Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Как работает газогенератор на дровах: «Газгены». Автомобили на дровах | Читать статьи по истории РФ для школьников и студентов

«Газгены». Автомобили на дровах | Читать статьи по истории РФ для школьников и студентов

В Советском Союзе грузовики с газогенераторными двигателями во время войны взяли на себя львиную долю работы в тылу

Сегодня автомобили на дровах, то есть оборудованные газогенераторным двигателем, кажутся анахронизмом. Но, возможно, в будущем они вновь будут востребованы из-за постепенного исчерпания запасов углеводородов. Иными словами, по той же причине, по которой «газгены» в середине ХХ века стали настоящим спасением для воюющих стран. Почти весь бензин в годы войны доставался танкам, самолетам и военным грузовикам, а в тылу пригодились автомобили, которые можно было «заправлять» чем угодно – от угольных брикетов до шишек и от сосновых чурок до соломы.

Даешь газогенераторы!

Что такое газогенератор? Если говорить грубо, то это специальная печь для сжигания, «труба» которой через сложную систему охладителей и фильтров подсоединена к обычному двигателю внутреннего сгорания. В печи может гореть что угодно, практически любая органика, лишь бы при это выделялся оксид углерода, который потом в охладителях насыщается водородом.

Такую смесь называют генераторным газом, и его вполне можно использовать вместо бензина или солярки. Причем для этого не нужно даже серьезно переделывать двигатель, достаточно заменить в нем лишь некоторые принципиальные детали, например, установить смеситель вместо карбюратора, увеличить степень сжатия. А можно обойтись и без доработки, хотя в таком случае мощность мотора заметно будет уступать тому, что работает с использованием бензина или солярки. Весь вопрос в том, есть ли этот бензин и солярка в наличии и как близко.

В Советском Союзе работы над установкой газогенераторов на автомобили начались практически одновременно с Европой – в 1923 году. В этом году патент на собственную газогенераторную установку получил ленинградский профессор В.С. Наумов – человек, который позднее стал одним из наиболее активных сторонников развития этого вида топлива. В 1927 году газогенератор его конструкции установили на итальянский грузовик-полуторатонник «Фиат» и убедились, что схема совершенно работоспособна. А еще через год по инициативе Наумова был организован первый в стране пробег газогенераторых автомобилей. В нем участвовали тот самый «Фиат» и французский «Сомюа» грузоподъемностью 3,5 т с газогенератором «Рекс». Оба автомобиля проехали по маршруту Ленинград – Москва и доказали, что газогенераторные двигатели вполне пригодны для массовой установки на автомобили.

В 1934 году советское Общество содействия развитию автомобилизма и улучшению дорог «Автодор» в честь своего семилетия организовало новый автопробег, в котором участвовало уже семь газогенераторных автомобилей. Главной целью акции заявлялась проверка работоспособности отечественных газогенераторов. Условия для этого оказались самыми жесткими: из Москвы в Ленинград все машины ехали под проливным дождем, а обратно – в снегу и тумане, по обледенелым дорогам. Доехали все, что еще раз подтвердило эффективность и работоспособность газогенераторов. А через год советское правительство принимает постановление «О переводе занятого на лесовывозке автомобильно-тракторного парка на древесное топливо». Решение было очевидным: лесоразработки шли в труднодоступных районах, и стоимость доставки туда обычного бензина была экономически неоправданной.

Первые серийные

Чем яснее становился гром неизбежной новой мировой войны, тем большее внимание в СССР получала газогенераторная тема. 28 февраля 1938 года появляется специальное постановление Совнаркома о производстве газогенераторных тракторов и автомобилей в 1938-1940 годах. А в июле стартовал очередной, но уже куда более масштабный газогенераторный автопробег по маршруту Москва – Пенза – Куйбышев – Казань – Уфа – Магнитогорск – Челябинск – Омск – Петропавловск – Свердловск – Пермь – Киров – Горький – Ярославль – Вологда – Ленинград – Псков – Витебск – Минск – Гомель – Чернигов – Киев – Курск – Орел – Тула – Москва. В нем участвовали 17 автомобилей, в том числе 12 с газовыми генераторами (шесть «ЗИСов», пять ГАЗ-АА и один ЗИС-8) и пять с обычными двигателями на бензине. Причем «газгены» шли и на дровах, и на угле, а кое-где даже на соломенных брикетах! За 58 дней они преодолели почти 11 тысяч километров и дошли до финиша без аварий и серьезных поломок. Это послужило отличной рекламой газогенераторным автомобилям, в способностях которых теперь уже нельзя было сомневаться.

Грузовики ЗИС-5 и ГАЗ-АА с газогенераторными установками, участвовавшие в пробеге, были уже не опытными образцами, а вполне серийной продукцией. Газогенераторные «ЗИСы» (модель ЗИС-13) начали выпускать в Москве еще в 1936 году. Базой для него послужил удлиненный вариант классического ЗИС-5 – так называемый ЗИС-14, спрос на который был гораздо ниже, чем на «пятерку». На него ставили газогенератор модели Александра Пельтцера (брата знаменитой актрисы Татьяны Пельтцер), и получалась машина, которая могла ездить на дровах. За два года удалось собрать всего 900 автомобилей, а потом на конвейере появилась гораздо более знаменитая модель – ЗИС-21. Она представляла собой тот же ЗИС-5, но с газогенератором НАТИ-Г14, которое производил столичный завод «Комета».

У газогенераторных грузовиков было несколько особенностей, которые делали их менее удобными по сравнению с базовыми бензиновыми моделями. За счет размещения газогенераторной установки за кабиной уменьшался кузов, что вело к снижению грузоподъемности. Кроме того, основная колонна газогенератора ставилась справа, со стороны пассажирской двери, и эта дверь в лучшем случае становилась в полтора раза уже, а то и вообще убиралась, и пассажиру приходилось пробираться на свое место со стороны водительского. Да и средняя скорость у «газгенов» была на четверть, а то и на треть ниже, чем у базовой модели. И все равно эти машины пользовались большим спросом, особенно в отдаленных районах, куда было трудно доставлять бензин, но где всегда с лихвой хватало древесины. Потому ЗИС-21 выпустили большой серией: до осени 1941 года, пока завод не эвакуировали в Ульяновск и Миасс, в Москве собрали 15 445 экземпляров.

На долю именно этих машин выпала львиная доля тяжести работы в дальнем тылу, когда их бензиновых собратьев стали «призывать» в действующую армию. Как и прежде, они трудились на лесозаготовках, а вдобавок взяли на себя значительный объем тыловых перевозок. Да и не только тыловых: например, в испытывавшем дефицит бензина блокадном Ленинграде ими пользовались и гражданские власти, и военные, и даже по Дороге жизни ездило немало газогенераторных автомобилей.

Были это далеко не только московские ЗИС-21. С 1939 года на Горьковском автозаводе наладили выпуск своей газогенераторной модели – ГАЗ-42. Классической «полуторке» эта машина уступала и в грузоподъемности (1,2 тонны), и в скорости (максимум 50 км/ч), но такие же потери нес по сравнению с базовой моделью и ЗИС-21. Зато «заправлять» эти автомобили можно было практически чем угодно, хотя прежде всего в ход шла все та же сосновая чурка. Кроме нее, как выяснилось, очень хорошо годились дубовые, березовые, буковые и ясеневые дрова – главное, чтобы они были сухими и без гнили. Годились также шишки, опилки, кора, солома, торф, которые перед использованием нужно было лишь спрессовать в удобные для использования брикеты.

Правда, дозаправка газогенераторным машинам требовалась очень часто, практически каждые 60-80 километров, и взятый с собой запас твердого топлива отнимал существенную часть места в кузове. Но все равно это позволяло экономить бензин, который так был нужен на фронте. К тому же за Уралом на накатанных трассах придумали свой способ освободиться от запаса чурок. Их просто начали складывать в специальные поленницы по сторонам от накатанных трасс. Каждая такая «заправка» приходилась как раз на те самые полсотни километров; кстати, их и сейчас еще можно иногда встретить в глухих местах Сибири и Дальнего Востока.

Послевоенные «газгены»

Производство ГАЗ-42 завершили в 1946 году, выпустив в общей сложности 33 840 автомобилей. И в том же году на миасском Уральском автомобильном заводе имени Сталина – УралАЗе – возобновили сборку газогенераторных ЗИС-21. За основу был взят знаменитый «Захар Иваныч» – военная модификация ЗИС-5В, поэтому уральскую модель стали именовать ЗИС-21А (хотя в документах самого завода она частенько значилась под прежним «московским» индексом).

Наладить выпуск этих машин пришлось, поскольку после Победы страна по-прежнему испытывала дефицит топлива. За годы войны добыча нефти заметно снизилась; например, только в Бакинском районе она упала в два раза. Многие скважины в Закавказье и на Северном Кавказе пришлось забить, поскольку заниматься их разработкой в годы войны было некогда, да и опасно, плюс закавказскую нефть попросту невозможно было вывезти из-за близко подошедшего фронта. Надо учесть и такой фактор: после войны поставки нефтепродуктов, прежде всего авиационного топлива, по ленд-лизу быстро прекратились, а развивающаяся реактивная авиация требовала на порядки большего объема топлива.

Тогда-то на помощь вновь пришли газогенераторные автомобили, теперь уже уральского производства. С 1946-го по 1952-й годы УралАЗ выпускал модель ЗИС-21А, и с заводского конвейера сошли 18 620 таких автомобилей. В том же 1952 году на смену этой модели пришла более современная – УралЗИС-352. Главной его особенностью стала новая газогенераторная установка, которая могла сжигать вдвое более влажную, чем раньше, древесину. Если прежде для «газгенов» годились чурки влажностью не более 22%, то для УралЗИС-352 годилось и топливо с сорокапроцентной влажностью! Это было особенно актуально, поскольку основными районами, где работали газогенераторные автомобили, по-прежнему были Север и Дальний Восток.

«Триста пятьдесят второй» стал последним серийным газогенераторным автомобилем в СССР. Их выпуск прекратили в 1956 году, собрав 15 303 экземпляра. Но еще как минимум десяток лет машины с характерными двумя колоннами за кабиной можно было встретить практически по всей стране, а за Уралом они встречались и до конца 1970-х годов. Причина была той же, что и прежде: доставка бензина в отдаленные районы была затруднена, а деревянных чурок для газогенератора можно было нарубить и в ближайшем лесу.

Авто на дровах – что такое машины-газгены: фото, обзор

С одной стороны – такие вершины технологий, как водородные автомобили, топливные элементы и банальные электромобили. А с другой – машины на дровах, статьи о которых собирают у нас сотни тысяч просмотров. Что это за чудо?

Вероятно, мы удивим многих, но все равно скажем: автомобиль на дровах – это не то же что паровоз. То есть в нем нет парового котла, колосников, золотников и прочих атрибутов паровой машины – той самой, с семью процентами КПД.

В трудные времена в странах с развитым автопромом серийно выпускались машины, работавшие буквально на дровах. На фото ГАЗ-42 и ЗИС-21

Читайте также: ГБО на авто из США: можно ли и как сложно

Потому что еще в 1930-е годы конструкторы научились “кормить” дровами обычные автомобили со всем привычными двигателями внутреннего сгорания. Нужно лишь оборудовать серийную бензиновую машину дополнительным оборудованием. Да, вы правильно поняли: любой бензиновый автомобиль можно превратить в “дровяной”. Поговорим об этом, отметив, что кроме дров, подобные системы работают на каменном, буром и древесном угле, торфе и даже на шишках хвойных деревьев.

Современный газген: Chevrolet El Camino 5,7 л, 350 л.с., АКП, 40 кг дров на 100 км, 200 км на одной заправке, скорость 120 км/ч, снаряженная масса 2 300 кг, ЭБУ двигателя, лямбда-зонд, автоматический розжиг генератора, ЕВРО-4

Как устроен газген

Автомобили на дровах инженеры называют газогенераторными – потому что они имеют на борту газогенератор. Это главное сооружение газгена, и оно использует процесс пиролиза, известный также, например, по пиролизным котлам отопления. В рабочей камере генератора в условиях неполного сгорания дрова выделяют смесь горючих газов, среди которых основные – СО (да, тот самый угарный газ) и водород H

2. Вот этот микс, после определенных подготовительных процедур (о них ниже), и правит двигателю за топливо.

В комплект газогенератора входит несколько элементов, они объемные, но несложные по конструкции

Кроме газогенератора, машине на дровах нужно еще несколько устройств, причем, к сожалению, тоже весьма громоздких. Во-первых, газ, который выдает генератор, загрязнен смолами и сажей – их нужно фильтровать последовательно в двух фильтрах, грубой и тонкой очистки. Во-вторых, выработанный газ слишком горячий, и его нужно охладить: если мы применим здесь слово интеркулер, современному автомобилисту станет понятным, о чем идет речь.

Читайте также: В Киеве установили ГБО на Bentley Continental Flying Spur

Кроме того, есть еще несколько мелких компонентов как то вентиляторы надува, смеситель, трубки, шланги и немного клапанов.

Компоненты немецкого газогенератора Zanker выпуска 1945 г. для 3-тонного грузовика

Преимущества и недостатки газогенераторной установки

Плюсы
  • Доступное топливо
  • Возможность установки на любое бензиновое авто
  • Несложная конструкция оборудования
Минусы
  • Громоздкое оборудование
  • Потребность ежедневного обслуживания
  • Дрова требуют подготовки

Несмотря на впечатляющие габариты, все компоненты газогенераторной топливной системы просты конструктивно и стоят недорого – как при промышленном серийном производстве, так и при искусственном построении где-то в собственном сарае. Вероятно, именно поэтому сообщения о вновь созданных автомобилях «на дровах» довольно часто появляются в прессе и в интернете.

Газген самостоятельного изготовления для УАЗа получился может и громоздким, но вполне эффективным

Но по сравнению с современными бензиновыми и дизельными машинами газген имеет явные недостатки, причем не только те, которые видны невооруженным глазом.

Прежде всего, это топливо: дрова должны быть определенного калибра. Например в серийный генератор ЗИС-21 нужно было загружать дровяные кубики размером 50х60х60 мм. Отклонение размеров допускалось не более 20%, иначе древесина в реакторе будет использоваться неэффективно, а в газе будет содержаться слишком много примесей.

Кроме того, имеет значение влажность дров. Скажем, у упомянутой системы она должна была быть не более 20%, то есть дрова нужно было предварительно сушить. Правда, со временем конструкторы пристроили принудительную подачу воздуха и лимит влажности древесины повысился до 40%.

Учитывая вес и габариты генератора древесного газа, его целесообразнее всего устанавливать на грузовики. На фото ЗИС-21 образца 1930-40-х гг.

Также топливную камеру, фильтры очистки газа и охладитель нужно периодически очищать от сажи и смол, освобождать от конденсата. Некоторые операции надо проводить ежедневно, некоторые – раз в несколько дней.

Некоторые компоненты газогенераторной установки при современных технологиях можно сделать более компактными и более эффективными

Вероятно, при современных технологиях часть недостатков автомобильных газогенераторов можно было бы устранить или частично уменьшить. Но – к счастью или на беду – сегодня мы еще обходимся нефтяными топливами, поэтому вопрос перехода автомобильного парка на дрова не стоит.

Читайте также: “Волга” на дровах: украинец самостоятельно переоборудовал автомобиль

Генератор на дровах на заднем дворе – Новости Матери-Земли

Иногда трудно решить, что является большим финансовым бременем: расходы на эксплуатацию автомобиля или расходы на обеспечение домохозяйства электроэнергией и теплом. Таким образом, чтобы облегчить нагрузку в обоих случаях, люди из исследовательского центра MOTHER EARTH NEWS провели последние несколько месяцев, разрабатывая и тестируя различные системы, которые используют недорогие, а иногда даже бесплатные древесные отходы в качестве замены дорогостоящим. ископаемое топливо.

В статье «Газовый грузовик на дровах: дорожная энергия от газификации древесины» мы подробно рассказали, как сделать газификатор на дровах, достаточно маленький, чтобы привести в действие автомобиль или пикап. Стоимость деталей и материалов составляет около 125 долларов. В этом отчете мы также упомянули, что находимся в процессе адаптации технологии к стационарной генерирующей системе. Что ж, всего за несколько дней до крайнего срока для этого выпуска наша исследовательская группа нанесла последние штрихи на этот дровяной генератор. И хотя у нас еще не было возможности посвятить устройству достаточное количество часов работы, чтобы убедить нас в том, что конструкция настолько хороша, насколько мы можем ее сделать, наши первоначальные испытания, похоже, показывают, что она будет работать так же хорошо, как и любая обычная. резервный генератор на топливе аналогичной мощности в

дополнение к обеспечению достаточного количества горячей воды для обогрева дома!

С самого начала этого проекта мы хотели не только построить рабочий демонстрационный образец, который позволил бы посетителям нашей Эко-деревни увидеть, а в некоторых случаях и повторить, то, что мы сделали, но также хотели создать добросовестно функционирующий источник переменного тока, который полностью снабжал бы нашу ремонтную мастерскую, тем самым уменьшая нашу зависимость от услуг местной коммунальной службы.

Как оказалось, мы смогли достичь поставленных целей… и сделать это, используя недорогие детали из металлолома или свалки, которые мы соединили с 10-киловаттным генератором переменного тока 120/240 вольт, первоначально приобретенным для гидроэлектростанции. (См. «Материнская гидроэлектростанция». Поскольку напор и поток на нашем гидроузле имеют потенциал немногим более 2 кВт, мы решили заменить там генератор переменного тока слишком большого размера более подходящим генератором переменного тока мощностью 2,5 кВт, что позволило для использования с древесно-газовой установкой доступен агрегат большего размера.)

Газификаторы, конденсаторы и фильтры

Система производства электроэнергии из металлолома на удивление проста. Для начала вместо того, чтобы использовать только один газификатор, мы решили использовать два , подключенных независимо друг от друга, чтобы двигатель работал без перебоев. (Дополнительным преимуществом является то, что эта установка также позволяет нам чистить или обслуживать одну камеру, в то время как другая поддерживает работу установки.

) А поскольку в стационарном режиме заполненные древесиной резервуары не подвержены вибрации и движению, они бы при установке на транспортное средство, мы пошли дальше и установили электромеханический встряхиватель решетки (сделанный из двигателя автомобильного стеклоочистителя) в каждой топке, чтобы предотвратить накопление остатков топлива и остановить поток горючего «дымного» топлива. производится газификаторами.

Когда пар покидает «используемый» блок, он попадает прямо в десятифутовый, слегка наклоненный горизонтальный конденсатор, который [1] удаляет большое количество несгораемого водяного пара и некоторый остаток, и [2] охлаждает и, таким образом, уплотняет топливный заряд, делая его более мощным. Эта «охлаждающая камера» представляет собой не что иное, как ряд трубок, заключенных — все, кроме их концов — в «рубашку» трубопровода, которая заполнена водой и подключена к системе охлаждения двигателя.

После прохождения через конденсатор концентрированные газы попадают в вертикальный фильтр, который улавливает все оставшиеся твердые частицы в слоях плетеной нити и предотвращают попадание потенциального обратного пламени в остальную часть системы с помощью перфорированных ловушек как на входе, так и на выходе. Опять же, и конденсатор, и фильтр были изготовлены в двух экземплярах, чтобы были две отдельные и полные системы производства топлива, каждая из которых была подключена к общей подающей трубе, ведущей непосредственно к двигателю.

Силовая установка, генератор переменного тока и регулятор скорости

При выборе двигателя для нашего завода мы учитывали четыре фактора: [1] мощность и крутящий момент при заданных оборотах, [2] рабочий объем, [3] доступность и [4] стоимость.

Из наших грубых расчетов мы пришли к выводу, что после учета потерь эффективности генератору мощностью 10 кВт для эффективной работы потребуется около 22 лошадиных сил. Однако, поскольку мощность является функцией частоты вращения двигателя, было важно выбрать силовую установку, которая развивала бы свои «лошади» в диапазоне средних оборотов, а не на максимальной скорости, поскольку высокооборотный агрегат страдал бы от плохой экономии топлива и укороченный срок жизни. Мы также должны были принять во внимание тот факт, что двигатель, работающий на древесном топливе, развивает только от 50 до 65 % своей 9-кратной мощности.

0005 с номинальной мощностью , и что медленно горящий газ лучше работает с конструкцией с длинным ходом, а не с коротким ходом.

Объем двигателя является еще одним важным фактором. Очевидно, что огромный V-8 потреблял бы больше «дыма», чем требует скромная четырехцилиндровая машина. И, в интересах экономии, мы не видели смысла в использовании слишком большого двигателя для выполнения относительно небольшой задачи по обеспечению одного здания электричеством и теплом.

Также важны доступность и стоимость. Мы решили, что лучше использовать недорогой утилизированный двигатель, близкий к нашим потребностям, чем покупать идеально подходящий, но дорогостоящий двигатель 9.0005 новая силовая установка .

К счастью, наш выбор оказался удачным. Поиск на местной свалке выявил (за 75 долларов) четырехцилиндровый двигатель Pontiac Tempest 1961 года выпуска. Это длинноходная модель объемом 195 кубических дюймов, которая фактически представляет собой правую половину двигателя V-8 General Motors. Мы оснастили блок поршнями с соотношением сторон 11:1 и распределительным валом с малым перекрытием, затем установили самодельную систему карбюратора, аналогичную той, что установлена ​​на нашем пикапе, работающем на древесном топливе, и немного увеличили угол опережения зажигания. (Эти модификации были сделаны в экспериментальных целях. Система, безусловно, вполне адекватно работала бы с «коробочным» двигателем.) Мы также заменили обычный выпускной коллектор морским агрегатом с водяным охлаждением и построили водяную рубашку вокруг открытой выхлопной трубы в для извлечения отработанного тепла для использования в системе хранения тепла.

В нынешнем состоянии двигатель производит на больше, чем на мощности при оптимальной частоте вращения генератора, которая составляет 1800 об/мин, чтобы эффективно выполнять свою работу. Насколько мы можем судить, крепкий маленький четырехцилиндровый двигатель, изначально рассчитанный на 110 л. к генератору со скоростью 1800 оборотов в минуту (и это также скорость, при которой силовая установка развивает свой максимальный крутящий момент). Кроме того, эти обстоятельства позволяют нам использовать экономичную муфту с прямым приводом, а не более сложную и потребляющую энергию понижающую систему передачи для установки.

Сама генераторная установка представляет собой стандартный генератор переменного тока Kamag 14 с автовозбуждением и непрерывной мощностью 10 кВт. Он обеспечивает либо одну 240-вольтовую, либо две 120-вольтовые цепи с 60 циклами и предназначен для включения при напряжении 210 вольт, чтобы установка могла выйти на рабочую скорость без нагрузки нагрузки. Кроме того, он включает в себя регулятор превышения скорости, который отключает агрегат при напряжении 270 В.

Поскольку изменяющиеся требования к нагрузке напрямую влияют на скорость вращения двигателя и генератора переменного тока и, таким образом, влияют на циклы мощности, нам пришлось полагаться на контроль скорости, чтобы постоянно поддерживать 60 циклов. Но вместо того, чтобы использовать шкив переменной ширины, который изначально поставлялся с генератором, мы использовали только его датчик скорости и серводвигатель, а затем подключили последний компонент непосредственно к дроссельной заслонке двигателя. Эта компоновка гораздо менее громоздка и сложна, чем «зажим шкива», хотя нам потребуется провести гораздо больше испытаний и, возможно, внести некоторые изменения, прежде чем мы сможем полностью поручиться за ее эффективность.

Когенерационная система обеспечивает тепло

Помимо производства электроэнергии для нашей ремонтной мастерской, система также предназначена для обеспечения этого строения теплом. Хотите верьте, хотите нет, но только около 90 005 одной трети 90 006 энергии данного топлива совершает какую-либо полезную работу, когда оно сгорает в двигателе. Остальное обычно тратится впустую — в виде тепла — когда оно выбрасывается из выхлопной трубы или вытягивается из радиатора. Таким образом, чтобы воспользоваться этим упущенным ресурсом, мы направили систему охлаждения силовой установки вместе с «рубашкой», которая окружает его выпускной коллектор, в 15-галлонный «замкнутый контур»… который, в свою очередь, сбрасывает свою тепловую энергию в 500-галлонный галлонный резервуар для хранения, который через насос и линию 1 1/2 дюйма соединен со вторым контейнером такого же объема.

Для наших летних демонстраций мы подключили небольшой водонагреватель к первичному контуру от двигателя. Однако осенью мы планируем расширить это до полномасштабной гидравлической системы, установив плинтусные нагреватели в конструкции площадью 1200 квадратных футов, которые должны в полной мере использовать воду с температурой 170 ° F, которую обеспечивает двигатель.

И это еще не все!

Наш эксперимент тоже не закончится . Как только мы будем полностью удовлетворены той частью нашей установки, которая производит электричество, мы собираемся прикрутить воздушный компрессор к кронштейну для принадлежностей в передней части двигателя, обвязать его ремнем и запустить пневматическую линию в подземный резервуар для хранения воздуха рядом с магазином. Прохладная земля поможет сконденсировать любую влагу, а сжатую «атмосферу» можно будет использовать для привода инструментов или распыления краски.

На самом деле, когда дело доходит до придумывания новых задач для нашего генератора, мы ограничены только нашим воображением. Кажется, что в двигателе достаточно избыточной мощности, чтобы мы могли работать даже с автомобильным компрессором кондиционера, который должен охлаждать небольшой дом. По крайней мере, один из наших исследователей считает, что можно разработать механизм измельчения древесины/шнековой подачи, приводимый в действие коленчатым валом двигателя, который мог бы превращать большие куски дерева в куски размером с укус и подавать их в газообразующую установку. камеры!

Во всяком случае, мы считаем, что в ходе нашего мелкомасштабного исследования мы сделали ряд заслуживающих внимания открытий, не последним из которых является тот факт, что потребности дома в электричестве могут удовлетворяться за счет газификации древесины. Счет за нашу лилипутскую утилиту, не считая работы, составил примерно 6000 долларов, включая ее «жилье», состоящее из плиты и защитной крыши. Конечно, эту стоимость можно было бы существенно снизить, если бы использовался бывший в употреблении генератор переменного тока и немодифицированный двигатель. И не нужно очень острого карандаша, чтобы сообразить, что домохозяйство или ферма, которые тратят примерно 1500 долларов в год на покупную энергию (во многих областях это считалось бы скромная цифра ) должен будет работать с автономной системой всего четыре года — при условии, что топливо будет металлоломом — чтобы окупить инвестиции.

Но мы еще ни в коем случае не закончили. Следите за будущими выпусками, чтобы получать дополнительные отчеты о нашей системе когенерации, потому что мы будем информировать вас о нашем прогрессе по мере продвижения вперед.


Первоначально опубликовано как «УТИЛИТА НА ЗАДНЕМ Усадьбе» в выпуске MOTHER EARTH NEWS за июль/август 1981 года.

Детали конструкции генератора древесного газа

Примечание об обновлении: 11 января 2009 г.

Если вы заинтересованы в создании газогенератора, обратите внимание, что, по нашему мнению, лучший способ начать работу — это набор для экспериментов с газогенератором, созданный Джимом Мейсоном из Allpowerlabs. Он содержит множество инновационных функций, и именно с ним мы сейчас работаем. Информация о том, что мы делаем с нашим GEK, есть, начиная с 68-го тома нашего информационного бюллетеня/блога.

Детали конструкции генератора древесного газа

вместе с обзором реакций
, происходящих на каждой стадии процесса


&nbsp 
98 8 8 Конструкция, которую мы строим, называется «генератор с нисходящей тягой», и с точки зрения конструкции ее можно описать как резервуар внутри резервуара внутри резервуара. Ключевая цель на этом этапе проекта — включить как можно больше материалов «с полки» или, точнее, «из кучи отходов». Нет ничего плохого в том, чтобы создавать компоненты с нуля, если вам это нужно, но ни один проект такого уровня сложности, скорее всего, не обеспечит оптимальную производительность в исходной форме, поэтому первая цель — получить первоначальный блок и работать как можно быстрее и дешевле. , насколько это возможно, а затем «кайдзен» оттуда. [ кайдзен — достижение совершенства дизайна за счет небольших постепенных улучшений] Для внешней оболочки мы используем 55-галлонную бочку с открытым верхом. Внутри него находится еще одна бочка на 55 галлонов, которая была вырезана, сжата и скреплена вместе, чтобы создать внутреннюю стенку, которая примерно на два дюйма меньше в диаметре, чем внешняя бочка. Внутренняя часть генератора представляет собой теплообменник, в котором тепло выхлопных газов испаряет пиролитический газ из древесной щепы. Одна из целей конструкции состоит в том, чтобы удерживать большую часть тепла внутри генератора, управляя начальной пиролитической фазой процесса конверсии, вместо того, чтобы нагревать окружающую среду вокруг генератора. [ пиролиз — расщепление соединения путем его нагревания в анаэробной атмосфере.] [ анаэробный — относящийся к бескислородной среде.] Чтобы сохранить тепло реакции в сердцевине газогенератора, пространство между двумя барабанами будет заполнено литой огнеупорной изоляцией.
Самый внутренний барабан представляет собой барабан гражданской обороны на 40 галлонов. Это часть резервуара, которая заполняется щепой. Этот резервуар образует «верхнюю зону» генератора — место, где происходит пиролиз исходной древесины. То, что вы видите на картинке, — это крышка для бочки с открытым верхом на 55 галлонов, в которой вырезано круглое отверстие как раз подходящего размера, чтобы вместить внутреннюю бочку на 40 галлонов. По завершении этот внутренний реактор будет расположен внутри изолированной бочки емкостью 55 галлонов, а стандартный зажим для бочки обеспечит окончательное уплотнение. Пиролитический газ представляет собой смесь органических соединений, включая метан, метанол, этан, этанол, метилэтиловый эфир, а также множество смол и более тяжелых соединений, образующихся при разложении сахаров, целлюлозы и лигнинов в древесине под действием тепла. Этот газ будет гореть, но это низкокачественное топливо, которое быстро засорит ваши трубы, так как вода и смолы в газе конденсируются. Очень запутанно. Очень неудовлетворительно. Вот почему внутри генератора происходят еще две операции: окисление и восстановление. Первый этап процесса включает в себя варку древесины для производства пиролитического газа, процесс, который начинается примерно при 451 ° F и практически завершается примерно при 800 ° F. То, что у вас осталось, это древесный уголь. В большинстве автомобильных систем древесного газа, использовавшихся во время Второй мировой войны, вместо необработанной древесины использовался древесный уголь, чтобы можно было пропустить пиролитическую фазу и минимизировать размер генератора. Чтобы сделать все это в одном генераторе, требуется более крупный и сложный блок, и если у вас есть место, то это путь, и идти дальше, так как вы получите больше энергии из фунта дерева, если будете сжигать и древесный уголь, и дрова. пиролитические газы. К тому времени, когда древесина спускается на дно 40-галлонной бочки, она превращается в древесный уголь; вот когда вещи действительно начинают нагреваться. Секция генератора непосредственно под пиролитической камерой представляет собой очаг окисления. Здесь часть древесного угля сжигается для выработки тепла, которое управляет процессом.
кольцо пода, показано в перевернутом виде
Древесный уголь сгорает на воздухе при температуре от 2000 °F до 3000 °F, выделяя углекислый газ [C02] и монооксид углерода [CO] в зависимости от того, сколько кислорода доступно. [ воздух — 20% активная смесь кислорода и инертных газов. Ключевым моментом здесь является то, что для нагревания газа от комнатной температуры до температуры горения требуется энергия. Если вы используете воздух в качестве источника кислорода, вам нужно нагреть четыре фунта инертного газа (то есть азота), чтобы «сжечь» фунт кислорода. Образующийся древесный газ будет разбавлен присутствием инертного азота и, соответственно, будет иметь более низкое содержание энергии, чем если бы в качестве окислителя использовался чистый кислород. ] Именно здесь, в этой средней зоне, зоне очага, мы будем генерировать тепло, необходимое для запуска химии; пиролиз выше, а затем восстановление ниже. [ эндотермическая — химическая реакция, для протекания которой требуется непрерывный подвод тепла.] [ экзотермический — химическая реакция, при протекании которой выделяется тепло.] Для этой начальной модели я построил очаг из обода покрышки мобильного дома. Выяснилось, что внешний край чуть больше внутренней кромки 40-галлонного барабана для компакт-дисков. Все, что потребовалось, чтобы закрепить его на месте, — это несколько металлических винтов, удерживающих его по центру. Как упоминалось ранее, этот генератор древесного газа имеет конструкцию с нисходящим потоком. Воздух не вдувается в генератор; скорее, воздух проходит через генератор за счет разрежения, создаваемого двигателем автомобиля. По сути, двигатель внутреннего сгорания работает как вакуумный насос. Когда поршни опускаются, они создают вакуум, который, в свою очередь, всасывает воздух и топливо в цилиндры через впускной коллектор двигателя. При работе на древесном газе двигатель всасывает топливный газ, смесь h3, CO и инертного N2 из генератора во впускной коллектор, а оттуда в двигатель. Когда двигатель создает вакуум в генераторе, воздух и перегретый пар всасываются в кольцо топки через 2-дюймовую муфту, приваренную к боковой части топки. обод; эта камера распределяет воздушно-паровую смесь по подовому кольцу. Кольцо очага имеет дюжину 3/8-дюймовых отверстий, просверленных в нижней части камеры, через которые поступающий газ всасывается в горящий уголь.
В этот момент происходит первичная экзотермическая реакция: 1)      C + O2   =>  CO2 + тепло Кроме того, происходят две экзотермические вторичные реакции: 2)       2 C + O2   =>  2 CO + тепло частичное окисление тлеющего угля и 3)       CXh3X + O2   =>  2 CO + h3O + Тепло      частичное окисление пиролитического газа. Как отмечалось выше, каждая из реакций, происходящих в зоне окисления, выделяет много тепла, которое превращает оставшийся древесный уголь в то, что известно как «светящийся уголь». Следующая остановка, Зона восстановления — место, где варочный котел творит чудеса.
переходник и стопорное кольцо
Напомним, сырая древесина нагревалась в первой, самой верхней камере до точки, где выделялись летучие пиролитические газы, и древесина превращалась в древесный уголь. Во вторую камеру, зону очага, вводился воздух, и часть древесного угля сжигалась, при этом выделялось много тепла, а оставшийся уголь превращался в то, что известно как «светящийся уголь». Это светящийся уголь, который работает в зоне восстановления. Когда тлеющий уголь падает через зону очага, он улавливается чашей из нержавеющей стали; то есть редукционная чаша. Чаша изготовлена ​​из чаши для смешивания из нержавеющей стали с множеством отверстий, напоминающей очень крупное сито, и удерживается на месте под кольцом пода с помощью металлического кольца, показанного над чашей. Кольцо было припаяно к дну очага, но чаша просто свободно сидит в кольце, так что ее можно периодически механически встряхивать, чтобы зола проходила и собиралась на дне генератора. Когда газы проходят через этот слой раскаленного углерода, происходят эндотермические реакции: 1)      C + h3O   + Тепло   =>  CO  +  h3 Эта реакция известна как реакция «водяного газа», и столетие назад это был основной способ производства газа для промышленных и бытовых нужд. Позже строительство сети трубопроводов позволило транспортировать по стране «природный газ», смесь метана и углекислого газа, а заводы по производству водяного газа были закрыты в пользу более дешевого источника энергии. Светящийся уголь настолько агрессивен, что отнимает атом кислорода у молекулы воды, оставляя два горючих газа: угарный газ и водород. Эти два газа будут питать двигатель и двигать нас по дороге.
сердечник газификатора показан лежащим на боку с установленным редукционным стаканом и стопорным кольцом
То же самое происходит с любым кислородсодержащим соединением углерода, образующимся на стадии пиролиза, например с метанолом или метилэтиловым эфиром. Это хорошо, но в этом нет необходимости, поскольку эти соединения все равно сгорели бы в двигателе. Что очень важно, так это то, что более сложные кислородсодержащие соединения, называемые «смолами», также разлагаются на горючие газы на этой стадии процесса. Это важно, потому что эти соединения конденсируются задолго до того, как попадут в двигатель, попутно засоряя работу. Хотя наша цель в этом проекте состоит в том, чтобы превратить древесину в жизнеспособное двигательное топливо, генераторы древесного газа также являются очень эффективным способом выработки контролируемого тепла в стационарных условиях. Преобразовывая твердую древесину в горючий газ в генераторе, а затем направляя этот газ к месту утилизации, например, к печи, процесс можно сделать гораздо более контролируемым и эффективным, чем если бы вы просто попытались сжечь такое же количество древесины. в дровяной печи. Кроме того, если бы вы использовали газ для целей сгорания, не было бы необходимости охлаждать газ, как мы должны делать, чтобы эффективно питать двигатель внутреннего сгорания (подробнее об этом позже). Вместо этого испарившиеся смолы можно было просто передать в горелку и сжечь. Одной из основных причин использования конструкции газификатора с нисходящим потоком является необходимость разрушить эти смолы до того, как они выйдут из генератора древесного газа и начнут засорять остальную часть системы.
вид вниз на активную зону газификатора
2)      C + CO2 + Тепло   =>  2CO Агрессивная природа светящегося углерода весьма примечательна. Он настолько голоден до кислорода, что даже заставит молекулу углекислого газа «поделиться» своим кислородом, тем самым превратив твердый атом углерода и молекулу инертного газа в две молекулы горючего газа. Довольно изящный трюк. Когда газификатор нагреется до нужной температуры, из него выйдут только горючие, неконденсирующиеся газы, такие как окись углерода и водород, пар и немного золы.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *