Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Как замерить заземление мегаомметром: Замер сопротивления заземления мегаомметром

Содержание

Как пользоваться мегаомметром: измерение, подключение, видео

Для оценки работоспособности кабеля, проводки необходимо измерить сопротивление изоляции. Для этого существует специальный прибор — мегаомметр. Он подает в измеряемую цепь высокое напряжение, измеряет протекающий по ней ток, и выдает результаты на экран или шкалу. Как пользоваться мегаомметром и рассмотрим в этой статье. 

Содержание статьи

Устройство и принцип действия

Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:

  • Источника постоянного напряжения.
  • Измерителя тока.
  • Цифрового экрана или шкалы измерения.
  • Щупов, посредством которых напряжение от прибора передается на измеряемый объект.

    Так выглядит стрелочный мегаомметр (слева) и электронный (справа)

В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной.

Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.

Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.

Примерная схема магаомметра

Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

Работа с мегаомметром

При испытаниях мегаомметр вырабатывает очень высокое напряжение — 500 В, 1000 В, 2500 В. В связи с этим проводить измерения необходимо очень осторожно.

На предприятиях к работе в прибором допускаются лица, имеющие группу электробезопасности не ниже 3-й.

Перед тем как провести измерения мегаомметром, в тестируемые цепи отключают от электропитания. Если вы собираетесь проверить состояние проводки в доме или квартире, надо отключить рубильники на щитке или выкрутить пробки. После выключают все полупроводниковые приборы.

Один из вариантов современных мегаомметров

Если проверять будете розеточные группы, вынимаете вилки всех приборов, которые включены в них. Если проверяются осветительные цепи, выкручиваются лампочки. Они тестового напряжения не выдержат. При проверке изоляции двигателей они также полностью отключаются от питания. После этого к тестируемым цепям подключается заземление. Для этого к «земляной» шине крепится многожильный провод в оболочке сечением не менее 1,5 мм2. Это так называемое переносное заземление. Для более безопасной работы свободный конец с оголенным проводником крепят к сухому деревянному держаку.

Но оголенный конец провода должен быть доступен — чтобы можно было им прикасаться к проводам и кабелям.

Требования по обеспечению безопасных условий работы

Даже если вы хотите в домашних условиях измерить сопротивление изоляции кабеля, перед тем как пользоваться мегаомметром стоит ознакомиться с требованиями по технике безопасности. Основных правил несколько:

  1. Держать щупы только за изолированную и ограниченную упорами часть.
  2. Перед подключением прибора отключить напряжение, убедиться в том, что поблизости нет людей (на протяжении всей измеряемой трассы, если речь идет о кабелях).

    Как пользоваться мегаомметром: правила электробезопасности

  3.  Перед подключением щупов снять остаточное напряжение при помощи подсоединения переносного заземления. И отключать его после того как щупы установлены.
  4. После каждого измерения снимать со щупов остаточное напряжение соединив их оголенные части вместе.
  5. После измерения к измеренной жиле подключать переносное заземление, снимая остаточный заряд.
  6. Работать в перчатках.

Правила не очень сложные, но от их выполнения зависит ваша безопасность.

Как подключать щупы

На приборе обычно есть три гнезда для подключения щупов. Они располагаются в верхней части приборов и подписаны:

  • Э — экран;
  • Л- линия;
  • З — земля;

Также имеется три щупа, один из которых имеет с одной стороны два наконечника. Он используется когда необходимо исключить токи утечки и цепляется к экрану кабеля (если такой есть). На двойном отводе этого щупа есть буква «Э». Тот штекер, который идет от этого отвода и устанавливается в соответствующее гнездо. Второй его штекер устанавливается в гнездо «Л» — линия. В гнездо «земля» всегда подключается одинарный щуп.

Щупы для мегаомметра

На щупах есть упоры. При проведении измерений руками браться за них так, чтобы пальцы были до этих упоров. Это обязательное условие безопасной работы (про высокое напряжение помним).

Если проверить надо только сопротивление изоляции без экрана, ставится два одинарных щупа — один в клемму «З», другой в клемму «Л». При помощи зажимов-крокодилов на концах подключаем щупы:

  • К тестируемым проводам, если надо проверить пробой между жилами в кабеле.
  • К жиле и «земле», если проверяем «пробой на землю».

    Есть буква «Э» — этот конец вставляется в гнездо с такой же буквой

Других комбинаций нет. Проверяется чаще изоляция и ее пробой, работа с экраном встречается довольно редко, так как сами экранированные кабели в квартирах и частных домах используются редко. Собственно, пользоваться мегаомметром не особо сложно. Важно только не забывать о наличии высокого напряжения и необходимости

снимать остаточный заряд после каждого измерения. Это делают прикасаясь проводом заземления к только что измеренному проводу. Для безопасности этот провод можно закрепить на сухом деревянном держаке.

Процесс измерения

Выставляем напряжение, которое будет выдавать мегаомметр. Оно выбирается не произвольно, а из таблицы. Есть мегаомметры, которые работают только с одним напряжением, есть работающие с несколькими. Вторые, понятное дело, удобнее, так как их можно использовать для тестирования различных устройств и цепей.  Переключение тестового напряжения производится ручкой или кнопкой на лицевой панели прибора.

Наименование элементаНапряжение мегаомметраМинимально допустимое сопротивление изоляцииПримечания
Электроизделия и аппараты с напряжением до 50 В100 ВДолжно соответствовать паспортным, но не менее 0,5 МОмВо время измерений полупроводниковые приборы должны быть зашунтированы
тоже, но напряжением от 50 В до 100 В250 В
тоже, но напряжением от 100 В до 380 В500-1000 В
свыше 380 В, но не больше 1000 В1000-2500 В
Распределительные устройства, щиты, токопроводы1000-2500 ВНе менее 1 МОмИзмерять каждую секцию распределительного устройства
Электропроводка, в том числе осветительная сеть1000 ВНе менее 0,5 МОмВ опасных помещениях измерения проводятся раз в год, в друих — раз в 3 года
Стационарные электроплиты1000 ВНе менее 1 МОмИзмерение проводят на нагретой отключенной плите не реже 1 раза в год

Перед тем как пользоваться мегаомметром, убеждаемся в отсутствии напряжения на линии — тестером или индикаторной отверткой. Затем, подготовив прибор (выставить напряжение и на стрелочных выставить шкалу измерения) и подключив щупы, снимаем заземление с проверяемого кабеля (если помните, оно подключается перед началом работ).

Следующий этап — включаем в работу мегаомметр: на электронных нажимаем на кнопку Test, в стрелочных крутим ручку динамо-машины. В стрелочных крутим до тех пор, пока не зажжется на корпусе лампа — это значит необходимое напряжение в цепи создано. В цифровых в какой-то момент значение не экране стабилизируется. Цифры на экране — сопротивление изоляции. Если оно не меньше нормы (средние указаны в таблице, а точные есть в паспорте к изделию), значит все в норме.

Как проводить измерения мегаомметром

После того, как измерение окончено, перестаем крутить ручку мегаомметра или нажимаем на кнопку окончания измерения на электронной модели. После этого можно отсоединять щуп, снимать остаточное напряжение.

Вкратце — это все правила пользования мегаомметром. Некоторые варианты измерений рассмотрим подробнее.

Измерение сопротивления изоляции кабеля

Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).

Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары

Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Смотрим на показания. Если стрелка показывает больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

Можно проверить многожильный кабель. Тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.

Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут. При образовании жгута важно обеспечит хороший контакт.

Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.

Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

Проверить сопротивление изоляции электродвигателя

Для проведения измерений двигатель отключается от питания. Необходимо добраться до выводов обмотки. Асинхронные двигатели, работающие на напряжении до 1000 В тестируются напряжением 500 В.

Для проверки их изоляции один щуп подключаем к корпусу двигателя, второй поочередно прикладываем к каждому из выводов. Также можно проверить целостность соединения обмоток между собой. Для этой проверки надо щупы устанавливать на пары обмоток.

Контур заземления: устройство, нормы пуэ, как проверить и измерить сопротивление мультиметром

Согласно Правил устройства электроустановок, любые электрические сети и оборудование, работающее с напряжением свыше 50 вольт переменного и 120 вольт постоянного тока, должны иметь защитное заземление.

Это касается помещений без признаков условий повышенной опасности. В опасных помещениях (повышенная влажность, токопроводящая пыль и прочее), требования еще жестче. Но мы в данном материале будем рассматривать в основном жилые дома.

По умолчанию принимаем, что заземление должно быть.

При монтаже новых линий энергоснабжения, заземление будет установлено, и владелец помещения может за этим проследить (или подключить его самостоятельно).

В случае, когда вы проживаете (работаете) в уже готовом помещении, возникает вопрос: как проверить заземление? В первую очередь, надо убедиться в том, что оно у вас есть.

Вне зависимости от формального соблюдения ПУЭ, это касается жизни и здоровья людей.

Проверка наличия и правильности подключения защитного заземления

Как минимум, необходимо заглянуть в распределительный щит вашей квартиры (дома, мастерской).

По умолчанию принимаем условие: электропитание однофазное. Так будет проще разобраться в материале.

В щитке должно быть три независимых входных линии:

  • Фаза (как правило, обозначается проводом с коричневой изоляцией). Идентифицируется индикаторной отверткой.
  • Рабочий ноль (цветовая маркировка — синяя или голубая).
  • Защитное заземление (желто-зеленая изоляция).

Если электропитающий вход выполнен именно так, скорее всего, заземление у вас есть. Далее проверяем независимость рабочего ноля и защитного заземления между собой.

К сожалению, некоторые электрики (даже в профессиональных бригадах), вместо заземления используют так называемое зануление. В качестве защиты используется рабочий ноль: к нему просто подсоединяется заземляющая шина.

Это является нарушением Правил устройства электроустановок, использование такой схемы опасно.

Как проверить, заземление или зануление подключено в качестве защиты?

Если соединение проводов очевидно — защитное заземление отсутствует: у вас организовано зануление. Однако видимое правильное подключение еще не означает, что «земля» есть и она работает. Проверка заземления включает в себя несколько этапов. Начинаем с измерения напряжения между защитным заземлением и рабочим нулем.

Фиксируем значение между нулем и фазой, и тут же проводим измерение между фазой и защитным заземлением. Если значения одинаковые — «земляная» шина имеет контакт с рабочим нулем после физического заземления. То есть, она соединена с нулевой шиной. Это запрещено ПУЭ, потребуется переделка системы подключения. Если показания отличаются друг от друга — у вас правильная «земля».

Дальнейшее измерение заземления проводится с помощью специального оборудования. На этом остановимся подробнее.

Как устроено заземление, и зачем проверять его параметры

Не вдаваясь в подробности, можно сказать, что заземление нужно для соединения корпуса электроустановки с рабочим нулем. Глядя на несколько абзацев выше, можно подумать, что это абсурд. На самом деле имеется ввиду возможность протекания тока от защитного заземления, через физическую землю (грунт), до рабочего нуля ближайшей подстанции. Фактически, это будет короткое замыкание.

Соответственно, при попадании фазы на корпус электроустановки, сработает защитный автомат, и поражения электротоком не будет.

Зачем же нужна проверка сопротивления заземления? Для организации аварийного короткого замыкания, необходима большая сила тока. Если сопротивление контура заземления будет слишком велико, сила тока (в соответствии с законом Ома) снизится, и защитный автомат не сработает.

Еще одна опасность большого сопротивления защитной «земли» в том, что сопротивление тела человека может оказаться меньше. Тогда, при касании рукой аварийной электроустановки, вы гарантированно будете поражены электротоком.

Важно! Само по себе заземление не дает 100% защиты от поражения электротоком.

Когда на корпусе электроустановки окажется фаза, часть напряжения уйдет на компенсацию утечки в физическую землю. Если остаток потенциала превысит 50 вольт, опасность сохранится.

Равно как и защитный автомат без заземления не отключит фазу при попадании на корпус. Он сработает лишь при замыкании нуля с фазой. Полную защиту дает установка автомата и одновременное подключение контура защитной «земли». Существенно повышает уровень безопасности еще и УЗО.

И, наконец о том, что представляет собой контур заземления.

Если вкратце, это несколько металлических штырей (при нормальных природных условиях — три), глубоко погруженных в грунт, соединенных проводниками между собой и шиной заземления в здании.

Проверка параметров защитного заземления

Кроме очевидных составляющих системы защитной «земли»: таких, как контактная колодка, провода, идущие к электроустановкам, соединение с контуром в грунте, важную роль в обеспечении защиты играет собственно земля. Соответственно надо убедиться в следующем:

  1. Между всеми элементами контура (штыри, соединительные шины, проводник в помещение до клеммной колодки) есть надежное электрическое соединение с минимальным сопротивлением.
  2. Попавшее на контур напряжение (в случае аварии), растекается по физической земле с максимальным током. Это возможно лишь при хорошем контакте между металлом и грунтом.
  3. Физические условия местности (грунта) могут обеспечить надежный контакт даже при плохих (с точки зрения электротока) условиях. А именно, пересыхание грунта, растрескивание земли в местах установки заземлителей.

Разумеется, никто не проводит измерения параметров на каждом элементе заземляющей системы. Это потребуется лишь в случае несоответствия нормам, для поиска так называемого «слабого звена».

По какому принципу проводится проверка защитного контура заземления?

Необходимо создать полный аналог заведомо работающего контура, и сравнить показатели с тестируемым объектом. Для этого существуют комплексы проверки рабочего заземления.

Сразу оговоримся: изготовить такой комплект самостоятельно возможно, но дорого и нецелесообразно.

Равно как и проверка параметров защитного заземления с помощью стандартных средств измерений (мультиметр), не покажет достоверной картины.

Да и сформировать высокое напряжение, необходимое для измерения параметров растекания, тестер не сможет. Поэтому лучше либо брать оборудование напрокат, либо приглашать мастера.

Вы можете купить подобный набор, но вряд ли он себя окупит в обозримом будущем. Даже с учетом того, периодичность проверки заземляющих устройств составляет один раз в году (и для жилых, и для промышленных объектов), проще получать разовый доступ к оборудованию.

Типовая схема включения прибора

Работает принцип одновременного использования вольтметра-амперметра на испытуемом участке грунта. Есть три величины: сопротивление, напряжение, сила тока. Параметры вычисляются по закону Ома. Нам известно первоначальное напряжение, а прибор поддерживает силу тока. Зная падение напряжения между тестируемыми стержнями, мы с высокой точностью можем вычислить сопротивление контура заземления.

Погрешность есть, но она несущественна в сравнении с измеряемыми величинами. Сопротивление контакта тестового электрода с грунтом вообще принимается за нулевое, при условии, что стержень чистый и не покрыт коррозией.

Большинство современных приборов сразу выдают готовые параметры защитного заземления, а в старых (при этом не менее надежных и точных) конструкциях — надо будет выполнить простую операцию деления. В соответствии с законом Ома.

Проверка заземления мегаомметром проходит по тому же принципу, только погрешность измерения будет выше. Все-таки земля не является проводником электричества в привычном смысле.

Мегаомметр лучше использовать для оценки иных факторов безопасности

Например, сопротивления изоляции. Речь пойдет не о прямой опасности. То есть, если вы схватитесь рукой за провод, в котором диэлектрические свойства изоляции в норме, вы не получите поражение электротоком.

Но есть и дополнительная опасность: пробой изоляции под нагрузкой. Этот неприятный факт приводит к сбоям в работе, и что более страшно — к возгораниям электроцепи.

Мегаомметр для измерения сопротивления изоляции представляет собой генератор напряжения и точный прибор в одном корпусе.

Классический вариант (с успехом применяется и сейчас), вырабатывает напряжение до 2500 вольт. Не стоит бояться, токи при работе мизерные. Но держаться нужно только за изолированные рукояти измерительных кабелей.

Высокий потенциал напряжения легко выявляет изъяны в изоляции, и стрелка прибора показывает истинное сопротивление. Перед началом работ следует отключить все подающие напряжение автоматы, и избавиться от остаточного потенциала: заземлить провод.

Для измерения пробоя между проводами в одном кабеле используются два провода. Они подсоединяются к жилам отключенного кабеля, и проводится замер. Если сопротивление ниже нормы, кабель отбраковывается. Никто не знает, когда место потенциального пробоя принесет неприятности.

Для измерения утечки на землю, один провод соединяется с защитным заземлением (в зоне прокладки тестируемого кабеля), а второй к центральной жиле. Напряжение для тестирования должно быть выше. Если провод невозможно приложить к «земле», измерение проводится при помощи прикладывания второго электрода к внешней поверхности изоляции.

При наличии экрана (бронировки кабеля), применяется трехпроводная система замеров. третий провод соединяется с экраном тестируемого кабеля.

Общая схема именно такая, но каждая модель прибора имеет собственную инструкцию. В современных мегаомметрах с цифровым дисплеем, разобраться еще проще, чем в старых стрелочных.

С помощью мегаомметра можно тестировать еще и обмотки двигателей. Но это отдельная тема. Информация для тех, кто думает, что все эти приборы узкопрофильные: с помощью системы шунтов, можно превратить мегаомметр в прецизионный омметр или вольтметр.

Видео по теме

Источник: https://ProFazu.ru/provodka/bezopasnost-provodka/kak-proverit-zazemlenie.html

Как замерить сопротивление заземления мультиметром

То, что правилами требуется периодически измерять сопротивление заземления, это не просто чья-то придумка или блажь, это, прежде всего, вопрос безопасности человеческой жизни. Существуют определённые нормативы и замеры должны им соответствовать. В статье мы рассмотрим, как замерить сопротивление заземления мультиметром и другими измерительными приборами.

Перед тем, как проверить заземление в частном доме очень важно, чтобы вы поняли саму суть этой процедуры, для чего она выполняется, какую основную цель преследует, почему это так необходимо?

Что такое заземление?

Защитное заземление – это преднамеренное соединение с землёй тех частей электрического оборудования, которые при нормальной работе электросети не находятся под действием напряжения, но могут попасть под его влияние в результате пробоя изоляции. Основной целью заземления является защита людей от действия электрического тока.

Главная составляющая защитного заземления – это контур. Он представляет собой конструкцию естественных или искусственных заземлителей, то есть несколько заземляющих электродов соединяются в единое целое. В качестве электродов чаще всего используют прутья из стали. Медные пруты применяют реже в силу того, что это дорого.

Но если есть финансовые возможности, то имейте в виду, что медь является идеальным вариантом и наилучшим проводником.

По логике понятно, что контур заземления должен располагаться в земле. Так как нас интересует защита дома, то неподалёку от строения и силового щитка выбирается подходящее место с нормальным грунтом. В землю вбиваются три штыря так, чтобы они располагались треугольником, и расстояние между ними было 1,5 м.

Эти электроды необходимо вбить максимально глубоко (их длина должна быть не менее 2 м).

Теперь понадобится сварочный аппарат и металлическая шина, с помощью которых электроды нужно увязать между собой в равносторонний треугольник. Контур готов, теперь к нему нужно закрепить медный проводник, который дальше идёт в щиток и подсоединяется там к заземляющей шинке. А на эту шинку выводятся заземляющие проводники от всех розеток.

  • Перед использованием необходимо проверить контур на заземляющее сопротивление.
  • О том, что такое заземление – на следующем видео:

В чём суть работы заземления?

