Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Инжекция и эжекция в чем разница: Эжектор и инжектор | Разница

Содержание

Инжектор и эжектор – в чем разница

Чем отличается эжектор от инжектора?

Инжектор — это стандартный линейный ускоритель, благодаря которому происходит процесс внедрения заряженных частиц внутрь главного ускорителя. Существует несколько видов инжекторов, которые отличаются по принципу своей работы и многим другим характеристикам.

Эжектор — это устройство для отсасывания жидких или газообразных веществ и транспортирования гидросмесей. Он отличается от инжектора благодаря направленности своей работы в противоположную сторону. При этом естественно, что все эти технические различия учитывает конструкция аппаратуры, предназначенная для максимально быстрого и эффективного выполнения той функции, которая на нее возлагается.

Стоит отметить, что оба устройства компактные и имеют высокую скорость действия, которая требуется от них благодаря конструкции соседних узлов деталей и скорости движения жидкости или других веществ, используемых в конструкции.

Оба варианта представляют собой одно устройство только с разной направленностью действия. Это устройство — струйный насос.

Если насос функционирует в направленности инжектора, то он будет нагнетать жидкие или газообразные вещества. Если он на водяной основе, то использоваться для этого будет система нагнетания, которая позволяет работать даже при высоких значениях давления. В этом заключается отличие инжектора от другой аппаратуры.

Он выдает такое давление инжектируемой воды, которое превышает давление самого пара. Очень часто насосы на инжекторной основе используются в котельных, где требуется эффективная аппаратура для создания качественного нагнетания.

240 дней без процентов!

Что касается эжекторов, то дела с их использованием состоят несколько иначе. Для этого вода подается внутрь устройства и доходит

до специального сопла. Далее она поступает в так называемую камеру смешивания, где и происходит существенное понижение давления до рабочих показателей.

Когда вода далее проходит по узкому сечению диффузора и забирает с собой воздух, создавая при этом разреженную атмосферу, которая создается в той же самой камере смешения для облегчения следования воды. Подачу инжектора можно просто регулировать при помощи специального патрубка, который подсоединяется к рабочей части аппаратуры.

При наличии многих общих черт стоит отметить, что разница в предназначении предусматривает также разницу в конструкции, ведь если устройству требуется нагнетать, то оно сможет работать с гораздо более высоким давлением, чем тот аппарат, который обязан только делать большой спектр работы по отсасыванию лишней воды.

По факту это насосы, которые работают

в сообщении с двигателем. Только при нагнетании инжектор передает энергию на последующие узлы и детали, а эжектор отвечает за функцию отвода жидкости в рамках аналогичной системы.

Без обоих элементов данная конструкция невозможна, ведь двигатель должен получать нагнетание и одновременно отводить получаемый пар, чтобы не создавать лишнего напряжения и организовать весь цикл проработки жидкости с минимальными потерями.

Многие люди не знают, чем отличается эжектор от инжектора. Это неудивительно, ведь чаще всего можно встретить ситуации, при которых использование инжектора отмечается людьми, а эжектора нет. Многие просто не знают что это часть одной конструкции, а даже если пострадал эжектор и его требуется заменить, говорят что проблема возникла с инжектором.

Такая путаница неудивительная еще и потому, что устройства имеют

одинаковый принцип работы, только направленный в противоположную сторону. Это не добавляет им узнаваемости в качестве отдельных конструкционных элементов.

Запросы, которые отражают разницу данных устройств, сегодня очень распространены, ведь люди, что столкнулись с поломкой, должны идентифицировать, в чем проблема, и для этого начинают искать информацию, которая касается данной темы.

Сделать это очень просто помогут тематические ресурсы, которые предлагают актуальную информацию о самых разнообразных аспектах работы разной аппаратуры, что существенно помогает покупателям готовых конструкций разбираться в том, что происходит с данными товарами.

Инжектор и эжектор сегодня являются теми элементами устройства, которые довольно часто подвергаются поломкам, если неправильно эксплуатируются, так что очень важно регулировать давление жидкости при помощи патрубков.

Если не придерживаться элементарных правил по эксплуатации данного рода приборов, то есть большие шансы что-то повредить и понести все устройство в ремонт, чтобы направить получившуюся неполадку, провести замену патрубков или другую важную манипуляцию. Именно поэтому обязательно следует придерживаться инструкции по использованию устройств и не перегружать их слишком высоким давлением.

ЭЖЕКЦИЯ И ИНЖЕКЦИЯ РЕАГЕНТОВ В ТЕХНОЛОГИЯХ ВОДОПОДГОТОВКИ | Опубликовать статью ВАК, elibrary (НЭБ)

Петросян О.П.1, Горбунов А.К.2, Рябченков Д.В.3, Кулюкина А.О.4

1Кандидат физико-математических наук, доцент, Калужский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана), 

2Доктор физико-математических наук, профессор, Калужский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана), 3Аспирант, Калужский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана), 4Аспирант, Калужский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ЭЖЕКЦИЯ И ИНЖЕКЦИЯ РЕАГЕНТОВ В ТЕХНОЛОГИЯХ ВОДОПОДГОТОВКИ

Аннотация

Система водоподготовки предусматривает введение в нее различных реагентов. Основными технологическими способами внедрения реагентов в обеззараживаемую воду являются эжекция и инжекция. В данной статье проведен анализ этих методов. Разработана методика расчета высокопроизводительных эжекторов. Проведенными авторами лабораторные и производственные испытаниями установлены оптимальные соотношения продольных размеров внутреннего сечения, обеспечивающие максимально эффективное значение коэффициента эжекции.

Ключевые слова: эжектор, диффузор, камера смешения, коэффициент эжекции, аэрация, хлорирование.

Petrosyan O.P.1, Gorbunov A.K.2, Ryabchenkov D.

V.3, Kuliukina A.O. 4

1PhD in Physics and Mathematics, Associate Professor, 2PhD in Physics and Mathematics, Professor, 3Postgraduate Student, 4Postgraduate Student, Kaluga Branch of the Federal State Budget Educational Institution of Higher Professional Education “Bauman Moscow State Technical University (National Research University” (Kaluga Branch of Moscow State Technical University named after N.E. Bauman)

EJECTION AND INJECTION OF REAGENTS IN WATER TREATMENT TECHNOLOGIES

Abstract

A water treatment system provides for the introduction of various reagents into it. The main technological methods for introducing reagents into disinfected water are ejection and injection. This article analyzes both of these methods. A technique for calculating high-efficiency ejectors is developed. The laboratory and production tests carried out by the authors established the best proportions of the internal section longitudinal dimensions – they ensure the maximum effective value of the ejection coefficient.

Keywords: ejector, diffuser, mixing chamber, ejection coefficient, aeration, chlorination.

Питьевая вода, централизовано подаваемая населению, должна соответствовать СанПин 2.1.4.559-96. Такое качество воды достигается, как правило, использованием классической двухступенчатой схемы, представленной на рисунке 1. На первой ступни в очищаемую воду вводят коогулянты и флокулянты и затем, производится осветление в горизонтальных отстойниках и скорых фильтрах, на второй ступени перед подачей в РЧВ производится обеззараживание [1, С. 36–38], [2, С. 56–62].

29-08-2017 17-03-53

Рис. 1 – Технологическая схема системы водоподготовки

 

Таким образом, в схеме предусмотрено введение в воду различных реагентов в виде газов (хлор, озон, аммиак, диоксид хлора), растворов гипохлорита, коагулянтов (сернокислый алюминий и/или гидроксохлорид алюминия), флокулянтов (ПАА, прайстол и феннопол). Чаще всего дозирование и подача этих реагентов производится методом инжекции или эжекции.

Инжекция – это ввод и распыление через форсунку (инжектор) растворов хлорной воды, гипохлорита, коагулянта (флокулянта) насосами под давлением.

Эжектор – «эжекционный насос» приводит в движение раствор реагента или газа путем разряжения среды. Разряжение создается движущимся с большей скоростью, рабочим (активным) потоком. Этот активный поток назавем эжектирующим, а приводимую в движение смесь эжектируемой (пассивной смесью). В камере смешения эжектора пассивная смесь передает энергию активному потоку, вследствие чего все их показатели, в том числе и скорости.

Широкое применение процесса эжектирования обосновывается следующими факторами: простотой устройства и его технического обслуживания; малым износом вследствии отсутствия трущихся деталей, что обусловливает длительный срок службы. Именно поэтому эжектирование применяется во многих сложных технических устройствах, таких как: химические реакторы; системы дегазации и аэрации; газотранспортных установках, сушки и вакуумировании; системах передачи теплоты; и, конечно, как сказано выше в ситемах водоподготовки и водоснабжения.

Ограничение в применении инжекторов в тех же системах связано с их малой производительностью, так как большая производительность требует мощных насосов-инжекторов, что приводит к существенному удорожанию системы, в то время как увеличение производительности эжекторами менее затратно. Так автоматические модульные станции водоподготовки, рассчитанные на снабжение питьевой водой небольших поселков, в подавляющем большинстве используют инжекцию. Типовая конструкция такой станции универсального типа представлена в [3], где на всех точках ввода реагентов в воду используется инжекция. Часто принимают и компромиссное решение (рис.2). На первом этапе эжекцией газообразного хлора в воду с использованием хлораторов в эжекторе 4 получают так называемую хлорную воду, которую затем (на втором этапе) инжектируют насосом 1 в водовод 2, где движется поток обрабатываемой воды.

 

29-08-2017 17-05-01

Рис. 2 – Эжекция и инжекция газообразного хлора в воду

29-08-2017 17-06-01

Рис. 3 – Схема ввода хлорной воды в процессе инжекции ее в водовод

Типовой инжекционный узел ввода хлорной воды в водовод 2 в таких случаях представлен на рис.3. Достоинством такой схемы является рациональное совмещение эжекции и инжекции, что позволяет благодаря насосу 1, необходимому для реализации инжекции, обеспечить высокую эжекционную производительность эжектора. Диаграммы выбора насоса 1 в таких схемах для эжектора с производительностью до 20 кг Сl/час представлены на рис. 4.

На рис. 5 представлена типовая конструкция эжектора, наиболее характерная для дозирования газового реагента (чаще всего хлора) в водовод. Эжектор состоит из линии подачи эжектирующего потока (воды) представляющей собой конусообразное сопло 1, которое соединяется с камерой смешения (рабочая камера) 2 и камерой смешения 4. В рабочую камеру 2 Подается эжектируемый газообразный хлор через устройство 3. Диффузор 5 подает хлорную воду в водовод [4, С. 15 – 18].

29-08-2017 17-07-04

Рис. 4 – Диаграмма выбора насоса к эжектору 20кг Gl/час

Параметры такого эжектора являются исходными величинами, определяющими все основные рабочие параметры узлов ввода реагентов. Авторами разработана методика [5, С. 56–62] расчета высокопроизводительных хлораторов на основе, которой разработан и запатентован модельный ряд эжекторов различной производительности [6, C. 142].

Производительность и другие характеристики инжектора, который фактически является дозирующим насосом, зависят от общих технических характеристик собственно насоса и системы импульсного дозирования. Основные же характеристики эжектора определяют конструктивные особенности его сечения, причем эти особенности настолько принципиальны, что без технических расчетов и экспериментальных проработок обеспечить эффективность работы эжектора практически невозможно. Поэтому целесообразно рассмотреть эти вопросы на примере эжекторов для дозирования газообразного хлора в воду.

Таким образом, действие эжектора основано на передаче кинетической энергии эжектируещего потока (активного потока) жидкости, обладающего большим запасом энергии, эжектируемому (пассивному) потоку, обладающему малым запасом энергии [7,], [8, С. 184]. Запишем уравнение Бернулли для идеальной жидкости в соответствии, с которым сумма удельной потенциальной энергии (статического напора) и удельной кинетической энергии (скоростного напора) постоянна и равна полному напору:

29-08-2017 17-08-02

 

29-08-2017 17-08-33

Рис. 5 – Эжектор для дозирования газообразного хлора в воду

 

Истекающая из сопла вода обладает большей скоростью (v2>v1), т. е. большим скоростным напором, поэтому  пьезометрический напор потока воды в рабочей камере 2  и в камере смешения уменьшается (p2<p1), это и приводит к подсосу газа (в нашем случае хлора) в камеру смешения. В камере происходит перемешивание рабочей и эжектируемой сред. В диффузоре 5 скорость смеси сред уменьшается, а статический напор увеличивается, благодаря которому жидкость подается в водовод по нагнетательному трубопроводу.

Отношение расхода эжектируемой жидкости (QЭ) к расходу рабочей жидкости (QP) называется коэффициентом подмешивания или эжекции – a.

Коэффициент эжекции, зависящий от параметров эжектора, лежит в довольно широких пределах от 0.5 до 2.0. Наиболее устойчивая работа водоструйного насоса наблюдается при a=1.

29-08-2017 17-09-30

Коэффициентом напора эжекционного насоса ß назавем отношение полной геометрической высоты подъема (Н) эжектируемого потока жидкости в метрах – это давление на входе в эжектор к напору рабочего потока (h) в м – противодалению.

29-08-2017 17-10-09

Важным параметром характерезующий эффективность работы эжектора и также зависящий от конструктивных параметров устройства является коэффициент полезного действия насоса. Как известно этот коэффициент равен отношению полезно затраченной мощности (H·QЭ·Y кГм/сек) к затраченной мощности (h·QP·Y кГм/сек), то есть

29-08-2017 17-10-49

Таким образом, эффективность работы эжекционного насоса определяется произведением коэффициентов напора и эжекции. Лабораторные эксперименты на стенде проводились  для определения коэффициента напора эжекторов различной производительности. Полученная экспериментальная диаграмма эжектора изображена на рис.3. По данной диаграмме определяются параметры – давление на входе в эжектор, противодавление и расход эжектрующей жидкости, которые обеспечивают расход эжектируемого газа 20 кг/ч.

В соответствии с полученной методикой расчетов параметров эжектора определены основополагающие типоразмеры эжекторов модельного ряда хлораторов с производительностью по хлору от 0,01кг/час до 200 кг/час обеспечивающие максимальную эжекционную способность. Установлено, конфигурация внутреннего продольного сечения эжектора, необходимо учитывать следующие размеры сечения (рис.5): диаметр сопла D, длина рабочей камеры L, диаметр камеры смешения D1, длина камеры смешения L1, выходной диаметр диффузора D2, длина диффузора L2.

Получено экспериментальное подтверждение зависимости расхода хлора Q от расхода воды R. Кривая Q = f(R) аппроксимируется двумя прямыми пересечение которых, отделяет зону эффективной эжекции с высоким коэффициентом эжекции от зоны неэффективной. Очевидно, что дальнейший интерес представляет область эффективной эжекции, а конструкция внутреннего сечения эжектора должна быть такова, чтобы коэффициент эжекции в этой области был максимально возможным.

Область, в которой изменяется коэффициент эжекции, определяется геометрическим параметром эжектора m, равным отношению площади сечения камеры смешения F к площади сечения сопла F1:

m = F/F1,

Таким образом, этот параметр является основным, по которому рассчитывают все остальные основные размеры эжекционного насоса.

Анализ результатов, полученных из сопоставления экспериментальных результатыов с существующими аналитическими данными [5, С. 56 – 62] позволяет сделать следующие выводы. Наиболее эффективная эжекция насоса соответствует параметру m лежащему в диапазоне значений 1,5 – 2,0. В этом случае, определяемый по формуле диаметр камеры смешения D1 = D29-08-2017 17-12-06 , при D = 7мм лежит в диапазоне 8,6 -10 мм.

Экспериментально установлена пропорция, связывающая все параметры, обозначенные на рис.5 L = 1,75D, L1 = 1,75D, L2= 7,75D. Эти соотношения обеспечивают максимальный коэффициент эжекции, который лежит в области максимально эффективной эжекции.

Таким образом, можем сделать вывод, что для достижения максимальной эжекции конструкция внутреннего продольного сечения и соотношения размеров должны соответствовать найденным соотношениям D1=1,25D, D2 = 2,5D, L = 1,75D, L1 =1,75D, L2 =7,75D

Сконструированный по данным соотношениям эжекционный насос создает оптимальные условия для передачи кинетической энергии эжектируещей жидкости поступающей на вход насоса под большим давлением, определяемым по диаграмме, эжектируемому газу подаваемому в камеру смешения с меньшим скоростным напором и меньшим запасом энергии и обеспечивает максимальное подсасывание газа.

Список литературы / References

  1. А. Б. Кожевников. Современная автоматизация реагентных технологий водоподготовки / А. Б. Кожевников, О. П. Петросян // Стройпрофиль. – 2007. – № 2. – С. 36 – 38.
  2. Бахир В. М. К проблеме поиска путей повышения промышленной и экологической безопасности объектов водоподготовки и водоотведения ЖКХ / Бахир В. М. // Водоснабжение и канализация. – 2009. – № 1. – С. 56 – 62.
  3. Пат. 139649 Российская Федерация, МПК C02F Автоматическая модульная станция водоподготовки с системой розлива и продажи питьевой воды улучшенного вкусового качества / Кожевников А. Б. Петросян А. О., Парамонов С. С.; опубл. 20.04.2014.
  4. А. Б. Кожевников. Современное оборудование хлораторных станций водоподготовки / А. Б. Кожевников, О. П. Петросян // ЖКХ. – 2006. – № 9. – С. 15 – 18.
  5. Бахир В. М. К проблеме поиска путей повышения промышленной и экологической безопасности объектов водоподготовки и водоотведения ЖКХ / Бахир В. М. // Водоснабжение и канализация. – 2009. – № 1. – С. 56 – 62.
  6. А. Б. Кожевников, О. П. Петросян. Эжекция и сушка материалов в режиме пневмотранспорта. – М: Изд-во МГТУ им. Н. Э. Баумана. – 2010. – C. 142.
  7. Пат. 2367508 Российская Федерация, МПК C02F Эжектор для дозирования газообразного хлора в воду / А. Б. Кожевников, О. П. Петросян.; опубл. 20.09.2009.
  8. А. С. Волков, А. А. Волокитенков. Бурение скважин с обратной циркуляцией промывочной жидкости. – М: Изд-во Недра. – 1970. – С. 184.

Список литературы на английском языке / References in English

  1. А. B. Kozhevnikov. Sovremennaja avtomatizacija reagentnyh tehnologij vodopodgotovki [Modern automation of reagent technologies of water treatment] / A. B. Kozhevnikov, O. P. Petrosjan // Strojprofil’ [Stroyprofile]. – 2007. – № 2. – P. 36 – 38. [in Russian]
  2. Bahir V. M. K probleme poiska putej povyshenija promyshlennoj i jekologicheskoj bezopasnosti ob#ektov vodopodgotovki i vodootvedenija ZhKH [To the problem of finding ways to improve the industrial and environmental safety of water treatment and disposal facilities] / Bahir V. M. // Vodosnabzhenie i kanalizacija [Water supply and sewerage]. – № 1. – Р. 56 – 62. [in Russian]
  3. 139649 Russian Federation, MPK C02F9. Avtomaticheskaja modul’naja stancija vodopodgotovki s sistemoj rozliva i prodazhi pit’evoj vody uluchshennogo vkusovogo kachestva [Automatic modular water treatment station with a system for bottling and selling drinking water of improved taste] / A. B. Kozhevnikov, A. O. Petrosjan, S. S. Paramonov.; Publ. 20.04.2014.
  4. B. Kozhevnikov. Sovremennoe oborudovanie hloratornyh stancij vodopodgotovki [Modern equipment of chlorination stations of water treatment] / A. B. Kozhevnikov. // ZhKH [Housing and communal services]. – 2006. – № 9. – P. 15 – 18. [in Russian]
  5. Bahir V. M. K probleme poiska putej povyshenija promyshlennoj i jekologicheskoj bezopasnosti ob#ektov vodopodgotovki i vodootvedenija ZhKH [To the problem of finding ways to improve the industrial and environmental safety of water treatment and disposal facilities]. / Bahir V. M. // Vodosnabzhenie i kanalizacija [Water supply and sewerage]. – 2009. – № 1. – P. 56 – 62. [in Russian]
  6. Kozhevnikov, O. P. Petrosjan. Jezhekcija i sushka materialov v rezhime pnevmotransporta [Ejection and drying of materials in pneumatic transport mode]. M: Izd-vo MGTU im. N. Je. Baumana [Publishing house Moscow State Technical University named after N. Bauman Kaluga Branch]. – 2010. – P. 142. [in Russian]
  7. 2367508 Russian Federation, MPK C02F9. Jezhektor dlja dozirovanija gazoobraznogo hlora v vodu [Ejector for dosing chlorine gas into water] / A. B. Kozhevnikov, A. O. Petrosjan; Publ. 20.09.2009.
  8. Volkov, A. A. Volokitenkov. Burenie skvazhin s obratnoj cirkuljaciej promyvochnoj zhidkosti [Drilling of wells with back circulation of washing liquid]. M: Izd-vo Nedra [Publishing house Bosom]. – 1970. – P.184. [in Russian]

Инжекция

ИНЖЕКЦИЯ (а. injection; н. Injection, Einspritzung; ф. injection; и. inyeccion) — процесс непрерывного смешения двух потоков веществ и передачи энергии инжектирующего (рабочего) потока инжектируемому с целью его нагнетания в различные аппараты, резервуары и трубопроводы. Смешиваемые потоки могут находиться в газовой, паровой и жидкой фазах и быть равнофазными, разнофазными и изменяющейся фазности (например, пароводяные). Применяемые для инжекции струйные аппараты (насосы) называются инжекторами. Явление инжекции известно с 16 в. С начала 19 в. процесс инжекции получил промышленное использование для усиления тяги в дымовых трубах паровозов.

Основы теории инжекции были заложены в работах немецкого учёного Г. Цейнера и английского учёного У. Дж. М. Ранкина в 70-е гг. 19 в. В СССР, начиная с 1918, значительный вклад в развитие теории и практики инжекции внесли А. Я. Милович, Н. И. Гальперин С. А. Христианович, Е. Я. Соколов, П. Н. Каменев и др. Смешение рабочего и инжектируемого потоков с разными скоростями сопровождается значительной потерей кинетической энергии на удар и превращением её в тепловую, выравниванием скоростей, повышением давления инжектируемого потока. Инжекция описывается законами сохранения энергии, массы и импульсов. При этом потеря энергии на удар пропорциональна квадрату разности скоростей потоков в начале смешения. При необходимости быстрого и тщательного перемешивания двух однородных сред массовая скорость рабочего потока должна превышать массовую скорость инжектируемого в 2-3 раза. В некоторых случаях при инжекции наряду с гидродинамическим происходит и термический процесс с передачей рабочим потоком инжектируемому тепловой энергии, например при нагревании жидкостей паром с интенсивным перемешиванием сред — жидкости и конденсата.

Принцип инжекции заключается в том, что давление Р1 и средняя линейная скорость и1 инжектирующего (рабочего) потока газа или жидкости, движущегося по трубе, в суженном сечении меняются. Скорость потока возрастает (и2>и1), давление (Р2<Р1) падает, т.е. рост кинетической энергии потока сопровождается уменьшением его потенциальной энергии. При падении давления Р2 ниже давления Р0 в суженную часть трубы засасывается инжектируемая среда, которая за счёт поверхностного трения увлекается рабочим потоком и смешивается с ним. При дальнейшем движении смеси по трубе с расширяющимся сечением уменьшение скорости потока до 3 и его кинетической энергии сопровождается нарастанием потенциальной энергии и давления до величины Р3, причём Р2<Р0<Р3<Р1. Таким образом, в результате инжекционное давление инжектируемой среды возрастает от Р0 до Р3 за счёт падения давления рабочего потока от Р1 до Р3, а давление смешанного потока приобретает промежуточное значение.

При инжекции с изменяющейся фазностью сред, например с конденсацией рабочего пара от соприкосновения с холодной инжектируемой жидкостью, можно создавать давление смешанного потока, превышающее давление рабочего потока. В этом случае работа, затрачиваемая на инжекцию, совершается не только энергией струи, но и внешним давлением при сокращении объёма конденсирующегося рабочего пара, а также за счёт превращения его тепловой энергии в потенциальную энергию смешанного потока. По сравнению с механическими способами смешивания, нагревания, сжатия и нагнетания различных сред инжекция отличается простотой, однако требует в 2-3 раза больших затрат энергии. О применении инжекции см. в статье Инжектор.

Что такое эжектор — для насосной станции на vodatyt.ru

Автор Петр Андреевич На чтение 6 мин. Просмотров 814

Эжектор – это устройство, внутри которого происходит передача кинетической энергии от входа к выходу увеличивая скорость выхода. Эжектор устроен так, что работает по закону Бернулли и в большинстве случаев предназначен для струйных насосов. Данное устройство предназначено для модернизации системы водопровода при подачи воды с большой глубины.

Зачем нужны эжекторы и что это такое?

Для многих домовладельцев становится проблемой организация автономного водоснабжения в силу большой глубины шурфа.

Что такое эжекторЧто такое эжектор

Уже с восьмиметровой отметки начинаются проблемы. Для насосных станций с эжекторами те же возможности, что и для помп большой производительности. Использование глубоких источников требует применение мощных насосов погружного типа, которые стоят дорого.

Для чего нужны эжекторы? Чтобы не тратить деньги на дорогие модели. Использование недорогих насосных станций с эжекторами позволяют решить проблему с такой же эффективностью. При этом затраты на модернизацию минимальны. Причем можно улучшить систему локальным методом или приобрести комплекс, который изначально рассчитан для этого.

Принцип работы

Все эжекторы для насосных станций работают по одной и то же схеме. За основу взят принцип Бернулли. В соответствии с ним если ускорить поток, то в зоне перед точкой придания ускорения образуется зона разряженности. Давление в ней ниже, что служит причиной появления втягивающего эффекта. Если добавить его к потоку, формируемому насосной станцией, то результат такой модернизации – увеличения производительности.

Устройство

Какой бы тип устройства не рассматривался, эжекторный насос состоит из:

  • отсека для всасывания;
  • смесительной полости;
  • диффузора;
  • сужающегося патрубка.

Принцип действия в том, что из сопла (патрубка) жидкость выбрасывается с большой скоростью. Отток воды провоцирует появление внутри рабочей камеры пониженного давления, которое и затягивает жидкость. Цикл повторяется непрерывно, что позволяет поддерживать в трубопроводе постоянное давление.

Разновидности эжекторов

Эжекторные насосы бывают паровыми, пароструйными и газовыми. Общий принцип их действия идентичен. Но приводится в действие устройства по-разному. Насос с эжектором парового типа применяется для откачивания газовых сред из замкнутого объема. Можно поддерживать давление на отрицательной отметке, делая среду разряженной. Сфера применения – промышленность.

Пароструйная конструкция предназначенная для работы с газовыми средами и жидкостями. Различие работы эжекторного устройства такого типа в том, что пар, проходящий сопло, на большой скорости затягивает с собой перекачиваемую среду. Учитывая высокую производительность, сфера применения данных приборов – срочная откачка воды, например, на корабле.

Газовый тип – отдельная категория эжекторов. Приборы работают на сжатом газе, который смешиваясь с перекачиваемой средой, направляется в диффузор для замедления. После его прохождения смесь вырывается сквозь отверстие сопла. Предназначены такие устройства в основном для газовой промышленности.

Встроенные модели

Разбираясь, что такое эжектор, необходимо рассмотреть классификацию этих приборов в зависимости от места установки. Встроенные модели являются частью конструкции, а точнее, ее составляющей. Эжектор может быть прикреплен на самом насосе или рядом с ним на единой станине. Монтаж заключается в прикреплении блока к основе и подключении силов

Схема работает при подъеме воды с глубины 10 метров. Точные параметры указываются в технической документации. Монтаж рекомендуется производить вне дома. Это может быть колодец, в котором установлен оголовок, или отдельно стоящее здание. Всему причиной повышенный уровень шума и вибрация. Если такой возможности нет, рассматривают следующий тип монтажа.

Выносные модели

В таком случае схема должны быть дополнена дополнительным баком для закачки жидкости. Скважина должна быть достаточно широкой, чтобы в нее можно было проложить два шланга. Производительность в данном случае уменьшиться на треть за счет уменьшения диаметра заборной трубы. Также потребуется отдельный трубопровод для подачи воздуха.

Но при такой комплектации в зодозаборнике создается область разрежения, которая позволяет поднимать жидкость с отметки более 50 метров. При этом расстояние от скважины до потребителя может быть более 40 метров. В этом случая насосную станцию можно установить в помещении внутри дома. Это может быть подвал, котельная, кладовая и т.д.

Эжекторные насосы

Процедура подключения эжектора в виде самостоятельного устройства заключается в двух этапах:

  1. Прокладывается дополнительная труба по всем правилам, которые брались за основу при монтаже трубопровода для подачи воды. Дополнительная труба нужна для подачи нагнетающей среды.
  2. Подсоединение патрубка к всасывающему узлу. Требуется смонтировать фильтр грубой очистки и обратный патрубок. Рекомендуется монтаж вентиля для регуляции работы системы.

Вентиль необходим в том случае, если уровень воды в шурфе больше того, на который рассчитан насос. В данном случае можно отрегулировать нагнетаемый поток.

Эжекторная насосная станция

Насосная станция со встроенным эжектором – это комплекс оборудования, изначально рассчитанный для выполнения работы в определенных условиях. Главными параметрами, которые берутся в учет при выборе, являются мощность и производительность. Первая характеристика означает способность поддерживать давление в системе, а также возможность удержания водяного столба и передачу жидкости на расстояние по горизонтальному трубопроводу.

Вторая характеристика – производительность. Это количество жидкости, перекачиваемое за единицу времени. Данный параметр не может быть большим, чем дебит скважины. Если речь идет о покупке насосной станции со встроенным эжектором, то в технической документации указаны общие выходные характеристики. Это значит, что никаких дополнительных расчетов производить не придется.

Подключается оборудование согласно прилагаемой инструкции. Шланги прикрепляются при помощи хомутов, идущих в комплекте. Трубопровод предполагает резьбовое соединение. Главное – предусмотреть место для установки, чтобы дождь и мороз не мог вывести систему из строя. Для этого делается кессон или строится отдельное здание. Навес подойдет только для дачи, не предусмотренной для круглогодичного проживания.

В качестве дополнительного оборудования для насосной станции с эжектором устанавливается манометр, если это не предусмотрено производителем. Благодаря этому прибору можно контролировать давление в трубопроводе. Естественно, он устанавливается на выходе из станции. Если глубина скважины находится в пределах 15-40 метров, специалисты рекомендуют устанавливать поверхностный насос с выносным эжектором.

Схема подключения

Наилучшая схема подключения предусматривает соединение станции с эжектором только вертикальной трубой. В противном случае возможно завоздушивание, что приводит к снижению работоспособности системы. Если такой возможности нет, нужно позаботиться об отсечных вентилях для стравливания воздуха по необходимости.

Описанное оборудование полностью решает потребность жильцов дома в питьевой воде. Полив участка, орошение приусадебных клумб, палисадников или сада также организовывается подобным образом. Главное условие – правильно подобрать компоненты системы, чтобы их рабочие характеристики находились в полном соответствии. Тогда система с эжектором будет достаточно эффективной, и при этом недорогой.

ПолезноБесполезно

Что такое эжектор и как он улучшает работу насоса

У некоторых владельцев индивидуальных домов, решивших самостоятельно обустроить систему водоснабжения от подземной скважины или колодца, может возникнуть проблема с подачей воды или недостатком давления в системе. Причиной может быть отсутствие в системе одного из элементов установки для насосной станции, неучтенного в первоначальных расчетах, – водяного эжектора. Эжектор – что это такое, какой у него принцип действия, какая роль в работе системы отводится этому устройству и как можно устранить возникшую проблему – данные вопросы стоит рассмотреть подробнее.

Эжектор в насосной станцииЭжектор в насосной станции

Принцип действия эжектора

Конструкция эжектора включает в себя несколько элементов – входной патрубок эжектирующей воды с сужающимся соплом и основную трубу с боковым патрубком для эжектируемой среды, камерой смешения, цилиндрическим горлом, расширяющимся диффузором и выходным патрубком.

При подаче под давлением в эжектор эжектирующей воды ее скорость в сопле резко возрастает. При этом в камере смешения создается зона разрежения и в нее начинает поступать эжектируемая вода или газ. Обе среды смешиваются и под давлением, немного меньшим первоначального на входе в эжектор, поступают на выход устройства.

Большинство приобретаемых частными домовладельцами погружных насосов обеспечивает надежную работу при глубине водоносного слоя 7-10 м. Подключение в схему эжектора позволяет обеспечить надежное водоснабжение с глубины, доходящей до 20-40 м.

Принцип работы оборудованияПринцип работы оборудования

Выбор: встроенный или внешний

Применяемые в комплекте насосной станции водоснабжения эжекторы по типу установки могут быть встроенными в насос или внешними, при этом разница в их устройстве состоит в монтажных деталях.

Достоинствами встроенного типа эжектора являются компактность и защищенность установки от загрязнений, отсутствие дополнительных механических фильтров для очистки от взвешенных и нерастворимых включений. При этом насосы со встроенным эжектором отличаются более высокой электрической мощностью и повышенным шумом при работе, что следует учитывать при устройстве сети электроснабжения и компоновке участка.

Эжекторы выносного типа (внешние) устанавливаются или непосредственно в скважину, или рядом с ней. Энергоэффективность таких устройств несколько меньше по сравнению со встроенными , но они позволяют работать с более глубокими скважинами.

Особенности монтажа устройства

Из-за высоких шумовых характеристик эжекторные насосы встроенного типа приходится размещать в специально построенном помещении/пристройке с дополнительной звукоизоляцией или использовать для установки кессон скважины, что делает обслуживание оборудования менее удобным.

Монтаж эжектораМонтаж эжектора

Установка эжектора.

При монтаже системы с внешним эжектором ее основные составляющие – скважина, насос и эжектор – могут размещаться друг от друга на расстоянии до 20-40 м. Дополнительными элементами такой станции являются рециркуляционная труба для соединения насоса и эжектора и накопительный бак поддержания постоянного напора воды для системы рециркуляции.

На эффективности работы насосной станции такой состав элементов не сказывается, но предоставляет возможность для более рационального устройства участка.

Использование самодельного внешнего варианта

Проблему отсутствия эжектора можно решить заменой имеющегося насоса на другой, со встроенным эжектором, что повлечет дополнительные затраты средств и времени. Более экономичным вариантом будет изготовление несложного по конструкции устройства внешнего типа своими руками и установка его в существующую схему водоснабжения.

Собственноручная сборка эжектора

Для изготовления простейшего эжекторного устройства понадобятся всегда имеющиеся под рукой или в продаже сантехнические фитинги – тройник с внутренней резьбой, муфты и отводы.

Основным элементом служит неравнопроходной тройник, в нижнюю часть которого вставляется штуцер с наружной резьбой. При установке штуцера необходимо обеспечить, чтобы он не доходил до верхнего края тройника на 2-3 мм. Для этого при необходимости он дорабатывается подпиливанием или наращиванием полиэтиленовой трубкой. Штуцер будет играть роль сопла, поэтому от точности его установки зависят разрежение в корпусе тройника и напор воды на выходе.

Самодельный эжекторСамодельный эжектор

К верхней части тройника через переходник подсоединяется полиэтиленовая труба для подачи воды в систему. На резьбе нижней части, кроме штуцера, устанавливается отвод для подачи рециркуляционной воды от насоса. Для забора воды из скважины или колодца используется боковой патрубок тройника с присоединенной через отвод полиэтиленовой трубкой. Его диаметр должен быть меньше, чем по основному проходу фитинга.

Что касается размеров, то для изготовления эжектора, обеспечивающего водоснабжение небольшого дома или дачи, достаточным будет использование тройника на ¾” с боковым штуцером на ¾” и внутреннего штуцера с диаметром 12 мм.

Порядок подключения труб

Для подключения к смежным элементам системы можно использовать полиэтиленовые или металлопластиковые трубы. Подсоединенная к боковому патрубку труба с установленными обратным клапаном и фильтром должна иметь достаточную для погружения в скважину длину, ее крепят в первую очередь.

К нижнему концу устройства с зауженным штуцером присоединяют трубопровод рециркуляции, соединенный с емкостью для воды и необходимый для создания обратного потока.

Верхняя часть эжектора подключается через трубопровод к поверхностному насосу, на этом сборка самодельной эжекторной установки завершена.

Стартовый запуск и дальнейшая эксплуатация

Для первичного запуска системы со смонтированным эжектором ее элементы, включая все подсоединенные трубопроводы, должны быть развоздушены и заполнены водой. У насоса для его заполнения имеется специальный штуцер. Стартовый запуск насоса выполняют при закрытом вентиле на его напоре для развоздушивания и полного заполнения трубопроводов, время работы не должно превышать 10-20 секунд. Открытием крана стравливают воздух из системы, при необходимости выполняют несколько циклов операции до заполнения гидроаккумулятора и автоматического отключения насоса.

Затем гидроаккумулятор через расходные краны системы полностью сливается, а насос при пустой гидроемкости должен перейти в автоматический режим работы и включиться для ее заполнения. Если этого не происходит, то при соединении труб или заполнении были допущены ошибки – негерметичность соединения привела к подсосу воздуха или засорился обратный клапан на заборе воды. В этом случае необходимо повторить все перечисленные операции и выполнить повторный запуск системы.

Инжекция — это… Что такое Инжекция?

  • Инжекция — физическое явление, наблюдаемое в полупроводниковых или гетеропереходах, при котором при пропускании электрического тока в прямом направлении через p n переход в прилежащих к переходу областях создаются высокие концентрации неравновесных… …   Википедия

  • ИНЖЕКЦИЯ — (фр. от лат.). См. ИНЪЕКЦИЯ. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. инжекция (см. инжектор) 1) в полупроводниковой технике введение носителей заряда в область, где они являются неосновными; 2) физ. ввод… …   Словарь иностранных слов русского языка

  • инжекция — пароинжекция, нагнетание, ввод Словарь русских синонимов. инжекция сущ., кол во синонимов: 5 • вбрасывание (3) • …   Словарь синонимов

  • ИНЖЕКЦИЯ — 1) ввод пучка заряженных частиц в ускоритель для дальнейшего ускорения или накопления частиц2)] Проникновение неравновесных носителей заряда в полупроводник под действием электрического поля. Источник неравновесных носителей контактирующие… …   Большой Энциклопедический словарь

  • инжекция — и, ж. injection f. &LT;лат. injectare. 1. устар., мед. Впрыскивание, инъекция. Я выезжать не могу. Только жена моя навещает его &LT;Шевырева&GT;. Но так как она исправляет при мне и должность Нелатонова помощника, четыре раза в день производя… …   Исторический словарь галлицизмов русского языка

  • инжекция — Впрыскивание суспензии в разъёмную форму для изготовления фасонных изделий [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] EN injection DE Injektionsverfahren FR injection …   Справочник технического переводчика

  • ИНЖЕКЦИЯ — (1) в ускорителе ввод пучка заряженных частиц в ускоритель для дальнейшего их ускорения или накопления; (2) И. носителей зарядов проникновение неравновесных (избыточных) носителей заряда в (см.) млн. (см.) под действием электрического поля. И.… …   Большая политехническая энциклопедия

  • инжекция — 1) ввод пучка заряженных частиц в ускоритель для дальнейшего ускорения или накопления частиц. 2) Проникновение неравновесных носителей заряда в полупроводник под действием электрического поля. Источник неравновесных носителей  контактирующие… …   Энциклопедический словарь

  • инжекция — injekcija statusas T sritis fizika atitikmenys: angl. injection vok. Injektion, f rus. инжекция, f; инъекция, f pranc. injection, f …   Fizikos terminų žodynas

  • ИНЖЕКЦИЯ — 1) ввод пучка заряж. частиц в ускоритель для дальнейшего ускорения или накопления частиц. 2) Проникновение неравновесных носителей заряда в полупроводник под действием электрич. поля. Источник неравновесных носителей контактирующие полупроводник… …   Естествознание. Энциклопедический словарь

  • Принцип работы эжектора и изготовление своими руками Принцип работы эжектора достаточно простой

    Очень часто на загородных участках нет централизованного водоснабжения. Поэтому владельцам частных домов приходится бурить скважины и организовывать систему водопровода самостоятельно. Однако нередко напорные воды находятся на большой глубине. В этом случае добыча воды осложняется тем, что обычного насоса для транспортировки воды становится недостаточно. Поэтому очень часто в такие системы устанавливается эжектор.

    Содержание статьи

    Принцип работы эжектора

    Чем больше глубина скважины, тем труднее набрать из нее воду. Поэтому для перемещения жидкости по трубопроводу используется насос. Однако при глубине скважины более 7 метров обычного такого прибора будет недостаточно. В этом случае можно приобрести более мощное погружное устройство или дополнить систему эжектором, который позволит полностью разрешить эту проблему.

    Принцип работы эжектора можно понять, изучив представленную иллюстрацию

    Эжекторный насос – это такое устройство, которое перемещает энергию одной среды в другую. Его принцип действия основан на увеличении напора воды в трубопроводе за счет быстрого движения жидкости по специальному ответвлению.

    Такой принцип работы позволяет увеличить мощность уже существующей поверхностной насосной станции. Благодаря этому можно добывать воду из скважины глубиной до 40 метров. Чтобы лучше понять, как работает это устройство, необходимо проследить за его действием.

    Принцип работы эжекторного насоса:

    1. Вода поступает через сопло в эжектор. При этом диаметр поперечного сечения сопла меньше диаметра входа в эжекторную систему.
    2. Благодаря прохождению через узкое сопло в камеру с более большим диаметром жидкость существенно ускоряется. Таким образом, увеличивается ее напор. В камере смесителя образуется область с более низким давлением.
    3. Благодаря разряженной атмосфере в камеру начинает всасываться с огромной скоростью жидкость, которая находится под более высоким давлением.

    Такое устройство очень полезно для глубоких скважин. Ведь оно позволяет быстро выкачивать воду из самых глубоких отверстий.

    Разновидности эжекторных насосов

    Эжекционный насос – это полезная в хозяйстве вещь, особенно если на участке присутствуют глубокие скважины. Чтобы было удобно ими пользоваться, необходимо выбрать подходящий для себя вариант насосного оборудования.

    Эжекторы имеют достаточно простое устройство. Именно поэтому их несложно сделать своими руками.

    Существует несколько типов эжекторных насосов, они делятся по принципу работы и устройству:

    1. Пароэжекторный насос откачивает газообразные среды из замкнутых пространств. Благодаря этому поддерживается разряженная среда. Такие эжекторы используется достаточно часто.
    2. Струйный паровой эжектор высасывает газы или воду из замкнутого пространства за счет энергии струй пара. В этом случае струи пара выходят из сопла и заставляют двигаться воду, которая выходит из кольцевого канала через сопло.
    3. Газовый (или воздушный) эжектор сжимает газы, которые уже находятся в разряженной среде, с помощью высоконаправленных газов. Этот процесс происходит в смесителе, из которого вода перетекает в диффузор, где она тормозится, а напряжение растет.
    Эжекторные насосы обладают отличными эксплуатационными свойствами

    Также эжекторы отличаются по месту их установки:

    1. Встроенный водяной эжектор устанавливается внутрь насоса или рядом с ним. Благодаря такому расположению прибор занимает минимум места и не боится грязи. Кроме того, такие устройства не требуют установки дополнительных фильтров. Они используются для скважин, глубина которых не более 10 метров. К тому же встроенные эжекторы издают при работе массу шума и требуют мощного насоса.
    2. Устройство, которое называется выносным (или внешним), может устанавливать на некотором расстоянии от насоса, но не более 5 метров. Их нередко ставят в самой скважине.

    Все разновидности эжекторов подойдут для использования в частном доме. Они помогают быстро откачать из скважины воду, несмотря на ее глубину.

    Изготовление своими руками

    Эжекторы вполне возможно делать своими руками. Конечно, такая работа требует определенной ответственности и внимательности, но она все же вполне выполнима.

    Особой популярностью пользуется вакуумный насос. Чертежи и схема такого устройства предельно понятны.

    Эжектор, конечно, можно легко купить в готовом виде. Однако если вы хотите значительно сэкономить, то лучше сделать его самостоятельно.

    Изготовление эжектора своими руками:

    1. Необходимо взять тройник и закрепить на нем штуцер таким образом, чтобы патрубок штуцера поместился во внутрь тройника и не выступал из него. Если патрубок слишком длинный или короткий, то это можно исправить. В первом случае его можно сточить, а во втором — нарастить полимерную трубку.
    2. Теперь необходимо поработать с частью, которая будет подсоединяться к насосу. Для этого вверху тройника прикручивается переходник.
    3. Внизу тройника в той части, где стоит штуцер, прикручивается отвод в форме уголка. Он будет соединяться с рециркуляционной частью эжектора.
    4. В боковой части тройника также вкручивают переходник уголкового типа. Его присоединяют в трубу с помощью цангового зажима.

    Все соединения необходимо загерметизировать специальной лентой.

    Правила установки и первый запуск

    После того как вы соберете эжектор, его необходимо правильно установить. Если следовать инструкции, то сделать это будет несложно. Ведь само изделие имеет очень простую конструкцию. На эжекторе есть три выхода. К каждому из таких выходов обязательно нужно подключить свою трубу.

    Первым делом труба прикрепляется к тому выходу, который будет забирать воду из колодца. Он находится на боковой части устройства. На конце такой трубы монтируется фильтр и обратный клапан. Труба, которая используется для забора, должна быть длинной, но при этом не нужно, чтобы она доставала до самого дна скважины.

    Перед установкой насоса следует посмотреть обучающее видео

    К нижней части эжектора подключается труба с зауженным штуцером. Это магистраль для циркуляции воды. Второй конец трубы подключается к емкости. Из нее будет забираться вода для создания обратного потока. К верхней части эжектора подключается третья труба. Другим концом она монтируется на насос.

    Как произвести первый запуск станции:

    1. Залейте воду в отверстие эжектора и перекройте кран, который позволяет перемещаться воде от насоса по водопроводу.
    2. Далее насос необходимо выключить на полминуты, а затем включить его. Откройте кран и выпустите часть воздуха из системы.
    3. Повторяйте эти действия до тех пор, пока водопровод не наполнит трубы водой.
    4. Включите насос, дождитесь, пока система наполнится водой, и насос автоматически отключится. Откройте кран и дождитесь, пока трубы опустошатся, и насос включится вновь.

    Если вода не идет, система собрана неправильно. В этом случае придется найти неполадку и устранить ее. Именно поэтому первый запуск нужно осуществлять описанным способом.

    Эжектор нужен тем, кто живет в частном доме и имеет очень глубокую скважину. Такая система позволит использовать не очень мощный насос максимально эффективно.

    Инъективный, Сюръективный и Биективный

    «Инъективный, сюръективный и биективный» рассказывает нам о том, как ведет себя функция.

    Функция — это способ сопоставления членов набора «A» с по с набором «B»:


    Давайте посмотрим на это более внимательно:

    Общая функция очков от каждого члена «A» до члена «B».

    Это , никогда не имеет одного «A», указывающего на более чем один «B», поэтому «один ко многим» не подходит для в функции (так что-то вроде «f (x) = 7 или 9»). «не допускается)

    Но более одного «А» могут указывать на один и тот же «В» ( «многие к одному — это нормально» )

    Инъективное означает, что у нас не будет двух или более «А», указывающих на одну и ту же «В».

    Итак, «многие-к-одному» не в порядке (что нормально для общей функции).

    Поскольку это также функция «один ко многим» не в порядке

    Но мы можем иметь «B» без соответствующей «A»

    Инъективный также называется « Один-на-один »

    Объективное значение означает, что у каждого «B» есть , по крайней мере, один , соответствующий «A» (может быть, больше чем один).

    Не будет пропущено «B».

    Биективный означает и Инъективный, и Сюръективный вместе.

    Думайте об этом как об «идеальном соединении» между наборами: у каждого есть партнер, и никто не остался в стороне.

    Итак, между членами наборов существует идеальное « однозначное соответствие ».

    (но не путайте его с термином «один-к-одному», означающим «инъективный»).

    Биективные функции имеют обратное !

    Если каждая буква «А» идет к уникальной букве «В», а каждая буква «В» имеет соответствующую букву «А», то мы можем идти вперед и назад, не сбившись с пути.

    Читайте Обратные функции для получения дополнительной информации.

    на графике

    Итак, давайте посмотрим несколько примеров, чтобы понять, что происходит.

    Когда A и B являются подмножествами вещественных чисел, мы можем построить график отношений.

    Пусть у нас есть A по оси x и B по y, и посмотрим на наш первый пример:

    Это , а не функция , потому что у нас есть A со многими B . Это как сказать f (x) = 2 или 4

    Не проходит «Тест вертикальной линии» и поэтому не является функцией.Но это все еще действительные отношения, поэтому не сердитесь на них.

    Теперь общая функция может быть такой:


    A Общая функция

    МОЖЕТ (возможно) иметь B со многими A . Например, синус, косинус и т. Д. Такие. Отлично действующие функции.

    Но «Инъективная функция » строже и выглядит так:


    «Инъективный» (один-к-одному)

    Фактически мы можем провести «тест горизонтальной линии»:

    Чтобы быть Инъективным , горизонтальная линия никогда не должна пересекать кривую в 2 или более точках.

    (Примечание. Строго увеличивающиеся (и строго убывающие) функции являются инъективными, о них можно прочитать подробнее)

    Итак:

    • Если он проходит тест вертикальной линии , это функция
    • Если он также проходит тест по горизонтальной линии , это инъективная функция

    Формальные Определения

    Хорошо, ждите подробностей обо всем этом:

    Инъективный

    Функция f является инъективным тогда и только тогда, когда всякий раз, когда f (x) = f (y) , x = y .

    Пример: f ( x ) = x + 5 из набора действительных чисел to является инъективной функцией.

    Правда ли, что всякий раз, когда f (x) = f (y) , x = y ?

    Представьте себе х = 3, тогда:

    Теперь я говорю, что f (y) = 8, каково значение y? Это может быть только 3, так что х = у


    Пример: f ( x ) = x 2 от набора действительных чисел до , а не инъективная функция из-за такого рода вещей:

    Это противоречит определению f (x) = f (y) , x = y , поскольку f (2) = f (-2), но 2 ≠ -2

    Другими словами, есть два значения A , которые указывают на один B .

    НО, если мы сделали это из набора натуральных числа, то это инъективно, потому что:

    • f ( 2 ) = 4
    • нет f (-2), потому что -2 не является естественным номер

    Итак, домен и кодомен каждого набора важны!

    Surjective (также называется «На»)

    Функция f (из набора A до B ) является сюръективной тогда и только тогда, когда для каждых y в B , есть по крайней мере один x в A такой, что f ( x ) = y , другими словами f сюръективно если и только если f (A) = B .

    Проще говоря: у каждого B есть немного A.

    Пример: Функция f ( x ) = 2x из множества натуральных числа к множеству неотрицательных и даже чисел — это сюръективная функция .

    НО f ( x ) = 2x из набора натуральных числа не являются сюръективными , потому что, например, ни одна из них не может быть сопоставлена ​​с 3 с помощью этой функции.

    Биектив

    Функция f (из набора A до B ) является биективной , если для каждых y в B существует ровно одна x в A так, что f ( x ) = y

    В качестве альтернативы, f является биективным, если это однозначного соответствия между этими наборами, другими словами, инъективный и сюръективный.

    Пример: Функция f ( x ) = x 2 из множества положительных вещественных цифры к положительным реальным числа являются как инъективными, так и сюръективными. Таким образом, это также , биективный .

    Но одна и та же функция из набора всех действительных чисел не является биективной, потому что мы могли бы иметь, например, оба

    ,
    c # — разница между инъекцией интерфейса и инъекцией метода Переполнение стека
    1. Товары
    2. Клиенты
    3. Случаи использования
    1. Переполнение стека Публичные вопросы и ответы
    2. Команды Частные вопросы и ответы для вашей команды
    3. предприятие Частные вопросы и ответы для вашего предприятия
    4. работы Программирование и связанные с ним технические возможности карьерного роста
    5. Талант Нанимать технический талант
    6. реклама Связаться с разработчиками по всему миру
    ,
    Java — В чем разница между @Inject и @Autowired в Spring Framework? Какой использовать при каких условиях? Переполнение стека
    1. Товары
    2. Клиенты
    3. Случаи использования
    1. Переполнение стека Публичные вопросы и ответы
    2. Команды Частные вопросы и ответы для вашей команды
    3. предприятие Частные вопросы и ответы для вашего предприятия
    4. работы Программирование и связанные с ним технические возможности карьерного роста
    5. Талант Нанимать технический талант
    6. реклама Связаться с разработчиками по всему миру
    .
    Внедрение ресурсов в сравнении с Внедрением Зависимостей!

    Товарищи, в следующей статье представлен обзор внедрения в Java EE и описаны два механизма внедрения, предоставляемые платформой: Внедрение ресурсов и Внедрение зависимостей.

    Java EE предоставляет механизмы внедрения, которые позволяют нашим объектам получать ссылки на ресурсы и другие зависимости, не создавая их экземпляры напрямую (явно с ключевым словом «new»).Мы просто объявляем необходимые ресурсы и другие зависимости в наших классах, рисуя поля или методы с аннотациями, которые обозначают точку внедрения для компилятора.

    Затем контейнер предоставляет необходимые экземпляры во время выполнения. Преимущество Injection заключается в том, что он упрощает наш код и отделяет его от реализаций его зависимостей.

    Следует обратить внимание на тот факт, что Dependency Injection — это спецификация (также шаблон проектирования), а Context и Dependency Injection (CDI) — это реализация и стандарт Java для DI.

    Здесь обсуждаются следующие темы:

    · Внедрение ресурсов

    · Внедрение зависимостей

    · Разница между контекстом и внедрением зависимостей

    1. Внедрение ресурсов

    Одной из функций упрощения Java EE является реализация базового внедрения ресурсов для упрощения веб-компонентов и EJB-компонентов.

    Внедрение ресурсов позволяет внедрить любой ресурс, доступный в пространстве имен JNDI, в любой управляемый контейнером объект, такой как сервлет, корпоративный компонент или управляемый компонент.Например, мы можем использовать внедрение ресурсов для внедрения источников данных, соединителей или любых других требуемых ресурсов, доступных в пространстве имен JNDI.

    Тип, который мы будем использовать для ссылки на экземпляр, который внедряется, обычно представляет собой интерфейс, который отделил бы наш код от реализации ресурса.

    Для лучшего понимания приведенного выше утверждения давайте рассмотрим пример.

    Внедрение ресурса может быть выполнено следующими тремя способами:

    · Инъекция поля

    · Метод инъекций

    · Класс впрыска

    Теперь, Javax.annotation.Resource аннотация используется для объявления ссылки на ресурс. Итак, прежде чем продолжить, давайте изучим несколько элементов аннотации @Resource .

    @Resource имеет следующие элементы:

    · name: имя JNDI ресурса

    · тип: тип Java ресурса

    · authenticationType: тип аутентификации, используемый для ресурса

    · shareable: указывает, может ли ресурс использоваться совместно.

    · mappedName: непереносимое, специфичное для реализации имя, которому должен быть сопоставлен ресурс

    · описание: описание ресурса

    Элемент name — это JNDI-имя ресурса и является необязательным для внедрения на основе полей и методов.Для внедрения поля d defaultname — имя поля. Для внедрения на основе метода именем по умолчанию является имя свойства JavaBeans, основанное на методе.

    Элемент «name» и «type» должны быть указаны для внедрения класса.

    Элемент описания — это описание ресурса (необязательно).

    Давайте теперь перейдем к примеру.

    Инъекция поля:

    Чтобы использовать внедрение ресурсов на основе полей, объявите поле и аннотируйте его аннотацией @Resource.Контейнер будет ссылаться на имя и тип ресурса, если не указаны элементы name и type. Если вы укажете элемент type, он должен соответствовать объявлению типа поля.

    Пакет
     com.example;
    
    открытый класс SomeClass {
    
      @Ресурс
    
      частный javax.sql.DataSource myDB;
    
    ...
    
    } 

    В приведенном выше коде контейнер выводит имя ресурса на основе имени класса и имени поля: com.example.SomeClass / myDB. Предполагаемый тип isjavax.sql.DataSource.класс.

    Пакет
     com.example;
    
    открытый класс SomeClass {
    
      @Resource (имя = "CustomerDB")
    
      частный javax.sql.DataSource myDB;
    
    ...
    
    } 

    В приведенном выше коде имя JNDI — customerDB, а предполагаемый тип — javax.sql.DataSource.class.

    Способ впрыска:

    Чтобы использовать внедрение метода, объявите метод установки и добавьте аннотацию @Resource. Контейнер сам будет ссылаться на имя и тип ресурса, если он не указан программистом.Метод setter должен следовать соглашениям JavaBeans для имен свойств: имя метода должно начинаться с set, иметь возвращаемый тип void и только один параметр (само собой разумеется: P). В любом случае, если вы укажете тип возвращаемого значения, он должен соответствовать объявлению типа поля.

    Пакет
     com.example;
    
    открытый класс SomeClass {
    
      частный javax.sql.DataSource myDB;
    
    ...
    
      @Ресурс
    
      private void setMyDB (javax.sql.DataSource ds) {
    
      myDB = ds;
    
      }
    
    ...
    
    } 

    В приведенном выше коде контейнер ссылается на имя ресурса в соответствии с именем класса и именем поля: com.example.SomeClass / MyDB. Тип, который является javax.sql.DataSource.class.

    Пакет
     com.example;
    
    открытый класс SomeClass {
    
      частный javax.sql.DataSource myDB;
    
    ...
    
      @Resource (name = "customerDB")
    
      private void setMyDB (javax.sql.DataSource ds) {
    
      myDB = ds;
    
      }
    
    ...
    
    } 

    В приведенном выше коде имя JNDI — customerDB, а предполагаемый тип — javax.sql.DataSource.class.

    Класс впрыска:

    Чтобы использовать внедрение на основе классов, украсьте класс аннотацией @Resource и задайте элементы requiredname и type.

     @Resource (name = "myMessageQueue",
    
      тип = "javax.jms.ConnectionFactory")
    
    открытый класс SomeMessageBean {
    
    ...
    
    } 

    Объявление нескольких ресурсов

    Аннотация @Resources используется для группировки нескольких объявлений @Resource только для внедрения класса .

     @Resources ({
    
      @Resource (имя = "myMessageQueue",
    
      тип = "javax.jms.ConnectionFactory"),
    
      @Resource (имя = "myMailSession",
    
      тип = "javax.mail.Session")
    
    })
    
    открытый класс SomeMessageBean {
    
    ,..
    
    } 

    Приведенный выше код показывает аннотацию @Resources, содержащую два объявления @Resource. Одна — это очередь сообщений JMS (Java Messagin Service), а другая — сеанс JavaMail.

    2. Инъекция зависимостей

    Внедрение зависимостей позволяет нам превращать обычные классы Java в управляемые объекты и внедрять их в любой другой управляемый объект (объекты, которыми управляет контейнер).

    Используя DI, наш код может объявлять зависимости от любого управляемого объекта.Контейнер автоматически предоставляет экземпляры этих зависимостей в точках внедрения во время выполнения, а также управляет жизненным циклом этих экземпляров, начиная с загрузки класса и заканчивая его выпуском для сборки мусора.

    Внедрение зависимостей в Java EE определяет области действия. Например, управляемый объект, который реагирует только на один клиентский запрос (например, конвертер валют), имеет область действия, отличную от управляемого объекта, который необходим для обработки нескольких клиентских запросов в течение сеанса (например, корзины покупок). ,Мы можем определить управляемые объекты (также называемые управляемые бины ), чтобы мы могли впоследствии внедрить их, назначив область необходимому классу:

     @ javax.enterprise.context.RequestScoped
    
    открытый класс CurrencyConverter {...}
    
    Используйте аннотацию javax.inject.Inject для внедрения управляемых bean-компонентов; например:
    
    открытый класс MyServlet расширяет HttpServlet {
    
    @Inject CurrencyConverter cc;
    
    ...
    
    } 

    Umlike инъекции ресурсов, инъекция зависимостей типов безопасна , потому что она разрешается типа .Чтобы отделить наш код от реализации управляемого компонента, мы можем ссылаться на внедренные экземпляры, используя тип интерфейса, и наш управляемый компонент (обычный класс, управляемый контейнером) реализует этот интерфейс.

    Я не хотел бы больше обсуждать DI или лучше сказать CDI, поскольку у нас уже есть отличная статья по этому вопросу.

    3. Разница между внедрением ресурсов и внедрением зависимостей

    Различия между RI и DI перечислены ниже.

    1. Инъекция ресурсов может напрямую вводить ресурсы JNDI , а инъекция зависимостей — нет.

    2. Внедрение зависимостей может вводить регулярные классы (управляемый компонент) напрямую , тогда как внедрение ресурсов не может.

    3. Внедрение ресурсов разрешается по , имя ресурса , тогда как внедрение зависимостей разрешается по типу .

    4. Инъекция зависимостей типов безопасна , тогда как инъекция Resoiurce не .


    Вывод:

    Таким образом, мы изучили понятие о типах внедрения в Java EE и различиях между ними. Просто краткое. Это еще не все

    ,

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *