Как замерить заземление мегаомметром: Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения
Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.
Устройство и принцип работы мегаомметра
Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.
В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).
Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.
Конструктивно модели мегаомметров принято разделять на два вида:
- Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
- Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр
Рассмотрим их особенности.
Электромеханический мегаомметр
Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы
Упрощенная схема электромеханического мегаомметраОбозначения:
- Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
- Аналоговый амперметр.
- Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
- Сопротивления.
- Переключатель измерений кОм/Мом.
- Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.
Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:
- Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
- На отображаемые данные влияет равномерность вращения динамо-машины.
- Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
- Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.
Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.
Современная аналоговая модель мегаомметра Ф4102Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.
Электронный мегаомметр
Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.
Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.
Как правильно пользоваться мегаомметром?
Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.
Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.
Испытуемый объект | Уровень напряжения (В) | Минимальное сопротивление изоляции (МОм) |
Проверка электропроводки | 1000,0 | 0,5> |
Бытовая электроплита | 1000,0 | 1,0> |
РУ, Электрические щиты, линии электропередач | 1000,0-2500,0 | 1,0> |
Электрооборудование с питанием до 50,0 вольт | 100,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Электрооборудование с номинальным напряжением до 100,0 вольт | 250,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Электрооборудование с питанием до 380,0 вольт | 500,0-1000,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Оборудование до 1000,0 В | 2500,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Перейдем к методике измерений.
Пошаговая инструкция измерения сопротивления изоляции мегаомметром
Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.
Подготовка к испытаниям
Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).
Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм2. Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.
Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.
Подключение прибора к испытуемой линии
Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.
Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:
- Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра
Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.
- Каждый из проводов проверяется относительно земли.
- Осуществляется проверка каждого провода относительно других жил.
Алгоритм испытаний
Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:
- Подготовительный этап (полностью описан выше).
- Установка переносного заземления для снятия электрического заряда.
- На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
- В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
- Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
- Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
- Отключение переносного заземления с тестируемого объекта.
- Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
- Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
- Снимаем остаточное напряжение при помощи переносного заземления.
- Производим отключение измерительных щупов.
Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.
По итогам испытаний принимается решение о возможности эксплуатации электроустановки.
Правила безопасности при работе с мегаомметром
При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:
- При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
- Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
- При подключении щупов необходимо касаться их изолированных участков (рукоятей).
- После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
- Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.
Подборка видео по теме
«Диагностика» контура делается довольно часто. Измерение величины заземления проводится как при его обустройстве (последний, заключительный этап работы), так и в плане контроля состояния уже имеющегося.
Например, для проверки целостности стержня, оценки возможности использования контура без его реконструкции при значительном увеличении нагрузки на домашнюю электросеть, и в ряде других случаев. И уж тем более определение номинала сопротивления важно, если в цепи эл/питания нет защитных устройств (АВ, УЗО или дифференциального автомата).
Примечание
Для измерения R заземления мультиметр не очень подходит. Почему, поясняется ниже. В интернете встречаются рекомендации, что лучше пользоваться приборами аналоговыми М-416, Ф4103 (М1), ИСЗ-2016, МС-08 или цифровыми серии MRU (модели 105, 120 или 200). А в чем разница, непонятно. Схемы их подключения аналогичны.
Дело в том, что все перечисленные приборы для проведения официальных измерений не подходят. Для этого необходима специальная тестирующая аппаратура. Для «домашнего» же контроля состояния заземления можно использовать любой из образцов, который есть под рукой. Хотя результат будет лишь приблизительным, и это следует учитывать.
Измерение мультиметром
Этот универсальный прибор, если все делать по стандартной, официально утвержденной методике, для таких целей, как отмечено, не подходит. Мультиметр на практике используется лишь для примерной оценки состояния заземления, выявления явных обрывов, то есть отсутствия надежного контакта соответствующего проводника с грунтом. Как это правильно делать описано здесь.
Почему данный тип измерительного прибора применяется лишь в редких случаях?
- Большая погрешность измерений не дает истинного представления о реальном значении сопротивления.
- Стандартная (рекомендуемая) методика не может быть применена, так как согласно ей прибор должен подключаться к 4-м точкам, к тому же разнесенным территориально. С мультиметром это сделать невозможно.
- Официального заключения по результатам измерений таким прибором (задокументированного) не выдаст ни один специалист. Причина вполне объяснима – в нормативных актах использование мультиметра при проверке заземления не предусмотрено.
Тем не менее, есть ситуации, когда без мультиметра не обойтись. Например, на территории с довольно плотной застройкой. Это не позволяет производить измерения на больших расстояниях от здания. А согласно методике, оно должно быть в пределах 30±10 м. Подробнее, как измерить сопротивление с помощью мультиметра можно из видео:
Как подготовить мультиметр
Задача любого измерения – добиться максимальной точности показаний. Что необходимо проделать:
- подобрать «хороший» мультиметр (у друзей, соседей и так далее). Какой лучше выбрать для различных целей описывали вот в этой статье. Подразумевается достаточно новый, а не выпущенный десятилетия тому назад, неповрежденный, с максимально возможным классом точности для этого типа приборов;
- заменить элемент питания. Старая батарейка, частично разряженная, только увеличит погрешность измерения;
- произвести калибровку (если она предусмотрена для конкретной модели).
Как подготовить рабочее место
Даже если вспомогательный электрод изначально при организации заземления и был установлен, то его еще нужно найти. Тем более, если дом построен много лет назад, и территория вокруг него уже несколько раз подвергалась перепланировке, обустройству и так далее. Следовательно, его «дубликат» необходимо поставить самостоятельно.
Для измерения сопротивления подойдет любой металлический штырь (то же арматурный пруток) сечением порядка 5 мм, который вгоняется в землю минимум на 1,5 м на расстоянии 7,5±2,5 от основного. Его найти намного проще, тем более что место расположения должно быть помечено (знаком, символом на стене дома). Хотя несложно определить и визуально – к нему часто тянется по-над поверхностью металлическая проволока (шестерка или восьмерка).
Где измерять сопротивление
Между основным штырем заземления и вновь установленным (дополнительным). Схема показана на рисунке.
Результат замеров позволяет понять, насколько отвечает стержень заземления тем требованиям, которые к нему предъявляются. По сути, измеряется суммарное сопротивление его и грунта. Дело в том, что большая его часть заглублена. В процессе длительной эксплуатации металл подвергается коррозии.
Кроме того, агрессивные хим/соединения вступают с ним в прямой контакт, что вызывает появление на поверхности этого электрода окисной пленки. Как результат – снижение способности стержня отводить в землю эл/ток (наведенный, возникший вследствие пробоя изоляции или в ином аварийном случае). Следовательно, такое заземление уже не способно обеспечить безопасность пользователя (обслуживающего персонала).
- Предварительно определяется сопротивление дополнительного стержня. Его значение при оценке результата не учитывается.
- Величина R заземления должна быть < 0,05 Ом.
- При таком способе измерения погрешность в пределах 15%.
- Диагностику контура необходимо проводить при благоприятных погодных условиях.
Измерение мегаомметром
Принцип измерений тот же самый. Отличия лишь в некоторых моментах.
- Для получения максимально точных показаний прибор необходимо установить в строго горизонтальной плоскости. Перекос ни по одной из осей не допускается.
- Подготовка мегаомметра (измеритель сопротивления заземления) сводится к его проверке на пригодность к измерениям. Сделать это достаточно просто (пример – модель М416).
- Переключатель – в «Контроль».
- Нажимается кнопка и производится вращение рукоятки. Стрелка должна встать на отметке 5 (±0,3). Если показание иное, прибор отбраковывается.
- Как правильно подключать к клеммам измеритель сопротивления заземления провода в зависимости от схемы измерения, показано на его корпусе.
Следует напомнить, что перед началом измерений необходимо произвести визуальный осмотр контура заземления на целостность всех соединений, швов и так далее. И только если дефекты не выявлены, можно приступать к работе с прибором.
Методик измерения сопротивления заземления довольно много. Они предполагают использование различных приборов, схем, и оптимальное решение принимается для конкретного контура индивидуально. Но для самостоятельной диагностики его состояния в домашних условиях достаточно и двух описанных выше.
Если же есть сомнения в правильности определения результатов, большой погрешности и так далее, следует обратиться к профессионалам. К заземлению, учитывая, что оно – составная часть схемы эн/снабжения, пренебрежительно относиться не стоит.
Успехов вам в измерениях!
Как измерить сопротивление заземления с помощью мультиметра и мегаомметра
«Диагностика» контура делается довольно часто. Измерение величины заземления проводится как при его обустройстве (последний, заключительный этап работы), так и в плане контроля состояния уже имеющегося.
Например, для проверки целостности стержня, оценки возможности использования контура без его реконструкции при значительном увеличении нагрузки на домашнюю электросеть, и в ряде других случаев. И уж тем более определение номинала сопротивления важно, если в цепи эл/питания нет защитных устройств (АВ, УЗО или дифференциального автомата).
Дело в том, что все перечисленные приборы для проведения официальных измерений не подходят. Для этого необходима специальная тестирующая аппаратура. Для «домашнего» же контроля состояния заземления можно использовать любой из образцов, который есть под рукой. Хотя результат будет лишь приблизительным, и это следует учитывать.
Измерение мультиметром
Этот универсальный прибор, если все делать по стандартной, официально утвержденной методике, для таких целей, как отмечено, не подходит. Мультиметр на практике используется лишь для примерной оценки состояния заземления, выявления явных обрывов, то есть отсутствия надежного контакта соответствующего проводника с грунтом. Как это правильно делать описано здесь.
Почему данный тип измерительного прибора применяется лишь в редких случаях?
- Большая погрешность измерений не дает истинного представления о реальном значении сопротивления.
- Стандартная (рекомендуемая) методика не может быть применена, так как согласно ей прибор должен подключаться к 4-м точкам, к тому же разнесенным территориально. С мультиметром это сделать невозможно.
- Официального заключения по результатам измерений таким прибором (задокументированного) не выдаст ни один специалист. Причина вполне объяснима – в нормативных актах использование мультиметра при проверке заземления не предусмотрено.
Тем не менее, есть ситуации, когда без мультиметра не обойтись. Например, на территории с довольно плотной застройкой. Это не позволяет производить измерения на больших расстояниях от здания. А согласно методике, оно должно быть в пределах 30±10 м. Подробнее, как измерить сопротивление с помощью мультиметра можно из видео:
Как подготовить мультиметр
Задача любого измерения – добиться максимальной точности показаний. Что необходимо проделать:
- подобрать «хороший» мультиметр (у друзей, соседей и так далее). Какой лучше выбрать для различных целей описывали вот в этой статье. Подразумевается достаточно новый, а не выпущенный десятилетия тому назад, неповрежденный, с максимально возможным классом точности для этого типа приборов;
- заменить элемент питания. Старая батарейка, частично разряженная, только увеличит погрешность измерения;
- произвести калибровку (если она предусмотрена для конкретной модели).
Как подготовить рабочее место
Даже если вспомогательный электрод изначально при организации заземления и был установлен, то его еще нужно найти. Тем более, если дом построен много лет назад, и территория вокруг него уже несколько раз подвергалась перепланировке, обустройству и так далее. Следовательно, его «дубликат» необходимо поставить самостоятельно.
Для измерения сопротивления подойдет любой металлический штырь (то же арматурный пруток) сечением порядка 5 мм, который вгоняется в землю минимум на 1,5 м на расстоянии 7,5±2,5 от основного. Его найти намного проще, тем более что место расположения должно быть помечено (знаком, символом на стене дома). Хотя несложно определить и визуально – к нему часто тянется по-над поверхностью металлическая проволока (шестерка или восьмерка).
Где измерять сопротивление
Между основным штырем заземления и вновь установленным (дополнительным). Схема показана на рисунке.
Результат замеров позволяет понять, насколько отвечает стержень заземления тем требованиям, которые к нему предъявляются. По сути, измеряется суммарное сопротивление его и грунта. Дело в том, что большая его часть заглублена. В процессе длительной эксплуатации металл подвергается коррозии.
- Предварительно определяется сопротивление дополнительного стержня. Его значение при оценке результата не учитывается.
- Величина R заземления должна быть Измерение мегаомметром
Принцип измерений тот же самый. Отличия лишь в некоторых моментах.
- Для получения максимально точных показаний прибор необходимо установить в строго горизонтальной плоскости. Перекос ни по одной из осей не допускается.
- Подготовка мегаомметра (измеритель сопротивления заземления) сводится к его проверке на пригодность к измерениям. Сделать это достаточно просто (пример – модель М416).
- Переключатель – в «Контроль».
- Нажимается кнопка и производится вращение рукоятки. Стрелка должна встать на отметке 5 (±0,3). Если показание иное, прибор отбраковывается.
- Как правильно подключать к клеммам измеритель сопротивления заземления провода в зависимости от схемы измерения, показано на его корпусе.
Методик измерения сопротивления заземления довольно много. Они предполагают использование различных приборов, схем, и оптимальное решение принимается для конкретного контура индивидуально. Но для самостоятельной диагностики его состояния в домашних условиях достаточно и двух описанных выше.
Если же есть сомнения в правильности определения результатов, большой погрешности и так далее, следует обратиться к профессионалам. К заземлению, учитывая, что оно – составная часть схемы эн/снабжения, пренебрежительно относиться не стоит.
Как проверить качество заземления
Согласно Правил устройства электроустановок, любые электрические сети и оборудование, работающее с напряжением свыше 50 вольт переменного и 120 вольт постоянного тока, должны иметь защитное заземление. Это касается помещений без признаков условий повышенной опасности. В опасных помещениях (повышенная влажность, токопроводящая пыль и прочее), требования еще жестче. Но мы в данном материале будем рассматривать в основном жилые дома. По умолчанию принимаем, что заземление должно быть.
При монтаже новых линий энергоснабжения, заземление будет установлено, и владелец помещения может за этим проследить (или подключить его самостоятельно). В случае, когда вы проживаете (работаете) в уже готовом помещении, возникает вопрос: как проверить заземление? В первую очередь, надо убедиться в том, что оно у вас есть. Вне зависимости от формального соблюдения ПУЭ, это касается жизни и здоровья людей.
Проверка наличия и правильности подключения защитного заземления
Как минимум, необходимо заглянуть в распределительный щит вашей квартиры (дома, мастерской).
По умолчанию принимаем условие: электропитание однофазное. Так будет проще разобраться в материале.
В щитке должно быть три независимых входных линии:
- Фаза (как правило, обозначается проводом с коричневой изоляцией). Идентифицируется индикаторной отверткой.
- Рабочий ноль (цветовая маркировка — синяя или голубая).
- Защитное заземление (желто-зеленая изоляция).
Если электропитающий вход выполнен именно так, скорее всего, заземление у вас есть. Далее проверяем независимость рабочего ноля и защитного заземления между собой. К сожалению, некоторые электрики (даже в профессиональных бригадах), вместо заземления используют так называемое зануление. В качестве защиты используется рабочий ноль: к нему просто подсоединяется заземляющая шина. Это является нарушением Правил устройства электроустановок, использование такой схемы опасно.
Как проверить, заземление или зануление подключено в качестве защиты?
Если соединение проводов очевидно — защитное заземление отсутствует: у вас организовано зануление. Однако видимое правильное подключение еще не означает, что «земля» есть и она работает. Проверка заземления включает в себя несколько этапов. Начинаем с измерения напряжения между защитным заземлением и рабочим нулем.
Фиксируем значение между нулем и фазой, и тут же проводим измерение между фазой и защитным заземлением. Если значения одинаковые — «земляная» шина имеет контакт с рабочим нулем после физического заземления. То есть, она соединена с нулевой шиной. Это запрещено ПУЭ, потребуется переделка системы подключения. Если показания отличаются друг от друга — у вас правильная «земля».
Дальнейшее измерение заземления проводится с помощью специального оборудования. На этом остановимся подробнее.
Как устроено заземление, и зачем проверять его параметры
Не вдаваясь в подробности, можно сказать, что заземление нужно для соединения корпуса электроустановки с рабочим нулем. Глядя на несколько абзацев выше, можно подумать, что это абсурд. На самом деле имеется ввиду возможность протекания тока от защитного заземления, через физическую землю (грунт), до рабочего нуля ближайшей подстанции. Фактически, это будет короткое замыкание.
Соответственно, при попадании фазы на корпус электроустановки, сработает защитный автомат, и поражения электротоком не будет.
Зачем же нужна проверка сопротивления заземления? Для организации аварийного короткого замыкания, необходима большая сила тока. Если сопротивление контура заземления будет слишком велико, сила тока (в соответствии с законом Ома) снизится, и защитный автомат не сработает.
Еще одна опасность большого сопротивления защитной «земли» в том, что сопротивление тела человека может оказаться меньше. Тогда, при касании рукой аварийной электроустановки, вы гарантированно будете поражены электротоком.
Важно! Само по себе заземление не дает 100% защиты от поражения электротоком.
Когда на корпусе электроустановки окажется фаза, часть напряжения уйдет на компенсацию утечки в физическую землю. Если остаток потенциала превысит 50 вольт, опасность сохранится.
Равно как и защитный автомат без заземления не отключит фазу при попадании на корпус. Он сработает лишь при замыкании нуля с фазой. Полную защиту дает установка автомата и одновременное подключение контура защитной «земли». Существенно повышает уровень безопасности еще и УЗО.
И, наконец о том, что представляет собой контур заземления.
Если вкратце, это несколько металлических штырей (при нормальных природных условиях — три), глубоко погруженных в грунт, соединенных проводниками между собой и шиной заземления в здании.
Проверка параметров защитного заземления
Кроме очевидных составляющих системы защитной «земли»: таких, как контактная колодка, провода, идущие к электроустановкам, соединение с контуром в грунте, важную роль в обеспечении защиты играет собственно земля. Соответственно надо убедиться в следующем:
- Между всеми элементами контура (штыри, соединительные шины, проводник в помещение до клеммной колодки) есть надежное электрическое соединение с минимальным сопротивлением.
- Попавшее на контур напряжение (в случае аварии), растекается по физической земле с максимальным током. Это возможно лишь при хорошем контакте между металлом и грунтом.
- Физические условия местности (грунта) могут обеспечить надежный контакт даже при плохих (с точки зрения электротока) условиях. А именно, пересыхание грунта, растрескивание земли в местах установки заземлителей.
Разумеется, никто не проводит измерения параметров на каждом элементе заземляющей системы. Это потребуется лишь в случае несоответствия нормам, для поиска так называемого «слабого звена».
По какому принципу проводится проверка защитного контура заземления?
Необходимо создать полный аналог заведомо работающего контура, и сравнить показатели с тестируемым объектом. Для этого существуют комплексы проверки рабочего заземления.
Сразу оговоримся: изготовить такой комплект самостоятельно возможно, но дорого и нецелесообразно. Равно как и проверка параметров защитного заземления с помощью стандартных средств измерений (мультиметр), не покажет достоверной картины. Да и сформировать высокое напряжение, необходимое для измерения параметров растекания, тестер не сможет. Поэтому лучше либо брать оборудование напрокат, либо приглашать мастера.
Вы можете купить подобный набор, но вряд ли он себя окупит в обозримом будущем. Даже с учетом того, периодичность проверки заземляющих устройств составляет один раз в году (и для жилых, и для промышленных объектов), проще получать разовый доступ к оборудованию.
Типовая схема включения прибора
Работает принцип одновременного использования вольтметра-амперметра на испытуемом участке грунта. Есть три величины: сопротивление, напряжение, сила тока. Параметры вычисляются по закону Ома. Нам известно первоначальное напряжение, а прибор поддерживает силу тока. Зная падение напряжения между тестируемыми стержнями, мы с высокой точностью можем вычислить сопротивление контура заземления.
Погрешность есть, но она несущественна в сравнении с измеряемыми величинами. Сопротивление контакта тестового электрода с грунтом вообще принимается за нулевое, при условии, что стержень чистый и не покрыт коррозией.
Большинство современных приборов сразу выдают готовые параметры защитного заземления, а в старых (при этом не менее надежных и точных) конструкциях — надо будет выполнить простую операцию деления. В соответствии с законом Ома.
Проверка заземления мегаомметром проходит по тому же принципу, только погрешность измерения будет выше. Все-таки земля не является проводником электричества в привычном смысле.
Мегаомметр лучше использовать для оценки иных факторов безопасности
Например, сопротивления изоляции. Речь пойдет не о прямой опасности. То есть, если вы схватитесь рукой за провод, в котором диэлектрические свойства изоляции в норме, вы не получите поражение электротоком.
Но есть и дополнительная опасность: пробой изоляции под нагрузкой. Этот неприятный факт приводит к сбоям в работе, и что более страшно — к возгораниям электроцепи.
Мегаомметр для измерения сопротивления изоляции представляет собой генератор напряжения и точный прибор в одном корпусе.
Классический вариант (с успехом применяется и сейчас), вырабатывает напряжение до 2500 вольт. Не стоит бояться, токи при работе мизерные. Но держаться нужно только за изолированные рукояти измерительных кабелей.
Высокий потенциал напряжения легко выявляет изъяны в изоляции, и стрелка прибора показывает истинное сопротивление. Перед началом работ следует отключить все подающие напряжение автоматы, и избавиться от остаточного потенциала: заземлить провод.
Для измерения пробоя между проводами в одном кабеле используются два провода. Они подсоединяются к жилам отключенного кабеля, и проводится замер. Если сопротивление ниже нормы, кабель отбраковывается. Никто не знает, когда место потенциального пробоя принесет неприятности.
Для измерения утечки на землю, один провод соединяется с защитным заземлением (в зоне прокладки тестируемого кабеля), а второй к центральной жиле. Напряжение для тестирования должно быть выше. Если провод невозможно приложить к «земле», измерение проводится при помощи прикладывания второго электрода к внешней поверхности изоляции.
При наличии экрана (бронировки кабеля), применяется трехпроводная система замеров. третий провод соединяется с экраном тестируемого кабеля.
Общая схема именно такая, но каждая модель прибора имеет собственную инструкцию. В современных мегаомметрах с цифровым дисплеем, разобраться еще проще, чем в старых стрелочных.
С помощью мегаомметра можно тестировать еще и обмотки двигателей. Но это отдельная тема. Информация для тех, кто думает, что все эти приборы узкопрофильные: с помощью системы шунтов, можно превратить мегаомметр в прецизионный омметр или вольтметр.
Видео по теме
Измерение сопротивления заземления
Заземление – это уравнивание потенциалов цепи заземления с потенциалом земли, путем объединения с землей. При заземлении объединяется проводом корпус микроволновой печи или корпус электрического щитка с землей. Заземление необходимо для защиты человека от удара электрическим током из-за неисправной стиральной машины или неисправной микроволновой печи, когда человек коснется их корпуса. Заземление нужно если рядом электричество и вода, например неисправный электрический бойлер без заземления может ударить током через кран. Заземление может спасти вам жизнь. Если у вас в розетке в ванной есть заземления и установлено УЗО, то при попадании воды на удлинитель ток не убьет вас, всего лишь выключится свет.
Сопротивления заземления — это сопротивление между цепью заземления и землей. Данная величина измеряется в Ом и должна стремиться к нулю. Идеальное значение возможно только теоретически, поскольку любой проводник создает определенное сопротивление.
Измерение сопротивления заземления дает возможность узнать технические состояние, контура заземления и позволяет определить уровень безопасность электрической сети. Измерять сопротивление заземление нужно после ввода здания или объекта. Далее проверка заземления проводится на основании п. 2.7.9. ПТЭЭП согласно плану проверок на объект. Измерять сопротивление заземления необходимо не менее одного раза в 12 лет. Осмотр заземляющего контура должен проводиться не менее двух раз в год.
Измерение сопротивление металлосвязи, защитных проводников заземления проводится согласно ГОСТ Р 50571.16 по двухпроводному и четырех проводному методу. При измерении по двухпроводному методу не учитывается сопротивление самих проводов и переходных сопротивлений крокодилов. В измерителе сопротивления заземления ИС-20 имеется возможность исключить влияния сопротивления измерительных проводов, при измерении двухпроводным способом.
Как измерять сопротивление заземления/ Рассмотрим процесс измерения сопротивления заземления с помощью прибора ИС-20. Измерение проводится согласно ГОСТ Р 50571.16-2007 Электроустановки низковольтные Часть 6 Испытания. Измерение сопротивление заземлителя с помощью штырей по четырех проводному методу
- Необходимо отключить заземлитель от шины заземления.
- К заземлителю подсоединить измерительные провода к разъемам Т1 и П1. Измерительный провод Т1 компенсирует сопротивление измерительного кабеля П1.
- Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с разъемом П2.
- Ттоковый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
- Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
- Начать измерение, нажав кнопку Rx.
Измерение сопротивление заземлителя с помощью штырей по трехпроводному методу
- Необходимо отключить заземлитель от шины заземления.
- К заземлителю подсоединить измерительный провод к разъему П1.
- Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с разъемом П2.
- Ттоковый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
- Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
- Начать измерение, нажав кнопку Rx.
Измерение сопротивления заземлителя с применением измерительных клещей по четырехпроводному методу
- С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
- Заземлитель обхватить клещами и подключить к разъему “клещи”.
- К заземлителю выше измерительных клещей подсоединить измерительные провода к разъемам Т1 и П1. Измерительный провод Т1 компенсирует сопротивление измерительного кабеля П1.
- Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с раземом П2.
- Токовый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
- Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
- Начать измерение, нажав кнопку Rx.
Измерение сопротивления заземлителя с применением измерительных клещей по трехпроводному методу
- С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
- Заземлитель обхватить клещами и подключить к разъему “клещи”.
- К заземлителю подсоединить измерительный провод к разъему П1.
- Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с раземом П2.
- Токовый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
- Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
- Начать измерение, нажав кнопку Rx.
Измерение сопротивления заземления с измерительными клещами и передающими клещами
- С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
- Заземлитель обхватить измерительными клещами и подключить к разъему П1.
- Клещами передающими обхватить шину заземления не менее чем через 30 см от измерительных клещей. Передающие клещи позволяют проводить измерение сопротивления заземления без штырей, где уложен асфальт. Если схема заземления многоэлементная, показания будут завышенные, т.к. измерение включают все элементы заземления.
- Переключить прибор в режим измерения двумя клещами, убедиться величина тока в шине заземления не более 2 А.
- Начать измерение, нажав кнопку Rx.
Измерение удельного сопротивления грунта
Удельное сопротивление грунта определяется по методике Вернера. Согласно этой методике штыри втыкают на одинаковом расстоянии d по прямой линии. Расстояние между штырями d должно быть более 5 раз больше глубины штырей. Удельное сопротивление грунта измеряется в Ом*м. Штыри 4 штуки соединить с прибором измерительными проводами к разъемам Т1, П1, П2, Т2.
Нормы сопротивления заземления электроустановок регламентируются ПЭЭП. Правила эксплуатации электроустановок потребителей для приборов напряжением питания до 1000 В таблица 42. Для приборов с напряжением питания 220 В и 380 В с заземленной нейтралью сопротивление заземления на вводе должно быть не более 30 Ом. При удельном сопротивлении грунта более 100 Ом*м сопротивление заземления вычисляется по формуле 0,3 от удельного сопротивления грунта. Для грунта с удельным сопротивлением 300 Ом*м допустимое сопротивление заземления до 90 Ом.
Измерение сопротивления заземления рекомендуется проводить в летнее время года с сухим грунтом и в зимнее время года когда грунт промерз, в этом случае удельное сопротивление грунта максимально. При изменении температуры грунта с 0 до -5 градусов, удельное сопротивление грунта возрастает в 8 раз. При влажном грунте удельное сопротивление уменьшается в разы, что положительно влияет на сопротивление заземления. Сопротивление заземления не должно превышать нормативов в любую погоду.
{SOURCE}
Заземляющее устройство – это совокупность проводников из металла, соединенных с деталями электроустановки, и заземлителя (один или несколько проводников, которые закапываются в землю). Их используют, чтобы повысить безопасность электроустановок и с целью защиты людей от воздействия электрического тока.
Если возникает аварийная ситуация, когда происходит пробой изоляции проводника, напряжение через заземление уходит в землю, не причиняя вреда человеку, который соприкасается с оборудованием. Именно поэтому необходимо, чтобы заземление всегда находилось в исправном состоянии.
Одной из его важных характеристик является сопротивление, величина которого регламентируется нормативными документами.
Основные понятия
Сопротивление заземляющего устройства (оно так же именуется сопротивление растеканию тока) имеет прямо пропорциональную взаимосвязь с напряжением и обратно пропорциональную с током растекания в «землю».
Можно выделить три вида заземлений:
- рабочее. С его помощью заземляются определенные места, оно используется в процессе эксплуатации электрооборудования;
- защита от молний. Молниеприемники заземляются с целью перенаправления на металлические конструкции токов, которые возникают под воздействием молний;
- защитное. Используется для защиты от поражающего действия электрического тока, если кто-то непреднамеренно соприкоснется с деталью, которая при нормальной работе не должна пропускать ток.
Существует несколько методик измерения сопротивления заземляющих устройств, которые будут рассмотрены более детально. Способы измерений определяются специалистами электротехнической лаборатории и зависят от конкретных условий эксплуатации оборудования.
Применение амперметра и вольтметра
Метод заключается в следующем. С двух сторон от конструкции заземления, которое подлежит проверке, на равном удалении (около 20 метров) размещают два электрода (основной и дополнительный), после чего на них подается переменный ток. По образованной таким образом цепи начинает протекать электрический ток, а его значение отображается на дисплее амперметра.
Подключенный к заземляющему устройству и основному заземлителю вольтметр покажет уровень напряжения. Чтобы определить общее сопротивление заземления нужно воспользоваться законом Ома, разделив значение напряжения, показанного вольтметром, на ток, значение которого показывает амперметр.
Этот способ измерений является наиболее простым, но имеет невысокий уровень точности, поэтому чаще всего используются иные методы.
Компенсационный метод
Данная методика дает возможность проводить измерения сопротивления заземления с использованием готовых приборов, которые выпускает промышленность. Известные модели таких приборов – Ф4103-М1, М416, ИС-10 и другие.
Как и в предыдущей методике, здесь применяются два электрода, углубляемые аналогичным образом в почву. Далее необходимо к заземляющему устройству подключить сам измерительный прибор, а его провода зафиксировать на укрепленных в грунте электродах.
Генерируется ток, движущийся сквозь первичную обмотку трансформатора прибора, которым осуществляется измерение сопротивления заземляющего проводника. Одновременно с этим на вторичной обмотке наводится ЭДС, и вольтметр показывает определенное значение.
С помощью реохорда на измерительном приборе добиваются того, чтобы стрелка на вольтметре находилась в нулевом положении. Это будет свидетельствовать о равенстве напряжений U1 и U2. Вращая ручку реостата, необходимо зафиксировать значение сопротивления заземления по показаниям стрелки реохорда.
Трехпроводный метод
В этом методе измерение сопротивления заземления проводится с помощью специальных измерителей, как старого образца (например, мегаомметром), так и современного, использующих цифровые технологии и микропроцессоры (например, MRU-200).
Необходимо очистить от коррозии шинопровод заземляющего устройства, после чего подключить к нему контакт измерителя. На указанном в инструкции расстоянии в почву вбиваются электроды, к которым прикрепляются катушки.
Их концы подключают к измерительному прибору и убеждаются, что схема готова к функционированию.
Необходимо учитывать, что напряжение помехи между укрепленными в земле электродами не должно быть больше чем 24 Вольта. Если этого не удалось добиться, то необходимо электроды разместить иначе.
Нажатием кнопки на приборе запускают процесс автоматического измерения сопротивления, наблюдая на дисплее показания. Для большей точности следует провести несколько замеров и убедиться, что показания отличаются друг от друга не более чем на 5%.
Если имеется необходимость добиться повышенной точности измерения, может использоваться четырехпроводный метод, который исключает влияние сопротивления измерительных приборов.
Токовые клещи
Главным достоинством данного метода является то, что не нужно использовать дополнительное оборудование и производить отключение заземления.
Достаточно просто использовать клещи для измерения величины сопротивления.
Токовые клещи функционируют на основе взаимоиндукции. В головке измерительных клещей спрятана обмотка (первичная обмотка). Ток в ней генерирует ток в заземляющем проводнике, играющем роль вторичной обмотки.
Чтобы узнать величину сопротивления, нужно разделить показатель ЭДС вторичной обмотки на значение тока, которое было измерено клещами (оно появляется на дисплее клещей).
В более современных приборах ничего делить не надо. При соответствующих настройках значение сопротивления заземления сразу же отображается на дисплее.
Периодичность проверки
Проведение визуальных осмотров, измерений и вскрытие грунта (если это нужно) проводится на основании графика, который составляется и утверждается предприятием, однако эти сроки должны находиться в пределах 12 лет.
Наиболее корректные результаты можно получить, если померить сопротивление заземления в середине лета или зимы. Именно тогда почва обладает максимальным сопротивлением.
Важно помнить, что измерения стоит проводить в сухую погоду.
Минимальный уровень сопротивления заземляющих устройств, который допускается, нормируется «Правилами устройства электроустановок».
Если электроустановка работает с напряжением до 1000 В, то значение сопротивления должно находиться в пределах от 2 до 8 Ом в зависимости от уровня напряжения (2 – если 660 В, 4 – если 380 В, 8 – если 220 В).
В электроустановках напряжением свыше 1000 В уровень сопротивления не должен превышать 0,5 Ом.
Составление протокола
Когда осмотр окончен, проведены все необходимые измерения и испытания, работники организации, проводившей работы, составляют «Протокол измерения сопротивления заземления». Он оформляется в соответствии с ГОСТом Р 50571.16-2007 Электроустановки низковольтные. Часть 6. Испытания. Приложение Н.
Этот нормативный акт условно состоит из трех структурных частей:
- данные о специальной организации, которая выполняла порученные работы по измерению сопротивления заземления, и заказчике этих работ;
- начальная статичная информация;
- итоги проведения измерений.
Основываясь на ГОСТе, сведения об организации, проводившей измерения, должны представляться в развернутом виде. Необходимо указать название и адрес, на который зарегистрирована данная лаборатория, номер регистрации, информацию об аттестатах аккредитации (когда был выдан и до какой даты действует).
Указывают название организации, которая проводила аккредитацию или свидетельство о регистрации в структуре Государственного Энергонадзора.
Помимо этого протокол должен содержать сведения о заказчике, монтажной и проектной организациях.
Начальная статичная информация – это данные об электроустановке и ее системе заземления, информация о почве, в которой закреплено заземление, температуры окружающей среды, уровень атмосферного давления на момент испытаний. То есть это все данные об условиях, в которых проводились измерения сопротивления заземления, и приборах, которые для этого использовались.
Итоги проведенных измерений вносят в табличную форму, где указывают полученные приборами данные.
В конце протокола обязательно дается заключении о пригодности заземления для дальнейшего использования, а так же отражаются фамилии работников, которые проводили измерительные работы.
Согласно Правил устройства электроустановок, любые электрические сети и оборудование, работающее с напряжением свыше 50 вольт переменного и 120 вольт постоянного тока, должны иметь защитное заземление. Это касается помещений без признаков условий повышенной опасности. В опасных помещениях (повышенная влажность, токопроводящая пыль и прочее), требования еще жестче. Но мы в данном материале будем рассматривать в основном жилые дома. По умолчанию принимаем, что заземление должно быть.
При монтаже новых линий энергоснабжения, заземление будет установлено, и владелец помещения может за этим проследить (или подключить его самостоятельно). В случае, когда вы проживаете (работаете) в уже готовом помещении, возникает вопрос: как проверить заземление? В первую очередь, надо убедиться в том, что оно у вас есть. Вне зависимости от формального соблюдения ПУЭ, это касается жизни и здоровья людей.
Проверка наличия и правильности подключения защитного заземления
Как минимум, необходимо заглянуть в распределительный щит вашей квартиры (дома, мастерской).
По умолчанию принимаем условие: электропитание однофазное. Так будет проще разобраться в материале.
В щитке должно быть три независимых входных линии:
- Фаза (как правило, обозначается проводом с коричневой изоляцией). Идентифицируется индикаторной отверткой.
- Рабочий ноль (цветовая маркировка — синяя или голубая).
- Защитное заземление (желто-зеленая изоляция).
Если электропитающий вход выполнен именно так, скорее всего, заземление у вас есть. Далее проверяем независимость рабочего ноля и защитного заземления между собой. К сожалению, некоторые электрики (даже в профессиональных бригадах), вместо заземления используют так называемое зануление. В качестве защиты используется рабочий ноль: к нему просто подсоединяется заземляющая шина. Это является нарушением Правил устройства электроустановок, использование такой схемы опасно.
Как проверить, заземление или зануление подключено в качестве защиты?
Если соединение проводов очевидно — защитное заземление отсутствует: у вас организовано зануление. Однако видимое правильное подключение еще не означает, что «земля» есть и она работает. Проверка заземления включает в себя несколько этапов. Начинаем с измерения напряжения между защитным заземлением и рабочим нулем.
Фиксируем значение между нулем и фазой, и тут же проводим измерение между фазой и защитным заземлением. Если значения одинаковые — «земляная» шина имеет контакт с рабочим нулем после физического заземления. То есть, она соединена с нулевой шиной. Это запрещено ПУЭ, потребуется переделка системы подключения. Если показания отличаются друг от друга — у вас правильная «земля».
Дальнейшее измерение заземления проводится с помощью специального оборудования. На этом остановимся подробнее.
Как устроено заземление, и зачем проверять его параметры
Не вдаваясь в подробности, можно сказать, что заземление нужно для соединения корпуса электроустановки с рабочим нулем. Глядя на несколько абзацев выше, можно подумать, что это абсурд. На самом деле имеется ввиду возможность протекания тока от защитного заземления, через физическую землю (грунт), до рабочего нуля ближайшей подстанции. Фактически, это будет короткое замыкание.
Соответственно, при попадании фазы на корпус электроустановки, сработает защитный автомат, и поражения электротоком не будет.
Зачем же нужна проверка сопротивления заземления? Для организации аварийного короткого замыкания, необходима большая сила тока. Если сопротивление контура заземления будет слишком велико, сила тока (в соответствии с законом Ома) снизится, и защитный автомат не сработает.
Еще одна опасность большого сопротивления защитной «земли» в том, что сопротивление тела человека может оказаться меньше. Тогда, при касании рукой аварийной электроустановки, вы гарантированно будете поражены электротоком.
Важно! Само по себе заземление не дает 100% защиты от поражения электротоком.
Когда на корпусе электроустановки окажется фаза, часть напряжения уйдет на компенсацию утечки в физическую землю. Если остаток потенциала превысит 50 вольт, опасность сохранится.
Равно как и защитный автомат без заземления не отключит фазу при попадании на корпус. Он сработает лишь при замыкании нуля с фазой. Полную защиту дает установка автомата и одновременное подключение контура защитной «земли». Существенно повышает уровень безопасности еще и УЗО.
И, наконец о том, что представляет собой контур заземления.
Если вкратце, это несколько металлических штырей (при нормальных природных условиях — три), глубоко погруженных в грунт, соединенных проводниками между собой и шиной заземления в здании.
Проверка параметров защитного заземления
Кроме очевидных составляющих системы защитной «земли»: таких, как контактная колодка, провода, идущие к электроустановкам, соединение с контуром в грунте, важную роль в обеспечении защиты играет собственно земля. Соответственно надо убедиться в следующем:
- Между всеми элементами контура (штыри, соединительные шины, проводник в помещение до клеммной колодки) есть надежное электрическое соединение с минимальным сопротивлением.
- Попавшее на контур напряжение (в случае аварии), растекается по физической земле с максимальным током. Это возможно лишь при хорошем контакте между металлом и грунтом.
- Физические условия местности (грунта) могут обеспечить надежный контакт даже при плохих (с точки зрения электротока) условиях. А именно, пересыхание грунта, растрескивание земли в местах установки заземлителей.
Разумеется, никто не проводит измерения параметров на каждом элементе заземляющей системы. Это потребуется лишь в случае несоответствия нормам, для поиска так называемого «слабого звена».
По какому принципу проводится проверка защитного контура заземления?
Необходимо создать полный аналог заведомо работающего контура, и сравнить показатели с тестируемым объектом. Для этого существуют комплексы проверки рабочего заземления.
Сразу оговоримся: изготовить такой комплект самостоятельно возможно, но дорого и нецелесообразно. Равно как и проверка параметров защитного заземления с помощью стандартных средств измерений (мультиметр), не покажет достоверной картины. Да и сформировать высокое напряжение, необходимое для измерения параметров растекания, тестер не сможет. Поэтому лучше либо брать оборудование напрокат, либо приглашать мастера.
Вы можете купить подобный набор, но вряд ли он себя окупит в обозримом будущем. Даже с учетом того, периодичность проверки заземляющих устройств составляет один раз в году (и для жилых, и для промышленных объектов), проще получать разовый доступ к оборудованию.
Типовая схема включения прибора
Работает принцип одновременного использования вольтметра-амперметра на испытуемом участке грунта. Есть три величины: сопротивление, напряжение, сила тока. Параметры вычисляются по закону Ома. Нам известно первоначальное напряжение, а прибор поддерживает силу тока. Зная падение напряжения между тестируемыми стержнями, мы с высокой точностью можем вычислить сопротивление контура заземления.
Погрешность есть, но она несущественна в сравнении с измеряемыми величинами. Сопротивление контакта тестового электрода с грунтом вообще принимается за нулевое, при условии, что стержень чистый и не покрыт коррозией.
Большинство современных приборов сразу выдают готовые параметры защитного заземления, а в старых (при этом не менее надежных и точных) конструкциях — надо будет выполнить простую операцию деления. В соответствии с законом Ома.
Проверка заземления мегаомметром проходит по тому же принципу, только погрешность измерения будет выше. Все-таки земля не является проводником электричества в привычном смысле.
Мегаомметр лучше использовать для оценки иных факторов безопасности
Например, сопротивления изоляции. Речь пойдет не о прямой опасности. То есть, если вы схватитесь рукой за провод, в котором диэлектрические свойства изоляции в норме, вы не получите поражение электротоком.
Но есть и дополнительная опасность: пробой изоляции под нагрузкой. Этот неприятный факт приводит к сбоям в работе, и что более страшно — к возгораниям электроцепи.
Мегаомметр для измерения сопротивления изоляции представляет собой генератор напряжения и точный прибор в одном корпусе.
Классический вариант (с успехом применяется и сейчас), вырабатывает напряжение до 2500 вольт. Не стоит бояться, токи при работе мизерные. Но держаться нужно только за изолированные рукояти измерительных кабелей.
Высокий потенциал напряжения легко выявляет изъяны в изоляции, и стрелка прибора показывает истинное сопротивление. Перед началом работ следует отключить все подающие напряжение автоматы, и избавиться от остаточного потенциала: заземлить провод.
Для измерения пробоя между проводами в одном кабеле используются два провода. Они подсоединяются к жилам отключенного кабеля, и проводится замер. Если сопротивление ниже нормы, кабель отбраковывается. Никто не знает, когда место потенциального пробоя принесет неприятности.
Для измерения утечки на землю, один провод соединяется с защитным заземлением (в зоне прокладки тестируемого кабеля), а второй к центральной жиле. Напряжение для тестирования должно быть выше. Если провод невозможно приложить к «земле», измерение проводится при помощи прикладывания второго электрода к внешней поверхности изоляции.
При наличии экрана (бронировки кабеля), применяется трехпроводная система замеров. третий провод соединяется с экраном тестируемого кабеля.
Общая схема именно такая, но каждая модель прибора имеет собственную инструкцию. В современных мегаомметрах с цифровым дисплеем, разобраться еще проще, чем в старых стрелочных.
С помощью мегаомметра можно тестировать еще и обмотки двигателей. Но это отдельная тема. Информация для тех, кто думает, что все эти приборы узкопрофильные: с помощью системы шунтов, можно превратить мегаомметр в прецизионный омметр или вольтметр.
Видео по теме
Хорошая реклама
То, что правилами требуется периодически измерять сопротивление заземления, это не просто чья-то придумка или блажь, это, прежде всего, вопрос безопасности человеческой жизни. Существуют определённые нормативы и замеры должны им соответствовать. В статье мы рассмотрим, как замерить сопротивление заземления мультиметром и другими измерительными приборами.
Перед тем, как проверить заземление в частном доме очень важно, чтобы вы поняли саму суть этой процедуры, для чего она выполняется, какую основную цель преследует, почему это так необходимо?
Что такое заземление?
Защитное заземление – это преднамеренное соединение с землёй тех частей электрического оборудования, которые при нормальной работе электросети не находятся под действием напряжения, но могут попасть под его влияние в результате пробоя изоляции. Основной целью заземления является защита людей от действия электрического тока.
Главная составляющая защитного заземления – это контур. Он представляет собой конструкцию естественных или искусственных заземлителей, то есть несколько заземляющих электродов соединяются в единое целое. В качестве электродов чаще всего используют прутья из стали. Медные пруты применяют реже в силу того, что это дорого.
Но если есть финансовые возможности, то имейте в виду, что медь является идеальным вариантом и наилучшим проводником.
По логике понятно, что контур заземления должен располагаться в земле. Так как нас интересует защита дома, то неподалёку от строения и силового щитка выбирается подходящее место с нормальным грунтом. В землю вбиваются три штыря так, чтобы они располагались треугольником, и расстояние между ними было 1,5 м.
Эти электроды необходимо вбить максимально глубоко (их длина должна быть не менее 2 м).
Теперь понадобится сварочный аппарат и металлическая шина, с помощью которых электроды нужно увязать между собой в равносторонний треугольник. Контур готов, теперь к нему нужно закрепить медный проводник, который дальше идёт в щиток и подсоединяется там к заземляющей шинке. А на эту шинку выводятся заземляющие проводники от всех розеток.
Перед использованием необходимо проверить контур на заземляющее сопротивление.
О том, что такое заземление – на следующем видео:
В чём суть работы заземления?
Принцип действия защитного заземления основывается на главном качестве электрического тока – протекать по проводникам, которые обладают наименьшим сопротивлением. На сопротивление человеческого тела оказывают влияние многие факторы, но в среднем оно приравнивается к 1000 Ом.
Согласно Правилам устройства электроустановок (ПУЭ) контур заземления должен иметь сопротивление гораздо меньшее (допускается не более 4 Ом).
А теперь смотрите, в чём заключается принцип действия защитного заземления. Если какой-то электрический прибор неисправен, то есть произошёл пробой изоляции и на его корпусе появился потенциал, и кто-то прикоснулся к нему, то ток с поверхности прибора будет уходить в землю через человека, путь будет выглядеть как «рука-тело-нога». Это смертельная опасность, величина тока 100 мА вызывает необратимые процессы.
Защитное заземление сводит этот риск до минимума. Современные электроприборы имеют внутреннее соединение заземляющего контакта штепсельной вилки с корпусом. Когда прибор посредством вилки включён в розетку и в результате повреждения на его корпусе появляется потенциал, то он уйдёт в землю по заземляющему проводнику с низким сопротивлением. То есть ток не пойдёт через человека с сопротивлением 1000 Ом, а побежит через проводник, у которого эта величина намного меньше.
Вот почему важным этапом в обустройстве электрического хозяйства в наших жилых домах является измерение сопротивления заземления. Нам нужна 100 % уверенность, что эта величина ниже наших человеческих 1000 Ом.
И запомните, что это процедура не разового характера, измеряться сопротивление должно периодически, а сам контур надо постоянно поддерживать в исправном состоянии.
Проверка заземления розеток
Если вы купили дом или квартиру, и вся электрическая часть в помещении уже была смонтирована до вас, как проверить заземление в розетке?
Для начала предлагаем вам произвести визуальный осмотр. Отключите вводной автомат на квартиру и разберите одну розетку. У неё должна быть соответствующая клемма, к которой подсоединяется заземляющий проводник, как правило, он имеет жёлто-зелёное цветовое исполнение. Если всё это присутствует, значит, розетка заземлена. Если же вы обнаружили только два провода – коричневый и синий (фазу и ноль), то розетка не имеет защитного заземления.
В то же время наличие жёлто-зелёного проводника ещё не говорит об исправности заземления.
Эффективность контура можно определить специальным прибором, без которого не обходится ни один электрик, мультиметром. Алгоритм этой проверки выглядит следующим образом:
- В распределительном щитке включите вводной автомат, то есть в розетках должно присутствовать напряжение.
- На приборе установите режим измерения напряжения.
- Теперь необходимо щупами прибора прикоснуться к фазному и нулевому контакту и померить между ними напряжение. На приборе должна высветиться величина порядка 220 В.
- Аналогичный замер произведите между фазным и заземляющим контактами. Измеряемое напряжение будет немного отличаться от первой величины, но сам факт появления на экране каких-то цифр говорит о том, что в помещении присутствует заземление. Если на экране прибора никаких цифр нет, значит, контур заземления отсутствует либо он в неисправном состоянии.
Когда нет мультиметра, проверить работу контура можно тестером, который собирается своими руками. Вам понадобятся:
- патрон;
- лампочка;
- провода;
- концевики.
Электрики называют подобный тестер «контрольной лампочкой» или сокращённо «контролькой». Прикоснитесь одним концевым щупом к фазному контакту, вторым дотроньтесь до нулевого. Лампочка при этом должна загореться. Теперь концевик, которым вы прикасались к нулю, переведите на усик заземляющего контакта. Если лампочка снова загорится, значит, контур заземления в рабочем состоянии. Лампа не будет гореть, если защитное заземление не рабочее. Слабое свечение станет свидетельством плохого состояния контура.
Если к проверяемой цепи подключено УЗО, то во время проверочных действий оно может сработать, это означает, что заземляющий контур работоспособен.
Обратите внимание! Может быть такая ситуация, что во время прикосновения концевиками к фазному и заземляющему контактам лампа не загорелась. Попробуйте тогда с фазного контакта переместить щуп на нулевой, возможно во время подключения розетки ноль с фазой были попутаны.
В идеале надо начинать проверочные действия с того, что при помощи индикаторной отвёртки определять в коммутационном аппарате фазный контакт.
Наглядно этот способ показан на видео:
О неисправном либо неподключенном контуре заземления могут также свидетельствовать такие косвенные ситуации:
- бьётся током стиральная машина или водонагревательный бойлер;
- слышится шум в колонках, когда работает музыкальный центр.
Проведение замеров
И всё же в вопросе, как замерить сопротивление заземления, лучше пользоваться не мультиметром, а мегаомметром. Наилучшим вариантом считается электроизмерительный переносной прибор М-416. Его работа основывается на компенсационном методе измерения, для этого пользуются потенциальным электродом и вспомогательным заземлителем. Его измерительные пределы от 0,1 до 1000 Ом, работать прибором можно при температурных режимах от -25 до +60 градусов, питание осуществляется за счёт трёх батареек напряжением 1,5 В.
А теперь пошаговая инструкция всего процесса как измерить сопротивление контура заземления:
- Прибор расположите на горизонтальной ровной поверхности.
- Теперь произведите его калибровку. Выберите режим «контроль», нажмите красную кнопку и, удерживая её, установите стрелку в положение «ноль».
- Некоторое сопротивление есть и у соединительных проводов между выводами, чтобы свести к минимуму это влияние расположите прибор поближе к измеряемому заземлителю.
- Выберите нужную схему подключения. Можете проверить сопротивление грубо, для этого выводы соедините перемычками и подключите прибор по трёхзажимной схеме. Для точности измерений следует исключить погрешность, которую дадут соединительные провода, то есть между выводами снимается перемычка и применяется четырёхзажимная схема подключения (кстати, она нарисована на крышке прибора).
- Выполните забивание в землю вспомогательного электрода и стержня зонда на глубину не меньше 0,5 м, имейте в виду, что грунт должен быть плотный и не насыпной. Для забивания используйте кувалду, удары должны быть прямыми, без раскачивания.
- Место, где будете подсоединять проводники к заземлителю, зачистите напильником от краски. В качестве проводников применяйте медные жилы сечением 1,5 мм2. Если используете трёхзажимную схему, то напильник будет выполнять роль соединительного щупа между заземлителем и выводом, так как с другой его стороны подсоединяется медный провод сечением 2,5 мм2.
- И теперь переходим уже непосредственно к тому, как измерить сопротивление заземления. Выберите диапазон «х1» (то есть умножение на «1»). Нажмите красную кнопку и вращением ручки стрелку установите на «ноль». Для больших сопротивлений необходимо будет выбрать и больший диапазон («х5» или «х20»). Так как мы выбрали диапазон «х1», то цифра на шкале и будет соответствовать измеренному сопротивлению.
Наглядно, как проводится измерение заземления на следующем видео:
Некоторые основные параметры и правила
Неважно, в какое время года вы будете производить замеры, показания всегда должны соответствовать следующим нормам:
Для источников с однофазным напряжением | Для источников с трёхфазным напряжением | Величина сопротивления заземления |
127 В | 220 В | 8 Ом |
220 В | 380 В | 4 Ом |
380 В | 660 В | 2 Ом |
Замеры рекомендуется выполнять при определённых погодных условиях, когда земля считается наиболее плотной.
Идеальное время – это середина лета (когда грунт сухой) и середина зимнего периода (когда земля сильно промёрзшая).
Мокрый грунт сильно повлияет на растекаемость тока, поэтому измерения, проведённые в сырую и влажную погоду в весенний или осенний период, будут искажёнными.
Есть ещё способ производить замеры токоизмерительными клещами, но самым лучшим вариантом будет обращение в специализированную службу. Электротехническая лаборатория произведёт все необходимые измерения и выдаст соответствующий протокол, в котором будут указаны место проведения испытаний, характер и удельное сопротивление грунта, величины замеров с сезонным поправочным коэффициентом.
То, что правилами требуется периодически измерять сопротивление заземления, это не просто чья-то придумка или блажь, это, прежде всего, вопрос безопасности человеческой жизни. Существуют определённые нормативы и замеры должны им соответствовать. В статье мы рассмотрим, как замерить сопротивление заземления мультиметром и другими измерительными приборами.
Перед тем, как проверить заземление в частном доме очень важно, чтобы вы поняли саму суть этой процедуры, для чего она выполняется, какую основную цель преследует, почему это так необходимо?
Что такое заземление?
Защитное заземление – это преднамеренное соединение с землёй тех частей электрического оборудования, которые при нормальной работе электросети не находятся под действием напряжения, но могут попасть под его влияние в результате пробоя изоляции. Основной целью заземления является защита людей от действия электрического тока.
Главная составляющая защитного заземления – это контур. Он представляет собой конструкцию естественных или искусственных заземлителей, то есть несколько заземляющих электродов соединяются в единое целое. В качестве электродов чаще всего используют прутья из стали. Медные пруты применяют реже в силу того, что это дорого.
Но если есть финансовые возможности, то имейте в виду, что медь является идеальным вариантом и наилучшим проводником.
По логике понятно, что контур заземления должен располагаться в земле. Так как нас интересует защита дома, то неподалёку от строения и силового щитка выбирается подходящее место с нормальным грунтом. В землю вбиваются три штыря так, чтобы они располагались треугольником, и расстояние между ними было 1,5 м.
Эти электроды необходимо вбить максимально глубоко (их длина должна быть не менее 2 м).
Теперь понадобится сварочный аппарат и металлическая шина, с помощью которых электроды нужно увязать между собой в равносторонний треугольник. Контур готов, теперь к нему нужно закрепить медный проводник, который дальше идёт в щиток и подсоединяется там к заземляющей шинке. А на эту шинку выводятся заземляющие проводники от всех розеток.
Перед использованием необходимо проверить контур на заземляющее сопротивление.
О том, что такое заземление – на следующем видео:
В чём суть работы заземления?
Принцип действия защитного заземления основывается на главном качестве электрического тока – протекать по проводникам, которые обладают наименьшим сопротивлением. На сопротивление человеческого тела оказывают влияние многие факторы, но в среднем оно приравнивается к 1000 Ом.
Согласно Правилам устройства электроустановок (ПУЭ) контур заземления должен иметь сопротивление гораздо меньшее (допускается не более 4 Ом).
А теперь смотрите, в чём заключается принцип действия защитного заземления. Если какой-то электрический прибор неисправен, то есть произошёл пробой изоляции и на его корпусе появился потенциал, и кто-то прикоснулся к нему, то ток с поверхности прибора будет уходить в землю через человека, путь будет выглядеть как «рука-тело-нога». Это смертельная опасность, величина тока 100 мА вызывает необратимые процессы.
Защитное заземление сводит этот риск до минимума. Современные электроприборы имеют внутреннее соединение заземляющего контакта штепсельной вилки с корпусом. Когда прибор посредством вилки включён в розетку и в результате повреждения на его корпусе появляется потенциал, то он уйдёт в землю по заземляющему проводнику с низким сопротивлением. То есть ток не пойдёт через человека с сопротивлением 1000 Ом, а побежит через проводник, у которого эта величина намного меньше.
Вот почему важным этапом в обустройстве электрического хозяйства в наших жилых домах является измерение сопротивления заземления. Нам нужна 100 % уверенность, что эта величина ниже наших человеческих 1000 Ом.
И запомните, что это процедура не разового характера, измеряться сопротивление должно периодически, а сам контур надо постоянно поддерживать в исправном состоянии.
Проверка заземления розеток
Если вы купили дом или квартиру, и вся электрическая часть в помещении уже была смонтирована до вас, как проверить заземление в розетке?
Для начала предлагаем вам произвести визуальный осмотр. Отключите вводной автомат на квартиру и разберите одну розетку. У неё должна быть соответствующая клемма, к которой подсоединяется заземляющий проводник, как правило, он имеет жёлто-зелёное цветовое исполнение. Если всё это присутствует, значит, розетка заземлена. Если же вы обнаружили только два провода – коричневый и синий (фазу и ноль), то розетка не имеет защитного заземления.
В то же время наличие жёлто-зелёного проводника ещё не говорит об исправности заземления.
Эффективность контура можно определить специальным прибором, без которого не обходится ни один электрик, мультиметром. Алгоритм этой проверки выглядит следующим образом:
- В распределительном щитке включите вводной автомат, то есть в розетках должно присутствовать напряжение.
- На приборе установите режим измерения напряжения.
- Теперь необходимо щупами прибора прикоснуться к фазному и нулевому контакту и померить между ними напряжение. На приборе должна высветиться величина порядка 220 В.
- Аналогичный замер произведите между фазным и заземляющим контактами. Измеряемое напряжение будет немного отличаться от первой величины, но сам факт появления на экране каких-то цифр говорит о том, что в помещении присутствует заземление. Если на экране прибора никаких цифр нет, значит, контур заземления отсутствует либо он в неисправном состоянии.
Когда нет мультиметра, проверить работу контура можно тестером, который собирается своими руками. Вам понадобятся:
Электрики называют подобный тестер «контрольной лампочкой» или сокращённо «контролькой». Прикоснитесь одним концевым щупом к фазному контакту, вторым дотроньтесь до нулевого. Лампочка при этом должна загореться. Теперь концевик, которым вы прикасались к нулю, переведите на усик заземляющего контакта. Если лампочка снова загорится, значит, контур заземления в рабочем состоянии. Лампа не будет гореть, если защитное заземление не рабочее. Слабое свечение станет свидетельством плохого состояния контура.
Если к проверяемой цепи подключено УЗО, то во время проверочных действий оно может сработать, это означает, что заземляющий контур работоспособен.
Обратите внимание! Может быть такая ситуация, что во время прикосновения концевиками к фазному и заземляющему контактам лампа не загорелась. Попробуйте тогда с фазного контакта переместить щуп на нулевой, возможно во время подключения розетки ноль с фазой были попутаны.
В идеале надо начинать проверочные действия с того, что при помощи индикаторной отвёртки определять в коммутационном аппарате фазный контакт.
Наглядно этот способ показан на видео:
О неисправном либо неподключенном контуре заземления могут также свидетельствовать такие косвенные ситуации:
- бьётся током стиральная машина или водонагревательный бойлер;
- слышится шум в колонках, когда работает музыкальный центр.
Проведение замеров
И всё же в вопросе, как замерить сопротивление заземления, лучше пользоваться не мультиметром, а мегаомметром. Наилучшим вариантом считается электроизмерительный переносной прибор М-416. Его работа основывается на компенсационном методе измерения, для этого пользуются потенциальным электродом и вспомогательным заземлителем. Его измерительные пределы от 0,1 до 1000 Ом, работать прибором можно при температурных режимах от -25 до +60 градусов, питание осуществляется за счёт трёх батареек напряжением 1,5 В.
А теперь пошаговая инструкция всего процесса как измерить сопротивление контура заземления:
- Прибор расположите на горизонтальной ровной поверхности.
- Теперь произведите его калибровку. Выберите режим «контроль», нажмите красную кнопку и, удерживая её, установите стрелку в положение «ноль».
- Некоторое сопротивление есть и у соединительных проводов между выводами, чтобы свести к минимуму это влияние расположите прибор поближе к измеряемому заземлителю.
- Выберите нужную схему подключения. Можете проверить сопротивление грубо, для этого выводы соедините перемычками и подключите прибор по трёхзажимной схеме. Для точности измерений следует исключить погрешность, которую дадут соединительные провода, то есть между выводами снимается перемычка и применяется четырёхзажимная схема подключения (кстати, она нарисована на крышке прибора).
- Выполните забивание в землю вспомогательного электрода и стержня зонда на глубину не меньше 0,5 м, имейте в виду, что грунт должен быть плотный и не насыпной. Для забивания используйте кувалду, удары должны быть прямыми, без раскачивания.
- Место, где будете подсоединять проводники к заземлителю, зачистите напильником от краски. В качестве проводников применяйте медные жилы сечением 1,5 мм 2 . Если используете трёхзажимную схему, то напильник будет выполнять роль соединительного щупа между заземлителем и выводом, так как с другой его стороны подсоединяется медный провод сечением 2,5 мм 2 .
- И теперь переходим уже непосредственно к тому, как измерить сопротивление заземления. Выберите диапазон «х1» (то есть умножение на «1»). Нажмите красную кнопку и вращением ручки стрелку установите на «ноль». Для больших сопротивлений необходимо будет выбрать и больший диапазон («х5» или «х20»). Так как мы выбрали диапазон «х1», то цифра на шкале и будет соответствовать измеренному сопротивлению.
Наглядно, как проводится измерение заземления на следующем видео:
Некоторые основные параметры и правила
Неважно, в какое время года вы будете производить замеры, показания всегда должны соответствовать следующим нормам:
Для источников с однофазным напряжением | Для источников с трёхфазным напряжением | Величина сопротивления заземления |
127 В | 220 В | 8 Ом |
220 В | 380 В | 4 Ом |
380 В | 660 В | 2 Ом |
Замеры рекомендуется выполнять при определённых погодных условиях, когда земля считается наиболее плотной.
Идеальное время – это середина лета (когда грунт сухой) и середина зимнего периода (когда земля сильно промёрзшая).
Мокрый грунт сильно повлияет на растекаемость тока, поэтому измерения, проведённые в сырую и влажную погоду в весенний или осенний период, будут искажёнными.
Есть ещё способ производить замеры токоизмерительными клещами, но самым лучшим вариантом будет обращение в специализированную службу. Электротехническая лаборатория произведёт все необходимые измерения и выдаст соответствующий протокол, в котором будут указаны место проведения испытаний, характер и удельное сопротивление грунта, величины замеров с сезонным поправочным коэффициентом.
Безопасность пользования электрической энергией зависит не только от правильного монтажа электроустановки, но и от соблюдения требований, заложенных нормативной документацией в ее эксплуатацию. Контур заземления здания, как составная часть защитного электрического оборудования, требует периодического контроля своего технического состояния.
Как работает заземляющее устройство
В нормальном режиме электроснабжения контур заземления РЕ-проводником соединен с корпусами всех электроприборов, системой выравнивания потенциалов здания и бездействует: через него, грубо говоря, не проходят никакие токи, за исключением небольших фоновых.
Как заземление защищает человека
При возникновении аварийной ситуации, связанной с пробоем слоя изоляции электропроводки, опасное напряжение появляется на корпусе неисправного электроприбора и по РЕ-проводнику через контур заземления стекает на потенциал земли.
За счет этого величина прошедшего на нетоковедущие части высокого напряжения должна снизиться до безопасного уровня, неспособного причинить электротравму человеку, контактирующему с корпусом неисправного оборудования через землю.
Когда РЕ-проводник или контур заземления нарушены, то отсутствует путь стекания напряжения и ток станет проходить через тело человека. оказавшегося между потенциалами поврежденного бытового прибора и землей.
Поэтому при эксплуатации электрооборудования важно поддерживать в исправном состоянии контур заземления и периодическими электрическими замерами контролировать его состояние.
Как возникает неисправность у заземляющего устройства
В новом исправном контуре электрический ток аварии по РЕ-проводнику поступает на токоотводящие электроды, контактирующие своей поверхностью с грунтом и через них равномерно уходит на потенциал земли. При этом основной поток равномерно разделяется на составляющие части.
В результате длительного нахождения в агрессивной среде почвы металл тоководов покрывается поверхностной окисной пленкой. Начинающаяся коррозия постепенно ухудшает условия прохождения тока, повышает электрическое сопротивление контактов всей конструкции. Ржавчина, образующаяся на стальных деталях, обычно носит общий, а на отдельных участках ярко выраженный местный характер. Связано это с неравномерным наличием химически активных растворов солей, щелочей и кислот, постоянно находящихся в почве.
Образующиеся частицы коррозии в виде отдельных чешуек отодвигаются от металла и этим прекращают местный электрический контакт. Со временем таких мест становиться столько, что сопротивление контура увеличивается и заземляющее устройство, теряя электрическую проводимость, становится неспособным надежно отводить опасный потенциал в землю.
Определить момент наступления критического состояния контура позволяют только своевременные электрические замеры.
Принципы, заложенные в измерение сопротивления заземляющего устройства
В основу метода оценки технического состояния контура заложен классический закон электротехники, выявленный Георгом Омом для участка цепи. С этой целью достаточно через контролируемый элемент пропустить ток от калиброванного источника напряжения и с большой степенью точности замерить проходящий ток, а потом вычислить величину сопротивления.
Метод амперметра и вольтметра
Поскольку контур работает в земле всей своей контактной поверхностью, то ее и следует оценивать при замере. Для этого в почву на небольшом удалении (порядка 20 метров) от контролируемого заземляющего устройства заглубляют электроды: основной и дополнительный. На них подают ток от стабилизированного источника переменного напряжения.
По цепи, образованной проводами, источником ЭДС и электродами с подземной токопроводящей частью грунта начинает протекать электрический ток, величина которого замеряется амперметром.
На очищенную до чистого металла поверхность контура заземления и контакт основного заземлителя подключается вольтметр.
Он замеряет падение напряжения на участке между основным заземлителем и контуром заземления. Разделив значение показания вольтметра на измеренный амперметром ток, можно вычислить общее сопротивление участка всей цепи.
При грубых замерах им можно ограничиться, а для вычисления более точных результатов потребуется скорректировать полученное значение вычитанием величины сопротивления соединительных проводников и влияния диэлектрических свойств почвы на характер токов растекания в грунте.
Уменьшенное на эту величину и замеренное по первому действию общее сопротивление и даст искомый результат.
Описанный способ является довольно простым и неточным, имеет определенные недостатки. Поэтому для выполнения более качественных измерений, производимых специалистами электротехнических лабораторий, разработана более усовершенствованная технология.
Замер основан на использовании уже готовых конструкций метрологических приборов высокого класса точности, выпускаемых промышленностью.
При этом способе тоже используется установка основного и вспомогательного электродов в почву.
Их разносят по длине около 10÷20 метров и заглубляют на одной линии, захватывающей испытываемый контур заземления. К шине заземлительного устройства подключают измерительный зонд, стараясь разместить прибор поближе к контакту шины. Соединительными проводниками соединяют клеммы прибора с установленными в землю электродами.
Источник переменной ЭДС выдает в подключенную схему ток I1, который проходит по замкнутой цепи, образованной первичной обмоткой трансформатора тока ТТ, соединительным проводам, контактам электродов и землей.
Вторичная обмотка трансформатора ТТ воспринимает ток I2, равный первичному и передает его на сопротивление реостата R, позволяющего реохордом «б» выставлять баланс между напряжениями U1 и U2.
Изолирующий трансформатор ИТ транслирует проходящий по его первичной обмотке ток I2 в свою вторичную цепь, замкнутую на измерительный прибор V.
Ток I1, протекающий по грунту на участке между основным заземлителем и контуром заземления, образует на замеряемом нами участке падение напряжения U1, которое вычисляется по формуле:
Ток I2, проходящий по участку реостата R «аб» с сопротивлением rаб, формирует падение напряжения U2, определяемое выражением:
Во время выполнения замера перемещают ручку реохорда таким образом, чтобы отклонение стрелки прибора V установилось на ноль. В этом случае будет выполнено равенство: U1=U2.
Тогда получим: I1∙rx=I2∙rаб.
Поскольку конструкция прибора выполнена так, что I1=I2, то соблюдется соотношение: rx=rаб. Остается только узнать сопротивление участка аб. Но, для этого достаточно ручку потенциометра сделать побольше и на ее подвижную часть вмонтировать стрелку, которая будет перемещаться по неподвижной шкале, проградуированной заранее в единицах сопротивления реостата R.
Таким образом, положение стрелки-указателя реостата при компенсации падений напряжений на двух участках позволяет замерить сопротивление заземляющего устройства.
Используя изолирующий трансформатор ИТ и специальную конструкцию измерительной головки V, добиваются надежной отстройки прибора от блуждающих токов. Высокая точность измерительного механизма способствует малому влиянию переходных сопротивлений зонда на результат замера.
Приборы, работающие по компенсационному методу, позволяют точно замерять сопротивления отдельных элементов. Для этого достаточно на один конец измеряемой цепи подключить проводник, снятый с точки 1, а на второй — измерительный зонд (точка 2) и провод с точки 3 от вспомогательного электрода.
Приборы для измерения сопротивления заземляющего устройства
За время развития энергетики измерительные приборы постоянно совершенствовались в вопросах облегчения использования и получения высокоточных результатов.
Еще несколько десятилетий назад широко применялись только аналоговые измерители производства СССР таких марок, как МС-08, М4116, Ф4103-М1 и их модификации. Они продолжают работать и в наши дни.
Сейчас их успешно дополняют многочисленные приборы, использующие цифровые технологии и микропроцессорные устройства. Они несколько упрощают процесс замера, обладают высокой точностью, хранят в памяти результаты последних вычислений.
Методика выполнения замера сопротивления заземлительного устройства
После доставки прибора на место проведения замера и извлечения его из транспортировочного кейса готовят шинопровод к подключению контактного проводника: отчищают от следов коррозии место для подключения зажима типа крокодил напильником или устанавливают струбцину с винтовым зажимом, продавливающим верхний слой металла.
Замер сопротивления трехпроводным методом
Требования безопасной работы требуют выполнять измерения при отключенном автоматическом выключателе во вводном щите питания здания либо снятом с заземлителя РЕ-проводнике. Иначе при возникновении аварийного режима ток утечки пойдет через контур и прибор или тело оператора.
Соединительный проводник подключают к прибору и струбцине.
На установленной дистанции молотком забивают в грунт электроды заземлители. Навешивают на них катушки с соединительными проводниками и подключают их концы.
Устанавливают контакты проводов в гнезда прибора, проверяют готовность схемы к работе и величину напряжения помехи между установленными электродами. Она не должна превышать 24 вольта. Если это положение не выполнено, то придется менять места установки электродов и перепроверять этот параметр.
Остается только нажать кнопку выполнения автоматического замера и снять вычисленный результат с дисплея.
Однако, успокаиваться после получения результата первого замера нельзя. Чтобы проверить свою работу необходимо выполнить небольшую серию контрольных измерений, переставляя потенциальный штырь на небольшие дистанции. Расхождение всех полученных значений сопротивлений не должны расходиться более чем на 5%.
Замер сопротивления четырехпроводным методом
Для использования способов вертикального электрического зондирования измерители сопротивления контура заземления можно использовать по четырехпроводной схеме, расставляя приемные электроды по методике Веннера или Шлюмберже.
Этот способ больше подходит для глубинных исследований и вычисления удельного электрического сопротивления грунта.
Вариант подключения прибора марки ИС-20/1 по этой схеме показан на картинке.
Замер сопротивления заземлителя с применением токоизмерительных клещей
При использовании метода необходимо иметь фоновый ток от электроустановки здания в контур заземления. Его величина у большинства приборов, работающих по этому типу, не должна превышать 2,5 ампера.
Замер сопротивления контура без разрыва цепи заземлителей с применением измерительных клещей
Используя измеритель ИС-20/1м можно выполнить электрическую оценку состояния заземлительного устройства здания по следующей схеме.
Замер сопротивления контура без вспомогательных электродов с применением двух измерительных клещей
При этом способе не требуется устанавливать дополнительные электроды в землю, а можно выполнить работу пользуясь двумя токовыми клещами. Их потребуется разнести по шинопроводу заземлительного устройства на расстояние большее чем 30 сантиметров.
Выбор методики проведения замера зависит от конкретных условий эксплуатации оборудования и определяется специалистами лаборатории.
Оценку состояния заземлительного устройства можно выполнять в разное время года. Однако, следует учитывать, что в период большого нахождения влаги в почве во время осенне-весенней распутицы условия для растекания токов в земле наиболее благоприятные, а в сухую жаркую погоду — наихудшие.
Летние замеры при высушенном грунте наиболее качественно отражают реальное состояние контура.
Некоторые электрики рекомендуют для снижения значения сопротивления проливать почву около электродов растворами солей. Следует понимать, что это мера временная и неэффективная. С уходом влаги состояние проводимости вновь ухудшится, а ионы растворенной соли будут разрушать металл, расположенный в почве.
Всем внимательным читателям и опытным электрикам предлагается посмотреть на прилагаемую ниже картинку, демонстрирующую простой, на первый взгляд, способ реализации измерения сопротивления заземляющего устройства, который не нашел широкого практического применения в лабораториях.
Объясните в комментариях какие электротехнические процессы происходят при таком способе и как они влияют на точность измерения. Проверьте свои знания, удачи!
Электрик Инфо — электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров.
Информация и обучающие материалы для начинающих электриков.
Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок.
Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+
Перепечатка материалов сайта запрещена.
Как измерить сопротивление контура заземления – обзор методик
15.08.2016 нет комментариев 10 223 просмотров
Измерение сопротивления заземления нужно выполнять, чтобы удостовериться, что оно совпадает с требованием ПУЭ (правила устройства электроустановок) гл. 1.8. а также ПТЭЭП пр. 3,3.1. Замеры, которые проводятся в электроустановке с глухо заземленной нейтралью (напряжение которых составляет ниже 1000В) должны соответствовать следующим нормам. Неважно, зимой или летом, значение не должно превышать отметку 8, 4 и 2 Ом при напряжении 220, 380, 660 В (для источников с трехфазным током) соответственно, или 127, 220 и 380 В для источников с однофазным током. Для электроустановок, где используется изолированная нейтраль (напряжение ниже 1000В) сопротивление заземляющего контура должно соответствовать п 1.7.104 ПУЭ и рассчитывается по формуле Rз * Iз
«Диагностика» контура делается довольно часто. Измерение величины заземления проводится как при его обустройстве (последний, заключительный этап работы), так и в плане контроля состояния уже имеющегося.
Например, для проверки целостности стержня, оценки возможности использования контура без его реконструкции при значительном увеличении нагрузки на домашнюю электросеть, и в ряде других случаев. И уж тем более определение номинала сопротивления важно, если в цепи эл/питания нет защитных устройств (АВ, УЗО или дифференциального автомата).
Дело в том, что все перечисленные приборы для проведения официальных измерений не подходят. Для этого необходима специальная тестирующая аппаратура. Для «домашнего» же контроля состояния заземления можно использовать любой из образцов, который есть под рукой. Хотя результат будет лишь приблизительным, и это следует учитывать.
Измерение мультиметром
Этот универсальный прибор, если все делать по стандартной, официально утвержденной методике, для таких целей, как отмечено, не подходит. Мультиметр на практике используется лишь для примерной оценки состояния заземления, выявления явных обрывов, то есть отсутствия надежного контакта соответствующего проводника с грунтом. Как это правильно делать описано здесь.
Почему данный тип измерительного прибора применяется лишь в редких случаях?
- Большая погрешность измерений не дает истинного представления о реальном значении сопротивления.
- Стандартная (рекомендуемая) методика не может быть применена, так как согласно ей прибор должен подключаться к 4-м точкам, к тому же разнесенным территориально. С мультиметром это сделать невозможно.
- Официального заключения по результатам измерений таким прибором (задокументированного) не выдаст ни один специалист. Причина вполне объяснима – в нормативных актах использование мультиметра при проверке заземления не предусмотрено.
Тем не менее, есть ситуации, когда без мультиметра не обойтись. Например, на территории с довольно плотной застройкой. Это не позволяет производить измерения на больших расстояниях от здания. А согласно методике, оно должно быть в пределах 30±10 м. Подробнее, как измерить сопротивление с помощью мультиметра можно из видео:
Как подготовить мультиметр
Задача любого измерения – добиться максимальной точности показаний. Что необходимо проделать:
- подобрать «хороший» мультиметр (у друзей, соседей и так далее). Какой лучше выбрать для различных целей описывали вот в этой статье. Подразумевается достаточно новый, а не выпущенный десятилетия тому назад, неповрежденный, с максимально возможным классом точности для этого типа приборов;
- заменить элемент питания. Старая батарейка, частично разряженная, только увеличит погрешность измерения;
- произвести калибровку (если она предусмотрена для конкретной модели).
Как подготовить рабочее место
Даже если вспомогательный электрод изначально при организации заземления и был установлен, то его еще нужно найти. Тем более, если дом построен много лет назад, и территория вокруг него уже несколько раз подвергалась перепланировке, обустройству и так далее. Следовательно, его «дубликат» необходимо поставить самостоятельно.
Для измерения сопротивления подойдет любой металлический штырь (то же арматурный пруток) сечением порядка 5 мм, который вгоняется в землю минимум на 1,5 м на расстоянии 7,5±2,5 от основного. Его найти намного проще, тем более что место расположения должно быть помечено (знаком, символом на стене дома). Хотя несложно определить и визуально – к нему часто тянется по-над поверхностью металлическая проволока (шестерка или восьмерка).
Где измерять сопротивление
Между основным штырем заземления и вновь установленным (дополнительным). Схема показана на рисунке.
Результат замеров позволяет понять, насколько отвечает стержень заземления тем требованиям, которые к нему предъявляются. По сути, измеряется суммарное сопротивление его и грунта. Дело в том, что большая его часть заглублена. В процессе длительной эксплуатации металл подвергается коррозии.
- Предварительно определяется сопротивление дополнительного стержня. Его значение при оценке результата не учитывается.
- Величина R заземления должна быть Измерение мегаомметром
Принцип измерений тот же самый. Отличия лишь в некоторых моментах.
- Для получения максимально точных показаний прибор необходимо установить в строго горизонтальной плоскости. Перекос ни по одной из осей не допускается.
- Подготовка мегаомметра (измеритель сопротивления заземления) сводится к его проверке на пригодность к измерениям. Сделать это достаточно просто (пример – модель М416).
- Переключатель – в «Контроль».
- Нажимается кнопка и производится вращение рукоятки. Стрелка должна встать на отметке 5 (±0,3). Если показание иное, прибор отбраковывается.
- Как правильно подключать к клеммам измеритель сопротивления заземления провода в зависимости от схемы измерения, показано на его корпусе.
Методик измерения сопротивления заземления довольно много. Они предполагают использование различных приборов, схем, и оптимальное решение принимается для конкретного контура индивидуально. Но для самостоятельной диагностики его состояния в домашних условиях достаточно и двух описанных выше.
Если же есть сомнения в правильности определения результатов, большой погрешности и так далее, следует обратиться к профессионалам. К заземлению, учитывая, что оно – составная часть схемы эн/снабжения, пренебрежительно относиться не стоит.
Описание продукта
заземлитель мегомметр тестер сопротивления изоляции цифровой мегомметр
Основные характеристики / Особенности:
I. Введение:
Цифровой тестер сопротивления заземления UA4106 специально разработан и изготовлен для измерений в полевых условиях, применяя новейшую технологию цифровой и микрообработки, 3-полюсный или 2-полюсный метод измерения сопротивления заземления, с уникальной функцией. проверки сопротивления проводов, помехоустойчивости и способности адаптироваться к окружающей среде, чтобы обеспечить высокую точность, высокую стабильность и надежность для длительных измерений, что широко используется в электроэнергетике, телекоммуникациях, метеорологии, нефтяных месторождениях, строительстве, молниезащите , промышленное электрооборудование и другие измерения сопротивления заземления.
1. Базовые условия: от 23 до ± 5 ° C при относительной влажности 75% (вспомогательное сопротивление заземления 100 Ом ± 5%, напряжение на землю <10 В)
2. Функции: измерение сопротивления заземления, измерение напряжения на землю, низкое значение измерение сопротивления
3. Электропитание: 6 В постоянного тока / 1,5 В, батарея LR14
4. Подсветка: регулируемая подсветка экрана серо-белого цвета, подходит для использования в темном месте
5. Размер ЖК-дисплея: 108×65 мм
6. Длина измерительного провода: 3 провода: красный 15м, жёлтый 10м, зелёный 5м
7. Провод простого измерения: 2 провода: красный 1.5 м, зеленый 1,5 м,
8. Вспомогательный заземляющий стержень: 2 шт.
9. Скорость измерения: напряжение заземления: 2 раза в секунду, сопротивление заземлению: 5 секунд / время
10. Время измерения: более 5000 раз
11. Напряжение цепи: измерение напряжение на землю: ниже 600 В переменного тока
12. Интерфейс USB: с интерфейсом USB, мониторинг программного обеспечения, данные для хранения могут загружать компьютер, сохранять / распечатывать
13. Напряжение: 3700 В переменного / среднеквадратичного (между цепью и корпусом)
14. Электромагнитные характеристики: IEC61010-4-3, электромагнитное поле беспроводной частоты ≤1 В / м
15.Соответствующая безопасность: IEC61010-1, IEC61010-2-31, IEC61557, IEC60529 (IP54)
Уровень загрязнения 2, Cat III 300 В
Измерительные функции | Диапазон измерения | Точность | Разрешение|
Сопротивление заземления | 0,01-30Ω | ± 1,5% RDG ± 5DGT (Сопротивление заземления вспомогательного заземления 100 Ом ± 5%, напряжение на землю <10 В) | 0,01Ω |
30,1-300 Ом | ± 1.5% RDG ± 5DGT (вспомогательное сопротивление заземления 100 Ом ± 5%, напряжение на землю <10 В) | 0,01Ω | |
301-3000Ω | ± 1,5% RDG ± 5DGT (сопротивление вспомогательного заземления 100 Ом ± 5%, напряжение на землю <10 В) | 0,1 Ом | |
Заземление земли | 0-10.00 В переменного тока | ± 1,5% RDG ± 3DGT | 0,01 В |
10,1-100,0 В | ± 1,5% RDG ± 3DGT | 0.1В | |
101-600 В | ± 1,5% RDG ± 3DGT | 1В |
Похожие продукты:
Информация о компании
Интегрированный производитель измерительных приборов
Мы специализируемся на разработке, проектировании, производстве и продаже различных измерительных приборов. Мы всегда придерживаемся целевой аудитории инструментальной и измерительной индустрии в Китае и мире, и наши продукты имеют свои особенности.
Мы стремимся к оптимальному инструменту продвижения высокотехнологичных брендов в Китае и мире. Наша номенклатура изделий включает инфракрасные термометры, измерители освещенности, цифровые мультиметры и токоизмерительные клещи AC / DC и т. Д. Наша продукция пользуется репутацией высокого качества с момента основания нашей компании.
FAQ
Q: у вас есть запас?
A: Да, обычно у нас есть запас; если нет на складе, время выполнения составляет 7 ~ 15 дней.
В: Могу ли я получить образцы?
A: образцы доступны для оценки.
Q: OEM & ODM доступны?
A: OEM & ODM приветствуются.
Если вы не можете найти точные предметы, которые вам нужны, пожалуйста, свяжитесь с нами для получения более подробной информации.
,
Многофункциональное заземление
Многофункциональное сопротивление заземления СОПРОТИВЛЕНИЕ ПОЧВЫ TEster Модель 6470-B Теперь измерьте сопротивление грунта, сопротивление грунта и сопротивление сцеплению с помощью одного инструмента! 2- и 4-проводное сопротивление / непрерывность соединения
Дополнительная информацияMIT510 / 2, MIT520 / 2 и MIT1020 / 2
99 Washington Street Melrose, MA 02176 Телефон 781-665-1400 Бесплатный 1-800-517-8431 Посетите нас по адресу www.testequipmentdepot.com MIT510 / 2, MIT520 / 2 и MIT1020 / 2 Питание от сети или от батарей Цифровой / аналоговый
Дополнительная информацияSimple Logger II Регистраторы данных
TRMS CLAMP-ON AC CURRENT AC VOLTAGE DC CURRENT DC VOLTAGE THERMOCOUPLE TEMP / RH EVENT LOGGER Simple Logger II Регистраторы данных E N G L I S H Руководство пользователя Заявление о соответствии Chauvin Arnoux, Inc. d.b.a.
Дополнительная информацияТекущий комплект для мониторинга
Комплект для мониторинга тока БЫСТРОЕ НАЧАЛО РУКОВОДСТВА DO090-6 СОДЕРЖАНИЕ Проблемы: 1) 2.10.02 WP A4 формат 2) 2.10.02 Добавлено предупреждение о безопасности 3) 17.3.06 Word A5 формат. S1: Удалены релейные модули. S2: добавлен MI010. S4.1: добавлено
Дополнительная информацияЭлектронные нагрузки постоянного тока серии 8500
Технические данные Электронные нагрузки постоянного тока серии 8500 2400 Вт 600 Вт — 1200 Вт 300 Вт Универсальные и экономичные электронные нагрузки постоянного тока Программируемые электронные нагрузки постоянного тока серии 8500 могут использоваться для тестирования и оценки
Дополнительная информация1.ИНФОРМАЦИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ
Измеритель уровня звука RS-232 72-860A РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ www.tenma.com 1. ИНФОРМАЦИЯ О БЕЗОПАСНОСТИ Внимательно прочитайте следующую информацию о безопасности перед попыткой эксплуатации или обслуживания измерителя. Используйте счетчик
Дополнительная информацияПортативные тестеры портативных приборов
СЕРИЯ PAT100 Портативные тестеры портативных приборов СЕРИЯ PAT100 Портативные тестеры портативных приборов Простая отметка / крест, индикация прохождения / отказа плюс измерение с питанием от аккумулятора с возможностью перезарядки Включает
Дополнительная информацияWWW.elektroexpressz.hu
www.elektroexpressz.hu 2013 1 СЕРИЯ UT10 / СЕРИЯ UT20 Современные карманные цифровые мультиметры Карманные цифровые мультиметры UNI-T UT10A UT10A Напряжение постоянного тока 400 мВ / 4 В / 40 В / 300 ± (0,8% + 1) переменного тока 4 В / 40 В / 300 В
Дополнительная информацияРучной ранжирование MultiMeter
Руководство пользователя Руководство по настройке MultiMeter Model 82345 ПРЕДУПРЕЖДЕНИЕ. Перед использованием данного продукта прочитайте, усвойте и соблюдайте правила безопасности и инструкции по эксплуатации, приведенные в данном руководстве.! Безопасность! Операция! Обслуживание!
Дополнительная информацияПрограмма интерфейса передатчика
Программа интерфейса передатчика Руководство по эксплуатации, версия 3.0.4 1 Обзор Программное обеспечение интерфейса передатчика позволяет настраивать параметры конфигурации ваших твердотельных преобразователей Max. Следующее
Дополнительная информацияМультиметр Dynatek 6080RS
Мультиметр Dynatek 6080RS Содержание Подключение…1 Установка программного обеспечения … 1 Запуск связи … 1 Другие возможности … 2 Управление файлами … 2 Принтер … 2 Графический экран … 3 Программисты
Дополнительная информацияTORKEL 820 Блок нагрузки аккумулятора
TORKEL 820 Легкая расширяемая система Прочная и надежная для использования в полевых условиях. Испытание без отсоединения аккумулятора от обслуживаемого оборудования. Описание Во время перебоев в электроснабжении важная связь
Дополнительная информацияРегистратор температуры
Регистратор температуры. Руководство пользователя. Page 1 СОДЕРЖАНИЕ ОСОБЕННОСТИ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ… 3 ПРИМЕНЕНИЯ … 4 ЗАПУСК И ОБЩАЯ ЭКСПЛУАТАЦИЯ … 5 ЖК-дисплей … 5 Включите регистратор данных температуры … 6 Переключатель
Дополнительная информацияКонтроллеры обнаружения воды WD-AMX
Страница 1 из 5 Контроллеры обнаружения воды WD-AMX Особенности: Преимущество: светодиодный индикатор состояния утечки Выход VFC Звуковая сигнализация Выход тревоги с автоматическим или ручным сбросом Использует изолированный сигнал переменного тока, который предотвращает окисление
Дополнительная информацияMI4 — Панель оператора: Инжиниринг
MI4 — Панель оператора: Engineering MI4 — Панель оператора: Обзор Engineering Текстовая панель оператора MI4 Графическая панель оператора MI4 Сенсорная панель оператора MI4 Коммуникационные модули Аксессуары MI4-CFG-1 Engineering
Дополнительная информацияУсовершенствованный тестер систем 900AST
Advanced Systems Tester 900AST Чистое небо впереди с 900AST TESTER Внутренняя проводка в самолете постоянно подвергается бомбардировке от старения, вибрации и влаги, особенно в самолетах, которые работают
Дополнительная информацияСерия OX 7100 AR RA NT Y
ПОРТАТИВНЫЙ Осциллограф серии OX 7100 W3 ГОД AR RA NT Y Изолированные входы: 600 В переменного тока, 850 В постоянного тока на землю и канал на канал Пять дополнительных инструментов в одном: осциллограф, мультиметр, FFT-анализатор, Harmonic
Дополнительная информацияPhilips PageWriter Сенсорная система ЭКГ
Особенности системы ЭКГ Philips PageWriter Touch: легкая, быстрая, ЭКГ в 12 отведениях для больших и малых больниц, предназначенная для большого объема сенсорного экрана с высоким разрешением Предварительный просмотр отчетов перед печатью Беспроводная связь
Дополнительная информацияTrueAlarm Системы пожарной сигнализации
Системы пожарной сигнализации TrueAlarm UL, ULC, CSFM; Одобрен FM; MEA (NYC) Acceptance * Принадлежности для систем пожарной сигнализации, ПК-оповещатель серии 4190 с возможностями нескольких клиентов Функции управления пожарной сигнализацией
Дополнительная информацияUniOP epad33 и epad33t
UniOP epad33 и epad33t Epad33 и epad33t — это современные устройства HMI с 10-ю.4 графических дисплея и полная клавиатура. Алюминиевый безель предлагает привлекательный вид в прочном и удобном
Дополнительная информацияШЭНЬЧЖЭНЬ ДЖУНСИ ЭЛЕКТРОННАЯ КО., ООО
Cell Voltage Monitor & Logger РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ SHENZHEN JUNSI ELECTRONIC CO., LTD Благодарим вас за покупку. Пожалуйста, внимательно и полностью прочитайте Руководство пользователя, так как оно содержит большое количество
Дополнительная информацияТвердотельный таймер h4G
ASH & ALAIN INDIA PVT LTD S-100, F.I.E.E., Okhla Industrial Area, Phase-ii, Нью-Дели-11000 (Индия) Тел: 011-43797575 Факс: 011-43797574 E-mail: [email protected] Твердотельный таймер, недорогой, подключаемый модуль
Дополнительная информация ,HoldPeak Тестер сопротивления Цифровой измеритель сопротивления заземления Мегомметр
Особенности:
Диапазон измерения 1.Wide: сопротивление заземления: 0 ~ 2000Ω; Напряжение: DC0 ~ 200В.
2. Большой ЖК-дисплей (68 * 55 мм) с подсветкой обеспечивает четкое считывание, макс. дисплей «1999».
3.Включает функции удержания данных, индикации низкого заряда батареи и защиты от перегрузки.
Световой индикатор «HV» указывает на начало измерения напряжения.
4. Обновление программного обеспечения системы привода USB.
5. Оборудован задним кронштейном для поддержки и защищен резиной для защиты от падения.
Описание:
1.Этот цифровой тестер сопротивления заземления — это новый тестер для измерения сопротивления заземления, проводника с низким сопротивлением, сопротивления грунта и напряжения земли.
2. Он может тестировать напряжение в DC0 ~ 200 В, сопротивление в 2000 Ом и переменное напряжение.
3 Широко используется в телекоммуникациях, на железных дорогах, в горнодобывающей промышленности и т. Д.
Спецификация:
Марка: Holdpeak
Модель: HP-4300
Цвет: синий
Материал: ABS
Дисплей: 1999
Регулятор диапазона: ручной
Рабочая среда: 0-40 ° <80% относительной влажности
Условия хранения: -10-50 ° <85% относительной влажности
Источник питания: 1.5 В x 6 батарей R6P AA SUM-3
Время отклика: около 5 секунд (сопротивление заземления), около 2 секунд (напряжение заземления).
Диапазон сопротивления заземления: 20 Ом / 200 Ом / 2 кОм
Точность: ± (2% + 0,1) / ± (2% + 3)
Диапазон напряжения заземления: 200 В
Точность: ± (1% + 4) Испытание напряжением переменного тока
: 1500 В
Размер предмета: 219 мм × 121 мм × 75 мм
Вес изделия: 739 г
Информация об упаковке:
Размер упаковки: 424 х 362 х 110 мм / 16,69 х 14,25 х 4,33 дюйма
Вес упаковки: 2953 г / 6,51 фунта
General Box Package
Список пакетов :
1 х Тестер сопротивления заземления
5 х зажимов типа «крокодил»
2 х заземленных полюсов
1 х чехол
1 х Руководство пользователя
,
9 Рекомендуемые методы заземления
Основа безопасности и качества электроэнергии
Заземление и соединение — это основа безопасности и качества электроэнергии. Система заземления обеспечивает путь с низким импедансом для тока повреждения , а ограничивает рост напряжения на обычно не несущих ток металлических компонентах электрической распределительной системы.
9 рекомендуемых методов заземления (фоторепортаж: ag0n.net)В условиях неисправности низкий импеданс приводит к сильному току тока короткого замыкания , что приводит к срабатыванию устройств защиты от сверхтоков, что позволяет быстро и безопасно устранить неисправность.Система заземления также позволяет безопасно переключать такие переходные процессы, как молния, на землю.
Склеивание — это преднамеренное соединение обычно не несущих током металлических компонентов с образованием электропроводного пути. Это помогает обеспечить одинаковый потенциал этих металлических компонентов, ограничивая потенциально опасные перепады напряжения.
Тщательное рассмотрение должно быть уделено установке системы заземления, которая превышает минимальные требования NEC для повышения безопасности и качества электроэнергии.
1. Оборудование Заземлители
IEEE Emerald Book рекомендует использовать заземляющие проводники оборудования во всех цепях, не полагаясь только на систему дорожек качения для заземления оборудования. Используйте заземляющие проводники оборудования с размерами, равными фазным проводникам, чтобы уменьшить сопротивление цепи и сократить время отключения устройств защиты от сверхтоков.
Оборудование заземлительСвяжите все металлические корпуса, дорожки качения, коробки и провода заземления оборудования в одну электрически непрерывную систему.Рассмотрим установку заземляющего проводника для оборудования проводного типа в качестве дополнения к заземляющему проводнику для оборудования только для кабелепровода для особо чувствительного оборудования .
Минимальный размер заземляющего проводника оборудования для обеспечения безопасности приведен в NEC 250.122, но для обеспечения качества электроэнергии рекомендуется заземляющий провод в натуральную величину.
Вернуться к оглавлению №
2. Изолированная система заземления
В соответствии с разрешением NEC 250.146 (D), и NEC 408,40 Исключение, рассмотреть возможность установки изолированной системы заземления, чтобы обеспечить чистый опорный сигнал для правильной работы чувствительного электронного оборудования.
Изолированная система заземления для разветвленных цепей (фото предоставлено: iaeimagazine.org)Изолированное заземление — это метод, который пытается уменьшить вероятность «шума», проникающего в чувствительное оборудование через провод заземления оборудования. Заземляющий контакт не подключен к ярму устройства и не подключен к металлической розетке. Поэтому он «изолирован» от заземления зеленого провода.
Отдельный проводник, зеленый с желтой полосой, проходит к щитовой панели вместе с остальными проводниками цепи, но обычно он не подключен к металлическому корпусу. Вместо этого он изолирован от корпуса и проходит через шину заземления сервисного оборудования или заземление отдельно взятой системы. Изолированные системы заземления иногда устраняют циркулирующие токи контура заземления.
Обратите внимание, что NEC предпочитает термин изолированное заземление , в то время как IEEE предпочитает термин изолированное заземление .
Вернуться к оглавлению №
3. Заземление ответвительной цепи
Замените ответвительные цепи, которые не содержат заземления оборудования, на ответвительные цепи с заземлением оборудования. Чувствительное электронное оборудование, такое как компьютеры и управляемое компьютером оборудование, требует ссылки на землю, обеспечиваемой заземляющим проводником оборудования, для правильной работы и для защиты от статического электричества и скачков напряжения.
Отказ от использования заземляющего проводника оборудования может вызвать протекание тока через низковольтные цепи управления или связи, которые подвержены неисправности и повреждению, или заземлению.
Устройства защиты от перенапряжений (SPD)должны быть подключены к заземляющему проводнику оборудования.
Вернуться к оглавлению №
4. Сопротивление заземления
Измерьте сопротивление системы заземляющих электродов к земле.
Примите разумные меры для обеспечения того, чтобы сопротивление заземления составляло 25 Ом или менее для типичных нагрузок .Во многих промышленных случаях, особенно при наличии электронных нагрузок, существуют требования, для которых необходимо, чтобы значения составляли всего 5 Ом или менее , что во много раз меньше 1 Ом.
Измерение сопротивления заземления методом падения потенциала (фоторепортаж: eblogbd.com)Для этих особых случаев создайте программу технического обслуживания чувствительных электронных нагрузок для измерения сопротивления заземления каждые полгода, первоначально, с использованием измерителя сопротивления заземления . Сопротивление заземления следует измерять не реже одного раза в год.
При проведении этих измерений должны быть приняты соответствующие меры безопасности , чтобы снизить риск поражения электрическим током .
Запишите результаты для дальнейшего использования. Изучите значительные изменения в измерениях сопротивления заземления по сравнению с историческими данными и исправьте недостатки системы заземления. Проконсультируйтесь со специалистом по электротехнике для получения рекомендаций по снижению сопротивления заземления, где это необходимо.
Вернуться к оглавлению №
5.Стержни заземления
NEC позволяет размещать заземляющие стержни на расстоянии всего 6 футов друг от друга, но сферы влияния стержней с буртиками.
Рекомендуемая практика заключается в размещении нескольких заземляющих стержней как минимум вдвое больше длины стержня. Устанавливайте грунтовые стержни с глубоким приводом или с химическим усилением в горной или каменистой местности и там, где почвенные условия плохие. Детальное проектирование систем заземления выходит за рамки этого документа.
заземляющий электродВернуться к оглавлению №
6.Кольцо заземления
В некоторых случаях может быть целесообразно установить медное заземляющее кольцо , дополненное приводными заземляющими стержнями , для нового коммерческого и промышленного строительства в дополнение к металлическим водопроводным трубам, конструкционной строительной стали и электродам в бетонной оболочке, так как требуется Кодекс.
Заземляющие кольца обеспечивают удобное место для соединения нескольких электродов системы заземления, таких как несколько заземляющих устройств, молниезащита, несколько вертикальных электродов и т. Д.
Установите заземляющие кольца полностью вокруг зданий и сооружений и ниже линии замерзания в траншее, смещенном в нескольких футах от зоны охвата здания или сооружения. Там, где низкий, полное сопротивление заземления необходимо, дополните заземляющее кольцо приводными заземляющими стержнями в триплексной конфигурации на каждом углу здания или сооружения и в средней точке каждой стороны.
Аварийный генератор, соединенный с кольцевым заземлением и дополнительно заземленный на арматурные стержни в его бетонной площадке (фото любезно предоставлено: psihq.ком)Минимальный размер проводника NEC для заземляющего кольца — 2 AWG , но чаще используются размеры до 500 ксм / . Чем больше проводник и чем длиннее проводник, тем больше площадь поверхности соприкасается с землей и тем ниже сопротивление к земле.
Вернуться к оглавлению №
7. Заземляющая электродная система
Шина заземляющего электрода (фото предоставлено: electric-contractor.net)Свяжите все присутствующие заземляющие электроды , включая металлические подземные водопроводные трубы, конструкционную конструкционную сталь, электроды в бетонной оболочке, трубчатые и стержневые электроды, пластинчатые электроды и заземляющее кольцо, а также все подземные металлические трубопроводные системы, которые пересекают заземляющее кольцо, к системе заземляющих электродов.
Свяжите заземляющие электроды отдельных зданий в университетском городке вместе, чтобы создать одну систему заземляющих электродов.
Свяжите все электрические системы , такие как питание, кабельное телевидение, спутниковое телевидение и телефонные системы, с системой заземляющих электродов. Соедините наружные металлические конструкции, такие как антенны, радиовышки и т. Д., С системой заземляющих электродов. Свяжите молниезащиту нисходящих проводников с системой заземляющих электродов.
Вернуться к оглавлению №
8. Система молниезащиты
Медные системы молниезащиты могут превосходить другие металлы как по коррозии, так и по техобслуживанию. NFPA 780 (Стандарт на установку систем молниезащиты) следует рассматривать как минимальный проектный стандарт.
Система молниезащиты зданий (фото предоставлено Schneider Electric)Система молниезащиты должна быть подключена только к системе высокого качества, с низким сопротивлением и надежным заземляющим электродом.
Вернуться к оглавлению №
9. Устройства защиты от перенапряжения (SPD) (ранее называвшиеся TVSS)
Настоятельно рекомендуется использовать устройства защиты от перенапряжений. Консультируйтесь со Стандартом IEEE 1100 (Изумрудная Книга) для соображений дизайна. Система защиты от перенапряжений должна быть подключена только к высококачественной, надежной системе заземления с низким сопротивлением.
Устройство защиты от перенапряжения — однолинейная схема (кредит: Schneider Electric)Как правило, устройство защиты от перенапряжений не должно устанавливаться после источника бесперебойного питания (ИБП).Обратитесь к руководству производителя.
Вернуться к оглавлению №
Ссылка // Рекомендуемые методы проектирования и установки медных строительных проводных систем — Copper Development Association Inc.
,