Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Батареи с регулятором температуры: Ручной регулятор температуры отопления на батарею, автоматический и механический: виды терморегулятора для радиатора

Содержание

Электронный регулятор температуры батареи отопления Frontier

Настоящая Политика конфиденциальности является составной частью Пользовательского соглашения Сайта и действует в отношении всей информации, в том числе персональных данных Пользователя, получаемых Администрацией Сайта в процессе работы Пользователя с Сайтом, исполнения Пользовательского соглашения  и соглашений между Администрацией сайта и Пользователем. Использование Сайта означает безоговорочное согласие Пользователя с настоящей Политикой конфиденциальности и указанными в ней условиями обработки его персональных данных; в случае несогласия с этими условиями Пользователь должен воздержаться от использования Сайта.

Перед использованием Сайта Пользователю необходимо внимательно изучить настоящую Политику конфиденциальности.

1. ПЕРСОНАЛЬНЫЕ ДАННЫЕ

1.1. Предоставление в любой форме (регистрация на Сайте, осуществление заказов, подписка на рекламные рассылки и тд.) своих персональных данных Администрации сайта, Пользователь выражает согласие на обработку персональных данных Администрацией сайта в соответствии с Федеральным законом “О персональных данных” от 27.

07.2006 №152-ФЗ.

1.2. Обработка персональных данных осуществляется в целях исполнения Пользовательского соглашения и иных соглашений между Администрацией сайта и Пользователем.

1.3. Обработка персональных данных производится исключительно на территории Российской Федерации, с соблюдением действующего законодательства Российской Федерации.

1.4. Согласие Пользователя на обработку его персональных данных дается Администрации сайта на срок исполнения обязательств между Пользователем и Администрацией сайта в рамках Пользовательского соглашения или других соглашений между Пользователем и Администрацией сайта.

1.5. В случае отзыва согласия на обработку персональных данных Пользователя, Пользователь уведомляет об этом Администрацию Сайта письменно или по электронной почте. После получения данного уведомления Администрация Сайта прекращает обработку персональных данных Пользователя и удаляет.

1.6. Сайт не имеет статуса оператора персональных данных. Персональные данные Пользователя не передаются каким-либо третьим лицам, за исключением случаев, прямо предусмотренных настоящей Политикой конфиденциальности.

2. МЕРЫ ПО ЗАЩИТЕ ПЕРСОНАЛЬНЫХ ДАННЫХ

2.1. В своей деятельности Администрация сайта руководствуется Федеральным законом “О персональных данных” от 27.07.2006 №152-ФЗ.

2.2. Администрация сайта принимает все разумные меры по защите персональных данных Пользователей и соблюдает права субъектов персональных данных, установленные действующим законодательством Российской Федерации.

2.3. Защита персональных данных Пользователя осуществляется с использованием физических, технических и административных мероприятий, нацеленных на предотвращение риска потери, неправильного использования, несанкционированного доступа, нарушения конфиденциальности и изменения данных. Меры обеспечения безопасности включают в себя межсетевую защиту и шифрование данных, контроль физического доступа к центрам обработки данных, а также контроль полномочий на доступ к данным.

3. ИЗМЕНЕНИЕ ПОЛИТИКИ КОНФИДЕНЦИАЛЬНОСТИ

3.1. Администрация сайта оставляет за собой право в одностороннем порядке вносить любые изменения в Политику конфиденциальности без предварительного уведомления Пользователя. Актуальный текст Политики конфиденциальности размещен на данной странице.

Особенности регуляторов температуры для батарей отопления

Вот и пришли холода. Практически все многоэтажные дома, офисы, государственные учреждения и  здания общественного назначения подключены к системам централизованного отопления.  И нередко возникает вопрос, как регулировать температуру батарей отопления? Ведь в основном батареи всегда горячие и приходится открывать окна для проветривания, тем самым, грубо говоря «оплачивать за обогрев улицы». А счета за отопление  приходят весьма немалые.

Существует несколько способов регулирования подачи тепла по теплоносителю.

Вот некоторые из них:

  • Необходимо подавать горячую воду в батареи согласно  расчетному   графику, который соответствует погодным показателям.
  • Показатели состояния  воды регулируется автоматически, при помощи специальных датчиков, которые прикрепляются внутри или снаружи конкретного здания;
  •  Установка приспособления, которое может регулировать температуру на отдельной батареи.

Прибор для регулировки температуры на батарее

Обсудим последний и более экономичный вариант. Итак, регуляторы температуры для батарей отопления. Как это выглядит можно посмотреть на фото справа.

Преимущества такого приспособления:

  • При их помощи можно отрегулировать  комфорт в конкретном месте, здании, офисе  таким образом добиться оптимальной и комфортной среды.
  • Нередко при работе центрального отопления в солнечный день в помещении может произойти перегрев воздуха, регулятор на батарее  поможет этого избежать.
  • Возможность установки температуры для  каждой комнаты отдельно: где комната  мало используется, можно установить батареи на минимум, а вот где часто находятся жильцы — можно и потеплее сделать.

Не стоит забывать, что регуляторы температурных показателей  бывают нескольких видов. В основном для регулирования температурного состояния  помещения, обогреваемого горячей водой,  применяют терморегулятор и контроллер. При помощи этих устройств можно настроить более экономичную работу котельной установки.

Устройство и работа терморегулятора и контроллера

Терморегулятор является основным наладчиком климата в доме, учреждении.

Регулировка температурных значений  проходит следующим образам: клапан под автоматом регулирует подачу горячей воды в радиатор. Таким образом, снижает или повышает температуру помещения.

Недостатки:

  • Управление регулятором происходит только в ручном режиме;
  • Все зависит от занавесок. Если же шторы опущены, и накрывают отопительную батарею, то регулятор будет реагировать на температуры не в помещении, а за шторой. Решить вопрос можно так: не опускать занавески или же смонтировать выносной датчик.

Мини-компьютер для управления отоплением

Электрические контроллеры являются полноценными компьютерными установками. Пример контроллера можно увидеть на фотографии ниже.

Устройство способно анализировать температуру помещения и подавать сигналы котельной установке на  повышение или же на понижение температуры.  Все  что нужно, это задать значение оптимальной  для вас температуры, а прибор сделает все остальное.

С их помощью можно запрограммировать работу котельной установки на час, день, неделю  и даже на месяц. Этот очень эффективное и экономичное решение.

Приведем пример из жизни обычной семьи

Утром проснулись, умылись, позавтракали,  и все семейство разошлось по делам: кто на работу, кто в школу, кто в университет. Дом остался пустой и все равно отапливается на полную мощность. Это ведь не экономично. Поэтому можно задать минимальную температуру на то время, пока дома никого нет. А за час или два до прихода жильов  домой контроллер включит котел на полную мощность, тем самым нагреет помещение до комфортной температуры.

Итак, пока вас нету дома происходит некая экономия энергии и затрат на ее оплату. Или же вы собрались на уикенд уехать за город. Настраиваете контроллер на дни вашего отсутствия и уезжаете. Пока вас нет  в доме, будет немного прохладно, но к вашему приезду все нагреется.

Имеются и свои недостатки:

  • Стоимость. Контроллеры весьма дорогие устройства: качественный прибор будет стоить около двухсот долларов, а если прибавить туда стоимость установки, то выйдет довольно-таки большая сумма.
  • При помощи электрического контроллера температура настраивается во всем помещении, что не всегда нужно покупателю.

Есть ли нормы для регулировки температуры в отопительный сезон?

Батареи с регулятором температуры уже не редкость. Во многих домах стали их использовать. Но для начала необходимо разобраться, какая должна быть температура батарей в отопительный сезон. Каких-либо норм температуры батарей не имеется. Здесь все зависит от самих батарей, и от их теплоотдачи.

Самая высокая теплоотдача — у алюминиевых батарей, а самая низкая — у конвекторов.

Но все же, нормы на температуру воздуха в помещении имеются. Так для жилого  помещения оптимальной считается температура  воздуха + 19 – 24 градуса. Для помещений по типу коридора, прихожей, туалета температура на градус или два ниже.

В заключение можно отметить, что без регулировки температуры невозможно добиться идеальных результатов.

Обязательно посмотрите этот видео ролик. Там много важной информации.


http://youtu.be/YbfsBhu1d4U

Надеемся, что статья была вам интересна и полезна. Будем сильно благодарны вам, если нажмете на кнопки социальных сетей (они находятся чуточку ниже). Тем самым вы поможете своим друзьям узнать про регуляторы температуры для отопления.

Хорошего дня и тепла в вашем доме!

Как переделать батарею и сделать ее с регулируемой температурой

Как лучше оснастить радиаторы так что бы температуру в отопления можно было регулировать в каждой отдельной батарее? При этом следует помнить что любой регулятор не являетсе чем томагическим и не сможет нагреть батарею до температуры превышающей температуру самого теплоносителя системы отопления. Ведь чудес не бывает а батарейный регулятор температуры независимо от его конструкции автоматический или мануальный это вего лишь кран которым можно разве что убавить то чего как правило много не бывает. Ведь жар костей не ломит.

 

Однако если решили обвязать радиаторы отопления запорно регулирующей арматурой то обязательно обратите внимание на то чтобы до крана/терморегулятора, находилась перемычка.  Внимание! Перемычка в обязательном порядке должна устанавливаться на все радиаторы у которых в обвязке присутствуют регулирующие краны.  Это требование норм эксплуатации отопительных систем общего пользования применяется в квартирах многоэтажных домов для того что бы независимо от того в каком положении находится индивидуальный кран на радиаторе отопления в вашей квартире,да хоть полностью перекрыт. Суть перемычки в том чтобы пользователь перекрывая поток теплоносителя вентилем на батарее не мог перекрыть движение теплоносителя по стояку. То есть перекрывая батарейный кран теплоноситель должен продолжать движение по перемычке в обход закрытой батареи. Так же не должно быть никаких перекрывающих кранов на самой перемычке как сейчас многие пытаются реализовать для того якобы, что бы все тепло двигалось через радиатор.  однако если тепла не хватает то не следует устанавливать вообще никаких кранов и перемычек. Такая обвязка батарей вполне приемлима по всем требования и тепла от подобного рода установленной батареи будет гарантированно больше.

В нашем случае мы рассматриваем ситуацию в которой речь идет об батарее установленной в квартире обычного многоэтажного дома с общей системой отопления питающейся от городской теплосети. В индивидуалных системах отопления не существует специальных требований по обвязке радиаторов, однако принцип остается тем же. Чем меньше кранов и перемычек на радиаторе отопления тем он лучше греет. А жар как говорится костей не ломит, да и свежий приток воздуха из открытого окна это лучше чем убавлять температуру в радиаторах системы отопления общего назначения. Где потребление тепла не учитывается. в рамках одной квартиры.

Так же следует отметить о том что если все таки кранам место быть и от перемычки не отказаться то разпологать перемычку следует максимально близко к радиатору радиатору отопления так что бы у теплоносителя было больше мотивации двигаться в сторону радиатора а не в обходпо перемычке и дальше по стояку.

Фото с неправильно установленная перемычка – слишком далеко от радиатора и близко к стояку отопления.

 

Фото с правильно установленной перемычкой рассположенной на максимально близком расстоянии от батареи отопления.

      Рекомендации

Экономим тепло: кому выгодны батареи с терморегулятором?

Умные терморегуляторы снизят температуру, пока вы на работе и “подогреют градус” перед вашим возвращением. Что можно сделать с батарей, чтобы получить дополнительную экономию?

Зачем нужны “регулируемые” батареи?

Кто был в Европе, видел эту «фантастику» своими глазами: на каждой батарее красуется регулятор температуры и счетчик “съеденных” гигакаллорий. Это и правда удобно. Если в комнате – жарко, просто “прикрутил” батарею и экономишь на тепле. Если холодно – наоборот, устроил в детской Ташкент. Улетел зимовать теплые края – выключил все батареи и ни копейки не платишь за тепло. А как у нас? Есть ли смысл инвестировать в регуляторы тепла и счетчики? Кому они помогут сэкономить?

Регуляторы температуры: как они работают

Температура батареи зависит не только от температуры теплоносителя, но и от его скорости. Чем больше горячей воды пронесется через ваш радиатор за секунду, тем горячее он станет.

Как раз эту скорость можно менять при помощи регуляторов, пуская меньше теплоносителя в радиатор. Какие регуляторы для радиатора вы найдете на рынке?

Шаровый кран. Простое устройство, которое дает возможность перекрыть поток теплоносителя. Это грубое ручное управление, запорный механизм, который поможет снизить температуру в комнате.

Пример: Кран шаровой HLV из латуни с номинальным давлением 10 бар для плавной подачи воды в радиатор. Имеет 2 позиции: открыто и закрыто. Есть подсоединение для термоголовки. Цена – от 132 грн.

Термостаты. Могут быть ручными и автоматическими. Состоят из термостатической головки и вентиля. Разница в управлении – автоматическом или ручном — зависит от термоголовки.

Обычная – самый распространенный вариант. Нужная температура выставляется вручную. Такие термоголовки могут быть с выносным, внешним датчиком температур. Эти подвиды используются в особых случаях, когда нецелесообразно датчик устанавливать близко к батарее – например, рядом есть еще один источник тепла.

Пример: Термоголовка VT.3000.0.0 позволяет регулировать температуру воздуха от +6,5 до 27,5 градусов. Присоединяется к клапану с помощью накидной гайки, закручивается на резьбу. Цена – от 125 грн.

Пример: Термоголовка FADO TG11 с выносным датчиком. Позволяет вывести датчик в более удачное место для проведения измерений температуры. Закручивается на радиаторный кран. Цена – от 560 грн.

Программируемая термоголовка. Достаточно задать нужную температуру один раз и терморегулятор дальше сам сделает за вас всю работу. Можно программировать температуру. Например, после вашего ухода на работу она снижается, а к возвращению дома снова тепло. Так удается сэкономить до 50% тепла. Причем управлять можно при помощи смартфона.

Такие регуляторы нуждаются в электропитании: от батарейки или от сети.

Пример: Термоголовка Danfoss Eco позволяет управлять температурой батареи программно. С ее помощью параметры можно задавать по смартфону, по технологии  Bluetooth. Цена – от 1734 грн.

Плюсы терморегуляторов:

  • Регулировка температур: от +5 до +27 градусов.
  • Комфорт. Точность регулировки – до +1 градуса.
  • Вместе со счетчиками тепла дают весомую экономию.
  • Электронные модели могут стать частью системы “умный дом”.

Терморегуляторы: когда это выгодно?

Не всегда приобретение умных устройств для ваших батарей окупится. Ведь для двухкомнатки нужно приобрести не менее 3-4 устройств. Когда это целесообразно?

  • У вас большой коттедж и пользуетесь 1-2 комнатами. Чтобы не жарило на всех трех этажах, в неиспользуемых комнатах “прикручиваете” температуру.
  • У вас в квартире – счетчик тепла. Есть смысл прикручивать отопление и экономить.
  • Вы живете в многоэтажном доме со счетчиком тепла и он теплый. Утеплен фасад всего здания или ваша квартира. Иногда открываете все двери и окна, потому что жара.

Когда “игра не стоит свеч”:

  • У вас в квартире и так холодно: смысла уменьшать температуру нет.
  • У вас в доме приблизительно одинаковое тепло во всех комнатах. Вы регулируете микроклимат увеличивая или уменьшая температуру теплоносителя.

Нюансы использования

Тема регулировки тепла довольно обширная и в ней много “подводных камней”. Осветим некоторые особенности использования термоголовок и кранов.

  • Терморегулятор не влияет на температуру теплоносителя. Если батареи еле-еле греют, самый умный термостат не сможет подогреть воду в батарее и сделать вам хорошо.
  • Если вы меняете батареи,  можете сразу подумать о покупке терморегулятора. Многие производители предлагают их “в паре” с радиатором.
  • Электронный терморегулятор с датчиком не прячьте за тяжелыми портьерами. Датчик будет считывать температуру возле себя, а она будет выше, чем в среднем по комнате. То есть, показания будут неверны. Если не хотите отказываться от любимых штор, подберите термоголовку с выносным датчиком.
  • Если в комнате несколько батарей, нет смысла ставить терморегулятор на каждую. Достаточно установить его на 1-2 радиаторах, чтобы снизить температуру, если потребуется.
  • У вас чугунные батареи? Учтите, что они долго остывают и медленно нагреваются. Тонкая регулировка автоматикой им не поможет.  Хотите автоматику – избавляйтесь от своих “чугунок”. Выбирайте: алюминий, сталь, биметалл.
  • Для установки радиаторного клапана пригласите специалиста. Ведь процесс трудоемкий: нужно спустить воду из радиатора, врезать кусок трубопровода, чтобы поставить туда клапан.
  • Термоголовку легко поставить самостоятельно: главное, подобрать модель с подходящей резьбой. Вставить в пазы и защелкнуть.

Выбрать и сравнить терморегуляры для радиатора удобно на Price.ua.

Читайте также по теме:

Греемся солнцем: кому выгодны солнечные коллекторы и за сколько окупится вложение
Альтернативные источники тепла. От чего станет теплее?
Экономичные обогреватели: какой из них не разорит?
Как выбрать экономичный газовый котел?
Альтернатива газу: сколько “едят” твердотопливные котлы. Плюсы и минусы
Теплые полы: как их сделать и есть ли выгода?
Новая жизнь старых батарей. Как увеличить энергоэффективность батарей без замены?
Меняем батареи: какие лучше?
Реанимируем старые окна: как их утеплить перед зимой
Меняем старые окна на пластиковые: как сделать дома тепло?
Что такое энергоэффективные окна?
Куда утекает тепло: утепление дверей
Чем утеплить стены на зиму? Обзор популярных материалов
Наружное и внутреннее утепление фасада: что выбрать?
Как утеплить балкон?
Утепление потолка: как сделать
Как утеплить пол?
Утепление крыши: как правильно сделать?
Утепление стен в многоэтажке: что это дает и как сделать?
Готовим загородный дом к зиме: 11 советов
10 секретов, которые помогут экономить зимой
Тепловой насос: как работает и какая экономия?
Как экономить на отоплении квартиры

WTC3243HB 2.

2 A Контроллер температуры Li + батареи — Электроника длины волны

Компактная конструкция контроллера температуры WTC3243HB обеспечивает стабильность температуры 0,0009 ° C. Эта адаптация стандарта WTC3243 работает от литий-ионных батарей 3,6 В. Диапазон датчика ограничен 1,6 В (при питании 3,3 В). Не работайте с входным напряжением более 8 В.

Его корпус может быть объединен с радиатором WHS302, термошайбой WTW002 и вентиляторами WXC303 (+5 В) или WXC304 (+12 В) для упрощения прототипирования.Линейный контур ПИ-регулирования обеспечивает максимальную стабильность, в то время как биполярный источник тока рассчитан на более высокую эффективность. WTC3243HB обеспечивает ток до 2,2 А для термоэлектрических (биполярных) или резистивных (униполярных) нагревателей.

Контроллер температуры WTC3243 легко конфигурируется под любую конструкцию. Инструмент калькулятора цепей ускоряет выбор значений внешних компонентов (см. Вкладку Инструменты проектирования). С ним можно использовать практически любой тип датчика температуры, а встроенный источник тока смещения датчика упрощает использование с резистивными датчиками температуры.Пропорциональный коэффициент усиления (P) и постоянная времени интегратора (I) устанавливаются внешними резисторами и могут быть изменены для оптимизации превышения температуры и стабильности.

Другие функции обеспечивают дополнительную гибкость. Независимые ограничения теплового и холодного тока устанавливаются одиночными резисторами. Встроенное опорное напряжение упрощает потенциометр для контроля заданного значения температуры. Вы также можете выбрать дистанционную работу с внешним заданным напряжением. Следите за фактическим напряжением датчика на выводе 9.

Прочный и надежный WTC3243HB предназначен для использования в портативных электрооптических системах, безопасных для глаз атмосферных лидарах, бортовых приборах, рамановских спектрометрах и медицинском диагностическом оборудовании.WTC особенно подходит для приложений, где температура сканируется по окружающей среде.

Wavelength предоставляет бесплатный исполняемый файл LabVIEW Virtual Instrument для использования с оценочной платой WTC3293. Нажмите сюда для того, чтобы скачать. Исполняемый ВП также требует LabVIEW Run-Time Engine 2017, который можно бесплатно загрузить с веб-сайта National Instruments: https://www.ni.com/en-us/support/downloads/software-products/download.labview-runtime .html # 369481, а также DAQmx Viewer также доступны бесплатно на веб-сайте NI: http: // joule.ni.com/nidu/cds/view/p/id/2604/lang/en.

Исходный код модуля LabVIEW Virtual Instrument доступен бесплатно, если вы хотите изменить программу самостоятельно. В качестве альтернативы, Wavelength может настроить виртуальный инструмент в соответствии с вашим приложением. Обратитесь к инженеру по продажам за помощью.

WTC3243 vs. WHY5640:
— WTC3243 включает в себя дистанционное управление напряжением и мониторинг температуры. WHY5640 — нет.
— WTC3243 поддерживает AD590 и LM335.
— WHY5640 требует внешних цепей для работы чего-либо, кроме резистивных датчиков.
— Два или более WHY5640 могут использоваться вместе для увеличения выходного тока.
— Если вам не нужны все функции WTC3243, WHY5640 является более дешевым решением.
ПРИМЕЧАНИЕ. WHY5640 и WTC3243 НЕ имеют одинаковой конфигурации контактов.

Бесплатная, эффективная и оперативная техническая поддержка доступна для упрощения интеграции продуктов Wavelength в ваш OEM-проект.Стандартный продукт можно легко модифицировать в соответствии с требованиями вашего приложения.

Диапазон питания: от +3,3 до +8 В
Выходной ток контроля температуры: до ± 2,2 A
Стабильность температуры: 0,0009 ° C (термистор 10 кОм при 25 ° C) в течение одного часа
Стабильность окружающая среда: 0,002 ° C (термистор 10 кОм при 25 ° C) в течение часа — Идеально для приложений сканирования

Зависимость уставки от фактической температуры Точность: 2 мВ типично

Характеристики:
— Пределы нагрева и охлаждения
— ПИ-контроллер минимизирует выбросы и время достижения температуры
— Совместимость с несколькими датчиками
— Регулируемый ток смещения датчика оптимизирует напряжение обратной связи датчика
— Может работать с униполярным током для резистивных нагревателей

Максимальное рассеивание мощности: 9 Вт
Повышение температуры теплоотвода: 30 ° C / Вт без внешнего радиатора

14-контактный DIP-монтаж на печатной плате: 33 x 32 x 8 мм

Распиновка контроллера температуры WTC3243 — вид сверху

ПРИМЕЧАНИЕ. WHY5640 и WTC3243 НЕ имеют одинаковой конфигурации контактов.

Важность контроля температуры промышленных аккумуляторов

Литий-ионные батареи

находят применение во многих отраслях промышленности, где требуются мобильные источники питания.

Литий-ионная аккумуляторная батарея

зарекомендовала себя как очень простая в обслуживании, универсальная и мощная альтернатива традиционным промышленным источникам энергии, таким как свинцово-кислотные батареи или двигатели внутреннего сгорания.

При использовании литий-ионных аккумуляторов важно помнить о температуре, как внутренней, так и внешней.Батареи могут эффективно работать при определенных рабочих температурах, поэтому очень важно понимать, как они могут работать в жарких или холодных условиях.

Хотя литий-ионные аккумуляторы могут работать в гораздо более широком диапазоне температур по сравнению со свинцово-кислотными аккумуляторами, чрезвычайно высокие или низкие температуры будут влиять на характеристики литий-ионных аккумуляторов.

Важно понимать, как точно измерять и контролировать температуру батареи, чтобы избежать каких-либо побочных эффектов.

Самый простой способ измерить и контролировать внутреннюю температуру батареи — это использовать систему управления батареей (BMS), которая напрямую измеряет температуру с помощью внутренних датчиков, а затем соответственно охлаждает или нагревает батарею.

Что происходит с литий-ионными батареями при низких температурах?

В общем, литий-ионные аккумуляторы можно разряжать при температурах до -4 ° F, но их удельная энергия и емкость могут быть уменьшены при очень низких температурах.

При очень низких температурах ионы движутся через электролиты медленнее, что приводит к снижению емкости.

Кроме того, низкие температуры вызывают снижение скорости переноса заряда, что может затруднить зарядку аккумулятора. Самая низкая температура зарядки литий-ионного аккумулятора составляет 32 ° F.

Если аккумулятор заряжается при отрицательных температурах, это может вызвать постоянное накопление межфазной фазы твердого электролита (SEI) на аноде, вызывая необратимое повреждение аккумулятора.

Литий-ионные батареи в холодильной промышленности

Производители литий-ионных аккумуляторов

смогли обойти ограничения по низким температурам благодаря специальной конструкции аккумуляторов, рассчитанных на низкие температуры. Батарея может быть оснащена нагревателями, которые могут поддерживать оптимальную температуру батареи в течение всей смены. Это делает литий-ионные аккумуляторы одним из лучших вариантов для холодильных складов и других применений при низких температурах.

К счастью, некоторые производители литиево-ионных аккумуляторов предлагают варианты нагревателей аккумуляторных батарей для вилочных погрузчиков, специально разработанные для более низких температур, поэтому вы можете воспользоваться всеми преимуществами литиевой технологии, не беспокоясь о деградации.

Это контролируется системой управления батареями, которая измеряет внутреннюю температуру батареи и соответствующим образом регулирует ее. За счет интеграции нагревателя в аккумуляторную батарею литий-ионные батареи могут поддерживать контролируемую температуру без ухудшения характеристик батареи. Таким образом, батарейки могут храниться в морозильной камере в течение всей смены.

По мере того, как литий-ионные батареи становятся все более доступными, а технологии продолжают развиваться, они смогли найти успех в холодильных камерах.Литий-ионные батареи изменили работу многих менеджеров холодовой цепи благодаря их возможности заряжать и контролировать работу BMS.

Что происходит с литий-ионными аккумуляторами при высоких температурах?

Как правило, литий-ионные батареи можно заряжать при температуре окружающей среды до 113 ° F и разряжать при температуре до 140 ° F.

Когда дело доходит до предотвращения воздействия высоких температур, следует проявлять осторожность, потому что даже если внешняя среда может быть достаточно холодной, батарея все равно может нагреваться внутри при высоком токе.

Воздействие чрезвычайно высоких температур может вызвать окисление катодного электролита, что приведет к потере емкости аккумулятора. Баллон с высокими температурами:

  • Ускорение процесса старения батареи, что ведет к более быстрой деградации

При неправильном обращении с аккумуляторами или их неправильном изготовлении высокие температуры могут даже привести к тепловому разгоне, что является одной из основных угроз безопасности, связанных с литий-ионными аккумуляторами.

Выберите правильный химический состав литий-ионной батареи, чтобы избежать перегрева

Литий-железо-фосфатный аккумулятор

является лучшим выбором для промышленного применения, поскольку он может работать в широком диапазоне температур.Он не только может выдерживать повышенные температуры, но и его температура разгона при нагревании намного выше, чем у других литий-ионных химических соединений, таких как литий-никель-марганец-кобальт-оксид (NMC).

Хорошо спроектированная батарея имеет защиту от перегрева, запрограммированную как базовую функцию безопасности ее BMS.

Не все литий-ионные батареи одинаковы. Литий-железо-фосфатные батареи имеют тепловой разгон 518 ° F, который является одним из самых высоких, что позволяет батарее иметь высокий запас безопасности и стабильности, даже при воздействии экстремальных температур.

Литий-ионный аккумулятор

оказался очень универсальной альтернативой свинцово-кислотным источникам энергии и источникам энергии внутреннего сгорания. Благодаря широкому диапазону рабочих температур они делают литий-ионные батареи одним из лучших вариантов для погрузочно-разгрузочного оборудования на складах холодного хранения.

Amazon.com: Температура аккумулятора ACOPOWER, подходящая для контроллера заряда MPPT, Датчик температуры: патио, лужайка и сад


Депозит без импортных пошлин и 15 долларов США. 95 Доставка в РФ Реквизиты
Цвет Датчик температуры
Марка ACOPOWER
Размер изделия ДхШхВ 3.94 x 2,8 x 0,39 дюйма
Вес изделия 0,1 Килограммы

  • Убедитесь, что он подходит, введя номер своей модели.
  • Фирменное наименование: ACOPOWER
  • Сделано в Китае
  • Сборка не требуется
  • Цвет: Датчик температуры

Датчик температуры аккумуляторной батареи для контроллеров заряда солнечных батарей Renogy

Описание

Датчик температуры Renogy, идеально подходящий для солнечных систем, которые испытывают различные перепады температуры в течение года, оптимизирует работу батареи и продлевает срок ее службы! Датчик температуры, совместимый с большинством флагманских контроллеров заряда MPPT и PWM от Renogy, использует температуру окружающей среды вокруг аккумулятора для точной компенсации температуры. Это гарантирует, что ваша батарея будет получать точную и правильную зарядку. Улучшите свою солнечную систему с помощью температурной системы уже сегодня!

Обратите внимание, что RTSCC-G1 НЕ совместим с литиевыми батареями.

Если у вас есть какие-либо вопросы относительно этого продукта, позвоните нам по телефону 1 (909) 287-7111 или по электронной почте [email protected] .

Основные характеристики

  • Совместим с моделями Renogy Adventurer 30-Li, Adventurer 30A с портом связи, серии Rover Li и контроллерами заряда Wanderer 30-Li
  • Неполяризованные провода изолированы и защищены от агрессивных сред
  • Широкий диапазон температурной компенсации до 176 ° F
  • Соответствие ROHS и предназначено для использования вне помещений

В комплект входит

Датчик температуры батареи для контроллеров заряда солнечных батарей Renogy

1 х

Технические характеристики
Диапазон температур: -4 ° F ~ 176 ° F / -20 ° C ~ + 80 ° C Максимальная мощность: 50 мВт
Зонд: 0. 24 * 2,36 дюйма / 6 * 60 мм из нержавеющей стали Максимальное номинальное напряжение: 300 В
Длина кабеля: 118 дюймов / 3 м Кабель: 22AWG, 2-контактный проводник

Информация о гарантии

Панели

Гарантия на выходную мощность 25 лет: 5 лет / 95% КПД, 10 лет / 90% КПД, 25 лет / 80% КПД

5-летняя гарантия на материалы и качество изготовления

Принадлежности Годовая гарантия на материалы

Сертификация

Датчики температуры термистора

NTC обеспечивают безопасность литий-ионных батарей

Термисторные датчики температуры

NTC являются ключевым компонентом зарядки и безопасности литий-ионных аккумуляторов. Они предоставляют критически важные температурные данные, необходимые для поддержания литий-ионного аккумулятора в оптимальном состоянии во время цикла зарядки. Тщательное регулирование температуры во время зарядки продлевает срок службы батареи и позволяет избежать опасностей, присущих литий-ионным батареям.

Литий-ионные аккумуляторы Power Green Energy

Литий-ионная батарея

— Домашний накопитель солнечной энергии

Из-за небольшого веса и высокой плотности энергии литий-ионные батареи используются исключительно в бытовой электронике.Литий-ионные батареи теперь заменяют свинцово-кислотные батареи в мощных приложениях, таких как системы хранения энергии (ESS), фотоэлектрическая солнечная энергия (PV) и электромобили (PEV). В отличие от предыдущих аккумуляторных технологий, литий-ионные аккумуляторы не развивают «память» при частичном заряде или разряде и могут быть полностью разряжены и заряжены сотни раз без снижения производительности. Это делает их особенно подходящими для использования в экологически чистых источниках энергии.

Зарядка литий-ионных аккумуляторов

График Battery University показывает четыре различных этапа зарядки литий-ионных аккумуляторов.Он показывает соотношение тока и напряжения в течение всего цикла зарядки.

1. Предварительная зарядка Ток поддерживается постоянным, в то время как напряжение может повыситься до максимального заданного значения.

2. Насыщение Напряжение поддерживается на максимальной уставке, и со временем зарядный ток уменьшается.

3. Готов Зарядное напряжение отключается, когда зарядный ток падает до 3% от номинального выходного тока батареи.

4. Topping Charge Этот этап требуется только в том случае, если аккумулятор остается в режиме ожидания в течение длительного периода времени.

Балансировка заряда

, хотя и не входит в число четырех этапов зарядки, необходима для безопасного и эффективного использования многоэлементных литий-ионных аккумуляторов. Также называется выравниванием заряда, он гарантирует, что каждый элемент батареи синхронизируется с другими во время процесса зарядки.

Ограничение напряжения и тока

Для зарядки литий-ионных аккумуляторов требуется ограничение напряжения и тока

Зарядный ток ограничен, и на этапе предварительной зарядки разрешено повышение зарядного напряжения.Максимальный зарядный ток определяется, прежде всего, номинальной емкостью аккумулятора в ампер-часах. По мере зарядки увеличивающееся напряжение ограничивается заранее заданным значением от 4,1 В до 4,3 В на элемент, в зависимости от химического состава литий-ионных аккумуляторов.

Более ранние батареи на никелевой основе требовали предела 4,1 В на элемент, в то время как батареи кобальтовых, марганцевых и алюминиевых типов не могли превышать 4,2 В на элемент. Литий-ионные аккумуляторы наивысшей емкости заряжаются только до 4,3 В на элемент.

Во время стадии насыщения напряжение поддерживается на этих максимальных заданных значениях предварительной зарядки. Зарядный ток сначала уменьшается медленно, затем быстро. Зарядка прекращается, и аккумулятор готов к использованию, когда зарядный ток падает до 3% от номинальной емкости аккумулятора в ампер-часах.

Подзарядка — это не то же самое, что подзарядка непрерывным током. Литий-ионные аккумуляторы хорошо сохраняют свой заряд в режиме ожидания, с небольшим внутренним разрядом, но, возможно, потребуется «долить» по истечении длительного времени. Капельная зарядка не рекомендуется.

Для обеспечения стабильности во время цикла зарядки тщательно контролируются как напряжение, так и ток.Из них наиболее важным для управления температурой аккумулятора является управление зарядным напряжением.

Контроль температуры батареи

Слишком низкая температура аккумулятора снижает скорость зарядки, а слишком высокая температура аккумулятора создает опасность. Поддержание правильного диапазона температур зарядки дает дополнительное преимущество в виде увеличения ожидаемого срока службы батареи.

Литий-ионные батареи

обычно повышают температуру на 5 ° C (9 ° F) в течение 2-3 часов, необходимых для зарядки.Такое повышение температуры является нормальным и связано с химической реакцией, происходящей во время цикла зарядки. Во избежание опасности температура батареи во время зарядки не должна превышать 10 ° C (18 ° F).

Температура окружающей среды в непосредственной близости от аккумулятора сильно влияет на температуру аккумулятора во время цикла зарядки. Тепло, создаваемое химической реакцией зарядки, увеличивает начальную температуру аккумулятора. Оптимальный диапазон температур литий-ионного аккумулятора во время зарядки довольно узкий: от 10 ° C до 30 ° C (от 41 ° F до 86 ° F).Хотя быстрая зарядка и приемлема, она требует, чтобы температура батареи не превышала 45 ° C (113 ° F). Зарядка при температуре выше 45 ° C (113 ° F) снизит производительность аккумулятора.

Опасность перегрева

Перегрев, вызванный перегрузкой по току, перенапряжением, высокой температурой окружающей среды или любой комбинацией этих факторов, может привести к тепловому разгоне. Это опасное состояние, которое может привести к возгоранию аккумулятора или даже к катастрофическому взрыву. Во избежание теплового разгона нельзя превышать верхнюю безопасную температуру батареи.

Зарядка литий-ионного аккумулятора требует тщательного контроля температуры во избежание опасностей

Необходимо тщательно соблюдать верхний предел температуры для безопасной зарядки. Пороговая температура взрыва батареи широко варьируется в зависимости от химического состава литий-ионной батареи:

  • от 130 ° C до 150 ° C (от 266 ° F до 302 ° F) — оксид лития-кобальта, широко используемый в бытовой электронике
  • от 170 ° C до 180 ° C (от 338 ° F до 356 ° F) — оксид лития, никеля, марганца, кобальта, широко используется в автомобилях
  • 250 ° C (482 ° F) — литий-ионный оксид марганца, популярный в ручных инструментах с батарейным питанием

Чтобы избежать потенциальной аварии, необходимо полное отключение напряжения зарядки аккумулятора до достижения этих температур.

Контроллер заряда Li-Ion

Разработано решение для безопасной и эффективной зарядки литий-ионных аккумуляторов. Точный контроль зарядного тока, напряжения и, как следствие, управления температурой батареи требует, чтобы в зарядных устройствах литий-ионных аккумуляторов использовалась сложная электронная схема управления. Эти контроллеры используют заранее определенные уставки и алгоритмы для динамической регулировки напряжения заряда. Это поддерживает температуру батареи в установленных безопасных пределах в течение всего цикла зарядки.

На этой схеме, разработанной Texas Instruments, показаны компоненты зарядного устройства для литий-ионных аккумуляторов. Для многоэлементной литий-ионной батареи важно контролировать каждую отдельную ячейку в батарее. Очень важно поддерживать клетки в многоячеистой упаковке в сбалансированном состоянии. Зарядная ИС регулирует ток и напряжение до точных уровней, необходимых для литиевой батареи.

Контроллер заряда литий-ионных аккумуляторов MasterVolt MPPT 60 с датчиком температуры аккумулятора

Часто называемые АЦП, эти аналого-цифровые контроллеры используют датчики температуры, физически установленные на литий-ионных батареях для передачи данных о температуре контроллеру. Используя эту обратную связь, контроллер компенсирует высокую или низкую температуру батареи, чрезмерную температуру окружающей среды и полностью прекращает зарядку, если батарея достигает критически высокой температуры.

Датчики температуры термистора NTC, контролирующие температуру элемента литий-ионной батареи

В приложениях с высокой мощностью для контроллера заряда требуется несколько датчиков температуры, установленных на литий-ионном аккумуляторе. По крайней мере, один датчик контролирует каждую ячейку батареи. Термисторы NTC — это предпочтительный датчик для обеспечения обратной связи по температуре с АЦП.Контроллер заряда отслеживает температуру ячеек батареи индивидуально или в совокупности в зависимости от типа контроллера и количества ячеек в батарее.

Термисторные датчики NTC получают необходимые показания температуры при прямом контакте с корпусом аккумуляторной батареи. В качестве альтернативы, датчики температуры устанавливаются на электрические клеммы ячейки для измерения температуры ячейки.

Выбор датчика температуры

Как важный компонент при зарядке литий-ионных аккумуляторов, выбор правильного датчика температуры аккумулятора также имеет решающее значение.При выборе датчика следует учитывать:

  • Точность — жесткие допуски, необходимые для критических измерений температуры
  • Надежность — гарантированные технические характеристики и стабильные характеристики с течением времени
  • Чувствительность — низкая тепловая постоянная времени, обеспечивающая своевременную обратную связь с контроллером
  • Долговечность — длительный срок службы благодаря качественным компонентам и точному производству

При выборе термисторных датчиков температуры NTC для литий-ионной батареи могут потребоваться дополнительные соображения:

  • Допуск, не превышающий 5% во всем предполагаемом диапазоне рабочих температур батареи для обеспечения правильных измерений
  • Условия окружающей среды и конструкция батареи определяют, будет ли датчик встроенным, контактным или потребуется корпус
  • Соответствующие корпуса могут обеспечить простой и надежный монтаж, эффективную теплопроводность и защиту от физических повреждений
  • Высоковольтная изоляция между корпусом датчика и выходом термистора обеспечивает безопасность и эксплуатационную целостность

Поговорите с инженером

Проверенные термисторные датчики Ametherm NTC

Термисторные датчики температуры

Ametherm NTC имеют как электрические, так и механические характеристики, идеально подходящие для использования в системах зарядки литий-ионных аккумуляторов. Термисторные датчики NTC серии PANR, PANE, DG Glass Encapsulated и ACCU-CURVE были предпочтительным выбором для приложений в области телекоммуникаций, производства ИБП и электромобилей.

Ametherm
Номер детали
R при 25 ° C Бета Рассеивание
Константа
Тепловое время
Константа
Максимальная мощность Заказ в Digi-Key Заказ от Mouser
PANR103395 10.0 кОм 3950 ° К 3,0 мВт / ° C 40.0 сек 125 мВт 570-1402-НД 995-PANR103395

Термисторные датчики температуры

Ametherm NTC доступны в широком диапазоне значений R @ 25 ° C, бета и допуска, с несколькими типами корпусов для соответствия большинству требований к установке. Посетите наших авторизованных онлайн-поставщиков для выбора термисторного датчика температуры NTC:

Управление температурным режимом батареи

Температурные эффекты

Пределы рабочих температур

Все батареи зависят от своего электрохимического процесса, будь то зарядка или разрядка, и мы знаем, что эти химические реакции в некотором роде зависят от температуры. Номинальная производительность аккумулятора обычно указывается для рабочих температур где-то в диапазоне от + 20 ° C до + 30 ° C, однако фактическая производительность может существенно отличаться от этого, если аккумулятор эксплуатируется при более высоких или более низких температурах. См. «Температурные характеристики» для получения типичных графиков производительности.

Закон Аррениуса говорит нам, что скорость, с которой протекает химическая реакция, увеличивается экспоненциально с повышением температуры (см. Срок службы батареи).Это позволяет мгновенно извлекать из батареи больше энергии при более высоких температурах. В то же время более высокие температуры улучшают подвижность электронов или ионов, уменьшая внутренний импеданс ячейки и увеличивая ее емкость.

В верхней части шкалы высокие температуры могут также вызвать нежелательные или необратимые химические реакции и / или потерю электролита, что может вызвать необратимое повреждение или полный выход батареи из строя. Это, в свою очередь, устанавливает верхний предел рабочей температуры для аккумулятора.

В нижней части шкалы электролит может замерзнуть, что приведет к ограничению низкотемпературных характеристик. Но значительно выше точки замерзания электролита производительность батареи начинает ухудшаться, поскольку скорость химической реакции снижается. Даже если батарея может работать при температурах до -20 ° C или -30 ° C, производительность при 0 ° C и ниже может быть серьезно снижена.

Обратите также внимание на то, что нижний рабочий предел температуры батареи может зависеть от ее состояния заряда.Например, в свинцово-кислотной батарее по мере разряда батареи сернокислый электролит становится все более разбавленным водой, и его точка замерзания соответственно увеличивается.

Таким образом, аккумулятор должен храниться в ограниченном диапазоне рабочих температур, чтобы можно было оптимизировать как емкость заряда, так и срок службы. Поэтому для практической системы может потребоваться как нагрев, так и охлаждение, чтобы поддерживать ее не только в рабочих пределах, указанных производителем батареи, но и в более ограниченном диапазоне для достижения оптимальной производительности.

Управление температурой — это не просто соблюдение этих ограничений. Батарея подвергается нескольким одновременным внутренним и внешним тепловым воздействиям, которые необходимо контролировать.

Источники тепла и водоотводы

Электрический нагрев (Джоулев нагрев)

При работе любой батареи выделяется тепло из-за потерь I 2 R, поскольку ток течет через внутреннее сопротивление батареи, независимо от того, заряжается она или разряжается.Это также известно как Джоулев нагрев. В случае разряда общая энергия внутри системы фиксирована, а повышение температуры будет ограничено доступной энергией. Однако это может вызвать очень высокие локальные температуры даже в батареях с низким энергопотреблением. Во время зарядки такое автоматическое ограничение не применяется, поскольку нет ничего, что могло бы помешать пользователю продолжать накачивать электрическую энергию в аккумулятор после того, как он полностью зарядился. Это может быть очень рискованная ситуация.

Разработчики аккумуляторов стремятся поддерживать внутреннее сопротивление ячеек как можно более низким, чтобы минимизировать тепловые потери или тепловыделение внутри батареи, но даже с сопротивлением элементов всего 1 миллиОм нагрев может быть значительным.См. Примеры в разделе «Влияние внутреннего импеданса».

Термохимический нагрев и охлаждение

Помимо джоулева нагрева, химические реакции, происходящие в ячейках, могут быть экзотермическими, добавляясь к выделяемому теплу, или они могут быть эндотермическими, поглощая тепло в процессе химического воздействия. Поэтому перегрев с большей вероятностью будет проблемой при экзотермических реакциях, в которых химическая реакция усиливает тепло, выделяемое током, а не эндотермическими реакциями, в которых ему противодействует химическое воздействие.В аккумуляторных батареях, поскольку химические реакции обратимы, химические вещества, являющиеся экзотермическими во время зарядки, будут эндотермическими во время разряда и наоборот. Так что от проблемы никуда не деться. В большинстве ситуаций Джоулев нагрев превышает эффект эндотермического охлаждения, поэтому меры предосторожности все же необходимо принимать.

Свинцово-кислотные батареи экзотермичны во время зарядки, а батареи VRLA склонны к тепловому разгоне (см. Ниже). NiMH-элементы также являются экзотермическими во время зарядки, и по мере приближения к полной зарядке температура элемента может резко повыситься.Следовательно, зарядные устройства для никель-металлгидридных элементов должны быть спроектированы так, чтобы определять это повышение температуры и отключать зарядное устройство, чтобы предотвратить повреждение элементов. Напротив, никелевые батареи с щелочными электролитами (NiCad) и литиевые батареи эндотермичны во время зарядки. Тем не менее, тепловой разгон все еще возможен во время зарядки этих аккумуляторов, если они подвержены перезарядке.

Термохимия литиевых элементов немного сложнее, в зависимости от степени внедрения ионов лития в кристаллическую решетку.Во время зарядки реакция сначала является эндотермической, а затем переходит в слегка экзотермическую в течение большей части цикла зарядки. Во время разряда реакция обратная, сначала экзотермическая, затем переходящая в слегка эндотермическую на протяжении большей части цикла разряда. Как и в случае с другими химическими реакциями, эффект джоулева нагрева больше, чем термохимический эффект, пока ячейки остаются в пределах своих проектных ограничений.

Внешнее тепловое воздействие

Тепловое состояние аккумулятора также зависит от окружающей среды. Если его температура выше температуры окружающей среды, он будет терять тепло из-за теплопроводности, конвекции и излучения. Если окружающая температура выше, аккумулятор будет нагреваться от окружающей среды. Когда температура окружающей среды очень высока, система управления температурным режимом должна очень усердно работать, чтобы поддерживать температуру под контролем. Отдельный элемент может очень хорошо работать при комнатной температуре сам по себе, но если он является частью аккумуляторной батареи, окруженной одинаковыми ячейками, все из которых выделяют тепло, даже если он несет такую ​​же нагрузку, он может значительно превысить свои температурные пределы.

Температура — ускоритель

Конечным результатом термоэлектрических и термохимических эффектов, возможно, усиленных условиями окружающей среды, обычно является повышение температуры, и, как мы отметили выше, это вызывает экспоненциальное увеличение скорости протекания химической реакции. Мы также знаем, что при чрезмерном повышении температуры может произойти много неприятностей

    • Активные химические вещества расширяются, вызывая набухание клетки
    • Механическое искажение компонентов ячейки может привести к короткому замыканию или обрыву цепи
    • Могут происходить необратимые химические реакции, вызывающие необратимое уменьшение количества активных химикатов и, следовательно, емкости элемента
    • Продолжительная работа при высоких температурах может вызвать растрескивание пластиковых частей элемента
    • Повышение температуры вызывает ускорение химической реакции, еще больше увеличивая температуру, что может привести к тепловому разгоне
    • Газы могут выделяться
    • Давление внутри ячейки
    • Ячейка может в конечном итоге разорваться или взорваться
    • Могут выделяться токсичные или легковоспламеняющиеся химические вещества
    • Судебные иски последуют за

Тепловая мощность — конфликт

По иронии судьбы, поскольку инженеры по аккумуляторным батареям стремятся втиснуть все больше и больше энергии во все меньшие объемы, разработчику приложений становится все труднее получить ее снова. К сожалению, большая сила батарей с новыми технологиями является также источником их самой большой слабости.

Теплоемкость объекта определяет его способность поглощать тепло. Проще говоря, для данного количества тепла, чем больше и тяжелее объект, тем меньше будет повышение температуры, вызванное теплом.

На протяжении многих лет свинцово-кислотные батареи были одними из немногих источников питания, доступных для приложений большой мощности.Из-за их большого размера и веса повышение температуры во время работы не было большой проблемой. Но в поисках меньших и легких батарей с большей мощностью и плотностью энергии неизбежным следствием является уменьшение тепловой емкости батареи. Это, в свою очередь, означает, что для данной выходной мощности повышение температуры будет выше.

(Это предполагает аналогичный внутренний импеданс и аналогичные термохимические свойства, что не обязательно так. В результате отвод тепла является серьезной инженерной проблемой для батарей с высокой плотностью энергии, используемых в приложениях с высокой мощностью. Разработчики ячеек разработали инновационные методы строительства ячеек, чтобы отводить тепло от ячейки. Разработчики аккумуляторных блоков должны найти столь же инновационные решения, чтобы избавить аккумулятор от тепла.

Температурные характеристики аккумуляторных батарей EV и HEV

Подобные конфликты возникают с аккумуляторами EV и HEV.Аккумулятор электромобиля большой, с хорошей способностью рассеивать тепло за счет конвекции и теплопроводности и подвержен небольшому повышению температуры из-за своей высокой теплоемкости. С другой стороны, батарея HEV с меньшим количеством ячеек, но каждая из которых имеет более высокие токи, должна выдерживать ту же мощность, что и батарея EV, менее чем на одну десятую размера. Благодаря более низкой теплоемкости и более низким характеристикам рассеивания тепла это означает, что аккумулятор HEV будет подвергаться гораздо более высокому повышению температуры.

Принимая во внимание необходимость поддерживать работу элементов в допустимом температурном диапазоне (см. Срок службы в разделе «Отказы литиевой батареи»), батарея электромобиля с большей вероятностью столкнется с проблемами, связанными с поддержанием ее тепла на нижнем конце диапазона температур, в то время как аккумулятор HEV с большей вероятностью будет иметь проблемы с перегревом в условиях высоких температур, даже если они оба рассеивают одинаковое количество тепла.

В случае электромобиля при очень низких температурах окружающей среды самонагрев (нагрев I 2 R) за счет протекания тока во время работы, скорее всего, будет недостаточным для повышения температуры до желаемых рабочих уровней из-за большого размера батареи и для повышения температуры могут потребоваться внешние нагреватели. Это может быть обеспечено за счет отвода части емкости батареи на обогрев. С другой стороны, такое же тепловыделение I 2 R в аккумуляторной батарее HEV, работающей в высокотемпературной среде, может привести к тепловому неуправляемому запуску, и необходимо обеспечить принудительное охлаждение.

См. Также Технические характеристики EV, HEV и PHEV в разделе «Тяговые батареи»

.

Термический побег

Рабочая температура, достигаемая в батарее, является результатом увеличения температуры окружающей среды за счет тепла, выделяемого батареей. Если аккумулятор подвергается чрезмерному току, возникает возможность теплового разгона, что приводит к катастрофическому разрушению аккумулятора.Это происходит, когда скорость выделения тепла внутри батареи превышает ее способность рассеивать тепло. Это может произойти при следующих условиях:

  • Первоначально тепловые потери I 2 R зарядного тока, протекающего через элемент, нагревают электролит, но сопротивление электролита уменьшается с температурой, так что это, в свою очередь, приведет к более высокому току, вызывающему еще более высокую температуру, усиление реакции до достижения состояния разгона.
  • Во время зарядки зарядный ток вызывает экзотермическую химическую реакцию химических веществ в элементе, которая усиливает тепло, выделяемое зарядным током.
  • Или во время отвода тепла, возникающего в результате экзотермического химического воздействия, генерирующего ток, усиливается резистивный нагрев из-за протекания тока внутри элемента.
  • Слишком высокая температура окружающей среды.
  • Недостаточное охлаждение

Если не будут приняты некоторые защитные меры, последствия теплового разгона могут привести к расплавлению элемента или повышению давления, что приведет к взрыву или возгоранию, в зависимости от химического состава и конструкции элемента. Более подробную информацию см. В разделе «Неисправности литиевых батарей».

Система терморегулирования должна держать все эти факторы под контролем.

Примечание

Температурный разгон может произойти во время зарядки свинцово-кислотных аккумуляторных батарей с регулируемым клапаном, когда выделение газа запрещено, а рекомбинация способствует повышению температуры. Это не относится к залитым свинцово-кислотным аккумуляторным батареям, поскольку электролит выкипает.

Контроль температуры

Обогрев

Относительно легко справиться с низкотемпературными условиями эксплуатации. В простейшем случае в батарее обычно достаточно энергии для питания самонагревательных элементов, которые постепенно доводят батарею до более эффективной рабочей температуры, когда нагреватели могут быть отключены. В некоторых случаях достаточно, чтобы аккумулятор не перезаряжался, когда он не используется. В более сложных случаях, например, с высокотемпературными батареями, такими как батарея Zebra, работающая при температурах, значительно превышающих нормальные температуры окружающей среды, может потребоваться внешний обогрев, чтобы довести батарею до рабочей температуры при запуске, и может потребоваться специальная теплоизоляция для поддержания температуру как можно дольше после выключения.

Охлаждение

Для маломощных батарей достаточно обычных схем защиты, чтобы поддерживать батарею в рекомендуемых пределах рабочих температур. Однако цепи большой мощности требуют особого внимания к терморегулированию.

Конструктивные цели

  • Защита от перегрева —
    В большинстве случаев это просто включает в себя мониторинг температуры и прерывание пути тока, если температура при достижении температурных пределов достигается с использованием обычных схем защиты.Хотя это предотвратит повреждение батареи от перегрева, тем не менее, она может отключить батарею до того, как будет достигнут ее предел допустимой нагрузки по току, что серьезно ограничит ее производительность.
  • Рассеивание избыточного тепла —
    Удаление тепла из батареи позволяет переносить более высокие токи до достижения температурных пределов. Тепло выходит из батареи за счет конвекции, теплопроводности и излучения, и задача разработчика блока состоит в том, чтобы максимизировать эти естественные потоки, поддерживая низкую температуру окружающей среды, путем обеспечения прочного, хорошего теплопроводного пути от батареи (с использованием металлических охлаждающих стержней или пластин между ними). ячейки, если необходимо), максимально увеличив площадь его поверхности, обеспечив хороший естественный поток воздуха через или вокруг блока и установив его на проводящей поверхности.
  • Равномерное распределение тепла —
  • Даже несмотря на то, что тепловая конструкция батареи может быть более чем достаточной для рассеивания общего тепла, выделяемого батареей, внутри аккумуляторной батареи все же могут быть локализованные горячие точки, которые могут превышать указанные температурные пределы. Это может быть проблемой для ячеек в середине многоячеечной упаковки, которая будет окружена теплыми или горячими ячейками по сравнению с внешними ячейками в упаковке, которые обращены к более прохладной среде.

    Температурный градиент аккумулятора может серьезно повлиять на срок его службы. Закон Аррениуса указывает, что с увеличением температуры на каждые 10 ° C скорость химической реакции увеличивается примерно вдвое. Это создает несбалансированную нагрузку на элементы в батарее, а также усугубляет любой возрастной износ элементов. См. Также «Взаимодействие между ячейками и балансировка ячеек».

    Разделение ячеек во избежание этой проблемы увеличивает объем упаковки.Для выявления потенциальных проблемных участков может потребоваться тепловидение.

    Пассивное рассеяние можно еще улучшить, установив ячейки в блоке из теплопроводящего материала, который действует как теплоотвод. Теплопередача от ячеек может быть максимизирована, если для этой цели используется материал с фазовым переходом (PCM), поскольку он также поглощает скрытую теплоту фазового перехода при переходе из твердого в жидкое состояние. Находясь в жидком состоянии, конвекция также вступает в игру, увеличивая потенциал теплового потока и выравнивая температуру в аккумуляторной батарее.Для этого применения доступны графитовые губчатые материалы с высокой проводимостью, пропитанные воском, который поглощает дополнительное тепло, когда температура достигает точки плавления.

  • Минимальная прибавка в весе —
    Для приложений с очень большой мощностью, таких как тяговые батареи, используемые в электромобилях и HEV, естественного охлаждения может быть недостаточно для поддержания безопасной рабочей температуры, и может потребоваться принудительное охлаждение. Это должно быть крайней мерой, поскольку это усложняет конструкцию батареи, увеличивает ее вес и потребляет электроэнергию.Однако, если принудительное охлаждение неизбежно, первым выбором будет принудительное воздушное охлаждение с помощью вентилятора или вентиляторов. Это относительно просто и недорого, но теплоемкость теплоносителя, воздуха, который предназначен для отвода тепла, относительно мала, что ограничивает его эффективность. В худшем случае может потребоваться жидкостное охлаждение.
    Для очень высоких скоростей охлаждения требуются рабочие жидкости с более высокой теплоемкостью. Вода обычно является первым выбором, поскольку она недорогая, но можно использовать и другие жидкости, такие как этиленгликоль (антифриз), которые имеют лучшую теплоемкость. Вес охлаждающей жидкости, насосы для ее циркуляции, рубашки охлаждения вокруг ячеек, трубопроводы и коллекторы для транспортировки и распределения охлаждающей жидкости, а также радиатор или теплообменник для ее охлаждения — все это значительно увеличивает общий вес, сложность и стоимость. батареи. Эти штрафы вполне могут перевесить выгоды, которые могут быть достигнуты за счет использования химического состава батарей с высокой плотностью энергии.

Рекуперация тепла

В некоторых приложениях, таких как электромобили, как указано выше, есть возможность использовать отработанное тепло для обогрева салона, и большинство автомобильных систем включают в себя некоторую форму интеграции управления температурным режимом аккумуляторной батареи с системами климат-контроля транспортного средства.Однако это полезно только в холодную погоду. В жарком климате высокая температура окружающей среды ложится дополнительным бременем на управление температурным режимом батареи.

Создание контроллера температуры батарейного отсека на базе Arduino (BBTC)

Введение

Этот пост представляет собой дизайн пользовательского электронного устройства с открытым исходным кодом, которое будет использоваться для мониторинга и контроля температуры до четырех аккумуляторных ящиков.

Фон

Радиус действия электромобиля

значительно сокращается из-за холодных аккумуляторов, а новейшие спецификации литиевых аккумуляторов требуют для зарядки температуры выше 32 ° F. Таким образом, в холодных зимних климатических условиях (например, в Чикаго) с батареями электромобилей необходимо работать термически, чтобы они имели приемлемый зимний диапазон и оставались в пределах спецификаций для литиевых батарей.

Нагревательные батареи с нихромовой проволокой

Нихромовая проволока нагревается при прохождении через нее тока. Подобная «термическая обертка батареи» содержит нихромовый провод и подключается к сети переменного тока 120 В для поддержания нагрева (стартерной) батареи:


Изолированный батарейный отсек с нагревателем

«Термообмотка батареи» может быть разобрана, чтобы использовать нихромовую проволоку внутри.Вот пример изолированного аккумуляторного ящика электромобиля с нагревателем из нихромовой проволоки внизу:

С таким изолированным аккумуляторным ящиком и обогревателем температура аккумуляторной батареи может быть увеличена зимой.

Мониторинг и контроль температуры аккумуляторного отсека

Температура аккумуляторов контролируется, чтобы убедиться, что они выше 32F, а оптимально более 72F. Датчик температуры, как и электронный термометр, будет размещен в верхней средней части батарей в коробке. Микрокомпьютер Arduino считывает показания датчика температуры и отображает текущую температуру на небольшом ЖК-дисплее. Нагреватель также будет включаться и выключаться Arduino, действующим как термостат. Arduino включит нагреватель, если температура батареи ниже «заданной минимальной температуры», например 32F, и выключит нагреватель, если температура превышает «заданную максимальную температуру», например. 72F. Будет реализована программируемая пользователем функция, позволяющая устанавливать минимальную и максимальную точки температуры.

Микрокомпьютер Arduino и модуль расширения «Shield»

Вот стандартная плата Ardunio Uno (доступна в Radio Shack и во многих местах в Интернете примерно за 25 долларов):

Одной из замечательных особенностей Arduino является то, что они могут быть расширены путем установки одного или нескольких «щитов» сверху (например, «дочерних плат»). Здесь доступны сотни щитов: http://shieldlist.org/ Вот пример «стека щитов» на Arduino:

Контроллер температуры батарейного отсека (BBTC)

Контроллер температуры батарейного отсека, описанный здесь, будет разработан как Arduino Shield.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.