Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Из чего делают биотопливо: Биотопливо: что это, виды, плюсы и минусы

Содержание

Биотопливо: что это, виды, плюсы и минусы

  • Твердое
  • Жидкое
  • Газообразное

Твердое биотопливо

Самый типичный и древний вид твердого биотоплива — дрова. Однако сейчас в чистом виде и в крупных масштабах их уже почти не используют. Наиболее ходовым твердым видом биотоплива стали пеллеты, получаемые из древесных опилок или коры, соломы, оливковых косточек, ореховой скорлупы или шелухи семечек подсолнечника. Также пеллеты делают из навоза крупного рогатого скота.

Пеллеты заменяют уголь, дрова и солярку. При сгорании они не выделяют вредных веществ и практически не дымят (в отличие от угля и дизеля). Кроме того, они более энергоэффективны, чем обычные дрова. Плюс пеллетов также в минимальном содержании золы, что снижает потребность в обслуживании печей и котлов. Кроме того, они имеют самую низкую цену по сравнению с другими видами биотоплива.

Жидкое биотопливо

Биоэтанол — наиболее популярное и массовое жидкое биотопливо.

Его получают путем ферментации крахмала или сахара. Бразилия и США входят в число лидеров по производству биоэтанола. В США биотопливо на основе этанола производят из кукурузы и обычно смешивают с бензином для получения гибридного топлива. В целом в США на биотопливо приходится 5% от всего энергопотребления. В Бразилии биотопливо на основе этанола делают из сахарного тростника, а в Англии даже производят из сахарной свеклы.

Биодизель — второе по популярности жидкое биотопливо. Биодизель делают в основном из масличных растений, таких как соя или масличная пальма, и в меньшей степени из других масляных продуктов, например, отходов кулинарного жира после жарки во фритюре. Биодизель используется в дизельных двигателях и обычно смешивается с нефтяным дизельным топливом в различных пропорциях.

Биобутанол

 — четырехуглеродный спирт, который также относится к биотопливу. Его делают из того же сырья, что и этанол. Преимущества биобутанола по сравнению с биоэтанолом заключаются в том, что биобутанол не смешивается с водой, имеет более высокое содержание энергии и более низкое давление паров, что означает более низкую летучесть в результате испарения.

Диметиловый эфир. Его можно получить из биомассы, но в промышленных масштабах исходным сырьем для него остается природный газ. Плюс такого топлива в том, что его энергоэффективность практически равна дизельному топливу, однако плотность энергии у диметилового эфира вдвое ниже, чем у дизельного топлива, поэтому для него требуется топливный бак в два раза больше. К тому же для транспортных средств нужна специально разработанная система для работы двигателя на диметиловом эфире.

Сейчас инженеры активно разрабатывают новое поколение жидкого биотоплива, полученного с помощью водорослей.

Водоросли выращивают в больших бассейнах или на фермах, они превращают солнечный свет в энергию и хранят ее в виде масла. Масло извлекается механически (при прессовке биомассы) или с помощью химических растворителей, которые разрушают стенки клеток. Дальнейшая переработка и очистка дает биотопливо, подходящее для использования в качестве альтернативы традиционным видам топлива.

Газообразное биотопливо

Биогаз — это газ, состоящий в основном из метана и углекислого газа в различных пропорциях в зависимости от состава органического вещества, из которого он был получен. Основными источниками биогаза являются отходы животноводства и сельского хозяйства, сточные воды и органика из бытовых отходов. Биогаз образуется в результате процессов биологического разложения без доступа кислорода (анаэробное сбраживание).

Биоводород — аналог обычного водорода, который получают из биомассы. Термохимический способ представляет собой нагрев исходного сырья без доступа кислорода до высоких температур, например, древесных отходов, при котором выделяется водород и другие попутные газы. При биохимическом способе получения биоводорода в биомассу добавляют специальные микроорганизмы, которые ее разлагаются с выделением водорода.

Особенности производства биодизеля. Cleandex

Биодизель является альтернативным видом топлива для дизельных двигателей.

Биодизель (дизельное биотопливо) представляет собой сложный метиловый эфир с качеством дизельного топлива, производимый из масла растительного или животного происхождения и используемый в качестве биотоплива. Химическая формула – С13Н24.

Технология производства

Механизм получения биодизеля заключается в проведении

реакции этерификации – взаимодействия жирных кислот с метиловым спиртом в присутствии катализатора (щелочного или кислотного).

Соотношение растительного масла и метанола составляет приблизительно 9:1.

Рисунок. Технология производства биодизеля 

 

Реакция начинается медленно и в зависимости от перемешивания занимает всего 3–6 минут. Чтобы получить хороший выход биодизеля ее необходимо провести дважды. Затем все это декантируется: глицерин – на дне, и верхняя фракция – эфир – передается на вторую стадию реакции. Снова простое смешивание с метанолом и катализатором в течение нескольких минут завершит процесс этерификации, и второй статический декантер разделит фракции глицерина и эфира.

Реакция идет при любой температуре, т. е. диапазон от 20 oС до 90 oС является приемлемым. Каждые 10 oС удваивают скорость реакции, некоторые источники рекомендуют температуру 55 oС для повышенной безопасности процесса, так как метанол закипает при 65 oС.

Из одной тонны растительного масла и 111 кг спирта (в присутствии 12 кг катализатора) получается приблизительно 970 кг (1100 л) биодизеля и 153 кг первичного глицерина.

Сырье

Для производства биодизеля подходят любые растительные масла, твердые масла животного происхождения, отходы масложирового производства или скотобоен.

В качестве растительных масел могут использоваться подсолнечное, рапсовое, льняное и др. В зависимости от используемого сырья качественные показатели биотоплива разнятся. Так, например пальмовый биодизель имеет наибольшую калорийность, но быстро замерзает при относительно высоких температурах. Рапсовый биодизель несколько уступает пальмовому по калорийности, но лучше переносит холод.

Таблица. Объем производства растительного масла с 1 га некоторых сельхозкультур

Оптимальным сырьем для производства биодизеля служит рапс. Процент выхода дизельного топлива из 1 т рапсового масла – 96%.

По удельному весу в мировом производстве масличных культур рапс занимает третье место после сои и хлопка, опередив подсолнечник.

Различают рапс двух сортов – озимый и яровой с несколько различными показателями урожайности и масличности. Урожайность маслосемян сортов озимого рапса может достигать 60 ц с га, а яровых сортов – 45 ц с га. Среднее содержание масла в семенях – 40–50%.

Рапс является отличной культурой для севооборота с пшеницей. Он хорошо структурирует почву, в результате повышение урожайности зерновых, посеянных после рапса, составляет до 10–15 ц с га. 

Организация производства

Производство биодизеля отличается более простой в сравнении с биоэтанолом технологической цепочкой. В результате некоторые фермерские хозяйства имеют пару бочек для проведения химических реакций между растительным маслом и метиловым спиртом в качестве эксперимента.

В процессе производства биодизеля на каждый его галлон требуется затратить 0.083 кВт/ч электроэнергии и 10 Ккал тепловой энергии, получаемой от сжигания природного газа.

Оценку основных параметров организации производства биодизеля можно провести на примере испанского завода:

Мощность: 21 000 м3 биодизеля в год 
Инвестиции: 8.2 млн евро 
Персонал: 18 человек 
Территория: 6 000 м2 (здания — 2,300 м2) 
Число реакторов: 3 
Сырье: соевое масло, пальмовое масло 
Хранение масла: 300 м3 
Емкости для метанола: 60 м3 
Емкости для готового биодизеля (B100): 400 м3 
Емкости для глицерина: 100 м3

По экспертным оценкам, стоимость строительства заводов по производству биодизеля –

от 0.2 до 0.5 доллара на литр мощности.

При организации производства биодизеля — дополнительную прибыль можно получить от реализации получаемого глицерина.

 

Более подробная информация об особенностях производства биодизеля в условиях российского рынка представлена в отчете «Маркетинговое исследование рынка биотоплива» 

Источник: Cleandex. ru/Research.Techart

Биотопливо из водорослей. Cleandex

По своим энергетическим характеристикам водоросли значительно превосходят другие источники.

200 тысяч гектаров прудов могут производить топливо, достаточное для годового потребления 5% автомобилей США. 200 тысяч гектаров — это менее 0,1% земель США пригодных для выращивания водорослей.

Однако, водоросли, содержащие большее количество масла, растут медленнее. Например, водоросли, содержащие 80% нефти вырастают раз в 10 дней, в то время как, водоросли, содержащие 30% -3 раза в день.

Производство водорослей привлекательно еще и тем, что в ходе биосинтеза поглощается углекислый газ из атмосферы.

Однако, основная технологическая трудность заключается в том, что водоросли чувствительны к изменению температуры, которая вследствие этого должна поддерживаться на определенном уровне (резкие суточные колебания недопустимы).

Также коммерческому применению водорослей в качестве топлива препятствует на сегодняшний день отсутствие эффективных инструментов для сбора водорослей в больших объемах. Также необходимо определить наиболее эффективные для сбора масла виды.

Технологии выращивания водорослей

Департамент Энергетики США исследовал водоросли с высоким содержанием масла по программе «Aquatic Species Program». Исследователи пришли к выводу, что Калифорния, Гаваи и Нью-Мексико пригодны для промышленного производства водорослей в открытых прудах. В течение 6 лет водоросли выращивались в прудах площадью 1000 м2. Пруд в Нью-Мексико показал высокую эффективность в захвате СО2. Урожайность составила более 50 гр. водорослей с 1 м2 в день.

Кроме выращивания водорослей в открытых прудах существуют технологии выращивания водорослей в малых биореакторах, расположенных вблизи электростанций. Сбросное тепло ТЭЦ способно покрыть до 77 % потребностей в тепле, необходимом для выращивания водорослей. Эта технология не требует жаркого пустынного климата.

Компания BioKing приступила к серийному производству запатентованных биореакторов по разведению водорослей, пригодных к немедленной эксплуатации, которые включают быстрорастущие водоросли с высоким содержанием масла.

Испанские ученые нашли один из видов микроводорослей, которые способны гораздо быстрее размножаться, чем другие биологические собратья при определенном освещении. Если в открытом море каждый кубометр воды приходится до 300 экземпляров водорослей, то исследователи получили 200 млн. экземпляров на тот же кубометр воды.

Микроводоросли растут в пластиковом цилиндре диаметром в 70 см и длиной в 3 м. Водоросли размножаются делением. Они делятся каждые 12 часов, и постепенно вода в цилиндре превращается в зеленую плотную массу. Один раз в день содержимое цилиндра подвергается центрифугированию. Остаток представляет собой практически стопроцентное биотопливо. Насыщенная жирами часть этой массы преобразуется в биодизель, а углеводороды — в этанол.

Разработки биотоплива из водорослей

Корпорация Chevron, один из мировых энергетических гигантов начали исследование возможности использования водорослей в качестве источника энергии для транспорта, в частности, для реактивных самолетов. В ходе исследований будут изучены виды водорослей, которые содержат максимальный процент масел в своем составе, а также разработаны методы культивирования водорослей.

Компания Honeywell, UOP недавно начала проект по производству военного реактивного топлива из 
водорослевых и растительных масел.

Компания Green Star Products завершила вторую фазу испытаний демонстрационного завода по производству биодизеля из водорослей в Монтане. Во время второй фазы выбирались оптимальные условия для выращивания водорослей штамма zx-13.

GSPI разработала гибридную систему выращивания водорослей в прудах — Hybrid Algae Production System. Обычные водоросли живут при температуре воды около 30 по Цельсию, zx-13 выживают при температуре около — 44. zx-13 также продемонстрировали хорошую устойчивость к повышенному содержанию солей в воде.

Однако, во второй фазе испытаний GSPI не удалось отработать технологию сбора водорослей. Водоросли созрели раньше, чем ожидалось, и оборудование ещё не было готово. Технология GSPI позволяет собирать водоросли размером более 2 мкрн. Водоросли меньшего размера возвращаются в пруд для дальнейшего выращивания.

На следующем этапе технология GSPI будет испытываться на пруду площадью 100 акров. Ведутся переговоры о размещении 100-акрового пруда в Калифорнии, Миссури и Юте. В дальнейшем возможно увеличить площадь до 500 — 1000 акров.

Крупная энергетическая компания Японии Tokyo Gas Co намерена построить демонстрационный завод, на котором из морских водорослей будут получать электричество. Для работы газовых генераторов на станции будет использоваться метан, выделяемый из мелко изрубленных водорослей.

Для ряда японских префектур, включая столичную, загрязнение побережья водорослями остается серьезной экологической проблемой. Они нередко выделяют при гниении зловонный запах и портят пейзаж.

Между тем новейшая разработка японских специалистов предлагает решить эту проблему с экономической выгодой. Экспериментальная модель завода с газовым электрогенератором, которая уже работает в лаборатории несколько лет, позволяет в день уничтожать до 1 тонны водорослей.

При этом вырабатывается около 9,8 киловатт электроэнергии. Эта пилотная установка позволяет получать около 20–30 куб метров метана в месяц — этого объема достаточно, чтобы ровно на половину сократить месячный расход на электричество средней семьи.

По подсчетам Tokyo Gas, строительство предприятия, в зависимости от производственной мощности, требует от нескольких десятков млн до 200 млн иен.

Испанская фирма Bio-Fuel-Systems планирует не только изготовлять из водорослей горючее, но и снижать уровень двуокиси углерода, который образуется при производстве электроэнергии с использованием органических видов топлива. В 2008 году запланировано строительство подобной установки в районе города Аликанте.

Компании Shell и HR Biopetroleum намерены построить на Гавайских островах опытный завод по получению растительного масла из микроводорослей и его дальнейшей переработке в биотопливо.

Микроводоросли будут выращивать на месте, в специальном открытом бассейне с морской водой. Виды микроводорослей будут отобраны для дальнейшего использования из местных образцов морских организмов, в качестве критерия отбора будут использованы быстрый рост водорослей и максимальный выход растительного масла

Авиационная промышленность также заявила о начале разработок по использованию морских водорослей, в качестве сырья для производства авиационного топлива. Компания Боинг сообщила, что альтернативой биодизелю, произведенному из морских водорослей, в будущем может стать производство авиационного биотоплива.

Согласно документу, никакое биотопливо, которое сегодня производится, не может быть использовано в качестве авиационного топлива. Этанол поглощает воду и разъедает двигатель и топливный провод, в то время как биодизель замерзает при низких температурах (на крейсерской высоте). Кроме того, биотопливо обладает более низкой термической стабильностью, чем обычное реактивное топливо.

Специалисты Боинга считают, что оптимальным сырьем для производства биотоплива станут морские водоросли, из которых получают в 150 — 300 раз больше масла, чем из сои. По их мнению, биотопливо из водорослей — это будущее для авиации. Так, если бы весь флот авиалиний мира по состоянию на 2004 год использовал 100% биотопливо, полученное из морских водорослей, понадобилась бы 322 млрд. литров масла.

Для выращивания этих водорослей необходима земля площадью 3,4 млн. га. В расчете принято, что с одного гектара получается 6 500 литров ежегодно. Для этих целей, возможно, использовать земли, которые не пригодны для выращивания пищевых сельхозкультур.

Топливо из водорослей по составу больше похоже на зелёнку, чем на нефть

Исследователи определили состав биотоплива, полученного из микроводорослей Spirulina platensis, с помощью масс-спектрометрии высокого разрешения. Учёные изучили две фракции биотоплива, которые получаются после того, как массу из водорослей обработают специальным методом. Кроме того, они показали, что биотопливо по составу имеет мало общего с нефтью, зато есть что-то общее с зелёнкой. Исследование опубликовано в журнале European Journal of Mass Spectrometry.

Работа была сделана группой учёных из Сколтеха, Института энергетических проблем химической физики им. В. Л. Тальрозе РАН, Института биохимической физики им. Эмануэля РАН, Объединенного института высоких температур РАН, МГУ и Московского физико-технического института.

Водоросли как спасение экологии

Биотопливо как альтернативный источник энергии представляет особенный интерес для изучения, ведь оно помогло бы решить такие проблемы, как истощение запасов нефти и глобальное потепление. В отличие от нефти, биотопливо производится из возобновляемых природных ресурсов, а при его сжигании выделяется меньше парниковых газов. Бразилия, например, уже обеспечивает с помощью биотоплива 40% своих потребностей. В качестве сырья для биотоплива используют сельскохозяйственные культуры и другие растения. Однако в этом случае приходится занимать плодородную землю, которая могла бы вместо этого кормить людей. Перспективным сырьём для биотоплива являются морские микроводоросли, которые не требуют ни чистой воды, ни земли. Водоросли активно поглощают углекислый газ, а значит, их использование действительно полезно для уменьшения парникового эффекта. Топливо из микроводорослей называют биотопливом третьего поколения, и в настоящее время ведутся активные разработки по его производству.

Рецепт биотоплива

Если мы узнаем состав биотоплива, мы сможем усовершенствовать процесс его производства. Первоначальные техники получения горючего из водорослевой массы были энергетически невыгодными, так как много энергии затрачивалось на высушивание водорослей, в которых содержится большое количество воды. Для коммерческого применения нужен был новый, более эффективный метод. И такой метод придумали — это так называемое гидротермальное сжижение: мокрую биомассу нагревают до температуры выше 300℃, сжимают давлением в 200 атмосфер и на выходе получают топливо. Примерно тот же принцип действует в природе, когда под воздействием больших температур и высокого давления в недрах Земли образуется нефть, только в реакторе это происходит быстрее. В результате получается две фракции: жидкое биотопливо и густая масса, которая остаётся в реакторе. Это смеси, состоящие из тысяч индивидуальных компонентов, и для определения их состава наилучшим образом подойдёт масс-спектрометрия.

Масс-спектрометрия

Масс-спектрометрия — метод исследования, с помощью которого можно определить состав вещества. Метод основан на том, что в электрическом и/или магнитном поле разные соединения ведут себя по-разному — в зависимости от их соотношения массы и заряда m/z. На выходе получается масс-спектр — график с пиками интенсивности, где каждому пику соответствует своё значение m/z.

Учёные исследовали с помощью масс-спектрометрии биотопливо, полученное из водорослей Spirulina platensis. В процессе гидротермального сжижения все вещества с температурой кипения менее 300 градусов выходят из реактора в виде газа и охлаждаются в специальной ёмкости. Таким образом получается жидкая фракция, а в реакторе остаётся твёрдая фракция. Масс-спектрометрический анализ показал, что обе фракции содержат больше всего веществ, у которых в составе есть N и N2, но компоненты твёрдой фракции более разнообразны и по свойствам отличаются от компонентов жидкой фракции. Найденные в биотопливе вещества не имели ничего общего с веществами, которые содержатся в обычной сырой нефти, хотя и являются горючими. Масс-спектрометрия позволяет узнать только молекулярные формулы веществ (например, C18h45N2). Чтобы получить какую-нибудь информацию о структуре молекул, исследователи применили метод замены водорода на дейтерий.

Замена водорода на дейтерий

Когда водород заменяется на дейтерий, масса иона* становится больше и пик в спектре смещается. По тому, сместился пик или нет, учёные определяют, в каком месте в молекуле стоял водород. Однако не любой водород отдаст своё место дейтерию, точнее, не любое место водород сможет освободить.

Перед запуском в масс-анализатор молекулы образца подвергают ионизации. В данном случае к нейтральным соединениям добавлялись протоны, и они превращались в положительные ионы. Присоединённый протон легко заменяется на дейтон, но оказалось, что в некоторых компонентах биотоплива замены не происходит. Учёные это поняли по интенсивности смещённого пика, который получается при замене. У обычной нефти смещённый пик имел такую же интенсивность, как несмещённый, а значит, замена произошла полностью. В случае с биотопливом, интенсивность смещённого пика была в пять раз меньше. Это значит, что под одним пиком кроется несколько соединений и не во всех из них есть присоединённый водород, вместо которого мог бы встать дейтерий. Если вещества не поддаются ионизации, значит, они уже являются положительными ионами и в таком виде содержатся в биотопливе. Эти вещества похожи на некоторые красители, такие как, например, бриллиантовый зелёный, который входит в состав зелёнки.

Комментирует Евгений Николаев, член-корреспондент РАН, профессор Сколтеха, научный руководитель Лаборатории ионной и молекулярной физики МФТИ: «Исследование продуктов гидротермального сжижения микроводорослей с помощью масс-спектрометрии имеет важное значение для повышения эффективности производства биотоплива. Дальнейшая работа должна быть сконцентрирована на использовании сортов водорослей с максимально высоким содержанием липидов и создании таких сортов с использованием генетической модификации. Так мы сможем выбрать из них самое эффективное сырьё для биотоплива».

Ученые ЕС изготовили топливо из водорослей

Что, если для диверсификации материалов для доступного биотоплива человек заглянет в в морские глубины? Исследователи пошли по этому пути, они совершенствуют технологию, которая будет экологичной и финансово жизнеспособной.

В датском Орхусе по улицам ездит экспериментальный автомобиль. В его баке — смесь бензина (90%) с новинкой — биотопливом на основе морских водорослей. Ученые сравнивают показатели выбросов этой машины в сравнении с автомобилями, работающими на чистом бензине.

Инженер Стен Франдсен констатирует: «Мы замеряем разные показатели — и оксид углерода, и двуокись углерода, и оксиды азота. Тесты показывают, что в выбранной пропорции смесь с добавлением водорослей обеспечивает такой же уровень выбросов, что и референтное топливо».

У водорослей есть огромное преимущество — способность поглощать СО2 из воздуха в процессе роста.

Следующий этап эксперимента — изменение пропорций в топливной смеси, доля биогорючего будет больше. Ученые считают, что человечество должно полностью перейти на биосмеси в ближайшее время.

«Мы видим, как на рынке появляется все больше электромобилей, но ведь это — не единственное решение для борьбы с загрязняющими выбросами, — отмечает Стен Франдсен. — У нас есть тяжелый транспорт, есть водный транспорт, есть самолеты,… все эти категории поглощают большое количество ископаемого топлива. Нам нужно найти ему замену, возможно, морские водоросли могли бы решить проблему».

Ученые обращают внимание на возможность устойчивого и долговременного использования водорослей. Они легко растут повсюду, где есть солнце и морская вода, таким условиям отвечает 70% территории планеты (для сравнения: для многих других видов биотоплива нужны пахотные земли, удобрения и пресная вода, что делает их массовое производство сложнее).

Как наладить производство топлива на основе водорослей в промышленных масштабах? Этим вопросом активно занимаются исследователи европейского проекта MacroFuels. В лаборатории в Нидерландах они ищут самый эффективный и малозатратный способ преобразования сахаров водорослей (составляющих иногда до 60% растения) в топливные материалы.

Химик Яаап ван Хал показывает: «Итак, мы берем морские водоросли, затем с помощью воды выделяем сахар вместе с некоторыми связанными энзимами и кислотами. Получаем раствор. Точно так же, как в производстве вина или пива, запускаем процесс сбраживания. На выходе получаем этанол или бутанол, смешиваем его с обычным топливом. В нашем распоряжении — смесь Е10, можно спокойно заправлять машину и ехать».

Активизация производства биотоплива предполагает производство большего количества водорослей. В рамках европейского проекта развитие получили специализированные фермы по разведению водорослей. С ними ученые надеются в сто раз сократить затраты на производство биотопливных смесей. Одновременно морские водоросли могут стать основой для производства широкой линейки продуктов.

Координатор проекта Берт Гренендаал рассказывает: «Когда мы начали проект пару лет назад, мы работали с квадратными метрами площадей, где росли водоросли. Сегодня мы занимаемся гектарами, в ближайшее время выйдем на квадратные километры. Сегодня цена за литр биотоплива на основе морских водорослей слишком высока, возможно, оно стоит в сто раз больше традиционного топлива. Но по мере роста масштаба производства цена будет снижаться, мы выйдем в сегмент, в котором сможем конкурировать с традиционными видами топлива».

По оценкам ученых, биотопливо из водорослей станет рентабельным в течение 25 ближайших лет.

США и Бразилия призвали использовать биотопливо :: Autonews

Соединенные Штаты Америки и Бразилия предсказывают увеличение числа машин на биотопливе. Этот процесс, как считают в странах, будет предвестником глобального перехода человечества на электрические автомобили. О такой позиции государств сообщает агентство Reuters со ссылкой на представителей США и Бразилии.

— Мы все надеемся снизить объем вредных выбросов и перейти на электромобили, но это не быстрый процесс. Поэтому мы ожидаем, что машины на двигателях внутреннего сгорания, в которые будет залито биотопливо, это неплохой выход для улучшения качества воздуха, — сказал директор этанолового отдела при американском Совете по зерну Брайн Хирли.

Он также добавил, что всем странам нужно как можно скорее начать смешивать бензин с этанолом. Дело в том, что жидкое биотопливо для ДВС получают как раз из этанола, а США и Бразилия — лидеры по его производству.

С Хирли согласна и торговый управляющий одной из крупнейших в мире компаний по производству этанола Copersucar Лара Баселлар.

— Это бы помогло соблюдению Парижского соглашения по климату, потому что мы бы использовали продукт, который эффективен в борьбе с вредными выбросами, — сказала она.

Фото: Jan Woitas / dpa-Zentralbild / dpa

Reuters пишет, что некоторые страны — например, Китай, Великобритания, Мексика, Вьетнам, Южная Африка и Австралия— сегодня действительно рассматривают возможность больше использовать машины на биотопливе. Но до финального решения дело все равно пока не доходит. Аналитики видят причину этого в том, что государства не хотят быть зависимыми от биотоплива, которое они сами не производят.

При этом эксперты говорят, что размешивание бензина с биотопливом действительно могло бы помочь странам сократить выбросы, и особенно это касается стран с развивающейся экономикой. Ведь создание инфраструктуры для повсеместной электромобилизации займет много времени и средств, тогда как увеличить использование биотоплива можно уже в ближайшее время.

Как сделать биотопливо своими руками

Содержание статьи:

Биотопливо на практике

Заливать этанол в чистом виде в баки автомобилей категорически нельзя, так как он является сильнейшим растворителем и окислителем. Использование чистого биоэтанола требует переделки автомобиля с установкой деталей на двигатель из нержавеющего металла или пластика.

В настоящее время в мире уже разработаны около 40 моделей автомобилей, так называемых Flexible-Fuel Vehicle (FFV), с совмещенной конструкцией заправки, в баки которых можно заливать бензин и этанол в любом соотношении.

Так, в США, на дорогах курсирует более 6 миллионов грузовых и легковых автомобилей, для которых на заправках реализуется специальная смесь Е85, состоящая из 85% биоэтанола и 15% бензина. Присутствие бензина в составе смеси необходимо только для того, чтобы двигатель хорошо заводился в холодное время года.

Швеция в продвижении биотоплива в своей стране, пошла еще дальше, так, смесь этанола с бензином должна быть в обязательном порядке на крупных автозаправках, а авто, работающие на этом виде топлива, имеют беспрепятственный бесплатный проезд в центр Стокгольма, при этом их владельцы освобождаются от оплаты за стоянку и платят сниженный автоналог.

На Западе используют смесь Е10, состоящую из 10% биоэтанола и 90% бензина в обычных двигателях, а в Бразилии – 20%, так как считается, что такая добавка не способна повредить двигатель и топливную систему автомобиля.

В настоящее время даже самолеты, выпускаемые бразильской компанией Embraer, летают именно на смеси самолетного топлива со спиртом. Чистый бензин продавать в стране для заправки авто запрещено.

Согласно статистическим данным, даже незначительная добавка биоспирта в бензин, эффективно влияет на его сгорание, повышает его октановое число, что существенно снижает токсичность выбросов в атмосферу, также уменьшает риск воспламенения топлива при повреждении топливной системы автомобилей.

Плюсы и минусы использования самодельного биотоплива

Большинство видов биологического топлива производится промышленным способом с использованием специального оборудования. Естественно, что попытка применить данные технологии жителю частного домовладения или начинающему фермеру может оказаться не под силу. При использовании других, на первый взгляд, более технически простых способов получения топлива из биоматериалов, возникают трудности с обеспечением пожарной безопасности, защиты от отравления ядовитыми, легковоспламеняющимися веществами при работе с сырьём для биотоплива. По этой причине жителям села, фермерам, дачникам начинать свою новаторскую деятельность желательно не с холодного ядерного синтеза, а с чего-то попроще. Например, уже есть рабочие модели получения биогаза, древесного угля, брикетирования отходов и опилок для каминов и биокаминов, работы двигателей внутреннего сгорания на древесном газе.

Самостоятельное производство и использование биотоплива имеет смысл при доступной дешёвой сырьевой базе, обладающей энергетической ценностью, но находящейся состоянии, непригодном для использования без предварительной переработки или подготовки. Если посмотреть на этот вопрос шире, то к данному типу можно отнести воду, опилки, силос, льяльные воды и т. д., которые, с одной стороны, обладают энергетической ценностью, но с другой — высвободить тепловую энергию при отсутствии специального оборудования затруднительно.

Преимущества

К очевидным положительным сторонам производства и использования самодельного биологического топлива с позиции частного лица относятся:

  • доступность сырья
  • дешевизна
  • простота изготовления.

У некоторых видов биотоплива (биодизель, биогаз) присутствуют схожие с аналогичными промышленными образцами показатели удельной теплоёмкости, температуры сгорания, антидетонационные свойства, экологичность. Для жителя сельской местности, держащего хозяйство, фермера, плотника или столяра раздобыть опилки, силос, навоз намного проще и дешевле чем бензин, дизельное топливо, уголь или дрова. В большинстве случаев народные умельцы используют уже опробованные и достаточно безопасные технологии.

Недостатки

Использование биотоплива обладает следующими недостатками:

  • некоторые минусы связаны непосредственно с производством самодельных видов биотоплива: отсутствие автоматических систем контроля за давлением и температурой предъявляет повышенные требования к используемому оборудованию и его установке
  • само оборудование для производства биологического топлива не сертифицировано, изготавливается, как правило, кустарным способом местным «левшой»
  • некоторые получаемые вещества (биометан, угарный газ) являются ядовитыми
  • топливо обладает низкой плотностью, концентрацией, а потому подлежит немедленному использованию, так как по прошествии времени расслаивается и впитывает влагу, превращаясь в эмульсию.

Изготовление брикет

Наладить дома производство биотоплива из опилок, соломы и других отходов несколько проще. Из оборудования понадобится лишь ручной пресс, сделанный специально для этой цели. Его можно приобрести в готовом виде, заказать мастерам либо, при наличии соответствующих навыков, изготовить самостоятельно. Пресс заводской готовности стоит немало денег, поэтому последний вариант обойдется вам дешевле всего.

Производство брикет начинается с приготовления смеси. В качестве сырья используются опилки, шелуха семечек, солома и даже размоченная макулатура. Конечно, такое топливо может и так чудесно сгореть в печи или твердотопливном котле, но из-за низкой насыпной плотности придется слишком часто производить загрузку топки. Готовое твердое биотопливо из соломы или опилок будет гореть гораздо дольше.

Смесь состоит из сырья, воды и глины, служащей связующим веществом. Солому или бумагу необходимо предварительно измельчить, затем смешать с глиной в пропорции 10:1 (на 10 кг отходов 1 кг глины) и водой. Количество воды надо подбирать таким, чтобы обеспечить равномерное перемешивание и способность смеси к формованию. Не стоит добавлять в раствор много глины, не забывайте, что она останется в вашем котле в виде золы.

Смесью наполняется специальная форма, потом она кладется под пресс. После прессования готовый брикет аккуратно вынимается и раскладывается сушиться на солнце. Увидеть операцию прессования можно на видео:

Преимущества биодизельного топлива

Самое главное преимущество – использование в качестве исходного сырья возобновляемых ресурсов, что в перспективе может обеспечить энергетическую безопасность всего мира. Несмотря на бурный рост популярности транспортных средств на электрической тяге, двигатель внутреннего сгорания еще очень долго будет играть решающую роль в мировой экономике. Да вряд ли крупные океанские корабли даже в отдаленной перспективе смогут быть переведены на электрическую тягу. Потенциальными производителями биодизельного топлива в нашей стране являются фермерские хозяйства и колхозы. Ведь обеспеченность топливо данных субъектов – чрезвычайно острый вопрос в преддверии посевных кампаний. Если оснастить хозяйства необходимым технологическим оборудованием и предоставить специалистов, то они вполне могли бы выйти на самообеспечение топливом. Это мероприятие положительно сказалось бы на динамике роста цен. В результате этого комплекса мер существенно возрастет конкурентоспособность предприятия.

Немаловажной особенностью биодизельного топлива является то, что оно производится из Причем взращивание этих культур не истощает землю, а положительно сказывается на ее плодородности. Так, для производства топлива могут использоваться арахисовое, рапсовое, горчичное, рапсовое, соевое и другие масла

Появляются сообщения о попытках производства биодизеля из животных жиров. Только вот пока не совсем понятно, насколько это экономически целесообразно.

Что такое биотопливо

Энергия, скрывающаяся в растительной массе, является практически неиссякаемой, ведь ее источником служит наше солнце. Растения умеют использовать энергию солнца, перерабатывая ее для своего роста. В свою очередь, животные и птицы получают энергию, питаясь биомассой, при этом производят продукты жизнедеятельности. По определению, биотопливо — это горючее, получаемое из сырья растительного или животного происхождения, а также отходов жизнедеятельности и различных производств, связанных с обработкой биомассы.

Современные технологии позволяют получать биотопливо в трех видах: твердом, жидком и газообразном. Твердое горючее мы встречаем в жизни наиболее часто в виде пеллет и различных брикетов, получаемых методом прессования. Жидкое топливо – биодизель – в странах постсоветского пространства пока еще редкость, это обусловлено наличием большого количества ископаемых углеводородов по приемлемой цене. В то время как получать жидкое биотопливо из растительного масла достаточно дорого и технологически сложно.

Производство горючего биогаза гораздо проще и дешевле, вследствие чего набирает все большую популярность. Владельцы животноводческих и птицеферм все чаще задумываются о приобретении биогазовой установки, ведь в их распоряжении имеется огромное количество помета и навоза, что как нельзя лучше подходят для этой цели.

Перечислять здесь все виды растительного сырья для переработки в топливо, его источники и технологию производства нет смысла. Нас интересуют только те виды биотоплива, которые можно успешно получать в домашних условиях, не вкладывая больших денежных средств. Вот они:

  • биогаз, извлекаемый из продуктов жизнедеятельности домашних животных и птицы;
  • брикеты из различных отходов растительного происхождения;
  • древесный уголь.

Конечно, если очень постараться, то можно самостоятельно изготовить и пеллеты, и экодизель, и даже экобензин. Подобными вещами люди занимаются в качестве хобби, затрачивая на это годы своей жизни и зачастую немалые средства. Для широкого круга пользователей такие непростые технологии малодоступны, а потому рассматривать их мы не будем.

Тенденции развития мирового рынка биотоплива

Движущими факторами для распространения биотоплива являются угрозы, связанные с энергетической безопасностью, изменением климата и экономическим спадом. Распространение производства биотоплива по всему миру нацелено на увеличение доли потребления экологически чистого топлива, особенно на транспорте; снижение зависимости от импортируемой нефти для многих стран; снижение выбросов парниковых газов; развитие экономики. Биотопливо является альтернативой традиционным видам топлива, получаемым из нефти. Мировыми центрами производства биотоплива в 2014 являются США, Бразилия и Европейский Союз. Самый распространённый вид биотоплива – биоэтанол, его доля составляет 82% всего производимого в мире топлива из биологического сырья. Ведущими его производителями являются США и Бразилия. На 2-м месте находится биодизель. В Европейском Союзе сосредоточено 49% производства биодизеля. В долгосрочной перспективе постоянно растущий спрос на биотопливо со стороны наземного, воздушного и морского транспорта может сильно изменить сложившуюся ситуацию на мировом рынке энергоносителей. Использование сельскохозяйственного сырья для производства жидкого биотоплива и рост объёмов его производства обусловили спрос на сельскохозяйственную продукцию, что повлияло на цены продовольственных культур, используемых при производстве биотоплива. Объём производства биотоплива второго поколения продолжает расти, и к 2017 мировое производство биотоплива второго поколения должно составить 10 млрд. литров. Мировое производство биотоплива к 2017 должно увеличиться на 25% и составить ок. 140 млрд. литров. В Европейском Союзе основная часть производства биотоплива приходится на биодизель, производимый из семян масличных культур (рапса). По прогнозам, в странах Евросоюза будет расширяться производство биоэтанола из пшеницы и кукурузы, а также сахарной свёклы. В Бразилии, как ожидается, производство биоэтанола будет продолжать расти ускоренными темпами и достигнет к 2017 примерно 41 млрд. литров. В целом производство биоэтанола и биодизеля, согласно прогнозу, к 2017 будет возрастать быстрыми темпами и составит 125 и 25 млрд. литров соответственно. Начался быстрый рост производства биотоплива в Азии. По данным на 2014, Китай находится на третьем месте по производству биоэтанола, и ожидается, что это производство будет расти в течение следующих десяти лет более чем на 4% в год. В Индии производство биоэтанола из мелассы, согласно прогнозам, будет увеличиваться более чем на 7% в год. При этом расширяется производство биодизеля из новых культур, таких как ятрофа.

По прогнозам Мирового энергетического агентства (МЭА), нехватка нефти в 2025 будет оцениваться в 14%. По данным МЭА, если даже общий объём производства биотоплива (в том числе биоэтанола и биодизеля) к 2021 составит 220 млрд. литров, то его производство покроет лишь 7% мировой потребности в топливе. Темпы роста производства биотоплива намного отстают от темпов роста потребности в них. Происходит это из-за наличия дешёвого сырья и недостаточного финансирования. Массовое коммерческое использование биотоплива будет определяться достижением ценового равновесия с традиционными видами топлива, получаемыми из нефти. По прогнозам учёных, доля возобновляемых источников энергии к 2040 достигнет 47,7%, а биомассы – 23,8%.

При существующем уровне развития технологий производство биотоплива будет составлять небольшую часть глобальных поставок энергии, цены на энергию будут оказывать влияние на стоимость сельскохозяйственного сырья. Биотопливо может по-разному воздействовать на продовольственную безопасность – рост цен на сырьевые товары, обусловленный производством биотоплива, может нанести ущерб импортёрам продовольствия, с другой стороны, стимулировать внутреннее сельскохозяйственное производство мелкими фермерскими хозяйствами.

Что собой представляет биогаз

Биогаз – это общее название смеси большого количества органических летучих соединений, которые обладают высокой горючестью. Он способен образовываться в анаэробной среде в процессе разложения любой органики. Главные условия – отсутствие кислорода и высокая влажность. Сырьем для получения биогаза может стать любой органический субстрат: навоз, ботва от растений, трава, опилки, отходы деревообрабатывающего производства, солома и даже бытовые отходы. Все это можно с успехом использовать для обогрева не только теплиц и хозяйственных помещений, но и целых домов.

Запасы органики в мире и выход биогаза из некоторых субстратов

Главным образом любой биогаз состоит из метана, углекислого газа и примесей иных газообразных веществ, таких как сероводород. Чем меньше в нем содержится углекислого газа, тем выше качество продукта. Ведь углекислота не является горючим газом. Во многих случаях переработка одного килограмма органики дает целых 500 гр. биотоплива. Это очень высокий показатель, который редко встречается в других сферах.

Основные технологии производства биотоплива

Биотопливо из опилок или спирт как он есть

Биотопливо подобного типа наиболее известно, и по-видимому, это один из первых вариантов горючего, которое потреблял двигатель. Среди различных его видов стоит отметить биоэтанол, биометанол и биобутанол.

1.Этанол или обычный спирт достаточно хорошо известен в истории автомобилестроения. Достаточно сказать, что в свое время Генри Форд организовывал строительство заводов по производству спирта, предназначенного на роль топлива. Сейчас его изготовление широко развернуто в Бразилии, по оценкам экспертов, сорок процентов автотранспорта этой страны используют этанол в чистом виде, шестьдесят процентов – в смеси с бензином.

Из чего сегодня делают этанол? Чаще всего сырьем служит сельскохозяйственная продукция, в той же Бразилии, чтобы сделать биоэтанол, применяют сахарный тростник, солому, древесные отходы и другое аналогичное сырье. Из опилок на гидролизном производстве так же можно получить этанол

Чем же он так хорош, что это вызывает его всеобщее использование?
Здесь надо обратить внимание на:

  1. детонационную стойкость;
  2. теплоту сгорания;
  3. теплоту испарения.

Из чего бы ни пришлось сделать подобное биотопливо, из опилок или тростника, ему свойственны антидетонационные свойства, они выше, чем у обычного бензина. Благодаря этому можно повысить мощность, двигатель, работающий на этаноле, допускает увеличение степени сжатия. Теплота сгорания спиртовоздушной смеси незначительно отличается от характеристик традиционной топливовоздушной смеси, а за счет хорошей испаряемости спирта обеспечивается лучшее наполнение цилиндров и полное ее сгорание.

Из недостатков этанола стоит отметить его повышенную агрессивность по отношению к некоторым цветным металлам, пластмассам и резине, вследствие чего может возникнуть необходимость частично дорабатывать двигатель. Однако самым главным минусом такого горючего является его гигроскопичность, оно сильно поглощает воду, а затем смесь расслаивается в баке, в результате чего он окажется заполнен в основном водой. Одним из методов борьбы с этим является использование смесей спирта и бензина, до десяти процентов этанола, добавленного в обычный бензин, только улучшают его характеристики.

Дополнительно стоит отметить, что производство биоэтанола как топлива, хоть из тех же самых опилок, отличается от производства питьевого спирта. Топливный спирт не пригоден для питья, он имеет явно выраженный сивушный запах и повышенное содержание метанола.

2.Метанол, или метиловый спирт, при всех своих достоинствах ядовит. Хотя его можно сделать из отходов, из тех же самых опилок, обычно биометанол не используют в качестве горючего.
3.Биобутанол. Как биотопливо для автомобилей подходит даже в большей степени, чем биоэтанол. Может изготавливаться из биомассы, опилок, и при этом ничем не отличаться от бутанола, полученного по традиционной технологии.

Среди его достоинств необходимо отметить:

  • большую энергетическую ценность;
  • меньшую агрессивность;
  • возможность смешиваться с бензином;
  • возможность прямой и полной замены бензина без переделки автомобиля.

Рассматривая спирт как замену бензину, стоит отметить, что плюсы и минусы биотоплива подобного типа достаточно очевидны, и все недостатки при необходимости могут быть успешно устранены. Однако в настоящее время такое биотопливо чаще всего применяется в смеси с обычным бензином, хотя технологии его получения, например из опилок, позволяют полностью реализовывать используемую биомассу и исключить нефть из употребления.

Как сделать своими руками

Человек в повседневной жизни периодически пользуется биотопливом, это с полной уверенностью можно отнести к твердым видам топлива – дрова, опилки, солома и т. д. Для изготовления топливных брикетов не нужно специальных приспособлений и механизмов, это может сделать каждый, у кого есть продукты переработки дерева и желание.

Более сложный процесс, это получение биотоплива из навоза, являющимся продуктом жизнедеятельности сельскохозяйственных животных. В этом случае получается биогаз, который можно использовать для сжигания, тем самым нагревать воду в системах горячего водоснабжения или теплоноситель, в системах обогрева зданий и сооружений.

Вначале следует определиться с местом, где будет располагаться установка. Выбранный участок должен быть удален от жилых строений, дабы не создавать неудобства запахами, выделяющимися в процессе брожения биомассы.

На выбранном участке выкапывается яма, в которой делается гидроизоляция и сооружается емкость накопитель. Емкость может быть из железобетонных колец с герметизацией стыков, кирпичной с оклейкой гидроизоляцией, металлической. В верхней части устраивается люк и крышка. Монтируются трубопроводы для отвода образовавшегося газа.

В построенную емкость загружается навоз, картофельная ботва и прочие растительные отходы, после чего все заливается водой. В емкости начнется процесс брожения, и как следствие, начнет выделяться биогаз.

В состав получаемого таким образом газа будет входить — метан, углекислый газ и примеси других газов.

С 1 кг органического вещества можно получить около 0,5 кг биогаза.

Критерии состава навозной массы

Загружаемую массу навоза внутрь биореактора не следует рассматривать просто как сырьё, подходящее в любом качестве. Составляющая субстанции имеет принципиальное значение для процесса брожения. На практике отмечено, что уменьшение частичек субстрата сопровождается лучшей эффективностью процесса.

Выраженная волокнистость субстрата и увеличение площади взаимодействия бактерий – вот главные критерии, способствующие скорому разложению навозной массы. В таком состоянии навозное сырьё при подогреве и перемешивании не образует осадка или плёнки на поверхности, что существенно упрощает фильтрацию газовой смеси.

Подготовка навозной массы под загрузку в реактор

Этой процедуре уделяют не меньшее внимание, чем всему остальному, если есть желание получить значительный объём биотоплива за короткий отрезок времени

. Степенью измельчения сырья определяется длительность брожения, что в свою очередь оказывает влияние на объём получаемого газа

Таким образом, для уменьшения времени брожения необходимо хорошо измельчать сырьё: чем лучше качество измельчения, тем меньше период брожения.

Степенью измельчения сырья определяется длительность брожения, что в свою очередь оказывает влияние на объём получаемого газа. Таким образом, для уменьшения времени брожения необходимо хорошо измельчать сырьё: чем лучше качество измельчения, тем меньше период брожения.

Получение древесного угля

Древесные угли представляют интерес для домовладельцев как топливо, используемое в домашних мангалах и барбекю. Не секрет, что покупать подобный уголь в магазине достаточно дорого, в то время как дома его можно выжечь бесплатно, только затратив свое время. Кстати говоря, сжигать его в твердотопливных котлах или печах бессмысленно, гораздо проще заложить в топку обычные дрова.

Выжигают уголь из древесины 2 способами:

  • в бочках;
  • в ямах.

Для первого способа требуется обычная стальная бочка на 200 л и бытовой пылесос. Последний послужит для нагнетания воздуха, поэтому в нижней части бочки должен быть врезан патрубок для его подключения. На дне емкости разводят огонь, затем заполняют ее дровами до половины и включают пылесос. Затем древесины накладывают доверху, закрывают ее крышкой и замазывают глиной. Когда все прогорит и бочка остынет, производится сортировка с целью отделить древесные угли от золы.

Похожим образом древесина обжигается в яме. Последняя выкапывается 0.8 м  в диаметре и не более 0.6 м в глубину. Дно ямы утрамбовывается, после чего в ней разводят костер и послойно накладывают дрова длиной до 30 см. Наполнение происходит по мере обжигания предыдущего слоя, процесс длится около 3 часов. В конце яма накрывается ветками и мхом, а сверху присыпается землей. Через 2 дня покрытие можно снимать и выбирать угли.

Изготавливаем топливо для биокаминов

Основой для жидкого биотоплива становятся всевозможные масла органического происхождения. В них добавляются различные спиртосодержащие вещества, а для получения биодизеля еще и щелочи. Это достаточно сложный процесс. В домашних условиях проще всего изготовить жидкое биотопливо, предназначенное для камина. Так называемые биоустановки внешне совершенно не отличаются от традиционных приборов. Однако в них сгорает не древесина, а биотопливо, что гарантирует отсутствие угарного газа, копоти, сажи и золы.

Биокамины радуют своих владельцев экологической чистотой и удобством, ведь колоть дрова и чистить от золы такой прибор нет необходимости. При горении биотопливо разлагается на углекислый газ и воду, абсолютно безопасные для человека. При этом пламя лишено характерной желто-оранжевой окраски и выглядит бесцветным. Это существенно портит внешний вид камина, придавая ему неестественный вид. Поэтому в биотопливо обязательно добавляются специальные присадки, окрашивающие пламя.

Для изготовления такого топлива понадобится 96% этанол. Его можно приобрести в аптеке. В качестве окрашивающей пламя присадки можно взять бензин с высокой степенью очистки. Подойдет как качественный бытовой марки Б-70, так и фирменный для заправки зажигалок. Внешне такой бензин должен быть совершенно прозрачным, резкий специфический запах должен отсутствовать. На один литр спирта берется 50-100 г бензина. Полученная смесь очень хорошо перемешивается.

Экокамины — отличная замена традиционным приборам. Для их работы используется экологически чистое и безопасное биотопливо, которое можно изготовить самостоятельно

Нужно учитывать, что состав с течением времени расслоится, поэтому хранить его нежелательно. Лучше всего смешивать ингредиенты непосредственно перед заправкой камина. Полученный состав может использоваться в помещениях без вытяжек и дымоходов, однако проветривание, тем не менее, обязательно. В среднем, на час работы экокамина потребуется порядка 400-500 мл самодельного биотоплива. Кроме того, такой же состав можно использовать и в традиционных «керосинках». В результате получаем отлично светящуюся лампу без копоти, неприятных запахов и нагара.

Непривычные, экзотические и забытые виды биотоплива

Здесь стоит коснуться древесины, которая может выступать как биотопливо. В первую очередь надо упомянуть скипидарно-спиртовую смесь, которая ещё в 1826 году использовалась в роли топлива. А ведь скипидар получают при пиролизе древесины. Есть отдельные упоминания, что при так называемом «быстром» высокотемпературном пиролизе сконденсирована жидкость, по своим характеристикам алогичная нефти.

Стоит вспомнить и прямое применение древесины как горючего для моторов. При сгорании древесины образуется окись углерода, которая и служит в качестве топлива. Во время Второй Мировой, Германией достаточно широко использовались машины с такими моторами, в том числе и легковые. В Советском Союзе так же были созданы газогенераторные автомобили, ЗИС 21, ЗИС 13, а также ГАЗ 42.

Работали они на обычных дровяных чурочках. Правда, при замене бензина на газ мощность двигателя падала, скорость движения и грузоподъемность тоже, а одной заправки газогенераторной установки хватало на девяносто километров пробега, но в условиях военного времени при дефиците других видов топлива и в удаленных местах такие автомобили успешно работали. И даже в Москве в военное время ходили автобусы, оснащенные газогенераторными установками.

Несмотря на всеобщее распространение бензина и солярки в качестве топлива для ДВС, постоянно идут поиски альтернативных источников получения горючего. И уже существует несколько самых разных видов биотоплива, способного обеспечить работу ДВС в любых условиях.

Биодизель в домашних условиях

Создать биодизель в домашних условиях возможно, хотя и достаточно трудно. Это может быть простым экспериментом либо же попыткой обеспечить себя недорогим топливом самостоятельно. Стоит лишь помнить, что работа ведется с метанолом и щелочью, что крайне опасно для здоровья. Поэтому необходимо соблюдать технику безопасности и использовать защитные средства.

Создание биодизеля заключается в следующих этапах:

  1. Очистка масла.
  2. Добавление щелочи.
  3. Трансэтерификация.
  4. Удаление глицерина.

Для производства биодизеля используется любое масло, а также щелочь (рекомендуется гидроксид калия или натрия). При готовке нужно использовать катализатор для старта процесса, в роли которого подойдет метанол.

Важно! Если применяется отработанное масло, то нужно устранить примеси посредством фильтрации.

Перед началом необходимо удалить всю воду из жидкости. Для этого нужно нагреть ее до 120°C, чтобы та выкипела. В процессе масло будет создавать брызги, поэтому важно проводить испарение в полупустом контейнере на расстоянии от огня.

Далее к маслу добавляется щелочь и этанол. Доля щелочи зависит от массы рабочего тела и составляет 1%. Так на литр растительного масла приходится около 3,5 грамм щелочи. В процессе этого проводится титрование, в котором определяется количество жирных кислот и необходимая доля щелочи.

Далее проводится трансэтерификация. В процессе этого смесь разогревается до 70°C, что необходимо для ускорения реакции. Допускается разогрев до 80°C, что существенно повышает скорость протекания реакции, но небезопасно для окружающих. Важно закрыть емкость для уменьшения испарения спирта, но обеспечить стравливание давления во избежание взрыва.

В результате сверху плавает биодизель, а под ним размещен глицерин. Различить их просто, ведь из-за разной плотности между ними имеется четкая грань. Глицерин куда темнее топлива и твердеет при температуре ниже 38°C. Удалить его можно дополнительным шлангом.

Полученное топливо не идеально чистое, оно содержит в себе растворенные остатки мыла, возникшие в процессе реакции. В оптимальных условиях при полном испарении воды мыло не возникает, но при самостоятельном приготовлении такая проблема регулярная. Устранить остатки можно несколькими способами, но наиболее эффективный — отстаивание полученного биодизеля. Достаточно оставить топливо на неделю, после чего все примеси опустятся на дно.

Проверить качество получившегося биодизеля можно посредством простого теста кислотности. Необходимо опустить лакмусовую бумажку в жидкость и определить состояние среды. Идеальным показателем является нейтральная кислотность в 7,0.

Производство посредством установок

Если выбирать биодизель как постоянное топливо для своего автомобиля, то для экономии и упрощения процесса производства можно приобрести специальную установку. Она позволяет создавать этот продукт в домашних условиях, максимально приближая их к промышленным. Такой вариант оптимален для длительной экономии, ведь производство топлива без соответствующего оборудования затруднительно, а стоимость решения невысока.

Полученный из таких установок биодизель имеет гораздо лучшие характеристики и чистоту, нежели произведенный в «кустарных» условиях. Он содержит меньшую долю воды, благодаря чему снижается вред двигателю в процессе эксплуатации. Такие установки получают все большую распространенность, считаясь оптимальным выбором при отсутствии доступа к биодизелю.

Здесь описывается производство топлива с отработанного масла и особенности этого процесса. Для лучшего понимания производства биодизеля и его особенностей рекомендуется посмотреть это видео:

  • Чем отличается редукторный стартер от обычного
  • Почему нет давления в системе охлаждения или оно избыточно
  • Почему проскакивает бендикс стартера

Что такое биодизель

На первый взгляд, слово это вполне понятно, однако нельзя не обойтись без уточнения. Биодизелем называется метиловый эфир, который образуется в результате определённых химических реакций. В качестве источника используются растительные масла, а также животные жиры.

Нельзя не отметить того факта, что биодизель является экологически чистым топливом, так как он полностью распадается в течение месяца.

Использование устройства

Не менее интересной темой является и применение биодизеля. Следует отметить, что существует довольно большое количество способов использования этого топлива. Наиболее распространёнными из них являются:

  • Замещение бензина. У такого метода использования этого топлива имеются существенные недостатки, которые связаны с тем, что оно обладает повышенной вязкостью, а это способно привести к появлению всевозможных отложений на кольцах, форсунках и поршнях. Кроме того, топливо не будет полностью сгорать.
  • Смесь с дизельным топливом или керосином. Это направление использования биодизеля в смеси является одним из самых перспективных. Особенно активно используют такой вид топлива в США.

Твердое биотопливо

Дрова, как и столетия назад, продолжают использоваться для получения тепловой и электрической энергии. Примером крупнейшей в Европе электростанции, работающей на данной биомассе, является Австрийская ТЭЦ. Ее мощность — 66 МВт.

Не смотря на то, что в мире активно разрабатываются и финансируются проекты по созданию энергетических лесов, где выращивается древесная биомасса, все большее внимание привлекает к себе использование для получения биотоплива различных продуктов деревообрабатывающей промышленности. Такие предприятия уже достаточно хорошо развиты и активно поставляют на рынок свои продукты

К ним относятся топливные брикеты и топливные гранулы – пеллеты.

Для получения топливных брикетов различные биоотходы, такие как птичий помет и навоз, высушиваются и прессуются. Полученные брикеты используются для отопления жилых и производственных помещений.

Аналогично применяются и . Их вырабатывают из опилок, щепы, коры, некондиционной древесины, соломы, отходов сельского хозяйства (лузги подсолнечника, ореховой скорлупы). Для получения пеллет биомасса сначала измельчается в муку, затем поступает в сушилку, а из нее ─ в специальный пресс, где под действием давления и высокой температуры содержащийся в древесных отходах лигнин становится клейким. Он дает возможность получить на выходе готовые цилиндрики биотоплива. Отличительным качеством топливных гранул является их малая зольность — около 3 %.

Технология получения топливного торфа, используемого для отопления жилых домов, также проста. Непосредственно из места добычи сырье доставляется на торфоперерабатывающий завод, где торф очищается от посторонних включений (просеивается), высушивается и прессуется в брикеты.

Еще один вид биотоплива – древесная щепа – используется в Европе на крупных ТЭЦ мощностью от одного до нескольких мегаватт. Выработка древесной щепы производится непосредственно на лесозаготовках или на производстве при помощи специальных рубительных машин – шредеров. В качестве сырья обычно применяется тонкомерная древесина и остатки лесозаготовки – сучья, кора, пни и др.

Зеленые технологии. Биотопливо Видео

2.1.1. Биотопливо из навоза

Долгое время отходы сельскохозяйственной и пищевой промышленности использовались исключительно для производства удобрений, однако сегодня эти же отходы позволяют вырабатывать биологическое топливо. В качестве сырья для производства топлива можно использовать навоз скота и птиц, а также пивная дробина, отходы боен, послеспиртовая барда, канализационные стоки, свекольный жмых и так далее.

В результате переработки таких отходов получается газообразное биотопливо, которое получается в результате брожения. Полученный в итоге биогаз может быть использован для производства электроэнергии или в котельных, для отопления жилых домов. Кроме этого такое топливо используется в автомобилях.

Однако стоит отметить, что для получения газообразного биотоплива для автомобилей биогаз, полученный в результате брожения необходимо отчистить от СО2, после чего он преобразуется в метан.

2.2. Биотопливо второго поколения

Биотопливо второго поколения – это такой вид топлива, который производится из непищевого возобновляемого сырья, в отличие от этанола, метанола, биодизеля и так далее. В качестве сырья для производства биотоплива второго поколения может использоваться солома, водоросли, опилки и любая другая биомасса.

Огромный плюс данного типа топлива заключается в том, что оно изготавливается из продуктов, которые всегда доступны, и которые постоянно возобновляются. По мнению многих ученых именно биотопливо второго поколения сможет решить энергетический кризис.

2.2.1. Биотопливо из водорослей

На сегодняшний день ученые разработали специальную технологию получения биотоплива второго поколения из водорослей. Развитие этой технологии в дальнейшем произвести настоящую революцию в мире биотоплива, так как главное сырье (водоросли) не требуют особого ухода и не нуждаются в удобрениях (для роста требуется вода и солнечный свет). Более того, они растут в любой воде (грязной, чистой, соленой и пресной). Также водоросли способны помочь в чистке канализационных магистралей.

Еще один положительный момент производства биотоплива из водорослей заключается в том, что последние состоят из простых химических элементов, которые легко поддаются переработке и расщеплению. Таким образом, благодаря всем преимуществам технология производства биотоплива из водорослей имеет наибольший потенциал.

 

Жидкое биотопливо

Жидкое биотопливо становится все популярнее благодаря своей экологичности и безопасности. Основное применение находит в двигателях внутреннего сгорания. Этот вид топлива получают в результате переработки различного растительного сырья.

Различают основные виды жидкого биотоплива:

  1. Биоэтанол
  2. Биобутанол
  3. Биометанол
  4. Биодизель

Биоэтанол

Занимает лидирующую позицию в списке жидких биотоплив. Сфера его применения – обычные авто, также в последние годы он используется как биотопливо для домашних каминов. Биоэтанол в смеси с бензином как топливо обладает целым рядом преимуществ по сравнению с обычным бензином: он улучшает работу двигателя машины, увеличивает его мощность, не перегревает двигатель, не образует сажи, нагара и дыма.

Биоэтанол – отличная альтернатива для любителей каминов. Поскольку он не образует дыма, сажи и выделяет при горении малое количество углекислого газа. Может использоваться для отопления каминов даже в многоквартирных домах. При этом полностью отсутствуют потери тепла, как обычно бывает при эксплуатации обычных каминов с наличием дымоходной трубы.

Производится по технологии спиртового брожения из сырья, содержащего крахмал или сахар: кукуруза, зерновые, сахарный тростник, сахарная свекла. Экономически оправданным является получение этанола из сырья, содержащего целлюлозу.

Биобутанол

Как топливо для двигателей более предпочтителен, чем биоэтанол: он лучше смешивается с бензином, может использоваться и как отдельное топливо. Для его получения используют традиционные культуры: сахарный тростник, кукурузу, пшеницу, сахарную свеклу. Пока менее популярен, чем биоэтанол.

Биометанол

Технология его производства пока несовершенна и требует внедрения еще многих инновационных разработок. Предполагается получать его путем биохимического преобразования морского фитопланктона,  культивируемого в специальных водоемах. Но пока не удается наладить производство в промышленных масштабах. Сферы применения биометанола такие же, как и у обычного метанола. Это производство ряда веществ (формальдегида, метилметакрилата, метиламинов, уксусной кислоты и др.), в качестве растворителя и антифриза.

Биодизель

Используется в автомобильных двигателях как отдельно, так и в смеси с привычным дизельным топливом. Кроме отсутствия отрицательного воздействия биодизеля на окружающую среду, многочисленные исследования выделили и еще одно его преимущество. За счет содержания малого количества серы смазочные способности биодизеля лучше, что способствует продлению срока службы серийных двигателей. Сырьем для получения биодизеля могут быть как растения (хлопок, соя , рапс), так и жирные масла( пальмовое, рапсовое, кокосовое), водоросли.

О плюсах и минусах биодизеля

Основная масса достоинств этого вида горючего относится к снижению выбросов в окружающую среду. Если смотреть на вопрос глобально, то количество углекислого газа, образовавшегося при сгорании топлива, теоретически равняется тому объему, что потребили из воздуха масличные культуры. Можно считать, что выдерживается баланс, но только при сжигании биодизеля в котлах, их КПД довольно высок. А вот эффективность ДВС – всего 60%, там помимо углекислого образуется и угарный газ, загрязняющий атмосферу.

В составе топлива очень мало серы, из-за чего использование биодизеля наносит куда меньший вред окружающей среде. При попадании в воду горючее не загрязняет ее, а постепенно разлагается микроорганизмами. Ну и двигатель на растительной солярке работает лучше, ибо его цетановое число (51) выше, чем нефтяного топлива (42—45). Из минусов стоит отметить:

  • более высокую стоимость по сравнению с традиционным горючим;
  • невозможность длительного хранения, спустя 3 месяца начинается процесс его разложения;
  • большие посевные площади для выращивания сырья.

При производстве своими руками образуются технологические отходы биодизеля в виде глицериновой фазы, которые невозможно переработать в домашних условиях. Да и само топливо, добытое дома, не сравнится по качеству с заводским и может создать много проблем во время эксплуатации ДВС. Поэтому умельцам, занимающимся этим делом, можно посоветовать как можно тщательнее фильтровать масло перед загрузкой в бак, это касается и конечного продукта.

Что это такое, и из чего делают биотопливо

Все ресурсы, которые есть на Земле, условно можно поделить на возобновляемые и не возобновляемые. Уголь, нефть, металл, в природе не восстанавливаются, а вот дрова, кукуруза, навоз могут быть получены вновь и вновь. Все, что растет или является отходами переработки такого сырья – источники возобновляемой энергии. Вот из этих биоресурсов люди ещё с давних пор получали нужное для своего существования, в том числе и биотопливо.

Биотопливо первого поколения

Однако и между собой отдельные его виды различаются, скажем так, по значимости источников сырья для биотоплива. Связано это с используемыми ресурсами. Например, чтобы получить биотопливо из рапса, его надо сначала вырастить, а уж потом отправить семена на переработку. Для выращивания такой культуры занимается посевная площадь, и фактически речь идет о выборе приоритетов – а чего мы хотим иметь, продукты питания или биотопливо. Кроме того, получение биомассы, идущей на производство биотоплива, связано с использованием специализированных удобрений, что наносит определённый вред земле и окружающей природе. Такой вид сырья относится к первому поколению.

Второе поколение

Однако биотопливо можно получить из иных источников, таких как отходы других производств. Его делают, например, из опилок, а также остатков стеблей, шелухи, остающейся после обработки зерновых, и многого другого. Все это дает так называемое биотопливо второго поколения, для которого не требуется специально выращивать сырье, а сделать его можно из отходов других производств.

Третье поколение

Следующим этапом развития стало биотопливо третьего поколения. Его источником являются водоросли. Существуют определённые их сорта, содержащие значительное количество растительных жиров, из которых можно сделать тот же самый биодизель. Конечно, чтобы получить биотопливо из водорослей, их надо выращивать, но для этого совсем не требуется занимать посевные площади. Водоросли могут расти в прудах, биореакторах, на морском дне или в специально устроенных заливах, т.е. занимают те участки земной поверхности и морского дна, которые не задействованы в производстве продуктов питания. Так что, биотопливо третьего поколения, хотя и находится еще в стадии отработки технологии производства, надо признать наиболее перспективным.

Виды биотоплива

Дрова используются с того момента, как человек освоил огонь

Самым первым биотопливом, использовавшимся людьми (хотя люди вряд ли знали само слово «биотопливо», когда только начинали использовать этот ресурс) были… обычные дрова.

Да, как ни парадоксально звучит, но одной из нынешних перспектив развития биоэнергетики является возврат к самым истокам. В свое время, от дров как массового вида топлива отказались по двум причинам:

  • Во-первых, энергетическая ценность дров сравнительно невелика. При обычном сжигании в горении участвует только часть массы дров, остальное оседает в виде сажи. Это, помимо прочего, делает необходимым периодическую чистку топки нагревательного прибора, использующего дрова в качестве топлива. Первая причина отказа от дров во многом решается использованием принципа двухступенчатого сжигания или пиролиза.

В ходе первого этапа, твердое биотопливо (дрова, опилки, пеллеты и т.д.) сначала подвергаются термическом воздействию с малым доступом кислорода – пиролизу. В ходе пиролиза топливо выделяет горючий газ. Вторым этапом осуществляется обычное сжигание газа при достаточном притоке кислорода, обычно с принудительным нагнетанием.

Двухступенчатый пиролиз позволяет сжигать топливо практически полностью, извлекая из топлива максимум энергии, что также решало проблему чистки топки. А вот со вторым пунктом все гораздо сложнее.

  • Во-вторых, дрова обладают длительным временем восполнения. Конечно, на восполнение древесины не нужно миллионов лет, но для динамичной современной энергетики 5-10 лет, которые требуются для превращения семени во взрослое дерево, все равно являются недопустимо длительным сроком. Поэтому поиски биотоплива, подходящего для промышленного использования, пришлось продолжить.

Способы изготовления своими руками

Существует множество вариантов производства биотоплива в домашних условиях. Эти варианты мы и рассмотрим.

Содержание:

  • Биотопливо из навоза ↓
  • Производство биогаза ↓
  • Рапсовое биотопливо ↓
  • Разновидности и преимущества ↓
  • Жидкое биотопливо ↓
  • Твердое ↓
  • Газообразное топливо ↓
  • Преимущества ↓
  • Использование ↓
  • Биотопливо для каминов ↓
  • Биотопливо для парников ↓
  • Биотопливо для автомобилей ↓

Биотопливо из навоза

Биотопливо из навоза получается путем брожения органических отходов. Смесь помещается в специальный герметичный бункер на длительный срок. В результате испарения жидкости, выделяется газ, которым и можно воспользоваться при обогреве жилых помещений или для приготовления пищи и жидкое удобрение, которое является основой экологического земледелия.

Продукция, которая выращивается с использованием таких удобрений, является экологически чистой и ее продажная стоимость возрастает по сравнению с продуктами выращенными с использованием пестицидов и других химических удобрений.

Производство биогаза

Вторым продуктом, который мы получаем в результате брожения навоза, является газ.

Для получения газа из этого сырья используется:

  • навоз;
  • птичий помет;
  • стоки туалета;
  • пищевые отходы;
  • растительная масса;

Все сырье должно быть измельчено, иначе трубы, предназначенные для вывода отработанного сырья, могут засориться.

Получить газ можно и в домашних условиях. Для этого, необходимо приобрести газонепроницаемую емкость. Эта емкость должна быть герметичной, так как воздух не должен контактировать с полученным газом.

Затем необходимо поместить сырье (навоз) внутрь этой емкости, немного нагреть и подождать 5 дней. Затем, полученный газ собрать в емкость и применять по своему усмотрению. Устройство по изготовлению биогаза можно собрать самостоятельно, а можно приобрести у фирмы, специализирующейся по продаже этого оборудования.

Уголь для создания биогаза

Для создания биотоплива может пригодиться и древесный уголь, тот самый уголь, без которого нам не обойтись на природе при жарке овощей и шашлыка. Его можно приобрести в магазине, а можно и сделать самому.

Уголь в домашних условиях можно изготовить 2 способами:

Рассмотрим каждый способ по отдельности.  И после этого вы сможете делать уголь самостоятельно.

Для изготовления древесного угля в бочке вам понадобится, собственно говоря, бочка объемом 200 литров. Внизу бочки делаем штуцер для нагнетания кислорода. Затем в бочке разводим костер, постепенно добавляя поленья.

Когда бочка будет наполовину наполнена дровами, начинаем нагнетать кислород. Для этого, можно воспользоваться пылесосом. После этого, количество дыма уменьшится, а огонь будет гореть лучше. Когда поленья немного прогорят, необходимо закрыть бочку крышкой, а имеющиеся щели замазать мокрой глиной или землей. Ожидаем до полного остывания бочки и древесный уголь готов.

Для изготовления угля в яме нам необходимо выкопать яму, диаметр которой будет равен 0,8 м со скошенными стенками, и разжечь в ней костер. Но прежде, чем разжигать костер, возьмите достаточное количество поленьев, сушняка, веток деревьев из которых вы будете получать уголь.

Дрова в костер укладывайте плотно и постепенно по слоям, один за другим. Дождитесь полного выжигания дров (на это уйдет порядка 3 часов), далее накрывайте поленья мхом или сухими листьями, присыпьте землей и все хорошенько утрамбуйте. Спустя 2 дня уголь будет готов.

Рапсовое биотопливо

Из семян рапса поступивших в маслобойню получают масло и шрот. Далее, это масло поступает в специальную установку, где в результате различных химических реакций из рапсового масла получают метиловый эфир – биодизель.

Перед использованием, его необходимо профильтровать. Этот вид дизеля отличается лучшей воспламеняемостью по сравнению с обычным дизельным топливом.

В чем преимущества использования биологического топлива

Существует немало преимуществ у использования биогаза.

  • Стоимость биогаза сегодня находится в паритете с бензином, но при этом его чистота гораздо выше, что дает неплохую экономию на техническом обслуживании отопительных котлов, которые работают на таком виде топлива.
  • Нет никакой зависимости от наличия и стоимости нефтепродуктов.
  • Источники получения биотоплива можно считать возобновляемыми в отличие от углеводородов. Ведь разложение биомассы будет происходить всегда, пока есть жизнь на Земле. Нефть, газ и уголь рано или поздно в недрах закончатся, ведь они образовывались миллионами лет в строго определенных условиях, которых сегодня на планете уже нет.
  • Снижается общее количество вредных выбросов в атмосферу примерно на 65%.
  • Возможность самостоятельной выработки. Нельзя своими руками добыть нефть и сделать из нее бензин, а вот биотопливо произвести при наличии определенных знаний сможет каждый. Причем, сырье для производства не придется долго искать.

Биотопливо доступный и неисчерпаемый ресурс

Биотопливо — это используемые для получения тепловой энергии вещества биологического или животного происхождения.

Для производства биотоплива подходят как возобновляемые природные ресурсы, так и отходы, образующиеся в результате деятельности деревообрабатывающей, целлюлозно-бумажной промышленности и потребления человека.

В зависимости от целей и предназначения, биотопливо имеет различные агрегатные состояния: твёрдое, жидкое и газообразное.

Твёрдое

Твёрдое биотопливо на сегодняшний день держит пальму первенства как самый популярный вид альтернативного топлива.

Сырьём для производства твёрдого биотоплива служит биомасса, образующаяся из растительных остатков, стеблей и семян кукурузы, рапса, из соломы, опилок, щепы, хвои, листьев, а также сучки, ветки, кора, обрезки досок, бракованные части из дерева, навоз, торф и т. д. Биомассу прессуют в топливные гранулы (пеллеты) или брикетируют.

Энергетические леса, в состав которых входят быстрорастущие деревья и кустарниковые группы растений, позволяют поддерживать сырьевой баланс, обеспечивая производство биотоплива необходимым объёмом материала.

Быстрорастущие деревья сажают для использования их впоследствии в качестве сырья для производства биотоплива

Жидкое

В состав жидкого биотоплива входят спирты, эфиры, масла. Сырьём выступает та же биомасса, состоящая из растительных остатков, стеблей и семян кукурузы, рапса, сахарной свёклы и тростника, пшеницы, а также жмыха, выжимки, патоки и т.д.

Образование топлива происходит в результате спиртового брожения биологической массы с высоким содержанием крахмала и/или сахара, а также гидролизе. Образующийся в результате брожения раствор после очистки и дистилляции преобразуется в биоэтанол, биобутанол, биометанол, биодизель.

Простейшее устройство для анаэробного брожения

Газообразное

Газообразное биотопливо или биогаз образуется в результате анаэробного брожения (перепревания) органических веществ.  Для производства биогаза используют метанообразующие, гидролизные или кислотообразующие бактерий.

Размещение экологически чистого производства

Наряду с общепринятой, используется и альтернативная классификация биотоплива по поколениям:

  • к первому поколению относится биотопливо, производимое из биологического сырья посредством брожения;
  • биотопливо второго поколения получают из неопасных отходов производства и потребления;
  • к третьему поколению относится производство биотоплива из растительных жиров, содержащихся в водорослях.

Как производится дизельное биотопливо

Сырьем для этого вида топлива могут служить любые культуры, из которых получают большое количество растительного масла. Чаще всего это рапс и соя, их переработка дает максимальный выход сырья и, соответственно, конечного продукта в виде биодизеля.

В дело идут и животные жиры, являющиеся отходами мясокомбинатов, кожевенных заводов и других предприятий. Также годятся перегоревшие растительные масла из ресторанов и прочих заведений общественного питания.

Следует отметить, что биодизель из масла растительного и животного происхождения производится по относительно простой технологии. Основные этапы технологического процесса выглядят следующим образом:

  • грубая и тонкая очистка сырья (масла) от мельчайших примесей;
  • смешивание масла и метилового спирта с добавлением щелочного катализатора в реакторе. Пропорции сырья и метанола – 9 : 1, катализатором служит гидроксид натрия или калия;
  • нагрев до 60 °С и перемешивание при этой температуре в течении примерно 2 часов. Этап носит название этерификации;
  • полученная субстанция отстаивается в отдельной емкости и расслаивается на 2 вещества – глицериновая фракция и собственно биодизель;
  • вещества разделяются в сепараторе, после чего горючее проходит термическую обработку с целью выпаривания из него воды.

Примечание. Глицериновая фаза – это еще не чистый глицерин, для его выделения субстанцию надо дополнительно переработать. Так что схема полного цикла выглядит куда сложнее:

Технологическое оборудование для производства биодизеля тоже не отличается высокой сложностью и представляет собой несколько емкостей, соединенных между собой трубопроводами, а также насосы – главный и несколько дозирующих. Поскольку на предприятиях все этапы автоматизированы, то реактор и другие резервуары оборудованы датчиками температуры и уровня, а насосами управляет контроллер. Все данные о протекающем процессе выводятся на дисплей оператора.

Поколения альтернативного горючего

Широкий ассортимент растительного сырья, используемого для биомассы, принято разделять на несколько поколений.

К первому поколению относятся сельскохозяйственные культуры, в которых содержится высокий процент крахмала, сахаров, жиров. Это такие популярные растения, как кукуруза, сахарная свекла, рапс, соя. Поскольку выращивание этих культур наносит ущерб климату, а их изъятие с рынка влияет на ценообразование продуктов, ученые пытаются заменить их на другие виды биомассы.

Из сельскохозяйственных растений, относящихся к первому поколению сырья, в настоящее время вырабатываются почти все виды современного жидкого топлива (биодизель, этанол)

В группу второго поколения биомассы входит древесина, трава, сельскохозяйственные отходы (скорлупа, шелуха). Получение биотоплива из такого сырья требует больших затрат, однако позволяет решить вопрос утилизации не пищевых остатков с одновременным производством горючих материалов.

Особенностью культур, входящих в эту разновидность, является присутствие в них лигнина и целлюлозы. Благодаря им биомассу можно сжигать и газифицировать, а также подвергать пиролизу, получая жидкое топливо. Главным недостатком биомассы второго поколения считается недостаточная отдача с единицы площади, из-за чего под такие культуры приходится отводить значительные земельные ресурсы.

Сырьем для производства биотоплива третьего поколения служат водоросли, которые выращиваются в промышленных масштабах, например, в открытых водоемах.

Наиболее перспективным вариантом считается биотопливо, получаемое из одноклеточных водорослей. Такие растения быстро набирают массу, при этом для их выращивания не требуется плодородных земель

Подобная практика имеет большие перспективы, однако в настоящее время такие технологии только разрабатываются. Ученые также ведут исследования по созданию методик, позволяющих получить биотопливо четвертого и даже пятого поколения.

Можно ли сделать биологическое топливо своими руками

Содержание

  • 1 Можно ли сделать биологическое топливо своими руками
  • 2 Биологическое топливо своими руками
  • 3 Биологическое топливо получение дома

Опираясь на тот факт, что вскоре возникнет кризис-топливо, пришло время задуматься о поиске новых источников. Может именно эти источники, помогут нам спасти себя? Однако стоит задуматься, заменит ли что-нибудь нефть или газ? На сегодняшний день, предоставлены некие перспективные варианты. Среди данных вариантов рассматриваются солнечные, ветровые и другие виды энергетики.

Как утверждают ученые, можно эффективно использовать биотопливо. Данное средство можно произвести из разнообразного сырья. И он считается наиболее бюджетным вариантом. Сегодня в данной статье, мы рассмотрим вариант получения биотоплива из навоза. И это сделать можно самостоятельно.

Производство биогаза в домашних условиях

  1. Выкапываем яму для резервуара. Стены резервуара могут быть из любого материла, главное, чтобы он был герметичным. Объем резервуара зависит от ваших нужд (из одного килограмма биологических отходов, выделяется пол килограмма биогаза).
  2. Наполняем резервуар био мусором (растительные и животные отходы), заливаем водой и герметично закрываем крышкой (не забывая проделать канал, через который газ будет попадать в емкость для хранения.
  3. Через металлическую трубу соединяем резервуар для брожения биомусора с емкостью для хранения.
  4. Подсоединяем систему к газовому котлу для обогрева. Не забываем про регуляторы давления. Этот этап лучше доверить специалисту! Неправильная эксплуатация системы может привести к утечке газа и взрыву.

Как получить биогаз в домашних условиях

Биогазом называют смесь газов, которая получается в результате перепревания органики. При этом доступ воздуха к сырью должен быть прекращен. Исходным материалом для получения газообразного биотоплива может быть трава, различные отходы, ботва культурных растений или навоз. Основу биогаза составляют углекислый газ и метан. Удельная часть последнего может достигать 70%. К этой смеси в различных пропорциях примешаны другие газы, например, сероводород.

В среднем один килограмм органики дает порядка 500 г газа. На эффективность производства биогаза влияет несколько факторов. Наиболее важными из них считаются:

  • Температура окружающей среды. Чем она выше, тем более интенсивно происходит процесс разложения органики и выделение биогаза. Не случайно первые установки, производящие биогаз, действовали в теплых регионах. Однако при достаточном утеплении установок и использовании в их работе горячей воды системы можно обустраивать и в областях с холодным климатом.
  • Качество сырья. Оно должно достаточно легко разлагаться. При этом в его состав должно входить достаточное количество воды, без включений антибиотиков, моющих средств и других подобных им веществ, которые могут замедлить процесс ферментации.

Простейшее устройство для получения биогаза в домашних условиях выглядит таким образом. На участке выкапывается большая яма. Внутрь нее укладываются бетонные кольца. Таким образом, чтобы получилась герметичная емкость. Поверх нее устанавливается металлический купол. Из емкости на поверхность выводятся трубы для отвода биогаза. Яма заполняется органикой. Проверенный на практике рецепт органического материала: смешать 3-4 тонны растительных отходов и 1,5-2 тонны навоза. Все это заливается водой до получения смеси 60-70% влажности.

Биогаз — смесь газов полученных в результате перепревания органики без доступа кислорода. Его достаточно легко получить в домашних условиях. На снимке достаточно производительная установка по производству биогаза

Вот еще несколько вариантов смесей для получения биогаза:

  • Коровий и конский навоз, смешанные в пропорциях 1:1.
  • Конский навоз, перемешанный с соломой или торфом.
  • Любой навоз с добавлением льняной костры в соотношении 7:3.
  • Коровий навоз, перемешанный с опилками в пропорции 7:3.
  • Конский навоз с добавлением любой листвы в соотношении 7:3.
  • Любой навоз с добавлением домашних отходов в пропорции 4:6.

Подготовленное сырье укладывается в емкость. При помощи змеевика его прогревают до температуры порядка 35С. В таких условиях без доступа воздуха запускается процесс брожения, за счет которого происходит дальнейший нагрев смеси и выделение биогаза. Газ по трубопроводу отводится из резервуара и поступает в накопитель. Такое биотопливо может использоваться для отопления, приготовления еды и других хозяйственных нужд.

Установки для производства биогаза достаточно просты. На рисунке представлены схемы двух очень простых, но, тем не менее, эффективных систем

Основы биотоплива | Министерство энергетики

Управление биоэнергетических технологий (BETO) сотрудничает с промышленностью в разработке биотоплива нового поколения, изготовленного из непищевых ресурсов (целлюлозы и водорослей). За последнее десятилетие BETO сосредоточилась на целлюлозном этаноле, инвестируя в технологические достижения по всей цепочке поставок. Эти мероприятия успешно подтвердили критические технологии производства целлюлозного этанола. Прошлая работа Управления по целлюлозному этанолу обеспечивает ценный плацдарм для достижений в области углеводородного биотоплива, также известного как «попадающее» топливо, которое может служить заменителем нефти на существующих нефтеперерабатывающих заводах, резервуарах, трубопроводах, насосах, транспортных средствах и небольших двигателях.

Посмотрите видеоролик Energy 101: Биотопливо, чтобы узнать больше.

ЭТАНОЛ

Этанол (Ch4Ch3OH) — это возобновляемое топливо, которое можно производить из различных растительных материалов, вместе известных как «биомасса». Этанол — это спирт, который используется в качестве смешивающего агента с бензином для повышения октанового числа и сокращения выбросов монооксида углерода и других выбросов, вызывающих смог.

Наиболее распространенной смесью этанола является E10 (10% этанола, 90% бензина). Некоторые автомобили, называемые транспортными средствами с гибким топливом, предназначены для работы на E85 (смесь бензина и этанола, содержащая 51–83% этанола, в зависимости от географии и сезона), альтернативного топлива с гораздо более высоким содержанием этанола, чем обычный бензин.Примерно 97% бензина в Соединенных Штатах содержит этанол.

Большая часть этанола производится из растительных крахмалов и сахаров, но ученые продолжают разрабатывать технологии, которые позволят использовать целлюлозу и гемицеллюлозу, непищевой волокнистый материал, составляющий основную массу растительного вещества. Фактически, в настоящее время в Соединенных Штатах работает несколько промышленных предприятий по переработке целлюлозного этанола.

Обычный метод преобразования биомассы в этанол называется ферментацией.Во время ферментации микроорганизмы (например, бактерии и дрожжи) метаболизируют растительные сахара и производят этанол.

Узнайте больше об этаноле.

БИОДИЗЕЛЬ

Биодизель — это жидкое топливо, производимое из возобновляемых источников, таких как новые и использованные растительные масла и животные жиры, и более чистая замена дизельного топлива на нефтяной основе. Биодизель нетоксичен и поддается биологическому разложению и производится путем смешивания спирта с растительным маслом, животным жиром или переработанным кулинарным жиром.

Как и дизельное топливо, полученное из нефти, биодизель используется в качестве топлива для двигателей с воспламенением от сжатия (дизельных). Биодизельное топливо может быть смешано с нефтяным дизельным топливом в любом процентном соотношении, включая B100 (чистый биодизель) и, наиболее распространенную смесь, B20 (смесь, содержащая 20% биодизеля и 80% нефтяного дизельного топлива).

Узнайте больше о биодизеле.

ВОЗОБНОВЛЯЕМЫЕ УГЛЕВОДОРОДНЫЕ ТОПЛИВА

Нефтяные топлива, такие как бензин, дизельное и реактивное топливо, содержат сложную смесь углеводородов (молекул водорода и углерода), которые сжигаются для получения энергии.Углеводороды также можно получать из источников биомассы с помощью различных биологических и термохимических процессов. Возобновляемые углеводородные топлива на основе биомассы практически идентичны топливам на основе нефти, для замены которых они предназначены, поэтому они совместимы с современными двигателями, насосами и другой инфраструктурой.

В настоящее время одно предприятие промышленного масштаба (World Energy в Парамаунте, Калифорния) производит возобновляемое дизельное топливо из отработанных жиров, масел и смазок. Несколько компаний заинтересованы либо в модернизации существующих производственных площадок, либо в строительстве новых объектов для возобновляемого дизельного топлива и реактивных двигателей в США.Узнайте больше о возобновляемом углеводородном топливе.

ПРОЦЕССЫ ПРЕОБРАЗОВАНИЯ БИОТОПЛИВА
Деконструкция

Производство современных видов биотоплива (например, целлюлозного этанола и возобновляемых углеводородных топлив) обычно включает многоступенчатый процесс. Во-первых, необходимо разрушить жесткую жесткую структуру стенки растительной клетки, которая включает в себя тесно связанные друг с другом биологические молекулы целлюлозы, гемицеллюлозы и лигнина. Это может быть выполнено одним из двух способов: деконструкция при высокой температуре или деконструкция при низкой температуре.

Высокотемпературная деконструкция
Высокотемпературная деконструкция использует чрезвычайно высокую температуру и давление для разложения твердой биомассы на жидкие или газообразные промежуточные продукты. На этом пути используются три основных пути:

  • Пиролиз
  • Газификация
  • Гидротермальное сжижение.

Во время пиролиза биомасса быстро нагревается до высоких температур (500–700 ° C) в бескислородной среде. Тепло расщепляет биомассу на пары пиролиза, газ и уголь.После удаления полукокса пары охлаждаются и конденсируются в жидкую «био-сырую» нефть.

Процесс газификации немного похож; однако биомасса подвергается воздействию более высокого температурного диапазона (> 700 ° C) с присутствием некоторого количества кислорода для производства синтез-газа (или синтез-газа) — смеси, состоящей в основном из моноксида углерода и водорода.

При работе с влажным сырьем, таким как водоросли, предпочтительным термическим процессом является гидротермальное ожижение. В этом процессе используется вода при умеренных температурах (200–350 ° C) и повышенном давлении для преобразования биомассы в жидкую бионефть.

Низкотемпературная деконструкция
Низкотемпературная деконструкция обычно использует биологические катализаторы, называемые ферментами или химическими веществами, для разложения исходного сырья на промежуточные продукты. Во-первых, биомасса проходит стадию предварительной обработки, которая раскрывает физическую структуру клеточных стенок растений и водорослей, делая более доступными сахарные полимеры, такие как целлюлоза и гемицеллюлоза. Затем эти полимеры ферментативно или химически расщепляются на простые сахарные строительные блоки в процессе, известном как гидролиз.

Модернизация

После деконструкции промежуточные продукты, такие как сырые биомасла, синтез-газ, сахара и другие химические строительные блоки, должны быть модернизированы для производства готового продукта. Этот этап может включать биологическую или химическую обработку.

Микроорганизмы, такие как бактерии, дрожжи и цианобактерии, могут сбраживать сахар или газообразные промежуточные продукты в топливные смеси и химические вещества. В качестве альтернативы, сахара и другие промежуточные потоки, такие как бионефть и синтез-газ, можно обрабатывать с использованием катализатора для удаления любых нежелательных или реакционноспособных соединений с целью улучшения характеристик хранения и обращения с ними.

Готовые продукты после модернизации могут быть топливом или биопродуктами, готовыми к продаже на коммерческий рынок, или стабилизированными промежуточными продуктами, подходящими для отделки на нефтеперерабатывающем заводе или химическом заводе.

Прочтите «Конверсия биомассы: от исходного сырья к готовой продукции», чтобы узнать больше.

Объяснение биотоплива — Управление энергетической информации США (EIA)

Биотопливо — это транспортное топливо, такое как этанол и дизельное топливо на основе биомассы, которое производится из материалов биомассы.Эти виды топлива обычно смешиваются с нефтяными топливами (бензин и дистиллят / дизельное топливо и топочный мазут), но их также можно использовать самостоятельно. Использование этанола или биодизеля снижает потребление бензина и дизельного топлива, производимого из сырой нефти, что может снизить количество сырой нефти, импортируемой из других стран. Этанол и биодизель также являются более экологически чистыми видами топлива, чем чистый бензин и дизельное топливо.

Что такое этанол?

Этанол — это горючий спирт, изготовленный из сахаров, содержащихся в зернах, таких как кукуруза, сорго и ячмень.

  • Сахарный тростник
  • Свекла сахарная
  • Шкурка картофельная
  • Рис
  • Садовая вырезка
  • Кора дерева
  • Просо

Большая часть топливного этанола, используемого в США, производится из кукурузы. Ученые работают над способами получения этанола из всех частей растений и деревьев, а не только из зерна, и экспериментируют с быстрорастущими древесными культурами, такими как тополь, ива и просо, чтобы увидеть, можно ли их использовать для производства этанола.

Исследователи-генетики Министерства сельского хозяйства США (USDA) изучают просо как источник этанола.

Фото: Бретт Хэмптон, Служба сельскохозяйственных исследований Министерства сельского хозяйства США (общественное достояние)

Этанол смешан с бензином

Почти весь бензин, продаваемый в настоящее время в Соединенных Штатах, содержит около 10% этанола по объему. Любой бензиновый двигатель в Соединенных Штатах может использовать E10 (бензин с 10% этанола), но только определенные типы транспортных средств могут использовать смеси с топливом, содержащим более 10% этанола.Транспортное средство с гибким топливом может использовать бензин с содержанием этанола более 10%. В октябре 2010 года Агентство по охране окружающей среды США постановило, что легковые и легкие грузовики 2007 модельного года и новее могут использовать E15 (бензин с 15% этанолом). E85, топливо, содержащее 51–83% этанола, в зависимости от местоположения и сезона, в основном продается на Среднем Западе и может использоваться только в транспортных средствах с гибким топливом.

Что такое дизельное топливо на основе биомассы?

Дизельное топливо на основе биомассы включает биодизель и возобновляемое дизельное топливо.Оба они называются дизельным топливом на основе биомассы, потому что они в основном производятся для использования в дизельных двигателях, но их также можно использовать в качестве топлива для отопления. Оба вида топлива производятся из биомассы или материалов, полученных из биомассы, но они различаются по способу производства и физическим свойствам. Дизельное топливо на основе биомассы можно использовать в дизельных двигателях без модификации двигателей.

А биодизель и стандартный бензонасос

Источник: стоковая фотография (защищена авторским правом)

Последнее обновление: 24 августа 2020 г.

Дизельное топливо на основе биомассы — объяснение биодизеля

Биодизель и возобновляемое дизельное топливо — это биотопливо на основе биомассы

Дизельное топливо на основе биомассы, используемое в качестве нефтяного дистиллятного мазута (дизельное топливо и топочный мазут), включает биодизель и возобновляемое дизельное топливо .Оба они называются дизельным топливом на основе биомассы, потому что они в основном производятся для использования в дизельных двигателях, но их также можно использовать в качестве топлива для отопления. Оба вида топлива производятся из биомассы или материалов, полученных из биомассы, но они различаются по способу производства и физическим свойствам. Биодизель соответствует спецификации ASTM D6751 Американского общества испытаний и материалов (ASTM) и одобрен для смешивания с нефтяным дистиллятом / дизельным топливом. Возобновляемое дизельное топливо соответствует спецификации ASTM D975 для нефтяного дизельного топлива и не требует смешивания с нефтяным дизельным топливом для его использования.Оба вида топлива соответствуют требованиям к уровню потребления биотоплива, предусмотренным Стандартной программой США по возобновляемым источникам топлива.

Биодизель производится путем переэтерификации

Биодизель производится путем переэтерификации — химического процесса, при котором жиры и масла превращаются в метиловые эфиры жирных кислот (FAME). Примерно 100 фунтов масла или жира реагируют с 10 фунтами короткоцепочечного спирта (обычно метанола) в присутствии катализатора (обычно гидроксида натрия или гидроксида калия) с образованием 100 фунтов биодизельного топлива и 10 фунтов глицерина (или глицерина). ).Глицерин — это сахар, обычно используемый в производстве фармацевтических препаратов и косметики.

Биодизель изготавливается из различных материалов

Биодизель можно производить практически из любого сырья (сырья), которое содержит достаточное количество свободных жирных кислот. Большая часть производства биодизеля в США использует сырые растительные масла, отработанные кулинарные масла, желтый жир и животные жиры в качестве сырья для переэтерификации. Растительные масла являются основным сырьем для производства биодизеля в США.Другое сырье для производства биодизеля включает отходы животных жиров с перерабатывающих предприятий, а также использованное / переработанное кулинарное масло и желтый жир из ресторанов.

Масло растительное в бутылке

Рапсовое масло, подсолнечное масло и пальмовое масло являются основным сырьем для производства биодизеля в других странах. Водоросли также являются потенциальным источником производства биодизеля. Водоросли содержат жировые карманы, которые помогают им держаться на плаву. Этот жир можно собирать и перерабатывать в биодизельное топливо.

Биодизель в основном используется в качестве добавки к нефтяному дизельному топливу

Биодизель чаще всего добавляется (смешивается) с нефтяным дистиллятом / дизельным топливом в соотношении 2% (обозначается как B2), 5% (B5) или 20% (B20). Его называют биодизелем, потому что он в основном используется в дизельных двигателях. Чистый биодизель (B100) также может использоваться во многих областях. Баки и оборудование для нефтяного дизельного топлива также могут хранить и транспортировать биодизель. Узнайте больше об использовании биодизеля из различного сырья.Смеси биодизеля также могут использоваться в качестве топочного мазута.

История биодизеля

До того, как нефтяное дизельное топливо стало популярным, Рудольф Дизель, изобретатель дизельного двигателя в 1897 году, экспериментировал с использованием растительного масла (биодизеля) в качестве топлива. До 2001 года Соединенные Штаты потребляли лишь небольшое количество биодизеля. С тех пор производство и потребление биодизеля в США существенно выросло, в основном из-за наличия различных государственных стимулов и требований для производства, продажи и использования биодизеля, включая Стандартную программу по возобновляемым источникам топлива.

В 2019 году Соединенные Штаты произвели около 41 миллиона баррелей (1,7 миллиарда галлонов) B100, импортировали около 4 миллионов баррелей (168 миллионов галлонов), экспортировали около 2,7 миллиона баррелей (114 миллионов галлонов) и потребили около 43 миллионов баррелей (1,8 миллиарда галлонов). миллиардов галлонов) почти все в виде смесей с нефтяным дизельным топливом.

Последнее обновление: 22 июня 2020 г.

Объяснение этанола — Управление энергетической информации США (EIA)

Этанол производится из биомассы

Этанол — это возобновляемое биотопливо, потому что оно производится из биомассы.Этанол — это прозрачный бесцветный спирт, полученный из различных материалов биомассы, называемых сырьем (сырье, используемое для производства продукта). Производители топливного этанола в США в основном используют пищевые зерна и культуры с высоким содержанием крахмала и сахара в качестве исходного сырья для производства этанола, такого как кукуруза, сорго, ячмень, сахарный тростник и сахарная свекла. Этанол также можно производить из трав, деревьев и сельскохозяйственных и лесных отходов, таких как кукурузные початки и запасы, рисовая солома, опилки и древесная щепа. Этанол получают из этого сырья несколькими способами.

Ферментация — наиболее распространенный метод производства топливного этанола

В наиболее распространенных сегодня процессах производства этанола дрожжи используются для сбраживания крахмала и сахаров кукурузы, сахарного тростника и сахарной свеклы. Кукуруза является основным сырьем для топливного этанола в Соединенных Штатах из-за ее изобилия и относительно низкой исторической цены. Крахмал в зернах кукурузы ферментируется до сахара, который затем ферментируется до спирта.

Сахарный тростник и сахарная свекла — наиболее распространенное сырье, используемое для производства топливного этанола в других частях мира.Поскольку алкоголь производится путем ферментации сахара, сахарные посевы легче всего превратить в алкоголь. Бразилия, второй по величине производитель топливного этанола в мире после США, делает большую часть своего топливного этанола из сахарного тростника. Большинство автомобилей в Бразилии могут работать на чистом этаноле или на смеси бензина и этанола.

Исследователи Министерства сельского хозяйства США добавляют дрожжи для начала ферментации этанола

Фото: Скотт Бауэр, Служба сельскохозяйственных исследований Министерства сельского хозяйства США (общественное достояние)

Целлюлозный этанол — большой потенциальный источник топливного этанола

Этанол также можно получить, расщепляя целлюлозу в растительных волокнах.Этот целлюлозный этанол считается передовым биотопливом и требует более сложного и дорогостоящего производственного процесса, чем ферментация. Однако существуют большие потенциальные источники целлюлозного сырья для непродовольственных культур. Деревья, травы и сельскохозяйственные остатки являются потенциальным сырьем для производства целлюлозного этанола. Деревьям и травам требуется меньше энергии, удобрений и воды для роста, чем для выращивания зерновых, и их также можно выращивать на землях, которые не подходят для выращивания продовольственных культур.Ученые создали быстрорастущие деревья, которые вырастают в полный размер за 10 лет. Многие травы могут давать два урожая в год в течение многих лет без ежегодной пересадки. Несмотря на технический потенциал производства целлюлозного этанола, экономичное производство было труднодостижимым, и в Соединенных Штатах было произведено только относительно небольшое количество целлюлозного топливного этанола.

История этанола

В 1850-х годах этанол был основным топливом для освещения. Во время гражданской войны этанол был обложен налогом на спиртные напитки, чтобы собрать деньги на войну.Налог настолько увеличил цену этанола, что он больше не мог конкурировать с другими видами топлива, такими как керосин. Производство этанола резко сократилось из-за этого налога, и уровни производства не начали восстанавливаться до тех пор, пока налог не был отменен в 1906 году.

Автомобиль модели Т

Источник: стоковая фотография (защищена авторским правом)

Модель T работала на этаноле

В 1908 году Генри Форд сконструировал свою модель T, очень ранний автомобиль, работающий на смеси бензина и спирта.Форд назвал эту смесь топливом будущего. В 1919 году, когда начался Сухой закон, этанол был запрещен, потому что он считался алкогольным напитком. Его можно было продать только в смеси с нефтью. Этанол снова стал использоваться в качестве топлива после прекращения сухого закона в 1933 году.

Большая часть автомобильного бензина в настоящее время содержит топливный этанол

Использование этанола временно увеличилось во время Второй мировой войны, когда не хватало нефти и других ресурсов. В 1970-х годах интерес к этанолу как транспортному топливу возродился, поскольку нефтяные эмбарго, рост цен на нефть и растущая зависимость от импортируемой нефти повысили интерес к альтернативным видам топлива.С тех пор использование и производство этанола стимулировалось налоговыми льготами и экологическими нормативами, требующими более экологически чистого топлива.

В 2005 году Конгресс принял Стандарт по возобновляемым видам топлива, который установил минимальные требования к использованию возобновляемых видов топлива, включая этанол. В 2007 году целевые показатели использования возобновляемого топлива RFS должны были неуклонно расти до уровня 36 миллиардов галлонов к 2022 году. В 2020 году в Соединенных Штатах было израсходовано около 12,6 миллиардов галлонов топливного этанола.Большая часть автомобильного бензина, продаваемого в настоящее время в Соединенных Штатах, составляет около 10% по объему топливного этанола.

Последнее обновление: 21 июня 2021 г.

Разбейте его! Как ученые делают топливо из растений · Границы для молодых умов

Аннотация

Когда вы едете в школу утром на автобусе, ваша поездка, вероятно, осуществляется на дизельном топливе или бензине, которые производятся из нефти. Нефть — это ископаемое топливо , что означает, что она производится из разложившихся, окаменелых организмов, таких как древние растения, планктон и водоросли, которые были погребены под поверхностью Земли на протяжении миллионов лет.

Ископаемые виды топлива, такие как нефть, природный газ и уголь, добываются из недр земли и используются для привода автомобилей, обогрева зданий и выработки электроэнергии. Нефть также можно использовать для производства химикатов на нефтяной основе (нефтехимии), которые встречаются во многих повседневных вещах, например, в подошвах вашей обуви или пластиковом покрытии сиденья школьного автобуса.

Ископаемые виды топлива хороши тем, что они очень энергоемкие, т. Е. Содержат много энергии на единицу объема.Это означает, что ископаемые виды топлива очень хороши для питания автомобилей и выработки тепла. Не очень хорошо об ископаемом топливе то, что на Земле их ограниченное количество. Поскольку ископаемое топливо формируется в течение миллионов лет, мы в конечном итоге израсходуем его, прежде чем будет произведено больше. Кроме того, при сжигании ископаемого топлива или нефтехимии выделяется углекислый газ (CO 2 ). CO 2 известен как парниковый газ, потому что он может задерживать солнечные лучи в атмосфере Земли, действуя так же, как стеклянная крыша теплицы.Сжигание ископаемого топлива увеличивает концентрацию CO 2 в атмосфере, что может привести к климатическим нарушениям, включая , глобальное потепление (1).

Из-за этих проблем ученые и инженеры усердно работают над поиском новых видов топлива и химикатов, которые не добавляют CO 2 в атмосферу, и которые могут быть возобновлены, когда запасы истощаются. Топливо и химикаты, отвечающие этим требованиям, обозначаются как «, устойчивое ». С экологической точки зрения материал является экологически безопасным, если его можно использовать в течение длительного времени, не исчерпывая и не оказывая общего негативного воздействия на окружающую среду.

Биотопливо — это один из видов топлива, многообещающий для нашего энергетического будущего, поскольку он является возобновляемым и экологически чистым. Другими словами, биотопливо устойчиво.

Биотопливо обычно производится из растительных материалов, которые не могут быть съедены людьми, таких как стебли кукурузы, травы и древесная щепа. Биомасса — это еще одно название растительного сырья, которое используется для производства биотоплива. Когда биомасса собирается и обрабатывается, ученые могут расщеплять и преобразовывать растительные клетки в возобновляемое топливо или химические вещества.Таким образом, вместо того, чтобы ждать миллион лет, пока природа превратит растения в ископаемое топливо, ученые пытаются ускорить этот процесс, используя хитроумную химию для производства биотоплива из растений, которые сегодня живы.

А теперь подожди секунду. Если при сжигании ископаемого топлива, которое состоит из древнего органического вещества, в атмосферу выбрасывается CO 2 … не создает ли сжигание биотоплива ту же проблему? К счастью, нет. При сжигании биотоплива действительно выделяется CO 2 , но помните, что растения, используемые в биотопливе, не древние — они жили на Земле в то же время, что и мы с вами.И хотя мы, люди, дышим кислородом, чтобы остаться в живых, растения вместо этого дышат CO 2 . Это означает, что, поскольку растения, используемые для производства биотоплива, потребляют CO 2 в процессе своего роста, не происходит общего увеличения количества CO 2 в атмосфере при их сжигании. Они только заменяют то, что взяли. Кроме того, в отличие от нефти, мы всегда можем вырастить новые растения для биотоплива, когда они нам понадобятся.

Итак, если биотопливо является устойчивым и экологически чистым, то оно должно быть идеальным решением наших энергетических проблем, не так ли? К сожалению, процессы, которые ученые используют для превращения биомассы в биотопливо, могут быть очень дорогими.Дорогостоящие химические реакции означают дорогостоящее биотопливо и биопродукты, и большинство потребителей предпочтут обычный бензин или пластик более дорогим «зеленым» продуктам. Кроме того, для некоторых реакций с биотопливом требуются агрессивные химические вещества, которые могут создавать свои собственные экологические проблемы, возвращая нас к тому месту, где мы начали с точки зрения устойчивости (2).

Чтобы увидеть, как растения превращаются в полезное топливо и химические вещества, мы должны сначала понять, из чего они сделаны. Стенки растительных клеток отвечают почти за весь вес растения и состоят из трех сложных молекул, называемых целлюлозой, гемицеллюлозой и лигнином (рис. 1).

  • Рис. 1. На этом рисунке показана основная структура тканей растения, начиная с уровня листа (вверху: «несъедобные растения») и увеличивая масштаб до клеточного уровня (слева: «клетка растения»).
  • Как видите, на клеточном уровне длинные молекулы целлюлозы (показаны синим) плотно упакованы в пучки, окруженные гемицеллюлозой (оранжевый) и лигнин (зеленый). Эта плотно упакованная структура делает ткани растений прочными и долговечными.

Первые две молекулы, целлюлоза и гемицеллюлоза, разрываются на простые сахарные строительные блоки, связанные вместе в компактную структуру, поддерживаемую третьей молекулой — лигнином (рис. 1).Все три сложные молекулы в растениях должны быть разделены на части, чтобы получить доступ к строительным блокам сахара внутри, которые затем можно превратить в биотопливо.

Один из способов добиться такого разложения биомассы — использовать много агрессивных химикатов для разрушения тканей растений. Однако эти химические вещества могут быть дорогими — даже токсичными (2). В идеале мы хотели бы упростить разрушение растений, чтобы нам не нужно было так сильно полагаться на эти химические вещества.

Одно из возможных решений — использовать растворитель — жидкость с химическими свойствами, позволяющими растворять другие материалы… например, растения.Большинство из нас используют растворители каждый день, даже если мы не подозреваем об этом. Например, вы используете воду в качестве растворителя каждый раз, когда моете руки или готовите горячий шоколад быстрого приготовления.

Иногда с работой можно справиться только с помощью растворителя определенного типа. Например, вода может растворять какао-порошок для приготовления горячего шоколада, но не удаляет лак с ногтей — для этого вам понадобятся химические вещества, называемые ацетон или этилацетат.

К сожалению, до недавнего времени исследователи энергетики не могли найти растворитель, который был бы (а) дешевым, (б) устойчивым и (в) хорошо разрушающим растения.Но теперь мы обнаружили очень интересный новый растворитель под названием γ- валеролактон (для краткости GVL ), который может сделать производство биотоплива намного дешевле и эффективнее (3). GVL — такой интересный растворитель, потому что он не только дешев — он возобновляемый, потому что он сделан из самой биомассы.

Мы обнаружили, что можем использовать GVL для извлечения более 70% исходных сахаров, захваченных плотной структурой биомассы, для производства простых сахаров, которые намного легче превратить в топливо.Этот процесс проиллюстрирован на Рисунке 2, который показывает химическую реакцию, протекающую внутри реактора биотоплива. Биотопливные реакторы — это металлические сосуды, в которых проходят реакции обработки биотоплива. Они специально разработаны, чтобы выдерживать воздействие тепла, давления и химикатов.

  • Рисунок 2 — Иллюстрация производства сахара на заводах с использованием GVL в качестве растворителя.

Два основных свойства GVL делают его отличным растворителем для экстракции сахара:

(1) GVL дает кислотам большой импульс.

Для начала любой химической реакции участвующие в ней ингредиенты (реагенты) должны сначала собрать достаточно энергии. Наименьшее количество энергии, необходимое для запуска реакции, называется «энергией активации» (рис. 3). В обычных реакциях производства биотоплива большое количество кислот смешивается с водой, чтобы помочь расщепить биомассу. Это может занять некоторое время, особенно для очень жестких или древесных растений, но добавление GVL в реакцию дает кислотам большой прилив энергии. Это ускорение помогает системе быстрее собирать свою энергию активации, поэтому реакция может протекать быстрее (4, 5) (Рисунок 3).

  • Рисунок 3 — Этот график иллюстрирует развитие химической реакции.
  • «Свободная энергия» — это причудливый способ обозначить энергию, имеющую отношение к химической реакции. «Ход реакции» представляет собой состояние, через которое реагенты должны пройти, чтобы превратиться в продукты.

Чтобы проиллюстрировать это явление, представьте, что две девушки, Джемма и Валери, собираются мчаться друг с другом на вершину крутого холма. Обычно оба бегуна должны стоять за линией старта, чтобы убедиться в честности гонки.Но в этой гонке Джемма действительно имеет большую фору: когда срабатывает зуммер, она начинает бежать на полпути вверх по крутому склону, а Валери должна начинать с самого низа. Как вы думаете, кто победит? Как вы уже догадались — Джемма поднимается на вершину холма раньше Валери. Подобно тому, как форсированный старт приближает Джемму к вершине холма в аналогии гонки, GVL приближает кислоту к точке реакции с биомассой, позволяя реакции протекать намного быстрее.

(2) GVL избавляет от лигнина.

Для растений лигнин действительно важен: он придает им форму и структуру и помогает им расти здоровыми и сильными. Но для ученых лигнин — всего лишь неприятность. Это прочная и стойкая молекула, которую очень трудно расщепить, и она мешает получению простых сахаров из молекул целлюлозы и гемицеллюлозы. Однажды ученые надеются, что сумеют расщепить лигнин и получить полезные вещества, но пока они просто не хотят, чтобы он мешал. GVL обладает необычной способностью растворять лигнин и препятствовать тому, чтобы он блокировал главный приз: богатые энергией строительные блоки сахара.

Пожалуй, самое лучшее в этом GVL то, что он может быть переработан. В конце реакции биотоплива жидкий CO 2 может быть добавлен в реактор для разделения каждого реагента на отдельный слой (рис. 2). Представьте себе бутылку необычной заправки для салата: масло и уксус вместо того, чтобы смешиваться друг с другом, остаются полностью разделенными, пока бутылку не встряхивают. Точно так же, когда CO 2 добавляется в реактор для биотоплива, ГВЛ и раствор сахара становятся точно такими же, как эта заправка для салата.Все сахара переходят в один слой и становятся концентрированными (см. Рисунок 2), в то время как GVL образует свой собственный отдельный слой. Затем GVL можно легко удалить и использовать снова, в то время как раствор сахара, который получают ученые, примерно в пять раз более концентрированный, чем он был бы без GVL. Эта повышенная концентрация очень важна, потому что это означает, что вам нужно тратить меньше энергии на очистку конечного продукта, что делает весь процесс более эффективным и менее расточительным.

После удаления GVL остается концентрированный и очень полезный сахарный раствор.У ученых есть два варианта использования этого энергоемкого раствора:

  • Они могут модернизировать сахара посредством дальнейших химических реакций до других полезных молекул, которые сегодня используются для производства многих продуктов, полученных из нефтехимии. Это означает, что GVL можно использовать для производства экологически чистых альтернатив пластмассам, мылу, краскам и многим другим распространенным материалам.
  • Они могут «кормить» сахаром микроорганизмы, такие как дрожжи или бактерии, которые затем метаболизируют его и производят топливо.Одним из примеров является биотопливный этанол: он может приводить в действие легковые и грузовые автомобили и другие машины почти так же эффективно, как бензин. У некоторых микроорганизмов особенно хороший аппетит к сахару, произведенному с использованием GVL, потому что они не содержат агрессивных химикатов, которые часто используются в других реакциях биотоплива. Тот факт, что микроорганизмы могут не только выживать, но и процветать на сахарах, обработанных GVL, означает, что GVL подходит для использования в других биологических реакциях, а не только в химических. В этой работе микроорганизмы использовались для получения этанола такой высокой концентрации, что очистить этанол до пригодного для использования топлива не так уж и дорого.

По всем этим причинам использование GVL дает ученым надежду на создание биотоплива и химикатов, которые могут конкурировать с нефтепродуктами на рынке. На протяжении веков люди изобретали новые технологии и развивали промышленность с поразительной скоростью — иногда с серьезным ущербом для окружающей среды. Процесс производства биотоплива, отвечающий всем требованиям доступности, возобновляемости и устойчивости, может принести пользу как людям, так и Земле.С открытием роли GVL в переработке биотоплива мы считаем, что на один шаг ближе к устойчивому будущему.

Глоссарий

Биотопливо : Определенные виды растительных веществ (см. Биомассу) можно перерабатывать в жидкое или газообразное топливо, называемое биотопливом. Некоторые виды биотоплива могут быть возобновляемыми альтернативами ископаемым видам топлива, например бензину.

Биомасса : Биомасса — это общий термин, относящийся к любому органическому (углеродсодержащему) материалу, полученному из живого вещества, например растений.Биомасса растений состоит из трех основных молекул: целлюлозы, гемицеллюлозы и лигнина. Типы биомассы, используемые для биотоплива, включают растения и растительные отходы, такие как травы, стебли кукурузы и древесная щепа.

Ископаемое топливо : Ископаемое топливо образуется под землей в течение миллионов лет и состоит из органического вещества тканей древних растений и животных. Ископаемые виды топлива включают уголь, природный газ и нефть. Нефть может быть переработана в другие виды топлива, такие как дизельное топливо и бензин.

Глобальное потепление : Когда слишком много углекислого газа (CO 2 ) попадает в атмосферу, он может улавливать солнечные лучи внутри атмосферы. Это явление называется парниковым эффектом, и оно может привести к общему повышению глобальной температуры, называемому глобальным потеплением.

GVL : GVL — сокращение от γ- валеролактона . Это химическое вещество, которое можно легко получить из растений. В нашем эксперименте мы использовали ГВЛ в качестве растворителя для растворения растений.В прошлом GVL использовался в парфюмерной промышленности, потому что он имеет сладкий травяной запах. GVL также использовался в фармацевтических продуктах.

Реакция : Химическая реакция происходит, когда атомы в веществе перегруппировываются, что приводит к химическому изменению вещества. Химическая реакция может начаться только после того, как она накопит достаточно энергии. Это минимальное количество энергии, необходимое для начала реакции, называется энергией активации.

Растворитель : В химии растворитель — это жидкость или газ, способный растворять другое вещество, называемое растворенным веществом.Когда вы добавляете растворитель в растворенное вещество, вы получаете раствор.

Устойчивый : С экологической точки зрения материал является экологически безопасным, если его можно использовать в течение длительного времени, без истощения и без общего негативного воздействия на окружающую среду. Например, возобновляемая энергия является устойчивой, потому что мы можем производить ее больше, не нанося значительного ущерба окружающей среде. В более широком масштабе экологическая система является устойчивой, если она может выжить в течение долгого времени при здоровом уровне биоразнообразия, продуктивности и ресурсов.


Первоисточник Статья

Лутербахер, Дж. С., Рэнд, Дж. М., Алонсо, Д. М., Хан, Дж., Янгквист, Дж. Т., Маравелиас, К. Т. и др. 2014. Производство неферментативного сахара из биомассы с использованием γ-валеролактона, полученного из биомассы. Наука 343: 277–280. DOI: 10.1126 / science.1246748


Список литературы

[1] Tester, J. W. 2005. Устойчивая энергия. Кембридж, Массачусетс: MIT Press.

[2] Luterbacher, J.С., Мартин Алонсо, Д., Думесик, Дж. А. 2014. Целевое химическое обновление лигноцеллюлозной биомассы до платформенных молекул. Green Chem. 16: 4816–38. DOI: 10.1039 / C4GC01160K

[3] Лютербахер, Дж. С., Рэнд, Дж. М., Алонсо, Д. М., Хан, Дж., Янгквист, Дж. Т., Маравелиас, К. Т. и др. 2014. Производство неферментативного сахара из биомассы с использованием γ-валеролактона, полученного из биомассы. Наука 343: 277–80. DOI: 10.1126 / science.1246748

[4] Меллмер, М. А., Сенер, К., Галло, Дж. М. Р., Лутербахер, Дж. С., Алонсо, Д. М., Думесик, Дж. А. 2014. Эффекты растворителя в реакциях преобразования биомассы, катализируемых кислотой. Angew Chem. Int. Эд. 53: 11872–5. DOI: 10.1002 / anie.201408359

[5] Меллмер, М. А., Алонсо, Д. М., Лутербахер, Дж. С., Галло, Дж. М. Р., Дюмесик, Дж. А. 2014. Влияние γ-валеролактона на гидролиз лигноцеллюлозной биомассы до моносахаридов. Green Chem. 16: 4659–62. DOI: 10.1039 / C4GC01768D

Экономика биотоплива | Агентство по охране окружающей среды США

Замена ископаемого топлива биотопливом — топлива, производимого из возобновляемых органических материалов — может снизить некоторые нежелательные аспекты производства и использования ископаемого топлива, включая выбросы загрязняющих веществ, вызываемых традиционными и парниковыми газами (ПГ), истощение исчерпаемых ресурсов и зависимость от нестабильных иностранных поставщиков .Спрос на биотопливо может также увеличить доход фермерских хозяйств. С другой стороны, поскольку многие виды сырья для биотоплива требуют земли, воды и других ресурсов, исследования показывают, что производство биотоплива может вызвать несколько нежелательных эффектов. Потенциальные недостатки включают изменения в схемах землепользования, которые могут увеличить выбросы парниковых газов, давление на водные ресурсы, загрязнение воздуха и воды и увеличение затрат на продукты питания. В зависимости от сырья, производственного процесса и временного горизонта анализа биотопливо может выделять даже больше парниковых газов, чем некоторые ископаемые виды топлива, на основе энергетического эквивалента.Биотопливо также, как правило, требует субсидий и других вмешательств на рынок для экономической конкуренции с ископаемым топливом, что создает безвозвратные потери в экономике.

Общие сведения

Биотопливо первого поколения производится из сахарных культур (сахарный тростник, сахарная свекла), крахмальных культур (кукуруза, сорго), масличных культур (соя, рапс) и животных жиров. Посевы сахара и крахмала превращаются в процессе ферментации в биоспирты, включая этанол, бутанол и пропанол. Масла и животные жиры можно перерабатывать в биодизельное топливо.Этанол — наиболее широко используемое биоспиртовое топливо. Большинство автомобилей могут использовать смеси бензина и этанола, содержащие до 10 процентов этанола (по объему). Транспортные средства с гибким топливом могут использовать E85, смесь бензина и этанола, содержащую до 85 процентов этанола. В 2013 году в США было более 2300 заправочных станций E85 (Министерство энергетики США).

Биотопливо второго поколения, или целлюлозное биотопливо, производится из целлюлозы, которую получают из непищевых культур и отходов биомассы, таких как кукурузная солома, кукурузные початки, солома, древесина и побочные продукты древесины.В качестве сырья для производства биотоплива третьего поколения используются водоросли. Коммерческое производство целлюлозного биотоплива началось в США в 2013 году, в то время как биотопливо из водорослей еще не производится в промышленных масштабах.

Потенциальные экономические выгоды от производства биотоплива

Замена ископаемого топлива биотопливом может дать ряд преимуществ. В отличие от ископаемого топлива, которое является исчерпаемым ресурсом, биотопливо производится из возобновляемого сырья. Таким образом, их производство и использование теоретически может продолжаться бесконечно.

В то время как производство биотоплива приводит к выбросам парниковых газов на нескольких этапах процесса, анализ EPA (2010) Стандарта на возобновляемые источники топлива (RFS) прогнозирует, что несколько типов биотоплива могут привести к более низким выбросам парниковых газов в течение жизненного цикла, чем бензин, в течение 30 лет. горизонт. Академические исследования с использованием других экономических моделей также показали, что биотопливо может привести к сокращению выбросов парниковых газов в течение жизненного цикла по сравнению с традиционными видами топлива (Hertel et al. 2010, Huang et al. 2013). Биотопливо второго и третьего поколения обладает значительным потенциалом для сокращения выбросов парниковых газов по сравнению с обычным топливом, поскольку сырье можно производить на малоплодородных землях.Более того, в случае с отходами биомассы дополнительное сельскохозяйственное производство не требуется, а косвенные выбросы парниковых газов, опосредованные рынком, могут быть минимальными, если отходы не имеют другого производственного использования.

Биотопливо можно производить внутри страны, что может привести к снижению импорта ископаемого топлива (Huang et al. 2013). Если производство и использование биотоплива сократит потребление импортируемого ископаемого топлива, мы сможем стать менее уязвимыми к неблагоприятным последствиям перебоев в поставках (US EPA 2010). Снижение нашего спроса на нефть может также привести к снижению ее цены, создавая экономические выгоды для американских потребителей, но также потенциально увеличивая потребление нефти за рубежом (Huang et al.2013).

Биотопливо может снизить выбросы некоторых загрязняющих веществ. В частности, этанол может обеспечить полное сгорание, уменьшая выбросы окиси углерода (US EPA 2010).

Важно отметить, что производство и потребление биотоплива само по себе не приведет к сокращению выбросов парниковых газов или обычных загрязнителей, уменьшению импорта нефти или уменьшению нагрузки на исчерпаемые ресурсы. Производство и использование биотоплива должно совпадать с сокращением производства и использования ископаемого топлива для получения этих выгод.Эти преимущества будут уменьшены, если выбросы биотоплива и потребности в ресурсах увеличивают, а не вытесняют выбросы ископаемого топлива.

Потенциальные экономические выгоды и последствия производства биотоплива

Сырье для биотоплива включает многие культуры, которые в противном случае использовались бы для потребления людьми прямо или косвенно в качестве корма для животных. Перенаправление этих культур на биотопливо может привести к увеличению площади земель, отведенных под сельское хозяйство, более широкому использованию загрязняющих факторов производства и повышению цен на продукты питания. Целлюлозное сырье также может конкурировать за ресурсы (землю, воду, удобрения и т. Д.).), которые в противном случае могли бы быть посвящены производству продуктов питания. В результате некоторые исследования показывают, что производство биотоплива может вызвать несколько нежелательных явлений.

Изменения в структуре землепользования могут увеличить выбросы парниковых газов за счет выброса наземных запасов углерода в атмосферу (Searchinger et al. 2008). Сырье для биотоплива, выращиваемое на землях, очищенных от тропических лесов, таких как соя в Амазонке и масличная пальма в Юго-Восточной Азии, генерирует особенно высокие выбросы парниковых газов (Fargione et al.2008 г.). Даже использование целлюлозного сырья может стимулировать рост цен на сельскохозяйственные культуры, что способствует расширению сельского хозяйства на неосвоенных землях, что ведет к выбросам парниковых газов и утрате биоразнообразия (Melillo et al. 2009).

При производстве и переработке биотоплива также могут выделяться парниковые газы. Внесение удобрений выделяет закись азота, мощный парниковый газ. Большинство биоперерабатывающих заводов работают на ископаемом топливе. Некоторые исследования показывают, что выбросы ПГ в результате производства и использования биотоплива, в том числе в результате косвенного изменения землепользования, могут быть выше, чем выбросы от ископаемого топлива, в зависимости от временного горизонта анализа (Melillo et al.2009 г., Mosnier et al. 2013).

Что касается воздействия на окружающую среду, не связанных с парниковыми газами, исследования показывают, что производство сырья для биотоплива, особенно пищевых культур, таких как кукуруза и соя, может увеличить загрязнение воды питательными веществами, пестицидами и отложениями (NRC 2011). Увеличение орошения и очистки этанола может привести к истощению водоносных горизонтов (NRC 2011). Качество воздуха также может снизиться в некоторых регионах, если влияние биотоплива на выбросы из выхлопных труб плюс дополнительные выбросы, производимые на предприятиях биопереработки, увеличат чистое обычное загрязнение воздуха (NRC 2011).

Экономические модели показывают, что использование биотоплива может привести к повышению цен на урожай, хотя разброс оценок в литературе широк. Например, исследование 2013 года показало, что прогнозы воздействия биотоплива на цены на кукурузу в 2015 году варьируются от 5 до 53 процентов (Zhang et al. 2013). Отчет Национального исследовательского совета (2011) о RFS включал несколько исследований, в которых было обнаружено, что цены на кукурузу из биотоплива выросли на 20-40 процентов в период с 2007 по 2009 год. Рабочий документ Национального центра экономики окружающей среды (NCEE) обнаружил увеличение на 2-3 процента цен долгосрочные цены на кукурузу на каждый миллиард галлонов увеличения производства этанола из кукурузы в среднем по 19 исследованиям (Condon et al.2013). Более высокие цены на урожай приводят к повышению цен на продукты питания, хотя ожидается, что влияние на розничную торговлю продуктами питания в США будет незначительным (NRC 2011). Более высокие цены на урожай могут привести к более высокому уровню недоедания в развивающихся странах (Rosegrant et al. 2008, Fischer et al. 2009).

Подходы политики США к поддержке производства биотоплива

В Законе об энергетической политике 2005 г. использовались различные экономические стимулы, включая гранты, налоговые льготы, субсидии и займы для содействия исследованиям и разработкам в области биотоплива.Он установил Стандарт возобновляемого топлива, согласно которому к 2012 году ежегодно смешивается 7,5 миллиардов галлонов возобновляемого топлива с бензином.

Закон об энергетической независимости и безопасности 2007 года (EISA) включал аналогичные экономические стимулы. EISA расширило стандарт возобновляемого топлива, чтобы увеличить производство биотоплива до 36 миллиардов галлонов к 2022 году. Из последней цели 21 миллиард галлонов должен быть получен из целлюлозного биотоплива или передового биотоплива, полученного из исходного сырья, кроме кукурузного крахмала. Чтобы ограничить выбросы парниковых газов, Закон гласит, что обычные возобновляемые виды топлива (кукурузный крахмал этанол) необходимы для сокращения выбросов парниковых газов в течение жизненного цикла по сравнению с выбросами в течение жизненного цикла от ископаемых видов топлива, по крайней мере, на 20 процентов, биодизельное топливо и современные виды биотоплива должны сокращать выбросы парниковых газов на 50 процентов, а целлюлозное биотопливо должно сократить выбросы на 60 процентов.EISA также предоставляет денежные премии, гранты, субсидии и ссуды на исследования и разработки, биоперерабатывающие заводы, которые заменяют более 80 процентов ископаемого топлива, используемого для работы нефтеперерабатывающего завода, и коммерческое применение целлюлозного биотоплива.

Помимо EISA, в последние десятилетия производство и использование биотоплива в США поощрялось множеством других политик. В настоящее время налоговые льготы поддерживают использование передовых видов биотоплива, включая целлюлозное и биодизельное топливо.

Ссылки по теме

Condon, N., Х. Клемик и А. Вулвертон. 2013. «Влияние политики в отношении этанола на цены на кукурузу: обзор и метаанализ последних данных». Рабочий документ NCEE 2013-05. (Проверено 12 сентября 2013 г.)

Hertel, T., A. Golub, A. Jones, M. O’Hare, R. Plevin, and D. Kammen. 2010. «Влияние кукурузного этанола в США на глобальное землепользование и выбросы парниковых газов: оценка реакции рынка». BioScience 60: 223–231.

Fargione, J., et al. 2008. «Расчистка земель и углеродная задолженность по биотопливу.” Наука 319: 1235–1238.

Фишер Г., Э. Хизснык, С. Прилер, М. Шах и Х. ван Велтуйзен. 2009. Биотопливо и продовольственная безопасность. Фонд международного развития ОПЕК.

Хуанг, Х., М. Кханна, Х. Онал и Х. Чен. 2013. «Укладка низкоуглеродной политики на стандарт возобновляемых источников энергии: последствия для экономики и выбросов парниковых газов». Энергетическая политика 56 (май 2013 г.): 5-15.

Мелилло, Дж., Дж. Рейли, Д. Киклигер, А. Гургель, Т. Кронин, С. Пальцев, Б.Фельцер, X. Ван, А. Соколов, C.A. Шлоссер. 2009. «Косвенные выбросы от биотоплива: насколько важно?» Наука 326 (5958): 1397-1399.

Mosnier, A. P. Havlik, H. Valin, J. Baker, B. Murray, S. Feng, M. Obersteiner, B. McCarl, S. Rose, and U. Schneider. 2013. «Чистые глобальные эффекты альтернативных мандатов США на биотопливо: вытеснение ископаемого топлива, косвенное изменение землепользования и роль роста производительности сельского хозяйства». Энергетическая политика 57 (июнь 2013 г.): 602-614.

Национальный исследовательский совет. 2011. Комитет по экономическим и экологическим последствиям увеличения производства биотоплива. Стандарт возобновляемого топлива: потенциальные экономические и экологические последствия политики США в области биотоплива. Вашингтон, округ Колумбия: The National Academies Press.

Rosegrant, M.W, T. Zhu, S. Msangi, T. Sulser. 2008. «Глобальные сценарии для биотоплива. Воздействие и последствия ». Обзор экономики сельского хозяйства , 30 (3), 495-505.

Searchinger, T., et al. 2008. «Использование пахотных земель в США для производства биотоплива увеличивает выбросы парниковых газов из-за изменений в землепользовании.” Наука 319: 1238-1240.

Министерство энергетики США, Центр данных по альтернативным видам топлива. Расположение станций заправки этанолом. http://www.afdc.energy.gov/fuels/ethanol_locations.html (дата обращения 10 сентября 2013 г.)

Агентство по охране окружающей среды США. 2010. Анализ регулирующего воздействия Стандартной программы по возобновляемым источникам топлива (RFS2). (Проверено 10 сентября 2013 г.).

Zhang, W., E. Yu, S. Rozelle, J. Yang, S. Msangi. 2013. «Влияние роста производства биотоплива на сельское хозяйство: почему такой широкий разброс оценок?» Продовольственная политика 38: 227–239.

Биотопливо, от этанола до биодизеля, факты и информация

Биотопливо существует дольше, чем автомобили, но дешевый бензин и дизельное топливо долгое время держали их в стороне. Скачки цен на нефть, а теперь и глобальные усилия по предотвращению наихудших последствий изменения климата, придали новую актуальность поиску экологически чистых возобновляемых видов топлива.

На наши автомобильные путешествия, авиаперелеты и морские перевозки приходится почти четверть мировых выбросов парниковых газов, и сегодня транспорт по-прежнему сильно зависит от ископаемого топлива.Идея биотоплива состоит в том, чтобы заменить традиционные виды топлива на те, которые производятся из растительного материала или другого возобновляемого сырья.

Но концепция использования сельскохозяйственных угодий для производства топлива вместо продуктов питания сопряжена со своими проблемами, и решения, основанные на отходах или другом сырье, еще не могут конкурировать по цене и масштабу с традиционными видами топлива. Мировое производство биотоплива должно утроиться к 2030 году, чтобы достичь целей Международного энергетического агентства по обеспечению устойчивого роста.

Типы и использование биотоплива

Существуют различные способы производства биотоплива, но обычно они используют химические реакции, ферментацию и нагревание для расщепления крахмала, сахара и других молекул в растениях. Полученные продукты затем очищаются для производства топлива, которое можно использовать в автомобилях или других транспортных средствах.

Большая часть бензина в Соединенных Штатах содержит одно из наиболее распространенных видов биотоплива: этанол. Этанол, полученный путем ферментации сахаров из таких растений, как кукуруза или сахарный тростник, содержит кислород, который помогает двигателю автомобиля более эффективно сжигать топливо, уменьшая загрязнение воздуха.В США, где большая часть этанола производится из кукурузы, топливо обычно состоит на 90 процентов из бензина и на 10 процентов из этанола. В Бразилии — втором по величине производителе этанола после США — топливо содержит до 27 процентов этанола, при этом основным сырьем является сахарный тростник.

Альтернативы дизельному топливу включают биодизель и возобновляемое дизельное топливо. Биодизель, полученный из жиров, таких как растительное масло, животный жир и переработанный кулинарный жир, можно смешивать с дизельным топливом на основе нефти. Некоторые автобусы, грузовики и военная техника в U.S. работают на топливных смесях, содержащих до 20 процентов биодизеля, но чистый биодизель может быть скомпрометирован холодной погодой и может вызвать проблемы в старых транспортных средствах. Возобновляемое дизельное топливо, химически отличный продукт, который может быть получен из жиров или растительных отходов, считается «добавляемым» топливом, которое не нужно смешивать с обычным дизельным топливом.

Созданы другие виды растительного топлива для авиации и судоходства. Более 150000 рейсов использовали биотопливо, но количество авиационного биотоплива, произведенного в 2018 году, составило менее 0.1 процент от общего потребления. В судоходстве внедрение биотоплива также находится на уровне, намного ниже целевых показателей на 2030 год, установленных Международным энергетическим агентством.

Возобновляемый природный газ или биометан — еще одно топливо, которое потенциально может использоваться не только для транспорта, но также для производства тепла и электроэнергии. Газ может собираться со свалок, животноводческих хозяйств, сточных вод или других источников. Затем этот уловленный биогаз необходимо дополнительно очистить для удаления воды, диоксида углерода и других элементов, чтобы он соответствовал стандарту, необходимому для топлива транспортных средств, работающих на природном газе.

Из чего делается биотопливо?

Для производства биотоплива можно использовать самые разные материалы или сырье. Хотя кукуруза и сахарный тростник являются общепризнанным сырьем для этанола, процесс выращивания сельскохозяйственных культур, производства удобрений и пестицидов и переработки растений в топливо потребляет много энергии — столько энергии, что ведутся споры о том, действительно ли этанол из кукурузы дает достаточно экологической выгоды стоит вложенных средств.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.