Принцип действия защитного заземления основывается на главном качестве электрического тока – протекать по проводникам, которые обладают наименьшим сопротивлением. На сопротивление человеческого тела оказывают влияние многие факторы, но в среднем оно приравнивается к 1000 Ом.

Согласно Правилам устройства электроустановок (ПУЭ) контур заземления должен иметь сопротивление гораздо меньшее (допускается не более 4 Ом).

А теперь смотрите, в чём заключается принцип действия защитного заземления.

Если какой-то электрический прибор неисправен, то есть произошёл пробой изоляции и на его корпусе появился потенциал, и кто-то прикоснулся к нему, то ток с поверхности прибора будет уходить в землю через человека, путь будет выглядеть как «рука-тело-нога». Это смертельная опасность, величина тока 100 мА вызывает необратимые процессы.

Защитное заземление сводит этот риск до минимума. Современные электроприборы имеют внутреннее соединение заземляющего контакта штепсельной вилки с корпусом.

Когда прибор посредством вилки включён в розетку и в результате повреждения на его корпусе появляется потенциал, то он уйдёт в землю по заземляющему проводнику с низким сопротивлением.

То есть ток не пойдёт через человека с сопротивлением 1000 Ом, а побежит через проводник, у которого эта величина намного меньше.

Вот почему важным этапом в обустройстве электрического хозяйства в наших жилых домах является измерение сопротивления заземления. Нам нужна 100 % уверенность, что эта величина ниже наших человеческих 1000 Ом.

И запомните, что это процедура не разового характера, измеряться сопротивление должно периодически, а сам контур надо постоянно поддерживать в исправном состоянии.

Проверка заземления розеток

Если вы купили дом или квартиру, и вся электрическая часть в помещении уже была смонтирована до вас, как проверить заземление в розетке?

Для начала предлагаем вам произвести визуальный осмотр. Отключите вводной автомат на квартиру и разберите одну розетку.

У неё должна быть соответствующая клемма, к которой подсоединяется заземляющий проводник, как правило, он имеет жёлто-зелёное цветовое исполнение. Если всё это присутствует, значит, розетка заземлена.

Если же вы обнаружили только два провода – коричневый и синий (фазу и ноль), то розетка не имеет защитного заземления.

В то же время наличие жёлто-зелёного проводника ещё не говорит об исправности заземления.

Эффективность контура можно определить специальным прибором, без которого не обходится ни один электрик, мультиметром. Алгоритм этой проверки выглядит следующим образом:

  • В распределительном щитке включите вводной автомат, то есть в розетках должно присутствовать напряжение.
  • На приборе установите режим измерения напряжения.

  • Теперь необходимо щупами прибора прикоснуться к фазному и нулевому контакту и померить между ними напряжение. На приборе должна высветиться величина порядка 220 В.
  • Аналогичный замер произведите между фазным и заземляющим контактами. Измеряемое напряжение будет немного отличаться от первой величины, но сам факт появления на экране каких-то цифр говорит о том, что в помещении присутствует заземление. Если на экране прибора никаких цифр нет, значит, контур заземления отсутствует либо он в неисправном состоянии.

Когда нет мультиметра, проверить работу контура можно тестером, который собирается своими руками. Вам понадобятся:

  • патрон;
  • лампочка;
  • провода;
  • концевики.

Электрики называют подобный тестер «контрольной лампочкой» или сокращённо «контролькой». Прикоснитесь одним концевым щупом к фазному контакту, вторым дотроньтесь до нулевого. Лампочка при этом должна загореться.

Теперь концевик, которым вы прикасались к нулю, переведите на усик заземляющего контакта. Если лампочка снова загорится, значит, контур заземления в рабочем состоянии. Лампа не будет гореть, если защитное заземление не рабочее.

Слабое свечение станет свидетельством плохого состояния контура.

Если к проверяемой цепи подключено УЗО, то во время проверочных действий оно может сработать, это означает, что заземляющий контур работоспособен.

Обратите внимание! Может быть такая ситуация, что во время прикосновения концевиками к фазному и заземляющему контактам лампа не загорелась. Попробуйте тогда с фазного контакта переместить щуп на нулевой, возможно во время подключения розетки ноль с фазой были попутаны.

  1. В идеале надо начинать проверочные действия с того, что при помощи индикаторной отвёртки определять в коммутационном аппарате фазный контакт.
  2. Наглядно этот способ показан на видео:
  3. О неисправном либо неподключенном контуре заземления могут также свидетельствовать такие косвенные ситуации:
  • бьётся током стиральная машина или водонагревательный бойлер;
  • слышится шум в колонках, когда работает музыкальный центр.

Проведение замеров

И всё же в вопросе, как замерить сопротивление заземления, лучше пользоваться не мультиметром, а мегаомметром. Наилучшим вариантом считается электроизмерительный переносной прибор М-416.

Его работа основывается на компенсационном методе измерения, для этого пользуются потенциальным электродом и вспомогательным заземлителем.

Его измерительные пределы от 0,1 до 1000 Ом, работать прибором можно при температурных режимах от -25 до +60 градусов, питание осуществляется за счёт трёх батареек напряжением 1,5 В.

А теперь пошаговая инструкция всего процесса как измерить сопротивление контура заземления:

  • Прибор расположите на горизонтальной ровной поверхности.
  • Теперь произведите его калибровку. Выберите режим «контроль», нажмите красную кнопку и, удерживая её, установите стрелку в положение «ноль».
  • Некоторое сопротивление есть и у соединительных проводов между выводами, чтобы свести к минимуму это влияние расположите прибор поближе к измеряемому заземлителю.
  • Выберите нужную схему подключения. Можете проверить сопротивление грубо, для этого выводы соедините перемычками и подключите прибор по трёхзажимной схеме. Для точности измерений следует исключить погрешность, которую дадут соединительные провода, то есть между выводами снимается перемычка и применяется четырёхзажимная схема подключения (кстати, она нарисована на крышке прибора).
  • Выполните забивание в землю вспомогательного электрода и стержня зонда на глубину не меньше 0,5 м, имейте в виду, что грунт должен быть плотный и не насыпной. Для забивания используйте кувалду, удары должны быть прямыми, без раскачивания.

  • Место, где будете подсоединять проводники к заземлителю, зачистите напильником от краски. В качестве проводников применяйте медные жилы сечением 1,5 мм2. Если используете трёхзажимную схему, то напильник будет выполнять роль соединительного щупа между заземлителем и выводом, так как с другой его стороны подсоединяется медный провод сечением 2,5 мм2.
  • И теперь переходим уже непосредственно к тому, как измерить сопротивление заземления. Выберите диапазон «х1» (то есть умножение на «1»). Нажмите красную кнопку и вращением ручки стрелку установите на «ноль». Для больших сопротивлений необходимо будет выбрать и больший диапазон («х5» или «х20»). Так как мы выбрали диапазон «х1», то цифра на шкале и будет соответствовать измеренному сопротивлению.

Наглядно, как проводится измерение заземления на следующем видео:

Некоторые основные параметры и правила

Неважно, в какое время года вы будете производить замеры, показания всегда должны соответствовать следующим нормам:

Для источников с однофазным напряжениемДля источников с трёхфазным напряжениемВеличина сопротивления заземления
127 В220 В8 Ом
220 В380 В4 Ом
380 В660 В2 Ом

Замеры рекомендуется выполнять при определённых погодных условиях, когда земля считается наиболее плотной.

Идеальное время – это середина лета (когда грунт сухой) и середина зимнего периода (когда земля сильно промёрзшая).

Мокрый грунт сильно повлияет на растекаемость тока, поэтому измерения, проведённые в сырую и влажную погоду в весенний или осенний период, будут искажёнными.

Есть ещё способ производить замеры токоизмерительными клещами, но самым лучшим вариантом будет обращение в специализированную службу. Электротехническая лаборатория произведёт все необходимые измерения и выдаст соответствующий протокол, в котором будут указаны место проведения испытаний, характер и удельное сопротивление грунта, величины замеров с сезонным поправочным коэффициентом.

Источник: https://YaElectrik.ru/elektroprovodka/kak-zamerit-soprotivlenie-zazemleniya-multimetrom

Измерение металлосвязи: методика, нормы, периодичность проверки

Наличие защитного заземления – одно из основных требований электробезопасности. Надежность заземляющих элементов контролируют специалисты электролаборатории, проводя измерение металлосвязи.

Согласно действующим нормам и правилам, такая проверка обязательна, если на объекте производился ремонт электрического оборудования, переоснащение или монтажные работы.

Что скрывается под термином «металосвязь» и зачем проводятся ее измерения, мы подробно расскажем в этой публикации.

Под данным термином принято понимать связь (электрическую цепь), образованную электроустановкой и заземлителем. Основное требование к металлосвязи – непрерывность цепи заземления. Нарушение этого условия грозит образованием высокой разности потенциалов в цепях электроустановки, что представляет угрозу для жизни и может повлечь за собой выход из строя оборудования.

Надежный  контакт заземлителя и объекта заземления обеспечивает низкую величину переходного сопротивления

Со временем может наблюдаться рост переходных сопротивлений в цепи заземления, что приводит к образованию дефектов металлосвязи, давайте разберемся с природой этого явления.

Чем вызван рост переходного сопротивления?

Под переходными контактами подразумеваются соприкасающиеся металлические элементы. Добиться их идеальной полировки невозможно, все равно на поверхности будут присутствовать бугорки и вмятины микроскопического размера.

Площадь контактируемых поверхностей изменяется от воздействия различных внешних факторов (температура, сила прижатия, загрязнение поверхности и т.д.), что ведет к увеличению переходного сопротивления.

На представленных ниже фотографиях медного контакта, сделанных при помощи электронного микроскопа, видно образование на поверхности пленки из оксида меди.

Поверхность медного контакта, увеличенная микроскопом

Такая оксидная пленка обладает диэлектрическими свойствами, они хоть и не велики, но этого может оказаться достаточно, чтобы нарушить металлосвязь.

В результате соединение будет нагреваться и рано или поздно приведет к отгоранию контакта, что незамедлительно отразится на качестве металлосвязи.

Не менее распространенная причина – человеческий фактор, именно поэтому после монтажных работ требуется проводить измерение металлосвязи.

Принимая во внимание вышеизложенную информацию, можно указать следующие причины для проверки металлосвязи:

  1. Контроль непрерывности цепи заземления. Он включает в себя как электроизмерения, так и осмотр защитных проводников и других элементов заземления, на предмет их целостности.
  2. Измерение сопротивления переходных контактов (производится между электроустановкой и заземлителем), а также общих параметров цепи.
  3. Проверяется разность потенциалов между корпусом заземленной электроустановки и заземлителем. Проверка осуществляется в рабочем режиме и выключенном состоянии.

Как видим, основная цель проверки – осуществление измерений параметров заземляющих цепей, поскольку именно они характеризуют качество металлосвязи, а соответственно, и электробезопасность установки.

В соответствии с требованиями ПУЭ металлические элементы электроустановок подлежат заземлению. Замеры металлосвязи производятся между главной заземляющей шиной и элементом, подлежащим проверке. По нормам сопротивление контактов в одном переходе должно быть 0,01 Ом ± 20%.

Если измерительный прибор подтверждает наличие качественного соединения, выполняется проверка следующего узла. Когда между заземлителем и заземленной электроустановкой несколько переходов, то их суммарное сопротивление не должно выходить за пределы 0,05 Ом.

Измерение сопротивления переходных контактов

Если сопротивление превышает допустимые нормы, следует проверить состояние контактов, зачистить их, соединить и произвести повторные измерения.

Большинством электролабораторий замеры металлосвязи проводятся по следующему алгоритму:

  1. Осуществляется визуальный осмотр контактов заземляющих проводников. Эффективны при поисках «плохого» контакта специальные приборы – тепловизоры, они быстро позволяют обнаружить проблемное соединение.
  2. Сварочные соединения проверяются на прочность путем применения механической нагрузки.
  3. Все заземленные элементы конструкции тестируются на наличие металлосвязи.
  4. Проверка наличия электрического тока на заземленных элементах.
  5. Полученные результаты фиксируются в специальном протоколе.

Приведенная методика измерений доказала свою эффективность.

Нормы и правила

Согласно нормам ПУЭ заземляющие проводники, а также используемые для выравнивания потенциалов, необходимо надежно соединять, чтобы обеспечить наличие непрерывности цепи заземления.

При этом для стальных проводников предписывается сварочное соединение, другие способы контакта допускаются только в том случае, если имеется защита от разрушающего воздействия воздушной среды.

При использовании болтовых соединений, должны быть приняты соответствующие меры, не позволяющие ослабевать контактному соединению.

Все соединения цепи заземлителя и заземленного устройства должны быть расположены таким образом, чтобы к ним имелся свободный доступ, поскольку должен производиться осмотр, с целью проверки непрерывности электрического соединения. Исключение их этого правила – герметизированные контакты.

В Правилах также указано, что для контакта с заземляющими устройствами могут выполняться болтовыми или сварочными соединениями. Если устройства электроустановок подвержены сильной вибрации или их часто перемещают на другое место, то применяются гибкий защитный провод.

Более детальную информацию о нормах и правилах, можно получить в ПУЭ (р. 1.7.).

Периодичность

Согласно норм ПТЭЭП и ПУЭ, испытания металлосвязи проводится по графику, определенному техническим отделом объекта. Как правило, в этом случае руководствуются табл. 37 п. 3.1 ПТЭЭП, где установлена следующая периодичность измерения металлосвязи:

  • В помещениях и объектах, относящихся к повышенной категории опасности, замеры переходных сопротивлений в заземляющих цепях должны проводиться ежегодно, при других обстоятельствах — не реже одного раза на протяжении трех лет.
  • Для лифтового и подъемного оборудования – 1 год.
  • Стационарным электроплитам – 1 год.

Как правило, проверка металлосвязи производится совместно с другими видами электроизмерений (сопротивления изоляции, проверка целостности электропроводки и т.д.).

Помимо этого, обязательные измерения металлосвязи проводятся в следующих случаях:

  1. Если производился ремонт или переоснащение электрооборудования.
  2. При испытаниях новых электроустановок.
  3. После проведения монтажных работ.

Приборы для измерения

Учитывая, что измерения металлосвязи проводятся на уровне сотых Ома, то обычные измерительные приборы, например, мультиметры, для этой цели не подходят. Когда проводят замеры сопротивления заземления, используют более точные приборы, достаточно чувствительные, чтобы измерять сопротивления малого уровня.

Прибор для измерения заземления Metrel MI3123

Большинство таких устройств оснащены дополнительными функциями, например, представленный на рисунке прибор Metrel MI3123 может также измерять электропроводимость грунта и тока утечки.

Фиксация результатов в протоколе измерения

Все результаты измерений заносятся в специальный протокол испытаний. Данные фиксируются в таблице, с указанием наименования каждого осмотренного соединения. В отчете также приводится информация о количестве осмотренных узлов, их местоположении и отображается максимальное значение общего сопротивления контактов защитной цепи.

Если в процессе испытаний обнаружено отсутствие металлосвязи, информация об этом обязательно фиксируется в документе и одновременно в приложении к протоколу (дефектной ведомости).

Кратко о профилактике.

Регулярно проводить замеры металлозаземления, не значит отказаться от профилактики. Чтобы обеспечить непрерывность защитных цепей необходимо регулярно проверять, в каком состоянии находятся контактные соединения, и при необходимости подтягивать их. Не менее важно очищать контакты пыли, окисной пленки и грязи.

При обнаружении наличия электрического напряжения на одном из элементов конструкции, необходимо позаботится о ее качественном заземлении. В противном случае возрастает риск возникновения нештатной ситуации.

Не стоит экономить на проверке качества устройства защитного заземления, поскольку потери могут стать более затратными, чем оплата вызова электролаборатории.

Важно ознакомиться и прочитать:

Источник: https://www.asutpp.ru/kak-vypolnjaetsja-proverka-metallosvjazi.html

Как измерить сопротивление контура заземления – обзор методик

Измерение сопротивления заземления нужно выполнять, чтобы удостовериться, что оно совпадает с требованием ПУЭ (правила устройства электроустановок) гл. 1.8., а также ПТЭЭП пр. 3,3.1.

Замеры, которые проводятся в электроустановке с глухозаземленной нейтралью (напряжение которых составляет ниже 1000В) должны соответствовать следующим нормам.

Неважно, зимой или летом, значение не должно превышать отметку 8, 4 и 2 Ом при напряжении 220, 380, 660 В (для источников с трехфазным током) соответственно, или 127, 220 и 380 В для источников с однофазным током.

 Для электроустановок, где используется изолированная нейтраль (напряжение ниже 1000В) сопротивление заземляющего контура должно соответствовать п 1.7.104 ПУЭ и рассчитывается по формуле Rз * Iз Обзор методик

Метод амперметра-вольтметра

Для проведения измерительных работ необходимо искусственно собрать электрическую цепь, в которой ток течет через испытуемый заземлитель и токовый электрод (его еще называют вспомогательным).

Также в этой схеме задействуется потенциальный электрод, назначение которого – замер падения напряжения во время протекания электрического тока по заземлителю.

Потенциальный электрод нужно расположить одинаково далеко от токового электрода и испытуемого заземлителя, в зоне с нулевым потенциалом.

Чтобы измерить сопротивление методом амперметра-вольтметра необходимо воспользоваться законом Ома. Итак, по формуле R=U/I находим сопротивление контура заземления.

Такой метод хорошо подходит для измерений в частном доме. Чтобы получить нужный измерительный ток можно воспользоваться сварочным трансформатором.

Также подойдут и другие виды трансформаторов, вторичная обмотка которых электрически не связана с первичной.

Использование специальных приборов

Сразу отметим, что даже для измерений в домашних условиях многофункциональный мультиметр не сильно подойдет. Чтобы измерить сопротивление контура заземления своими руками используются аналоговые приборы:

  • МС-08;
  • М-416;
  • ИСЗ-2016;
  • Ф4103-М1.

Рассмотрим, как измерить сопротивление прибором М-416. Сначала нужно убедиться, что у прибора есть питание. Проверим наличие батареек. Если их нет, нужно взять 3 элемента питания напряжением 1,5 В. В итоге получим 4,5 В. Готовый к использованию прибор нужно поставить на ровную горизонтальную поверхность.

Далее калибруем прибор. Ставим его в положение «контроль» и, удерживая красную кнопку, выставляем стрелку на значении «ноль». Для измерения будем пользоваться трехзажимной схемой. Вспомогательный электрод и стержень зонда забиваем не менее чем на полметра в грунт. Подсоединяем к ним провода прибора по схеме.

Переключатель на приборе устанавливается в одно из положений «Х1». Зажимаем кнопку и крутим ручку, пока стрелка на циферблате не сравняется с отметкой «ноль». Полученный результат необходимо умножить на ранее выбранный множитель. Это и будет искомое значение.

На видео наглядно демонстрируется, как измерить сопротивления заземления прибором:

Также могут быть использованы более современные цифровые приборы, которые намного упрощают работы по замерам, более точны и сохраняют последние результаты измерений. Например, это приборы серии MRU – MRU200, MRU120, MRU105 и др.

