Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Калькулятор теплорасчет: SmartCalc. Расчет утепления и точки росы для строящих свой дом. СНИП.

Содержание

пошаговое руководство с примерами и формулами


При эксплуатации здания нежелателен как перегрев, так и промерзание. Определить золотую середину позволит теплотехнический расчет, который не менее важен, чем вычисление экономичности, прочности, стойкости к огню, долговечности.

Исходя из теплотехнических норм, климатических характеристик, паро – и влагопроницаемости осуществляется выбор материалов для сооружения ограждающих конструкций. Как выполнить этот расчет, рассмотрим в статье.

Содержание статьи:

Цель теплотехнического расчета

От теплотехнических особенностей капитальных ограждений здания зависит многое. Это и влажность конструктивных элементов, и температурные показатели, которые влияют на наличие или отсутствие конденсата на межкомнатных перегородках и  перекрытиях.

Расчет покажет, будут ли поддерживаться стабильные температурные и влажностные характеристики при плюсовой и минусовой температуре. В перечень этих характеристик входит и такой показатель, как количество тепла, теряющегося ограждающими конструкциями строения в холодный период.

Нельзя начинать проектирование, не имея всех этих данных. Опираясь на них, выбирают толщину стен и перекрытий, последовательность слоев.

По регламенту ГОСТ 30494-96 температурные значения внутри помещений. В среднем она равна 21⁰. При этом относительная влажность обязана пребывать в комфортных рамках, а это в среднем 37%. Наибольшая скорость перемещения массы воздуха — 0,15 м/с

Теплотехнический расчет ставит перед собой цели определить:

  1. Идентичны ли конструкции заявленным запросам с точки зрения тепловой защиты?
  2. Настолько полно обеспечивается комфортный микроклимат внутри здания?
  3. Обеспечивается ли оптимальная тепловая защита конструкций?

Основной принцип — соблюдение баланса разности температурных показателей атмосферы внутренних конструкций ограждений и помещений. Если его не соблюдать, тепло будут поглощать эти поверхности, а внутри температура останется очень низкой.

На внутреннюю температуру не должны существенно влиять изменения теплового потока. Эту характеристику называют теплоустойчивостью.

Путем выполнения теплового расчета определяют оптимальные пределы (минимальный и максимальный) габаритов стен, перекрытий по толщине. Это является гарантией эксплуатации здания на протяжении длительного периода как без экстремальных промерзаний конструкций, так и перегревов.

Параметры для выполнения расчетов

Чтобы выполнить теплорасчет, нужны исходные параметры.

Зависят они от ряда характеристик:

  1. Назначения постройки и ее типа.
  2. Ориентировки вертикальных ограждающих конструкций относительно направленности к сторонам света.
  3. Географических параметров будущего дома.
  4. Объема здания, его этажности, площади.
  5. Типов и размерных данных дверных, оконных проемов.
  6. Вида отопления и его технических параметров.
  7. Количества постоянных жильцов.
  8. Материала вертикальных и горизонтальных оградительных конструкций.
  9. Перекрытия верхнего этажа.
  10. Оснащения горячим водоснабжением.
  11. Вида вентиляции.

Учитываются при расчете и другие конструктивные особенности строения. Воздухопроницаемость ограждающих конструкций не должна способствовать чрезмерному охлаждению внутри дома и снижать теплозащитные характеристики элементов.

Потери тепла вызывает и переувлажнение стен, а кроме того, это влечет за собой сырость, отрицательно влияющую на долговечность здания.

В процессе расчета, прежде всего, определяют теплотехнические данные стройматериалов, из которых изготавливаются ограждающие элементы строения. Помимо этого, определению подлежит приведенное сопротивление теплопередачи и сообразность его нормативному значению.

Формулы для производства расчета

Утечки тепла, теряемого домом, можно разделить на две основные части: потери через ограждающие конструкции и потери, вызванные функционированием . Кроме того, тепло теряется при сбросе теплой воды в канализационную систему.

Потери через ограждающие конструкции

Для материалов, из которых устроены ограждающие конструкции, нужно найти величину показателя теплопроводности Кт (Вт/м х градус). Они есть в соответствующих справочниках.

Теперь, зная толщину слоев, по формуле: R = S/Кт, высчитывают термическое сопротивление каждой единицы. Если конструкция многослойная, все полученные значения складывают.

Размеры тепловых потерь проще всего определить путем сложения тепловых течений через ограждающие конструкции, которые собственно и образуют это здание

Руководствуясь такой методикой, к учету принимают тот момент, что материалы, составляющие конструкции, имеют неодинаковую структуру. Также учитывается, что поток тепла, проходящий сквозь них, имеет разную специфику.

Для каждой отдельной конструкции теплопотери определяют по формуле:

Q = (A / R) х dT

Здесь:

  • А — площадь в м².
  • R — сопротивление конструкции теплопередаче.
  • dT — разность температур снаружи и изнутри. Определять ее нужно для самого холодного 5- дневного периода.

Выполняя расчет таким образом, можно получить результат только для самого холодного пятидневного периода. Общие теплопотери за весь холодный сезон определяют путем учета параметра dT, учитывая температуру не самую низкую, а среднюю.

В какой степени усваивается тепло, а также теплоотдача зависит от влажности климата в регионе. По этой причине при вычислениях применяют карты влажности

Далее, высчитывают количество энергии, необходимой для компенсации потерь тепла, ушедшего как через ограждающие конструкции, так и через вентиляцию. Оно обозначается символом W.

Для этого есть формула:

W = ((Q + Qв) х 24 х N)/1000

В ней N — длительность отопительного периода в днях.

Недостатки расчета по площади

Расчет, основанный на площадном показателе, не отличается большой точностью. Здесь не принят во внимание такой параметр, как климат, температурные показатели как минимальные, так и максимальные, влажность. Из-за игнорирования многих важных моментов расчет имеет значительные погрешности.

Часто стараясь перекрыть их, в проекте предусматривают «запас».

Если все же для расчета выбран этот способ, нужно учитывать следующие нюансы:

  1. При высоте вертикальных ограждений до трех метров и наличии не более двух проемов на одной поверхности, результат лучше умножить на 100 Вт.
  2. Если в проект заложен балкон, два окна либо лоджия, умножают в среднем на 125 Вт.
  3. Когда помещения промышленные или складские, применяют множитель 150 Вт.
  4. В случае расположения радиаторов вблизи окон, их проектную мощность увеличивают на 25%.

Формула по площади имеет вид:

Q=S х 100 (150) Вт.

Здесь Q — комфортный уровень тепла в здании, S — площадь с отоплением в м². Числа 100 или 150 — удельная величина тепловой энергии, расходуемой для нагрева 1 м².

Потери через вентиляцию дома

Ключевым параметром в этом случае является кратность воздухообмена. При условии, что стены дома паропроницаемые, эта величина равна единице.

Проникновение холодного воздуха в дом осуществляется по приточной вентиляции. Вытяжная вентиляция способствует уходу теплого воздуха. Снижает потери через вентиляцию рекуператор-теплообменник. Он не допускает ухода тепла вместе с выходящим воздухом, а входящие потоки он нагревает

Предусматривается полное обновление воздуха внутри здания за один час. Здания, построенные по стандарту DIN, имеют стены с пароизоляцией, поэтому здесь кратность воздухообмена принимают равной двум.

Есть формула, по которой определяют теплопотери через систему вентиляции:

Qв = (V х Кв : 3600) х Р х С х dT

Здесь символы обозначают следующее:

  1. Qв — теплопотери.
  2. V — объем комнаты в мᶾ.
  3. Р — плотность воздуха. еличина ее принимается равной 1,2047 кг/мᶾ.
  4. Кв — кратность воздухообмена.
  5. С — удельная теплоемкость. Она равна 1005 Дж/кг х С.

По итогам этого расчета можно определить мощность теплогенератора отопительной системы. В случае слишком высокого значения мощности выходом из ситуации может стать . Рассмотрим несколько примеров для домов из разных материалов.

Пример теплотехнического расчета №1

Рассчитаем жилой дом, находящийся в 1 климатическом районе (Россия), подрайон 1В. Все данные взяты из таблицы 1 СНиП 23-01-99. Наиболее холодная температура, наблюдающаяся на протяжении пяти дней обеспеченностью 0,92 — tн = -22⁰С.

В соответствии со СНиП отопительный период (zоп) продолжается 148 суток. Усредненная температура на протяжении отопительного периода при среднесуточных температурных показателях воздуха на улице 8⁰ — tот = -2,3⁰. Температура снаружи в отопительный сезон — tht = -4,4⁰.

Теплопотери дома — важнейший момент на этапе его проектирования. От итогов расчета зависит и выбор стройматериалов, и утеплителя. Нулевых потерь не бывает, но стремиться нужно к тому, чтобы они были максимально целесообразными

Оговорено условие, что в комнатах дома должна быть обеспечена температура 22⁰. Дом имеет два этажа и стены толщиной 0,5 м. Высота его — 7 м, габариты в плане — 10 х 10 м. Материал вертикальных ограждающих конструкций — теплая керамика. Для нее коэффициент теплопроводности — 0,16 Вт/м х С.

В качестве наружного утеплителя, толщиной 5 см, использована минеральная вата. Значение Кт для нее — 0,04 Вт/м х С. Количество оконных проемов в доме — 15 шт. по 2,5 м² каждое.

Теплопотери через стены

Прежде всего, нужно определить термическое сопротивление как керамической стены, так и утеплителя. В первом случае R1 = 0,5 : 0,16 = 3,125 кв. м х С/Вт. Во втором — R2 = 0,05 : 0,04 = 1,25 кв. м х С/Вт. В целом для вертикальной ограждающей конструкции: R = R1 + R2 = 3.125 + 1.25 = 4.375 кв. м х С/Вт.

Так как теплопотери имеют прямо пропорциональную взаимосвязь с площадью ограждающих конструкций, рассчитываем площадь стен:

А = 10 х 4 х 7 – 15 х 2,5 = 242,5 м²

Теперь можно определить потери тепла через стены:

Qс = (242,5 : 4.375) х (22 – (-22)) = 2438,9 Вт.

Теплопотери через горизонтальные ограждающие конструкции рассчитывают аналогично. В итоге все результаты суммируют.

Если есть подвал, то теплопотери через фундамент и пол будут меньшими, поскольку в расчете участвует температура грунта, а не наружного воздуха

Если подвал под полом первого этажа отапливается, пол можно не утеплять. Стены подвала все же лучше обшить утеплителем, чтобы тепло не уходило в грунт.

Определение потерь через вентиляцию

Чтобы упростить расчет, не учитывают толщину стен, а просто определяют объем воздуха внутри:

V = 10х10х7 = 700 мᶾ.

При кратности воздухообмена Кв = 2, потери тепла составят:

Qв = (700 х 2) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 20 776 Вт.

Если Кв = 1:

Qв = (700 х 1) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 10 358 Вт.

Эффективную вентиляцию жилых домов обеспечивают роторные и пластинчатые рекуператоры. КПД у первых выше, он достигает 90%.

Пример теплотехнического расчета №2

Требуется произвести расчет потерь сквозь стену из кирпича толщиной 51 см. Она утеплена 10-сантиметровым слоем минеральной ваты. Снаружи – 18⁰, внутри — 22⁰. Габариты стены — 2,7 м по высоте и 4 м по длине. Единственная наружная стена помещения ориентирована на юг, внешних дверей нет.

Для кирпича коэффициент теплопроводности Кт = 0,58 Вт/мºС, для минеральной ваты — 0,04 Вт/мºС. Термическое сопротивление:

R1 = 0,51 : 0,58 = 0,879 кв. м х С/Вт. R2 = 0,1 : 0,04 = 2,5 кв. м х С/Вт. В целом для вертикальной ограждающей конструкции: R = R1 + R2 = 0.879 + 2,5 = 3.379 кв. м х С/Вт.

Площадь внешней стены А = 2,7 х 4 = 10,8 м²

Потери тепла через стену:

Qс = (10,8 : 3.379) х (22 – (-18)) = 127,9 Вт.

Для расчета потерь через окна применяют ту же формулу, но термическое сопротивление их, как правило, указано в паспорте и рассчитывать его не нужно.

В теплоизоляции дома окна — «слабое звено». Через них уходит довольно большая доля тепла. Уменьшат потери многослойные стеклопакеты, теплоотражающие пленки, двойные рамы, но даже это не поможет избежать теплопотерь полностью

Если в доме окна с размерами 1,5 х 1,5 м ² энергосберегающие, ориентированы на Север, а термическое сопротивление равно 0,87 м2°С/Вт, то потери составят:

Qо = (2,25 : 0,87) х (22 – (-18)) = 103,4 т.

Пример теплотехнического расчета №3

Выполним тепловой расчет деревянного бревенчатого здания с фасадом, возведенным из сосновых бревен слоем толщиной 0,22 м. Коэффициент для этого материала — К=0,15. В этой ситуации теплопотери составят:

R = 0,22 : 0,15 = 1,47 м² х ⁰С/Вт.

Самая низкая температура пятидневки — -18⁰, для комфорта в доме задана температура 21⁰. Разница составит 39⁰. Если исходить из площади 120 м², получится результат:

Qс = 120 х 39 : 1,47 = 3184 Вт.

Для сравнения определим потери кирпичного дома. Коэффициент для силикатного кирпича — 0,72.

R = 0,22 : 0,72 = 0,306 м² х ⁰С/Вт.
Qс = 120 х 39 : 0,306 = 15 294 Вт.

В одинаковых условиях деревянный дом более экономичный. Силикатный кирпич для возведения стен здесь не подходит вовсе.

Деревянное строение имеет высокую теплоемкость. Его ограждающие конструкции долго хранят комфортную температуру. Все же, даже бревенчатый дом нужно утеплять и лучше сделать это и изнутри, и снаружи

Строители и архитекторы рекомендуют обязательно делать для грамотного подбора оборудования и на стадии проектирования дома для выбора подходящей системы утепления.

Пример теплорасчета №4

Дом будет построен в Московской области. Для расчета взята стена, созданная из пеноблоков. Как утеплитель применен . Отделка конструкции — штукатурка с двух сторон. Структура ее — известково-песчаная.

Пенополистирол имеет плотность 24 кг/мᶾ.

Относительные показатели влажности воздуха в комнате — 55% при усредненной температуре 20⁰. Толщина слоев:

  • штукатурка — 0,01 м;
  • пенобетон — 0,2 м;
  • пенополистирол — 0,065 м.

Задача — отыскать нужное сопротивление теплопередаче и фактическое. Необходимое Rтр определяют, подставив значения в выражение:

Rтр=a х ГСОП+b

где ГОСП — это градусо-сутки сезона отопления, а и b — коэффициенты, взятые из таблицы №3 Свода Правил 50.13330.2012. Поскольку здание жилое, a равно 0,00035, b = 1,4.

ГСОП высчитывают по формуле, взятой из того же СП:

ГОСП = (tв – tот) х zот.

В этой формуле tв = 20⁰, tот = -2,2⁰, zот — 205 — отопительный период в сутках. Следовательно:

ГСОП = ( 20 – (-2,2)) х 205 = 4551⁰ С х сут.;

Rтр = 0,00035 х 4551 + 1,4 = 2,99 м2 х С/Вт.

Используя таблицу №2 СП50.13330.2012, определяют коэффициенты теплопроводности для каждого пласта стены:

  • λб1 = 0,81 Вт/м ⁰С;
  • λб2 = 0,26 Вт/м ⁰С;
  • λб3 = 0,041 Вт/м ⁰С;
  • λб4 = 0,81 Вт/м ⁰С.

Полное условное сопротивление теплопередаче Rо, равно сумме сопротивлений всех слоев. Рассчитывают его по формуле:

Эта формула взята из СП 50.13330.2012. Здесь 1/ав – это противодействие тепловосприятию внутренних поверхностей. 1/ан — то же наружных, δ / λ — сопротивление термическое слоя

Подставив значения получают: Rо усл. = 2,54 м2°С/Вт. Rф определяют путем умножения Rо на коэффициент r, равный 0.9:

Rф = 2,54 х 0,9 = 2,3 м2 х °С/Вт.

Результат обязывает изменить конструкцию ограждающего элемента, поскольку фактическое тепловое сопротивление меньше расчетного.

Существует множество компьютерных сервисов, ускоряющих и упрощающих расчеты.

Теплотехнические расчеты напрямую связаны с определением . Что это такое и как найти ее значение узнаете из рекомендуемой нами статьи.

Выводы и полезное видео по теме

Выполнение теплотехнического расчета при помощи онлайн-калькулятора:

Правильный теплотехнический расчет:

Грамотный теплотехнический расчет позволит оценить результативность утепления наружных элементов дома, определить мощность необходимого отопительного оборудования.

Как результат, можно сэкономить при покупке материалов и нагревательных приборов. Лучше заранее знать, справиться ли техника с нагревом и кондиционированием строения, чем покупать все наугад.

Оставляйте, пожалуйста, комментарии, задавайте вопросы, размещайте фото по теме статьи в находящемся ниже блоке. Расскажите о том, как теплотехнический расчет помог вам выбрать обогревательное оборудование нужной мощности или систему утепления. Не исключено, что ваша информация пригодится посетителям сайта.

Калькулятор расчета мощности конвектора по площади помещения

Подобрать конвектор по параметрам

Стены

Общая длина внешних (холодных) стен помещения м

Высота стены м

Количество слоев материала наружних стен 1 2 3 4 5

Тип материала:

Слой 1 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло
Толщина слоя м

Слой 2 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло

Толщина слоя м

Слой 3 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло

Толщина слоя м

Слой 4 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло
Толщина слоя м

Слой 5 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло

Толщина слоя м

Остекление

Пол

Кровля

0 Вт Тепловая мощность конвектора

Подберите модель

Расчет мощности конвектора: полезные таблицы и формулы

При проектировании системы отопления в квартире или доме важно определить необходимую мощность теплового оборудования. Для этого нужно знать площадь помещения, высоту потолков, количество внешних стен и окон для применения повышающего коэффициента. Если высота потолков в доме – около 2,7 м, вы легко произведете расчет мощности конвекторов по площади. Согласно нормам СНиП 41-01-2003, 1 кВт тепловой энергии достаточно для обогрева 10 кв. м помещения.

Как рассчитать мощность конвекторов по площади?

В соответствии со строительными нормами номинальная мощность конвектора для комнаты 25 кв. м составит:

(25 кв. м : 10 кв. м) * 1 кВт = 2,5 кВт

или

25 кв. м * 0,1 кВт = 2,5 кВт

Полученный результат приведен без учета особенностей помещения. Для повышения точности вычислений учтите следующие факторы:

  • расположение конвектора под окном снижает теплоотдачу, поэтому для компенсации тепловых потерь выбирайте оборудование на 5 – 10 % мощнее;
  • если окна занимают большую площадь стены (панорамные, французские), а также выходят на север и северо-восток, при расчетах увеличьте результат на 15 %;
  • угловое расположение помещения требует увеличения мощности на 20 %, а при наличии в такой комнате 2 окон полученный результат повышают на 30 %.

Сделать расчеты наиболее точными вам поможет таблица повышающих коэффициентов:

Особенность помещения Коэффициент
Отсутствие утепления стен 1,1
Установка конвектора под окном 1,05
Монтаж конвектора в угловом помещении с 1 окном 1,2
Монтаж конвектора в угловом помещении с 2 окнами 1,3
Наличие однослойных стеклопакетов 0,9
Высота потолков от 2,8 до 3 м 1,05

Произведем расчет мощности электрического конвектора отопления для угловой комнаты с двумя внешними стенами и площадью 18 кв. м:

(18 кв. м * 0,1 кВт) * 1,2 = 2,16 кВт

В некоторых регионах при расчете учитывают климатические особенности, но в средней полосе России погодный коэффициент равен 1,0.

Расчет мощности конвектора по объему помещения

Согласно положениям СП 60.13330.2012, для обогрева помещений с очень высокими и низкими потолками необходимо 41 Вт на 1 куб. м объема. Зная длину, ширину комнаты и высоту потолка, вы сможете рассчитать мощность отопления на калькуляторе по формуле:

abc * 0,041 кВт,

где abc – формула расчета объема;

0,041 кВт – норматив тепловой энергии.

Рассчитаем мощность конвектора для комнаты 3х4 м с потолками 2 м:

(3*4*2) * 0,041 = 0,984 кВт

Для обогрева такой комнаты потребуется конвектор мощностью 1 кВт (без учета повышающих коэффициентов).

Расчет точки росы в стене калькулятор — Дом своими руками

Расчет точки росы в стене калькулятор

1. Итак, сначала работы вы обязаны определить среднюю и небольшую температуру и относительную влажность зимы региона, в котором предполагается строить здание.

2. Дальше необходимо подобрать слой за слоем составляющие конструкции ограждения начиная внутри строения, заканчивая внешней фасадной отделкой/кровли. В нашей базе данных есть самые главные и популярные материалы, используемые в строительстве, зато вы можете также редактировать данный список.

3. После завершения ввода данных их нербходимо проверить, чтобы не было слоев с нулевой или отрицательной толщиной и нажать кнопку «Расчет».

4. Результаты: черный график отображает понижение (увеличение) температуры втутри конструкции ограждения. Синий — температура точки росы. Если температура в каком либо слое опустится до точки росы — пар конденсируется, что отрицательно оказывает влияние на тепло-эффективность и долговечность конструкции. Зоны выпадения конденсата, если они есть, также обозначены голубым цветом.

5. Замечательный вариант — это когда температура внутреннего слоя равна или стремится к температуре воздуха изнутри, а температура последнего слоя на фасаде строения равна или практически равна температуре воздуха с улицы. График понижения (увеличения) температуры обязан иметь гладкую форму т.е температура должна уменьшаться без скачков. Зон появления конденсата не должно быть ни при средней температуры зимы и нежелательны при пико-невысоких температурах.
6. Чтобы достигнуть эффективности близкой к образцовой, располагайте слои с увеличивающейся паропрозрачностью от внутненнего слоя к наружному.

7. Значение теплоэфективности выражено в ватах на метр квадратный внутренней площади на один градус разницы внешней и внутренней температур. Это означает, что помножив данное значение на внутреннюю площадь конструкции ограждения и помножив на температурную разницу внешней и внутренней в градусах Цельсия, получаем мощность радиатора, которую требуется обеспечить для поддерживания введенной внутренней температуры.

8. Посчитайте теплопотери через стены, потолк, пол и чердачный этаж при помощи такой программы бесплатно. Не забывайте добавить потери тепла сквозь двери и окна (данные берите у изготовителя) и также венитиляцию. Применяйте средние температуры у вас в регионе каждые месяцы за ежемесячно сезона отопления.

Расчет точки росы в стене калькулятор

Калькулятор «ТеплоРасчет.рф» точки росы считается приватным проектом и не зависит от больших игроков сферы строительства.
Любые пожертвования (независимо от суммы) сберегут этот сайт в дальнейшем. Благодарю!

Прямо:
Вебмани: R408361100457
Yandex наличные средства: 410011049136440
Альфа-клик: 40817810609770002454

Автор: Анатолий
Прекрасная программа! Однако есть недочеты: Как добавить больше 6-ти слоев? Небольшая кнопка «расчет». Долго её искал

Автор: Макс
Благодарю. Замечательный сервис!!

Автор: Дмитрий
Где и как можно скачать данную ПО? Погрешность расчета какая? Соответственно с какой НТД эта ПО расчитывает? Прошу отправить, если есть на адрес [email protected]

Автор: ТОварищи! Выручайте- у меня дипломник горит
Горит Дипломная в Бауманском по теплорасчетам. Помогите. Дайте воспользоваться ПО? Магарыч с меня!

Автор: Константин
Благодарю! Расчет, тот, что искал. Но кнопка «Расчет» на самом деле плохо расположена.

Автор: Админ
Убрал кнопку расчет по просьбам трудящихся

Автор: Сергей
Большое благодарю за ваши усилия, программа сильно помогла!

Автор: Дмитрий
Программа очень понравилась.Можно экспериментировать и достигнуть того что необходимо.

Автор: Дмитрий
Программа очень понравилась.Можно экспериментировать и достигнуть того что необходимо.

Автор: Максим
из-за чего то при задании 100% влаги с наружной стороны или в середине помещения точка росы там (где задаем 100%) на пару градусов ниже, хотя должна совпадать.

Автор: Алексей
благодарю, попробывал расчитать Сэндвич-панель(ОСП12м+пенополистирол150мм+ОСП12мм, пишет конденсат. Хм. Очень удивительно, ведь все уверяют, что в СИП конденсата не может быть, и я не понимаю, откуда взяться он может если изнутри пенополистирола нет воздуха с водяными парами. Подскажите. Благодарю. alexeysodru

Автор: Админ
Алексей, в Вашей конструкции (Сэндвич-панель) кол-во конденсата в границах возможного. Создатели сайта не зависят от изготовителей материалов для строительства, благодаря этому нам нет смысла занижать или завышать свойства индивидуальных решений. Только доктрина, и ничего личного. Благодарю

Автор: Евгений (keber)
Взялся было за написание программы расчета параметров конструкций ограждения в настоящих условиях с учетом динамики изменения внешних условий и перемен теплоемкости, влагоемкости, сопротивления тепла и влагосопротивления слоев, Но! наткнулся на Ваше открытие. Благодарю. Упростилась задача аппониров

Автор: Админ
Если решить Вашу задачу,Евгений, то это будет что-то очень отдаленное от реальности. Пожалуйста. Открытие не мое, я лишь совместил информацию ГОСТ 8.524-85 и DIN 4108 вместе и вывел на экран. Аналогичный сервис уже есть в Германии, но предусматривает лишь данные DIN 4108. Удачи

Автор: Артур
Прекрасная прога. А как выполнить больше 6 элементов стены?

Автор: Евгений
Хочется иметь шанс добавить строку сверху или вставить, что бы не перебивать слои, если забыл какой-либо слой сначала или внутри.

Автор: Евгений
Хочется иметь шанс добавить строку сверху или вставить, что бы не перебивать слои, если забыл какой-либо слой сначала или внутри.

Автор: Андрей
Сайт замечательный. Но расчет с прослойкой воздуха выполняется нетактично. R замкнутых прослоек воздуха нормирована СНиПом и зависит от ширины прослойки. А у вас данные цифры считаются совсем по иному. К примеру http://ТеплоРасчет.рф/?rid=20110829132510AKijwqg R подобного варианта у вас выходит 3,8 м2К/В

Автор: Андрей
Программа нужная с хорошим интерфейсом. Очень не хватает безопасных материалов на основе деревянных отходов, типа деревобетон, фибролит, арболит.

Автор: Женя
Красота. Только стала часто подвисать, по всей видимости становиться чрезмерно востребован расчет.

Автор: Алла
Нравится программка, но хочется большего, к примеру, более 6 слоев пирога, в данном случае большая правдивость и наглядность будет и в конечном итоге многие «хотелки» отпадут

Автор: Админ
Отвечаю всем сразу: Нынче установлено ограничение в 6 слоев программы потерь тепла. В скором времени это ограничение будет снято, но исключительно неизменным гостям нашего форума. Регистрируйтесь, общайтесь у нас на форуме, который не перегружен маркетинговой информацией.

Автор: Игорь
Скажите, в материал добавить можно поризованную керамику, особенно много выстраивается, хочется сосчитать сопротивление. Заблаговременно благодарю!

Автор: Дима
Где тёплая керамика?

Автор: вова
Хотелось чтобы в расчете оказались и инновационные материалы:ТСМ керамика,керамоизол,термошилд.Надеюсь и используемость программы возрастет!

Автор: Valery2306
Исправьте единицы измерения теплоемкости с (Дж/кг/К)на (Дж/кг*К)

Автор: Valery2306
И также теплопроводимости с (Вт/m/K) на (Вт/m*K)

Автор: Александр
Великолепный сайт! Просчитав ограждающие собственного дома заметны ошибки допущенные при утеплении. Выходит при использовании пенополистирола всегда будет конденсат.Не понимаю, почему его предлагают для стен из кирпича. Мой случай http://ТеплоРасчет.рф/?rid=20111105115559cFizoun

Автор: Админ
Благодарю, Александр! Что же касается Вашей стены, то конденсат в границах возможного, так что не нужно боятся. Достаточная система вентиляции решит данные проблемы и для средней температуры зимы -20 град. Это крайний север?

Автор: Фёдор
Довольно высокая пожелание прибавить в материалы опилки,ЦСП — плиты цементностружечные, тёплую штукатурку «Мишка» ( Утеплительная смесь для штукатурки «Мишка» ) удалена маркетинговая ссылка И если несложно солому и опилки смешанные с цементом, смесь 90% опилок и 10% извести-пушенки,перлитовые и вермикулитовые материалы. Хочется выстроить тёплый чистый в экологическом плане и не д

Автор: Фёдор
Большое благодарю. Необходимая вещь. Рад поблагодарить. Жаль что указан единственный способ — Вебмани: R408361100457. я пользуюсь яндекскошельком. И ещё, все таки мало готовых материалов. Довольно высокая пожелание прибавить в материалы опилки,ЦСП — плиты цементностружечные, тёплую штукатурку мишка, солому и опилки смешанные с цементом, смесь 90% опилок и 10% извести-пушенки,перлитовые и вермикулитовые материалы. Хочется выстроить тёплый чистый в экологическом плане и дешовый дом, а расчитать и выбрать ма

Автор: Победит
Очень бы хотелось видеть среди материалов ячеистое стекло (блочное и гранулированное), легкий керамзитобетон (плотностью не больше 300), пенополиэтилен, вермикулитобетон и перлитовый песок. Они уже очень популярны среди продвинутых рабочих. Заблаговременно благодарю.

Автор: вова
Вопрос к создателям программы:при параметрах стены:Композиционный материал из бетона и стали 200мм Минвата 100мм Прослойка воздуха 100мм Кирпич 120 влажность 35/50 Конденсат отсутствует.Если сменить ЖБ на пенобетонный блок конденсат рождается.Подскажите почему,напишите ответ пожалуйста.

Автор: Админ
Благодарю за вопрос, Вова! Взгляните параметры паропрозрачности пенобетонов и бетонов и найдёте ответ. Бетон лучше сдерживает пар перегретый, а что успевает проникнуть — испаряется. Для пенобетонов необходимо применять пароизоляционные материалы изнутри, чтобы достигнуть того же эффекта. Удачи!

Автор: вова
Моя Вам признательность за объяснения!О паропрозрачности информацией не обладал.

Автор: вова
Моя Вам признательность за объяснения!О паропрозрачности информацией не обладал.

Автор: Андрей
Добрый день, не могу связаться почтой, ссылка выкидывает на козявки. У меня предложение вопрос. Хочу встроить теплорасчет рф к себе на сайт. Чем могу Вас вызвать интерес?

Автор: Азимхан
нужно добавить разновидности материалов.Керамзитовая подсыпка.Замазка глиняной

Автор: Alehandrovich
Большое благодарю! Программа просто открыла глаза! К слову очень напрасно убрали кнопку расчета. Когда добавляешь слои и вводишь толщину материала программа каждый раз пересчитывает все. Например необходима толщина 10см. Вбиваешь 1 идёт расчет, добавляешь 0 снова перерасчет. Отсюда и нагрузка на сервер. Ещё правдивое слово непонятно как можно поддержать сайт! И рекламы мало 🙂

Автор: Зоир
Молодцы! Прекрасно! Никак руки не доходили до расчетов ручным способом. Результат получил за 5 секунд и никаких формул. Большое благодарю создателям. Желаю всего лучшего.

Автор: DrNobell
Программа просто замечательная!!Есть просьба добавить изменение показателей при ветрах (выдувает тепло или очень высокое охлаждение стен ,крыши,полов)как во время зимы так и в летнюю пору.Потому как влага недруг материалов можно ли добавить долговечность конструкции при получившейся влаги (или же просто когда постройка развалится).И добавте материалов нового поколения глину,бетон на пластиковой арматуре,плоский асбоцементный лист,а если возможно целые системы ( каркасник ,несьемная опалубка и т.д.). Заблаговременно благодарю автору . 19.01.12

Автор: Алексей
Было бы вообще отлично если расширить кол-во рассчитываемых слоев. А так большое благодарю авторам, все весьма просто и ясно !

Автор: Артур
Огромнейшее благодарю авторам программы. Все понятно и ясно. довольно удобно ставить опыты и выбирать правильные материалы. Только одна пожелание авторам. Вы могли бы добавить подобный материал как стеновой камень. У нас на Ставрополье он востребован. Или подскажите какой из материалов , который есть в вашей программе близок к строительному блоку. Благодарю большой еще раз за программу!

Автор: Рая
Собираемся дом строить по технологии Скандитек(с наружной стороны брус 7, каркас с теплоизоляцией эковатой 14,5, обшивка внутри 2).Демонстрирует конденсат((((( И что сейчас?!(((

Автор: Админ
Рая, прочтите тему про утепление внутри тут. Там, хотя и про подвалы, но кое что будет понятно. Ну и имейте в виду, что утепляют в 99% с наружной стороны, а не внутри

Автор: Константин
Программа понравилась. Однако не необходима для просчета в условиях позитивных температур (обратная диффузия). И еще, на iPad нереально добавить первую строку в другом выпадающем меню подбора материала. К примеру, выбираем «Пленка» потом пытаемся подобрать «фольга из алюминия», не подбирается.. Вторая строка и дальнейшие хорошо.

Автор: кира
А давление паров воды по сечению кирпича калькулятор показать может? И кто это подобная, паропрозрачность? и в каких лаптях она меряется? и как её узнать для определенного кирпича? В ТУ на кирпич подобного параметра нет, есть устойчивость к морозам.

Автор: Кира
А нестационарные процессы типа дымоотвода печи периодического действия Ваша программа не берёт?

Автор: Елена
Я из Белоруси благодарю большое за программу, довольно удобно, а ее можно скачать для последующего пользования? Я теплотехник.

Автор: Тихон
Храни Вас Джа, просто спасли в сложной ситуации!

Автор: Света
Большое благодарю. все просто и комфортно! т.к. строю дом сама, сильно помогли ваши расчеты. Приятно понимать, что еще есть реальные энтузиасты, готовые помочь не за копейку, хотя с радостью пожертвую! подскажите плиз — мы выстроили 1-й этаж из пенополистиролбетона,какую позицию лучше подставить для более похожего на реалии расчета. Заблаговременно благодарю!

Автор: Роман
Большое благодарю,собрался дом строить и все не могу решить из чего лучше по соотношению качество-цена. И вот нечаянно отыскал ваш сайт. Все проблемы приняли решение в миг!

Автор: сергей
интересно можно ли при помощи вашей программы высчитать точку росы для стен из шлака

Автор: Сергей
Большое благодарю за Ваш труд.

Автор: Михаил
Расчет прекрасен, однако не хватает все же инновационных материалов типа блока из ячеистого бетона. Информацию по ним скорее всего получите из новых СНиП и ДБН.

Автор: Алекс
Благодарю большое за программу, прекрасная визуализация и простота применения! Один вопрос: в категории «бетоны» есть «пенобетонный блок 1,3 W/mk». Что это за материал? Это простой газосиликат или пенобетонный блок плотностью 400 или 500?

Автор: Алексей
Здравствуйте! Большое благодарю за подобный инструмент! У меня вопрос. Купил коробку по Киевом с вот этими стенами http://ТеплоРасчет. рф/?rid=20120809194726Hiykoom. Как можно поправить ситуацию?

Автор: Виктор
Хороший расчет практичный ! Может кто поможет : Мансардный тёплый этаж — профнастиловая кровля сделан по традиционной схеме: Внутри: 1. ГКЛ 2. Слой воздуха (по доскам крепящим пенополистирол) 3. пароизоляция 3. пенополистирол 15 см 4. ветрозащита 5. каркасная рама непрерывная 6. слой воздуха (вентилируемый контур) 5см 7. по каркасу профильный лист. теплорасчет демонстрирует, что будет мощный конденсат, значит весь вентилируемый контур просто замерзнет ? http://ТеплоРасчет.рф/?rid=20120815162038A

Автор: александра
благодарю большое за вашу программу. Я абсолютно не строитель, достался в наследие дом старой постройки из «дикого» камня, добываемого у нас в Донбассе в карьерах. Пробовала при помощи вашей программы выбрать различные варианты стенового утепления, не все, правда, выходит, но хоть что-нибудь. Я пенсионерка, нанимать профессионалов нет средств. Да и «профессионалы» не все грамотные, не факт, что сделают все по правилам. Еще раз большое Вам благодарю.

Автор: Андрей
Большое благодарю за Вашу работу! Очень практичный ресурс. Однако, не нашёл в перечне материалов пустотных блоков керамзитобетона(КББ) — материал достаточно популярный. У меня стены как раз из них. Как правильно выполнить расчёт в моём случае?

Точка росы. расчет, обозначение

Точка росы

Причина №1. Большая паропрозрачность слоев внутри конструкции разрешают создать высокое давление водянных паров в прохладных и холодных слоях конструкции, что, как я уже писал, приводит к очень высокой конденсации.

Решение проблемы точки росы

Прибавьте слабо проницаемых слоев изнутри (пароизолцию) и/или прибавьте вент просвет с наружной стороны. Данная мера даст возможность сдержать поток паров воды сквозь стены. Однако не стоит перестараться т.к закрытые пары изнутри комнаты будут копиться и это может привести к ухудшении качества воздуха изнутри помещений.

Если эксплуатационного условия строения особенно жёсткие (-20 и ниже), то необходимо посмотреть на возможность принудительного поступления в пространство помещения подогретого воздуха при помощи теплообменных аппаратов или нагревателей. Это даст возможность задействовать герметичные пароизоляционные материалы без риска повредить климат в доме.

Как делается расчет потерь тепла?

Расчет потерь тепла определяется на основании температуры внутреннего воздуха, температуры поверхности внутри конструкции ограждения и температуры воздуха с улицы.

Температура изнутри стен меняется линейно. Наклонный угол графика зависит от значения термического сопротивления материала в самых разнообразных его слоях.

Среднее значение сопротивления передачи тепла изнутри строения принимаем Ri = 0,13 м2 К / Вт. ГОСТ 8.524-85 и DIN 4108

Термическое сопротивление других слоев Re отвечает температурному перепаду между внутренней плоскостью стены и воздухом с улицы. (Т плоскости стены — T за границами строения ) dTe.

После по следующей формуле:

Ri / dTi = Re / dTe

Re = Ri * dTe / dTi

Общее тепловое сопротивление R = Re + Ri

R = Ri (1 + dTe / dTi)

И, напоследок, значение потерь тепла

Температура в помещении: 20 ° C
на стену: 18 ° C
температура воздуха: -10 ° C

dТ = 2 ° C
DTE = 28 ° C
Ri = 0,13 м2 К / Вт

dТi = 2 ° C
dTe = 28 ° C
Ri = 0,13 м2 К / Вт
R = R (1 + dTe / dТi) = 1,95 м2 К / Вт

ТП = 0,5 Вт / м2 K

Помимо потерь тепла отображаются зоны потенциальной конденсации .

  • Черный график демонстрирует падение/увеличение температуры изнутри конструкции ограждения в градусах.
  • Синий график — температура точки росы. Если этот график граничит с графиком температуры, то эти зоны называются зонами потенциальной конденсации (помечены голубым). Если во всех точках графика температура точки росы меньше температуры материала, то конденсата/росы не будет.
  • Тепло расчет Тепло потерь Дома, Точка росы


    Навигация по записям

    Толщины утеплителя для фасада здания в ♕ РОЯЛ ФАСАД

    Расчет теплоэффективности фасада.

    Утепление фасада дома – ответственный шаг, который требует точного расчета материалов. Для максимально комфортной температуры в доме, а также во избежание появления в будущем конденсата, плесени или грибка специалист-изолировщик должен предварительно изучить все данные о доме, включая его месторасположение, материал несущих стен, вид конструкции и так далее.

    Для расчета толщины утеплителя, который будет использоваться при изготовлении термопанелей, мы тщательно анализируем все эти показатели и только потом рекомендуем нужную толщину теплоизолирующего материала.

     

    С 2017 года набрал силу новый нормативный документ  «Теплова ізоляція будівель ДБН 2.6-31:2016». Детально по ссылке https://drive.google.com/file/d/1yXjLsCaPg7pVjgmezgllG-nhYoVszHd9/view?usp=sharing

    Исходя из нововведений,  территория Украины находится теперь в двуд климатических зонах, каждая из которых имеет погодные условия, характерные только для нее, а именно минимальная и максимальная температура, разная влажность. Чтобы самостоятельно и правильно рассчитать толщину утеплителя и несущих стен необходимо учитывать эти значения.

    Климатические зоны Украины

    Предлагаем рассмотреть пример, который поможет Вам правильно выбрать толщь утеплительного материала.Чтобы не допустить возможное промерзание стен, нужно изначально правильно рассчитать и выбрать толщину утеплителя.

    Если грамотно подойти к этому вопросу, так называемая «точку росы» выводится внутрь не несущих стен, а утеплителя, что в следствии поможет нам избежать избыточного количества влаги и формацию конденсата внутри дома.

     

    Во избежание тепловых потерь рассчитываем толщину несущих стен. Однако если переусердствовать в выборе толщи утеплителя, это повлечет за собой лишние затраты со стороны финансов без увеличения энергоэффективных качеств. Помните, если правильно рассчитать теплоизоляционный слой, дома будет сохраняться оптимальный тепловой баланс: летом – прохлада, а зимой – тепло! 

    Необходимая толщина теплоизоляционного слоя зависит от коэффициента тепло сопротивления (R), является константой и отображает свойства утеплителей, выражает величину плотности материалов деленное на тепло проводимость.  R определяется как соотношение в разности температуры с краев утеплителей к величинам тепло потока, что исходят из него.

     

    Чем выше величина R, тем выше свойство теплоизоляции материала.  

     

    R рассчитываем по формуле:

     

    R = (толщина стен в метрах) / (коэффициент теплоизоляции в материале)

     

    Ниже наводим Таблицу рекомендованных значений показателя тепло сопротивления R для разных климатических зон в Украине согласно новым нормам А.2.6-31:2016.

     Чтобы изучить более подробно, переходите по ссылке на нормы http://dbn.at.ua/dbn/DBN_V.2.6-31-2016_Teplova_izolyatsiya_budively.pdf

     Пример.

    Рассчитать, правильно ли утеплен дом в Киевской области. Температурная зона 1, минимально допустимое значение коэффициента сопротивления наружных стен –

    3,3. Стена построена из газобетона, ее густота — 600 кг/ м3, толщина 30 см, утеплена пенополистиролом толщиной 10 см ПСБС-25 по ГОСТ.

    В Таблице теплопроводности строительных материалов его показатель (R) равен 0.26 Вт/(м*K)

    И пенополистирол  толщиной 10 см плотностью ПСБС25 ГосТ  15,5 кг/ м3  0,039  Вт/(м*K) .

    Проводим вычисления показатель тепло сопротивления R для слоя пенопласта и газобетонной стены, прибавляем два полученных значения и сравниваем полученное с Таблицей 3 «Минимального допустимого значения сопротивления ограждающей конструкции жилых и общественных сооружений».

    Имеем стену из газоблока толщью 0,3 м, которую делим на коэффициент тепло проводимость газобетона. В результате получаем R = 2,56 (м2•°С)/Вт.

     

    В следующем действии рассчитываем R для пенопласта, толщь которого 0,1 м и делим на коэффициент теплопроводности пенопласта, что равен 0,039 Вт/(м*K). Наш результат – R = 2,56 (м2•°С)/Вт.

    Далее нужно сложить полученные величины R для пенопласта и газобетона, как итог имеем значение – R = 3,71(м2•°С)/Вт, можем сравнить его с требуемым верхней таблице. Для дома в Киевской области оно равно 3,3 согласно ДБМ А.2.6-31:2016.

    Сравнивая видим, что расчет верный!

     

    Толщь теплоизоляции для фасада дома должна быль не менее 10 см. В особых случаях ее можно сделать до 15 см, но нужно учитывать данные теплопроводности материала для утеплителя и наружной стены. Не стоит забывать, что R может меняться, это зависит от ТУ производителей, от особенностей используемых материалов.

    Чтобы самостоятельно рассчитать энергоэффективность здания, мы рекомендуем сначала разобраться и лучше понять процессы теплообмена в стеновом пироге, и подробно ознакомиться с понятим «точки росы» в строительной сфере.

    Точка росы – это то место, в котором пар встречает определенную температуру воздуха, превращаясь при этом в воду.

    Чтобы рассчитать теплосопротивление утепляющего материала, Вам необходимо воспользоваться таблицей теплопроводности разных утеплительных фасадных материалов. Данную точку можно найти по всему слою готового фасадного пирога, и она зависит всего от двух показателей: влажность и температура. Температура конденсата (точка росы) на теплоизоляционном слое влияет на то, будет ли стена мокрой или сухой внутри. 

    Например, если температура внутри помещения +20, а влажность – 60%, при температуре на поверхности +12 выпадет конденсат. 

    Чем ниже уровень влажности внутри помещения, тем ниже будет показатель точки росы температуры в комнате. 

    Например, в помещении температура составляет +20 градусов, а влажность – 40 % на поверхности при температуре ниже 6 градусов может выпасть конденсат. Таким образом, с повышением уровня влажности внутри комнаты  показатель точки росы повысится и будет стремиться к температуре нагретого воздуха внутри помещения.  Например, с температурой внутри помещения +20, с влажностью 80% по всей поверхности при температуре ниже 16 градусов выпадет конденсат.  Если относительная влажность составляет 100%, точка росы совпадет с температурой внутри помещения. 

    Например, температура внутри помещения составляет +20, а влажность 100%, тогда по всей поверхности с температурой ниже 20 градусов выпадет конденсат.   

    Примеры, утепление фасада дома экструдированным пенополистиролом и пенопластом в Америке.

    Местонахождение точки росы зависит от нескольких факторов: 

    • толщин и плотность утепляющих материалов всех слоёв фасада,

    • температура воздуха в помещении,

    • температура воздуха на улице,

    • влажность внутри помещения,

    • влажность на улице.

    Основными в данном случает являются два показателя: точка росы и ее местонахождение в фасадном пироге. 

    Для начала следует разобраться с всевозможными местонахождениями точки росы в стеновом пироге: 

    • в стене без утеплителя 

    • в стене с наружным утеплителем

    • в стене с внутренним утеплением 

    В каждом варианте, рассмотрим результат такого местонахождения показателя точки росы.

    Местонахождение точки росы в стене без использования утеплителя:

    При положении точки росы возможны такие варианты стены без утепления:

    1. Местонахождение точки росы между срединой и внешней поверхностью стен.

    В этом случае стена остается сухой!

    2. Местонахождение точки росы между срединой и поверхностью стены внутри помещения.  

    В данном случае стена сухая, хотя может намокнуть, если быстро снизится температура воздуха вне помещения. Точка росы может сдвинуться к  поверхности стены внутри помещения. 

    3. Местонахождение точки росы внутри помещения на поверхности. 

    В случае отсутствия утеплителя: 

    Стена будет мокрой практически всю зиму. 

     

    В случае утепления стены снаружи могут быть такие варианты: 

    1)Использование утепляющего материала с нужной толщиной в соответствии с теплотехническим расчетом с точкой росы внутри утеплителя.  

    Когда точка росы размещена в средине утеплителя и утеплена стена снаружи – это верный способ местонахождения точки росы.

    2)В случае, когда используют меньшую толщину утеплителя, чем рекомендуют специалисты, которые делали расчет, это может привести к трем видам последствий. 

                                                                                

                                                                                             

    Местонахождение  точки росы в утепленных стенах 

    Утепляя стену внутри, мы таким образом ограничиваем ее от комнатного тепла. В этом случае точка росы сдвигается внутрь комнаты и в результате снижается температура стены. Поэтому более реально размещение точки росы в трех вариантах: 

    1) Размещение точки росы в толщине стены.  

    Точка росы размещена внутри стены, утеплена стена внутри. При внутреннем утеплении, когда очка росы располагается внутри стены, она остается сухая, хотя, когда температура воздуха резко снижается, может намокнуть. В таком варианте возможен сдвиг точки росы к внутренним поверхностям стен.   

    Точка росы размещена на внутренней поверхности стены, за утеплителем.

    При этом стена утепляется изнутри. В этом варианте стена будет мокрая все время зимой. 

    2) Размещение точки росы в утеплителе внутри.                                                     

    Размещения точки росы в стене, утепленной снаружи (если утеплитель использован тоньше от расчетной толщины)

    Расположение точки в стене, утепленной изнутри

    В случае размещения точки росы в средине утеплителя, при внутреннем утеплении стены она также мокнет все время зимой вместе с утепляющим материалом. Уважаемые клиенты компании Роял Фасад! Наши специалисты перед оформлением заказа всегда проводят расчет теплоэффективности стен, поэтому Вы сможете насладиться прохладой в летнее время и сэкономить в отопительный период. Ваш дом всегда будет комфортным, теплым и сухим. 

    Пример1 САЙТ: теплорасчет.рф

    Размещение точки росы в толщине стены, стена утеплена внутри

    В таком варианте стена остается сухой, но может и замокать при быстром снижении температуры окружающей среды. Размещение точки росы может сдвинуться ко внутренней поверхности стены.

    Размещение точки росы на внутренней стене, за утеплителем.

    Размещение точки росы на внутренней стене, за утеплителем, стена утеплена внутри.

    В таком варианте утепления стена будет замокать всю.
    3. Размещение точки росы в утеплителе внутри. 

     

     

    И в этом случае стена мокнет всю зиму вместе с утеплителем.

    Уважаемые заказчики, наша компания проводит расчет по теплоэффективности стен и, если серьезно отнестись к утеплению дома, Вы сэкономите на отоплении и дом всегда будет летом прохладным, а зимой сухим и теплым.

    Пример1 

    САЙТ: теплорасчет.рф

    Программа для теплорасчета Теремок

    Подробно описывает самостоятельный теплорасчет по утеплению фасада с помощью калькулятора.

    Пример2 

     САЙТ: теплорасчет.рф

     Данное видео подробно описывает самостоятельный теплорасчет см. ссылку

    Как можно или не можно утеплять стену внутри.

    На данном сайте Вы сможете осуществить теплорасчет самостоятельно с помощью калькулятора. 

    Пример2 

    САЙТ: теплорасчет.рф

    На видео также подробно описан теплорасчет, который Вы можете осуществить самостоятельно. 

    Правила утепления стены изнутри

    Понятие можно или не можно зависит от последствий появления конденсата в стене или снаружи. При правильном утеплении стены она должна оставаться сухой и только при резком похолодании может подмокнуть, такой вариант возможен. Но при стабильно мокрой стене изнутри в зимний период при стабильных температурах утеплять стену нельзя. Как было изложено выше, все зависит от местонахождения точки росы. При грамотном расчете точки росы сразу можно выяснить, где она находится у конкретной стены и как правильно ее утеплять. 

    Рассмотрим сейчас, что может повлиять на утепление изнутри стены и каким образом, т. к. часто задаются вопросы, от чего зависит возможность или невозможность утепления в одинаковых домах и квартирах, построенных с использованием одинаковых строительных материалов одинаковых толщин.

    Еще раз рассмотрим возможные варианты внутреннего утепления:

    • выпадения конденсата (точка росы) 

    • размещение точки росы в стене вначале и после утепления.

    Выпадения конденсата напрямую зависит от процента влажности в помещении и температуры помещения. 

    В свою очередь влажность в помещении зависит от:

    • Условий проживания (временно или постоянно)

    • Вентиляции (вытяжки и притока воздуха).

    В свою очередь температура помещения зависит:

    • Качественного отопления

    • Уровня изоляции других конструкций помещения кроме стен (кровли окон, пола…)

    Размещение точки росы зависит от:

    • Использованного материала и толщины всего стенового пирога

    • Температуры воздуха внутри помещения.

    • Температуры воздуха окружающей среды. 

    • Влажности воздуха в процентном соотношении в помещении. 

    • Влажности воздуха снаружи.

    Собрав ВСЕ вышеперечисленные факты, которые влияют на точку росы и ее размещение, мы имеем перечень факторов, которые влияют, 

    на решение «можно или не можно» в данной ситуации утеплить стену изнутри. 

    Вот что мы имеем по списку:

    • режим проживания (временно или постоянно)

    • вентилирование (приток и вытяжка воздуха)

    • качественное отопление (достаточно ли прогрет воздух и стены)

    • уровень теплоизоляции всех конструкций 

    • толщины и материалы всех слоев стены

    • температура в помещении

    • влажность в помещении

    • температура снаружи помещения

    • влажность снаружи помещения

    • климатическая зона

    • что за стеной в помещении, улица или др. помещение.

    Из такого списка можно понять, что даже при одинаковых параметрах всех стен и конструкций одинаковых ситуаций по теплоизоляции стены быть не может. 

    Теперь рассмотрим, как приблизительно без конкретной ситуации возможно внутреннее утепление стены: 

    • помещение, где постоянно проживают,

    • существующая вентиляция согласно норме,

    • отопление работает правильно согласно норме,

    • все остальные конструкции помещения утеплены по всем нормам, 

    • стена, которую предстоит утеплять,- толстая и теплая. 

    • при расчете для стены дополнительного утепления, изоляция не должна превышать больше 50мм (пенопласт, вата, ПСБ). При сопротивлении теплопередаче стена «не доходит» до нормы 30ти и меньше процентов.

    Простыми словами, ситуация упрощается и можно обойтись и без теплорасчета, если помещение у Вас находится в теплом регионе с нормальной влажностью с хорошим отоплением и вентиляцией с толстыми стенами которые не сыреют, поэтому теоретически утепление изнутри возможно.

    Но мы все же рекомендуем к вопросу утепления отнестись более серьезно и все рассчитать для конкретной сложившейся ситуации. 

    Все вышеизложенное говорит о том, что вариантов по внутреннему утеплению стен совсем немного и это действительно так. Из опыта можно сказать, что из 100 клиентов с обращением по внутреннему утеплению стен, только у 10 есть возможность это сделать без ущерба и последствий.

    Во всех остальных случаях возможно только наружное утепление! 

    Наши специалисты окажут все необходимые услуги по консультации расчетам и теплоизоляции стен.

    Возможные последствия неправильного утепления стен внутри помещения.

    Как правило, вначале с понижением температуры стены начинают мокреть. Далее все зависит от вида утеплителя — это мокрый или сухой утеплитель. Вата мокреет, а пенополистирол нет, но это не меняет последствий: в итоге при сочетании влаги, тепла и углекислого газа (который мы выдыхаем) появляется отличная среда для обитания грибка и плесени, которого легче избежать, чем в последствии выводить!

    Сравнительная характеристика пенополистирола вспененного и пенополиуретана

    Пенополистирол (ППС) это материал для теплоизоляции, который получают при многократном вспенивании и спекании  гранул полистирола в процессе нагревания с помощью газообразователя. Каждая гранула наполнена специальным веществом пентан (безвредный конденсат природного газа), затем идет подогрев паром, после чего полистирольные шарики увеличиваются в размере в 20 — 50 раз (как воздушные шары, надутые гелием). Они становятся упругими и склеиваются между собой под воздействием пара. В результате получается однородный материал для изоляции, который устойчив к сжатию. 

    Главной составляющей пенополистироля является воздух (98%). Никаких других газов в изготовлении этих материалов не используют.

    Следует отметить, что при его производстве не используют химических веществ, шарики полистирола удерживает исключительно механическая сила. Ученые по праву называют этот материал чистым полимером. 

    Пенополистирол относят к термопластичным газонаполненным пластмассам. Вспененным полистирол состоит из гранул с размером от 5 до 15мм. Пенополистирольная плита имеет плотность 25 и 35 кг/м³, с коэффициентом теплопроводности λ=0,039Вт/мК.

    Потребление вспененного пенополистерола (пенопласта) в Европе в 10 раз больше других утеплителей!

    Экструзионный пенополистирол (XPS, ЭПС) — сокращенное название — ЭПС или XPS. Другими словами — экструдированныйпенополистирол. Впервые этот материал для теплоизоляции был создан в Соединенных Штатах Америки (1941 год). Данный вид утеплителя применяется достаточно широко: утепление фундамента и цоколя, кирпичной или любой другой кладки, штукатуренного фасада здания, любых видов кровли, пола (как обычного, так и теплого). Его применяют и в дорожном строительстве (автомобильном и железнодорожном)во избежание промерзания земли и вспучивания грунта. Пенополистиролэкструдированный является отличным теплоизоляционным материалом для спортивной площадки, ледовой арены или холодильной установки.

    Экструзионныйпенополистирол отличается от пенопласта процедурой гранулирования. При создании обычного пенопласта микрогранулы «пропариваются» с использованием водяного пара. Увеличиваются они за счет повышения температуры и полностью заполняют форму пеной. При изготовлении экструзионногопенополистирола используется способ экструзии. Изготовитель смешивает полистирольные гранулы с использованием высоких температур и повышенном давлении, включая в процесс производства вспенивающий агент, после чего все выдавливается из экструдера.

    Утепление фасада дома экструдированным пенополистиролом в Америке.

    Двадцать бесплатных строительных калькуляторов

     Эта статья — подборка бесплатных сервисов расчета строительных материалов. Двадцать  бесплатных строительные калькуляторов, которые нужны и профессиональным проектировщикам, и индивидуальным строителям. (Список обновляется.)

    Даже если вы задумаете большой ремонт на даче, вам понадобится просчитать затраты. В нашем списке вы можете найти тот строительный калькулятор, который вам нужен.

    Семь раз отмерь, один раз отрежь!(Русская пословица)

    Используйте строительный калькулятор!

    Калькулятор для расчета деревянных балок.

    http://vladirom.narod.ru/stoves/beamcalc.html

    Теплотехнический калькулятор.

    http://www.tn.ru/data/calc-t/index.html

    Калькулятор теплопотерь стен дома.

    http://www.sumeu.ru/kalk/teplo.php

    Калькулятор для расчета тепла.

    http://теплорасчет.рф/?rid=20120403091336sztKxov

    Калькулятор для расчета мощности электрического котла.

    http://www.teplodvor.ru/raschet_kotla.php

    Калькуляторы бетона. Расчет расхода цементных растворов и бетона.

    http://housedb.ru/onlayn-kalkulyator-raschet-tsementnogo-rastvora-i-betona/

    http://www.sumeu.ru/kalk/beton.php

    Калькуляторы фундаментов.

    http://www.sumeu.ru/kalk/index.php

    http://tvoystroy.ru/calculator_fundament

    Калькулятор для расчета расхода кирпича.

    http://solar-servis.ru/kalkulyator

    Калькулятор объема пиломатериалов.

    http://www.sumeu.ru/kalk/drev.php

    Калькуляторы для лестниц. Расчет стоимости и материалов.

    http://www.stairshop.ru/stair.html

    http://www.drev-massiv.ru/calc.php

    http://lesenka.com/ru/projecting.aspx#

    http://www.websr.ru/rl/index.php?page=2

    http://st.websr.ru/calc.php

    Калькуляторы для расчета ламината.

    http://housedb.ru/onlayn-kalkulyator-raschet-nuzhnogo-kolichestva-laminata/

    http://design-for-you.ru/calcs.php

    Калькулятор для подвесного потолка.

    http://design-for-you.ru/calcs.php

    Калькулятор для расхода краски (стены, потолок)

    http://housedb.ru/onlayn-kalkulyator-raschet-nuzhnogo-kolichestva-kraski/

    http://design-for-you.ru/calcs.php

    Калькулятор для расчёта количества обоев.

    http://housedb.ru/onlayn-kalkulyator-raschet-nuzhnogo-kolichestva-oboev/

    http://design-for-you.ru/calcs.php

    Калькулятор теплоотдачи печи.

    http://vladirom.narod.ru/stoves/stovecalc.html

    Калькулятор теплопотерь помещения.

    http://vladirom.narod.ru/stoves/heatcalc.html

    Калькулятор расчёта расхода штукатурки.

    http://design-for-you.ru/calcs.php

    Калькуляторы расчета освещения помещений.

    http://design-for-you.ru/calculators/svet

    http://design-for-you.ru/calcs.php

    Калькулятор металла.

    http://mdmetalla.ru/metallokalkulyator

    Калькуляторы для разных строительных работ и материалов. (Лестницы, кровля, бетон, заборы, пол, и др.)

    http://www.zhitov.ru/

    Калькулятор и конвертер мер длины, площади, массы, объема и других.

    http://kalkulator.pro/

    Поделитесь ссылкой в социальных сетях
    Комментарии

    Читайте также

    Теплоизоляционные штукатурные смеси на основе перлита

    Строительный калькулятор


    Расчет и определение точки росы

    Вводите материалы начиная с внутренней части последовательно к наружной!
    Внутри
    Снаружи

    Точка росы — это температура, при которой выпадает конденсат (влага из воздуха превращается в воду). Этот параметр зависит от давления воздуха. По возможности избегайте образования точки росы. А, если это невозможно, то постарайтесь сдвинуть ее к внешним слоям и обеспечте необходимую вентиляцию этих увлажняемых слоев.

    Причины: Высокая паропрозрачность внутренних слоев конструкции позволяют создать большое давление водянных паров в прохладных и холодных слоях конструкции, что приведет к повышенной конденсации.


    Решение проблемы точки росы

    Добавьте слабо проницаемых слоев внутри (пароизолцию) и/или добавьте вент зазор снаружи. Эта мера позволит сдержать поток водяных паров сквозь стены. Но не стоит переусердствовать т.к запертые пары внутри комнаты будут копиться и это приведет к ухудшении качества воздуха внутри помещений.

    Если условия эксплуатации здания особенно суровые (-20 и ниже), то стоит рассмотреть возможность принудительного поступления в помещение подогретого воздуха с помощью теплообменников или нагревателей. Это позволит использовать герметичные пароизоляционные материалы без риска испортить микроклимат в доме.

    Как выполняется расчет теплопотерь?

    Расчет теплопотерь определяется на основании температуры внутреннего воздуха, температуры внутренней поверхности ограждающей конструкции и температуры уличного воздуха.

    Температура внутри стен меняется линейно. Угол наклона графика зависит от значения термического сопротивления материала в разных его слоях.

    Усредненное значение сопротивления теплопередачи внутри здания принимаем Ri = 0,13 м2 К / Вт. ГОСТ 8.524-85 и DIN 4108

    Термическое сопротивление остальных слоев Re соответствует перепаду температур между внутренней поверхностью стены и уличным воздухом. (Т поверхности стены — T за пределами здания ) dTe.

    Затем по следующей формуле:

    Ri / dTi = Re / dTe

    находим Re:

    Re = Ri * dTe / dTi

    Общее тепловое сопротивление R = Re + Ri

    R = Ri (1 + dTe / dTi)

    И, наконец, значение теплопотерь

    ТП = 1 / R

    Пример:

    Температура в помещении: 20 ° C
    на поверхность стены: 18 ° C
    температура окружающей среды: -10 ° C

    dТ = 2 ° C
    DTE = 28 ° C
    Ri = 0,13 м2 К / Вт

    dТi = 2 ° C
    dTe = 28 ° C
    Ri = 0,13 м2 К / Вт
    R = R (1 + dTe / dТi) = 1,95 м2 К / Вт

    ТП = 0,5 Вт / м2 K
    Кроме теплопотерь отображаются зоны возможной конденсации
  • Черный график показывает падение/увеличение температуры внутри ограждающей конструкции в градусах.

  • Синий график — температура точки росы. Если этот график соприкасается с графиком температуры, то эти зоны называются зонами возможной конденсации (помечены голубым). Если во всех точках графика температура точки росы ниже температуры материала, то конденсата/росы не будет.
  • Помощь по расчетам

    Цель создания этой программы — визуализация расчета тепло-эффективности ограждающих конструкций.

    1. Итак, вначале работы вы должны определить среднюю и минимальную температуру и относительную влажность зимнего периода региона, в котором планируется возводить здание.

    2. Далее следует выбрать слой за слоем составляющие ограждающей конструкции начиная изнутри здания, кончая внешней отделкой фасада/кровли. В нашей базе данных существуют самые основные и распространенные материалы, применяемые в строительстве, но Вы можете также редактировать этот список.

    3. После окончания ввода данных их следует проверить, чтобы не было слоев с нулевой или отрицательной толщиной и нажать кнопку «Расчет».

    4. Результаты: черный график отображает понижение (повышение) температуры втутри ограждающей конструкции. Синий — температура точки росы. Если температура в каком либо слое опустится до точки росы — пар конденсируется, что отрицательно влияет на тепло-эффективность и долговечность конструкции. Зоны выпадения конденсата, если они есть, также обозначены голубым цветом.

    5. Идеальный вариант — это когда температура внутреннего слоя равна или стремится к температуре воздуха внутри, а температура финишного слоя на фасаде здания равна или почти равна температуре уличного воздуха. График понижения (повышения) температуры должен иметь гладкую форму т.е температура должна понижаться без скачков. Зон образования конденсата быть не должно ни при средней температуры зимы и нежелательны при пико-низких температурах.

    6. Чтобы добиться эффективности близкой к идеальной, располагайте слои с увеличивающейся паропрозрачностью от внутненнего слоя к наружному.

    7. Значение теплоэфективности выражено в ватах на квадратный метр внутренней площади на один градус разницы внутренней и внешней температур. Это значит, что умножив данное значение на внутреннюю площадь ограждающей конструкции и умножив на разницу температур внутренней и внешней в градусах Цельсия, получим мощность отопительного прибора, которую необходимо обеспечить для поддержания введенной внутренней температуры.

    8. Посчитайте потери тепла через стены, потолк, пол и чердак с помощью этой программы бесплатно. Не забудьте добавить теплопотери сквозь окна и двери (данные возьмите у производителя) а также венитиляцию. Используйте средние температуры в вашем регионе помесячно за каждый месяц отопительного сезона.

    Используемые параметры

    Плотность (R, кг/м3) — это масса данного вещества в единице объема. Плотность тела = отношение его массы к объему. Измеряется в килограммах на метр кубический (кг/м3)

    Теплопроводность (L, Вт/m/K) — это способность вещества пропускать через свой объём тепловую энергию Следует учитывать, что у старых материалов это значение выше, чем у нового продукта. Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал толщиной 1 м и площадью 1 кв.м за единицу времени (секунду) при разности температур на двух противоположных поверхностях в 1 К (Вт/m/K)

    Паропрозрачность (µ, min/max). Под паропрозрачностью здесь следует понимать коэффициент сопротивления диффузии. В качестве эталонной величины принимается коэффициент сопротивления диффузии водяного пара = 1, характерный для слоя воздуха высотой 1 м. Коэффициент сопротивления диффузии µ показывает, во сколько раз больше сопротивление диффузии строительного материала по сравнению с таким же по толщине слоем воздуха. В расчете используется интервал минимального и максимального сопротивления (min/max).

    Теплоёмкость (C, Дж/кг/К) — это количество теплоты, которую необходимо подвести к единице массы тела 1 кг, чтобы нагреть его на 1 K, измеряется в джоулях на килограмм на кельвин (Дж/кг/К).

    По материалам ТеплоРасчет.рф и U-Wert

    Точка росы в стене из газобетона, пример расчета

    Точка росы в стене — температурная зона, в которой водяной пар конденсируется и превращается в воду.

    Точка росы сильно зависит от влажности воздуха, и чем влажность больше, тем вероятность конденсата выше.

    Также на точку росы влияет разность температур внутри и снаружи помещения.

    В данном обзоре мы проводим тестирование по нахождению точки росы в стене из газобетона D500. Будут рассмотрены разные варианты стен из газобетона, к примеру толщиной в 200мм и 400мм, а также с использованием утеплителей.

    Что такое точка росы в стене

    Расчеты проводились в программе теплорасчет.рф 

    Точку росы в газобетоне мы находили при следующих условиях:
    Температура в помещении Температура на улице Влажность в помещении Влажность на улице
    20 -20 40% 80%

    Плотность газобетона 500 кг/м³ (D500).

    Черная линия на графике показывает температуры внутри стены из газобетона. Начиная с 20 градусов Цельсия и заканчивая -20 град.

    Синяя линия показывает температуру точки росы. Если линия температуры соприкасается с линией точки росы, то образуется зона конденсации.

    Другими словами, если температура точки росы всегда ниже температуры в газобетоне, то конденсат образовываться не будет.

    Газобетон марки D500 толщиной 200 мм  Газобетон марки D500 толщиной 400 мм
       

    Как видно на графике, точка росы в обеих случаях находится внутри газобетона, ближе к наружной части, а количество конденсата почти равное.

    Газобетон и минвата (снаружи)

    А теперь рассмотрим, что происходит в газобетоне, если его утеплить минватой снаружи.

    Газобетон D500 200мм + 50мм минваты  Газобетон D500 200мм + 100мм минваты 
       

    Вариант утепления газобетона минеральной ватой (100мм) исключает конденсат. Причем конденсата не будет даже в том случае, если температура в доме будет +25, а на улице -40. Более того, 100мм минеральной ваты обеспечивают очень хорошую теплоизоляцию.

    Газобетон и минвата (внутри)

    50мм минваты + газобетон D500 200мм 100мм минваты + газобетон D500 200мм 

    Как видно на графике, внутреннее утепление минеральной ватой приводит к существенному образованию конденсата по всей толще газобетонной стены.

    Заметим интересную особенность — чем толще внутренний слой минваты, тем больше конденсата образовывается в газобетонной стене, что крайне нежелательно.

    Важно! Влажный газобетон хуже удерживает тепло и быстрее разрушается.

    Вывод

    Точку росы в газобетонной стене лучше держать ближе к наружной части. А еще лучше, если точка росы будет в утеплителе, будь то минеральная вата или пенопласт. Отметим, что пенопласт не боится намокания, и не теряет своих теплоизоляционных качеств, а минеральная вата при намокании сильно теряет свои свойства как утеплитель. 

    Сейчас очень часто фасад утепляют минеральной ватой и закрывают ее облицовочным кирпичом, оставляя вентиляционный зазор, который просушивает минеральную вату. Так же популярным способом является оштукатуренный пенопласт, который значительно дешевле.

    Как рассчитать количество выделяемого тепла

    Обновлено 12 февраля 2020 г.

    Клэр Гиллеспи

    Проверено: Lana Bandoim, B.S.

    Некоторые химические реакции выделяют энергию за счет тепла. Другими словами, они передают тепло своему окружению. Они известны как экзотермические реакции : «Экзо» относится к внешним или внешним, а «термический» означает тепло.

    Некоторые примеры экзотермических реакций включают горение (горение), реакции окисления (ржавление) и реакции нейтрализации между кислотами и щелочами.Многие предметы повседневного обихода, такие как грелки для рук и самонагревающиеся банки для кофе и других горячих напитков, подвергаются экзотермическим реакциям.

    TL; DR (слишком долго; не читал)

    Для расчета количества тепла, выделяемого в химической реакции, используйте уравнение Q = mc ΔT , где Q — тепловая энергия перенесенная (в джоулях), м — масса нагреваемой жидкости (в килограммах), c — удельная теплоемкость жидкости (джоуль на килограмм градусов Цельсия), а ΔT — изменение температуры жидкости (градусы Цельсия).

    Разница между теплом и температурой

    Важно помнить, что температура и тепло — это не одно и то же. Температура — это мера того, насколько что-то горячее, измеряется в градусах Цельсия или Фаренгейта, а тепла — это мера тепловой энергии, содержащейся в объекте, измеряется в джоулях.

    Когда тепловая энергия передается объекту, его повышение температуры зависит от:

    • массы объекта
    • вещества, из которого сделан объект
    • количества энергии, приложенной к объекту

    Чем больше тепловой энергии переносится на объект, тем больше повышение его температуры.

    Удельная теплоемкость

    Удельная теплоемкость ( c ) вещества — это количество энергии, необходимое для изменения температуры 1 кг вещества на 1 единицу температуры. Различные вещества имеют разную удельную теплоемкость, например, вода имеет удельную теплоемкость 4 181 джоулей / кг градусов C, кислород имеет удельную теплоемкость 918 джоулей / кг градусов C, а свинец имеет удельную теплоемкость 128 джоулей / кг градусов C.

    Калькулятор тепловой энергии

    Для расчета энергии, необходимой для повышения температуры известной массы вещества, вы используете формулу удельной теплоемкости:

    Q — энергия, передаваемая в джоулях, м — масса веществ в кг, c — удельная теплоемкость в Дж / кг градусов C, а ΔT — изменение температуры в градусах C в формуле удельной теплоемкости.

    Калькулятор тепловыделения

    Представьте, что 100 г кислоты были смешаны со 100 г щелочи, в результате чего температура повысилась с 24 до 32 ° C.

    Уравнение реакции нейтрализации между кислотой и щелочью может быть сокращено до:

    H + + OH -> h3O

    Используемая формула: Q = mc ∆T

    Масса = м = 100 г + 100 г / 1000 г на кг = 0,2 г (одно значащее число)

    Удельная теплоемкость воды = c = 4,186 Дж / кг градусов C
    Изменение температуры = ΔT = 24 градуса C — 32 градуса C = -8 градусов C

    Q = (0.2 кг) (4,186 Дж / кг градусов C) (-8 градусов C)
    Q = -6,688 Дж, что означает, что выделяется 6,688 джоулей тепла.

    Как рассчитать время нагрева объекта

    Различные материалы нагреваются с разной скоростью, и расчет времени, необходимого для повышения температуры объекта на заданную величину, является обычной проблемой для студентов-физиков. Чтобы рассчитать его, вам нужно знать удельную теплоемкость объекта, массу объекта, изменение температуры, которое вы ищете, и скорость, с которой к нему подводится тепловая энергия.Посмотрите, как этот расчет выполняется для воды, и вы сможете понять процесс и то, как он рассчитывается в целом.

    TL; DR (слишком долго; не читал)

    Рассчитайте необходимое количество тепла ( Q ) по формуле:

    Q = mc T

    Где м означает массу объекта, c обозначает удельную теплоемкость и ∆ T обозначает изменение температуры. Время, необходимое ( t ) для нагрева объекта при подаче энергии на мощность P , определяется как:

    t = Q ÷ P

    1. Рассчитать изменение температуры в Цельсия или Кельвина

    2. Формула количества тепловой энергии, необходимой для определенного изменения температуры:

      Где м означает массу объекта, c — удельную теплоемкость материала, из которого он изготовлен. от и ∆ T — изменение температуры.Сначала рассчитайте изменение температуры по формуле:

      T = конечная температура начальная температура

      Если вы нагреваете что-то от 10 ° до 50 °, это дает:

      Обратите внимание, что while Цельсий и Кельвин — разные единицы измерения (и 0 ° C = 273 K), изменение на 1 ° C равно изменению на 1 K, поэтому в этой формуле они могут использоваться как взаимозаменяемые.

    3. Найдите удельную теплоемкость материала

    4. Каждый материал имеет уникальную удельную теплоемкость, которая говорит вам, сколько энергии требуется, чтобы нагреть его на 1 градус Кельвина (или 1 градус Цельсия) на определенное количество вещества или материала.Для определения теплоемкости вашего конкретного материала часто требуется обратиться к онлайн-таблицам (см. Ресурсы), но вот некоторые значения для c для обычных материалов, в джоулях на килограмм и на Кельвин (Дж / кг · К):

      Алкоголь (питьевой ) = 2,400

      Лед (при −10 ° C) = 2,050

      Выберите значение, соответствующее вашему веществу. В этих примерах основное внимание будет уделено воде ( c = 4186 Дж / кг K) и свинцу ( c = 128 Дж / кг K).

    5. Найдите массу и рассчитайте необходимое количество тепла

    6. Окончательная величина в уравнении составляет м для массы объекта. Короче говоря, для нагрева большего количества материала требуется больше энергии. Для примера представьте, что вы вычисляете количество тепла, необходимое для нагрева 1 килограмма (кг) воды и 10 кг свинца на 40 К. Формула гласит:

      Итак, для примера с водой:

      Q = 1 кг × 4186 Дж / кг K × 40 K

      Итак, требуется 167.44 килоджоулей энергии (то есть более 167000 джоулей) для нагрева 1 кг воды на 40 K или 40 ° C.

      Q = 10 кг × 128 Дж / кг K × 40 K

      Таким образом, для нагрева 10 кг свинца на 40 K или 40 ° C требуется 51,2 кДж (51 200 джоулей) энергии. Обратите внимание, что для нагрева в десять раз больше свинца на такое же количество требуется меньше энергии, потому что свинец легче нагреть, чем воду.

    7. Расчет затраченного времени

    8. Мощность измеряет количество энергии, отдаваемой в секунду, и это позволяет рассчитать время, необходимое для нагрева рассматриваемого объекта.Затраченное время ( t ) определяется по формуле:

      , где Q — тепловая энергия, рассчитанная на предыдущем шаге, а P — мощность в ваттах (Вт, т. Е. Джоули в секунду). Представьте, что воду из этого примера нагревает чайник мощностью 2 кВт (2000 Вт). Результат из предыдущего раздела дает:

      Таким образом, для нагрева 1 кг воды на 40 К с помощью чайника 2 кВт требуется менее 84 секунд. Если бы на 10-килограммовый блок свинца с такой же скоростью было подано питание, на нагрев потребовалось бы:

      Таким образом, потребуется 25.6 секунд, чтобы нагреть провод, если тепло подается с той же скоростью. Опять же, это отражает тот факт, что свинец нагревается легче, чем вода.

    Расчет удельной теплоемкости | Химия для неосновных

    • Выполните расчет удельной теплоемкости.

    Обладает ли вода высокой способностью поглощать тепло?

    Да. В автомобильном радиаторе он служит для охлаждения двигателя, по сравнению с которым он работал бы в противном случае.(На картинке выше радиатор — это черный объект слева.) Когда вода циркулирует через двигатель, она поглощает тепло от блока цилиндров. Когда вода проходит через радиатор, охлаждающий вентилятор и воздействие внешней среды позволяют воде немного остыть, прежде чем она снова пройдет через двигатель.

    Расчет удельной теплоемкости

    Удельную теплоемкость вещества можно использовать для расчета изменения температуры, которому подвергнется данное вещество при нагревании или охлаждении.Уравнение, связывающее тепло с удельной теплотой, массой и изменением температуры, показано ниже.

    Тепло, которое поглощается или выделяется, измеряется в джоулях. Масса измеряется в граммах. Изменение температуры определяется выражением, где — конечная температура, а — начальная температура.

    Пример задачи: расчет удельной теплоемкости

    Кусок металлического кадмия массой 15,0 г поглощает 134 Дж тепла при повышении температуры с 24,0 ° C до 62,7 ° C. Рассчитайте удельную теплоемкость кадмия.

    Шаг 1: Составьте список известных количеств и спланируйте проблему .

    Известный

    • тепла = = 134 Дж
    • масса = = 15,0 г

    Неизвестно

    Уравнение теплоемкости может быть преобразовано в решение для удельной теплоемкости.

    Шаг 2: Решите .

    Шаг 3. Подумайте о своем результате .

    Удельная теплоемкость кадмия, металла, довольно близка к теплоемкости других металлов.Результат состоит из трех значащих цифр.

    Поскольку известны самые конкретные значения теплоемкости, их можно использовать для определения конечной температуры, достигаемой веществом при его нагревании или охлаждении. Предположим, что образец воды весом 60,0 г при 23,52 ° C был охлажден за счет отвода 813 Дж тепла. Изменение температуры можно рассчитать с помощью уравнения теплоемкости.

    Поскольку вода охлаждалась, температура снижается. Конечная температура:

    Сводка
    • Проиллюстрированы расчеты удельной теплоемкости.
    Практика

    Решите задачи по ссылке ниже:

    http://www.sciencebugz.com/chemistry/chprbspheat.htm

    Обзор

    Вопросы

    1. У разных материалов разная теплоёмкость?
    2. Как масса влияет на поглощаемое тепло?
    3. Если мы знаем удельную теплоемкость материала, можем ли мы определить, сколько тепла выделяется при заданных обстоятельствах?
    • удельная теплоемкость: Количество энергии, необходимое для повышения температуры 1 грамма вещества на 1 ° C.

    3.12: Расчет энергии и теплоемкости

    Цели обучения

    • Связать теплопередачу с изменением температуры.

    Тепло — знакомое проявление передачи энергии. Когда мы прикасаемся к горячему объекту, энергия перетекает от горячего объекта к нашим пальцам, и мы воспринимаем эту поступающую энергию как «горячий» объект. И наоборот, когда мы держим кубик льда в ладонях, энергия перетекает из руки в кубик льда, и мы воспринимаем эту потерю энергии как «холод».«В обоих случаях температура объекта отличается от температуры нашей руки, поэтому мы можем заключить, что разница температур является основной причиной теплопередачи.

    Удельную теплоемкость вещества можно использовать для расчета изменения температуры, которому подвергнется данное вещество при нагревании или охлаждении. Уравнение, связывающее тепло \ (\ left (q \ right) \) с удельной теплоемкостью \ (\ left (c_p \ right) \), массой \ (\ left (m \ right) \) и изменением температуры \ (\ left (\ Delta T \ right) \) показан ниже.

    \ [q = c_p \ times m \ times \ Delta T \]

    Тепло, которое поглощается или выделяется, измеряется в джоулях. Масса измеряется в граммах.\text{o} \text{C} \right)\)»> 0.233

    Направление теплового потока не показано в heat = mc Δ T . Если энергия поступает в объект, общая энергия объекта увеличивается, и значения тепла Δ T положительны. Если энергия исходит из объекта, общая энергия объекта уменьшается, а значения тепла и Δ T являются отрицательными.

    Пример \ (\ PageIndex {1} \)

    A \ (15.0 \: \ text {g} \) кусок металлического кадмия поглощает \ (134 \: \ text {J} \) тепла, поднимаясь из \ (24.\ text {o} \ text {C} \]

    Пример \ (\ PageIndex {2} \)

    Какое количество тепла передается при нагревании блока металлического железа весом 150,0 г с 25,0 ° C до 73,3 ° C? Какое направление теплового потока?

    Решение

    Мы можем использовать heat = mc Δ T , чтобы определить количество тепла, но сначала нам нужно определить Δ T . Поскольку конечная температура утюга составляет 73,3 ° C, а начальная температура составляет 25,0 ° C, Δ T составляет:

    Δ T = T конечный T начальный = 73.\ circ C) = 782 \: cal} \]

    Обратите внимание, как единицы измерения грамм и ° C отменяются алгебраически, оставляя только единицу калорий, которая является единицей тепла. Поскольку температура железа увеличивается, энергия (в виде тепла) должна течь в металл .

    Упражнение \ (\ PageIndex {1} \)

    Какое количество тепла передается при охлаждении блока металлического алюминия массой 295,5 г с 128,0 ° C до 22,5 ° C? Какое направление теплового потока?

    Ответ
    Тепло уходит из алюминиевого блока.

    Пример \ (\ PageIndex {2} \)

    Образец красновато-коричневого металла массой 10,3 г выделил 71,7 кал тепла при понижении его температуры с 97,5 ° C до 22,0 ° C. Какова удельная теплоемкость металла? Можете ли вы определить металл по данным в таблице \ (\ PageIndex {1} \)?

    Решение

    Вопрос дает нам тепло, конечную и начальную температуры и массу образца. Значение Δ T составляет:

    Δ T = T конечный T начальный = 22.\ circ C)}} \)

    c = 0,0923 кал / г • ° C

    Это значение удельной теплоемкости очень близко к значению, приведенному для меди в таблице 7.3.

    Упражнение \ (\ PageIndex {2} \)

    10,7 г кристалла хлорида натрия (NaCl) имеет начальную температуру 37,0 ° C. Какова конечная температура кристалла, если на него было подано 147 кал тепла?

    Ответ

    Сводка

    Проиллюстрированы расчеты теплоемкости.

    Материалы и авторство

    Эта страница была создана на основе контента следующими участниками и отредактирована (тематически или всесторонне) командой разработчиков LibreTexts в соответствии со стилем, представлением и качеством платформы:

    Как рассчитать время нагрева или охлаждения | Блог

    Во многих случаях может быть полезно узнать, сколько времени потребуется для нагрева или охлаждения вашей системы до определенной температуры.Или вы можете рассчитать, сколько энергии требуется для нагрева или охлаждения данного объема жидкости за определенное время.

    К счастью, есть довольно простое уравнение, которое можно использовать, если вы знаете массу жидкости в ванне, ее удельную теплоемкость, разницу температур, а также мощность или время.

    Тем не менее, использование этого уравнения не совсем надежно, так как существуют различные факторы, которые могут нарушить расчет. В этом посте мы рассмотрим уравнение для расчета времени нагрева или охлаждения и причины, по которым вам следует искать систему с чуть большей мощностью, чем вы думаете, что вам нужно.

    Расчет времени нагрева или охлаждения

    Вы можете использовать то же основное уравнение для расчета времени нагрева или охлаждения, хотя для расчета времени охлаждения требуется немного больше работы. При нагревании подаваемая мощность постоянна, но при охлаждении мощность (или охлаждающая способность) изменяется в зависимости от температуры.

    Расчет времени нагрева

    Чтобы узнать, сколько времени потребуется для нагрева ванны до определенной температуры, можно использовать следующее уравнение:

    t = mcΔT / P

    Где:

    • т — время нагрева или охлаждения в секундах
    • м — масса жидкости в килограммах
    • c — удельная теплоемкость жидкости в джоулях на килограмм и на Кельвин
    • ΔT — разница температур в градусах Цельсия или Фаренгейта
    • P — мощность, при которой подается энергия, в ваттах или джоулях в секунду

    Аналогичным образом, чтобы рассчитать мощность, необходимую для нагрева или охлаждения ванны до определенной температуры за заданное время, вы можете использовать это уравнение:

    P = mcΔT / т

    Хотя этим уравнениям довольно просто следовать, может возникнуть некоторая путаница, когда дело доходит до того, какие единицы использовать.Вместо этого вы можете использовать онлайн-калькулятор.

    Этот красивый и простой калькулятор позволяет рассчитывать время, мощность или потребляемую энергию, но он годится только для расчетов с использованием воды. Если вам нужно рассчитать время нагрева для других жидкостей, этот калькулятор больше подходит, поскольку он позволяет вам ввести удельную теплоемкость вещества, которое вы используете. У него есть две опции, позволяющие рассчитать требуемую мощность или время.

    Калькулятор услуг технологического отопления.

    Расчет времени охлаждения

    Для расчета времени охлаждения можно использовать то же уравнение, что и выше. Вопрос в том, какое значение вы должны использовать для мощности. Холодопроизводительность (или мощность охлаждения) зависит от температуры. Холодопроизводительность снижается при более низких заданных температурах, потому что разница температур между охлаждающей жидкостью и хладагентом меньше. Теплопередача снижается, поэтому снижается охлаждающая способность.

    Например, вот характеристики холодопроизводительности для охлаждающих и нагреваемых циркуляционных ванн PolyScience 45 л.

    У вас есть несколько вариантов, в зависимости от того, насколько точно вы хотите, чтобы ваш расчет был:

    • Используйте консервативную оценку , предполагая более низкую мощность до следующей указанной температуры. Например, принимая указанные выше характеристики, вы можете предположить, что холодопроизводительность составляет 250 Вт для всех температур от -20 ° C до 0 ° C и 800 Вт для всех температур от 0 ° C до 20 ° C.
    • Возможно заниженная оценка, но с большей точностью путем измерения средней мощности между различными температурами.
    • Используйте быстрый и грязный (и, вероятно, менее точный) метод , учитывая только охлаждающую способность при средней температуре.
    • Выбирайте альтернативный быстрый метод , который использует средние значения холодопроизводительности в различных точках диапазона температур (точки должны включать верхний и нижний пределы диапазона температур, чтобы это было жизнеспособным).

    Что делать, если ваша минимальная температура ниже минимальной указанной температуры холодопроизводительности? Как правило, это не должно вызывать беспокойства, поскольку значения холодопроизводительности обычно указываются для температуры, равной или ниже минимальной температуры блока.

    Если вы пытаетесь охладить до более низкой температуры, она может быть слишком низкой, а это значит, что устройство не сможет обеспечить необходимую вам охлаждающую способность. Однако, если в технических характеристиках не указана охлаждающая способность при температуре, близкой к минимальной температуре устройства, вы можете попросить производителя или нас предоставить необходимую информацию.

    Факторы, которые следует учитывать при расчете времени нагрева или охлаждения

    Как уже упоминалось, есть несколько причин, по которым ваши расчеты могут не дать реалистичного результата.Таким образом, если вы используете это уравнение для определения времени нагрева или охлаждения, вы должны предположить, что процесс займет немного больше времени, чем ожидалось. Точно так же, если вы используете расчет, чтобы определить, сколько мощности вам нужно для достижения заданного времени нагрева или охлаждения, вы должны предположить, что потребуется некоторая дополнительная мощность.

    Вот факторы, которые необходимо учитывать:

    1. Прирост или потеря тепла от окружающей среды

    Прирост или потеря тепла из-за окружающей среды неизбежны даже в закрытой системе.Охлаждаемая система может поглощать тепло из окружающего воздуха или компонентов системы, снижая ее охлаждающую способность. В системе отопления вы можете терять тепло в окружающий воздух или компоненты системы, например, когда оно проходит по трубам или трубам.

    Изоляция вашей системы и контроль температуры окружающей среды могут помочь, но все же может наблюдаться неизвестное количество тепла.

    2. Потери жидкости из-за испарения

    Если вы работаете с открытой системой, вы можете потерять часть жидкости из-за испарения во время процесса нагрева или охлаждения.Количество происходящего испарения будет зависеть от нескольких факторов, в том числе:

    • Какую жидкость вы используете: Жидкости с более низкой точкой кипения, такие как этанол, метанол и вода, могут легко испаряться.
    • Площадь поверхности ванны: Чем больше площадь поверхности, тем выше скорость испарения.
    • Используемый диапазон температур: Чем выше температура, тем выше скорость испарения.

    Потеря тепла происходит за счет испарения, и когда вы тратите тепловую энергию, время, необходимое для нагрева ванны, увеличивается.Кроме того, в результате потери жидкости значение массы (m) в уравнении не будет точным, что может привести к ухудшению результатов. Если вы используете смесь двух или более жидкостей, и один компонент смеси испаряется быстрее, чем другие, соотношение будет изменено, что приведет к неточности в определении удельной теплоемкости (c).

    Испарение трудно предсказать и точно учесть (и если вы достаточно хорошо разбираетесь в термодинамике, чтобы делать это с комфортом, вы, вероятно, не читали бы эту статью).Таким образом, лучше всего либо оценить скорость испарения с помощью эмпирического теста, а затем учесть это математически, используя теплоту испарения, либо просто добавить коэффициент безопасности.

    3. Проблемы с обслуживанием

    В отопительных системах на элементах водяной бани обычно накапливается накипь из-за отложений минералов. При отсутствии контроля это накопление может повлиять на эффективность передачи тепла от элемента к жидкости. Из-за отложений накипи, изолирующих элемент, требуется больше энергии для нагрева системы до желаемой температуры.

    При нагреве это увеличивает время, необходимое для достижения желаемой температуры в системе заданной мощности. Если вы смотрите на мощность, она увеличит количество энергии, необходимое для достижения желаемой температуры за определенное время.

    Для систем охлаждения на охлаждающую способность также могут влиять проблемы с обслуживанием. В конденсаторах с водяным охлаждением коррозия, накопление накипи или биологический рост могут препятствовать передаче тепла, снижая охлаждающую способность. В конденсаторах с воздушным охлаждением скопление пыли и мусора на лопастях и ребрах вентилятора может уменьшить воздушный поток, оказывая аналогичный эффект снижения охлаждающей способности.

    Регулярное обслуживание вашего устройства, включая очистку различных компонентов, промывку жидкости и использование ингибитора коррозии, может помочь.

    Урок физики

    На предыдущей странице мы узнали, что тепло делает с объектом, когда оно накапливается или выделяется. Прирост или потеря тепла приводят к изменениям температуры, изменению состояния или выполнения работы. Тепло — это передача энергии. Когда объект приобретается или теряется, внутри этого объекта будут происходить соответствующие изменения энергии.Изменение температуры связано с изменением средней кинетической энергии частиц внутри объекта. Изменение состояния связано с изменением внутренней потенциальной энергии, которой обладает объект. А когда работа сделана, происходит полная передача энергии объекту, над которым она выполняется. В этой части Урока 2 мы исследуем вопрос Как измерить количество тепла, полученного или выделенного объектом?

    Удельная теплоемкость

    Предположим, что несколько объектов, состоящих из разных материалов, нагреваются одинаково.Будут ли предметы нагреваться одинаково? Ответ: скорее всего, нет. Разные материалы будут нагреваться с разной скоростью, потому что каждый материал имеет свою удельную теплоемкость. Удельная теплоемкость относится к количеству тепла, необходимому для того, чтобы заставить единицу массы (скажем, грамм или килограмм) изменить свою температуру на 1 ° C. Удельная теплоемкость различных материалов часто приводится в учебниках. Стандартные метрические единицы — Джоуль / килограмм / Кельвин (Дж / кг / К). Чаще используются единицы измерения Дж / г / ° C.Используйте виджет ниже, чтобы просмотреть удельную теплоемкость различных материалов. Просто введите название вещества (алюминий, железо, медь, вода, метанол, дерево и т. Д.) И нажмите кнопку «Отправить»; результаты будут отображаться в отдельном окне.


    Удельная теплоемкость твердого алюминия (0,904 Дж / г / ° C) отличается от удельной теплоемкости твердого железа (0,449 Дж / г / ° C). Это означает, что для повышения температуры данной массы алюминия на 1 ° C потребуется больше тепла, чем для повышения температуры той же массы железа на 1 ° C.Фактически, для повышения температуры образца алюминия на заданное количество потребуется примерно вдвое больше тепла по сравнению с тем же изменением температуры того же количества железа. Это связано с тем, что удельная теплоемкость алюминия почти вдвое больше, чем у железа.

    Теплоемкость указана из расчета на грамм или на килограмм . Иногда значение указывается на основе на моль , и в этом случае оно называется молярной теплоемкостью. Тот факт, что они указаны из расчета на количество , указывает на то, что количество тепла, необходимое для повышения температуры вещества, зависит от того, сколько вещества имеется.Эту истину, несомненно, знает всякий, кто варил на плите кастрюлю с водой. Вода закипает при 100 ° C на уровне моря и при несколько пониженных температурах на возвышенностях. Чтобы довести кастрюлю с водой до кипения, ее сначала нужно поднять до 100 ° C. Это изменение температуры достигается за счет поглощения тепла горелкой печи. Быстро замечаешь, что для того, чтобы довести до кипения полную кастрюлю с водой, требуется гораздо больше времени, чем для того, чтобы довести до кипения наполовину полную. Это связано с тем, что полная кастрюля с водой должна поглощать больше тепла, чтобы вызвать такое же изменение температуры.Фактически, требуется вдвое больше тепла, чтобы вызвать такое же изменение температуры в двойной массе воды.

    Удельная теплоемкость также указана на основе на K или на ° C . Тот факт, что удельная теплоемкость указана из расчета на градус , указывает на то, что количество тепла, необходимое для повышения данной массы вещества до определенной температуры, зависит от изменения температуры, необходимого для достижения этой конечной температуры.Другими словами, важна не конечная температура, а общее изменение температуры. Для изменения температуры воды с 20 ° C до 100 ° C (изменение на 80 ° C) требуется больше тепла, чем для повышения температуры того же количества воды с 60 ° C до 100 ° C (изменение на 40 ° C). ° С). Фактически, для изменения температуры данной массы воды на 80 ° C требуется вдвое больше тепла по сравнению с изменением на 40 ° C. Человек, который хочет быстрее довести воду до кипения на плите, должен начать с теплой водопроводной воды вместо холодной.

    Это обсуждение удельной теплоемкости заслуживает одного заключительного комментария. Термин «удельная теплоемкость» в некоторой степени похож на неправильное обозначение . Этот термин означает, что вещества могут обладать способностью удерживать вещь , называемую теплом. Как уже говорилось ранее, тепло — это не то, что содержится в объекте. Тепло — это то, что передается к объекту или от него. Объекты содержат энергию в самых разных формах. Когда эта энергия передается другим объектам с другой температурой, мы называем переданную энергию тепловой или тепловой энергией .Хотя это вряд ли приживется, более подходящим термином будет удельная энергоемкость.


    Связь количества тепла с изменением температуры

    Удельная теплоемкость позволяет математически связать количество тепловой энергии, полученной (или потерянной) образцом любого вещества с массой образца и ее результирующим изменением температуры. Связь между этими четырьмя величинами часто выражается следующим уравнением.

    Q = m • C • ΔT

    где Q — количество тепла, передаваемого к объекту или от него, m — масса объекта, C — удельная теплоемкость материала, из которого состоит объект, а ΔT — результирующее изменение температуры объекта. Как и во всех других ситуациях в науке, значение дельта (∆) для любой величины рассчитывается путем вычитания начального значения количества из окончательного значения количества. В этом случае ΔT равно T final — T initial .При использовании приведенного выше уравнения значение Q может быть положительным или отрицательным. Как всегда, положительный и отрицательный результат расчета имеет физическое значение. Положительное значение Q указывает, что объект получил тепловую энергию из окружающей среды; это соответствовало бы повышению температуры и положительному значению ΔT. Отрицательное значение Q указывает, что объект выделял тепловую энергию в окружающую среду; это соответствовало бы снижению температуры и отрицательному значению ΔT.

    Знание любых трех из этих четырех величин позволяет человеку вычислить четвертое количество. Обычная задача на многих уроках физики включает решение проблем, связанных с отношениями между этими четырьмя величинами. В качестве примеров рассмотрим две проблемы ниже. Решение каждой проблемы разработано для вас. Дополнительную практику можно найти в разделе «Проверьте свое понимание» внизу страницы.

    Пример задачи 1
    Какое количество тепла требуется для повышения температуры 450 граммов воды с 15 ° C до 85 ° C? Удельная теплоемкость воды 4.18 Дж / г / ° C.

    Как и любая физическая проблема, решение начинается с определения известных величин и соотнесения их с символами, используемыми в соответствующем уравнении. В этой задаче мы знаем следующее:

    м = 450 г
    C = 4,18 Дж / г / ° C
    T начальный = 15 ° C
    T окончательный = 85 ° C

    Мы хотим определить значение Q — количество тепла.Для этого мы использовали бы уравнение Q = m • C • ΔT. Буквы m и C известны; ΔT можно определить по начальной и конечной температуре.

    T = T окончательный — T начальный = 85 ° C — 15 ° C = 70 ° C

    Зная три из четырех величин соответствующего уравнения, мы можем подставить и решить для Q.

    Q = m • C • ΔT = (450 г) • (4,18 Дж / г / ° C) • (70 ° C)
    Q = 131670 Дж
    Q = 1.3×10 5 Дж = 130 кДж (округлено до двух значащих цифр)

    Пример задачи 2
    Образец 12,9 грамма неизвестного металла при 26,5 ° C помещают в чашку из пенополистирола, содержащую 50,0 граммов воды при температуре 88,6 ° C. Вода охлаждается, и металл нагревается до достижения теплового равновесия при 87,1 ° C. Предполагая, что все тепло, теряемое водой, передается металлу и что чашка идеально изолирована, определите удельную теплоемкость неизвестного металла.Удельная теплоемкость воды составляет 4,18 Дж / г / ° C.


    По сравнению с предыдущей проблемой это гораздо более сложная проблема. По сути, эта проблема похожа на две проблемы в одной. В основе стратегии решения проблем лежит признание того, что количество тепла, потерянного водой (Q вода ), равно количеству тепла, полученного металлом (Q металл ). Поскольку значения m, C и ΔT воды известны, можно вычислить Q water .Это значение Q воды равно значению металла Q . Как только значение металла Q известно, его можно использовать со значением m и ΔT металла для расчета металла Q . Использование этой стратегии приводит к следующему решению:

    Часть 1: Определение потерь тепла водой

    Дано:

    м = 50,0 г
    C = 4,18 Дж / г / ° C
    T начальный = 88,6 ° C
    Т финал = 87.1 ° С
    ΔT = -1,5 ° C (T конечный — T начальный )

    Решение для Q воды :

    Q вода = m • C • ΔT = (50,0 г) • (4,18 Дж / г / ° C) • (-1,5 ° C)
    Q вода = -313,5 Дж (без заземления)
    (Знак — означает, что вода теряет тепло)

    Часть 2: Определите стоимость металла C

    Дано:

    Q металл = 313.5 Дж (используйте знак +, поскольку металл нагревается)
    m = 12,9 г
    T начальный = 26,5 ° C
    T окончательный = 87,1 ° C
    ΔT = (T конечный — T начальный )

    Решение для металла C :

    Переставьте Q металл = m металл • C металл • ΔT металл , чтобы получить C металл = Q металл / (m металл • ΔT металл )

    C металл = Q металл / (м металл • ΔT металл ) = (313.5 Дж) / [(12,9 г) • (60,6 ° C)]
    C металл = 0,40103 Дж / г / ° C
    C металл = 0,40 Дж / г / ° C (округлено до двух значащих цифр)


    Жара и изменения состояния

    Приведенное выше обсуждение и прилагаемое уравнение (Q = m • C • ∆T) связывает тепло, получаемое или теряемое объектом, с результирующими изменениями температуры этого объекта. Как мы узнали, иногда тепло накапливается или теряется, но температура не меняется.Это тот случай, когда вещество претерпевает изменение состояния. Итак, теперь мы должны исследовать математику, связанную с изменениями состояния и количества тепла.

    Чтобы начать обсуждение, давайте рассмотрим различные изменения состояния, которые можно наблюдать для образца вещества. В таблице ниже перечислены несколько изменений состояния и указано имя, обычно связанное с каждым процессом.

    Процесс

    Изменение состояния

    Плавка

    От твердого до жидкого

    Замораживание

    От жидкости к твердому веществу

    Испарение

    От жидкости к газу

    Конденсация

    Газ — жидкость

    Сублимация

    Твердое тело в газ

    Депонирование

    Газ — твердое вещество


    В случае плавления, кипения и сублимации к образцу вещества должна быть добавлена ​​энергия, чтобы вызвать изменение состояния.Такие изменения состояния называют эндотермическими. Замораживание, конденсация и осаждение экзотермичны; энергия высвобождается образцом материи, когда происходят эти изменения состояния. Таким образом, можно заметить, что образец льда (твердая вода) тает, когда его помещают на горелку или рядом с ней. Тепло передается от горелки к образцу льда; энергия приобретается льдом, вызывая изменение состояния. Но сколько энергии потребуется, чтобы вызвать такое изменение состояния? Есть ли математическая формула, которая могла бы помочь в определении ответа на этот вопрос? Безусловно, есть.

    Количество энергии, необходимое для изменения состояния образца материи, зависит от трех вещей. Это зависит от того, что такое вещество, от того, сколько вещества претерпевает изменение состояния и от того, какое изменение состояния происходит. Например, для плавления льда (твердая вода) требуется другое количество энергии, чем для плавления железа. И для таяния льда (твердая вода) требуется другое количество энергии, чем для испарения того же количества жидкой воды. И, наконец, для плавления 10 требуется другое количество энергии.0 граммов льда по сравнению с таянием 100,0 граммов льда. Вещество, процесс и количество вещества — три переменные, которые влияют на количество энергии, необходимое для того, чтобы вызвать конкретное изменение состояния. Используйте виджет ниже, чтобы исследовать влияние вещества и процесса на изменение энергии. (Обратите внимание, что теплота плавления — это изменение энергии, связанное с изменением состояния твердое-жидкое.)


    Значения удельной теплоты плавления и удельной теплоты парообразования приводятся из расчета на количество .Например, удельная теплота плавления воды составляет 333 Дж / грамм. Чтобы растопить 1,0 грамм льда, требуется 333 Дж энергии. Чтобы растопить 10 грамм льда, требуется в 10 раз больше энергии — 3330 Дж. Такое рассуждение приводит к следующим формулам, связывающим количество тепла с массой вещества и теплотой плавления и испарения.

    Для плавления и замораживания: Q = m • ΔH плавление
    Для испарения и конденсации: Q = m • ΔH испарение

    , где Q представляет количество энергии, полученной или высвобожденной во время процесса, m представляет собой массу образца, ΔH плавление представляет собой удельную теплоту плавления (на грамм) и ΔH испарения представляет собой удельную теплоемкость плавления испарение (из расчета на грамм).Как и в случае с Q = m • C • ΔT, значения Q могут быть как положительными, так и отрицательными. Значения Q положительны для процесса плавления и испарения; это согласуется с тем фактом, что образец вещества должен набирать энергию, чтобы плавиться или испаряться. Значения Q отрицательны для процесса замораживания и конденсации; это согласуется с тем фактом, что образец вещества должен терять энергию, чтобы замерзнуть или конденсироваться.

    В качестве иллюстрации того, как можно использовать эти уравнения, рассмотрим следующие два примера задач.

    Пример задачи 3
    Элиза кладет в свой напиток 48,2 грамма льда. Какое количество энергии будет поглощено льдом (и высвобождено напитком) в процессе таяния? Теплота плавления воды 333 Дж / г.

    Уравнение, связывающее массу (48,2 грамма), теплоту плавления (333 Дж / г) и количество энергии (Q): Q = m • ΔH fusion .Подстановка известных значений в уравнение приводит к ответу.

    Q = м • ΔH плавление = (48,2 г) • (333 Дж / г)
    Q = 16050,6 Дж
    Q = 1,61 x 10 4 Дж = 16,1 кДж (округлено до трех значащих цифр)

    Пример Задачи 3 включает в себя довольно простой расчет типа plug-and-chug. Теперь мы попробуем Пример задачи 4, который потребует значительно более глубокого анализа.

    Пример задачи 4
    Какое минимальное количество жидкой воды на 26.5 градусов, что потребуется, чтобы полностью растопить 50,0 граммов льда? Удельная теплоемкость жидкой воды составляет 4,18 Дж / г / ° C, а удельная теплота плавления льда — 333 Дж / г.

    В этой задаче лед тает, а жидкая вода остывает. Энергия передается от жидкости к твердому телу. Чтобы растопить твердый лед, на каждый грамм льда необходимо передать 333 Дж энергии. Эта передача энергии от жидкой воды ко льду охлаждает жидкость.Но жидкость может охладиться только до 0 ° C — точки замерзания воды. При этой температуре жидкость начнет затвердевать (замерзнуть), а лед полностью не растает.

    Мы знаем следующее о льду и жидкой воде:

    Информация о льду:

    м = 50,0 г
    ΔH плавление = 333 Дж / г

    Информация о жидкой воде:

    С = 4.18 Дж / г / ° C
    T начальный = 26,5 ° C
    T окончательный = 0,0 ° C
    ΔT = -26,5 ° C (T конечный — T начальный )

    Энергия, полученная льдом, равна энергии, потерянной из воды.

    Q лед = -Q жидкая вода

    Знак — означает, что один объект получает энергию, а другой объект ее теряет. Мы можем вычислить левую часть приведенного выше уравнения следующим образом:

    Q лед = m • ΔH плавление = (50.0 г) • (333 Дж / г)
    Q лед = 16650 Дж

    Теперь мы можем установить правую часть уравнения равной m • C • ΔT и начать подставлять известные значения C и ΔT, чтобы найти массу жидкой воды. Решение:

    16650 Дж = -Q жидкая вода
    16650 Дж = -м жидкая вода • C жидкая вода • ΔT жидкая вода
    16650 Дж = -м жидкая вода • (4.18 Дж / г / ° C) • (-26,5 ° C)
    16650 Дж = -м жидкая вода • (-110,77 Дж / ° C)
    м жидкая вода = — (16650 Дж) / (- 110,77 Дж / ° C)
    м жидкая вода = 150,311 г
    м жидкая вода = 1,50×10 2 г (округлено до трех значащих цифр)


    Еще раз о кривых нагрева и охлаждения

    На предыдущей странице Урока 2 обсуждалась кривая нагрева воды.Кривая нагрева показывала, как температура воды увеличивалась с течением времени по мере нагрева образца воды в твердом состоянии (т. Е. Льда). Мы узнали, что добавление тепла к образцу воды может вызвать либо изменение температуры, либо изменение состояния. При температуре плавления воды добавление тепла вызывает преобразование воды из твердого состояния в жидкое состояние. А при температуре кипения воды добавление тепла вызывает преобразование воды из жидкого состояния в газообразное.Эти изменения состояния произошли без каких-либо изменений температуры. Однако добавление тепла к образцу воды, не имеющей температуры фазового перехода, приведет к изменению температуры.

    Теперь мы можем подойти к теме кривых нагрева на более количественной основе. На диаграмме ниже представлена ​​кривая нагрева воды. На нанесенных линиях есть пять помеченных участков.


    Три диагональных участка представляют собой изменения температуры образца воды в твердом состоянии (участок 1), жидком состоянии (участок 3) и газообразном состоянии (участок 5).Два горизонтальных участка представляют изменения в состоянии воды. На участке 2 проба воды тает; твердое вещество превращается в жидкость. В секции 4 образец воды подвергается кипению; жидкость превращается в газ. Количество тепла, передаваемого воде в секциях 1, 3 и 5, связано с массой образца и изменением температуры по формуле Q = m • C • ΔT. А количество тепла, передаваемого воде в секциях 2 и 4, связано с массой образца и теплотой плавления и испарения формулами Q = m • ΔH fusion (секция 2) и Q = m • ΔH испарение (раздел 4).Итак, теперь мы попытаемся вычислить количество тепла, необходимое для перевода 50,0 граммов воды из твердого состояния при -20,0 ° C в газообразное состояние при 120,0 ° C. Для расчета потребуется пять шагов — по одному шагу для каждого раздела приведенного выше графика. Хотя удельная теплоемкость вещества зависит от температуры, в наших расчетах мы будем использовать следующие значения теплоемкости:

    Твердая вода: C = 2,00 Дж / г / ° C
    Жидкая вода: C = 4,18 Дж / г / ° C
    Газообразная вода: C = 2.01 Дж / г / ° C

    Наконец, мы будем использовать ранее сообщенные значения ΔH слияния (333 Дж / г) и ΔH испарения (2,23 кДж / г).

    Раздел 1 : Изменение температуры твердой воды (льда) с -20,0 ° C до 0,0 ° C.

    Используйте Q 1 = m • C • ΔT

    , где m = 50,0 г, C = 2,00 Дж / г / ° C, T начальная = -200 ° C и T конечная = 0,0 ° C

    Q 1 = m • C • ΔT = (50.0 г) • (2,00 Дж / г / ° C) • (0,0 ° C — -20,0 ° C)
    Q 1 = 2,00 x10 3 Дж = 2,00 кДж

    Раздел 2 : Таяние льда при 0,0 ° C.

    Используйте Q 2 = m • ΔH сварка

    , где m = 50,0 г и ΔH плавление = 333 Дж / г

    Q 2 = м • ΔH плавление = (50,0 г) • (333 Дж / г)
    Q 2 = 1,665 x10 4 Дж = 16.65 кДж
    Q 2 = 16,7 кДж (округлено до 3 значащих цифр)

    Раздел 3 : Изменение температуры жидкой воды с 0,0 ° C на 100,0 ° C.

    Используйте Q 3 = m • C • ΔT

    , где m = 50,0 г, C = 4,18 Дж / г / ° C, T начальный = 0,0 ° C и T конечный = 100,0 ° C

    Q 3 = m • C • ΔT = (50,0 г) • (4,18 Дж / г / ° C) • (100,0 ° C — 0,0 ° C)
    Q 3 = 2.09 x10 4 Дж = 20,9 кДж

    Раздел 4 : Кипячение воды при 100,0 ° C.

    Используйте Q 4 = m • ΔH испарение

    , где m = 50,0 г и ΔH испарение = 2,23 кДж / г

    Q 4 = m • ΔH испарение = (50,0 г) • (2,23 кДж / г)
    Q 4 = 111,5 кДж
    Q 4 = 112 кДж (округлено до 3 значащих цифр)

    Раздел 5 : Изменение температуры жидкой воды со 100.От 0 ° C до 120,0 ° C.

    Используйте Q 5 = m • C • ΔT

    , где m = 50,0 г, C = 2,01 Дж / г / ° C, T начальный = 100,0 ° C и T конечный = 120,0 ° C

    Q 5 = m • C • ΔT = (50,0 г) • (2,01 Дж / г / ° C) • (120,0 ° C — 100,0 ° C)
    Q 5 = 2,01 x10 3 Дж = 2,01 кДж

    Общее количество тепла, необходимое для преобразования твердой воды (льда) при -20 ° C в газообразную воду при 120 ° C, представляет собой сумму значений Q для каждого участка графика.То есть

    Q итого = Q 1 + Q 2 + Q 3 + Q 4 + Q 5

    Суммирование этих пяти значений Q и округление до нужного количества значащих цифр приводит к значению 154 кДж в качестве ответа на исходный вопрос.


    В приведенном выше примере есть несколько особенностей решения, над которыми стоит задуматься:

    • Первое: длинная задача была разделена на части, каждая из которых представляла одну из пяти частей графика.Поскольку было вычислено пять значений Q, они были помечены как Q 1 , Q 2 и т. Д. Этот уровень организации требуется в многоступенчатой ​​задаче, такой как эта.
    • Секунда: внимание было уделено знаку +/- на ΔT. Изменение температуры (или любой величины) всегда рассчитывается как окончательное значение величины минус начальное значение этой величины.
    • Третий: На протяжении всей проблемы внимание уделялось подразделениям.Единицы Q будут либо в Джоулях, либо в килоджоулях, в зависимости от того, какие количества умножаются. Отсутствие внимания к устройствам — частая причина отказа в подобных проблемах.
    • Четвертый: На протяжении всей задачи внимание уделялось значащим цифрам. Хотя это никогда не должно становиться основным акцентом какой-либо проблемы в физике, это, безусловно, деталь, на которую стоит обратить внимание.

    Мы узнали здесь, на этой странице, как рассчитать количество тепла, задействованного в любом процессе нагрева / охлаждения и в любом процессе изменения состояния.Это понимание будет иметь решающее значение, когда мы перейдем к следующей странице Урока 2, посвященной калориметрии. Калориметрия — это наука, связанная с определением изменений энергии системы путем измерения теплообмена с окружающей средой.

    Проверьте свое понимание

    1. Вода имеет необычно высокую удельную теплоемкость. Какое из следующих утверждений логически следует из этого факта?

    а.По сравнению с другими веществами горячая вода вызывает сильные ожоги, потому что она хорошо проводит тепло.
    б. По сравнению с другими веществами вода при нагревании быстро нагревается до высоких температур.
    c. По сравнению с другими веществами, образец воды требует значительного количества тепла, чтобы изменить ее температуру на небольшое количество.

    2. Объясните, почему в больших водоемах, таких как озеро Мичиган, может быть довольно холодно в начале июля, несмотря на то, что температура наружного воздуха около или выше 90 ° F (32 ° C).

    3. В таблице ниже описан термический процесс для различных объектов (выделен красным жирным шрифтом). Для каждого описания укажите, набирается или теряется тепло объектом, является ли процесс эндотермическим или экзотермическим, и является ли Q для указанного объекта положительным или отрицательным значением.

    Процесс

    Получено или потеряно тепло?

    Эндо- или экзотермический?

    Q: + или -?

    а.

    Кубик льда помещают в стакан с лимонадом комнатной температуры, чтобы охладить напиток.

    г.

    Холодный стакан лимонада стоит на столе для пикника под жарким полуденным солнцем и нагревается до 32 ° F.

    г.

    Конфорки на электроплите выключаются и постепенно остывают до комнатной температуры.

    г.

    Учитель вынимает из термоса большой кусок сухого льда и опускает его в воду. Сухой лед возгоняется, образуя газообразный диоксид углерода.

    e.

    Водяной пар в увлажненном воздухе ударяется о окно и превращается в каплю росы (каплю жидкой воды).

    4. Образец металлического цинка массой 11,98 грамма помещают в баню с горячей водой и нагревают до 78,4 ° C. Затем его удаляют и помещают в чашку из пенополистирола, содержащую 50,0 мл воды комнатной температуры (T = 27,0 ° C; плотность = 1,00 г / мл). Вода прогревается до температуры 28.1 ° С. Определите удельную теплоемкость цинка.

    5. Джейк берет из туалета банку с газировкой и наливает ее на лед в чашке. Определите количество тепла, теряемого содой комнатной температуры при плавлении 61,9 г льда (ΔH fusion = 333 Дж / г).

    6. Теплота сублимации (ΔH сублимации ) сухого льда (твердый диоксид углерода) составляет 570 Дж / г. Определите количество тепла, необходимое для превращения 5,0-фунтового мешка сухого льда в газообразный диоксид углерода.(Дано: 1,00 кг = 2,20 фунта)

    7. Определите количество тепла, необходимое для повышения температуры 3,82-граммового образца твердого пара-дихлорбензола с 24 ° C до жидкого состояния при 75 ° C. Пара-дихлорбензол имеет температуру плавления 54 ° C, теплоту плавления 124 Дж / г и удельную теплоемкость 1,01 Дж / г / ° C (твердое состояние) и 1,19 Дж / г / ° C (жидкое состояние).

    Калькулятор тепловых потерь | U.С. Котельная Компания

    Окна / двери H.M.
    Одиночный 67
    с одинарной изоляцией 41
    Буря 34
    Двойная изоляция 30
    Стенка H.M.
    Без изоляции 15
    2 дюйма 6
    4 дюйма 5
    6 дюймов 4
    Потолок Х.М.
    3 дюйма 5
    6 дюймов 4
    9 дюймов 3
    10 дюймов 2
    Этаж H.M.
    3 дюйма 5
    6 дюймов 4
    9 дюймов 3
    10 дюймов 2
    Проникновение Х.М.
    1 1/2 воздухообмен 1,61
    1 Воздухозаборник 1,07
    3/4 воздухообмен 0,81
    Окна /
    Двери
    H.M. Стена H.M. потолок H.M. Этаж H.M. Проникновение Г.М.
    Одиночный 67 Без изоляции 15 3 дюйма 5 Без изоляции 4 1 1/2 воздухообмен 1,61
    с одинарной изоляцией 41 2 дюйма 6

    6 дюймов

    4 Свес 3 « 5 1 Воздухозаборник 1.07
    Буря 34 4 дюйма 5

    9 дюймов

    3 Свес 6 « 3 3/4 воздухообмен 0,81
    Двойная изоляция 30 6 дюймов 4

    10 дюймов

    2 Свес 9 « 2

    Расчет потерь тепла Приложение: Отлично подходит для определения теплопотерь здания в целом.

    Этот расчет поможет определить размер котла для дома.

    Это должно использоваться в качестве оценки. Перед установкой нового котла необходимо предоставить подробную информацию о тепловых потерях.

    * Множители нагрева (H.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *