леса начали исчезать из-за значительной потребности в древесине в любом постоянно модернизирующемся мире, в качестве альтернативы был представлен уголь. Триста лет спустя, в начале 1800-х годов, нефть использовалась для замены истощенного источника китового жира для топливных ламп.

Пальмовое масло использовалось в качестве альтернативной энергии.

В начале 1900-х годов озабоченность по поводу ускорения использования угля и нефти во всем мире побудила некоторых искать альтернативные источники энергии для этого драгоценного топлива. Изобретатель Александр Грэм Белл впервые предложил использовать этанольное масло на основе кукурузы в 1917 году.Эти многоразовые источники энергии начали использоваться в 1950-х и 1960-х годах, особенно в США и Бразилии. В 2008 году они были двумя крупнейшими потребителями этанольного масла в мире. В 2008 году в Бразилии было более 35 000 станций, которые предлагали этанол в дополнение к бензину.

Бразилия была в авангарде разработки топлива на основе этанола как заменителя бензина.

В 2000-х годах в качестве альтернативы вредным ископаемым видам топлива, состоящим из недавно умерших органических веществ, были введены различные источники биомассы. Другие недавние источники включают альтернативы с нулевым выбросом углерода и низким уровнем выбросов метана, такие как водород и атомная энергия.

Солнечная энергия может считаться формой альтернативной энергии.

Альтернативы транспортной энергии были одним из наиболее изученных направлений альтернативной энергетики в Соединенных Штатах и ​​во всем мире.С ростом цен на газ появляется множество альтернативных вариантов для замены бензина, включая ранее упомянутый этанол. Другие источники включают электрические и гибридные автомобили, а также топливные элементы и маховые колеса.

В новейшей истории использование термина "альтернативная энергия" вызвало споры среди некоторых поставщиков и производителей энергии.Термин, позволяющий использовать государственные стимулы, некоторые боролись за включение ископаемого топлива и ядерной энергии в качестве альтернативных источников энергии. Другие утверждали, однако, что отрицательные последствия этих источников - их высокие выбросы углекислого газа - исключают их из категории. По мнению многих, альтернативные источники энергии предназначены для борьбы с проблемами отрицательной энергии, и они создают больше, способствуя глобальному потеплению.

Ветряные турбины считаются формой альтернативной энергии.

Альтернативные формы энергии

Альтернативные формы энергии

Исследования по изучению альтернативных форм энергии чрезвычайно важны сегодня, учитывая возрастающую роль, которую альтернативные источники энергии должны играть в нашем обществе.

В свою очередь, спрос на альтернативные источники энергии определяется несколькими факторами.

Энергия и выработка электроэнергии из ископаемого топлива привели к высокой концентрации вредных парниковых газов в атмосфере.Но, несмотря на создаваемые пагубные последствия, спрос и цена на ископаемое топливо продолжают неуклонно расти. В то же время мировое предложение этих невозобновляемых ресурсов сокращается. Учитывая все эти причины, нас обоих подталкивают к изучению различных альтернативных форм энергии.

В современном мире термин «альтернативная энергия» обычно относится к источникам энергии, отличным от невозобновляемых ископаемых видов топлива, таких как уголь, сырая нефть и природный газ.В свою очередь, «альтернативная энергия» часто ассоциируется с возобновляемыми источниками энергии, которые зачастую более чистые и экологичные.

Альтернативные формы энергии, доступные сегодня, составляют значительный диапазон, и постоянно открываются новые формы.

В этих источниках энергии обычно используются процессы, обычно происходящие в природе, и поэтому их можно постоянно обновлять за короткий период времени. Эти источники не только сокращают выбросы парниковых газов и загрязняющих веществ, но и помогают нам сохранять природные ресурсы.Узнайте больше о преимуществах возобновляемых источников энергии.

Вот несколько широко известных альтернативных форм энергии.


Солнечная энергия: Солнечная энергия - это энергия солнца. Пока Солнце существует, оно всегда излучает свет, тепло и другие формы радиационной энергии. Таким образом, солнечная энергия часто считается неисчерпаемой.

По данным НАСА, Солнце ежедневно излучает на Землю около 174 петаватт (Pw) солнечной энергии.Из этого количества около 30% энергии отражается обратно в космос, а другая большая часть поглощается нашей атмосферой. Лишь около 10% энергии (около 17,4 Pw в день) сохраняется на Земле, но это количество больше, чем удовлетворяет дневную потребность мира в энергии.

Энергия солнечной энергии не только управляет многими важными природными процессами, такими как фотосинтез, но также может быть преобразована в другие формы энергии, такие как электрическая энергия, с помощью солнечных батарей.

Читать статьи по теме:


Энергия ветра: Энергия ветра - еще один из альтернативных видов энергии. Ветер - это движение воздуха в результате неравномерного нагрева земли и ее атмосферы солнцем, а также вращения Земли. Эта энергия ветра, «собранная» ветряными турбинами, может использоваться для выработки электроэнергии. Ветряные турбины в сочетании с сильным устойчивым ветром могут генерировать электроэнергию экономически эффективным способом без образования загрязняющих веществ.Фактически, энергия ветра становится одной из самых быстрорастущих в мире технологий зеленой энергетики, создавая большое количество рабочих мест в области ветроэнергетики.


Геотермальная энергия: Знаете ли вы, что центр Земли может достигать 12000 градусов по Фаренгейту? Большое количество тепла, удерживаемого под поверхностью Земли - в ее ядре, - может фактически использоваться в качестве источника энергии. Фактически, цель геотермальных систем - использовать это тепло, известное как геотермальная энергия. Геотермальная энергия может использоваться для различных целей, включая производство электроэнергии, обогрев и охлаждение зданий.


Гидроэлектроэнергия: Гидроэнергетика - это энергия, которая возникает за счет силы движения воды, которая течет или падает. Для крупных водоемов, таких как реки, гидроэлектростанции или плотины используются для производства электроэнергии из воды в больших масштабах. Гидроэлектростанция обычно строится через большую реку с достаточным количеством воды. Вода, протекающая через плотину, генерирует энергию, которая улавливается и превращается в электричество.Эта энергия называется гидроэлектроэнергией или гидроэлектричеством.


Энергия биомассы: Энергия биомассы - это энергия, полученная из растений и животных материалов, например, растительности и сельскохозяйственных культур, а также органических остатков от ферм, бытовых или промышленных отходов.


Энергия океана: Океаны содержат как минимум два типа энергии - механическую энергию приливов и волн, а также тепловую энергию солнечного тепла.

Потенциал альтернативных источников энергии огромен. С ростом потребности в альтернативных формах энергии в современном мире мы наблюдаем рост числа компаний, занимающихся альтернативной энергией во всем мире.

Они могут инвестировать в зеленые технологии, исследовать и открывать новые формы альтернативной энергии, стремиться повысить эффективность существующих форм возобновляемых источников энергии, преобразовывать эти альтернативные формы энергии в полезные формы, такие как электричество, и даже производить продукцию (например, солнечные панели ), которые позволяют людям использовать альтернативные источники энергии даже в своих домах или офисах.

Впоследствии это также означает, что на рынке труда появляется все больше рабочих мест в области альтернативной энергетики и зеленой энергии.

Если вы думаете, что зеленая энергия - одна из удивительных зеленых инноваций, которые когда-либо делались, сообщите об этом другим.

Вернуться на домашнюю страницу Eco Green Living и всех фактов вторичной переработки с этой страницы на Альтернативные формы энергии

Альтернативная энергия | WBDG - Руководство по проектированию всего здания

Введение

Хотя большая часть энергии, используемой в Соединенных Штатах, по-прежнему производится из ископаемого топлива (см., Например, EIA), также наблюдается огромный рост технологий альтернативных и возобновляемых источников энергии.В этом контексте альтернативная энергия относится к энергии, полученной не из традиционных источников ископаемого топлива (уголь, природный газ, нефть) с помощью традиционных процессов. Возобновляемые источники энергии - это разновидность альтернативной энергии; Согласно Национальной лаборатории возобновляемой энергии (NREL), «возобновляемые источники энергии, такие как энергия ветра и солнца, постоянно пополняются и никогда не закончатся».

Как рынок, так и регулирующие силы способствуют более широкому внедрению возобновляемых источников энергии.Например, Закон об энергетической политике 2005 г. (EPACT) призывает федеральные агентства получать не менее 7,5% своей электроэнергии из возобновляемых источников. Чтобы стимулировать развитие новых проектов в области возобновляемых источников энергии, постановление 13693 требует от федеральных агентств изучить возможность производства возобновляемой энергии на своих объектах. Многие штаты по всей стране внедрили стандартов портфеля возобновляемых источников (RPS) , требующих минимальной доли возобновляемой энергии во всей продаваемой электроэнергии.База данных государственных стимулов для возобновляемых источников энергии и повышения эффективности (DSIRE) содержит информацию о некоторых из этих RPS.

В сочетании с нормативными требованиями для возобновляемых источников энергии стоимость ископаемого топлива остается довольно высокой, а стоимость некоторых технологий возобновляемой и альтернативной энергии снижается. В этой статье рассматривается несколько таких источников энергии, причем основное внимание уделяется производству электроэнергии. Практическое использование этих систем зависит от конкретной технологии, области применения, местоположения, стоимости энергии и других факторов.Хотя многие технологии становятся более рентабельными, альтернативное производство энергии не заменяет надежных стратегий повышения энергоэффективности. Внедрение в первую очередь стратегий повышения эффективности по-прежнему является лучшим подходом к достижению большинства энергетических целей.

Описание

Ветер

На протяжении веков люди использовали энергию ветра - исторически она использовалась в качестве механической энергии для измельчения или перекачивания воды. Ветряные водяные насосы по-прежнему используются в отдаленных районах США.S., но использование ветра для выработки электроэнергии стало гораздо более распространенным явлением. В современных ветряных турбинах кинетическая энергия ветра преобразуется во вращательную энергию, а затем в электрическую энергию. Затем это электричество кондиционируется и - в большинстве случаев - отправляется в коммунальную сеть.

В некоторых частях страны ветровая энергия стала конкурентоспособной по стоимости с традиционными источниками производства электроэнергии. Растет число доступных ветрогенераторов мощностью от нескольких сотен ватт (для питания небольших автономных домов, парусных лодок и т. Д.) до нескольких мегаватт (для генерации в коммунальном масштабе). Физические размеры этих генераторов аналогичны диаметрам от 3–4 футов до 300–400 футов.

Ветряные генераторы, безусловно, наиболее эффективны в районах с постоянным высокоскоростным ветром. Деревья, здания и рельеф могут значительно замедлить ветры. В Соединенных Штатах лучшие ветровые ресурсы, как правило, находятся у побережья (от берега) или на равнинах. Министерство энергетики, NREL и другие разработали карты ветровых ресурсов страны, а некоторые штаты разработали более подробные карты.

Правильное расположение ветряных турбин имеет решающее значение. Поскольку скорость ветра может сильно варьироваться на небольших расстояниях, передовой опыт часто требует мониторинга ветровых ресурсов на участке (или нескольких потенциальных участках) в течение года или более. С генераторами меньшего размера (несколько киловатт) турбины обычно следует устанавливать на 30–50 футов выше следующего по высоте объекта в радиусе 500 футов (деревья, здания и т. Д.). Генераторы большего размера расположены на высоте 100 футов или более от земли, где скорость ветра выше и меньше турбулентности.

Поскольку большая часть электроэнергии используется в зданиях, многие люди пытались установить ветряные турбины на крышах зданий. Часто это неэффективная стратегия из-за веса, вибрации, крутящего момента и шума генераторов. Чтобы получить доступ к более высоким скоростям ветра, генераторы следует размещать намного выше близлежащих зданий. Однако есть некоторые ветрогенераторы, специально разработанные для установки на зданиях. Они, как правило, небольшие (обычно 2000 Вт или меньше) и по-прежнему подвержены ограничениям по скорости ветра и турбулентности.

Ветровые турбины, установленные на многоквартирном доме в Бронксе, Нью-Йорк
Фотография предоставлена ​​Steven Winter Associates, Inc.

Ветряная турбина в школе Массачусетса
Фото предоставлено: Northern Power Systems

В то время как небольшие, устанавливаемые в зданиях турбины могут быть привлекательными для проектировщиков, более крупные турбины (расположенные намного выше зданий и других препятствий) намного более эффективны в отношении выработки электроэнергии.

Биомасса

Биомасса Выработка энергии обычно относится к сжиганию растительного материала в турбинах, которые, в свою очередь, вырабатывают электричество.Термин биотопливо обычно относится к топливу, полученному из растительного материала (биомассы), которое может использоваться вместо обычного ископаемого топлива.

Эффективная дровяная печь в новом доме
Фото: Steven Winter Associates, Inc.

Древнейшим способом использования энергии биомассы является сжигание древесины для сохранения тепла. Это все еще довольно распространено в домах сегодня, и есть также более совершенные котельные системы, которые сжигают дрова для нагрева воды для использования в домах или больших зданиях.Некоторые из этих устройств предназначены для сжигания древесных гранул , а не более крупных кусков древесины. Древесные пеллеты - это небольшие (менее одного дюйма) кусочки переработанной биомассы из различных источников (древесная щепа, опилки, отходы деревообработки и т. Д.). В устройствах для сжигания пеллет обычно есть бункеры, которые подают топливо в топку при контролируемой температуре. скорость - благодаря чему сжигание пеллет легче контролировать, чем некоторые другие типы устройств, работающих на биомассе. Более подробную информацию об этой и других технологиях сжигания древесины для зданий можно получить на сайте ENERGY.Страницы GOV Energy Saver.

В более крупных масштабах многие лесные и сельскохозяйственные предприятия сжигают древесину и сельскохозяйственные отходы для получения полезного тепла - тепло можно использовать напрямую или использовать для питания турбин для выработки электроэнергии. Когда топливо из биомассы недорогое, особенно когда это отходы, такое производство энергии может быть очень рентабельным.

Как и при сжигании ископаемого топлива, при сжигании биомассы выделяется диоксид углерода и другие загрязнители. Поскольку углерод в биомассе совсем недавно был поглощен из атмосферы, при устойчивом управлении ресурсами биомассы чистые выбросы диоксида углерода могут быть небольшими.Однако этот замкнутый углеродный цикл не обязательно включает в себя энергию, необходимую для выращивания, сбора и обработки биомассы. Помимо загрязнителей, противники образования биомассы ссылаются на потенциальное воздействие на сельское или лесное хозяйство региона. С растущим спросом на биомассу может возникнуть необходимость в добыче ресурсов менее устойчивыми способами.

Биотопливо

Топливный насос с 20% биодизельного топлива (B20), 85% этанола и стандартное неэтилированное топливо с 10% этанола.
Фото: Чарльз Бенсинджер и партнеры по возобновляемой энергии Нью-Мексико

Как описано выше, биотопливо - это топливо, полученное из биомассы, которое можно использовать вместо традиционных ископаемых видов топлива.Двумя наиболее распространенными видами биотоплива являются этанол и биодизель. Этанол в настоящее время используется в бензиновых смесях для многих автомобилей. Большая часть этого этанола образуется в результате ферментации сахаров, содержащихся в пищевых культурах, в первую очередь в кукурузе. Федеральные стимулы делают это рентабельным, но растет озабоченность тем, что использование этанола, полученного в результате ферментации кукурузного сахара, не является устойчивым; для выращивания, сбора урожая и обработки материала может потребоваться больше энергии, чем содержится в конечном произведенном топливе.Другие стратегии производства этанола - с использованием целлюлозного материала, а не сахаров - позволяют получать этанол из древесной стружки, листьев, сельскохозяйственных отходов и подобных материалов. Они являются многообещающими с точки зрения устойчивости, но в настоящее время они требуют значительно более высоких затрат (дополнительную информацию см. В информационном бюллетене EERE