Работа токовыми клещами

Сопротивление контура заземления можно измерять также токовыми клещами. Их преимущество в том, что нет необходимости отключать заземляющее устройство и применять вспомогательные электроды. Таким образом, они позволяют достаточно оперативно вести контроль за заземлением. Рассмотрим принцип работы токовых клещей.

Через заземляющий проводник (который в данном случае является вторичной обмоткой) протекает переменный ток под воздействием первичной обмотки трансформатора, которая находится в измерительной головке клещей.

Для расчета величины сопротивления необходимо разделить значение ЭДС вторичной обмотки на величину тока, измеренную клещами.

В домашних условиях можно использовать токовые клещи С.А 6412, С.А 6415 и С.А 6410. Более подробно узнать о том, как пользоваться токоизмерительными клещами, вы можете в нашей статье!

Безэлектродный способ

Этот метод является наиболее современным и позволяет измерять сопротивление контура, не прибегая к размыканию заземляющих стержней и установке дополнительных заземляющих электродов. В связи с этим условием, метод имеет ряд дополнительных преимуществ:

  • возможность производить замеры в полевых условиях, в тех местах, где невозможно применить другие методы измерения сопротивления;
  • экономия времени и средств для выполнения работ.

Безэлектродный метод может применяться, если используются двое измерительных токовых клещей. Например, это могут быть современные тестеры типа Fluke 163. Клещи располагают вокруг заземляющего электрода или соединительного кабеля. Клещами при этом измеряется индуцируемое напряжение. Его амплитуда фиксируется вторыми клещами.

Тестер автоматически определяет сопротивление контура заземления для данного соединения.

Периодичность измерений

Проводить визуальный осмотр, измерения, а также при необходимости частичное раскапывание грунта нужно согласно графику, который установлен на предприятии, но не реже чем один раз в 12 лет.

Получается, что, когда производить замеры заземления – решать вам.

Если вы живете в частном доме, то вся ответственность лежит на вас, но не рекомендуется пренебрегать проверкой и замерами сопротивления, так как от этого напрямую зависит ваша безопасность, при пользовании электрооборудованием.

При проведении работ необходимо понимать, что в сухую летнюю погоду можно добиться наиболее реальных результатов измерений, так как грунт сухой и приборы дадут наиболее правдивые значения сопротивлений заземления.

 Напротив, если замеры будут проведены осенью либо весной в сырую, влажную погоду, то результаты будут несколько искажены, так как мокрый грунт сильно влияет на растекаемость тока, что, в свою очередь, дает большую проводимость.

Если вы хотите, чтобы измерения защитного и рабочего заземления проводили специалисты, то необходимо обратиться в специальную электротехническую лабораторию.

По окончании работы вам будет выдан протокол измерения сопротивления заземления.

В нем отображается место проведения работ, назначение заземлителя, сезонный поправочный коэффициент, а также на каком расстоянии друг от друга находятся электроды. Образец протокола предоставлен ниже:

Напоследок рекомендуем просмотреть видео, в котором показывается как измеряют сопротивление заземления опоры ВЛ:

Вот мы и рассмотрели существующие методики измерения сопротивления заземления в домашних условиях. Если вы не обладаете соответствующими навыками рекомендуем воспользоваться услугами специалистов, которые все сделают быстро и качественно!

Также рекомендуем прочитать:

Источник: https://samelectrik.ru/kak-izmerit-soprotivlenie-kontura-zazemleniya.html

Как проверить контур заземления

:

Заземление представляет собой соединение электрических приборов с землей. С его помощью обеспечивается защита от поражающего действия тока при неисправностях или повреждениях электрооборудования.

Для заземлителя используются обыкновенные металлические стержни или специальные комплексы, включающие в свой состав сложные элементы. Перед вводом в эксплуатацию всей системы, происходит проверка контура заземления, где в первую очередь замеряется его сопротивление.

Таким образом, удается выяснить способность заземляющего контура выполнять свою основную защитную функцию.

Для чего измеряется сопротивление

Проведение замеров позволяет определить величину сопротивления контура, которая не должны быть выше установленных норм. В случае необходимости, сопротивление снижается за счет увеличения площади контакта или общей проводимости среды. С этой целью увеличивается количество стержней, повышается содержание соли в земле.

Необходимо помнить, что с помощью простого заземления возможно только снижение напряжения фазы, попадающей на корпус прибора.

Чтобы повысить надежность защиты, заземление нередко устанавливается вместе с устройством защитного отключения.

Проектирование и подбор заземляющего устройства осуществляется в индивидуальном порядке в каждом конкретном случае. На его конструкцию оказывает влияние влажность, тип и состав почвы, а также другие факторы.

Как измерить сопротивление контура заземления

Сопротивление контура измеряется сразу же, как только жилой объект введен в эксплуатацию. В дальнейшем, подобные замеры выполняются 1 раз в год. Для измерений применяются специальные приборы, быстро и точно определяющие  удельное сопротивление стержней и других металлических элементов, грунтов, в которых они установлены.

Замеры проводятся в несколько этапов:

  • Вначале заземление замыкается с искусственной цепью электрического тока, в которой замеряется падение напряжения.
  • Возле испытуемого стержня размещается электрод вспомогательного назначения, соединяемый с тем же источником электрического напряжения.
  • Затем, с помощью измерительного зонда, в зоне нулевого потенциала, выполняются замеры падения напряжения на первом стержне. Этот метод получил наибольшее распространение.

Проведение замеров лучше всего выполнять в зимнее или летнее время. В заземляющих устройствах сопротивление может отличаться в каждом отдельном случае. Например, в частных домах его значение доходит до 30 Ом. Сами замеры выполняются с помощью 2-х, 3-х или четырехполюсной методики.

Правила замера сопротивления контура заземления:

  • Для размещения потенциального зонда, замеряющего сопротивление, используется контрольный участок, расположенный между токовым вспомогательным зондом и заземлителем.
  • Длина контрольного участка должна быть выше размеров полосового электрода или глубины заземляющего стержня примерно в 5 раз.
  • Если сопротивление измеряется в целом комплексе заземляющей системы, то расстояние контрольного участка можно вычислить по максимальной длине диагонали, проходящей между отдельными заземляющими устройствами.

Иногда проводятся дополнительные замеры, особенно в многочисленных подземных коммуникациях. В этих случаях выполняется несколько измерительных операций, во время которых изменяются направления и расстояния лучей между зондами. Реальное значение принимается по самому худшему результату.

Существуют допустимые нормы сопротивления заземляющих устройств, которые не должны превышаться, независимо от времени года. Все максимально допустимые значения отражены в таблицах или приложениях ПУЭ.

Замер сопротивление изоляции

Для измерения изоляции применяется мегомметр. Он включает в себя несколько составных частей: генератор непрерывного тока с ручным приводом, добавочные сопротивления и магнитоэлектрический логометр.

Перед началом измерительных работ необходимо убедиться, что объект замеров обесточен и не находится под напряжением. С изоляции удаляется пыль и грязь, после чего выполняется заземление объекта примерно на 2-3 минуты.

Таким образом, снимаются остаточные заряды. К оборудованию или электрической цепи подключение мегомметра осуществляется раздельными проводами.

Их изоляция обладает большим сопротивлением, как правило, не меньше чем 100 мегаом.

Сопротивление изоляции замеряется, когда приборная стрелка принимает устойчивое положение. Окончательные результаты замеров сопротивления определяются по показаниям стрелки измерительного прибора. На этом проверка контура заземления считается завершенной. После этого, объект испытаний необходимо разрядить.

Источник: https://electric-220.ru/news/proverka_kontura_zazemlenija/2016-04-04-953

Какая периодичность проверки контура заземления?

Этот материал подготовлен специалистами компании «ЭлектроАС». Нужен электромонтаж или электроизмерения? Звоните нам!

Евгений
Сроки проверки заземляющих устройств?
Ответ:
В соответствии с ПТЭЭП, периодичность проверки состояния заземляющих устройств (контура заземления) определяется графиком планово-профилактических работ (ППР), который утверждается техническим руководителем Потребителя. На основании п. 2.7.9. ПТЭЭП, визуальный осмотр видимых частей заземляющих устройств должен проводится не реже 1 раза в 6 месяцев. Осмотр с выборочным вскрытием грунта должен проводится не реже одного раза в 12 лет.

Периодичность измерения сопротивления заземляющего устройства проводят в соответствии с приложением 3, п. 26. «Заземляющие устройства», а именно:
1) Заземляющее устройство опор воздушных линий электропередачи напряжением до 1000 В — не реже 1 раза в 6 лет, и для ВЛ выше 1000 В — не реже 1 раза в 12 лет.

2) Заземляющее устройство электроустановок в соответствии с графиком планово-профилактических работ (ППР), но не реже 1 раза в 12 лет.

ПТЭЭП
2.7.8

Для определения технического состояния заземляющего устройства должны проводиться визуальные осмотры видимой части, осмотры заземляющего устройства с выборочным вскрытием грунта, измерение параметров заземляющего устройства в соответствии с нормами испытания электрооборудования (Приложение 3).

2.7.9
Визуальные осмотры видимой части заземляющего устройства должны производиться по графику, но не реже 1 раза в 6 месяцев ответственным за электрохозяйство Потребителя или работником им уполномоченным.
При осмотре оценивается состояние контактных соединений между защитным проводником и оборудованием, наличие антикоррозионного покрытия, отсутствие обрывов.

Результаты осмотров должны заноситься в паспорт заземляющего устройства.

2.7.10
Осмотры с выборочным вскрытием грунта в местах наиболее подверженных коррозии, а также вблизи мест заземления нейтралей силовых трансформаторов, присоединений разрядников и ограничителей перенапряжений должны производиться в соответствии с графиком планово-профилактических работ (далее — ППР), но не реже одного раза в 12 лет.

Величина участка заземляющего устройства, подвергающегося выборочному вскрытию грунта (кроме ВЛ в населенной местности — см. п.2.7.11), определяется решением технического руководителя Потребителя.

2.7.11
Выборочное вскрытие грунта осуществляется на всех заземляющих устройствах электроустановок Потребителя; для ВЛ в населенной местности вскрытие производится выборочно у 2% опор, имеющих заземляющие устройства.

Источник: http://elektroas.ru/kakaya-periodichnost-proverki-kontura-zazemleniya

Как проверить контур заземления самому,метод электрочайника

Контур защитного заземления в электропроводке дома или квартиры переоценить довольно сложно. Во-первых – это Ваша безопасность, а во-вторых – это долгий срок службы практически всех ваших бытовых потребителей электроэнергии.Но довольно часто попадаются в интернете статьи о том как правильно своими силами проверить смонтированный контур.

Давайте познакомимся с этими советами…

Совет №1 (из форума электриков)

Цитата: народ,кто хорошо разбирается в тонкостях контуров заземления?Есть у меня вопросики.Сегодня захреначили контур 6 арматурин по 4 метра.Прибора специального для замера сопротивления не было сегодня.Сделали по деревенски.Подключили через фазу и контур(без рабочего ноля) чайник на 1.5КВта.Получилось следующее.Без нагрузки напряжение 247 В.Включаем чайник,на нём падение напряжения 220 В.Значит на контуре падение 27 В.Сопротивление чайника 27 Ом.Если посчитать по закону ома,то получается,что сопротивление контура чуть выше 3-х Ом.Вот у меня вопрос.Насколько данный метод объективен?Если я не учёл что-то,то хотелось бы понять,что именно? И тут понеслось. ..

Советы,разные советы,электрики со стажем в десятки лет…Все разговоры крутятся вокруг сопротивления чайника,а о контуре заземления забыли.Понравилось то,что все остались при своем мнении и каждый уверен что он прав на 100%.

Совет №2 (как проверить контур заземления тестером)

Цитата: не стоит проводить подобные работы, не обладая соответствующим опытом. Хотя правила их выполнения довольно просты.

Все гениальное просто…
А теперь советы «опытных электриков»:

1.Необходимо определить контакт фазы в розетке. Это делается специальной отверткой-тестером с индикатором фазы. Индикатором касаются поочередно проверяемых проводов с током, пальцем касаются специального контакта на ручке отвертки, лампочка горит только при касании к фазе;

2.Измерительным прибором в режиме измерения сопротивления определяется сопротивление между нулевым контактом сети и контактом заземления.

Описанный выше способ имеет высокую погрешность из-за низких токов измерительного прибора. Более правильной будет методика со специальным генератором, который подает питающий ток на контакт заземления, и тогда измеряются напряжение в проводе заземления и сила тока. Сопротивление заземления в этом случае рассчитывается по закону Ома.

Предлагаем посмотреть видео как проверить заземление на  нашем канале :

Если в результате измерений вы выясните, что полученный результат отклоняется от требуемой нормы, то можно предпринять ряд мер по уменьшению сопротивления:

  • увеличение кислотности грунта,
  • замена грунта в месте нахождения заземлителя,
  • увеличение площади заземлителя.

Таких советов можно найти множество.Но удивляет то что люди которые называют себя электриками-думают не о том как проверить контур заземления правильно по методикам и с помощью специальных приборов,а как провести провести электрические измерения с помощью каких-то чудометодов (метод электрочайника) или приборами которые не предназначены для испытания контура заземления.

Это равноценно тому,что при посещении врача в поликлинике-он будет измерять температуру Вашего тела с помощью какой-то таблицы,а слушать хрипы в легких прикладывая ухо к спине.А в итоге предложит приобрести «амулетик здоровья» вместо лекарств.

Звучит смешно?Вот также смешно выглядят «кулибины» которые готовы доказать любую теорию которую они якобы прочитали в какой-то «умной книге».

Не выглядят смешными последствия деятельности таких электриков.

Если Вам необходимо проверить контур заземления обращайтесь в электроизмерительную лабораторию которая имеет сертификат позволяющий проводить такие измерения.И не забудьте спросить свидетельство о поверке измерителя сопротивления заземления.


Заказать проверку контура заземления или модульное заземление Вы можете через онлайн форму или по телефонам указанным на нашем сайте www.energomag.net

+38(095)235-49-95,+38(096)262-98-48, +38(063)103-80-04

Доставка комплектов заземления в любую точку Украины Новой почтой по предоплате или наложенным платежом.

Если Вы сомневаетесь в выборе или не знаете как выбрать комплект заземления,мы будем рады Вам помочь.

Звоните, пишите мы Вам подскажем.

Статьи по категории «Заземление для дома»

Аккумулятор для ИБП,гелевый,AGM или мультигелевый,разница?
Аккумуляторные батареи для котла отопления или насоса
Вода из крана бьется током,в чем причина,как устранить?
Гальмар заземление инструкция по монтажу
Гибридный инвертор,как работает,как выбрать?
Заземление дома или дачи своими руками,как сделать
Заземление зарядной станции для электромобиля
Заземление МРТ или медицинского оборудования
Заземление своими руками,уголком или модульное заземление?
ИБП для дома,генератор или солнечная станция что лучше?
Измерение сопротивления заземления,проверка контура заземления
Как выбрать бесперебойник?Советы бывалых
Как выбрать заземление правильно
Как выбрать солнечный инвертор для дома?
Как выгодно купить твердотопливный котел?
Как заземлить бойлер правильно
Как заземлить дом
Как заработать на солнечной энергии?
Как защитить розетки от перегрузки?Решение есть!!!
Как настроить регулятор тяги котла твердотопливного Огонек
Как получить зеленый тариф в Украине,порядок оформления
Как проверить контур заземления самому,метод электрочайника
Как сделать заземление в розетке и проверить заземление розеток?
Какие колосиники бывают,котлы с охлаждамыми колосниками
Какой генератор лучше синхронный или асинхронный?
Комплект ИБП+аккумулятор для газового котла
Котел длительного горения Огонек ДГ модернизированный
Можно ли фундамент использовать для заземления дома?
Молниезащита дома своими руками,монтаж молниезащиты дома
Молниезащита дома,цена,или от чего зависит стоимость?
Пиролизные котлы,как они работают?
С праздником пасхи,получите подарок
Система уравнивания потенциалов для борьбы с блуждающими токами
Солнечная станция для дома,выгодно или нет?
Солнечные инверторы SAJ выставка SOLAR Ukraine 2018
Солнечные инверторы для дома,как выбрать
Солнечные станции для дома,зеленый тариф
Твердотопливные котлы Огонек с электротенами
Твердотопливный котел для отопления дома,выгодно или нет?
Термическая сварка Galmar weld,для монтажа заземления
Требования к заземлению
УЗО без заземления работает или нет?
Чем забивать модульное заземление на глубину
Что такое сетевой солнечный инвертор?
Электромонтажные работы в квартире,офисе,доме в Киеве,расценки
Что такое заземление и зачем это нам нужно?
Как выбрать твердотопливный котел
Молниезащита внутренняя,зачем она нужна?
Как выбрать электрогенератор для дома правильно?
Как правильно выбрать стабилизатор напряжения

Проверка изоляции кабеля мегаомметром

Сопротивление изоляционного слоя кабеля один из самых главных параметров его работоспособности. Если вы купили кабель, и он у вас хранился некоторое время на складе, не думайте что изоляция его будет такой же, как и при покупке. Изоляция может ухудшаться как при неудовлетворительных условиях хранения, так и в процессе работы и монтажа. Для того, чтобы выявить все возможные проблемы и осуществляется проверка изоляции кабеля мегаомметром.

Причины плохой изоляции кабеля

Есть несколько факторов влияющих на изоляционные свойства кабелей:

  • атмосферные условия
    Зимой изоляция может внезапно улучшиться, т.к. имеющаяся внутри влага попросту превратится в лед.
  • процесс укладки кабеля
    Неосторожные движения при монтаже могут вызвать излом или повредить оболочку.
  • физический износ с течением времени
  • воздействие агрессивной среды
  • завышенное напряжение при эксплуатации

Для того чтобы вовремя выявить проблему с изоляцией, потребуется специальный прибор – мегаомметр. Данные приборы бывают старого образца (механические, где нужно вращать ручку):

и нового образца – электронные:

Рассмотрим работу этих устройств.

Правила безопасности

Проверка изоляции кабеля мегаомметром производится только на отключенном и обесточенном оборудовании.

Мегаомметр способен выдать высокое напряжение (отдельные виды до 5000 Вольт), поэтому при работе с ним строго соблюдайте следующие правила:

  • работать с прибором имеет право персонал с 3-й группой по электробезопасности
  • при испытании удалите всех посторонних от испытуемого кабеля
  • перед работой прибора внимательно осмотрите его корпус, провода и измерительные щупы. Они не должны иметь сколы, повреждения;
  • проводить замеры изоляции кабеля рекомендуется при положительных температурах
  • не прикасайтесь к проводам прибора при измерениях

Подготовительные работы

Испытуемый кабель перед проверкой необходимо подготовить.

Для этого:

  • проверяете отсутствие напряжения на жилах кабеля
  • на длинных кабелях может быть наведенное или остаточное напряжение
    Поэтому перед каждым замером, с помощью отдельного кусочка провода или переносного заземления, в диэлектрических перчатках необходимо коснуться жилы и заземленного корпуса или контура заземления, чтобы снять этот заряд;
  • отсоединяете кабель от подключенного оборудования.
    Это необходимо сделать, чтобы при проверке изоляции кабеля мегаомметром, в испытании участвовал только сам кабель, без того оборудования или автоматов к которым он подключен. Отключение необходимо выполнить с двух сторон кабеля. Иногда для ускорения работы этого не делают. Сначала проводят замер, и если он показал отрицательный результат, то только после этого откидывают жилы.

Проверка мегаомметра

Перед проверкой изоляции кабеля мегаомметром, необходимо испытать на работоспособность сам аппарат.
Вот как это делается на мегаомметре М4100. Прибор имеет 2 шкалы: верхнюю для измерения в мегаомах и нижнюю для замеров в килоомах.

Для работы в мегаомах:

  • подключаете концы провода щупов к двум левым клеммам. Щупы должны быть разомкнуты;
  • вращаете ручку и смотрите показания стрелки. При исправности прибора она будет стремиться в левую сторону — к бесконечности;
  • замыкаете щупы между собой. При вращении ручки стрелка должна отклониться вправо до нуля.

Для работы в килоомах:

  • на 2 левые клеммы ставите между собой перемычку и один из концов подключаете туда. Второй конец подключается на правую крайнюю клемму. Щупы разомкнуты;
  • Вращаете ручку и смотрите показания. При исправности прибора стрелка отклоняется максимально вправо;
  • После замыкания щупов и вращении ручки, стрелка будет стремиться к нулю по нижней шкале (т.е. в левую сторону).

Работа с мегаомметром М4100

  1. первым делом проверяете отсутствие напряжения на кабеле
  2. заземляете все жилы
  3. прибор размещаете на ровную поверхность
  4. при замере изоляции жилы на “землю” один из щупов присоединяется к проводу, другой к броне или заземляющему устройству. После чего снимаете заземление только с измеряемой жилы;
  5. равномерно вращаете ручку в течение 60 секунд. Скорость вращения – два оборота в секунду. На 60 секунде отмечайте показания прибора;
  6. после каждого замера снимайте остаточный заряд с жилы и с проводов мегаомметра, путем их прикосновения к заземлению.

Бытовые сети и домашние проводки достаточно испытывать напряжением 500 Вольт. Минимальное значение, которое должна показать проверка изоляции кабеля мегаомметром в этом случае — 0,5мОм.

В промышленных эл.сетях кабели испытываются мегаомметрами на 2500 Вольт. Сопротивление изоляции при этом должно быть не меньше 10 мОм.

Работа с электронным мегаомметром

 

Как часто проводится проверка изоляции кабеля мегаометром?

  1. Первый замер делается на заводе изготовителе
  2. Перед монтажом на объекте
  3. После монтажа перед подачей напряжения
  4. В течение эксплуатации при выявлении дефектов или при техобслуживании один раз в три года.

Советы по работе с мегаомметром:

  • некоторые путаются со шкалами прибора М4100. Где расположена шкала измерения в мегаомах, а где в килоомах? Чтобы не запамятовать воспользуйтесь подсказкой: мегаом (мОм) как единица измерения выше, чем килоом (кОм), соответственно и ее шкала находится выше!
  • перед измерением очищайте концы жил кабеля от грязи. Грязная изоляция может дать плохие результаты, хотя сам кабель будет исправным;
  • измерительные провода самого мегаомметра должны иметь изоляцию минимум 10мОм. Не используйте непонятные обрезки или куски старых проводов. Вы только ухудшите показания измерений и не узнаете точных результатов;
  • когда проверяете кабель, в цепи которого присутствует счетчик, обязательно отсоединяйте все фазные жилы и нулевую жилу от корпуса или шинки. Иначе из-за прибора учета, у вас будут показания мегаомметра, как будто жилы кабеля дают короткое замыкание между собой;
  • если вы последовательно проводите измерения отдельных участков проводки, всегда отключайте нулевые жилы от общей шины. В противном случае получите одинаковые замеры на всех кабелях. И эти результаты будут равны худшему сопротивлению одного из подключенных кабелей;
  • если кабель протяженный (более 1 км), с большой емкостью, то снимать остаточный заряд необходимо с помощью специальной штанги. А то можно создать большой ”бум” прямо перед глазами;
  • при измерениях в сетях освещения выкручивайте лампочки накаливания со светильников, сами выключатели оставляйте включенными. Для газоразрядных ламп замеры можно проводить не вытаскивая лампочек из корпусов, но с обязательным выкручиванием стартера.

Статьи по теме

Измерение сопротивления заземления с помощью измерителя М416

Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».

Сегодня я расскажу Вам, как произвести измерение сопротивления заземления или, если сказать точнее, то заземляющего устройства (ЗУ).

В прошлой статье я Вам подробно рассказывал про монтаж заземляющего устройства на примере жилого многоквартирного дома.

Так вот, после окончания монтажных работ, необходимо проверить качество выполнения этих работ. Доказательством тому является измерение сопротивления заземляющего устройства, которое должно быть не больше значений, указанных в нормативно-технической литературе: ПТЭЭП (п. 26.4, табл. 35 и табл.36.) и ПУЭ (п.1.7.101 и Глава 1.8, табл.1.8.38).

Но как произвести измерение его сопротивления? Читайте ниже.

Подготовка к работе

Перед началом работ по измерению сопротивления заземляющего устройства по мере возможности и доступности необходимо произвести осмотр видимой его части без вскрытия грунта. При осмотре оценивается состояние контактных соединений, наличие антикоррозийного покрытия и отсутствие обрывов.

Качество сварных швов проверяется простукиванием молотком, а ослабление болтовых соединений — с помощью гаечных ключей.

Также во время осмотра нужно убедиться в том, что монтаж заземляющего устройства, сечения заземлителей и заземляющих проводников, монтаж шины ГЗШ и правильность подключения к ней заземляющего проводника и проводников системы уравнивания потенциалов (СУП) соответствуют проекту и требованиям ПУЭ.

Почитайте для информации о том, как правильно выполняется разделение PEN проводника на PE и N, т. е. как правильно перейти от системы заземления TN-C на систему заземления TN-C-S.

Знакомство с прибором М416 и его технические характеристики

Если при визуальном осмотре не выявились какие-либо замечания и нарушения, то можно приступать к проведению замера. Для этого в «парке приборов» нашей электролаборатории имеется переносной электроизмерительный прибор М416, который включен в Госреестр средств измерений РФ под номером 2746-71. Межповерочный интервал (МПИ) у него составляет 1 год.

Данный прибор применяется для замера сопротивления заземления, удельного сопротивления грунта и активного сопротивления. Принцип его работы основан на компенсационном методе измерения с использованием вспомогательного заземлителя и потенциального электрода (зонда).

Технические характеристики измерителя М416:

  • предел измерений от 0,1 до 1000 (Ом)
  • температура эксплуатации от -25°С до +60°С
  • вес около 3 (кг)
  • габаритные размеры 245х140х160 (мм)
  • питание прибора осуществляется с помощью 3 элементов питания размером D (R20 или 373) напряжением 1,5 (В)

У меня даже сохранился «родной» экземпляр батарейки под названием «Элемент» от 1984 года выпуска.

С помощью комплекта элементов питания можно провести не меньше 1000 измерений.

Вот так выглядит лицевая панель измерителя М416, на которой расположены:

  • переключатель диапазонов измерения
  • ручка реохорда
  • кнопка включения прибора
  • выводы (1-2-3-4) для подключения соединительных проводов
  • шкала

Корпус прибора М416 выполнен из пластмассы. Прибор имеет откидную крышку и специальный ремень для переноски.

Для измерений сопротивления ЗУ можно использовать и другие, более современные приборы, но к сожалению, пока в нашей электролаборатории их нет. Как только появится что-то новенькое, то я сразу же напишу о нем статью-обзор — подписывайтесь на новости сайта, чтобы не пропустить интересное.

Когда нужно проводить измерения сопротивления заземляющего устройства?

Чтобы при измерении сопротивления заземления получить достоверные показания, их необходимо проводить в период наибольшего высыхания (летом в сухую погоду) или промерзания грунта (зимой), т. е. при наибольшем удельном сопротивлении грунта (ПТЭЭП, п.2.7.13).

Если замер проводился в другие погодные условия, то в полученный результат необходимо внести поправочный сезонный коэффициент Кс. Об этом я расскажу Вам в отдельной статье — подпишитесь на новости сайта, чтобы не пропустить выход новых статей.

 

Проведение работ

Порядок проведения работ по измерению сопротивления заземляющего устройства (ЗУ) с помощью измерителя М416.

1. Проверяем наличие, и в случае отсутствия устанавливаем, комплект элементов питания 3х1,5 (В), соблюдая полярность. Отсек питания расположен в нижней части прибора.

2. Устанавливаем прибор М416 на ровной поверхности строго в горизонтальном положении.

3. Производим калибровку прибора. Для этого переключатель диапазонов измерения необходимо поставить в положение «Контроль 5Ω». Затем нажать на красную кнопку и, вращая ручку реохорда, установить стрелку прибора на ноль. На шкале должно быть показание 5±0,3 (Ом). Если так, то продолжаем измерения, если нет, то перепроверяем заряд и полярность элементов питания. Если с ними все нормально, то отдаем прибор в ремонт.

4. Чтобы уменьшить влияние сопротивления соединительных проводов между выводами (1), (2) и Rх на результат измерения, прибор необходимо расположить как можно ближе к измеряемому заземлителю.

5. Выбираем необходимую схему подключения прибора.

Для грубых измерений сопротивления ЗУ или относительно больших сопротивлений (больше 5 Ом) выводы (1) и (2) соединяют перемычкой. Измеритель М416 при этом подключают по трехзажимной схеме. При такой схеме в результат измерения входит сопротивление соединяемого провода между Rx и выводом (1).

  • Rх — измеряемое сопротивление заземлителя или заземляющего устройства
  • Rз — зонд
  • Rв — вспомогательный заземлитель

Если Вам необходимо более точно провести измерение сопротивления заземлителя (ЗУ меньше 5 Ом), то применяют четырехзажимную схему подключения прибора, сняв перемычку между выводами (1) и (2).  При такой схеме исключается погрешность от соединительных проводов и контактных соединений.

  • Rх — измеряемое сопротивление заземлителя или заземляющего устройства
  • Rз — зонд (потенциальный электрод)
  • Rв — вспомогательный заземлитель

Для подсказки, четырехзажимная схема подключения указана на крышке прибора.

Для заземлителей, выполненных в  виде сложных контуров с протяженными периметрами, применяются аналогичные схемы подключения измерителя М416, только между Rх и Rз должно быть расстояние не менее 5-кратного расстояния между двумя наиболее удаленными заземлителями плюс 20 (м).

Вот пример сложного контура заземления (обозначен на схеме зеленой пунктирной линией) одного из Торгового центра, где мы проводили измерения.

6. Стержни зонда и вспомогательного заземлителя нужно забивать в плотный не насыпной грунт на глубину не меньше, чем на 0,5 (м).

Расстояние между стержнями указаны на приведенных выше схемах.

В качестве Rз и Rв можно применять металлические стержни или трубы диаметром не менее 5 (мм).

Чтобы избежать значительного переходного сопротивления между заземлителем и забитыми стержнями, их необходимо забивать прямыми ударами без раскачивания. Для этого придется «потрудиться» с помощью вот такой кувалды.

В качестве соединительных проводов можно использовать медные провода сечением не менее 1,5 кв.мм.

7. Место соединения проводов к заземлителю необходимо очистить от краски, например, с помощью напильника.

К этому же напильнику с другой его стороны подсоединен медный провод сечением 2,5 кв.мм, т.е. напильник также является и щупом для соединения заземлителя с выводом (1) при трехзажимной схеме подключения прибора М416.

8. После выбора схемы и подключения прибора переходим к измерению. Переключатель диапазонов измерения ставим в положение «х1» (умножение на один). Нажимаем на красную кнопку и, вращая ручку реохорда, устанавливаем стрелку прибора на ноль.

Если сопротивление заземлителя больше 10 (Ом), то переключатель диапазонов необходимо установить в положение «х5», «х20» или «х100».

9. Результат находим путем умножения показания шкалы реохорда на установленное положение переключателя диапазонов «х1», «х5», «х20» или «х100».

В нашем примере переключатель прибора М416 установлен в положении «х1», а значит полученное значение 1,9 нужно умножить на 1, т.е. измеренное сопротивление заземлителя составляет 1,9 (Ом).

10. После завершения работ заносим полученные данные в протокол соответствующей формы.

Периодичность проведения измерений

Периодичность проверки сопротивления заземлителя или контура заземления производится по утвержденному графику предприятия, а также после ремонта или его реконструкции. Более подробно об этом Вы можете почитать в нормативно-технической литературе ПТЭЭП (п. 2.7.8. — 2.7.15).

А Вы каким прибором измеряете сопротивление заземления? Хотелось бы услышать реальные отзывы, т.к. планирую в ближайшее время обновить М416 на что-нибудь более современное.

P.S. Если Вы самостоятельно не можете произвести измерения, то воспользуйтесь услугой электролаборатории.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


прибор для измерения сопротивления изоляции

Мегаоомметр – прибор для измерения сопротивления изоляции. Его устройство основано на схеме логарифмического измерителя отношений. Основные узлы мегаомметра – электронный измеритель, электромеханический генератор, преобразователь. Генератор постоянного тока в мегаомметре представляет собой гальванические элементы или аккумуляторные батареи, в ранних моделях, которые по возрасту начитывают уже более полувека, ток подавался через динамо-машину, в которой, для того, чтобы она заработала, надо было покрутить ручку. Тем не менее, как прибор для проверки и измерения сопротивления изоляции, мегаомметр М1101М, например, вполне годится: как и полвека назад, он показывает высокую точность измерений.

Мегаомметр работает так: измерительное напряжение поступает через входящий резистор R11 одновременно на резисторы R16, R33, R32 и измеряемый резистор (см. схему). Ток измерителя рассчитывается по формуле:

где К — коэффициент пропорциональности, Rх — измеряемое сопротивление, R16, R17, R18, R32, R33 — сопротивления. Из приведенной выше зависимости следует, что ток измерителя пропорционален логарифму отношения сопротивлений и не зависит от измерительного напряжения. 

Обычно мегаомметр, являясь прибором для измерения сопротивления изоляции, имеет токонепроводящий корпус – пластмассовый, или обрезиненный, как, например, в Е6-32. Это создает дополнительное удобство есть защита от поражения электрическим током.

Сопротивление изоляции: как и для чего измерять

Итак, мегаомметр – средство измерений, которое проводит замеры с использованием повышенного выпряиленного напряжения, исключает необходимость подключения к сети, а также имеет несколько фиксированных значений выходного напряжения на зажимах, что дает возможность проводить измерения по разным нормативным требованиям. Мегаомметр применяется как прибор для измерения сопротивления изоляции в различных областях, например в производстве: как правило, требуются замеры обмоток электрических машин и трансформаторов, сопротивления изоляции проводов и кабелей, разъемов, поверхностных и объёмных сопротивлений изоляционных материалов.

Мегаомметр как прибор для измерения сопротивления изоляции довольно редко имеется в организациях, непрофильных электроизмерениям, несмотря на его доступность и широкую распространенность: низкие напряжения измеряются омметром, и еще один прибор, как правило, не приобретают – тем более, что для измерений требуется не только мегаомметр, но и допуск соответствующего уровня. Почему такое важное значение придается изоляции, измерению ее сопротивления, испытаниям?

В силовых кабелях и проводах изоляция разделяет токоведущие жилы, в ячейках распредустройств — отделяет токоведущие установки от заземления, создает систему безопасности при работе с электроустановками и силовыми линиями. Если значение сопротивления изоляции ниже нормируемого, то возможно наступление сразу нескольких последствий: это пожарная опасность – от задымления ядовитыми веществами от горящей изоляции до постоянных утечек тока. И первое, и последнее создает серьезную угрозу жизни и безопасности обслуживающего персонала электрооборудования. При этом измерение сопротивления изоляции, особенно в организациях, занимающихся обслуживанием потребителей (обывателей, покупателей, клиентов), которые, в отличие от персонала, могут не иметь даже минимальной грамотности в сфере электробезопасности – единственная возможность избежать несчастных случаев.

Повреждения изоляции могут возникать по разным причинам. Это заломы и повреждения при транспортировке, перетирание из-за неправильной установки, деградация изоляции вследствие времени, агрессивной среды, температурных воздействий, перепадов напряжения, по каким-либо иным причинам. С помощью мегаомметра – прибора для измерения сопротивления изоляции – при проведении измерений сопротивления изоляции силами специалистов электролаборатории — можно выявить место утечки и впоследствии ликвидировать нарушения в кратчайшие сроки. Нельзя также исключать человеческий фактор – ошибочные действия персонала также могут повредить изоляцию, причем повреждения могут быть системными, поэтому измерение сопротивления изоляции требуется проводить согласно графику измерительных работ и испытаний, утвержденных в нормативных документах: ПУЭ, ПТЭЭП ОиНИЭ, ГОСТ. Измерение для различных видов электрооборудования проводят при значениях постоянного (выпрямленного)  напряжения U=250,500,1000,2500,5000В. Значения измеряемого напряжения указываются в методиках, пособиях, руководствах на оборудование.

Специфика измерения сопротивления изоляции

Первым этапом проверки изоляции электропроводки является визуальный осмотр, во время которого можно выявить серьезные нарушения: оплавление изоляции, разрывы, заломы, отсутствие частей изолирующего покрытия, трещины, съеживание или провисание. Точно так же перед тем, как использовать прибор для измерения сопротивления изоляции, необходимо проинспектировать места стыка кабелей, присоединение их к шинам, контакты распределительной коробки, клеммы и пр. Несмотря на то, что, в отличие от показаний мегаомметра при измерениях, визуальный осмотр не дает точных численных значений , его результаты также заносятся в протокол и подшиваются к акту.

Затем производится полное отключение оборудования: силовых трансформаторов, кабельных линий , в электроустановках до 1000В остаточное напряжение снимается, выкручиваются лампы накаливания, выключатели переводятся в режим включения. Это делается для того, чтобы при измерении сопротивления изоляции контуры были замкнуты, но при этом не произошло перегорание «слабых звеньев», не рассчитанных на перепады напряжения.

При использовании мегаомметра — прибора для проверки и измерения сопротивления изоляции – проводятся следующие работы:

  1. измерение сопротивления между токоведущими частями электроустановок и заземляющими элементами;
  2. измерение сопротивления между обмотками первичного и вторичного напряжения в силовых и измерительных трансформаторах;
  3. измерение сопротивления изоляции между нейтралью и землей, между фазными проводниками и землей, между фазой и нулем, между фазными проводниками.

В любом случае, проверка должна выявить либо полное соответствие ПУЭ и ПТЭЭП, либо некоторое несоответствие, которое измеряется дополнительно – если это необходимо — фиксируется и заносится в акт проверки. Проверочное напряжение мегаомметра может быть разным, поэтому измерения классифицируются еще и для разного типа оборудования:

  1. напряжение 1 кВ используется при проверке проводов, кабелей  до 1000В в соответствии с требованиями НД.  
  2. напряжение 2,5 кВ используется для магистральных кабельных линий до 1000В и оборудования выше 1000В.

Отметим, что сотрудникам электротехнической лаборатории, проводящим проверку, необходимо иметь достаточный уровень квалификации: для работ с мегаомметром производителю работ IV группу по электробезопасности, членам бригады —  III  группу по электробезопасности, при этом в бригаде должно быть не менее двух человек.

Правила эксплуатации мегаоомметра

Правила эксплуатации мегаомметра – прибора для проверки и измерения сопротивления изоляции описаны в Руководстве по эксплуатации средства измерений.

«5.4.1. Измерения мегаомметром в процессе эксплуатации разрешается выполнять обученным работникам из числа электротехнического персонала. В электроустановках напряжением выше 1000 В измерения производятся по наряду, в электроустановках напряжением до 1000 В — по распоряжению. В тех случаях, когда измерения мегаомметром входят в содержание работ, оговаривать эти измерения в наряде или распоряжении не требуется.

5.4.2. Измерение сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра.

5.4.3. При измерении мегаомметром сопротивления изоляции токоведущих частей соединительные провода следует присоединять к ним с помощью изолирующих держателей (штанг). В электроустановках напряжением выше 1000 В, кроме того, следует пользоваться диэлектрическими перчатками.

5.4.4. При работе с мегаомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается. После окончания работы следует снять с токоведущих частей остаточный заряд путем их кратковременного заземления».

При работе с мегаомметром нашими специалистами, все правила по предварительной подготовке измерений, безопасности труда, проведению измерений и фиксации их результатов соблюдаются неукоснительно, что обеспечивает высокое качество выполнения исследований. Сотрудники электролаборатории имеют необходимые допуски, а организация –разрешительные документы на виды деятельности. Работы проводятся на территории Северо-Западного Федерального Округа. 

Если проверка сопротивления изоляции выявила несоответствие показаний требованиям нормативных документов (например ПТЭЭП или  ПУЭ), то данное испытуемое оборудование бракуют, о чем делают запись в протоколе и ведомости дефектов.

Измерение сопротивления изоляции кабелей, имеющих фазные жилы, сечение которых – 16мм2 или меньше, выполняется при помощи мегаомметра (проверочное напряжение — 1000В).

Измерение сопротивления изоляции кабелей и проводов, фазные жилы которых имеют сечение больше 16мм2, осуществляется мегаомметром (проверочное напряжение — 2500В).

Удовлетворительным принято считать сопротивление изоляции линий напряжением до 1000В при значении между любыми её проводами не больше 0,5МОм.

Для силовых кабельных линий значение  сопротивления не нормируется.

Для оборудования электроустановок до и выше 1000В нормируемые значения сопротивления изоляции используют из НД : ПУЭ , 7-е изд., гл.1.8., ПТЭЭП, ОиНИЭ, паспорта заводов –производителей оборуования.

Работы выполняются специалистами имеющими III гр. по ЭБ для членов бригады и IV гр. по ЭБ до и выше 1000В для производителя работ.

Как проверить заземление мегаомметром — Строительство домов и бань

Как проверить качество заземления

Согласно Правил устройства электроустановок, любые электрические сети и оборудование, работающее с напряжением свыше 50 вольт переменного и 120 вольт постоянного тока, должны иметь защитное заземление. Это касается помещений без признаков условий повышенной опасности. В опасных помещениях (повышенная влажность, токопроводящая пыль и прочее), требования еще жестче. Но мы в данном материале будем рассматривать в основном жилые дома. По умолчанию принимаем, что заземление должно быть.

При монтаже новых линий энергоснабжения, заземление будет установлено, и владелец помещения может за этим проследить (или подключить его самостоятельно). В случае, когда вы проживаете (работаете) в уже готовом помещении, возникает вопрос: как проверить заземление? В первую очередь, надо убедиться в том, что оно у вас есть. Вне зависимости от формального соблюдения ПУЭ, это касается жизни и здоровья людей.

Проверка наличия и правильности подключения защитного заземления

Как минимум, необходимо заглянуть в распределительный щит вашей квартиры (дома, мастерской).

По умолчанию принимаем условие: электропитание однофазное. Так будет проще разобраться в материале.

В щитке должно быть три независимых входных линии:

  • Фаза (как правило, обозначается проводом с коричневой изоляцией). Идентифицируется индикаторной отверткой.
  • Рабочий ноль (цветовая маркировка — синяя или голубая).
  • Защитное заземление (желто-зеленая изоляция).

Если электропитающий вход выполнен именно так, скорее всего, заземление у вас есть. Далее проверяем независимость рабочего ноля и защитного заземления между собой. К сожалению, некоторые электрики (даже в профессиональных бригадах), вместо заземления используют так называемое зануление. В качестве защиты используется рабочий ноль: к нему просто подсоединяется заземляющая шина. Это является нарушением Правил устройства электроустановок, использование такой схемы опасно.

Как проверить, заземление или зануление подключено в качестве защиты?

Если соединение проводов очевидно — защитное заземление отсутствует: у вас организовано зануление. Однако видимое правильное подключение еще не означает, что «земля» есть и она работает. Проверка заземления включает в себя несколько этапов. Начинаем с измерения напряжения между защитным заземлением и рабочим нулем.

Фиксируем значение между нулем и фазой, и тут же проводим измерение между фазой и защитным заземлением. Если значения одинаковые — «земляная» шина имеет контакт с рабочим нулем после физического заземления. То есть, она соединена с нулевой шиной. Это запрещено ПУЭ, потребуется переделка системы подключения. Если показания отличаются друг от друга — у вас правильная «земля».

Дальнейшее измерение заземления проводится с помощью специального оборудования. На этом остановимся подробнее.

Как устроено заземление, и зачем проверять его параметры

Не вдаваясь в подробности, можно сказать, что заземление нужно для соединения корпуса электроустановки с рабочим нулем. Глядя на несколько абзацев выше, можно подумать, что это абсурд. На самом деле имеется ввиду возможность протекания тока от защитного заземления, через физическую землю (грунт), до рабочего нуля ближайшей подстанции. Фактически, это будет короткое замыкание.

Соответственно, при попадании фазы на корпус электроустановки, сработает защитный автомат, и поражения электротоком не будет.

Зачем же нужна проверка сопротивления заземления? Для организации аварийного короткого замыкания, необходима большая сила тока. Если сопротивление контура заземления будет слишком велико, сила тока (в соответствии с законом Ома) снизится, и защитный автомат не сработает.

Еще одна опасность большого сопротивления защитной «земли» в том, что сопротивление тела человека может оказаться меньше. Тогда, при касании рукой аварийной электроустановки, вы гарантированно будете поражены электротоком.

Важно! Само по себе заземление не дает 100% защиты от поражения электротоком.

Когда на корпусе электроустановки окажется фаза, часть напряжения уйдет на компенсацию утечки в физическую землю. Если остаток потенциала превысит 50 вольт, опасность сохранится.

Равно как и защитный автомат без заземления не отключит фазу при попадании на корпус. Он сработает лишь при замыкании нуля с фазой. Полную защиту дает установка автомата и одновременное подключение контура защитной «земли». Существенно повышает уровень безопасности еще и УЗО.

И, наконец о том, что представляет собой контур заземления.

Если вкратце, это несколько металлических штырей (при нормальных природных условиях — три), глубоко погруженных в грунт, соединенных проводниками между собой и шиной заземления в здании.

Проверка параметров защитного заземления

Кроме очевидных составляющих системы защитной «земли»: таких, как контактная колодка, провода, идущие к электроустановкам, соединение с контуром в грунте, важную роль в обеспечении защиты играет собственно земля. Соответственно надо убедиться в следующем:

  1. Между всеми элементами контура (штыри, соединительные шины, проводник в помещение до клеммной колодки) есть надежное электрическое соединение с минимальным сопротивлением.
  2. Попавшее на контур напряжение (в случае аварии), растекается по физической земле с максимальным током. Это возможно лишь при хорошем контакте между металлом и грунтом.
  3. Физические условия местности (грунта) могут обеспечить надежный контакт даже при плохих (с точки зрения электротока) условиях. А именно, пересыхание грунта, растрескивание земли в местах установки заземлителей.

Разумеется, никто не проводит измерения параметров на каждом элементе заземляющей системы. Это потребуется лишь в случае несоответствия нормам, для поиска так называемого «слабого звена».

По какому принципу проводится проверка защитного контура заземления?

Необходимо создать полный аналог заведомо работающего контура, и сравнить показатели с тестируемым объектом. Для этого существуют комплексы проверки рабочего заземления.

Сразу оговоримся: изготовить такой комплект самостоятельно возможно, но дорого и нецелесообразно. Равно как и проверка параметров защитного заземления с помощью стандартных средств измерений (мультиметр), не покажет достоверной картины. Да и сформировать высокое напряжение, необходимое для измерения параметров растекания, тестер не сможет. Поэтому лучше либо брать оборудование напрокат, либо приглашать мастера.

Вы можете купить подобный набор, но вряд ли он себя окупит в обозримом будущем. Даже с учетом того, периодичность проверки заземляющих устройств составляет один раз в году (и для жилых, и для промышленных объектов), проще получать разовый доступ к оборудованию.

Типовая схема включения прибора

Работает принцип одновременного использования вольтметра-амперметра на испытуемом участке грунта. Есть три величины: сопротивление, напряжение, сила тока. Параметры вычисляются по закону Ома. Нам известно первоначальное напряжение, а прибор поддерживает силу тока. Зная падение напряжения между тестируемыми стержнями, мы с высокой точностью можем вычислить сопротивление контура заземления.

Погрешность есть, но она несущественна в сравнении с измеряемыми величинами. Сопротивление контакта тестового электрода с грунтом вообще принимается за нулевое, при условии, что стержень чистый и не покрыт коррозией.

Большинство современных приборов сразу выдают готовые параметры защитного заземления, а в старых (при этом не менее надежных и точных) конструкциях — надо будет выполнить простую операцию деления. В соответствии с законом Ома.

Проверка заземления мегаомметром проходит по тому же принципу, только погрешность измерения будет выше. Все-таки земля не является проводником электричества в привычном смысле.

Мегаомметр лучше использовать для оценки иных факторов безопасности

Например, сопротивления изоляции. Речь пойдет не о прямой опасности. То есть, если вы схватитесь рукой за провод, в котором диэлектрические свойства изоляции в норме, вы не получите поражение электротоком.

Но есть и дополнительная опасность: пробой изоляции под нагрузкой. Этот неприятный факт приводит к сбоям в работе, и что более страшно — к возгораниям электроцепи.

Мегаомметр для измерения сопротивления изоляции представляет собой генератор напряжения и точный прибор в одном корпусе.

Классический вариант (с успехом применяется и сейчас), вырабатывает напряжение до 2500 вольт. Не стоит бояться, токи при работе мизерные. Но держаться нужно только за изолированные рукояти измерительных кабелей.

Высокий потенциал напряжения легко выявляет изъяны в изоляции, и стрелка прибора показывает истинное сопротивление. Перед началом работ следует отключить все подающие напряжение автоматы, и избавиться от остаточного потенциала: заземлить провод.

Для измерения пробоя между проводами в одном кабеле используются два провода. Они подсоединяются к жилам отключенного кабеля, и проводится замер. Если сопротивление ниже нормы, кабель отбраковывается. Никто не знает, когда место потенциального пробоя принесет неприятности.

Для измерения утечки на землю, один провод соединяется с защитным заземлением (в зоне прокладки тестируемого кабеля), а второй к центральной жиле. Напряжение для тестирования должно быть выше. Если провод невозможно приложить к «земле», измерение проводится при помощи прикладывания второго электрода к внешней поверхности изоляции.

При наличии экрана (бронировки кабеля), применяется трехпроводная система замеров. третий провод соединяется с экраном тестируемого кабеля.

Общая схема именно такая, но каждая модель прибора имеет собственную инструкцию. В современных мегаомметрах с цифровым дисплеем, разобраться еще проще, чем в старых стрелочных.

С помощью мегаомметра можно тестировать еще и обмотки двигателей. Но это отдельная тема. Информация для тех, кто думает, что все эти приборы узкопрофильные: с помощью системы шунтов, можно превратить мегаомметр в прецизионный омметр или вольтметр.

Видео по теме

Все об измерениях сопротивления заземления

Заземляющее устройство – это совокупность проводников из металла, соединенных с деталями электроустановки, и заземлителя (один или несколько проводников, которые закапываются в землю). Их используют, чтобы повысить безопасность электроустановок и с целью защиты людей от воздействия электрического тока.

Если возникает аварийная ситуация, когда происходит пробой изоляции проводника, напряжение через заземление уходит в землю, не причиняя вреда человеку, который соприкасается с оборудованием. Именно поэтому необходимо, чтобы заземление всегда находилось в исправном состоянии.

Одной из его важных характеристик является сопротивление, величина которого регламентируется нормативными документами.

Основные понятия

Сопротивление заземляющего устройства (оно так же именуется сопротивление растеканию тока) имеет прямо пропорциональную взаимосвязь с напряжением и обратно пропорциональную с током растекания в «землю».

Можно выделить три вида заземлений:

  • рабочее. С его помощью заземляются определенные места, оно используется в процессе эксплуатации электрооборудования;
  • защита от молний. Молниеприемники заземляются с целью перенаправления на металлические конструкции токов, которые возникают под воздействием молний;
  • защитное. Используется для защиты от поражающего действия электрического тока, если кто-то непреднамеренно соприкоснется с деталью, которая при нормальной работе не должна пропускать ток.

Существует несколько методик измерения сопротивления заземляющих устройств, которые будут рассмотрены более детально. Способы измерений определяются специалистами электротехнической лаборатории и зависят от конкретных условий эксплуатации оборудования.

Применение амперметра и вольтметра

Метод заключается в следующем. С двух сторон от конструкции заземления, которое подлежит проверке, на равном удалении (около 20 метров) размещают два электрода (основной и дополнительный), после чего на них подается переменный ток. По образованной таким образом цепи начинает протекать электрический ток, а его значение отображается на дисплее амперметра.

Подключенный к заземляющему устройству и основному заземлителю вольтметр покажет уровень напряжения. Чтобы определить общее сопротивление заземления нужно воспользоваться законом Ома, разделив значение напряжения, показанного вольтметром, на ток, значение которого показывает амперметр.

Этот способ измерений является наиболее простым, но имеет невысокий уровень точности, поэтому чаще всего используются иные методы.

Компенсационный метод

Данная методика дает возможность проводить измерения сопротивления заземления с использованием готовых приборов, которые выпускает промышленность. Известные модели таких приборов – Ф4103-М1, М416, ИС-10 и другие.

Как и в предыдущей методике, здесь применяются два электрода, углубляемые аналогичным образом в почву. Далее необходимо к заземляющему устройству подключить сам измерительный прибор, а его провода зафиксировать на укрепленных в грунте электродах.

Генерируется ток, движущийся сквозь первичную обмотку трансформатора прибора, которым осуществляется измерение сопротивления заземляющего проводника. Одновременно с этим на вторичной обмотке наводится ЭДС, и вольтметр показывает определенное значение.

С помощью реохорда на измерительном приборе добиваются того, чтобы стрелка на вольтметре находилась в нулевом положении. Это будет свидетельствовать о равенстве напряжений U1 и U2. Вращая ручку реостата, необходимо зафиксировать значение сопротивления заземления по показаниям стрелки реохорда.

Трехпроводный метод

В этом методе измерение сопротивления заземления проводится с помощью специальных измерителей, как старого образца (например, мегаомметром), так и современного, использующих цифровые технологии и микропроцессоры (например, MRU-200).

Необходимо очистить от коррозии шинопровод заземляющего устройства, после чего подключить к нему контакт измерителя. На указанном в инструкции расстоянии в почву вбиваются электроды, к которым прикрепляются катушки.

Их концы подключают к измерительному прибору и убеждаются, что схема готова к функционированию.

Необходимо учитывать, что напряжение помехи между укрепленными в земле электродами не должно быть больше чем 24 Вольта. Если этого не удалось добиться, то необходимо электроды разместить иначе.

Нажатием кнопки на приборе запускают процесс автоматического измерения сопротивления, наблюдая на дисплее показания. Для большей точности следует провести несколько замеров и убедиться, что показания отличаются друг от друга не более чем на 5%.

Если имеется необходимость добиться повышенной точности измерения, может использоваться четырехпроводный метод, который исключает влияние сопротивления измерительных приборов.

Токовые клещи

Главным достоинством данного метода является то, что не нужно использовать дополнительное оборудование и производить отключение заземления.

Достаточно просто использовать клещи для измерения величины сопротивления.

Токовые клещи функционируют на основе взаимоиндукции. В головке измерительных клещей спрятана обмотка (первичная обмотка). Ток в ней генерирует ток в заземляющем проводнике, играющем роль вторичной обмотки.

Чтобы узнать величину сопротивления, нужно разделить показатель ЭДС вторичной обмотки на значение тока, которое было измерено клещами (оно появляется на дисплее клещей).

В более современных приборах ничего делить не надо. При соответствующих настройках значение сопротивления заземления сразу же отображается на дисплее.

Периодичность проверки

Проведение визуальных осмотров, измерений и вскрытие грунта (если это нужно) проводится на основании графика, который составляется и утверждается предприятием, однако эти сроки должны находиться в пределах 12 лет.

Наиболее корректные результаты можно получить, если померить сопротивление заземления в середине лета или зимы. Именно тогда почва обладает максимальным сопротивлением.

Важно помнить, что измерения стоит проводить в сухую погоду.

Минимальный уровень сопротивления заземляющих устройств, который допускается, нормируется «Правилами устройства электроустановок».

Если электроустановка работает с напряжением до 1000 В, то значение сопротивления должно находиться в пределах от 2 до 8 Ом в зависимости от уровня напряжения (2 – если 660 В, 4 – если 380 В, 8 – если 220 В).

В электроустановках напряжением свыше 1000 В уровень сопротивления не должен превышать 0,5 Ом.

Составление протокола

Когда осмотр окончен, проведены все необходимые измерения и испытания, работники организации, проводившей работы, составляют «Протокол измерения сопротивления заземления». Он оформляется в соответствии с ГОСТом Р 50571.16-2007 Электроустановки низковольтные. Часть 6. Испытания. Приложение Н.

Этот нормативный акт условно состоит из трех структурных частей:

  • данные о специальной организации, которая выполняла порученные работы по измерению сопротивления заземления, и заказчике этих работ;
  • начальная статичная информация;
  • итоги проведения измерений.

Основываясь на ГОСТе, сведения об организации, проводившей измерения, должны представляться в развернутом виде. Необходимо указать название и адрес, на который зарегистрирована данная лаборатория, номер регистрации, информацию об аттестатах аккредитации (когда был выдан и до какой даты действует).

Указывают название организации, которая проводила аккредитацию или свидетельство о регистрации в структуре Государственного Энергонадзора.

Помимо этого протокол должен содержать сведения о заказчике, монтажной и проектной организациях.

Начальная статичная информация – это данные об электроустановке и ее системе заземления, информация о почве, в которой закреплено заземление, температуры окружающей среды, уровень атмосферного давления на момент испытаний. То есть это все данные об условиях, в которых проводились измерения сопротивления заземления, и приборах, которые для этого использовались.

Итоги проведенных измерений вносят в табличную форму, где указывают полученные приборами данные.

В конце протокола обязательно дается заключении о пригодности заземления для дальнейшего использования, а так же отражаются фамилии работников, которые проводили измерительные работы.

Измерение сопротивления изоляции мегаомметром

Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Упрощенная схема электромеханического мегаомметра

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

  • Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
  • На отображаемые данные влияет равномерность вращения динамо-машины.
  • Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
  • Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Современная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т. д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Испытуемый объектУровень напряжения (В)Минимальное сопротивление изоляции (МОм)
Проверка электропроводки1000,00,5>
Бытовая электроплита1000,01,0>
РУ, Электрические щиты, линии электропередач1000,0-2500,01,0>
Электрооборудование с питанием до 50,0 вольт100,00,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с номинальным напряжением до 100,0 вольт250,00,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с питанием до 380,0 вольт500,0-1000,00,5 или более в зависимости от параметров, указанных техническом паспорте
Оборудование до 1000,0 В2500,00,5 или более в зависимости от параметров, указанных техническом паспорте

Перейдем к методике измерений.

Пошаговая инструкция измерения сопротивления изоляции мегаомметром

Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм 2 . Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

  • Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Правила безопасности при работе с мегаомметром

При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:

  • При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
  • Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
  • При подключении щупов необходимо касаться их изолированных участков (рукоятей).
  • После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
  • Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.

Как измерить сопротивление заземления с помощью мультиметра и мегаомметра

«Диагностика» контура делается довольно часто. Измерение величины заземления проводится как при его обустройстве (последний, заключительный этап работы), так и в плане контроля состояния уже имеющегося.

Например, для проверки целостности стержня, оценки возможности использования контура без его реконструкции при значительном увеличении нагрузки на домашнюю электросеть, и в ряде других случаев. И уж тем более определение номинала сопротивления важно, если в цепи эл/питания нет защитных устройств (АВ, УЗО или дифференциального автомата).

Дело в том, что все перечисленные приборы для проведения официальных измерений не подходят. Для этого необходима специальная тестирующая аппаратура. Для «домашнего» же контроля состояния заземления можно использовать любой из образцов, который есть под рукой. Хотя результат будет лишь приблизительным, и это следует учитывать.

Измерение мультиметром

Этот универсальный прибор, если все делать по стандартной, официально утвержденной методике, для таких целей, как отмечено, не подходит. Мультиметр на практике используется лишь для примерной оценки состояния заземления, выявления явных обрывов, то есть отсутствия надежного контакта соответствующего проводника с грунтом. Как это правильно делать описано здесь.

Почему данный тип измерительного прибора применяется лишь в редких случаях?

  • Большая погрешность измерений не дает истинного представления о реальном значении сопротивления.
  • Стандартная (рекомендуемая) методика не может быть применена, так как согласно ей прибор должен подключаться к 4-м точкам, к тому же разнесенным территориально. С мультиметром это сделать невозможно.
  • Официального заключения по результатам измерений таким прибором (задокументированного) не выдаст ни один специалист. Причина вполне объяснима – в нормативных актах использование мультиметра при проверке заземления не предусмотрено.

Тем не менее, есть ситуации, когда без мультиметра не обойтись. Например, на территории с довольно плотной застройкой. Это не позволяет производить измерения на больших расстояниях от здания. А согласно методике, оно должно быть в пределах 30±10 м. Подробнее, как измерить сопротивление с помощью мультиметра можно из видео:

Как подготовить мультиметр

Задача любого измерения – добиться максимальной точности показаний. Что необходимо проделать:

  • подобрать «хороший» мультиметр (у друзей, соседей и так далее). Какой лучше выбрать для различных целей описывали вот в этой статье. Подразумевается достаточно новый, а не выпущенный десятилетия тому назад, неповрежденный, с максимально возможным классом точности для этого типа приборов;
  • заменить элемент питания. Старая батарейка, частично разряженная, только увеличит погрешность измерения;
  • произвести калибровку (если она предусмотрена для конкретной модели).

Как подготовить рабочее место

Даже если вспомогательный электрод изначально при организации заземления и был установлен, то его еще нужно найти. Тем более, если дом построен много лет назад, и территория вокруг него уже несколько раз подвергалась перепланировке, обустройству и так далее. Следовательно, его «дубликат» необходимо поставить самостоятельно.

Для измерения сопротивления подойдет любой металлический штырь (то же арматурный пруток) сечением порядка 5 мм, который вгоняется в землю минимум на 1,5 м на расстоянии 7,5±2,5 от основного. Его найти намного проще, тем более что место расположения должно быть помечено (знаком, символом на стене дома). Хотя несложно определить и визуально – к нему часто тянется по-над поверхностью металлическая проволока (шестерка или восьмерка).

Где измерять сопротивление

Между основным штырем заземления и вновь установленным (дополнительным). Схема показана на рисунке.

Результат замеров позволяет понять, насколько отвечает стержень заземления тем требованиям, которые к нему предъявляются. По сути, измеряется суммарное сопротивление его и грунта. Дело в том, что большая его часть заглублена. В процессе длительной эксплуатации металл подвергается коррозии.

  • Предварительно определяется сопротивление дополнительного стержня. Его значение при оценке результата не учитывается.
  • Величина R заземления должна быть Измерение мегаомметром

Принцип измерений тот же самый. Отличия лишь в некоторых моментах.

  1. Для получения максимально точных показаний прибор необходимо установить в строго горизонтальной плоскости. Перекос ни по одной из осей не допускается.
  1. Подготовка мегаомметра (измеритель сопротивления заземления) сводится к его проверке на пригодность к измерениям. Сделать это достаточно просто (пример – модель М416).
  • Переключатель – в «Контроль».
  • Нажимается кнопка и производится вращение рукоятки. Стрелка должна встать на отметке 5 (±0,3). Если показание иное, прибор отбраковывается.
  1. Как правильно подключать к клеммам измеритель сопротивления заземления провода в зависимости от схемы измерения, показано на его корпусе.

Методик измерения сопротивления заземления довольно много. Они предполагают использование различных приборов, схем, и оптимальное решение принимается для конкретного контура индивидуально. Но для самостоятельной диагностики его состояния в домашних условиях достаточно и двух описанных выше.

Если же есть сомнения в правильности определения результатов, большой погрешности и так далее, следует обратиться к профессионалам. К заземлению, учитывая, что оно – составная часть схемы эн/снабжения, пренебрежительно относиться не стоит.

Как проверить контур заземления

Заземление представляет собой соединение электрических приборов с землей. С его помощью обеспечивается защита от поражающего действия тока при неисправностях или повреждениях электрооборудования. Для заземлителя используются обыкновенные металлические стержни или специальные комплексы, включающие в свой состав сложные элементы. Перед вводом в эксплуатацию всей системы, происходит проверка контура заземления, где в первую очередь замеряется его сопротивление. Таким образом, удается выяснить способность заземляющего контура выполнять свою основную защитную функцию.

Для чего измеряется сопротивление

Проведение замеров позволяет определить величину сопротивления контура, которая не должны быть выше установленных норм. В случае необходимости, сопротивление снижается за счет увеличения площади контакта или общей проводимости среды. С этой целью увеличивается количество стержней, повышается содержание соли в земле.

Необходимо помнить, что с помощью простого заземления возможно только снижение напряжения фазы, попадающей на корпус прибора. Чтобы повысить надежность защиты, заземление нередко устанавливается вместе с устройством защитного отключения. Проектирование и подбор заземляющего устройства осуществляется в индивидуальном порядке в каждом конкретном случае. На его конструкцию оказывает влияние влажность, тип и состав почвы, а также другие факторы.

Как измерить сопротивление контура заземления

Сопротивление контура измеряется сразу же, как только жилой объект введен в эксплуатацию. В дальнейшем, подобные замеры выполняются 1 раз в год. Для измерений применяются специальные приборы, быстро и точно определяющие удельное сопротивление стержней и других металлических элементов, грунтов, в которых они установлены.

Замеры проводятся в несколько этапов:

  • Вначале заземление замыкается с искусственной цепью электрического тока, в которой замеряется падение напряжения.
  • Возле испытуемого стержня размещается электрод вспомогательного назначения, соединяемый с тем же источником электрического напряжения.
  • Затем, с помощью измерительного зонда, в зоне нулевого потенциала, выполняются замеры падения напряжения на первом стержне. Этот метод получил наибольшее распространение.

Проведение замеров лучше всего выполнять в зимнее или летнее время. В заземляющих устройствах сопротивление может отличаться в каждом отдельном случае. Например, в частных домах его значение доходит до 30 Ом. Сами замеры выполняются с помощью 2-х, 3-х или четырехполюсной методики.

Правила замера сопротивления контура заземления:

  • Для размещения потенциального зонда, замеряющего сопротивление, используется контрольный участок, расположенный между токовым вспомогательным зондом и заземлителем.
  • Длина контрольного участка должна быть выше размеров полосового электрода или глубины заземляющего стержня примерно в 5 раз.
  • Если сопротивление измеряется в целом комплексе заземляющей системы, то расстояние контрольного участка можно вычислить по максимальной длине диагонали, проходящей между отдельными заземляющими устройствами.

Иногда проводятся дополнительные замеры, особенно в многочисленных подземных коммуникациях. В этих случаях выполняется несколько измерительных операций, во время которых изменяются направления и расстояния лучей между зондами. Реальное значение принимается по самому худшему результату.

Существуют допустимые нормы сопротивления заземляющих устройств, которые не должны превышаться, независимо от времени года. Все максимально допустимые значения отражены в таблицах или приложениях ПУЭ.

Замер сопротивление изоляции

Для измерения изоляции применяется мегомметр. Он включает в себя несколько составных частей: генератор непрерывного тока с ручным приводом, добавочные сопротивления и магнитоэлектрический логометр.

Перед началом измерительных работ необходимо убедиться, что объект замеров обесточен и не находится под напряжением. С изоляции удаляется пыль и грязь, после чего выполняется заземление объекта примерно на 2-3 минуты. Таким образом, снимаются остаточные заряды. К оборудованию или электрической цепи подключение мегомметра осуществляется раздельными проводами. Их изоляция обладает большим сопротивлением, как правило, не меньше чем 100 мегаом.

Сопротивление изоляции замеряется, когда приборная стрелка принимает устойчивое положение. Окончательные результаты замеров сопротивления определяются по показаниям стрелки измерительного прибора. На этом проверка контура заземления считается завершенной. После этого, объект испытаний необходимо разрядить.

Проверка заземления

Проверку заземления реализует компания «ИНТЕХ» (Москва). Чтобы получить КП на проверку заземления, позвоните по телефону: . Отправить заявку

Согласно Правил устройства электроустановок, любые электрические сети и оборудование, работающее с напряжением свыше 50 вольт переменного и 120 вольт постоянного тока, должны иметь защитное заземление. Это касается помещений без признаков условий повышенной опасности. В опасных помещениях (повышенная влажность, токопроводящая пыль и прочее), требования еще жестче. Но мы в данном материале будем рассматривать в основном жилые дома. По умолчанию принимаем, что заземление должно быть.

При монтаже новых линий энергоснабжения, заземление будет установлено, и владелец помещения может за этим проследить (или подключить его самостоятельно). В случае, когда вы проживаете (работаете) в уже готовом помещении, возникает вопрос: как проверить заземление? В первую очередь, надо убедиться в том, что оно у вас есть. Вне зависимости от формального соблюдения ПУЭ, это касается жизни и здоровья людей.

Общий порядок технического обследования

В основу главных подходов к проверке качества заземления заложены известные методики измерения его сопротивления растеканию тока на землю. При оценке этой величины контролю подлежат как отдельные элементы, так и контактные зоны контура заземления, который начинается от защищаемого участка и кончается точкой соприкосновения заземлителя с грунтом. В процессе проведения работ особое внимание уделяют частям конструкции заземления, имеющим непосредственный контакт с грунтом и подвергающихся повышенному коррозийному воздействию.

Дело в том, что в результате разрушения металла в зоне контакта снижается его электропроводность и повышается сопротивление растеканию тока. В результате этого показатели надёжности ЗУ, а также эффективность его действия заметно ухудшаются. Для проверки и оценки состояния металлических переходов отдельных элементов заземлителя используются специальные измерительные приборы (омметры). Они обеспечивают снятие показаний с допустимой погрешностью.

Обратите внимание, что указанная процедура проверки проводится, как правило, в рамках рабочих операций, предполагающих комплексное испытание заземляющих устройств на их соответствие требования ПУЭ.

Проведение проверки тесно связано с измерением протекающего в контуре тока, в соответствии с которым и рассчитывается величина нормируемого ПТЭЭП сопротивления. При необходимости это значение может снижаться путём увеличения площади контакта с землёй или изменения электрической проводимости грунта. С этой целью в конструкцию контура заземления добавляются дополнительные металлические стержни, либо повышается концентрация соли в районе его непосредственного соприкосновения с почвой.

Обследуемая заземляющая цепь считается соответствующей требованиям ПУЭ и нормам безопасности лишь в тех случаях, когда величина суммарного сопротивления всех её элементов не превышает определённого значения. На основании полученных в процессе проверки результатов представителями специальных измерительных лабораторий составляется акт о состоянии обследуемой системы и выдаётся разрешение на её дальнейшую эксплуатацию.

Проверка наличия и правильности подключения защитного заземления

Как минимум, необходимо заглянуть в распределительный щит вашей квартиры (дома, мастерской).

По умолчанию принимаем условие: электропитание однофазное. Так будет проще разобраться в материале.

В щитке должно быть три независимых входных линии:

  • Фаза (как правило, обозначается проводом с коричневой изоляцией). Идентифицируется индикаторной отверткой.
  • Рабочий ноль (цветовая маркировка — синяя или голубая).
  • Защитное заземление (желто-зеленая изоляция).

Если электропитающий вход выполнен именно так, скорее всего, заземление у вас есть. Далее проверяем независимость рабочего ноля и защитного заземления между собой. К сожалению, некоторые электрики (даже в профессиональных бригадах), вместо заземления используют так называемое зануление. В качестве защиты используется рабочий ноль: к нему просто подсоединяется заземляющая шина. Это является нарушением Правил устройства электроустановок, использование такой схемы опасно.

Как проверить, заземление или зануление подключено в качестве защиты?

Если соединение проводов очевидно — защитное заземление отсутствует: у вас организовано зануление. Однако видимое правильное подключение еще не означает, что «земля» есть и она работает. Проверка заземления включает в себя несколько этапов. Начинаем с измерения напряжения между защитным заземлением и рабочим нулем.

Фиксируем значение между нулем и фазой, и тут же проводим измерение между фазой и защитным заземлением. Если значения одинаковые — «земляная» шина имеет контакт с рабочим нулем после физического заземления. То есть, она соединена с нулевой шиной. Это запрещено ПУЭ, потребуется переделка системы подключения. Если показания отличаются друг от друга — у вас правильная «земля».

Для чего измеряется сопротивление

Проведение замеров позволяет определить величину сопротивления контура, которая не должны быть выше установленных норм. В случае необходимости, сопротивление снижается за счет увеличения площади контакта или общей проводимости среды. С этой целью увеличивается количество стержней, повышается содержание соли в земле.

Необходимо помнить, что с помощью простого заземления возможно только снижение напряжения фазы, попадающей на корпус прибора. Чтобы повысить надежность защиты, заземление нередко устанавливается вместе с устройством защитного отключения. Проектирование и подбор заземляющего устройства осуществляется в индивидуальном порядке в каждом конкретном случае. На его конструкцию оказывает влияние влажность, тип и состав почвы, а также другие факторы.

Как измерить сопротивление контура заземления

Сопротивление контура измеряется сразу же, как только жилой объект введен в эксплуатацию. В дальнейшем, подобные замеры выполняются 1 раз в год. Для измерений применяются специальные приборы, быстро и точно определяющие удельное сопротивление стержней и других металлических элементов, грунтов, в которых они установлены.

Замеры проводятся в несколько этапов:

  • Вначале заземление замыкается с искусственной цепью электрического тока, в которой замеряется падение напряжения.
  • Возле испытуемого стержня размещается электрод вспомогательного назначения, соединяемый с тем же источником электрического напряжения.
  • Затем, с помощью измерительного зонда, в зоне нулевого потенциала, выполняются замеры падения напряжения на первом стержне. Этот метод получил наибольшее распространение.

Проведение замеров лучше всего выполнять в зимнее или летнее время. В заземляющих устройствах сопротивление может отличаться в каждом отдельном случае. Например, в частных домах его значение доходит до 30 Ом. Сами замеры выполняются с помощью 2-х, 3-х или четырехполюсной методики.

Правила замера сопротивления контура заземления:

  • Для размещения потенциального зонда, замеряющего сопротивление, используется контрольный участок, расположенный между токовым вспомогательным зондом и заземлителем.
  • Длина контрольного участка должна быть выше размеров полосового электрода или глубины заземляющего стержня примерно в 5 раз.
  • Если сопротивление измеряется в целом комплексе заземляющей системы, то расстояние контрольного участка можно вычислить по максимальной длине диагонали, проходящей между отдельными заземляющими устройствами.

Иногда проводятся дополнительные замеры, особенно в многочисленных подземных коммуникациях. В этих случаях выполняется несколько измерительных операций, во время которых изменяются направления и расстояния лучей между зондами. Реальное значение принимается по самому худшему результату.

Существуют допустимые нормы сопротивления заземляющих устройств, которые не должны превышаться, независимо от времени года. Все максимально допустимые значения отражены в таблицах или приложениях ПУЭ.

Замер сопротивление изоляции

Для измерения изоляции применяется мегомметр. Он включает в себя несколько составных частей: генератор непрерывного тока с ручным приводом, добавочные сопротивления и магнитоэлектрический логометр.

Перед началом измерительных работ необходимо убедиться, что объект замеров обесточен и не находится под напряжением. С изоляции удаляется пыль и грязь, после чего выполняется заземление объекта примерно на 2-3 минуты. Таким образом, снимаются остаточные заряды. К оборудованию или электрической цепи подключение мегомметра осуществляется раздельными проводами. Их изоляция обладает большим сопротивлением, как правило, не меньше чем 100 мегаом.

Сопротивление изоляции замеряется, когда приборная стрелка принимает устойчивое положение. Окончательные результаты замеров сопротивления определяются по показаниям стрелки измерительного прибора. На этом проверка контура заземления считается завершенной. После этого, объект испытаний необходимо разрядить.

Периодичность проверки

Действующими нормативами (ПТЭЭП, в частности) устанавливается периодичность проведения обследований заземления на предмет его соответствия заданным параметрам. Указанная цикличность отражается в специально подготовленном графике планово-предупредительных работ (ППР), который утверждает ответственный за объект.

Помимо этого, согласно п. 2.7.9. уже рассмотренных Правил обязательны визуальные осмотры открытых частей заземления, организуемые с периодичностью не реже 1 раза в полгода. Этим же документом предусматривается и обследование устройства с выборочным вскрытием почвы в районе размещения элементов заземлителя (в этом случае испытания проводятся не реже раза за 12 лет).

Периодические измерения сопротивления устройств заземления организуются согласно приложению №3, п. 26 ПТЭЭП и различаются по типам питающих линий.

При этом возможны следующие варианты:

  • в линиях с питающим напряжением до 1000 Вольт проверка заземления проводится не реже чем 1 раз за 6 лет;
  • для ВЛ питания с рабочим напряжением выше 1000 Вольт такая проверка должна проводиться не реже 1 раза за 12 лет.

Важно! Оговоренные в нормативной документации сроки проверки учитываются при составлении графиков и согласуются со всеми службами, имеющими непосредственное отношение к проводимым работам.

Оформление результатов

По результатам всего комплекса проведённых испытаний составляется протокол проверки заземляющего устройства, в котором обязательно указываются измеренные параметры заземления и даются рекомендации по дальнейшей эксплуатации системы.

Необходимость в организации и проведении полного комплекса измерительных мероприятий чаще всего возникает по окончании реконструкции или ремонта всей системы заземления. В отдельных случаях проверочные испытания проводятся после обнаружения серьёзных нарушений правил эксплуатации.

Значения нормируемых показателей работоспособности таких систем (удельная проводимость грунта и сопротивление установки току растекания) при различных типах заземления нейтрали приведены в табл.36 ПТЭЭП (Приложение 3.1).

Систематические проверки работоспособности заземления гарантируют эффективную защиту потребителя от поражения током и обеспечивают полную безопасность эксплуатации любых видов электрооборудования.

Отзывы о компании ООО «ИНТЕХ»:

Информация, размещенная на сайте, носит ознакомительный характер и ни при каких условиях не является публичной офертой.

© 2003-2020 ИНТЕХ — Вентиляция и кондиционирование. Контакты

Что такое тест Megger и как он проводится

Устройство используется с 1889 года, популярность возросла в течение 1920-х годов, так как давно разработанное устройство не изменилось с точки зрения его использования и целей тестирования, в последние годы появилось мало реальных улучшений в дизайне и качестве тестера. Теперь доступны качественные варианты, которые просты в использовании и достаточно безопасны. Тест Меггера — это метод тестирования использования измерителя сопротивления изоляции, который поможет проверить состояние электрической изоляции.

Качество сопротивления изоляции электрической системы ухудшается со временем, условиями окружающей среды, т. Е. Температурой, влажностью, влажностью и частицами пыли. На него также оказывают негативное воздействие из-за наличия электрического и механического напряжения, поэтому стало очень необходимо регулярно проверять ИК (сопротивление изоляции) оборудования, чтобы избежать смертельного исхода или поражения электрическим током.

IR позволяет измерить стойкость изолятора к рабочему напряжению без каких-либо путей утечки тока.Он дает представление о состоянии изолятора. Он измеряется с помощью прибора под названием Megger, способного регистрировать напряжение постоянного тока между двумя датчиками, автоматически вычисляя и затем отображая значение IR.

Megger настолько популярен, что термины «сопротивление изоляции» и «Megger» используются как синонимы.

Почему проводится тестирование Megger?

Сопротивление изоляции электрической системы ухудшается со временем, условиями окружающей среды, т. Е. Температурой, влажностью, влажностью и частицами пыли.На него также оказывают негативное воздействие из-за наличия электрического и механического напряжения, поэтому стало очень необходимо регулярно проверять ИК (сопротивление изоляции) оборудования, чтобы избежать смертельного исхода или поражения электрическим током.

Другой сценарий: в вашем доме только что произошел пожар, и пожарная часть покинула место происшествия. Электрическая компания отключила у вас газ и электричество, и вы в темноте. По милости Божьей все, что повреждено, — это ваш дом, и вам нужно начать процесс восстановления.Ваша страховая компания сообщает вам, что местная юрисдикция или сама страховая компания требуют проведения «теста Megger» для проверки целостности системы электропроводки в вашем доме.

Когда происходит пожар или другое событие с высокой температурой (молния, взрыв и т. Д.), Проводка и соответствующие ей элементы (изоляция и т. Д.) Подвергаются сильному нагреву. Все металлы и физические соединения имеют точку плавления. Во время некоторых пожаров достигается эта точка плавления и нарушается целостность проводки по току.Изоляция могла расплавиться внутри или оплавился и провод, и изоляция. Когда это происходит, у вас есть карман сопротивления, который образуется, когда электрический ток пытается течь через эту расплавленную область. По мере того, как ток увеличивается, чтобы попытаться пересечь карман, он выделяет тепло. Это тепло может создать достаточно температуры, чтобы вызвать еще один пожар. Именно то, что вам не нужно! Самое страшное в этих поврежденных проводах заключается в том, что вы можете не знать, что это произошло, поскольку провод может быть скомпрометирован за стенами или на вашем чердаке

Тестирование

Megger не вызывает никаких повреждений, что делает его хорошим вариантом, когда кто-то не хочет проделывать дыры в стенах для проверки электрической изоляции на наличие каких-либо проблем или проблем.Тестовое устройство работает только от 500 до 1000 вольт, что относительно мало. Из-за низкого напряжения некоторые проколы в изоляции остаются незамеченными. Как правило, он предоставляет информацию о токе утечки и наличии чрезмерной грязи или влаги на изоляционных участках, а также о количестве влаги, износе и повреждениях обмотки.

Что делается во время тестирования Megger?

Мы можем протестировать ваши цепи на наличие существующих соединений и участков с расплавленными неисправностями, которые могли возникнуть во время пожара.Затем эти результаты анализируются, и определенные цепи могут быть изолированы и заменены, чтобы убедиться, что в затронутых цепях больше нет проблем. Если у вас был пожар, поговорите со своим Настройщиком и посмотрите, требуется ли тестирование мегомметром. Обычно это покрывается страховкой, поскольку последнее, что они хотят сделать, — это оплатить еще одну претензию через месяц после того, как вы сможете восстановить свое место жительства.

Carelabs имеет под рукой оборудование и опыт для проведения тестирования Megger и регистрации этих результатов в вашей страховой компании, а также в местном строительном департаменте.Мы здесь, чтобы помочь вам убедиться, что ваша существующая проводка безопасна, и, конечно же, при необходимости установить новую проводку. Мы готовы удовлетворить все ваши потребности в электричестве.

Как выполняется тестирование Megger?

Мультиметр используется в качестве измерителя сопротивления изоляции в некоторых условиях, и в большинстве случаев выполняется только проверка целостности цепи. Но для обнаружения и тестирования тока утечки в нормальных условиях или в условиях перегрузки используется специальный прибор, известный как тестер изоляции.

Мы измеряем утечку тока в проводе, и результаты очень надежны, так как мы будем пропускать электрический ток через устройство во время тестирования. Мы проверяем уровень электрической изоляции любого устройства, такого как двигатель, кабель, обмотка генератора или общий электрический монтаж. Это очень важный тест, который проводится очень давно. Необязательно, он показывает нам точную область электрического прокола, но показывает величину тока утечки и уровень влажности в электрическом оборудовании / обмотке / системе.

Процедура проверки сопротивления изоляции или мегомметра приведена ниже:

  • Сначала мы отключим все линейные и нейтральные клеммы трансформатора.
  • Провода мегомметра подключаются к шпилькам вводов НН и ВН для измерения значения сопротивления изоляции IR между обмотками НН и ВН.
  • Провода мегомметра подсоединяются к шпилькам высоковольтного ввода и точке заземления бака трансформатора для измерения значения сопротивления изоляции IR между обмотками высокого напряжения и землей.
  • Провода мегомметра подключаются к шпилькам вводов НН и точке заземления бака трансформатора для измерения значения сопротивления изоляции IR между обмотками НН и землей.

Эмпирическое соотношение, приведенное ниже, дает рекомендуемое минимальное значение для IR, его единица измерения составляет мега Ом (МОм). . Показатели стоимости дают нам представление о прочности изоляции кабеля и о том, повреждена она или нет.

IRmin (в МОм) = кВ + 1

Где кВ = номинальное рабочее напряжение в кВ

Бывают случаи, когда измеренное значение IR почти в 10–100 раз превышает значение IRmin, полученное из приведенного выше уравнения.

Общая процедура измерения состоит из измерения IR между тремя фазами, а также между отдельной фазой и землей. IR также измеряется для корпуса оборудования. Процедура варьируется от оборудования к оборудованию. Существуют разные уровни напряжения, которые применяются к кабелям в зависимости от их номинала и размера. Для выполнения мегомметра кабеля HT 33 кВ. Применяемый уровень напряжения составляет 5000 В, а значение IR может находиться в диапазоне от 1 Гига Ом до 200 Гига Ом.

Когда мы используем мультиметр, мы измеряем сопротивление, напряжение и ток.Исходя из этого, я надеюсь, что мы знакомы с термином «изоляция». Это означает, что ток не может проходить или течь через определенный проводящий провод, если он должным образом изолирован или защищен. Эти провода могут быть внутри здания, бытовой техники или электродвигателя.

Вы в основном проверяете сопротивление провода. Например, если вы хотите проверить, неисправен ли двигатель, вы проведете «мегомметр», проверяя каждую из трех фаз двигателя на землю и друг на друга, чтобы увидеть, не замкнут ли он на землю или на саму себя.

Принцип работы Megger
  • Напряжение для тестирования вырабатывается ручным мегомметром путем вращения кривошипа. В случае ручного типа, для электронного тестера используется батарея.
  • 500 В постоянного тока достаточно для тестирования оборудования с напряжением до 440 Вольт.
  • От 1000 В до 5000 В используется для тестирования высоковольтных электрических систем.
  • Отклоняющая катушка или токовая катушка, соединенные последовательно и позволяющие пропускать электрический ток, принимаемый проверяемой цепью.
  • Управляющая катушка, также известная как катушка давления, подключена к цепи.
  • Токоограничивающий резистор (CCR и PCR), включенный последовательно с управляющей и отклоняющей катушками, для защиты от повреждений в случае очень низкого сопротивления во внешней цепи.
  • В ручном мегомметре эффект электромагнитной индукции используется для создания испытательного напряжения, т. Е. Якорь перемещается в постоянном магнитном поле или наоборот.
  • Где как в электронном типе мегомметр используется для создания испытательного напряжения.
  • По мере увеличения напряжения во внешней цепи отклонение указателя увеличивается, а отклонение указателя уменьшается с увеличением тока.
  • Следовательно, результирующий крутящий момент прямо пропорционален напряжению и обратно пропорционален току.
  • Когда проверяемая электрическая цепь разомкнута, крутящий момент, создаваемый катушкой напряжения, будет максимальным, а стрелка показывает «бесконечность», что означает отсутствие короткого замыкания во всей цепи и максимальное сопротивление в тестируемой цепи.
  • Если есть короткое замыкание, указатель показывает «ноль», что означает «НЕТ» сопротивления в проверяемой цепи.

Типы мегомметров

Это можно разделить в основном на две категории:

  1. Электронный (с питанием от батарей)
  2. Ручного типа (с ручным управлением)

A Преимущества Megger электронного типа
  • Уровень точности очень высокий.
  • Значение IR цифрового типа, легко читаемое.
  • Один человек может работать очень легко.
  • Отлично работает даже в очень загруженном пространстве.
  • Очень удобный и безопасный в использовании.

Преимущества ручного мегомметра
  • По-прежнему играет важную роль в мире высоких технологий, поскольку это самый старый метод определения значения IR.
  • Для работы не требуется внешний источник.
  • На рынке дешевле.

Но есть и другие типы мегомметров, которые являются двигательными, в которых не используется батарея для создания напряжения. Для этого требуется внешний источник для вращения электрического двигателя, который, в свою очередь, вращает генератор мегомметра.

Испытание сопротивления изоляции или инфракрасное излучение проводится инженерами по техническому обслуживанию для проверки работоспособности всей системы изоляции силового трансформатора. Он отражает наличие или отсутствие вредных загрязнений, грязи, влаги и грубого разложения. Для сухой системы изоляции ИК обычно будет высоким (несколько сотен МОм). Инженеры по обслуживанию используют этот параметр как показатель сухости системы изоляции.

Это испытание выполняется при номинальном напряжении или выше него, чтобы определить, есть ли пути с низким сопротивлением к земле или между обмоткой к обмотке в результате ухудшения изоляции обмотки.На значения тестовых измерений влияют такие переменные, как температура, влажность, испытательное напряжение и размер трансформатора.

Это испытание следует проводить до и после ремонта или при выполнении технического обслуживания. Данные испытаний должны быть записаны для будущих сравнительных целей. Для сравнения значения испытаний следует нормализовать до 20 ° C.

Общее практическое правило, которое используется для приемлемых значений для безопасного включения, — это 1 МОм на 1000 В приложенного испытательного напряжения плюс 1 МОм.

Меры безопасности Megger

При использовании мегомметра вы можете получить травму или повредить оборудование, с которым работаете, если не соблюдаете следующие МИНИМАЛЬНЫЕ меры безопасности.

  • Используйте мегомметр только для измерений высокого сопротивления, таких как измерения изоляции или для проверки двух отдельных проводов на кабеле.
  • Ни в коем случае не прикасайтесь к щупам во время поворота ручки.
  • Обесточьте и полностью разрядите цепь перед подключением мегомметра.
  • Отключите проверяемый элемент от других цепей, если возможно, перед использованием мегомметра.

Преимущества тестирования Megger
  • Проактивный анализ состояния оборудования
  • Сниженный риск отказа системы аварийного электроснабжения
  • Застрахованная доступность
  • Профилактический ремонт
  • Управление активами
  • Прогнозируемый ожидаемый срок службы оборудования

Тестирование изоляции — еще немного

Появляется небольшое покалывание при использовании шлифовальной машины? Вы можете проверить его изоляцию, прежде чем использовать его, стоя в луже с водой.Подключите мегомметр между каждым силовым проводом и заземляющим проводом. Инструменты с двойной изоляцией имеют только два контакта на шнуре питания, и в этом случае подключите тестер между каждым из проводов питания и любым оголенным металлом на инструменте, как показано на Рисунке 2. Между землей и заземлением должно быть не менее 1 МОм. любой из силовых проводов. (Примечание: сопротивление между двумя силовыми проводниками будет низким — несколько сотен Ом или меньше — это нормально).

Мегаомметр может также использоваться для проверки изоляции обмоток двигателей и генераторов.Для генератора переменного тока или бесщеточного двигателя постоянного тока обмотки статора следует отсоединить друг от друга и проверить сопротивление между обмотками и между обмотками и землей. Для двигателей постоянного тока или генераторов щеточного типа щетки следует снимать и отдельно проверять сопротивление между катушками. Для 12-вольтного двигателя или генератора все сопротивления должны быть минимум 100 кОм.

Многие лодки включают трансформаторы на входящем береговом питании либо для обеспечения изоляции от берегового переменного тока, либо в качестве повышающего или понижающего трансформатора для преобразования 220 В переменного тока в 120 В переменного тока или наоборот.На борту «Девятки кубков» есть понижающий трансформатор на 1 кВА. Мегаомметр можно использовать для проверки изоляции обмоток. Трансформатор должен быть отключен от берегового источника питания и бортовых цепей, а сопротивление каждой обмотки должно быть проверено относительно другой и относительно земли. Для типичного изолирующего трансформатора на 120 В переменного тока все сопротивления должны быть выше 350 МОм. Для понижающего, повышающего трансформатора или изолирующего трансформатора 220 В переменного тока сопротивление должно быть более 650 МОм.

Хотя мегомметр может и не быть важным инструментом для использования на борту, он, безусловно, полезен.Теперь, когда цены на них стали разумными, возможно, имеет смысл их купить.

Тестер изоляции против мегомметра | Fluke

Проверка сопротивления изоляции необходима для обеспечения правильной работы проводов и двигателей. Мегомметры, иногда называемые мегомметрами, позволяют быстро и легко определить состояние изоляции проводов, генераторов и обмоток двигателя. Мегомметр — это электрический счетчик, который измеряет очень высокие значения сопротивления, посылая сигнал высокого напряжения на проверяемый объект.Однако обычно это единственная функция, которую выполняет мегомметр.

Хотя мегомметры часто неофициально называют тестерами изоляции, строго говоря, это неточно. Зачем? В чем разница между мегомметром и тестером изоляции? Тестер изоляции выполняет основную функцию измерения, которую выполняет мегомметр — измеряет очень высокие значения сопротивления, посылая сигнал высокого напряжения на проверяемый объект, — и часто он делает гораздо больше; обычно он выполняет больше функций, включая более сложные испытания и запись измерений.

Полнофункциональный тестер изоляции может выполнять испытания сопротивления изоляции под высоким напряжением и многое другое.

Чем отличаются тестеры изоляции

Например, в отличие от мегомметров, тестеры изоляции также могут измерять напряжение и ток. Мультиметр изоляции Fluke 1587 FC, например, может выполнять испытания изоляции при напряжении до 1000 вольт, и это полнофункциональный цифровой мультиметр. Fluke 1550c может генерировать до 5000 вольт для испытаний изоляции.Тестеры изоляции также могут выполнять более сложные тесты, такие как компенсация условий окружающей среды, таких как влажность и температура, во время теста, чтобы предоставить информацию о том, как двигатели работают в меняющихся условиях. Поскольку условия окружающей среды и / или химическое загрязнение ускоряют ухудшение изоляции, очень важно сравнивать результаты испытаний сопротивления изоляции, скорректированные для различных условий испытаний.

Тестеры изоляции, такие как Fluke 1587 FC и Fluke 1550c, обладают еще одним преимуществом перед мегомметрами.Хранение в памяти с помощью Fluke Connect® сохраняет измерения на вашем телефоне или в облаке, поэтому вам не нужно записывать результаты. Это экономит время, уменьшает количество ошибок и сохраняет данные для исторического отслеживания с течением времени.

Выбор между тестером изоляции и мегомметром зависит от потребностей вашего бизнеса. Все, что вам нужно, — это мег-тест. Но если вам нужна повышенная мощность, удобство, профилактика и безопасность, лучшим выбором может стать тестер изоляции.

Сравнение измерителей сопротивления изоляции и мегомметров

Испытательное напряжение В, 500 В, 1000 В 9022 Измерение напряжения 9023 9023 9023 9023 9023
Fluke 1587 FC Мультиметр изоляции Fluke 1550c Тестер изоляции Megger MIT230 Extech 380363
250 В, 500 В, 1000 В, 2500 В, 5000 В 250 В, 500 В, 1000 В 250 В, 500 В и 1000 В
Измерения сопротивления 2.2 ГОм 2 ТОм 1 ГОм 10 ГОм
PI / DAR x x
Температурная компенсация Запись данных Без ограничений с Fluke Connect® 99 внутренних, без ограничений с FC Ручной ввод 9 записей
Передача данных x x
0-1000V 25V — 600V 999V
Измерение тока 400 мА переменного или постоянного тока
Проверка целостности x x x
Измерение частоты 99.99 кГц
Измерение емкости 9999 мкФ 15 мкФ
Измерение температуры от от 40 ° C до 9938 ° C до 9938 ° C F

Получите бесплатную демонстрацию

Почему заземление, зачем тестировать? | Fluke

Плохое заземление способствует ненужному простою, но отсутствие хорошего заземления опасно и увеличивает риск отказа оборудования.

Без эффективной системы заземления вы можете подвергнуться риску поражения электрическим током, не говоря уже о приборных ошибках, гармонических искажениях, проблемах с коэффициентом мощности и множестве возможных прерывистых дилемм. Если токи короткого замыкания не имеют пути к земле через правильно спроектированную и обслуживаемую систему заземления, они обнаружат непредусмотренные пути, которые могут затронуть людей. Эти организации предоставляют рекомендации и / или разрабатывают стандарты заземления для обеспечения безопасности.

OSHA (Управление по охране труда) »
NFPA (Национальная ассоциация противопожарной защиты)»
ANSI / ISA (Американский национальный институт стандартов и приборное общество Америки) »
TIA (Ассоциация индустрии телекоммуникаций)»
IEC (Международная электротехническая комиссия) »
CENELEC (Европейский комитет по стандартизации в области электротехники)»
IEEE (Институт инженеров по электротехнике и электронике) »

Хорошее заземление — это больше, чем мера безопасности, оно также предотвращает повреждение промышленных установок и оборудования.Хорошая система заземления повысит надежность оборудования и снизит вероятность повреждения из-за молнии или токов короткого замыкания. Ежегодно на рабочих местах теряются миллиарды долларов из-за электрических пожаров. Это не учитывает связанные с этим судебные издержки и потерю личной и корпоративной производительности.

Зачем тестировать наземные системы?

Со временем коррозионные почвы с высоким содержанием влаги, высоким содержанием соли и высокими температурами могут разрушить заземляющие стержни и их соединения.Несмотря на низкие значения сопротивления заземления при первоначальной установке, эти значения могут увеличиться, если заземляющие стержни разъедены.

Тестеры заземления, такие как измеритель сопротивления заземления Fluke 1623-2 GEO и тестер заземления Fluke 1625-2 GEO, являются незаменимыми инструментами для поиска и устранения неисправностей, помогающими поддерживать время безотказной работы. С неприятными периодически возникающими электрическими проблемами проблема может быть связана с плохим заземлением или плохим качеством электроэнергии.

Все заземления и заземляющие соединения должны проверяться не реже одного раза в год в рамках вашего обычного плана профилактического обслуживания.Во время этих плановых проверок следует исследовать увеличение сопротивления на 20%. После обнаружения проблема должна быть устранена путем замены или добавления заземляющих стержней в систему заземления.

Что такое земля и для чего она нужна?

NEC, Национальный электротехнический кодекс, статья 100 определяет заземление как «соединение (соединение) с землей или с проводящим телом, которое расширяет заземление». Когда мы говорим о заземлении, это две разные темы.

  1. Заземление заземления: намеренное соединение проводника цепи, обычно нейтрали, с заземляющим электродом, помещенным в землю.
  2. Заземление оборудования: обеспечивает правильное заземление рабочего оборудования внутри здания.

Эти две системы заземления необходимо держать отдельно, за исключением соединения между двумя системами. Это предотвращает разницу в потенциале напряжения из-за возможного пробоя от ударов молнии. Цель заземления, помимо защиты людей, растений и оборудования, состоит в том, чтобы обеспечить безопасный путь для рассеивания токов короткого замыкания, ударов молний, ​​статических разрядов, сигналов EMI и RFI и помех.

Что такое хорошее значение сопротивления заземления?

Существует много путаницы в отношении того, что является хорошим заземлением и каким должно быть значение сопротивления заземления. В идеале заземление должно иметь нулевое сопротивление.

Не существует единого стандартного порога сопротивления заземления, признанного всеми агентствами. Однако NFPA и IEEE рекомендовали значение сопротивления заземления 5,0 Ом или меньше.

Согласно NEC, убедитесь, что полное сопротивление системы относительно земли меньше 25 Ом, указанного в NEC 250.56. В помещениях с чувствительным оборудованием оно должно быть 5,0 Ом или меньше.

В телекоммуникационной отрасли часто используется номинальное сопротивление 5,0 Ом или меньше для заземления и соединения. Целью сопротивления заземления является достижение минимально возможного значения сопротивления заземления, которое имеет смысл с экономической и физической точек зрения.

Поговорите со специалистом

Статьи по теме

Общие сведения об испытании сопротивления изоляции | EC&M

Изоляция начинает стареть сразу после ее изготовления.С возрастом его изоляционные свойства ухудшаются. Любые суровые условия установки, особенно с экстремальными температурами и / или химическим загрязнением, ускоряют этот процесс. Это ухудшение может привести к опасным условиям надежности электроснабжения и безопасности персонала. Таким образом, важно быстро выявить это ухудшение, чтобы можно было предпринять корректирующие действия. Не все понимают один из простейших тестов и необходимый для него инструмент. Чтобы помочь устранить это непонимание, давайте подробно обсудим тестирование сопротивления изоляции (IR) и мегомметр.

Компоненты для испытания изоляции

Подойдем к теме покомпонентно.

Мегаомметр

Базовая схема подключения мегомметра показана на рис. , рис. 1 (слева). Мегомметр похож на мультиметр, когда последний выполняет функцию омметра. Однако есть различия.

Во-первых, выход мегомметра на намного выше, чем у мультиметра, на . Используются напряжения 100, 250, 500, 1000, 2500, 5000 и даже 10000 В ( Таблица 1 ).Наиболее распространенные напряжения — 500 В и 1000 В. Более высокие напряжения используются для большей нагрузки на изоляцию и, таким образом, для получения более точных результатов. Таблица 1. Рекомендуемые испытательные напряжения для текущих проверок сопротивления изоляции оборудования, рассчитанного на напряжение 4 160 В и выше.

Во-вторых, диапазон мегомметра выражается в мегаомах, как следует из названия, а не в омах, как у мультиметра.

В-третьих, мегомметр имеет относительно высокое внутреннее сопротивление, что делает его менее опасным в использовании, несмотря на более высокие напряжения.

Контрольные соединения

Мегаомметр обычно оснащен тремя выводами. Клемма «LINE» (или «L») — это так называемая «горячая» клемма, которая подключается к проводнику, сопротивление изоляции которого вы измеряете. Помните: эти тесты выполняются при обесточенной цепи.

Клемма «EARTH» (или «E») подключается к другой стороне изоляции, заземляющему проводнику.

Клемма «GUARD» (или «G») обеспечивает обратный контур, который обходит счетчик.Например, если вы измеряете цепь, имеющую ток, который вы не хотите включать, вы подключаете эту часть цепи к клемме «GUARD».

Рис. 2, 3 и 4 показаны соединения для тестирования трех распространенных типов оборудования. На рис. 2 показано соединение для проверки ввода трансформатора без измерения поверхностной утечки. Измеряется только ток через изоляцию, так как любой поверхностный ток будет возвращаться на провод «GUARD».

Различные тесты изоляции

По сути, есть три различных теста, которые можно выполнить с помощью мегомметра.

1) Сопротивление изоляции (IR)

Это самый простой из тестов. После того, как необходимые подключения выполнены, вы прикладываете испытательное напряжение в течение одной минуты. (Одноминутный интервал — это отраслевая практика, которая позволяет всем снимать показания одновременно. Таким образом, сравнение показаний будет иметь значение, потому что методы тестирования, хотя и взяты разными людьми, согласованы.) интервале сопротивление должно падать или оставаться относительно стабильным.В более крупных изоляционных системах будет наблюдаться неуклонное снижение, в то время как меньшие системы останутся стабильными, поскольку емкостные токи и токи поглощения падают до нуля быстрее в меньших системах изоляции. Через одну минуту прочтите и запишите значение сопротивления.

Обратите внимание, что ИК чувствителен к температуре. Когда температура повышается, ИК понижается, и наоборот. Следовательно, чтобы сравнить новые показания с предыдущими, вам необходимо скорректировать показания до некоторой базовой температуры. Обычно в качестве температур сравнения используются 20 ° C или 40 ° C; таблицы доступны для любой коррекции.Однако общепринятое практическое правило состоит в том, что ИК-излучение изменяется в два раза на каждые 10 ° C.

Например, предположим, что мы получили показание ИК-излучения 100 МОм при температуре изоляции 30 ° C. Скорректированный ИК (при 20 ° C) будет 100 МОм умножить на 2 или 200 МОм.

Также обратите внимание, что допустимые значения IR будут зависеть от оборудования. Исторически сложилось так, что полевой персонал использовал сомнительный стандарт — один мегом на кВ плюс один. Международная ассоциация электрических испытаний.(NETA) Спецификация NETA MTS-1993, Спецификации технического обслуживания для оборудования и систем распределения электроэнергии , предоставляет гораздо более реалистичные и полезные значения.

Результаты испытаний следует сравнить с предыдущими показаниями и показаниями, снятыми для аналогичного оборудования. Любые значения ниже стандартных минимумов NETA или внезапные отклонения от предыдущих значений должны быть исследованы.

2) Коэффициент диэлектрической абсорбции

Этот тест подтверждает тот факт, что «хорошая» изоляция будет показывать постепенно увеличивающееся ИК-излучение после подачи испытательного напряжения.После того, как соединения выполнены, прикладывается испытательное напряжение, и ИК считывается в два разных момента: обычно 30 и 60 секунд или 60 секунд и 10 минут. Более позднее показание делится на более раннее, и в результате получается коэффициент диэлектрического поглощения. 10 мин. / 60 сек. отношение называется индексом поляризации (ПИ).

Например, предположим, что мы применяем мегомметр, как описано ранее, с соответствующим испытательным напряжением. Одна мин. Показание ИК составляет 50 МОм, а 10 мин.Показание ИК составляет 125 МОм. Таким образом, PI составляет 125 МОм, разделенное на 50 МОм, или 2,5.

В различных источниках имеются таблицы допустимых значений коэффициентов диэлектрической абсорбции (см. , таблица 2, ). Таблица 2. Список условий изоляции в соответствии с коэффициентами диэлектрической абсорбции. Эти значения следует рассматривать как предварительные и относительные, с учетом опыта использования метода сопротивления времени в течение определенного периода времени.

* Эти результаты будут удовлетворительными для оборудования с очень низкой емкостью, например, для коротких проводов в доме.

** В некоторых случаях с двигателями значения, примерно на 20% превышающие указанные здесь, указывают на сухую, хрупкую обмотку, которая может выйти из строя при ударах или во время пусков. Для профилактического обслуживания обмотку двигателя необходимо очистить, обработать и высушить для восстановления гибкости обмотки.

3) Испытание ступенчатым напряжением

Это испытание особенно полезно при оценке устаревшей или поврежденной изоляции, не обязательно имеющей влагу или загрязнения.Здесь требуется испытательный прибор с двойным напряжением. После подключения выполняется ИК-тест при низком напряжении, скажем, 500 В. Затем образец для испытаний разряжается, и испытание проводится снова, на этот раз при более высоком напряжении, скажем, 2500 В. Если разница между двумя показаниями ИК-излучения превышает 25%, следует подозревать старение или повреждение изоляции.

БОКОВАЯ ПАНЕЛЬ: Основная теория

Эквивалентная схема для электрической изоляции показана на Рис.5 ниже. Верхний вывод может быть центральным проводом силового кабеля, а нижний вывод — его экраном. Ток, протекающий через изоляцию кабеля, будет тем током, который на схеме обозначен как «полный ток». Как видите, полный ток равен сумме «емкостного тока» плюс «ток поглощения» плюс «ток утечки».

Обратите внимание, что полный ток — это не ток нагрузки, протекающий через систему. Скорее, это ток, который течет от проводника под напряжением через изоляцию к земле.

Давайте дадим здесь несколько основных определений.

Емкостной ток . Конденсатор создается, когда два проводника разделены изолятором. Такова ситуация в энергосистеме.

Если внезапно приложить напряжение постоянного тока (замыкающий переключатель на рис. 5 ), электроны устремятся к отрицательной пластине и будут оттянуты от положительной пластины. Первоначально этот ток будет очень большим, но постепенно будет уменьшаться до гораздо меньшего значения, в конечном итоге приближаясь к нулю.Ток, обозначенный как «емкостной зарядный ток» в . На рис. 6, ниже показано, как этот ток изменяется со временем после приложения напряжения постоянного тока.

Ток утечки . Никакая изоляция не идеальна; даже новая изоляция будет иметь некоторый ток утечки, хотя и небольшой. Этот ток утечки будет увеличиваться с возрастом изоляции. Это также ухудшится, если изоляция будет влажной или загрязненной.

«Ток проводимости или утечки», показанный на Рис. 6 — это графическое представление тока утечки.Обратите внимание, что он начинается с нуля и быстро увеличивается до конечного значения 10 мкА. Так ведет себя хорошая изоляция. Однако по мере старения и ухудшения состояния изоляции в токе утечки могут произойти два изменения. Одно изменение может заключаться в том, что конечное значение тока утечки может увеличиваться, а не выравниваться. Например, вместо выравнивания на 10 мкА конечный ток может увеличиться до 20 мкА. Другое изменение может заключаться в том, что вместо быстрого повышения до конечного значения и выравнивания ток утечки просто может продолжать увеличиваться.В этом случае изоляция в конечном итоге выйдет из строя.

Ток потребления . Заряды, которые образуются на пластинах конденсатора, притягивают заряды противоположной полярности в изоляции, заставляя эти заряды перемещаться и, таким образом, потреблять ток. Наибольшее движение заряда происходит в начальные моменты, а затем постепенно спадает почти до нуля. Этот ток называется диэлектрическим поглощением или просто током поглощения. Временной график этого тока, обозначенный как «ток поглощения», также показан на рис.6 .

Итого текущий . Полный ток, протекающий в цепи, равен сумме компонентов, показанных на рис. 6. Полный ток, протекающий при приложении постоянного напряжения, начинается с относительно высокого значения, а затем падает, установившись на значении чуть выше ток утечки. При плохой или изношенной изоляции общий ток будет медленно падать или даже увеличиваться.

Мегомметры | Тестеры изоляции | Инструменты AEMC

Почему выбирают мегомметры AEMC?

Полная линейка мегомметров

Мы знаем, что для вас очень важно иметь возможность правильно определить состояние изоляции на проводах и обмотках двигателя, чтобы предотвратить повреждение дорогостоящего оборудования и незапланированные отключения, а также обеспечить личную безопасность.Вот почему мы предлагаем полную линейку мегомметров с испытательным напряжением от 10 В до 15 кВ (в зависимости от модели), способных измерять сопротивление изоляции от 1000 до 30 ТОм. Эти прочные, погодоустойчивые измерители точны, надежны и созданы для работы. Доступны модели с батарейным питанием, питанием от переменного тока и с ручным приводом.

Покрытие всего спектра испытаний сопротивления изоляции

Регулярное использование мегомметра для проверки как новых установок, так и в качестве программы технического обслуживания помогает обеспечить безопасность ваших цепей.Наши приборы предлагают испытания с высоким сопротивлением до 30 ТОм. Мегомметры AEMC выполняют точечные, синхронизированные, ступенчатые и линейные испытания напряжения для измерения сопротивления, коэффициента диэлектрической абсорбции (DAR), индекса поляризации (PI) и диэлектрического разряда (DD).

Основные характеристики

  • Более 110 лет опыта в разработке и производстве мегомметров — гарантия того, что у вас есть профессиональный надежный прибор.
  • Разработано в соответствии с последними стандартами безопасности — ваша защита превыше всего
  • Автоматизированные функции тестирования и вычислений — исключают ошибки, экономят время и деньги
  • Предлагает самый широкий спектр приборов для проверки изоляции — позволяет выбрать подходящий прибор для вашего применения
  • Простая и легкая в использовании настройка -m все правильно с первого раза

Мощное и гибкое программное обеспечение для анализа данных

Наше мощное программное обеспечение DataView включено в комплект, чтобы предоставить ценную информацию о состоянии изоляции проводов, кабелей и обмоток двигателя.

Сравнение мегомметров

Мы создали следующие универсальные одностраничные сравнительные документы, чтобы помочь вам выбрать лучший мегомметр для ваших конкретных нужд.

СРАВНИТЕЛЬНАЯ ТАБЛИЦА мегомметра — (жесткий футляр)
СРАВНИТЕЛЬНАЯ ТАБЛИЦА мегомметра — (переносной)

Эксперт технической поддержки

AEMC ® обеспечивает полную техническую поддержку по нашей горячей технической линии 800-945-2362 (доб. 351), поговорите напрямую с одним из членов нашей группы технической поддержки.Или отправьте свои вопросы нашей технической команде по электронной почте. [email protected]

Отличное обслуживание клиентов

Наша компетентная и дружелюбная сервисная команда обеспечивает лучшую поддержку в отрасли. Мы стараемся понять ваш запрос или обратную связь уважительно и ответственно. Наша цель в AEMC ® — превзойти ваши ожидания.

Запросить демонстрацию

Есть вопросы по использованию мегомметров AEMC ® ? Мы рады провести демонстрацию с нашими техническими экспертами.Свяжитесь с нами по телефону (800) 343-1391 или напишите нам по адресу [email protected]

Практическое руководство по испытанию сопротивления заземления

Сопротивление заземления для электрических систем заземления

Самая простая и несколько вводящая в заблуждение идея хорошего заземления для электрической системы — это отрезок железной трубы, вбитый в землю с проводником, подключенным к трубку к электрической цепи (рисунок 1).

Практическое руководство по испытанию сопротивления заземления — Megger (на фото: четырехконтактный тестер сопротивления заземления / заземления и удельного сопротивления грунта)

Это может быть, а может и не быть подходящим низкоомным путем для электрического тока для защиты персонала и оборудования.

Рис. 1. Упрощенная система заземления на промышленном предприятии

Практичный заземляющий электрод с низким сопротивлением заземления не всегда легко получить. Но из опыта, полученного другими, вы можете узнать, как настроить надежную систему и как проверить значение сопротивления с разумной точностью.

Как вы увидите, удельное сопротивление земли имеет важное значение для сопротивления электрода , как и — от глубины, размера и формы электрода .

Принципы и методы испытаний на сопротивление заземления, описанные в этом разделе, применимы к установкам молниеотвода , а также к другим системам , требующим заземления с низким сопротивлением . Такие испытания проводятся на электростанциях, в системах распределения электроэнергии, промышленных предприятиях и в телекоммуникационных системах.


Факторы, которые могут изменить минимальное сопротивление заземления

Позже мы обсудим, какое значение сопротивления заземления считается достаточно низким.Вы увидите, что не существует общего правила, применимого для всех случаев.

Прежде всего, однако, рассмотрите следующие факторы, которые могут из года в год изменять требования к заземляющему электроду:

Правило № 1

Завод или другое электрическое оборудование может увеличиваться в размерах. Кроме того, новые заводы продолжают строиться все больше и больше. Такие изменения создают разные потребности в заземляющем электроде. То, что раньше было достаточно низким сопротивлением заземления, может стать устаревшим «стандартом».”

Правило № 2

По мере того, как предприятия добавляют более современное чувствительное оборудование с компьютерным управлением, проблемы электрических шумов усугубляются. Шум, который не повлияет на более грубое, старое оборудование , может ежедневно вызывать проблемы с новым оборудованием .

Правило № 3

По мере того, как все больше неметаллических труб и трубопроводов прокладывается под землей, такие установки становятся все менее надежными в качестве эффективных заземляющих соединений с низким сопротивлением.

Правило № 4

Во многих местах уровень грунтовых вод постепенно падает.Примерно через год системы заземляющих электродов, которые раньше были эффективными, могут оказаться в сухой земле с высоким сопротивлением.

Эти факторы подчеркивают важность непрерывной периодической программы испытания сопротивления заземления . Недостаточно проверить сопротивление заземления только во время установки.


Факторы, влияющие на требования к хорошей системе заземления

На промышленном предприятии или другом объекте, требующем системы заземления, необходимо внимательно рассмотреть одно из следующих условий (см.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *