Как узнать емкость конденсатора мультиметром: Как проверить конденсатор мультиметром: видео
Прибор для проверки конденсаторов разных типов на исправность
Одной из причин выхода из строя различного рода электронной аппаратуры, является пробой конденсатора. В статье будет описано: что такое конденсатор, основные типы, принцип работы конденсатора. Также будет предоставлена информация о том, как проверить элемент на работоспособность с выпаиванием и непосредственно на плате самостоятельно.
Что такое конденсатор
Конденсатором является электрическим элементом, который способен накапливать определенный электрический заряд. Главным параметром элемента считается емкость, которая рассчитывается в фарадах. 1 фарад это довольно большая величина. Современные конденсаторы имеют следующие обозначения емкости:
- пикофарад обозначается pF или пФ;
- нанофарад обозначается nF или нФ;
- микрофарад обозначается mF или мФ.
Принцип работы устройства достаточно прост. Работа и выдача импульса отличается только от тока в цепи, к которой он подключен.
Цепь переменного тока
В цепи переменного тока конденсатор является сопротивлением. Он быстро накапливает определенный заряд и постепенно его отдает. Накопление и полная отдача происходит во время смены электрической волны.
Цепь постоянного тока
В цепи постоянного тока заряд накапливается на пластинах, увеличивая величину разницы потенциалов на обкладках. Разница потенциалов увеличивается до величины напряжения. Как только она становится равна напряжению, общая цепь разрывается.
Виды конденсаторов
Существует несколько видов и типов конденсаторов. Они разделяются между собой по следующему принципу:
- Изменение емкости. Это изменение классифицирует электронные элементы на постоянные, переменные и подстрочные.
- Материал диэлектрика может быть воздухом, слюдой, тефлоном, поликарбонатом, электролитом.
- Монтаж. По способу монтажа, эти радиодетали делятся на навесные и печатные.
Существуют несколько типов емкостных устройств, делящихся по принципу построения и работоспособности:
- Керамические. Эти элементы выполнены из диска, с обеих сторон имеющего проводник. Подобные печатные детали имеют малое рабочее напряжение, но большую емкость.
- Пленочные. Подобные конденсаторы имеют внутри корпуса скрученную в рулон пленку. Большой заряд и высокое рабочее напряжение удается разместить по всем слоям. Слои выполнены из фольги с диэлектриком на одной стороне.
- Электролитические. Эти устройства схожи по структуре с пленочными. Отличием является материал диэлектрика. Для этих печатных элементов диэлектриком является бумага, пропитанная электролитом.
- Переменные. Это устройства точной настройки приборов. Изменение емкости производится механическим способом.
- Подстрочные. Это элементы одноразовой настройки параметров в приборах. Подобная настройка выполняется только на заводах изготовителях.
- Пусковые. Это конденсаторы служат для запуска электрических двигателей. Они работают в цепи переменного тока в 220 вольт.
Определение параметров
Самостоятельно проверить элемент на работоспособность очень просто. Современные мультиметры и тестеры имеют для этого соответствующую функцию. Главным параметром при проверке будет соответствие заявленной и фактической емкости, а также пропускная способность радиодетали. Проводить проверку можно как на самой плате, так и произведя демонтаж детали с печатной платы.
Проверка емкости
Часто конденсаторы, — особенно старые — имеют нечеткое обозначение емкости на своем корпусе. Для того чтобы узнать емкость рабочего устройства, необходимо воспользоваться мультиметром, который имеет функцию замера емкости. Современные мультиметры имеют измерительный диапазон от 20 nF до 200 mF. Чтобы определить емкость не маркированного конденсатора, придется тестировать его в 5 режимах: 20 nF, 200 nF, 2 mF, 20 mF, 200 mF. Также придется учесть полярность, если элемент является полярным. Перед измерением необходимо выпаять конденсатор с цепи.
Инструкция:
- Прибор переключается в режим проверки емкости. Обязательно переключение щупов в гнездо cX.
- Испытуемый элемент перед проверкой нужно разрядить. Это делается путем замыкания обоих концов.
- Оба щупа присоединяются к выводам.
Полученное значение является номиналом емкости.
Определение полярности
Для определения полярности можно провести визуальный осмотр корпуса. Определение «+»:
- Советские конденсаторы имели на корпусе знак «+» со стороны одной из ножек.
- Современные радиодетали также имеют обозначение на корпусе знаком «+».
- SMD конденсаторы имеют на одной из сторон знак «+» или маркируются цветной полосой.
Минус определяется также визуально:
Современные конденсаторы имеют различный цвет корпуса. На корпусах черного или синего цвета минус обозначается как полоса серебряного цвета или синяя стрелочка. SMD элементы имеют обозначение синей или черной полосой. Часто на них «+» сторона имеет выпуклость, а минус просто ровный на конце. Новые конденсаторы, еще до своего монтажа, имеют плюсовую ножку, которая гораздо длиннее минусовой.
Проверка мультиметром
Для определения полярности с помощью мультиметра, необходимо:
- Полностью разрядить деталь, закоротив ее выводы.
- Резистор присоединить к клемме «+» мультиметра.
- Второй конец резистора присоединить к выводу блока питания на 12 вольт.
- Резистор присоединить к выводу конденсатора.
- Минусовую жилу блока питания соединить со 2 выводом конденсатора.
Если мультиметр не покажет наличие тока в цепи, значит полярность элемента правильная. «+» жила блока питания была верно соединена с «+» конденсатора. Если мультиметр показал наличие тока, значит в цепи не была соблюдена полярность.
Проверка исправности конденсаторов
Современные мультиметры способны измерять и проверять работоспособность любых радиодеталей. Но не всегда этот прибор есть под рукой. Проверить конденсатор можно с помощью тестера.
Мультиметр
Если мультиметр имеет специальную функцию измерения емкости, значит с его помощью можно проверить любой тип устройства. Керамические, электролитические, пусковые радиодетали имеют одинаковый принцип работы, а значит и проверка исправности может проводиться одинаково.
Для проверки необходимо:
- Выпаять испытуемую деталь с платы и разрядить ее, замкнув контакты.
- Установить мультиметр в режим определения емкости «cX».
- Переключить прибор на определение максимального диапазона емкости.
- Щупы присоединить к ножкам или выводам конденсатора.
- Мультиметр покажет значение емкости. Если перед значением высвечивается один или несколько «0», то прибор переключается на более низкий параметр.
Полярные конденсаторы (если правильно соблюдена полярность) показывают постепенно повышающиеся значения от «0» до «1». Если дисплей показывает «1» без изменений, значит конденсатор нерабочий. Если показания равны «0», значит элемент замкнут внутри.
Неполярные конденсаторы проверяют, выставив мультиметр на значение 2 Мом. Если показания выше этого значения, значит устройство исправно. Значения менее 2 МОм говорят о неисправности.
Тестер
Провести проверку конденсатора при помощи тестера можно только для определения общей исправности. Определить потерю емкости или разброс напряжения невозможно.
Инструкция:
- Для проверки необходимо установить тестер в режим сопротивления.
- Выпаять и разрядить проверяемый элемент.
- Если радиодеталь является полярной, нужно подключить клеммы тестера к выводам согласно полярности.
- Полярные конденсаторы (имея большую емкость) несколько секунд будут заряжаться, неполярные покажут свое значение сразу.
Полярные конденсаторы должны показать медленно нарастающее значение более 100 кОм. Если это значение ниже, конденсатор является неисправным.
Неполярные покажут значение в 1 Ом. Если значение равное «1» достигнуто мгновенно, значит конденсатор неисправен. Значение в «0» говорит о внутреннем замыкании.
Проверка без выпаивания
Проверить конденсатор непосредственно на печатной плате очень проблематично. Во-первых, неисправный электрический прибор должен быть полностью обесточен. Также необходимо добиться разряда всех емкостных элементов в цепи. Проверка без выпаивания может показать значения сопротивления элементов, впаянных рядом. Но проверку все же можно провести при помощи индикатора-пинцета.
Первый способ
Первый способ наиболее простой. Испытуемый проверяется тестером и прозванивается мультиметром. Прибор ставится в режим проверки сопротивления. Также стоит учитывать полярность. Щупы мультиметра соединяются с выводами конденсатора и замеряется сопротивление. Стоит учитывать, что полученное значение не имеет никакой практической пользы, так как может являться показанием другого элемента. Таким способом можно проверить емкостную деталь на короткое замыкание. Если значения на дисплее начали расти постепенно, то печатная деталь заряжается от тестера и является исправной.
Второй способ
Второй способ требует припаять конденсатор с такими же значениями в схему рядом с испытуемым элементом. Впайку нужно провести параллельно. Оба элемента замеряются на обесточенной плате.Важно! Без выпаивания можно проводить проверку только деталей, являющихся частью низковольтных цепей. Для высоковольтных цепей проводить такую проверку запрещено.
Третий способ
Часто возникает ситуация, когда на плате несколько конденсаторов, и определить какой из них неисправен очень сложно. Выпаивать каждый довольно трудоемко, часто они выходят из строя при нагревании. Для того чтобы проверить не выпаивая, необходимо провести замер выходящего напряжения. Он должен быть таким же, как указано на корпусе элемента. Если напряжения нет, то деталь пробита или замкнута. Если напряжение меньше оптимального значения, элемент потерял часть емкости.
Не выпаивая можно определить неисправный элемент визуально. Конденсатор может просто лопнуть, иметь на корпусе повреждения, нагар или вздутие.
Прибор своими руками
Для проверки конденсаторов можно собрать собственный прибор. Он будет определять емкость не хуже профессиональной аппаратуры. Собрать подобное устройство своими руками достаточно просто. С помощью этого прибора можно проверить работоспособность любых емкостных элементов и даже SMD.
Схема сборки:
Для прибора понадобятся следующие детали:
- Микросхема из серии 555, например, NE555 или отечественный аналог КР1006ВИ1. Данная микросхема является таймером времени, но в приборе будет играть роль генератора.
- Резисторы: R1 и R5 на 6.8 К. R12 на 12 К. R10 на 100 К. R2 и R6 на 51 К. R13 и R11 на 100 К. R3 и R7 на 68 К. R14 на 120 К. R4 и R8 на 510 К. R15 на 13 К.
- Конденсаторы: С1 емкостью 47nf, С2 на 470pf, С3 на 0ю47 mkF.
- VD1 подходит любой диод малой мощности, например, SOD 232.
- SA1 является любым переключателем на 5 положений.
- Мультиметр Х1.
- Батарея или блок питания до 12 вольт.
Принцип работы прибора заключается в следующем:
- Резисторы R1 и R8, вместе с конденсаторами С1 и С2, создают прямоугольные импульсы, которые регулируются при помощи переключателя SA1. Прибор работает в диапазоне частот от 25 и 2.5 kHz и 25–250 Hz.
- Заряд для испытуемого элемента подается через диод VD1.
- Разрядниками заряда являются резисторы R10, 12, 15.
- Образовавшийся разрядный импульс рассчитывается микросхемой 555. Длительность импульса приравнивается к емкости испытуемого элемента.
- Резистор R13 и конденсатор С3, стоящие на выходе, преобразуют импульс в электрический ток. Напряжение равно емкости испытуемой радиодетали.
- Напряжение на выходе поступает на мультиметр Х1, который показывает количество вольт, а значит общую емкость детали.
При помощи данного прибора можно проводить проверку конденсаторов емкостью от 20 pF до 200 mkF. Собирается схема на печатной плате, которая должна быть очищена от всех старых дорожек и вытравлена. Если сборка схемы проводится при помощи пайки проводами, нужно учитывать, что длина провода сильно влияет на длину импульса.
Принципиальная схема на печатной плате:
Основные неисправности конденсаторов
Емкостные элементы играют большую роль в принципиальной схеме любого устройства. Основная их функция — заряд определенным количеством тока и импульсный разряд в цепь. К основным неисправностям конденсаторов относятся:
- Обычный пробой. Пробой может быть вызван увеличением рабочего напряжения. Для ремонта требуется не только замена элемента, но и определение причины возникновения высокого напряжения.
- Внутренний обрыв. При обрыве радиодеталь теряет свою емкость, так как оба ее вывода становятся изолированными. Обрыв может возникнуть при падении прибора или некачественной сборки самого элемента.
- Утечка. Эта проблема связана с потерей части емкости. Чем меньше допустимая и оптимальная емкость, тем меньше размер заряда.
Полезные советы
Проверка конденсатора, особенно высоковольтного и пускового, связана с определенным риском.
Перед проверкой стоит учитывать:
- Если электрический прибор находится под напряжением или был отключен непродолжительное время, нельзя трогать печатную плату в районе конденсаторов. Устройство разрядится от прикосновения и последует удар током.
- Высоковольтные конденсаторы нельзя разряжать металлическим инструментом. Может возникнуть искра, а неизолированная часть предмета ударит током.
- Максимальная величина проверки для современных мультиметров, составляет 200 мкФ. Проверить большую величину не получится.
- Элементы емкостью менее 0.25 мкФ можно проверить только на замыкание.
- При проверке полярных устройств важно определить полюса элемента. Подключение тестера с изменением полюсов может привести к выходу из строя самого конденсатора.
Во время ремонта электроприборов любой мощности, следует четко соблюдать меры безопасности. Проверку любых радиодеталей можно производить только при обесточенном устройстве.
Видео по теме
Как проверить конденсатор переменного тока — Moy-Instrument.Ru
Проверка конденсатора мультиметром
Конденсатор — незаменимое средство в любой электротехнике. Что он собой представляет, каков принцип его работы и сфера применения? Как осуществляется проверка конденсатора мультиметром? Об этом далее.
Что это такое
Конденсатор является устройством, способным делать накопление заряда электрического тока и передавать его по электрической цепи. Самый простой конденсатор включает в себя несколько пластинчатых электродов, которые разделены с помощью диэлектрика. На этих электродах накапливается заряд, имеющий разную полярность. На одной пластине положительный заряд, а на другой — отрицательный.
Есть множество классификаций устройства конденсатора. Он бывает постоянным и переменным, неполярным и полярным, бумажным и металлобумажным. Последние считаются наиболее привычными и распространенными конденсаторами, которые напоминают прямоугольные кирпичи. Они относятся к неполярным устройствам.
Конденсаторы часто сделаны из керамики. Бывают пленочными, электролитическими и полимерными. Керамический вид позволяет фильтровать различные виды высокочастотных помех энергии. Благодаря их относительной диэлектрической проницаемости, можно создавать многослойные элементы, имеющие емкость, которая сопоставима электролитам. Они не являются полярными.
Пленочные агрегаторы распространены везде, к примеру, их можно встретить в кондиционерах. Они отличаются тем, что у них малый ток утечки, небольшая емкость, высокое рабочее напряжение и отсутствие чувствительности к полярности приложенного напряжения. Полимерные виды выдерживают различные виды больших импульсных токов, работают при низких температурах.
Обратите внимание! Что касается приборов, оснащенных воздушным диэлектрическим элементом, то самым лучшим конденсатор выступает подстроечный прибор, имеющий резонансный радиоприемный контур. Его могут рекомендовать все пользователи. Емкость подобных элементов маленькая, но удобная в реализации изменений.
К электролитическим относятся агрегаты, напоминающие бочонки или батарейки. Они устанавливаются в сетевые пульсации в блоках питания. Благодаря механизму и принципу действия получается большая емкость при малом размере. Диэлектриком выступает оксид металла. Если в блоке питания используется диэлектрик с алюминиевым электролитом, то, чтобы работал автомобильный конденсатор на высокой частоте, используется танталовый электролит, поскольку обладает меньшим током утечки, большой устойчивостью к внешним воздействиям.
Где используется
Конденсатор используется широко в сфере электротехники. Его используют пиротехники в разных электроцепях. Чаще всего его можно найти в блоке питания, фильтре с высокими и низкими частотами, балластном блоке питания, аккумуляторной зарядке, аналогичном аккумуляторе питания маломощных пассивных устройств, к примеру, в светодиодных лампочках и радиоприемниках.
Как работает
В электрической схеме подобные устройства могут быть использованы с разными цепями, однако их основным предназначением считается сохранение заряда. Таким образом, конденсатор берет ток, но сохраняет его и потом отдает в цепь.
Подключая конденсатор к электроцепи, на конденсаторных электродах накапливается электрозаряд. Сначала конденсаторная зарядка потребляет наибольший электрический ток. По мере того, как заряжается конденсатор, электрический ток снижается и когда конденсаторная емкость наполняется, ток исчезает насовсем.
В момент отключения электроцепи от источника питания и при подключении нагрузки цикла, конденсаторный прибор перестает получать заряд и отдает накопившийся ток иным элементам. Сам выступает в роле источника питания.
Основной технической характеристикой конденсатора является емкость. В свою очередь, емкость — способность устройства делать накопления электрического заряда.
Обратите внимание! Чем больше этот показатель, тем больше заряд сможет быть накоплен и передан к электрической цепи. Конденсаторная емкость измеряется в фарадах. Отличаются устройства друг от друга по конструкции, материалам изготовления и области применения.
Типы неисправностей
Обычно у конденсатора случается обрыв электролита, снижается емкость, получается электролитический пробой, снижается максимально допустимое напряжение и увеличивается внутреннее конденсаторное сопротивление. Пробой возникает из-за того, что превышается допустимое напряжение, обрыв из-за механических повреждений, вибраций, встрясок, некачественной конструкции и нарушения предписанных условий эксплуатации. Утечки случаются из-за изменения сопротивления между обкладками. Это приводит к тому, что снижается конденсаторная емкость, не способная сохранять электрический заряд.
Инструкция по проверке мультиметром
Поскольку аппарат способен аккумулировать в себе электрозаряды, то, перед тем, как проверить конденсатор, его нужно разрядить. Это возможно сделать при помощи отвертки, жалом прикоснувшись к выводам для образования искры. Затем необходимо делать прозвон компонентов. Проверка конденсатора возможна при помощи мультиметра и лампочки с проводами. Первый способ надежнее и точнее, поскольку мультиметр показывает точные данные.
До того, как проверить электролитический конденсатор мультиметром, необходимо посмотреть на конденсатор. В случае наличия трещин с нарушением изоляционного слоя, подтеками либо вздутием, проводить тестирование не имеет смысла из-за поломки конденсатого прибора и необходимости замены. Если внешние дефекты отсутствуют, можно осуществлять проверку.
Обратите внимание! До проведения измерений, необходимо определиться с разновидностью конденсатора. Бывает неполярный и полярный тип. Во втором случае необходимо соблюдать полярность, а в первом — проводить измерения по другой технологии. Определение полярности можно провести, взглянув на метку корпуса. На детали имеется черная полоса с нулевым обозначением. Возле нее есть отрицательный с положительным контактом.
Для начала процедуры с полярным агрегатом, необходимо поставить мультиметр на режим омметра и посмотреть, есть ли обрыв с коротким замыканием или нет. Чтобы проверить неполярный прибор, необходимо выставить цифру 2 МОм в диапазоне измерений, а для полярного прибора выставить 200 Ом.
Сам конденсатор отпаивается от схемы и помещается на поверхность стола. Щупы ставятся к конденсаторным выводам с соблюдением полярности. При соприкосновении щупов, на дисплее будут постепенно расти показатели. Спустя некоторое время измерений на экране появится точное число. При единице прибор исправен. В случае, если загорается сразу единица, это говорит об обрыве. При появлении нуля, это говорит о коротком замыкании. Для неполярного устройства оптимальное значение выше двух.
Керамических конденсаторов
Керамические с бумажными и прочими неполярными конденсаторами можно проверить с помощью мультиметра, настроив прибор на замер сопротивления и максимальный измерительный предел. Далее необходимо прикоснуться с помощью измерительных проводов к контактам. Затем получить результат. Если на экране мультиметра получается значение в 2 МОм и более, можно говорить об исправности прибора. В противоположном случае, необходима замена оборудования.
Обратите внимание! Осуществляя измерения на максимальном режиме сопротивления, необходимо исключить тот факт, чтобы проводящие части соприкасались друг с другом. В противном случае получить достоверные данные невозможно.
Полярных конденсаторов
Чтобы протестировать полярный агрегат, необходимо переключить мультиметр на режим замера сопротивления, установить пределы измерений в 200 тысяч Ом, зафиксировать щупы, соблюдая полярность, и измерить утечку по уровню сопротивления.
Измерение емкости
Емкость — основная конденсаторная характеристика, которую указывают производители на приборе. При тестере делаются замеры реального значения и сравниваются с номиналом. Мультиметровый переключатель переводится в диапазон измерений. Показатель ставится равный или близкий к номинальному. На самом конденсаторе ставятся отверстия —CX+ или щупы. Подключение происходит так же, как и при режиме сопротивления. В случае подключения щупов на мониторе появляется значение сопротивления. Если оно имеет близкое к номинальному число, то можно говорить об исправности конденсатора. В противоположном случае, можно утверждать о пробитом устройстве и срочной замене.
Без выпаивания
В ответ на то, как проверить конденсатор мультиметром не выпаивая, стоит указать, что необходимо параллельное подключение на плате заведомо исправного конденсатора, имеющего такую же емкость. Если устройство будет функционировать, то определить проблему без выпайки просто: она находится в первом неисправном элементе. Необходимо его смена. Подобный способ применим лишь в схемах, где небольшое напряжение.
Иногда осуществляют проверку конденсатора на искры, разрядку и общую неисправность в связи с этим. Для этого нужна подзарядка и при помощи металлического инструмента, имеющего заизолированную рукоятку, замыкание выводов. Должна быть получена высоковольтная искра, имеющая характерный звук. При малом разряде делается вывод о необходимости срочной смены детали.
Проведение подобной процедуры возможно только при помощи резиновых перчаток. Такой метод нужен, чтобы проверить работоспособность мощных пусковых устройств, рассчитанных на работу при более 200 вольт.
Обратите внимание! При этом проверять без выпаивания устройство, не имея измерителя в виде функционального мультиметра, нельзя. Подобные методы могут быть небезопасными из-за возможного получения электрического удара и нарушения объективности картины участка. Точные значения получить будет нельзя, даже вольтметром и амперметром.
Техника безопасности
Замерять устройство нельзя в помещении с повышенной влажностью. Кроме того, нельзя переключать функции измерений при замере. Нужно заменять напряжение с силой тока, если величины больше рассчитанных на мультиметре. Чтобы подсчеты были верны, а измерение было безопасным, необходимо использовать щупы, имеющие исправную изоляцию. Также необходимо проводить измерения в резиновых перчатках во избежание получения микротравм от электрического тока, даже если перед этим оборудование будет разряжаться. Самостоятельно конструировать щупы для проверки прибора при этом не рекомендуется, как и другие части мультиметра. Пользоваться при замерах только измерительным электронным устройством от производителя.
В целом, проверить конденсатор мультиметром можно по представленной выше инструкции, в зависимости от разновидности прибора и его функций. Делать это необходимо, соблюдая технику безопасности.
Как проверить конденсатор мультиметром
Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.
Конденсатор и емкость
Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.
Виды конденсаторов по типу диэлектрика:
- вакуумные;
- с газообразным диэлектриком;
- с неорганическим диэлектриком;
- с органическим диэлектриком;
- электролитические;
- твердотельные.
Обычно используются электролитические конденсаторы
Основные неисправности конденсаторов:
- Электрический пробой. Обычно вызван превышением допустимого напряжения.
- Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
- Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.
Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.
В данном случае присутствует протечка электролита
Перед проверкой конденсатора
Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.
До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.
Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.
Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.
Измерение емкости в режиме сопротивления
Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.
Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.
Измерение в режиме сопротивления
Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.
Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.
Аналоговое устройство
Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.
Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.
Измерение емкости конденсатора
Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.
Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.
При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.
Измерение емкости через напряжение
Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.
Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.
Другие способы проверки
Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!
Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.
Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.
Сложности проверки
Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.
В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.
Как проверить емкость – видео ролики в Youtube
Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.
Как проверить конденсатор мультиметром на работоспособность не выпаивая: возможные поломки, пошаговая инструкция
Если взглянуть на статистику, то больше половины рекомендаций по ремонту оборудования связано с неисправностью такого элемента, как конденсатор. Работа такого элемента, как конденсатор, основывается на том, что находясь в электрической схеме, он способствует накоплению зарядов.
При диагностике или ремонте различной техники может возникнуть следующий вопрос — как проверить конденсатор мультиметром на работоспособность? При этом внешний осмотр не во всех случаях позволяет определить функциональность конденсатора, поэтому требуется проверка прибором. Сегодня мы подробнее рассмотрим этот процесс, а также расскажем о принципе функционирования конденсаторов и распространенных причинах их неисправностей.
Что такое конденсатор?
Если взглянуть на статистику, то больше половины рекомендаций по ремонту оборудования связано с неисправностью такого элемента, как конденсатор. Этот прибор составляет большое количество различных электросхем. Принцип функционирования сводится к поэтапному накоплению электроэнергии с различным потенциалом между обкладками и последующим быстрым разрядом.
Выделяют два наиболее известных типа конденсаторов, которые устанавливаются в современных схемах:
- Полярные (электролитические). Такое название они получили потому, что при подключении в схему требуется задать определенную полярность: «плюс» к «плюсу», а «минус» к «минусу».
- Неполярные. К этой группе относятся любые другие варианты конденсаторов.
Общепринятое обозначение этого элемента на схемах отчетливо показывает его принцип работы.
Строение этого электронного компонента простое – он состоит из двух покрытых изоляционным слоем обкладок, которые проводят ток. С целью изоляции используют всевозможные материалы и компоненты, которые не проводят электричество: кислород, пластинки из керамики, специальную целлюлозу, фольгу.
По внешнему виду такие элементы отличаются миниатюрным размером при внушительной емкости, поэтому в процессе работы с ними следует соблюдать технику безопасности.
Принцип функционирования
Работа такого элемента, как конденсатор, основывается на том, что находясь в электрической схеме, он способствует накоплению зарядов. Это необходимо только в тех схемах, где происходит распределение составляющих тока (переменный ток). В то время как в схемах с постоянным током конденсатор не сможет накапливать энергию.
Где применяется?
Устанавливают конденсаторы различных видов в радиосхемы и бытовые приборы. Как правило, эти устройства имеют небольшую емкость, поэтому их неисправность не провоцирует тяжелых последствий.
Крупногабаритные конденсаторы составляют различные электрические двигатели, где являются элементами пуска. В данном случае они отличаются большим номиналом и такой же емкостью.
Цены на различные виды конденсаторов
Видео – Для чего нужен конденсатор?
Возможные поломки
Поломка радиосхемы или электрического двигателя свидетельствует о неисправности элементов. В то время, как неисправность самого конденсатора часто бывает вызвана следующими причинами:
- Замыканием двух обкладок. Происходит это в результате повышенного напряжения на выводах. Получается, что фрагмент цепи, который должен «разорваться» конденсатором, остается замкнутым.
- Нарушение целостности внутренней цепочки компонента. Произойти это может при сильном ударе или напряжении, из-за чего случится вибрация. Тем не менее, часто причиной является брак во время производства. Получается, что в радиосхеме отсутствует конденсатор, а имеется только разорванная цепочка.
- Утечка тока в недопустимых пределах. Происходит это из-за нарушения целостности изоляционного слоя пластинок. Это приводит к тому, что они не могут сохранять заряд.
- Резкое падение номинальной емкости. Причиной такой проблемы тоже является утечка тока или же брак во время производства. В итоге, радиосхема работает с перебоями или не функционирует совсем.
Видео – Проверка неисправностей конденсаторов
Электролитические компоненты еще отличаются другим недостатком – превышением преобразования сопротивления. Получается, что во время работы в радиосхемах такие конденсаторы не улавливают импульсивные сигналы.
Проверка конденсаторов
Как обнаружить неисправность по внешним характеристикам? Конечно, только лишь по внешним признакам невозможно достоверно судить о работоспособности какого-либо элемента. Тем не менее, таким путем можно заподозрить неисправность, опираясь на признаки:
- отверстия на основании и вытекание электролита, из-за чего конденсатор теряет герметичность;
- нехарактерная, раздутая форма корпуса и множество выступающих бугорков (в нормальном состоянии они имеют форму цилиндра).
Внешняя проверка особенно необходима в том случае, если вы устанавливаете в схему уже использованные конденсаторы. Тем не менее, некоторый процент брака можно обнаружить и среди новых элементов.
Если вы приобрели новый конденсатор, на котором уже имеются дефекты, то его не стоит использовать, ведь со временем это может привести к нарушению целостности всей схемы. Будет разумно приобрести и подсоединить другой элемент.
Повреждения в виде пробоев в основном встречаются на неполярных элементах или на некоторых полярных с высокой чувствительностью к высокому напряжению.
Для того, чтобы предупредить повреждение других частей электросхемы после разрыва конденсатора, производителями была предусмотрена слабая верхняя крышка, на которой располагаются небольшие разрезы. Таким способом создается «слабое» место корпусной части. Это значит, что в случае разрыва электролит вытекает сверху, не затрагивая элементы схемы.
Вздутый конденсатор потребуется немедленно утилизировать, иначе через некоторое время все равно произойдет взрыв (как показано на изображении ниже).
Если у конденсатора начинает вздуваться верхняя часть, то уже не стоит проверять его дополнительными способами. Лучшим решением будет приобретение нового элемента.
Обратить внимание следует и на другой немаловажный признак. Так, у некоторых элементов «слабая» крышка остается целой без каких-либо дефектов, но их можно заметить на нижней части – пробка становится выпуклой. Конечно, такая проблема возникает в редких случаях, но все-таки некоторым пользователям приходится с ней сталкиваться. Даже если причиной такой проблемы является брак, все равно конденсатор рекомендуется утилизировать.
Стоит отметить, что даже при наличии внешних дефектов на корпусе, компонент может соответствовать требованиям после проверки прибором. Тем не менее, использовать его будет опасно.
В другом же случае, когда внешние повреждения отсутствуют, но имеются подозрения плохой функциональности конденсатора, из-за общего падения работоспособности радиосхемы, его понадобится проверить другими методами, поэтому сначала дефективный элемент выпаивают из общей схемы.
Многие «умельцы» склонным к мнению, что проверить компонент можно и без выпаивания. Конечно, такой способ тестирования возможен, но он не гарантирует точных результатов, поэтому конденсаторы желательно демонтировать.
Проверка мультиметром
У непрофессионального мастера в арсенале обычно имеется самый простой прибор – мультиметр. Тем не менее, и с его помощью тоже можно проверить работоспособность компонента.
Цены на различные виды мультиметров
Проверка неполярных конденсаторов
Первым делом любой компонент начинают проверять омметром с целью обнаружения пробоя. Да, это косвенная проверка, но она позволяет выявить определенные дефекты и провести выбраковку элементов. При этом существуют некоторые тонкости, которые зависят от типа и емкости компонента.
Исправный конденсатор не должен постоянно пропускать ток – иметь высокое сопротивление. Ведь как мы уже говорили, причиной утечки часто является нарушение изоляционного слоя между обкладками. В идеале сопротивление должно быть приближено к норме.
Измерение полярного керамического конденсатора: пошаговая инструкция
Шаг 1. Необходимо выставить максимальный диапазон измерений для мультиметре, чтобы привести его в режим омметра.
Шаг 2. Перед началом тестирования конденсатор следует «зачистить» от оставшегося заряда. Если это элемент небольших габаритов с минимальной емкостью, то можно перемкнуть вывод отверткой. Если речь идет о крупногабаритном элементе, то перемыкают его через мощный резистор сопротивления.
Шаг 3. После установки режима необходимо проверить дисплей — на нем должны высвечиваться символы, которые означают отсутствие проводимости между клеммами.
Шаг 4. Теперь необходимо подсоединить клеммы к выводам.
Конечно, такая проверка еще не является точным доказательством работоспособности прибора, ведь нам следует убедиться в отсутствии обрыва в цепочке. В данном случае мультиметр просто не успевает отреагировать на изменения, поэтому потребуется измерение емкости.
Тестирования электролитического компонента с большой емкостью: пошаговая инструкция
Для того чтобы сравнить значения потребуется проверить другой – неполярный конденсатор, у которого имеется высокий показатель емкости.
Шаг 1. Устанавливаем прибор в исходное положение, как в предыдущем случае.
Шаг 2. Мы наблюдаем, как показания на приборе начинаются с нескольких сотен, преодолевают предел мегаом и увеличиваются дальше.
Шаг 3. Необходимо дождаться окончания проверки и взглянуть на прибор.
В данном случае можно сказать, что повреждение отсутствует (как и обрыв), потому что мы контролировали процесс работы конденсатора.
Проверка прибором полярных конденсаторов: пошаговая инструкция
Теперь мы проверим работу полярных компонентов. В таком тестировании не имеется существенных отличий, только диапазон измерений устанавливается в пределах 200 кОм. Ведь только если заряд достигнет этого придела, можно будет с точностью судить об отсутствии повреждения.
Первым делом мы будем проводить тест конденсатора с номиналом 10 uF. Стоит отметить, что при внешнем осмотре на нем отсутствуют повреждения.
Шаг 1. Настраиваем прибор в режим омметра.
Шаг 2. Подсоединяем клеммы к компоненту.
Шаг 3. Останавливаем прибор.
Здесь показатели растут не так быстро как при проверке неполярного элемента, но на этом значении уже стало ясно, что повреждения отсутствуют.
Затем мы будет проверять полярный конденсатор с номиналом 470 uF.При его внешнем осмотре уже заметно разбухание верхней части.
Такой признак свидетельствует о наличии утечки тока, тем не менее, она может быть в разумных пределах, но использовать этот компонент не следует. Проведение опыта тоже лучше остановить, чтобы не разряжать прибор.
Измерение емкости конденсатора
Предыдущим способом тоже можно обнаружить неисправный конденсатор, но все-таки понадобится дополнительная проверка. Это необходимо в ситуациях, когда имеются подозрения на неисправность компонента.
Рассмотрим пример тестирования на неполярном конденсаторе. В данном случае будет осуществляться проверка небольшого керамического компонента с номиналом — 4,7 nF. Для проведения тестирования необходимо установить на приборе режим измерения емкости.
Таким же способом можно проверить на исправность и другие элементы, которые мы тестировали ранее.
Как проверить элемент без выпаивания?
Для того, чтобы провести тестирование компонента без демонтажа, понадобится использовать специальный прибор. Его отличительной особенностью является минимальный уровень напряжения на клеммах, что не позволит нанести вред другим компонентам цепочки.
Тем не менее, не у каждого мастера имеется подобное оборудования, поэтому соорудить его можно даже из стандартного мультиметра, если подключить его через специальную приставку. Схематическое строение приставок можно обнаружить на просторах интернета.
Таблица №1. Другие методы проверки компонента без выпаивания.
Как проверить конденсатор мультиметром пошаговый иструктаж
Как проверить конденсатор с помощью приборов
Увидите, проверить мультиметром конденсатор может каждый. Неполярный конденсатор, керамический конденсатор, разницы дают мало, многое определяет номинал. Однако сюрпризы способна преподнести гибридная технология. Понятно, извлечь SMD конденсатор — дело нешуточное (большинству не под силу). Тогда проводите косвенные тесты, например, сравнение показаний с заведомо рабочим устройством.
Проще проверить электролитический конденсатор мультиметром. Начать лучше с визуального контроля. Неисправные электролитические конденсаторы ощутимо раздуваются. На зарубежных моделях в верхней части цилиндра делается специальная крестовидная прорезь для гарантированной индикации неисправности. Внешние признаки молчат — нужно хватать мультиметр.
Сначала элемент гарантированно разрядим. Обычно напряжение отсутствует, но совать голую отвертку, кусок провода — бестолковая идея. Неплохо создать своими руками разрядник, воспользовавшись патроном, ввинченной лампочкой. Штуковина повсеместно используется мастерами ремонта телевизоров, импульсных блоков питания. Пара слов касаемо процесса, когда конденсатор разряжен, можно хватать тестер.
На контактах мультиметра в некоторых режимах выходит напряжение 5 вольт. Требуется, чтобы оценить параметры. К примеру, при измерении сопротивлений мультиметр просто делит напряжение на ток, получает искомую величину. Первая цифра известна – 5 вольт (определяет модель тестера). Аналогично проводится прозвонка. Подаются 5 вольт на оба конца. Некоторые стабилитроны пробиваются. Прозвонить такие элементы на цифровых мультиметрах не представляется возможным.
Зная указанные вещи, понимаем, что делать дальше:
- Подключаем в режиме измерения сопротивления клеммы к контактам разряженного конденсатора.
- Образуется зарядная цепь, сформированная внутренним сопротивлением мультиметра, емкости. Вначале ток равен бесконечности, потом падает, достигая нуля.
- Попутно сопротивлению начнёт расти от нуля до бесконечности.
Итак, напряжение испытуемого образца сильно отличается от эталонных показаний (нужно заранее позаботиться о получении), наверняка сломалось. Начинаем измерять напряжение конденсатора, внутреннее сопротивление прибора уступает бесконечности. Потенциал начнет потихоньку падать, заметим на экране. Делаем два вывода:
- Начальное значение напряжение намного ниже эталона (выдает на контакты тестер, режим прозвонки) — внутри наличествует утечка. Параметр нормально составляет часть формулы добротности, если конденсатор быстро разряжается самостоятельно (без намеренного замыкания контактов), элемент отслужил.
- По скорости разряда можно оценить размер емкости конденсатора. Можно, конечно, заморочиться с определением констант, формулами, проще провести тест с заведомо рабочими емкостями, после чего свести результаты таблицей. Станет возможным судить о номинале конденсатора по одной скорости разряда. Процесс напоминает оценку давления при помощи тонометра. Ориентируемся на глаз. Величина емкости определена скоростью падения напряжения на дисплее мультиметра.
Разумеется, делается больше навскидку, отличить мкФ от мФ удастся без труда. Жаждущим большего, можем сообщить: за время RC заряд падает на 63%. Каждый волен посчитать уровень вольт для мультиметра. Вычислить приблизительно внутреннее сопротивление, исходя из полученных данных, проводить приблизительный замер номинала емкости конденсатора.
Известен простой способ проверить емкость конденсатора мультиметром. Купить тестер, у которого наличествует соответствующая шкала. Надписана буквой F (Farad). Просто берется за ножки конденсатор, примерно выставляется диапазон, мультиметр проделает работу, описанную выше. Проверить конденсатор мультиметром, не выпаивая, не всегда удаётся.
Проведём сравнение. Допустим, на исправной технике показывает фиксированное значение, на поломанной – нечто другое. Необязательно неисправный конденсатор мультиметром на плате нашли — цепь разряда барахлит. Пусковой конденсатор авто — возможно вынуть, проверить (предварительно обработав разрядником), для электроники методика не всегда действенна.
Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют.
Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.
Существует два вида конденсаторов:
Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя.
Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ.
Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло. Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до
В чём измеряется ёмкость конденсатора: как измерить
Конденсаторы являются важнейшими пассивными компонентами электрических цепей. Любая электрическая схема содержит в своем составе такие элементы различных типов и номиналов.
Что это такое
Конденсатор — электрический двухполюсник (элемент с двумя выводами) с постоянным или изменяемым значением емкости. Обладает бесконечно большим сопротивлением постоянному току.
Простейший конденсаторВажно! Бесконечно большим сопротивлением обладает идеальный конденсатор. Реальные устройства имеют ток утечки, который необходимо учитывать.
Основное назначение устройства — накопление энергии электрического поля и заряда.
Несмотря на то, что конденсаторы являются самостоятельными элементами, емкостью обладают любые другие устройства, даже диод и транзистор.
Характеристики
Как элемент электрической цепи, конденсатор имеет такие параметры:
- Электрическая емкость, которая характеризуется свойством накапливания электрического заряда.
- Номинальное напряжение. Значение напряжения на обкладках, при котором элемент в течении срока службы сохраняет свои параметры.
При работе с электрическими цепями необходимо учитывать паразитные параметры, которые являются нежелательными:
- Ток утечки, который появляется из-за несовершенства диэлектрика, качества изоляции обкладок.
- Последовательное эквивалентное сопротивление, которое складывается из сопротивления выводов, сопротивление контакта вывод-обкладка, внутренних свойств диэлектрика.
- Эквивалентная индуктивность, в которую входят индуктивность выводов и обкладок.
- Тангенс угла диэлектрических потерь, характеризующий электрические потери в конденсаторе на высоких частотах.
- Температурный коэффициент емкости, показывающий, как она меняется в зависимости от температуры.
- Паразитный пьезоэффект, проявляющийся как генерация напряжения при физическом воздействии на диэлектрик (тряска, вибрация).
Устройство конденсатора
Простейший конденсатор состоит из двух металлических пластин (обкладок), разделенных слоем диэлектрика. Емкость (способность накапливать электрический заряд) увеличивается с ростом площади пластин и с уменьшением толщины изолирующего слоя.
Параметры простейшей конструкции слишком малы. Для ее увеличения есть два пути:
- Увеличение площади обкладок, что приводит к увеличению габаритов.
- Уменьшение толщины диэлектрика, приводящее к снижению номинального рабочего напряжения из-за электрического пробоя.
Для того, чтобы избежать перечисленных проблем, разработаны специальные конструкции. Например, если сделать обкладки небольшой ширины и большой длины, их можно вместе с гибким диэлектриком свернуть в плотный цилиндр, получится цилиндрический конденсатор. Размещая пластины с диэлектриком попеременно, в виде слоеного пирога и чередуя подключение к выводам, получается прямоугольный компонент с большой эффективной площадью обкладок.
Разные типы конструкцииЕще один путь — использование в качестве диэлектрика тонкого оксидного слоя на поверхности металлической фольги и раствора проводящего электролита в качестве второй обкладки. Таким образом получается электролитический конденсатор, конструкция которого обладает самой большой емкостью.
Важно! Такие устройства имеют недостаток — соблюдение полярности подключения, что ограничивает их применение: оно возможно только в цепях постоянного тока в качестве сглаживающих фильтров.
В чем измеряется
Единицей емкости служит фарада. Но это очень большая величина и лишь некоторые специальные типы устройств имеют величину несколько фарад.
Обычно используются кратные величины:
- Микрофарада — 10-6 фарады— мкФ, µF.
- Нанофарада — 10-9 фарады— нФ, nF.
- Пикофарада — 10-12 фарады— пФ, pF.
Довольно часто в устройствах встречается последовательное и параллельное соединение. Как определить емкость соединенных конденсаторов? Результирующее значение для таких соединений рассчитывается по-разному.
Параллельное и последовательное соединениеПараллельное соединение
При параллельном соединении емкости всех элементов суммируется. Номинальное рабочее напряжение равняется наименьшему из соединенных элементов
Последовательное соединение
В данном случае, чтобы узнать результирующую емкость, придется прибегнуть к расчетам.
Для двух элементов:
С = С1·С2/(С1+С2)
Для трех элементов:
С=(С1·С2+С1·С3+С2·С3)/(С1+С2+С3)
Напряжение равняется сумме напряжений на каждом элементе.
Важно! Напряжение на отдельных конденсаторах распределяется неравномерно, а пропорционально емкости.
Приборы для измерения емкости
Специальные приборы для измерения емкости используют различные принципы. Наиболее распространены такие:
- Измерение реактивного сопротивления;
- Измерение частоты резонанса колебательного контура.
Первый тип приборов наиболее распространен. Принцип их работы основан на том, что конденсатор обладает реактивным сопротивлением, обратно пропорциональным частоте приложенного напряжения. То есть, чем выше частота сигнала, тем меньше сопротивление. На клеммах прибора присутствует напряжение заданной величины и частота, а шкала уже откалибрована в единицах емкости, поэтому никаких вычислений производить не надо, за исключением учета положения входных переключателей.
Цифровые приборы для измерения емкости в эксплуатации еще проще. На цифровом индикаторе сразу показывается значение измеряемого параметра.
Цифровой измерительДля устройств второго типа используется явление резонанса — скачкообразное измерение параметров колебательного контура из соединенных конденсатора и катушки индуктивности.
Для определения емкости измеряемый элемент подключается к катушке индуктивности с точно определенными параметрами. Изменяя частоту сигнала, добиваются резонанса и отсчитывают в этот момент емкость конденсатора на шкале прибора.
Также как и первые, эти устройства могут быть аналоговыми или цифровыми.
Наиболее часто используются комбинированные измерительные устройства, которыми можно измерять дополнительно индуктивность и сопротивление — RLC-метры.
Измеритель RLCСпециальный измеритель может определять эквивалентное последовательное сопротивление (ЭПС, ESR) и тангенс угла потерь.
Оценить емкость электролитического конденсатора можно, используя обычный мультиметр в режиме измерения сопротивления. Время заряда косвенно будет свидетельствовать о величине емкости (Чем больше величина, тем медленнее будут изменения показаний).
Как правильно измерять емкость
Как измерить ёмкость конденсатора, не имея специального оборудования? Нужно определить величину тока, протекающую через цепь с конденсатором и падение напряжения на нем. Значение измеряемого параметра вычисляют на основании формулы:
Xc = 1/2·π·f·C,
Где Хс — реактивное сопротивление конденсатора,
π — число пи, равное 3.14,
f — частота тока.
Из приведенной формулы можно найти значение емкости:
С = 1/2·π·f·Хс
Реактивное сопротивление Хс находят из показаний измерительных приборов:
Хс = U/I.
Самостоятельное измерение емкости конденсаторов при помощи простейших приборов достаточно трудоемкое и не дает необходимой точности. Лучшие результаты можно получить, используя специализированные измерительные устройства.
Что такое конденсатор (C)
Что такое конденсатор и расчет конденсатора.
Что такое конденсатор
Конденсатор — это электронный компонент, который хранит электрический заряд. Конденсатор состоит из двух замкнутых проводников (обычно пластин), которые разделены диэлектрическим материалом. Пластины накапливаются электрический заряд при подключении к источнику питания. Одна тарелка накапливает положительный заряд, а другая пластина накапливает отрицательный заряд.
Емкость — это количество электрического заряда, который сохраняется в конденсаторе при напряжении 1 Вольт.
Емкость измеряется в единицах Фарад (Ф).
Конденсатор отключает ток в цепях постоянного (DC) и короткое замыкание в цепях переменного (AC).
Фотографии конденсатора
Обозначения конденсаторов
Емкость
Емкость (C) конденсатора равна электрическому заряду (Q), деленному на напряжение (В):
C — емкость в фарадах (Ф)
Q — это электрический заряд в кулонах (Кл), который хранится на конденсаторе
В — напряжение между пластинами конденсатора в вольтах (В)
Емкость пластин конденсатора
Емкость (C) пластин конденсатора равна диэлектрической проницаемости (ε), умноженной на площадь пластины (A), деленную на зазор или расстояние между пластинами (d):
C — емкость конденсатора в фарадах (Ф).
ε — диэлектрическая проницаемость диалектического материала конденсатора в фарадах на метр (Ф / м).
А — площадь пластины конденсатора в квадратных метрах ( 2 м).
d — расстояние между пластинами конденсатора в метрах (м).
Конденсаторы серии
Суммарная емкость конденсаторов, включенных последовательно, C1, C2, C3, ..:
Конденсаторы параллельно
Суммарная емкость конденсаторов, включенных параллельно, C1, C2, C3 ,.. :
C Итого = C 1 + C 2 + C 3 + …
Ток конденсатора
Мгновенный ток конденсатора i c (t) равен емкости конденсатора
раз производная мгновенного напряжения конденсатора v c (t):
Напряжение конденсатора
Мгновенное напряжение конденсатора v c (t) равно начальному напряжению конденсатора
плюс 1 / C, умноженный на интеграл мгновенного тока конденсатора i c (t) за время t:
Энергия конденсатора
Накопленная энергия конденсатора E C в джоулях (Дж) равна емкости C в фарадах (Ф)
раз больше напряжения конденсатора квадратной формы В C в вольтах (В) разделенных на 2:
E C = C × V C 2 /2
Цепи переменного тока
Угловая частота
Конденсаторов.Цель: изучить поведение конденсаторов в схемах разного типа.
Лабораторная работа E1: Введение в схемы.
E1.1 Лабораторная работа E1: Введение в схемы Цель этой лабораторной работы — познакомить вас с некоторыми основными приборами, используемыми в электрических схемах.Вы научитесь пользоваться источником постоянного тока, цифровым мультиметром
. ПодробнееГлава 7 Цепи постоянного тока
Глава 7 Цепи постоянного тока 7. Введение … 7-7. Электродвижущая сила … 7-3 7.3 Последовательные и параллельные резисторы … 7-5 7.4 Правила схемы Кирхгофа … 7-7 7.5 Измерения напряжения-тока…7-9
ПодробнееЛабораторная работа 3 — Цепи постоянного тока и закон Ома
Лабораторная работа 3 — Цепи постоянного тока и закон Ома L3-1 Имя Дата Партнеры Лаборатория 3 — Цепи постоянного тока и закон Ома ЦЕЛИ Научиться применять концепцию разности потенциалов (напряжения) для объяснения действия батареи в
ПодробнееИндукторы в цепях переменного тока
Катушки индуктивности в цепях переменного тока Название Раздел Резисторы, катушки индуктивности и конденсаторы влияют на изменение величины тока в цепи переменного тока и времени, в которое ток достигает своего максимального значения
ПодробнееЭксперимент 3, закон Ома
Эксперимент № 3, Закон Ома 1 Цель Физика 182 — Лето 2013 г. — Эксперимент № 3 1 Для исследования характеристик напряжения, -, углеродного резистора при комнатной температуре и температуре жидкого азота,
ПодробнееГЛАВА 28 ЭЛЕКТРИЧЕСКИЕ ЦЕПИ
ГЛАВА 8 ЭЛЕКТРИЧЕСКИЕ ЦЕПИ 1.Нарисуйте принципиальную схему цепи, которая включает резистор R 1, подключенный к положительному выводу батареи, пару параллельных резисторов R и R, подключенных к
. ПодробнееПостоянная времени RC-цепи
Постоянная времени RC-цепи 1 Задачи 1. Определить постоянную времени RC-цепи и 2. Определить емкость неизвестного конденсатора. 2 Введение Что такое конденсатор?
ПодробнееГлава 7.Цепи постоянного тока
Глава 7 Цепи постоянного тока 7.1 Введение … 7-3 Пример 7.1.1: Соединения, ответвления и петли … 7-4 7.2 Электродвижущая сила … 7-5 7.3 Электрическая энергия и мощность … 7-9 7.4 Резисторы последовательно и параллельно …
ПодробнееПоследовательные и параллельные схемы
Последовательные и параллельные схемы. Компоненты схемы могут быть соединены последовательно или параллельно.При последовательном расположении компонентов они расположены на одной линии друг с другом, т. Е. Соединены встык. Параллель
ПодробнееЭлектронное руководство по WorkBench
Учебное пособие по Electronic WorkBench Введение Electronic WorkBench (EWB) — это пакет моделирования электронных схем. Он позволяет проектировать и анализировать схемы без использования макетов, реальных компонентов
Подробнее= V пик 2 = 0.707 В пик
БАЗОВАЯ ЭЛЕКТРОНИКА — НАЗНАЧЕНИЕ РЕКТИФИКАЦИИ И ФИЛЬТРА Предположим, вы хотите создать простой электронный блок питания постоянного тока, который работал бы от входа переменного тока (например, что-то, что вы могли бы подключить к стандартному
ПодробнееМагнитные поля и их эффекты
Имя Дата Время завершения ч м Партнерский курс / Раздел / Оценка Магнитные поля и их эффекты Этот эксперимент предназначен для того, чтобы дать вам практический опыт работы с эффектами, а в некоторых случаях и
ПодробнееГлава 13: Электрические схемы
Глава 13: Электрические схемы 1.Бытовая цепь, рассчитанная на 120 Вольт, защищена предохранителем на 15 ампер. Какое максимальное количество лампочек мощностью 100 Вт может одновременно гореть параллельно?
ПодробнееEisflisfræði 2, vor 2007 г.
[Просмотр задания] [Печать] Eðlisfræði 2, vor 2007 30. Назначение индуктивности должно быть произведено в 2:00 утра в среду, 14 марта 2007 г. Кредит за проблемы, представленные с опозданием, уменьшится до 0% после того, как крайний срок достигнет
. ПодробнееИзмерение емкости
Предварительные вопросы по измерению емкости Название страницы: Класс: Номер в реестре: Инструктор :.Конденсатор используется для хранения. 2. Что такое единица СИ для емкости? 3. Конденсатор в основном состоит из двух
ПодробнееЭксперимент № 4, Омическое тепло
Эксперимент № 4, Омическое тепло 1 Цель Физика 18 — Осень 013 — Эксперимент № 4 1 1. Продемонстрировать преобразование электрической энергии в тепло. Продемонстрировать, что скорость генерации тепла в электрическом
ПодробнееЛаборатория физики законов Кирхгофа IX
Лаборатория физики законов Кирхгофа IX Цель В серии экспериментов теоретические соотношения между напряжениями и токами в цепях, содержащих несколько батарей и резисторов в сети,
ПодробнееПОСЛЕДОВАТЕЛЬНО-ПАРАЛЛЕЛЬНЫЕ ЦЕПИ ПОСТОЯННОГО ТОКА
Имя: Дата: Курс и секция: Инструктор: ЭКСПЕРИМЕНТ 1 СЕРИЯ ПАРАЛЛЕЛЬНЫХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА ЦЕЛИ 1.Проверьте теоретический анализ последовательно-параллельных сетей с помощью прямых измерений. 2. Повышение квалификации
ПодробнееГлава 22 Дополнительная электроника
Глава 22 Далее Стиральная машина с электроникой имеет задержку открытия дверцы после цикла стирки. Часть этой схемы показана ниже. По окончании цикла переключатель S замыкается. На данном этапе конденсатор
ПодробнееЛабораторная работа 1: Введение в PSpice
Лабораторная работа 1: Введение в задачи PSpice Основная цель этой лабораторной работы — познакомить вас с использованием PSpice и научиться использовать ее, чтобы помочь вам в анализе цепей.Программное обеспечение
ПодробнееРезонанс серии RLC
Резонанс серии RLC 11EM Цель: цель этой лабораторной деятельности — изучить резонанс в цепи резистор-индуктор-конденсатор (RLC) путем исследования тока в цепи как функции
ПодробнееЭксперимент № 8: Магнитные силы
Эксперимент № 8: Магнитные силы Цель: изучить природу магнитных сил, действующих на токи.Оборудование: узел магнита и подставка для ПК с токовой петлей или панелей с тройным рычагом 0 15 В постоянного тока, переменная
ПодробнееПараллельный пластинчатый конденсатор
Параллельный пластинчатый конденсатор Заряд конденсатора, разделение пластин и напряжение Конденсатор используется для хранения электрического заряда. Чем больше напряжение (электрическое давление) вы подаете на конденсатор, тем больше заряда
ПодробнееБазовые схемы операционных усилителей
Базовые схемы операционных усилителей Мануэль Толедо INEL 5205 Instrumentation 3 августа 2008 г. Введение Операционный усилитель (для краткости ОУ или ОУ), возможно, является наиболее важным строительным блоком для конструкции
. ПодробнееПроект емкостного сенсорного датчика:
ПРИМЕЧАНИЕ. Этот проект не включает полный список деталей.В частности, описанная здесь ИС не поставляется в двухрядном корпусе (DIP), поэтому корпус типа «крыло чайки» необходимо припаять к адаптеру
. ПодробнееОсновные электрические концепции
Основные электрические концепции Введение Современные автомобили включают в себя множество электрических и электронных компонентов и систем: Аудиосистема Освещение Навигация Управление двигателем Управление коробкой передач Торможение и тяга
Подробнее5.Измерение магнитного поля
H 5. Измерение магнитного поля 5.1 Введение Магнитные поля играют важную роль в физике и технике. В этом эксперименте проверяются три различных метода измерения
ПодробнееЛаборатория 3 Выпрямительные схемы
ECET 242 Электронные схемы Лаборатория 3 Выпрямительные схемы Страница 1 из 5 Имя: Задача: Студенты, успешно завершившие это лабораторное упражнение, будут выполнять следующие задачи: 1.Узнайте, как построить
ПодробнееФамилия: Имя: Физика 102 Весна 2006 г .: Экзамен №2 Вопросы с множественным выбором 1. Заряженная частица q движется со скоростью v перпендикулярно однородному магнитному полю. Второй идентичный заряженный
ПодробнееТранзисторные усилители
Physics 3330 Эксперимент № 7, осень 1999 г. Транзисторные усилители Назначение Цель этого эксперимента — разработать биполярный транзисторный усилитель с коэффициентом усиления по напряжению минус 25.Усилитель должен принимать вход
ПодробнееОбзор фундаментальной математики
Обзор фундаментальной математики Как объяснялось в предисловии и в главе 1 вашего учебника, в управленческой экономике микроэкономическая теория применяется к принятию деловых решений. Инструменты принятия решений
ПодробнееЧто такое мультиметр?
Что такое мультиметр? Мультиметр — это устройство, используемое для измерения напряжения, сопротивления и тока в электронике и электрическом оборудовании. Он также используется для проверки целостности цепи между 2 точками, чтобы убедиться, что
ПодробнееРешения на вопросы о лампах
Решения на вопросы о лампах Примечание. Мы сделали несколько основных схем с лампами, по сути, три основных, о которых я могу вспомнить. Я суммировал наши результаты ниже.Для сдачи выпускного экзамена вы должны понимать
ПодробнееКак измерить емкость с помощью мультиметра
Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя результирующее напряжение и затем вычисляя емкость.
Предупреждение: Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Перед тем, как дотронуться до него или провести измерение, а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце).Обязательно используйте соответствующие средства индивидуальной защиты.
Для безопасной разрядки конденсатора: После отключения питания подключите 5-ваттный резистор 20 000 Ом к клеммам конденсатора на пять секунд. Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.
- Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено. Если конденсатор используется в цепи переменного тока, настройте мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, настройте цифровой мультиметр на измерение постоянного напряжения.
- Осмотрите конденсатор. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор.
- Поверните циферблат в режим измерения емкости ( ). Символ часто разделяет точку на циферблате с другой функцией. Помимо регулировки шкалы, для активации измерения обычно требуется нажать функциональную кнопку. За инструкциями обратитесь к руководству пользователя мультиметра.
- Для корректного измерения необходимо удалить конденсатор из цепи.Разрядите конденсатор, как описано в предупреждении выше. Примечание: Некоторые мультиметры поддерживают относительный (REL) режим. При измерении низких значений емкости можно использовать относительный режим для удаления емкости измерительных проводов. Чтобы перевести мультиметр в относительный режим измерения емкости, оставьте измерительные провода открытыми и нажмите кнопку REL. Это удаляет значение остаточной емкости измерительных проводов.
- Подключите измерительные провода к клеммам конденсатора. Держите измерительные провода подключенными в течение нескольких секунд, чтобы мультиметр автоматически выбрал правильный диапазон.
- Прочтите отображаемое измерение. Если значение емкости находится в пределах диапазона измерения, мультиметр отобразит значение конденсатора. Он будет отображать OL, если а) значение емкости выше диапазона измерения или б) конденсатор неисправен.
Обзор измерения емкости
Поиск и устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.
Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора.Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Выход из строя конденсатора жесткого пуска компрессоров HVAC является хорошим примером этой проблемы. Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию выключателя.
Однофазные двигатели с такими проблемами и однофазные двигатели с конденсаторами с шумом требуют мультиметра для проверки правильности работы конденсаторов. Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.
Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями.Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования. Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.
Стоит знать о некоторых дополнительных факторах, связанных с емкостью:
- Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
- Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
- При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
- Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
- Износ может также изменить значение емкости конденсатора, что может вызвать проблемы.
Источник: Fluke
.