Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Изготовление солнечных батарей в домашних условиях: как сделать в домашних условиях, самодельная панель, как смастерить самому из пивных банок и других подручных средств, пошаговая инструкция

Содержание

как сделать в домашних условиях, самодельная панель, как смастерить самому из пивных банок и других подручных средств, пошаговая инструкция

Использование энергии солнца ассоциируется по большей части с космическими аппаратами. А теперь еще с разными далекими странами, где ускоренно развивается «альтернативная энергетика». Но попробовать то же самое даже с самодельными устройствами по силам почти всем.

Особенности и разновидности устройства

Из экзотического устройства, предназначенного только для специальных нужд, солнечная батарея превратилась в уже относительно массовый источник энергии. И причина не только в экологических соображениях, но и в беспрерывном росте цен на электроэнергию из магистральных сетей. Более того, есть еще немало мест, где такие сети вовсе не протянуты и неизвестно когда они появятся.

Самостоятельная забота о протягивании магистрали, объединение ради этого усилий большого числа людей вряд ли возможны. Тем более что даже при успехе предстоит окунуться в мир стремительной инфляции.

Важно понимать, что панели, вырабатывающие электричество, могут довольно сильно отличаться друг от друга.

И дело даже не в формате – внешний вид и геометрия как раз довольно близки. А вот химический состав отличается разительно. Наиболее массовые изделия выполнены из кремния, который доступен почти всем и стоит недорого. По производительности батареи не хуже как минимум более дорогих вариантов.

Существует такие три основных варианта кремния, как:

  • монокристаллы;
  • поликристаллы;
  • аморфное вещество.

Монокристалл, если исходить из сжатых технических объяснений – это наиболее чистый тип кремния. Внешне панель похожа на своеобразные пчелиные соты. Основательно очищенное вещество в твердом виде делят на особо тонкие пластины, каждая из которых имеет не больше 300 мкм. Чтобы они выполнили свою функцию, используют электродные сетки. Многократное усложнение технологии по сравнению с альтернативными решениями делает подобные источники энергии наиболее дорогими.

Несомненным преимуществом монокристаллического кремния является очень высокий КПД по меркам солнечной энергетики, составляющий приблизительно 20%. Поликристалл получают иначе, требуется сначала расплавить материал, а затем медленно понижать его температуру. Относительная простота методики и минимальный расход энергоресурсов при производстве положительно сказываются на стоимости. Минусом становится пониженная эффективность, даже в идеальном случае она составляет не более 18%. Ведь внутри самих поликристаллов есть немало структур, понижающих качество работы.

Аморфные панели почти не проигрывают обоим только что названным видам. Кристаллов тут нет вообще, есть вместо них «силан» – это соединение кремния с водородом, размещаемое на подложке. КПД составляет примерно 5%, что в значительной мере компенсируется многократно увеличенным поглощением.

Немаловажно и то, что аморфные батареи лучше других вариантов справляются со своей задачей при рассеянном солнечном освещении и в пасмурную погоду. Блоки являются эластичными.

Иногда можно встретить комбинацию монокристаллических или поликристаллических элементов с аморфным вариантом.

Это помогает сочетать достоинства используемых схем и гасить практически все их недостатки. С целью снижения стоимости изделий сейчас все чаще используют пленочную технологию, которая предусматривает генерацию тока на базе теллурида кадмия. Само по себе это соединение является токсичным, но выброс яда в окружающую среду исчезающе мал. А также могут использоваться селениды меди и индия, полимеры.

Концентрирующие изделия повышают эффективность использования площади панели. Но это достигается только при использовании механических систем, обеспечивающих разворот линз вслед за солнцем. Применение фотосенсибилизирующих красителей потенциально помогает улучшить прием энергии Солнца, но пока это скорее общая концепция и разработки энтузиастов. Если нет желания экспериментировать, лучше выбрать более стабильную и проверенную конструкцию. Это относится как к самостоятельному изготовлению, так и к покупке готового продукта.

Самостоятельное изготовление

Из чего делают?

Сделать своими руками солнечную батарею уже не так сложно, как кажется. Принцип действия устройства основан на применении полупроводникового перехода, освещенное устройство должно создавать ток. Самостоятельно изготовить приемник не получится, для этого нужны сложные производственные манипуляции и специализированное оборудование.

А вот выполнить силовую часть преобразователя из подручных средств и материалов – не составляет особого труда. Для получения энергии в собственном смысле слова потребуется пластина из кремния, поверхность которой покрыта сеткой диодов.

Все пластины должны рассматриваться как обособленные генерирующие модули. Важно понимать, что оптимальная эффективность достигается при условии постоянного направления на солнце, и что придется позаботиться о накоплении энергии. Хрупкая батарея должна быть надежно защищена от любых загрязнений, от попадания снега. Если это все же происходит, посторонние включения следует убирать максимально быстро. Первым шагом при работе становится подготовка рамы.

Ее в основном делают из дюралюминия, который обладает следующими особенностями:

  • не подвержен коррозии;
  • не повреждается излишней влажностью;
  • служит максимально долго.

Но необязательно делать именно такой выбор. Если проведена окраска и специальная обработка, неплохие результаты достигаются с использованием стали либо древесины. Не рекомендуется ставить очень крупные панели, что неудобно и повышает парусность. Чтобы зарядить кислотный аккумулятор на 12 В, нужно создать рабочее напряжение от 15 В. Соответственно, модулей по 0,5 В потребуется 30 штук.

Можно создать конструкцию из пивных банок. Корпуса выполняются из фанеры 1,5 см, а лицевая панель формируется из органического стекла или поликарбоната. Допускается применение стандартного стекла толщиной 0,3 см. Гелиоприемник формируется при окрашивании черным пигментом. Краска должна быть устойчивой к значительному нагреву. Крышки разрабатываются таким образом, чтобы обеспечивать повышенную эффективность обмена теплом.

Внутри банок воздух прогревается гораздо быстрее, чем на открытом месте. Важно: требуется отмывать емкости сразу, как только принято решение об их использовании.

Брать следует только алюминиевые банки, стальные не подойдут. Проверка производится простейшим образом – с использованием магнита. Донце пробивают, вводят пробойник или гвоздь (хотя можно и сверлить).

Суппорт вставляют и искажают соответственно рисунку. Верх банки разрезают, чтобы получилось что-то похожее на плавник. Он помогает воздушному потоку снимать максимум тепла с греющейся стенки. Потом банку обезжиривают любым моющим средством и приклеивают отрезанные ранее части друг к другу. Исключить промахи можно, используя шаблон из нескольких досок, приколоченных гвоздями под прямым углом.

Довольно часто используют конструкции из дисков. Они выступают неплохими фотоэлементами. Как вариант, ставятся пластины из меди. Электрическая схема, как уже говорилось, работает по тому же принципу, что и большинство транзисторов. Фольга призвана предотвращать чрезмерный разогрев. Как альтернативу в летние месяцы используют просто поверхность, отделываемую в светлые цвета.

Какие инструменты понадобятся?

Чтобы произвести самостоятельно все работы по монтажу солнечной батареи на 220 вольт, понадобятся следующие инструменты:

  • паяльники, электрифицированные на 40 Вт;
  • герметики на базе силикона;
  • скотч, приклеиваемый с двух сторон;
  • канифоль;
  • припой;
  • провод, по которому будет уходить ток;
  • флюс;
  • шина из меди;
  • крепежные элементы;
  • дрель;
  • прозрачный материал листовой;
  • фанера, органическое стекло либо текстолит;
  • диоды конструкции Шоттки.

Как сделать солнечную батарею своими руками

Очень часто современному жителю приходит мысль как сделать солнечную батарею своими руками. По той простой причине что заводские автономные источники питания стоят дорого. Ну а кто-то просто желает проверить свои способности изобретателя.

Способ изготовления солнечных батарей

Сначала определимся что нужно:

  • Фотоэлементы.
  • Основание для крепления самого ценного.
  • Площадка где будет стоять будущая электростанция.

Теперь разберемся детальнее с каждым пунктом.

Сборка солнечных модулей из кремниевых фотоэлементов

Фотоэлементы с одного бока покрыты тонким слоем фосфора. Иногда там может быть бор.

Данный слой концентрирует в одном месте большое количество электронов. Они не разбегаются так как удерживаются фосфорной пленкой.

На пластине прикреплены металлические дорожки, по которым в дальнейшем протекает электрический ток. Данные кремневые элементы достаточно хрупкие поэтому будьте аккуратными при работе с ними.

Уровень напряжения зависит от количества таких полноценных пластинок.

Основные составляющие части:

  1. Кремневые пластины.
  2. Рейки.
  3. ДСП, несколько листов.
  4. Уголки из алюминия.
  5. Поролон толщиной 1,5-2,5 см.
  6. Что-то прозрачное для основания кремниевых пластин. Обычно это оргстекло.
  7. Шурупы или саморезы.
  8. Герметик.
  9. Провода.
  10. Клейма.
  11. Диоды.

Так же потребуются такие инструменты как:

  • Ножовка.
  • Шуруповерт.
  • Паяльник.
  • Мультиметр.

Нужно работать с фотоэлементами одного габарита. Иначе маленькие элементы ограничат ток. В итоге большие кварцевые модули не позволят функционировать на всю мощь.

Для самостоятельной сборки солнечного модуля используют моно или поликристаллические фотоэлементы с параметрами 3 на 6 дюйма. Их можно отыскать в любом китайском магазине. Чтобы с экономить можно приобрести «специальные группы-пачки». Правда в них часто встречается брак.

Масса торговых точек продает фото пластины пачками по 36 или 72 штуки.

Чтобы соединить разделенные пластины-модули нужны специальные шины. А что бы сборку включить потребуются клеймы.

Теперь, когда с кремневыми фотоэлементами стал все ясно, идем собирать основание.

Остов для солнечной батареи

Это самое простое что можно изготовить в домашних условиях! Обычно его выполняют из реечек или алюминиевого профиля. Его без проблем можно приобрести в хозяйственном магазине. Целесообразно работать с алюминием по следующим причинам:

  • Он легкий и не очень давит на опорную установку.
  • Не ржавеет.
  • Не поглощает влагу.
  • Не подвержен гниению в отличие от древесины.

Прозрачный элемент

При покупке обратите внимание на:

  • Процент преломления солнечного света. Чем он ниже, тем лучше! КПД пластин будет больше.
  • На сколько он поглощает инфракрасные лучи.

На его роль подойдут:

  • Плексиглас.
  • Поликарбонат. Чуть хуже.
  • Оргстекло.

От уровня поглощения зависит будет ли повышаться температура на кремниевых пластинах. Лучше всего пользоваться антибликовым прозрачным стеклом.

Определяемся с местом

Размер солнечного модуля зависит от количества, фотоэлементов, которые будут в него установлены. Лучше всего ставить батареи в место куда свет солнца падает со всех сторон. Так же можно оснастить подобную электростанцию автоматическим поворотом. То есть она будет всегда повернута к солнцу за счет этой штуки. Поворотное устройство для солнечной батареи можно изготовить своими руками.

Проследите за тем чтобы тени домов и деревьев не падали на нашу самодельную солнечную батарею.

Угол наклона зависит от:

  • Климата.
  • Того где находится дом.
  • Времени года.

Солнечные элементы питания выдают максимальный КПД в тот момент, когда лучи падают перпендикулярно.

По некоторым расчетам было выяснено что 1кв метр выдает 120 Вт. В результате этого можно предположить, что на обычный дом в месяц будет уходить 300 кВт. Поэтому нужно задействовать площадь в 20 квадратных метров.

В результате всего выше сказанного солнечная батарея, выполненная своими руками, поможет сэкономить часть средств на электричество.

Пошаговая инструкция как сделать солнечную батарею своими руками

Сейчас в 5 шагах будет рассмотрена более подробная сборка.

Спаиваем контакты фотоэлементов

Первым делом что нужно сделать это спаять проводники. Если можете приобретите кремневые пластины сразу с этой важной частью. Это существенно сэкономить вам время. Паять достаточно нудно и проблематично. В процессе можно нанести вред пластинам.

Алгоритм пайки:

  • Приготовьте перед собой пластину-фотоэлемент и проводник для припаивания.
  • Режим проводники при помощи картонного шаблона. Длина должна быть в 2-а раза больше солнечной пластинки.
  • Кладем проводник на фотоэлемент. Потребуется два проводника на 1-и элемент.
  • Стоит нанести кислоту на то место где собираетесь паять.
  • Выполнить паяние и прикрепить проводник к кремневой поверхности.

Желательно использовать припой, который выполнен в виде трубочки. Внутри которой залита канифоль.

Не стоит сильно давить на пластину из кремния, так как она очень хрупкая и может сломаться.

Создание каркаса

Он нужен для крепления всех фотоэлементов и его можно сделать из подручных средств. Потребуется алюминиевые уголки или рейки. Из них делается прямоугольная рамка. Размер уголка 70-90 мм.

Нанесите слой герметика на внутреннюю часть углов. Выполняйте эту процедуру качественно. От нее зависит долговечность конструкции.

Теперь перейдите к созданию заднего корпуса. Он выполняется в виде небольшого ящика с маленькими краями. Бока не должны быть по высоте больше 2 см. Рейки крепятся на саморезы. После этого проделайте отверстия для вентиляции. Друг от друга их разместите на уровне 10 см. После этого установите в рамку из алюминия прозрачную панель. Она может быть сделана из оргстекла или плексигласа.

Прозрачную панель плотно фиксируем и прикрепляем. Она фиксируется с помощью метизов. 4 штуки крепив по углам и 2 с длинной стороны и 1 с короткой. Метизы привинчиваем шурупами.

Когда каркас создан остается установить в него фотоэлементы. Перед этой процедурой очистите оргстекло от пыли и обезжирьте его спиртом. В место спирта можно использовать любую спиртсодержащую продукцию.

Внедрение кремниевых фотоэлементов

Это самое сложное что может быть когда делаешь солнечную батарею своими руками.

Берем оргстекло и синими пластинами в низ кладем на него наши фотоэлементы. Чтобы сделать все ровно используйте специальную подложку для нанесения разметки. Друг от друга пластины должны быть расположены на расстоянии около 3 мм.

Алгоритм действий
  • Паять фотоэлементы нужно придерживаясь определенной схемы. Положительный контакт расположен на левой стороне пластинки. Отрицательный находится на правой. Припой и флюс нужно наносить очень бережно.
  • При этой работе соблюдайте последовательность сверху в низ. Каждый ряд нужно будет соединить между собой.
  • Теперь надо приклеить фотоэлементы. Для этого нанесите прозрачный герметик в центр пластин.
  • Переверните цепочки модулей синей стороной вверх. Разместите их по разметке. Аккуратно прижмите пластины для надежной фиксации.
  • Подсоединяем контакты крайних элементов к шине. Плюс к «+», а минус к «-». В качестве шины применяйте более широкий проводник, выполненный из серебра.
  • Солнечную батарею нужно оснастить блокирующим диодом. Он нужен для того, чтобы предотвратить разрядку аккумулятора ночью.
  • На дне делаем отверстия для проводов. Чтобы они не болтались крепим их с помощью силиконового герметика.

Проверка солнечной батареи перед герметизацией

Как только спаяли ряд элементов выполните его тест. Так проще понять где слабый контакт. В качестве тестера потребуется самый простой амперметр. Можно взять мультиметр. Проверку стоит выполнять в солнечный день в 13-14 часов дня.

После того как найдете нужный угол начните выполнять измерения. Для этого подсоедините щупы амперметра к контактам батареи «+» и «-». Проверяем ток короткого замыкания. Сила тока должна быть ниже на 0,5-1 А чем сила короткого замыкания. Прибор должен показывать значение более 4,5 А. Это говорит о том, что солнечная батарея, сделанная своими руками работоспособна!

Батарея, выполненная самостоятельно из элементов группы «В» дает 5-10 А. Это ниже на 15% чем у заводских панелей.

Делаем солнечные батареи герметичными

Внимание! Данный процесс выполняйте только после того как убедитесь, что солнечная батарея полностью функционирует. В качестве заливки используем эпоксидный компаунд. Если для вас это дорого, тогда можно взять силиконовый герметик.

Выделяют 2-а способа герметизации:

  • Полная.
  • Частичная. Герметик наносят на крайние элементы и между пластинками.

Первый вариант более надежен. С верху ставится оргстекло и прижимается к пластинам, на которых нанесен силикон. В качестве дополнительной защиты можно установить прокладку из поролона. Ее ставят между задней поверхностью кремниевых пластин и каркасом.

Когда оргстекло будет установлено, нужно поставить на него груз. Это требуется для выдавливания пузырьков.

Когда все основные работы закончены следует повторно протестировать солнечную батарею. А затем внедрить в эксплуатацию и получать 220 вольт. Но придется прикупить регулятор напряжения, инвертор, аккумулятор и другие дополнительные элементы.

Некоторые люди собирают солнечную батарею из китайских панелей и вполне неплохо. Только сначала их придется заказать на алиэкспресс или другом подобном магазине.

В итоге у вас будет простейшая солнечная батарея.

Солнечная батарея из сд дисков

Для создания потребуется:

  • Специальный светодиод прямоугольной формы.
  • Компакт диск.
  • Специальная крышка блокирующая утечку солнечной энергии.
  • Болт.
  • Пару проводов.

Процесс создания

Первым делом выполняем работу с крышкой. В ней нужно проколоть отверст

пошаговые инструкции по сборке в домашних условиях из разных материалов с фото и видео

Ухудшение экологии, рост цен на энергоносители, стремление к автономности и независимости от прихотей государственных мужей — вот лишь несколько факторов, заставляющих самых закоренелых обывателей обращать мечтательные взгляды в сторону альтернативных источников энергии. У большинства наших соотечественников мысли о «зелёной» энергетике так и остаются идеей фикс — сказываются высокие цены на оборудование, и, как следствие, нерентабельность затеи. Но ведь никто не запрещает изготовить установку для получения бесплатной энергии самостоятельно! Сегодня мы расскажем о том, как своими руками построить солнечную батарею и рассмотрим перспективы её использования в быту.

Солнечная батарея: что это такое

Человечество загорелось идеей трансформации солнечного излучения в электрическую энергию с 30-х годов прошлого века. Именно тогда учёные из Академии наук СССР заявили о создании полупроводниковых медно-таллиевых кристаллов, в которых под действием световых лучей начинал протекать электрический ток. Сегодня это явление известно как фотоэлектрический эффект и широко используется как в гелиоэлектрических установках, так и в разнообразных датчиках.

Первые солнечные батареи известны ещё с 50-х годов прошлого века

Сила тока одного фотоэлемента измеряется в микроамперах, поэтому для получения сколь-нибудь значимой электрической мощности их объединяют в блоки. Множество таких модулей и составляют основу солнечной батареи (СБ), которую можно использовать для подключения различных электронных устройств. Если же говорить о законченном устройстве, которое можно установить под открытым небом, то корректнее говорить о солнечной панели (СП) с конструкцией, защищающей сборку фотоэлектрических модулей от внешних факторов.

Надо сказать, что КПД первых электрических гелиосистем не достигал и 10% — сказывались как недостатки полупроводниковой технологии, так и неустранимые потери, связанные с отражением, рассеиванием или поглощением светового потока. Десятилетия упорного труда учёных дали свой результат, и сегодня КПД самых современных солнечных батарей достигает 26%. Что же касается перспективных разработок, то здесь он ещё выше — до 46%! Конечно, внимательный читатель может возразить, что другие генераторы энергии работают с энергоэффективностью 95–98%. Тем не менее не следует забывать, что речь идёт о совершенно бесплатной энергии, величина которой в солнечный день превышает 100 Вт на один кв. м земной поверхности в секунду.

Современные солнечные панели генерируют электроэнергию в промышленных масштабах

Полученная с помощью солнечных панелей электроэнергия может использоваться аналогично той, что получают на обычных электростанциях — для питания различных электронных устройств, освещения, отопления и т. д. Единственное отличие, которое состоит в том, что на выходе фотоэлектронного модуля присутствует постоянный, а не переменный ток, на самом деле является преимуществом. Всё дело в том, что любая гелиосистема работает только в течение светового дня, причём её мощность очень сильно зависит от высоты солнца над горизонтом. Поскольку ночью СБ работать не может, электроэнергию приходится накапливать в аккумуляторах, а они-то все как раз и являются источниками постоянного тока.

Устройство и принцип действия

Принцип действия электрической батареи базируется на таких физических явлениях, как полупроводимость и фотоэлектрический эффект. В основе любого солнечного элемента лежат полупроводники, атомы которых испытывают недостаток в электронах (p-тип проводимости), либо имеют их избыток (n-тип). Другими словами, используется двухслойная структура с n-слоем в качестве катода и p-слоем в качестве анода. Поскольку силы удержания «лишних» электродов в n-слое ослаблены (у атомов не хватает на них энергии), то они легко выбиваются из своих мест при бомбардировке фотонами света. Далее электроны перемещаются в свободные «дырки» p-слоя и через подключённую электрическую нагрузку (или аккумулятор) возвращаются к катоду — вот так и течёт электрический ток, спровоцированный потоком солнечного излучения.

Преобразование солнечной энергии в электрическую возможно благодаря фотоэлектрическому эффекту, который описал в своих работах Эйнштейн

Как уже отмечалось выше, энергия от одного фотоэлемента крайне мала, поэтому их объединяют в модули. Последовательным подключением нескольких таких блоков наращивают напряжение батареи, а параллельным увеличивают силу тока. Таким образом, зная электрические параметры одной ячейки можно собрать батарею требуемой мощности.

Полученную от солнечной батареи электроэнергию можно накапливать в аккумуляторах и после преобразования в напряжение 220 В использовать для питания обычных бытовых прибораз

Для защиты от атмосферного воздействия полупроводниковые модули устанавливают в жёсткий каркас и закрывают стеклом с повышенным светопропусканием. Поскольку солнечную энергию можно использовать лишь в течение светового дня, то для её накопления используются аккумуляторы — расходовать их заряд можно по мере необходимости. Для повышения напряжения и его адаптации в соответствии с потребностями бытовых приборов используются инверторы.

Видео: как работает солнечная панель

Классификация фотоэлектрических модулей

Сегодня производство солнечных батарей идёт двумя параллельными путями. С одной стороны на рынке присутствуют фотоэлектрические модули, созданные на основе кремния, а с другой — плёночные, созданные с использованием редкоземельных элементов, современных полимеров и органических полупроводников.

Популярные сегодня кремниевые фотоэлементы подразделяются на несколько типов:

  • монокристаллические;
  • поликристаллические;
  • аморфные.

Для использования в самодельных солнечных батареях лучше всего использовать модули из поликристаллического кремния. Хоть КПД последних и ниже, чем у монокристаллических элементов, но зато на их работоспособность не так сильно влияет загрязнённость поверхности, низкая облачность или угол падения солнечных лучей.

Отличить поликристаллические кремниевые модули от монокристаллических несложно — первые имеют более светлый синий оттенок с выраженными «морозными» узорами на поверхности. Кроме того, тип фотоэлектрических пластин можно определить по их форме — монокристалл имеет скруглённые края, тогда как его ближайший конкурент (поликристалл) представляет собой выраженный прямоугольник.

Что же касается батарей из аморфного кремния, то они ещё менее зависимы от погодных условий и за счёт своей гибкости практически не подвержены риску повреждений при сборке. Тем не менее использование их в собственных целях ограничивается как достаточно низкой удельной мощностью на 1 квадратный метр поверхности, так и по причине высокой стоимости.

Кремниевые солнечные элементы представляют собой самый распространённый класс электрических фотопластин, поэтому они чаще всего используются для изготовления самодельных устройств

Появление плёночных фотоэлектрических модулей обусловлено как необходимостью в снижении стоимости солнечных батарей, так и потребностью получить более производительные и долговечные системы. Сегодня промышленность осваивает выпуск тонких гелиоэлектрических модулей на основе:

  • теллурида кадмия с КПД до 12% и стоимостью 1 Вт на 20–30% ниже, чем у монокристаллов;
  • селенида меди и индия — КПД 15–20%;
  • полимерных соединений — толщина до 100 нм, с КПД — до 6%.

О возможности использования плёночных модулей для постройки электрической солнечной станции своими руками говорить пока ещё рано. Несмотря на доступную стоимость, изготовлением теллуридо-кадмиевых, полимерных и меде-индиевых фотоэлементов занимаются лишь отдельные компании.

Такие достоинства плёночных фотоэлементов, как высокий КПД и механическая прочность позволяют с полной уверенностью говорить, что за ними — будущее солнечной энергетики

Хоть в продаже и можно найти батареи, созданные по плёночной технологии, в большинстве своём они представлены в виде готовых изделий. Нам же интересны отдельные модули, из которых можно построить недорогую самодельную солнечную панель — на рынке они пока ещё в дефиците.

Сводные данные по КПД солнечных элементов, которые выпускаются промышленностью, представлены в таблице.

Таблица: КПД современных солнечных батарей

Тип фотоэлементаКоэффициент полезного действия, %
Монокристаллический кремнийот 17 до 22
Поликристаллический кремнийот 12 до 18
Аморфный кремнийот 5 до 6
Теллуридо-кадмиевыеот 10 до 12
На основе селенида меди-индияот 15 до 20
Полимерныйот 5 до 6

Где можно взять фотоэлементы и можно ли их заменить чем-то другим

Купить пригодные для сборки солнечной панели монокристаллические или поликристаллические пластины сегодня не является проблемой. Вопрос в том, что сама идея самодельного генератора бесплатного электричества предполагает результат, который будет значительно дешевле заводского аналога. Если же покупать фотоэлектрические модули на месте, то много сэкономить не получится.

На зарубежных торговых площадках солнечные элементы представлены в широком ассортименте — можно купить как единичное изделие, так и набор всего необходимого для сборки и подключения солнечной батареи

За разумную цену солнечные элементы можно найти на зарубежных торговых площадках, например, eBay или AliExpress. Там они представлены в широком ассортименте и по вполне доступным ценам. Для нашего проекта подойдут, например, распространённые поликристаллические пластины размером 3х6 дюймов. При идеальных условиях они могут генерировать электрический ток напряжением 0.5 В и силой до 3 А, то есть 1.5 Вт электрической мощности.

Если вы горите желанием максимально сэкономить или испробовать собственные силы, то нет никакой необходимости сразу же покупать хорошие, целые модули — можно обойтись и некондицией. Всё на том же eBay или AliExpress можно найти комплекты пластин с небольшими трещинками, сколами уголков и прочими дефектами — так называемые изделия класса «B». На технических характеристиках фотоэлементов внешние повреждения не сказываются, чего нельзя сказать о цене — бракованные детали можно купить в 2–3 раза дешевле тех, что имеют товарный вид. Поэтому-то их и рационально использовать, чтобы обкатать технологию на своей первой солнечной панели.

Выбирая фотоэлектронные модули, вы увидите элементы различного типа и размера. Не думайте, что чем больше площадь их поверхности, тем выше напряжение они производят. Это не так. Элементы одного типа генерируют одинаковое напряжение независимо от габаритов. Чего не скажешь о силе тока — здесь размер имеет решающее значение.

Хоть в качестве фотоэлементов и можно использовать морально устаревшую компонентную базу, вскрытые диоды и транзисторы имеют слишком низкое напряжение и силу тока — понадобятся тысячи таких устройств

Сразу же хочется предупредить о том, что нет смысла искать аналог среди различных подручных электронных устройств. Да, получить работающий фотоэлектронный модуль можно из мощных диодов или транзисторов, извлечённых из старого радиоприёмника или телевизора. И даже сделать батарею, соединив несколько таких элементов в цепочку. Однако запитать подобной «солнечной панелью» что-либо мощнее калькулятора или светодиодного фонаря не удастся ввиду слишком слабых технических характеристик единичного модуля.

Принцип расчёта мощности батареи

Для расчёта необходимой мощности самодельной электрической гелиосистемы необходимо знать месячное потребление электроэнергии. Определить это параметр легче всего — количество потребляемого электричества в киловатт-часах можно посмотреть по счётчику или узнать, заглянув в счета, которые регулярно присылает энергосбыт. Так, если затраты составляют, например, 200 кВт×ч, то солнечная батарея должна вырабатывать в день примерно 7 кВт×ч электроэнергии.

В расчётах следует учитывать, что солнечные панели генерируют электричество только в светлое время суток, причём их производительность зависит как от угла Солнца над горизонтом, так и погодных условий. В среднем до 70% всего количества энергии вырабатывается с 9 часов утра до 16 часов вечера и при наличии даже небольшой облачности или дымки мощность панелей падает в 2–3 раза. Если же небо затянут сплошные облака, то в лучшем случае вы сможете получить 5–7% от максимальных возможностей гелиосистемы.

По графику энергоэффективности солнечной батареи видно, что основная доля генерируемой энергии приходится на время от 9 до 16 часов

Учитывая всё вышесказанное, можно подсчитать, что для получения 7 кВт×ч энергии при идеальных условиях понадобится массив панелей мощностью не менее 1 кВт. Если же учитывать уменьшение производительности, связанное с изменением угла падения лучей, погодные факторы, а также потери в аккумуляторах и преобразователях энергии, то этот показатель необходимо увеличить как минимум на 50–70 процентов. Если брать в расчёт верхний показатель, то для рассматриваемого примера будет нужна солнечная панель мощностью 1.7 кВт.

Дальнейший расчёт зависит от того, какие фотоэлементы будут использоваться. Например, возьмём упоминаемые ранее поликристаллические элементы 3˝×6˝ (площадь 0,0046 кв. м) с напряжением 5 В и силой тока до 3 А. Чтобы набрать массив фотоэлементов с выходным напряжением 12 В и силой тока, равной 1 700 Вт/12 В = 141 А понадобится соединить 24 элемента в ряд (последовательное соединение позволяет суммировать напряжение) и использовать 141 А/ 3 А = 47 таких ряда (1 128 пластин). Площадь батареи при максимально плотной укладке составит 1 128 х 0.0046 = 5.2 кв. м

Для того чтобы накопить и трансформировать солнечную энергию в привычные 220 Вольт понадобится массив аккумуляторов, контроллер заряда и повышающий инвертор

Для накопления электричества используются аккумуляторы с напряжением 12 В, 24 В или 48 В, причём их ёмкости должно хватать для того, чтобы вместить те самые 7 кВт×ч энергии. Если брать распространённые 12-вольтовые свинцовые батареи (далеко не самый лучший вариант), то их ёмкость должна быть не менее 7 000 Вт×ч/12 В = 583 А×ч, то есть три больших аккумулятора по 200 ампер-часов каждый. Следует учитывать, что КПД аккумуляторных батарей составляет не более 80%, а также то, что при преобразовании напряжения инвертором в 220 В будет теряться от 15 до 20% энергии. Следовательно, придётся докупить как минимум ещё один та

Рассчитываем и изготавливаем солнечные батареи своими руками

Уже не одно десятилетие человечество ищет альтернативные источники энергии, способные хотя бы частично заменить существующие. И самыми перспективными из всех на сегодняшний день представляются два: ветро‑ и солнечная энергетика.

Правда, ни тот ни другой не могут предоставить непрерывного производства. Это связано с непостоянством розы ветров и суточно‑погодно‑сезонными колебаниями интенсивности солнечного потока.

Сегодняшняя энергетика предлагает три основных метода получения электрической энергии, но все они тем или иным образом вредны для окружающей среды:

  • Топливная электроэнергетика — самая экологически грязная, сопровождается значительными выбросами в атмосферу углекислого газа, сажи и бесполезной теплоты, вызывая сокращение озонового слоя. Добыча топливных ресурсов для нее также наносит значительный вред природе.
  • Гидроэнергетика связана с очень значительными ландшафтными изменениями, затоплением полезных земель, причиняет ущерб рыбным ресурсам.
  • Атомная энергетика — самая экологически чистая из трёх, но требует очень значительных расходов на поддержание безопасности. Любая авария может быть связана с нанесением непоправимого долголетнего вреда природе. К тому же требует специальных мер по утилизации отходов использованного топлива.

Наружная реклама от https://liveadver.kz/ — это один из основных двигателей бизнеса. Наряду с другими видам рекламы, внешняя реклама по праву занимает второе место по количеству просмотров и лидирующее место в ряду маркетинговых мероприятий. С каждым днем, все больше предприятий обращаются в рекламные агентства за помощью. Предприятия предпочитают использовать рекламу с целью узнаваемости товара или услуги и сделать ее более востребованной.

Солнечная батарея — что это такое

Строго говоря, получить электроэнергию от солнечного излучения можно несколькими способами, но большинство из них используют промежуточное её преобразование в механическую, вращающую вал генератора и только затем в электрическую.

Такие электростанции существуют, они используют в работе двигатели внешнего сгорания Стирлинга, имеют неплохой КПД, но у них есть и существенный недостаток: чтобы собрать как можно больше энергии солнечного излучения, требуется изготовление огромных параболических зеркал с системами слежения за положением солнца.

Надо сказать, что существуют решения, позволяющие улучшить ситуацию, но все они достаточно дорогостоящие.

Есть методы, дающие возможность прямого преобразования энергии света в электрический ток. И хотя явление фотоэффекта в полупроводнике селене было открыто уже в 1876 году, но только в 1953 году, с изобретением кремниевого фотоэлемента, появилась реальная возможность создания солнечных батарей для получения электроэнергии.

В это время уже появляется теория, позволившая объяснить свойства полупроводников, и создать практическую технологию их промышленного производства. К сегодняшнему дню это вылилось в настоящую полупроводниковую революцию.

Работа солнечной батареи основана на явлении фотоэффекта полупроводникового p-n перехода, по сути представляющего собой обычный кремниевый диод. На его выводах при освещении возникает фото‑эдс величиной 0,5~0,55 В.

При использовании электрических генераторов и батарей необходимо учитывать различия, которые существуют между фазным и линейным напряжением. Подключая трехфазный электродвигатель в соответствующую сеть, можно в три раза увеличить его выходную мощность.

Следуя определенным рекомендациям, с минимальными затратами по ресурсам и времени можно изготовить силовую часть высокочастотного импульсного преобразователя для бытовых нужд. Изучить структурные и принципиальные схемы таких блоков питания можно здесь.

Конструктивно каждый элемент солнечной батареи выполнен в виде кремниевой пластины площадью в несколько см2, на которой сформировано множество соединённых в единую цепь таких фотодиодов. Каждая такая пластина является отдельным модулем, дающим при солнечном освещении определённое напряжение и ток.

Соединяя такие модули в батарею и комбинируя параллельно‑последовательное их подключение, можно получить широкий диапазон значений выходной мощности.

Преимущества и недостатки этого вида энергии

Основные недостатки солнечных батарей:

    • Большая неравномерность и нерегулярность энергоотдачи в зависимости от погоды, и сезонной высоты солнца.
    • Ограничение мощности всей батареи, если затенена хотя бы одна её часть.
    • Зависимость от направления на солнце в различное время суток. Для максимально эффективного использования батареи нужно обеспечивать её постоянную направленность на солнце.
    • В связи с вышесказанным, необходимость аккумулирования энергии. Наибольшее потребление энергии приходится на то время, когда выработка её минимальна.
    • Большая площадь, требующаяся для конструкции достаточной мощности.
    • Хрупкость конструкции батареи, необходимость постоянной очистки её поверхности от загрязнений, снега и т. п.
    • Модули солнечной батареи работают наиболее эффективно при 25°C. Во время работы же они нагреваются солнцем до значительно более высокой температуры, сильно снижающей их эффективность. Чтобы поддерживать КПД на оптимальном уровне, необходимо обеспечивать охлаждение батареи.

 

Следует заметить, что постоянно появляются разработки солнечных элементов, использующих новейшие материалы и технологии. Это позволяет постепенно устранять недостатки, присущие солнечным батареям или уменьшать их влияние. Так, КПД новейших элементов, использующих органические и полимерные модули, достигает уже 35% и есть ожидания достижения 90%, а это делает возможным при тех же размерах батареи получить много бòльшую мощность, либо, сохранив энергоотдачу, значительно уменьшить габариты батареи.

Кстати, средний КПД автомобильного двигателя не превышает 35%, что позволяет говорить о достаточно серьёзной эффективности солнечных панелей.

Появляются разработки элементов на основе нанотехнологий, одинаково эффективно работающих под разными углами падающего света, что избавляет от необходимости их позиционирования.

Таким образом, уже сегодня можно говорить о преимуществах солнечных батарей по сравнению с другими источниками энергии:

    • Отсутствие механических преобразований энергии и движущихся частей.
    • Минимальные расходы на эксплуатацию.
    • Долговечность 30~50 лет.
    • Тишина при работе, отсутствие вредных выбросов. Экологичность.
    • Мобильность. Батарея для питания ноутбука и зарядки аккумулятора для светодиодного фонарика вполне поместится в небольшом рюкзаке.
    • Независимость от наличия постоянных источников тока. Возможность подзарядки аккумуляторов современных гаджетов в полевых условиях.
    • Нетребовательность к внешним факторам. Солнечные элементы можно разместить в любом месте, на любом ландшафте, лишь бы они достаточно освещались солнечным светом.

 

Конструктивные особенности

В приэкваториальных районах Земли средний поток солнечной энергии составляет в среднем 1,9 кВт/м2. В средней полосе России он находится в пределах 0,7~1,0 кВт/м2. КПД классического кремниевого фотоэлемента не превышает 13%.

Как показывают опытные данные, если прямоугольную пластину направить своей плоскостью на юг, в точку солнечного максимума, то за 12‑часовой солнечный день она получит не более 42% суммарного светового потока из‑за изменения угла его падения.

Это означает, что при среднем солнечном потоке 1 кВт/м2, 13% КПД батареи и её суммарной эффективности 42% удастся получить за 12 часов не более 1000 x 12 x 0,13 x 0,42 = 622,2 Втч, или 0,6 кВтч за день с 1 м2. Это при условии полного солнечного дня, в облачную погоду — значительно меньше, а в зимние месяцы эту величину нужно разделить ещё на 3.

Учитывая потери на преобразование напряжения, схему автоматики, обеспечивающую оптимальный зарядный ток аккумуляторов и предохраняющую их от перезаряда, и прочие элементы можно принять за основу цифру 0,5 кВтч/м2. Этой энергией можно в течение 12 часов поддерживать ток заряда аккумулятора 3 А при напряжении 13,8 В.

То есть для заряда полностью разряженной автомобильной батареи ёмкостью 60 Ач потребуется солнечная панель в 2 м2, а для 50 Ач — примерно 1,5 м2.

Для того чтобы получить такую мощность можно приобрести готовые панели, выпускающиеся в диапазоне электрических мощностей 10~300 Вт. Например, одна 100 Вт панель за 12‑ти часовой световой день с учётом коэффициента 42% как раз обеспечит 0,5 кВтч.

Такая панель китайского производства из монокристаллического кремния с очень неплохими характеристиками стоит сейчас на рынке около 6400 р. Менее эффективная на открытом солнце, но имеющая лучшую отдачу в пасмурную погоду поликристаллическая — 5000 р.

При наличии определённых навыков в монтаже и пайке радиоэлектронной аппаратуры можно попробовать собрать подобную солнечную батарею и самому. При этом не стоит рассчитывать на очень большой выигрыш в цене, кроме того, готовые панели имеют заводское качество как самих элементов, так и их сборки.

Но продажа таких панелей организована далеко не везде, а их транспортировка требует очень жёстких условий и обойдётся достаточно дорого. Кроме того, при самостоятельном изготовлении появляется возможность, начав с малого, постепенно добавлять модули и наращивать выходную мощность.

Подбор материалов для создания панели

В китайских интернет‑магазинах, а также на аукционе eBay предлагается широчайший выбор элементов для самостоятельного изготовления солнечных батарей с любыми параметрами.

Ещё в недалёком прошлом самодельщики приобретали пластины, отбракованные при производстве, имеющие сколы или другие дефекты, но существенно более дешёвые. Они вполне работоспособны, но имеют немного пониженную отдачу по мощности. Учитывая постоянное снижение цен, сейчас это уже вряд ли целесообразно. Ведь теряя в среднем 10% мощности, мы теряем и в эффективной площади панели. Да и внешний вид батареи, состоящей из пластин с отколотыми кусочками выглядит довольно кустарно.

Можно приобрести такие модули и в российских онлайн‑магазинах, например, molotok.ru предлагает поликристаллические элементы с рабочими параметрами при световом потоке 1,0 кВт/м2:

  • Напряжение: холостого хода — 0,55 В, рабочее — 0,5 В.
  • Ток: КЗ — 1,5 А, рабочий — 1,2 А.
  • Рабочая мощность — 0,62 Вт.
  • Габариты — 52х77 мм.
  • Цена 29 р.
Совет: Надо учитывать, что элементы очень хрупкие и при транспортировке часть из них может быть повреждена, поэтому при заказе следует предусмотреть некоторый запас по их количеству.

Изготовление солнечной батареи для дома своими руками

Для изготовления солнечной панели нам понадобится подходящая рама, которую можно сделать самостоятельно или подобрать готовую. Из материалов для н

Солнечная батарея | Мастер-класс своими руками

Когда медь охладилась до комнатной температуры (это занимает приблизительно 20 минут), большая часть черной оксидной пленки уйдет. Легкое очищение Вашими руками под проточной водой удалит большинство маленьких кусочков. НЕ ПЫТАЙТЕСЬ отдирать неподдающиеся пятнышки и не сгибайте лист — можете повредить тонкий слой медной окиси,а как раз он нам и нужен 

Остальная часть сборки очень быстрая и простая.  

Обрежьте второй лист меди под размер с первым(нагретым).АККУРАТНО согните обе части,таким образом они войдут в пластмассовую бутылку, не касаясь друг друга. 

Прицепите «крокодильчики» к обеим пластинам. Соедините провод от чистой меди к плюсу,а провод от пластины с оксидом — к минусу. 

Теперь смешайте пару столовых ложек соли в небольшом количестве горячей воды из под крана. Размешивайте, пока вся соль не растворится. Аккуратно вылейте смесь в бутылку(где пластины), оставив примерно 2.5см от краёв пластин.

На фотографии выше готовая солнечная батарея В ТЕНИ,амперметр показывает приблизительно 6 милиампер.Но даже в темноте эта батарея будет давать несколько милиампер))

Эта фотография показывает батарею на свету, а амперметр показывает 34 милиампера,иногда батарея может дать и 50 милиампер,или даже больше. 

Как это работает? 

Оксид меди — полупроводник. Он является промежуточным проводником, где электричество может течь свободно, и изолятор, где электроны сильно связаны с их атомами и не текут свободно.  

В полупроводнике есть промежуток, названный запрещенной зоной между электронами, которые связаны сильно с атомом, и электронами, которые более далеки от атома, который может переместиться свободно и провести электричество. 

Электроны не могут остаться в запрещенной зоне. Электрон может дать только немного энергии и переехать от ядра атома в запрещенную зону. Электрон должен получить достаточно энергии переместиться дальше от ядра, за пределами запрещенной зоны. 

Точно так же электрон вне запрещенной зоны не может проиграть немного энергии и упасть только немного ближе к ядру. Это должно потерять достаточно энергии упасть мимо запрещенной зоны в область, где можно электронам. 

Когда солнечный свет поражает электроны в оксиде меди, некоторые из электронов получают достаточно энергии от солнечного света, чтобы подскочить мимо запрещенной зоны и стать свободными провести электричество. 

Свободные электроны перемещаются в солёную воду, затем в чистую медную пластину, в провод, через амперметр, и назад к окисленной пластине.  

Поскольку электроны перемещаются через амперметр, мы видим работу(ампер). Когда тень падает на солнечную батарею, электроны движутся медленнее и милиампер меньше. 

Примечание об энергии. 

батарея производит 50 милиампер в 0.25 вольт. 

Это 0.0000125 ватта (12.5 микроватт). 

Не пытайтесь зажечь лампочку)))понадобились бы акры батарей,чтобы осветить дом.Наша модель — экспериментальная и может использоваться как датчик света. 

0.0000125 ватта (12.5 микроватт) для батареи на 0.01 квадратных метра, или 1.25 милливатт за квадратный метр. Чтобы осветить лампочку на 100 ватт, потребовалось бы 80 000 квадратных метров оксида меди для освещенной солнцем стороны, и 80 000 квадратных метров меди для темного электрода. Чтобы управлять печью на 1 000 ватт, вам нужно было бы бы в 800 000 квадратных метров оксида меди, и другого 800 000 квадратных метров простой меди, или 1 600 000 квадратных метров все вместе. Если бы это должно былокрепиться на крыше дома, каждый дом был бы 282 метра длиной и 282 метра шириной, принимая все, для чего они нуждались в электричестве, была одна печь.  

В 1 600 000 квадратных метров есть 17 222 256.7 квадратных футов. Если бы медь, покрывающая затраты 5$ за квадратный фут, одна только медь, стоила бы USD за 86 110 283,50$. Делая это одна десятая толщина может снизить это к 8 611 028,35$. Так как Вы покупаете оптом, Вы могли бы получить это для половины этого, или приблизительно 4 300 000,00$. 

Если бы Вы использовали кремниевые солнечные группы, стоящие 4$ за ватт, то Вы могли бы управлять той же самой печью за 4 000,00$. Но группы только составили бы приблизительно 10 квадратных метров. 

Или за приблизительно доллар Вы можете построить солнечную печь из алюминиевой фольги и картона. Приблизительно за 20$ Вы можете построить очень хорошую полируемую алюминиевую параболическую солнечную плиту.

Плоская солнечная батарея 

Я сделал более портативную версию солнечной батареи в плоской форме. Я использовал прозрачную пластмассовую крышку обложки CD-диска как окно и силиконовый клей(можно обычный герметик)чтобы и приложить части вместе и изолировать их друг от друга.

Сначала делаем из меди оксид,как в первой части.Припаиваем к углу оксидной пластины изолированный медный провод,это будет минус(отрицательный полюс).

Положительная пластина — U образно вырезанный кусок чистой меди по размеру чуть больше оксидной(далее на картинках поймётё как)))к её углу припаиваем провод,на этот раз плюс. 

Сначала приклеиваем медную пластину U к пластмассовому окну. Используйте много силиконового клея, таким образом солёная вода не будет просачиваться. Удостоверьтесь, что паяное соединение или полностью покрыто клеем, или за пределами клея U, как показано в фотографии (полностью покрытый клеем лучше). 

Фотография ниже показывает заднюю сторону солнечной батареи (сторона, не оказывающаяся перед солнцем).

Фотография ниже показывает переднюю сторону солнечной батареи (сторона, которая будет стоять перед солнцем). Заметьте, что силиконовый клей полностью не покрывает меди, так как часть меди должна в конечном счете быть в контакте с солёной водой.

Мажем клеем пластину чистой меди. Этот слой будет действовать как изолятор между чистой медной пластиной и оксидной пластиной, и должен быть достаточно толстым, чтобы оставить небольшое пространство для солёной воды. Снова, не вся медь покрыта, таким образом будет много меди в контакте с водой. 

Аккуратно приклейте оксидную пластину на этот слой. Вы должны нажать достаточно сильно, чтобы удостовериться, что клей окружает любые промежутки, но не настолько сильно, что эти две пластины соприкоснутся. 

Фотография ниже показывает заднюю сторону солнечной батареи (сторона, не оказывающаяся перед солнцем).

Фотография ниже показывает переднюю сторону солнечной батареи (сторона, которая будет стоять перед солнцем). Отметьте, что я добавил дополнительный клей, чтобы сформировать трубу сверху, чтобы было как заливать солёную воду.

На фотографии не показана дополнительная обмазка клеем по периметру,чтобы вода никак не могла просочиться,но вы должны её сделать. Дайте клею высохнуть прежде чемм приступать к следущему шагу.  

Затем, используйте большую пипетку, чтобы добавить солёную воду. Заполните батарею почти до вершины медной пластины, чтобы вода почти выливалась. Затем запечатайте отверстие каплей клея и позвольте клею ввысыхать по крайней мере полчаса.

На фотографии выше вы можете видеть плоскую солнечную батарею в действии на ярком солнце. Она даёт примерно 36 микроампер. Вы можете также видеть дополнительную бусинку клея вокруг краев пластин, и заполнение вершины трубы.

Наконец, на другой фотке тень автора. Отметьте, что амперметр теперь показывает приблизительно 4 микроампера, так как никакой солнечный свет не падает на него.

Источник: samodelka.ucoz.ru

Солнечная батарея, сделай сам

Как сделать солнечную батарею своими руками

Все больше людей стремится к приобретению домов, находящихся в отдалении от очагов цивилизации. Причин этому существует множество, главная из которых, наверное, экологическая. Ни для кого не секрет, что интенсивное развитие промышленности пагубно сказывается на состоянии окружающей среды. Но при покупке такого дома можно столкнуться с отсутствием электроснабжения, без которого жизнь в двадцать первом веке едва ли можно себе представить.

Проблему обеспечения энергией здания, находящегося далеко от очагов цивилизации можно попробовать решить установкой ветрогенератора. Однако этот способ далеко не идеален. Для того, чтобы электроэнергии хватило на весь дом потребуется установка большого ветряка или нескольких, но и в этом случае энергообеспечение будет носить эпизодический характер, отсутствуя в безветренную погоду.

Для обеспечения стабильности энергообеспечения дома, эффективным решением является совместное использование ветрогенератора и солнечной батареи, но, к сожалению, батареи далеко не дешевы. Решением этих сложностей было бы производство солнечной батареи своими руками, способной на равных конкурировать с заводскими по мощности, но в то же время приятно отличаться от них ценой. И такое решение есть!

Для начала, необходимо определиться, что же представляет собой солнечная батарея. По своей сути, это контейнер, содержащий в себе массив, преобразующих солнечную энергию в электрическую, элементов. Слово «массив» применимо в данном случае, потому что для генерации достаточных объемов энергии, необходимых в условиях энергообеспечения жилого дома, солнечных элементов потребуется довольно внушительное количество. В виду высокой хрупкости элементов, их в обязательном порядке объединяют в батарею, которая обеспечивает им защиту от механических повреждений и объединяет вырабатываемую энергию. Как видно, в принципиальном устройстве солнечной батареи нет ничего по-настоящему сложного, поэтому ее вполне можно сделать своими руками.

Перед тем, как приступать непосредственно к действиям, принято проводить глубокую теоретическую подготовку, чтобы избежать лишних трудностей и издержек в процессе. Именно на этом этапе многие энтузиасты сталкиваются с первым препятствием – практически полным отсутствием полезной с практической точки зрения информации. Именно это явление создает надуманную видимость сложности солнечных батарей: раз их никто не делает сам, значит это сложно. Однако, задействовав логическое мышление можно придти к следующим выводам:

§основа целесообразности всего процесса заключается в приобретении солнечных элементов по доступной цене

§покупка новых элементов исключена, ввиду их высокой стоимости и сложности покупки в необходимом количестве.

§солнечные элементы, обладающие дефектами и повреждениями, могут быть приобретены на аукционе eBay и в других источниках, по значительно более низким ценам, чем новые.

§дефектные элементы вполне могут быть использованы в заданных условиях.

На основе сделанных выводов, становится ясно, что следующим шагом в изготовлении солнечной батареи будет покупка дефектных солнечных элементов. В нашем случае элементы были куплены на eBay.

Приобретенные монокристаллические солнечные элементы имели размер 3х6 дюйма, и каждый их них выдавал порядка 0.5В энергии. Таким образом, соединенные последовательно 36 таких элементов, в общей сложности выдают около 18В, которых достаточно для эффективной подзарядки 12В аккумулятора. Следует помнить, что такие солнечные элементы хрупкие и ломкие, поэтому вероятность их повреждения при неосторожном обращении крайне высока.

Для обеспечения защиты от механических повреждений продавец покрыл воском наборы из восемнадцати штук. С одной стороны это эффективная мера, позволяющая избежать повреждений во время транспортировки, с другой стороны – лишние проблемы, так как удаление воска вряд ли кому-то покажется приятной и легкой задачей. Поэтому, если есть такая возможность, приобретение элементов, не покрытых воском, является лучшим решением. Если обратить внимание на изображенные световые элементы, можно заметить, что они имеют припаянные проводники. Даже в этом случае придется поработать паяльником, а если же приобрести элементы без проводников – работы будет в разы больше.

Вместе с тем были приобретены пара наборов элементов, которые не были залиты воском, у другого продавца. Они пришли упакованными в коробку из пластика с незначительными сколами по бокам. В нашем случае сколы не являлись предметом для беспокойства, потому как не были способны ощутимо снизить эффективность всего элемента. Однако, возможно, кто-то сталкивался с более плачевными результатами повреждений при транспортировке, что необходимо иметь в виду. Приобретенных элементов было достаточно для изготовления двух солнечных батарей, даже с излишком, на случай непредвиденных повреждений или отказов.

Конечно, при изготовлении солнечной батареи можно использовать и другие световые элементы, в широком спектре размеров и форм присутствующих у продавцов. В этом случае необходимо помнить три вещи:

1.Световые элементы одного типа генерируют идентичное напряжения, вне зависимости от размера и формы, поэтому их требуемое количество останется неизменным

2.Генерация тока имеет прямую зависимость от размера элемента: большие генерируют больший ток, маленькие – меньший.

3.Суммарная мощность солнечной батареи определяется ее напряжением, умноженным на ток.

Как видно, использование элементов большого размера при изготовлении солнечной батареи способно обеспечить более высокий показатель мощности, но вместе с тем и сделает саму батарею более громоздкой и тяжелой. В случае использования элементов меньшего размера, размер и вес готовой батареи уменьшится, однако вместе с тем уменьшится и выдаваемая мощность. Крайне не рекомендуется использование в одной батарее солнечных элементов разного размера, так как генерируемый батареей ток будет эквивалентен току самого маленького из используемых элементов.

Приобретенные в нашем случае солнечные элементы при размере 3х6 дюйма генерировали ток примерно в 3 ампера. При солнечной погоде, тридцать шесть, соединенных последовательно, элемента, способны выдавать порядка 60 Вт мощности. Цифра не особенно впечатляет, тем не менее, это лучше, чем ничего. Следует учитывать, что указанная мощность будет генерироваться каждый солнечный день, заряжая аккумулятор. В случае использования электроэнергии для осуществления питания светильников и аппаратуры с небольшим потреблением тока, такая мощность является вполне достаточной. Не нужно и забывать о ветрогенераторе, также производящем энергию.

После приобретения солнечных элементов далеко не лишним будет спрятать их от людских глаз в безопасное место, защищенное от детей и домашних животных, до того момента, когда возможно будет их непосредственная установка в солнечную батарею. Это жизненная необходимость, в виду крайне высокой хрупкости элементов и подверженности их механической деформации.

По сути корпус солнечной батареи, ни что иное, как простой неглубокий ящик. Ящик непременно необходимо изготовить неглубоким, для того чтобы его бортики не создавали тени, когда солнечный свет падает на батарею под большим углом. В качестве материала вполне подойдет фанера 3/8 дюйма и рейки для бортиков 3/4 дюйма толщиной. Для лучшей надежности крепление бортиков не лишним будет осуществить двумя способами – приклеиванием и привинчиванием. Для упрощения последующей пайки элементов, батарею лучше разделить на две части. Роль разделителя выполняет расположенная по центру ящика планка.

На этом небольшом наброске, можно увидеть размеры в дюймах(1 дюйм равен 2,54 см.), изготовленной в нашем случае солнечной батареи. Бортики расположены по всем краям и в середине батареи и имеют толщину 3/4 дюйма. Данный эскиз ни в коем случае не претендует на роль эталона при изготовлении батареи, он был сформирован скорее из личных предпочтений. Размеры приведены для наглядности, но в принципе они, как и дизайн, могут быть различны. Не бойтесь экспериментировать и вполне вероятно, батарея может получиться лучше, чем в нашем случае.

Вид на половину корпуса батареи, в которой будет производится размещение первой группы солнечных элементов. Небольшие отверстия, которые вы видите на бортиках, представляют собой не что иное, как вентиляционные отверстия. Они предназначены для удаления влаги и поддержания давления, эквивалентного атмосферному внутри батареи. Следует обратить особое внимание на расположении отверстий для вентиляции в нижней части корпуса батареи, потому как расположение их в верхней части приведет к попаданию излишней влаги извне. Также отверстия необходимо сделать и в планке, расположенной по центру.

Два вырезанных куска ДВП будут выполнять функцию подложек, т.е. на них будет производиться монтаж солнечных элементов. В качестве альтернативы ДВП подойдет любой тонкий материал, обладающий высокими показателями жесткости и не проводящий электрический ток.

Для защиты солнечной батареи от агрессивного воздействия климата и окружающей среды, используется оргстекло, которым необходимо закрывать лицевую сторону. В данном случае были вырезаны два куска, однако может использоваться и один большой. Использование обычного стекла не рекомендуется, по причине его повышенной хрупкости.

Вот незадача! Для обеспечения крепления на шурупы, было принято решение просверлить отверстия вокруг кромки. При сильном надавливании во время сверления, оргстекло может сломаться, что и произошло в нашем случае.  Проблема была решена сверлением недалеко нового отверстия, а отколовшийся кусок просто приклеили.

После этого было произведено окрашивание всех деревянных частей солнечной батареи краской в несколько слоев, для повышения защиты конструкции от влаги и воздействия среды. Покраска осуществлялась как внутри, так и снаружи. Цвет краски, как и тип может варьироваться в широком диапазоне, в нашем случае была использована краска, имеющаяся в наличии в достаточном количестве.

Окраска подложек также была произведена с обеих сторон и в несколько слоев. Покраске подложки необходимо уделять особенное внимание, так при некачественной покраске, дерево может начать коробиться от воздействия влаги, что вероятно приведет к повреждению приклеенных к ней солнечных элементов.

Теперь, когда корпус солнечной батареи готов и просыхает самое время приступить к подготовке элементов.

Как уже упоминалось ранее, удаление воска с элементов – задача не из приятных. В ходе экспериментов, методом проб и ошибок, был найдет эффективный способ. Тем не менее, рекомендации по покупки не покрытых воском элементов, остались прежними.

Для растопки воска и отделения элементов друг от друга, необходимо отмочить солнечные элементы в горячей воде. При этом следует исключить возможность закипания воды, потому как бурное кипение может повредить элементы и нарушить их электрические контакты. Для исключения неравномерного нагрева, рекомендуется поместить элементы в холодную воду и плавно нагревать. Следует воздержать от вытягивания элементов из кастрюли за проводники, так как они могут оборваться.

На этом фото изображена окончательная версия аппарата для удаления воска. На заднем плане с правой стороны находится первая емкость, предназначенная для растапливания воска. Слева на переднем плане расположена емкость с горячей мыльной водой, а справа – чистая вода. Вода во всех емкостях довольно горячая, но ниже кипения воды. Нехитрый технологический процесс удаления воска заключается в следующем: в первой емкости необходимо растопить воск, затем элемент перенести в горячую мыльную воду для удаления остатков воска, в заключении промыть чистой водой. После очистки от воска, элементы необходимо просушить, для этого они были выложены на полотенце. Следует отметить что слив мыльной воды в канализацию недопустим, так как воск, остыв, затвердеет и засорит ее.  Результатом процесса очистки является почти полное удаление воска с солнечных элементов. Оставшийся воск не способен помешать как пайке, так и работе элементов.

Солнечные элементы сушатся на полотенце после очистки. После удаления воска элементы стали значительно более хрупкими, что делает их более сложными в хранении и обращении. Рекомендуется не производить очистку до тех пор, пока не будет необходима их непосредственная установка в солнечную батарею.

Для упрощения процесса монтажа элементов, рекомендуется начать с отрисовки сетки на основе. После произведения отрисовки, элементы были выложены по сетке вверх обратной стороной, для того чтобы их спаять. Все восемнадцать элементов, расположенных в каждой половине были последовательно соединены, после чего были и соединены и половины, также последовательным способом, для получения необходимого напряжения

В начале спайка элементов между собой может показаться сложной, однако со временем она становится проще. Рекомендуется начать с двух элементов. Необходимо разместить проводники одного элемента таким образом, чтобы они пересекали точки пайки другого, также следует убедиться, что элементы установлены согласно разметке.

Для непосредственного осуществления пайки использовался паяльник малой мощности и прутковый припой с канифольной сердцевиной. Перед пайкой была произведена смазка точек пайки флюсом при помощи специального карандаша. Ни в коем случае не следует давить на паяльник. Элементы настолько хрупкие, что могут от небольшого давления придти в негодность.

Повторение пайки осуществлялась до образования цепочки, состоящей из шести элементов. Шины соединения от сломанных солнечных элементов, были припаяны к обратно стороне элемента цепочки, являющегося последним. Таких цепочек получилось три – итого 18 элементов первой половины батареи были благополучно объединены в сеть.

По причине того, что все три цепочки необходимо соединить последовательно, средняя цепочка была повернута на 180 градусов по отношению к другим. Общая ориентация цепочек в итоге получилось правильной. Следующим шагом является приклеивание элементов на место.

Для осуществления солнечных элементов может потребоваться некоторая сноровка. Необходимо нанести небольшую каплю герметика, изготовленного на основе силикона, в центре каждого элемента одной цепочки. После этого следует перевернуть цепочку лицевой стороной вверх и разместить солнечные элементы согласно нанесенной ранее разметке. Затем необходимо легонько прижать элементы, осторожно надавливая в центре, чтобы приклеить их. Значительные сложности могут возникнуть в основном при переворачивании гибкой цепочки, поэтому лишняя пара рук на это этапе не повредит.

Не рекомендуется наносить избыточное количество клея и приклеивать элементы по краям. Это обусловлено тем, что сами элементы и подложка, на которую они установлены, будут деформироваться при изменении условий влажности и температуры, что может привести к выходу элементов из строя.

Так выглядит собранная половина солнечной батареи. Для соединения первой и второй цепочек элементов была использована медная оплетка кабеля.

Для этих целей вполне подойдут специальные шины или даже медные провода. Аналогичное соединение необходимо произвести и с обратной стороны. Провод был прикреплен к основанию каплей герметика.

Тест первой изготовленной половины батареи на солнце. При слабой солнечной активности, изготовленная половина генерирует 9.31В. Довольно неплохо. Пора приступать к изготовлению второй половины батареи.

После того, как обе основы с солнечными элементами будут завершены, можно произвести их установку в подготовленную заранее коробку и соединить.

Каждая половина идеально помещается на свое место. Для крепления основы внутри батареи были использованы 4 шурупа небольшого размера.

Провод, предназначенный для соединения половин солнечной батареи, был пропущен через вентиляционное отверстие в центральном бортике и закреплен при помощи герметика.

Необходимо каждую солнечную панель в систему снабдить диодом блокирования, который должен быть соединен с батареей последовательно. Он предназначен для исключения разряда аккумулятора через батарею. Диод использовался Шоттки на 3.3А, обладающий значительно более низким падением напряжения, в сравнении с обычными диодами, что минимизирует потери мощности на диоде. Набор из двадцати пяти диодов марки 31DQ03 был приобретен всего за несколько долларов на eBay.

Исходя из технических характеристик диодов, наилучшим местом их размещения является внутренняя часть батареи. Связано это с зависимостью падения напряжения у диода от температуры. Так как температура внутри батареи будет выше окружающей, следовательно и эффективность диода повысится. Для закрепления диода был использован герметик.

Для того чтобы вывести наружу провода, было просверлено отверстие в днище солнечной батареи. Провода лучше завязать на узел и закрепить герметиком, для предотвращения их последующего вытягивания.

Крайне необходимо дать высохнуть герметику до установки защиты из оргстекла. Силиконовые испарения могут образовать пленку на внутренней поверхности оргстекла, если не дать силикону просохнуть на открытом воздухе.

Небольшое количество герметика для создания барьера от влаги.

На выходной провод солнечной батареи, был прикреплен двухконтактный разъем, розетка которого в будущем будет присоединена к контроллеру заряда аккумуляторных батарей, используемого для ветрогенератора. В итоге солнечная батарея и ветрогенератор смогут работать параллельно.

Вот так выглядит окончательная версия солнечной батареи с установленным экраном. Не стоит торопиться с герметизацией стыков оргстекла до произведения полного тестирования работоспособности батареи. Может случиться так, что на одном из элементов отошел контакт и потребуется доступ к внутренностям батареи для ликвидации проблемы.

Предварительные расчеты оправдались: законченная солнечная батарея на ярком осеннем солнце выдает 18.88В без нагрузки.

Этот тест был произведен при аналогичных условиях и показывает прекрасную работоспособность батареи – 3,05А.

Солнечная батарея в рабочих условиях. Для сохранения ориентации на солнце, батарея перемещается несколько раз в день, что само по себе не сложно. В перспективе возможна установка автоматического слежения за положением солнца на небосводе.

Итак, какова же конечная стоимость батареи, которую мы умудрились сделать своими руками? Учитывая то, что куски дерева, провода и прочие пригодившиеся в изготовлении батареи вещи были у нас в мастерской, наши с вами подсчеты могут немного отличаться. Конечная стоимость солнечной батареи составила 105 долларов с учетом 74 долларов, потраченных на приобретение самих элементов.

Согласитесь, не так уж и плохо! Это всего лишь малая часть стоимости заводской батареи эквивалентной мощности. И в этом нет ничего сложного! Для увеличения выходной мощности вполне можно соорудить несколько таких батарей. 

Если статья понравилась, то поделитесь с друзьями в социальных сетях, буду благодарна!

Изготовление солнечных панелей дома

Глобальная рецессия привлекла внимание людей к устойчивым отраслям и к ценности делать больше для самих себя. Один из способов уменьшить последствия изменения климата и стимулировать использование возобновляемых источников энергии — наряду с экономией денег — это научиться делать солнечные панели для себя.

Сейчас действительно идеальное время для преобразования энергии вашего дома в солнечную энергию. Последние достижения в области солнечной энергетики сделали этот процесс более практичным и экономичным, чем когда-либо прежде.Все больше и больше новых экологически чистых домов используют как пассивные, так и активные средства улавливания солнечной энергии.

Солнечные панели являются активным средством получения солнечной энергии, потому что фотоэлектрические элементы в панелях напрямую преобразуют солнечный свет в электричество, а затем распределяют его по вашему дому по существующей проводке. С солнечными батареями в вашем доме вы отключаетесь от сети, то есть вы не потребляете электроэнергию в своем доме из общенациональной электросети. Вы не вносите свой вклад в необходимость сжигания угля для получения электроэнергии, что приводит к вредным выбросам в атмосферу. Солнечная энергия — это возобновляемый ресурс, поскольку она черпает энергию из постоянно излучающей звезды, известной как Солнце.

Если у солнечной энергии есть недостаток, это то, что когда нет солнечного света, например, ночью или под облаками, электричество не вырабатывается. Таким образом, он не работает в местах, где мало солнечного света, но даже там он все равно работает. Кроме того, исследования в области солнечных технологий продолжают поиск лучших способов хранения электроэнергии, вырабатываемой солнечной энергией, в батареях и других устройствах.

Очевидно, что преимущества солнечной энергии перевешивают недостатки, поэтому существует такая тенденция к созданию собственных солнечных панелей дома. Фактически, некоторые домовладельцы делают семейный проект из солнечных панелей. Этот тип проекта по благоустройству дома дает чувство личной удовлетворенности от создания чего-то своими руками, а также удовлетворение от осознания того, что вы делаете что-то полезное для окружающей среды.

Существует множество отличных сведений о солнечной энергии, а также пошаговое руководство, которое включает видеоуроки по изготовлению солнечных батарей.

Если вы готовы начать свой путь к более чистой, более энергоэффективной системе, которая возвращает деньги в ваш карман каждый месяц, тогда сделайте свою собственную солнечную панель дома. Вы можете сделать это, нажав здесь.





Как сделать солнечные панели

Установка домашних солнечных панелей

Если вы один из многих людей, которые в последнее время стали более осведомленными о том, насколько дорогими становятся затраты на электроэнергию, возможно, стоит обратить внимание на установку домашних солнечных панелей.Это ненавязчивый и экологически чистый способ сэкономить деньги на счетах за электроэнергию и помочь двигаться в будущее. Процесс довольно быстрый и простой, и он будет описан в следующих шагах.

Прежде чем вы начнете приобретать расходные материалы, вы захотите спросить себя, будут ли ваши панели лежать на крыше ровно или под углом к ​​свету для максимального эффекта. Это повлияет на то, как вы устанавливаете рельсы, потому что руководство, поставляемое здесь, предназначено в основном для тех, кто делает панели, которые устанавливаются плоско на крыше.В этом случае следует знать, что панели легче установить на место.

Прежде всего, вам понадобятся винты и крепления для крепления к крыше, чтобы убедиться, что она безопасна, потому что безопасность всегда должна быть приоритетом номер один. Когда у вас есть все необходимое, которое можно найти в Интернете или в любом хозяйственном магазине, найдите стропила в своей крыше с помощью прибора для поиска шпилек и просверлите отверстия. Вы можете использовать лазер или мел, чтобы убедиться, что все они находятся на одной прямой. Поместите крепления над отверстиями.Сюда войдут рельсы, на которых сидят панели. Как только рельсы будут на месте, было бы разумно протереть их горячей шваброй, чтобы убедиться, что они надежно закреплены. Стальные болты прикрепят поручни к закрепленным вами стойкам. Теперь самое сложное сделано!

Сами панели должны быть установлены ровно и по прямой линии. Как только они будут установлены, вы можете объединить их в массив. Наконец, вы должны проложить кабелепровод, чтобы он соединялся с инвертором на крыше. Поздравляем, ваша солнечная энергетическая система теперь установлена, и вместе со счетом за бесплатную электроэнергию вы получите налоговые льготы от федерального правительства для перехода на более экологичную альтернативу.

Если вы все еще сомневаетесь, знайте, что установка панелей самостоятельно — это простой и безопасный процесс, который окупится всего за четыре года, что является коротким сроком для такой выгоды. Это также повысит стоимость вашего дома и сделает его более желанным. Надеюсь, теперь вы лучше понимаете, что влечет за собой установка домашних солнечных панелей, если решите попробовать сами, потому что это очень возможно.

Солнечная энергия увеличивает стоимость дома

Вы ищете способы повысить стоимость вашего дома? Что ж, у меня есть идея, которая не только увеличит стоимость перепродажи вашего дома, но и действительно сэкономит вам деньги. Я говорю о солнечной энергии. Позвольте мне объяснить…

Солнечная энергия — это энергоэффективный способ управлять вашим домом. Подводя итог идее, можно сказать, что солнечные лучи в значительной степени преобразуются в электричество. В свою очередь, мы можем сэкономить наши невозобновляемые ресурсы.

Если вы превратите свой дом в зеленый дом, вы повысите его ценность для покупателей. Это означает, что у будущих домовладельцев не будет счета за электроэнергию, к которому они привыкли, потому что, ну, солнце бесплатное. Помимо ежемесячной экономии, они получат налоговую льготу за экологичность.Это довольно хороший стимул для покупателей, когда у их дома по соседству счет за электроэнергию составляет 400 долларов.

Не беспокойтесь о расходах на установку солнечных батарей у вас дома. Стоимость полностью окупается в течение четырех лет использования. Сумма денег, которую вы сэкономите, используя этот вид энергии, определенно стоит ожидать.

Солнечные панели можно использовать повсюду в вашем доме, чтобы повысить его ценность. Вы можете использовать их для нагрева воды, вашего бассейна, включения света, обогрева дома, выпечки печенья и многого другого.Есть бесконечные возможности сделать ваш дом зеленым.

Если вы хотите поднять стоимость своей собственности, подумайте о переходе на солнечную энергию. Это не только повысит стоимость вашего дома, но и позволит ежемесячно экономить деньги на счетах за электроэнергию.

Солнечное отопление своими руками

Я никогда не был фанатом проектов «сделай сам», но этот особенно привлек мое внимание. Для тех из вас, кто разбирается в солнечной энергии, я говорю о наборах солнечной энергии.Для всех остальных я собираюсь рассказать вам о солнечном отоплении своими руками.

Это занятие можно выполнять всей семьей. Есть простые инструкции и инструкции, которым нужно следовать с каждым комплектом, чтобы каждый мог собрать его. Отличительной чертой этого проекта (солнечного комплекта) является то, что вы получаете опыт обучения, открывая новые и полезные способы экономии энергии.

Перед тем, как установить собственный комплект для энергонагревания, вам необходимо получить разрешение на это. В каждом солнечном комплекте есть все, что вам нужно для получения разрешения.Обратившись в отдел разрешений в вашем районе, вы сможете найти кого-то, кто занимается этой областью интересов.

После того, как вы получите разрешения, все необходимое будет сразу в комплекте. Для сборки требуются стандартные инструменты, но если вам нравятся проекты, я уверен, что инструменты под рукой не будут проблемой. Если вы застряли в чем-то, в Интернете есть масса видео и хорошо продуманные инструкции. Хотя все должно пройти гладко. Я завершил один самостоятельно.

Комплект для солнечного отопления, сделанный своими руками, — это подарок, который не перестает дарить. Вы экономите электроэнергию, обогреваете дом и экономите деньги. Если этот проект привлек ваше внимание так же, как и мой, то вы тоже можете испытать удовольствие и преимущества солнечного отопления.

Стоимость солнечной энергии

Вы обеспокоены своими высокими счетами за электроэнергию? Что насчет окружающей среды, вас беспокоят ее невозобновляемые ресурсы? Солнечная энергия — это решение для вас.Давайте обсудим затраты на солнечную энергию и насколько это практично для ВАШЕГО бюджета.

Первое, что вам следует знать, это то, что размер вашего дома не имеет никакого отношения к стоимости ваших солнечных батарей. Так что для тех, кому посчастливилось жить в гигантском доме, солнечные батареи не предназначены для того, чтобы завалить вас гонорарами. Что вам действительно нужно учитывать, так это то, сколько солнца вы получаете в день, где вы живете и сколько энергии вы расходуете в день. Как только вы сделаете эти выводы, мы сможем приступить к математике.

Давайте вместе рассмотрим пример, чтобы вычислить приблизительную стоимость солнечных панелей. Получите максимальный счет за электроэнергию, как сейчас, и определите, сколько киловатт-часов вы использовали. Мы скажем, что вы нашли 800 кВтч. Теперь мы разделим 800 на 30 и получим 26,7. Запомни это число. Это расчетное количество киловатт-часов, которое вы используете в день. Если вы обнаружите, что подвергаетесь воздействию солнечного света шесть часов в день, возьмите 26,7 и разделите его на 6. Ответ должен быть 4,45 (или 4450 Вт).Если вы умножите этот ответ на 1,15, вы успешно выясните, сколько ватт солнечных батарей вам нужно.

Затраты на установку связаны с указанным выше числом. Каждый ватт обычно стоит 7-9 долларов. Все затраты на установку должны быть включены в эту расчетную конечную цену.

Теперь, когда вы знаете, сколько будет стоить ваша система, вы с облегчением узнаете, что она буквально окупается в течение шести лет. Существуют также налоговые льготы для тех, кто решает использовать солнечную энергию.Это вложение, которое стоит любого времени и денег.

Преимущества солнечной энергии

Если вы не участвуете в зеленой кампании, вы можете не знать о преимуществах солнечной энергии. Выбрав этот новый и здоровый образ жизни, вы принимаете решение, о котором никогда не пожалеете. Позвольте мне поделиться с вами некоторыми замечательными функциями, которыми вы тоже могли бы воспользоваться при переходе на солнечную батарею.

В первую очередь, меняя источник энергии, вы экономите окружающую среду.Лучшего побочного эффекта быть не может! Вы переходите от использования невозобновляемых ресурсов нашей Земли к использованию Солнца в качестве основного источника. Я обнаружил интересный факт о солнце: оно дает нам больше энергии за один день, чем мы используем за весь год. Разве это не заставляет вас задаться вопросом, почему мы все время не использовали солнечную энергию?

Вы не только работаете с окружающей средой, но и экономите себе деньги. Сетка солнечных батарей начинает разрушаться после десяти лет использования.Я знаю, я знаю, что это не совсем то, что вы хотите услышать. Пока я не скажу вам, что он окупается всеми сбережениями всего за шесть лет! Это оставляет вам как минимум четыре года денег, которые вы обычно потратили бы на счет за электричество. Мы все можем иметь дело с высокими счетами за электроэнергию, и я знаю, что в наши дни нам всем нужен перерыв.

Думаю, всем нам пора начать пользоваться солнечной энергией. Со всеми преимуществами, которые мы получаем от его использования, что мы теряем?

Можно ли построить дома солнечные батареи?

Почему в вечерних новостях не появлялась реклама создания солнечных батарей, особенно учитывая, что мы столкнулись с крупнейшим энергетическим кризисом, который мы когда-либо видели.Это имеет для вас смысл? Также учтите, что большая часть рекламы, которую вы ДЕЙСТВИТЕЛЬНО видите, посвящена автомобилям… которые работают на ГАЗЕ (масле). Ходят слухи о том, что автомобильные компании угрожают лишить спонсорство крупных телекомпаний из-за противоречивой рекламы, и я считаю, что это правда.

В любом случае. А пока об этом.

Создавайте эти вещи вместе со своими детьми дома и научите их ценить чистую энергию. Но будьте осторожны, ведь существуют мошенники, которые обещают доставить вам нужные товары, но они этого не делают.

Я хотел бы сказать вам, какие расходные материалы вам нужны, но мне очень жаль: я не могу. Знаю только, что это МОЖНО сделать, а время зря. Есть солидные компании, и именно у них можно заказывать. К сожалению, несколько походов в местный хозяйственный магазин не сделают работу.

Будущее автомобилей на солнечных батареях

Я хотел бы сказать вам, что готовые автомобили на солнечных батареях уже не за горами.Я имею в виду, что «2000 год» пришел и ушел, не так ли, Конан? Где они? Ну, их еще нет и не скоро. Поверь в это.

Но эта статья — это не ВСЕ мрак и гибель, так что не бойтесь! Они ПРИХОДЯТ… по мнению автора, однако, я не верю, что кто-то сможет купить автомобиль, полностью работающий от солнечных батарей, при жизни любого, кто живет прямо сейчас.

При этом шаги предпринимают несколько разных автомобильных компаний.В некоторых новых автомобилях они устанавливают крыши с частично питанием от солнечной энергии, которые могут охладить ваш автомобиль, когда он выключен в жаркие дни. Эй, это же шаг?

Учтите, что некоторым исследователям, вероятно, очень трудно получить финансирование для такого рода вещей. Но давайте предположим, что пока это несложно: представьте, через что могут пройти автомобильные компании во время исследований и разработок. Вы действительно думаете, что компания Big Oil рада, что исследователи ищут альтернативные источники энергии для автомобилей? Забудьте, это не так.Опять же, на мой взгляд, Big Oil хочет остановить производство чистой энергии в автомобилях. Подумайте об этом: на этих машинах не будет ГАЗ. Что же тогда происходит с удобной работой некоторых руководителей? Я могу вам сказать: рабочих мест не будет, потому что нефтяная промышленность будет страдать … если, конечно, они не найдут способ объединиться с производителями солнечных батарей иным способом.

Надеюсь, что они наконец начнут делать все правильно и делать машины, которые мы ХОТИМ.

Энергия ветра и солнечная энергия своими руками

Зачем нам беспокоиться об электроэнергии и электричестве? Зачем нам менталитет «сделай сам»? Что ж, ответ прост: каждый крупный прорыв в истории происходил из такого отношения, и каждое изобретение начиналось с этого.

Многие из нас переняли позицию правительства или крупных компаний, делающих эти вещи для нас, и я не знаю, когда это началось… но, конечно, так было не всегда. МЫ были правительством, а ЛЮДИ контролировали большие компании. Наши мыслительные процессы нуждаются в ударе по голове, и нам нужно обновиться.

Подумайте о преимуществах самостоятельной работы. Если бы мы могли использовать наши собственные солнечные батареи и энергию ветра в наших собственных домах, мы бы больше не зависели от Big Electricity.Если вы не думаете, что это имеет большое значение, посчитайте, сколько вы потратили на электроэнергию в прошлом году — это невероятно, а электрические компании имеют так много власти над нашей жизнью. И если вы не верите Этому утверждению, попробуйте не оплачивать счет за электричество. Посмотри, что получится. Вся наша жизнь остановлена ​​без силы, и они управляют ею без малейшей жалости.

Я умоляю вас, читатели, потратьте немного времени и денег на то, чтобы обеспечить себя энергией. Может быть, вы не добьетесь этого за свою жизнь, но если вы только НАЧАТЬ, наши дети будут в гораздо лучшем положении, чтобы ЗАКОНЧИТЬ это и начать контролировать этот аспект своей жизни.

Не говоря уже о чистой энергии. Спасите землю и все такое.

Найдите хорошую установку солнечной энергии; Проведите исследование

Хорошо, так что вы, наконец, подошли к тому моменту, когда готовы начать помогать спасать наш мировой энергетический кризис. Отличное место, не правда ли? Мы действительно можем помочь будущему наших детей, и пора. Но есть множество проблем, и практичность — номер один. Мы задаем себе вопрос: «Как?»

Что ж, надеюсь, я могу предложить небольшой совет и понимание, чтобы сделать этот процесс немного проще.

Во-первых, солнечные батареи стоят недешево. Вообще. Они очень дороги, но, к счастью, мы знаем, что в конечном итоге мы экономим миллиарды и миллиарды долларов, не говоря уже о ЖИЗНИ. Помните, что существует не только ОДНА компания, производящая солнечные панели, и солнечные панели бывают разных видов и уровней качества. Если вы проводите поиск в Интернете, выполняйте грубый поиск и посмотрите, надежна ли компания. Узнайте, как долго они занимаются бизнесом. Напишите им электронное письмо или позвоните им и попросите примеры их работ; если они предоставят вам локальных клиентов, пройдите мимо и проверьте их установку.Конечно, в этом вопросе тонкая грань … вы хотите лучшего, но при этом не хотите беспокоить клиента. На мой взгляд, риск стоит того. Те из нас, кто пытается спасти мировые энергетические проблемы, представляют собой особую группу, и обычно они очень рады, когда им предоставляется возможность рассказать о том, что они внесли, особенно с единомышленниками.

После того, как вы выбрали подходящую компанию для работы, узнайте все, что можно, об установке, чтобы в будущем, если возникнут проблемы, вы могли сделать это самостоятельно.Помните, цена всего этого может серьезно повредить вашим карманам, и каждый доллар на счету.

И не останавливайтесь на одной панели! Продолжайте в том же духе и помогите своей семье подготовиться к полному обращению в веру в будущем.

Преобразуйте свой дом на солнечную энергию, по одной панели за раз

Солнечные панели — это то, что вам нужно, и я не думаю, что сейчас есть какие-то аргументы, не так ли? Но есть проблемы: одна проблема в том, что правительство, похоже, не так привержено конверсии, как некоторые из нас.Другая проблема на личном уровне заключается в том, что они настолько дороги, что обычному человеку могут показаться невероятно сложными. Так что же нам делать? Ответ прост … вроде как.

Нам нужно начать думать о долгосрочной перспективе по этому вопросу, вместо того, чтобы пытаться преобразовать все сразу. Даже если я не смогу преобразовать весь свой источник энергии в солнечные батареи за всю свою жизнь, если я начну сейчас, к тому времени, когда моя дочь станет достаточно взрослой, чтобы занять мой дом, она будет в гораздо лучшем положении, чтобы продолжить процесс. .

Создайте фонд и полностью посвятите его солнечным батареям. Даже если это совсем немного, сохраните. Пусть это вызовет интерес, и посмотрите, сколько вы сможете сэкономить. Как только вы накопите достаточно для ОДНОГО, берите. Установите его. Подумайте, насколько вы будете ближе к тому, чтобы полностью перевести свой дом на солнечную энергию, если она у вас появится.

Вы можете быть единственным домом в вашем районе с солнечной батареей, и вы не только сразу начнете экономить деньги, вам будет о чем поговорить с соседями.И только подумайте: вы можете начать тенденцию к спасению мирового энергетического кризиса.

Действительно ли будущее за солнечными батареями?

Помните, в середине 80-х годов прошлого века солнечная панель была «делом будущего»? Ну… что случилось ?? Так ВСЕ ЕЩЕ, и очень редко можно увидеть их привязанными к домам. Конечно, иногда вы видите один или два дома, в которых есть пара из них, и мы все видели, как они наклеены на знаки остановки, но это все.

По какой-то причине ажиотаж вокруг солнечной батареи утих; и я думаю, что знаю почему. На мой взгляд, я не верю, что правительство действительно ХОЧЕТ чистой энергии. В электроэнергетической, нефтяной и автомобильной отраслях слишком много лоббистов, чтобы заниматься чем-то замечательным, например, возобновляемой энергией. Реальное возобновление нынешнего энергетического кризиса будет стоить миллиарды и миллиарды долларов, и никто не собирается финансировать это в настоящее время; слишком много денег, чтобы их можно было потерять, и слишком многие из богатых рискнули бы своим состояниями.

Решение? Пишите своим конгрессменам, бойкотируйте определенные автомобильные компании и экономьте электроэнергию. Чем больше мы будем делать подобные вещи, тем больше гиганты увидят, что мы серьезно настроены начать крупную революцию в области чистой энергии. Но это потребует огромных усилий с нашей стороны, и мы должны отнестись к этому серьезно. Несколько сотен человек тут и там, выступающих на стойке, никуда не годятся. Нам нужно объединиться и вести борьбу, в которую мы верим. Присоединяйтесь к доскам объявлений, передавайте наши листовки, посещайте митинги и т. Д.И следите за своим голосованием! Мы можем это сделать.

Солнечная панель Введение

Как сделать солнечные панели

Поищите в Google эту фразу, и вы получите примерно 16 миллионов результатов. Правильно: 16 МИЛЛИОНОВ. Так что ответы есть, но большинство из нас по-прежнему тратят сотни и сотни долларов в месяц, чтобы платить крупным электрическим компаниям за то, чтобы они обогревали наши дома за нас. Что-то здесь не так, и я вроде как хочу разглагольствовать об этом.

Помните, когда мы были детьми, солнечные батареи были «самой крутой вещью»? Я делаю. Но что случилось? Почему мы не используем их в качестве основного источника энергии? Они слишком дорогие? (А где же реактивные ранцы?)

Что ж, у меня есть план — цель на пять лет. К 2014 году я планирую получать как минимум половину энергии в моем доме от солнечных батарей. Похоже на скромный план. Я либо куплю их, либо куплю детали и сделаю свои собственные. Знаете, люди уже этим занимаются.Я предполагаю, что мы мало слышим об этом, потому что солнечные панели представляют собой серьезную угрозу для электрических компаний, так же как электромобили представляют огромную проблему для нефтяной промышленности. Но знаете что? Мне все равно. Была жизнь до Big Oil и Big Electric, и, скорее всего, будет жизнь после них.

Может быть, мы все сможем поставить аналогичную реалистичную цель — найти источники чистой возобновляемой энергии в ближайшие десять лет. Я просто думаю, что нам нужно делать это самостоятельно, а не ждать, пока правительство сделает это за нас.Кто со мной?

Самодельные солнечные панели | Как сделать солнечные панели


Преимущества создания собственных солнечных панелей

Изготовление солнечных панелей для вашего дома — популярный вариант для многих, потому что:

  • вы можете исключить посредника, установщика, потенциально сэкономив кучу денег;
  • узнать, как работают солнечные панели и как построить солнечные панели, — это весело и вдохновляет;
  • , который не хотел бы говорить: «Да, я их построил»;
  • вы можете сэкономить деньги и в то же время помочь планете.

Посмотрите обучающее видео ниже, чтобы узнать больше о преимуществах самостоятельной солнечной энергии, а также о том, как установить свои собственные панели дома.

Как начать строительство самодельных солнечных панелей


Хотя я сам не строил солнечные батареи, это тема, которой я интересовался некоторое время. Из того, что я узнал, одно из самых важных — получить хорошее руководство. Хотя хорошее руководство может стоить дороже, оно также может сэкономить вам много денег (и времени) в долгосрочной перспективе.

Существует ТОННА бесплатной информации о строительстве солнечных панелей, которую вы можете найти в Интернете, но наличие руководства позволяет вам очень легко узнать, что вам следует делать.

Если вы решите купить руководство DIY, убедитесь, что они предоставляют гарантию возврата денег на случай, если вы не удовлетворены инструкциями.

Еще 5 основных советов


Еще несколько важных советов, которые я почерпнул при изучении этой темы:

  1. Не покупайте сломанные солнечные элементы — оно того не стоит.
  2. Go качественный на материал основы. Это одна из самых сложных частей для замены, и, учитывая, что ваши солнечные панели должны прослужить 25-40 лет, вы должны быть уверены, что ваш материал основы прослужит так же долго.
  3. Не прыгай слишком быстро . Я знаю, когда ты начинаешь волноваться, это трудно не удержать. Но убедитесь, что вы внимательно прочитали все купленные вами руководства, прежде чем начать.
  4. Обратитесь к профессиональному электрику для выполнения окончательного электромонтажа.Это, вероятно, не будет стоить вам тонны и может сэкономить вам много денег и головную боль. Эта часть может быть сложной, и ее лучше оставить профессионалу, по крайней мере, я так понимаю.
  5. Если вы используете батареи , держите вашу систему заряженной. Если держать батареи заряженными на 50-80%, они продлят срок их службы.

Если вы действительно создали свои собственные солнечные батареи, мне также хотелось бы узнать о вашем опыте в комментариях ниже.

Есть много способов перейти на солнечную энергию. Если это не работает для вас, попробуйте один из многих других способов!

Свяжитесь со мной в Twitter @ zshahan3 — Facebook — StumbleUpon.

Фотография предоставлена: 917press через flickr под лицензией CC. Больше основ солнечной энергии.

Лучшие солнечные панели для вашего дома (Руководство на 2021 год)

Последнее обновление: 16 декабря 2020 г.

Почему солнечные панели в Великобритании — отличный вариант

Солнечные батареи используют один из самых мощных, но бесплатных ресурсов природы : энергию, производимую солнцем.Солнечные панели, также известные как фотоэлектрические системы, используют полупроводниковую технологию, чтобы преобразовывать энергию солнечного света в электричество , которое может бесплатно обеспечивать электроэнергией ваше домохозяйство.

Чтобы помочь вам перейти на солнечную энергию, GreenMatch собрал самую полезную информацию о солнечных панелях, в том числе:

  • Всего цен на солнечных панелей в Великобритании
  • Финансовые стимулы , чтобы помочь вам получить максимальную отдачу от ваших инвестиций
  • Практическая информация об установке Порядок действий и стоимость
  • Солнечная панель Особенности, влияющие на эффективность и лучшие модели из имеющихся

Цены на солнечные панели неуклонно снижались на протяжении многих лет, поскольку эксперты постоянно находили способы сделать компоненты солнечной энергии более эффективными.

Система солнечных панелей мощностью 4 кВт является обычным размером для среднего дома в Великобритании. Его мощность составляет 3400 кВт / ч в год, а его стоимость составляет около £ 6000 . Если вы сравните это со средним годовым потреблением электроэнергии домохозяйством, которое составляет около 3200-4100 кВтч , солнечные панели могут покрыть 83-106% вашей потребности в электроэнергии в идеальных условиях. Однако это зависит от количества солнечных часов и потребления энергии. Более подробную разбивку по сезонности и ежемесячной выработке энергии можно найти ниже.

Кроме того, с помощью таких стимулов, как Smart Export Guarantee (SEG), вы можете даже заработать денег за излишки энергии, экспортируемые обратно в сеть!

Заинтересованы в покупке солнечных батарей?

Если вас интересуют солнечные панели для вашего дома в Великобритании и вы хотите узнать больше о том, как перейти на возобновляемые источники энергии, то GreenMatch здесь, чтобы помочь вам. Просто , заполните необязательную форму вверху этой страницы, и мы скоро свяжемся с вами.Наш сервис простой и бесплатный !

Как работают солнечные панели?

Говоря о солнечных батареях, важно различать два основных типа :

  1. Фотоэлектрические панели , вырабатывающие электроэнергии
  2. Солнечные тепловые панели , используемые для отопления для целей

Лучшие 10 солнечных панелей — Последние технологии 2020 — Обзоры экологически чистой энергии

Литые моноэлементы

Литые моноэлементы , также известные как Квазимонокремниевые элементы , производятся с использованием процесса литья, аналогичного поликристаллическим элементам. Менее энергоемкий процесс литья снижает стоимость производства «моноэлементов» по ​​сравнению с обычными моноэлементами, изготовленными с использованием обычного процесса Чохральского. Литые монопластины менее восприимчивы к борокислородным дефектам и имеют низкую скорость световой деградации (LID), что делает их сопоставимыми по характеристикам и надежности с монокристаллическими ячейками. Литые моноэлементы существуют уже много лет, но только недавно были приняты некоторыми крупными производителями панелей, включая Canadian Solar, Jinko Solar и GCL.

Почему монокристаллические элементы более эффективны?

Неотъемлемые преимущества монокристаллического кремния обусловлены однородной кристаллической структурой, свободной от границ зерен и меньшим количеством примесей, благодаря уникальному производственному процессу Чохральского. Моноэлементы имеют более низкую скорость индуцированной светом деградации (LID), а также немного лучший температурный коэффициент, как подробно объясняется ниже. Для сравнения, поли- или мультикристаллические ячейки имеют очень маленькие, но определенные границы кристаллов, которые могут действовать как мельчайшие барьеры и снижать эффективность.Мутно-кристаллические клетки, как правило, очень надежны и долговечны, но могут быть более подвержены образованию микротрещин после многих лет использования.

Высокотемпературные характеристики

Монокристаллические элементы имеют немного более низкий температурный коэффициент ячейки, что приводит к несколько более высоким характеристикам при повышенных температурах. Температурный коэффициент мощности — это величина потерь мощности при повышении температуры элемента. Все солнечные элементы и панели рассчитаны с использованием стандартных условий испытаний (STC — измерено при 25 ° C) и постепенно снижают выходную мощность по мере увеличения температуры элемента.Обычно температура элемента на 20-35 ° C выше температуры окружающего воздуха, что соответствует снижению выходной мощности на 8-14%.

Сравнение температурного коэффициента мощности — чем ниже, тем эффективнее

  • Поликристаллические ячейки — от 0,4 до 0,43% / ° C

  • Монокристаллические элементы — от 0,35 до 0,40% / °

  • Монокристаллические Ячейки IBC — 0.От 29 до 0,31% / ° C

  • Монокристаллические элементы HJT — от 0,25 до 0,27% / ° C

Как работают солнечные панели

Солнечная энергия работает, улавливая энергию солнца и тихо улавливая энергию солнца и эффективно превращая его в электричество для вашего дома или бизнеса.

Наше солнце — это естественный ядерный реактор. Он выпускает крошечные пакеты энергии, называемые фотонами, которые преодолевают 149,6 миллиона километров от Солнца до Земли примерно за 8.5 минут. Каждый час на нашу планету воздействует достаточно фотонов, чтобы произвести достаточно солнечной энергии, чтобы теоретически удовлетворить глобальные потребности в энергии на целый год.

Solar не вырабатывает электроэнергию постоянно, но она вырабатывает электроэнергию, когда она больше всего нужна. Это касается и в дневное время, и в жаркие солнечные периоды, когда спрос на электроэнергию наиболее высок.

Австралия — одна из самых солнечных стран в мире и идеальное место для работы солнца, особенно в часы пик.

Как работают солнечные панели?

Когда фотоны попадают в солнечный элемент, они выбивают электроны из своих атомов. Если проводники присоединены к положительной и отрицательной сторонам ячейки, она образует электрическую цепь. Когда электроны проходят через такую ​​цепь, они вырабатывают электричество. Несколько ячеек составляют солнечную панель, а несколько панелей (модулей) могут быть соединены вместе, чтобы сформировать солнечную батарею. Чем больше панелей вы сможете развернуть, тем больше энергии вы можете ожидать.

Из чего сделаны солнечные панели?

Фотоэлектрические (PV) солнечные панели состоят из множества солнечных элементов в различных типах стеклянной упаковки. Солнечные элементы сделаны из кремния, как и полупроводники. Они состоят из положительного и отрицательного слоев, которые вместе создают электрическое поле, как в батарее. Солнечные панели SunPower также покрыты проводящими клеями аэрокосмического класса и запатентованными герметиками для защиты этих элементов и сведения к минимуму деградации под воздействием окружающей среды.

Как солнечные батареи вырабатывают электричество?

PV солнечные панели вырабатывают электроэнергию постоянного тока (DC).При использовании электричества постоянного тока электроны движутся по цепи в одном направлении. В этом примере показана батарея, питающая лампочку. Электроны движутся с отрицательной стороны батареи через лампу и возвращаются к положительной стороне батареи.

При использовании электричества переменного тока (переменного тока) электроны толкаются и притягиваются, периодически меняя направление, подобно цилиндру двигателя автомобиля. Генераторы создают электричество переменного тока, когда катушка с проволокой вращается рядом с магнитом. Многие различные источники энергии могут «повернуть ручку» этого генератора, например, газ или дизельное топливо, гидроэлектроэнергия, атомная энергия, уголь, ветер или солнце.

Электроэнергия переменного тока

используется в электрических сетях Австралии, которые работают по всей стране и питают тысячи домов. Однако солнечные панели создают электричество постоянного тока. Как получить электроэнергию постоянного тока в сеть переменного тока? Используем инвертор.

Для чего нужен солнечный инвертор?

Солнечный инвертор берет электричество постоянного тока от солнечной батареи и использует его для создания электричества переменного тока. Инверторы подобны мозгу системы. Наряду с преобразованием постоянного тока в переменный, они также обеспечивают защиту от замыканий на землю и статистику системы, включая напряжение и ток в цепях переменного и постоянного тока, выработку энергии и отслеживание точки максимальной мощности.

Центральные инверторы с самого начала доминировали в солнечной промышленности. Внедрение микроинверторов — один из крупнейших технологических сдвигов в фотоэлектрической индустрии. Микроинверторы оптимизируются для каждой отдельной солнечной панели, а не для всей солнечной системы, как это делают центральные инверторы. Это позволяет каждой солнечной панели работать с максимальным потенциалом. Когда используется центральный инвертор, проблема с одной солнечной панелью (возможно, она находится в тени или загрязнена) может снизить производительность всей солнечной батареи.Другой вариант, который следует рассмотреть, — это использовать микроинверторы на каждой из панелей. Если одна солнечная панель неисправна, остальная часть солнечной батареи по-прежнему работает эффективно.

Как работает система солнечных батарей?

Вот пример того, как работает домашняя солнечная энергетическая установка. Сначала солнечный свет попадает на солнечную батарею на крыше. Панели преобразуют энергию в постоянный ток, который течет к инвертору. Инвертор преобразует электричество из постоянного тока в переменный, который затем можно использовать для питания своего дома. Это красиво, просто и чисто, и с каждым днем ​​становится все более эффективным и доступным.

Однако что произойдет, если вы не дома, чтобы использовать электричество, которое вырабатывают солнечные батареи каждый солнечный день? А что происходит ночью, когда ваша солнечная система не вырабатывает электроэнергию в реальном времени? Не волнуйтесь, вы также можете воспользоваться системой под названием «льготные тарифы» в зависимости от вашего штата и розничного продавца электроэнергии.

Типичная фотоэлектрическая система, подключенная к сети, в часы пик в дневное время часто производит больше энергии, чем нужно одному потребителю, поэтому избыточная энергия возвращается в сеть для использования в другом месте.Заказчик получает кредит за произведенную избыточную энергию и может использовать этот кредит для получения энергии из обычной сети в ночное время или в пасмурные дни. «Льготный тариф» — это ставка, по которой вы фактически «продаете» свою солнечную энергию обратно в сеть.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *