Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Монтаж реле тока: Принцип действия реле тока: устройство и назначение

Содержание

Принцип действия реле тока: устройство и назначение

Токовое электромеханическое реле

Что такое реле тока? Такой вопрос часто возникает у студентов и электриков самоучек. Ответ на него достаточно прост, но в учебниках и многих статьях в интернете он содержит огромное количество формул и отсылок к разнообразным законам. В нашей статье мы постараемся объяснить, что это такое, и как оно работает буквально на пальцах.

Устройство реле тока

Для начала давайте разберем принцип реле тока и его устройство. На данный момент существуют электромагнитные, индукционные и электронные реле.

Мы будем разбирать устройство наиболее распространенных электромагнитных реле. Тем более, что они дают возможность наиболее наглядно понять их принцип работы.

Устройство электромагнитного реле тока

  • Начнем с основных элементов любого реле тока. Оно в обязательном порядке имеет магнитопровод. Причем, этот магнитопровод имеет участок с воздушным зазором.
    Таких зазоров может быть 1, 2 или более — в зависимости от конструкции магнитопровода. На нашем фото таких зазора два.
  • На неподвижной части магнитопровода имеется катушка. А подвижная часть магнитопровода закреплена пружиной, которая противодействует соединению двух частей магнитопровода.

Принцип действия электромагнитного токового реле

  • При появлении на катушке напряжения, в магнитопроводе наводится ЭДС. Благодаря этому, подвижная и неподвижная части магнитопровода становятся как два магнита, которые хотят соединиться. Не дает им это сделать пружина.
  • По мере увеличения тока в катушке, ЭДС будет нарастать. Соответственно, будет нарастать притяжение подвижного и неподвижного участка магнитопровода. При достижении определенного значения силы тока, ЭДС будет настолько велико, что преодолеет противодействие пружины.
  • Воздушный зазор между двумя участками магнитопровода начнет сокращаться. Но как говорит инструкция и логика, чем меньше воздушный зазор, тем больше становится сила притяжения, и тем с большей скоростью магнитопроводы соединяются.
    В результате, процесс коммутации занимает сотые доли секунды.

Существуют токовые реле разных типов исполнения

  • К подвижной части магнитопровода жестко прикреплены подвижные контакты. Они замыкаются с неподвижными контактами и сигнализируют, что сила тока на катушке реле достигла установленного значения.

Регулировка тока возврата токового реле

  • Для возврата в исходное положение, сила тока в реле должна уменьшиться как на видео. Насколько оно должно уменьшится, зависит от так называемого коэффициента возврата реле.

Оно зависит от конструкции, а также может настраиваться индивидуального для каждого реле за счет натяжения или ослабления пружины. Это вполне можно сделать своими руками.

Назначение и способы подключения токового реле

Реле тока и напряжения, являются основными элементами практически всех основных защит. Поэтому, давайте более детально разберемся с их сферой применения и схемой подключения.

Назначение токового реле

И в первую очередь, давайте разберемся, а зачем собственно говоря нужно это токовое реле? Для ответа на этот вопрос нам следует немного погрузиться в теорию. Но мы постараемся сделать это максимально поверхностно и доступно.

  • Любая электроустановка имеет два основных параметра своей работы — это ток и напряжение. Контролируя эти два параметра, можно оценить работоспособность оборудования и вероятные неисправности.
  • Реле тока, как несложно догадаться, контролирует ток. И если его уменьшение говорит лишь о снижении нагрузки, то его увеличение в большинстве случаев говорит о серьезных неисправностях. Дабы не рассматривать вопрос более детально, давайте возьмем в качестве примера электродвигатель.

Релейная схема защит электродвигателя

  • Электродвигатель имеет номинальный ток, например, 50А. Незначительное увеличение тока, допустим до 55А, сигнализирует о перегрузе. В этом случае, двигатель не должен отключаться немедленно, ведь перегруз может носить временный характер, и согласно ПУЭ, большинство электродвигателей допускается периодически перегружать.
  • Но длительный режим работы с повышенным номинальным током может сигнализировать о неисправности механической части или других проблемах. Поэтому, после нагрузки, через определенный промежуток времени, двигатель должен быть отключен.

Схема защиты от перегруза

  • Схема реле тока и реле времени позволяет обеспечить такую защиту.
    При увеличении тока выше номинального значения в 50А, срабатывает токовое реле. Своими контактами оно запускает в работу реле времени, которое отсчитывает допустимое время работы двигателя в перегаженном состоянии. Если за этот период времени токовое реле не отпало, то реле времени срабатывает и отключает электродвигатель.

Обратите внимание! Защита от перегруза должна быть отстроена от времени пуска двигателя. Как известно, при пуске пусковой ток может доходить до десятикратного номинального (обычно пяти- или шестикратное). Поэтому, для исключения ложного срабатывания защиты от перегруза, время срабатывания реле времени должно быть больше времени разворота двигателя.

Токовая отсечка

  • Теперь возьмем другую ситуацию. На нашем двигателе происходит короткое замыкание. Его необходимо отключить в максимально сжатые сроки. Короткое замыкание характеризуется резким возрастанием тока. В зависимости от вида короткого замыкания, эти токи могут превышать значения 10-кратного номинального значения.
  • Исходя из этого, нам нужно поставить реле тока, схема которого будет реагировать на такой ток, и сразу же отключать его. Такую защиту называют токовой отсечкой. Когда защита мгновенно отключает электрооборудование при достижении определенного значения тока.

Токовые реле с выдержкой времени

  • Но бывают короткие замыкания, которые имеют не такие большие токи. В этом случае, реле тока и схема его подключения несколько изменяется. Ее принцип действия похож на защиту от перегруза, только чем больше ток, тем быстрее она отключит наш электродвигатель. Достигается это за счет объединения в одном устройстве и реле времени и тока. Такая защита называется максимальной токовой.

Токовые защиты, встроенные в выключатель

  • Существуют так же защиты от однофазных замыканий на землю, защиты от токов обратной последовательности, дифференциальные защиты, дистанционные защиты и множество других релейных схем, которые используют реле тока.

Но это уже более специфические защиты, которые требуют более глубоко понимания процессов. Поэтому в нашей статье мы не будем их рассматривать.

Схемы подключения токовых реле

Разобрав устройство и назначение реле тока, можно перейти к вопросу их подключения. Существует два основных варианта – непосредственно или через трансформатор тока.

Давайте рассмотрим каждый из этих вариантов:

  • Непосредственно могут подключаться реле к электроустановкам напряжением до 1000В. Это связано с тем, что при большем напряжении размеры реле пришлось бы значительно увеличивать для обеспечения соответствующей изоляции и протекания больших токов. А из-за этого увеличилась бы и цена реле.

Непосредственное подключение токового реле

  • Потребители до 1000В обычно не самые ответственные, поэтому защита реализуется на одной или двух фазах. Но возможен вариант реализации защит и на всех трех фазах. Для этого просто последовательно с нагрузкой включается катушка токового реле на одной или нескольких фазах.

Токовое реле

  • Многие токовые реле содержат две катушки. Для них может применяться последовательное или параллельное соединение обмоток реле тока. Это необходимо для изменения пределов срабатывания реле.
  • В качестве примера, возьмем реле РТ 40. При параллельном подключении катушек, ток срабатывания варьирует в пределах 0,1 – 100А. При последовательном подключении обмоток, предел срабатывания можно регулировать в пределах 0,2 – 200А.

Обратите внимание! Если вам необходим предел срабатывания в 0,1 – 100А, то в принципе вы можете вовсе не подключать вторую обмотку.

Трансформатор тока 6 – 10кВ

Трансформатор тока 110кВ и выше

  • Значительно чаще, электрические схемы соединения реле тока предполагают использование трансформаторов тока. Эти устройства позволяют преобразовать любой ток до значений в 1 или 5 А.

Схема подключения реле тока через трансформатор тока

  • Такие потребители обычно относятся к ответственным, поэтому токовые защиты реализуются по каждой фазе. Принцип подключения прост. Катушка реле просто подключаются к выводам трансформатора тока.

Внимание! Но тут следует помнить, что трансформаторы тока и вся вторичная коммутация работают в режиме близком к короткому замыканию. Поэтому разкорачивание таких цепей чревато повреждением трансформатора тока, а также серьезными последствиями для человека.

Поэтому прежде чем выполнять какие-либо переключения в токовых цепях их следует закоротить перемычкой. Или же производить переключения на электрооборудовании, выведенном в ремонт.

Вывод

Реле тока и электрическая схема его подключения имеет множество нюансов. Если вдаваться в каждый, то получится полноценный учебник. Наша же цель была дать вам общие представления о данном реле максимально доступным языком. Поэтому некоторые вопросы в нашей статье раскрыты не полностью или же упрощенно. Более детально по каждому аспекту следует разбираться, исходя из существующих условий.

Практическое применение и схемы подключения твердотельного реле


Классические пускатели и контакторы постепенно уходят в прошлое. Их место в автомобильной электронике, бытовой технике и промышленной автоматике занимает твердотельное реле – полупроводниковое устройство, в котором отсутствуют какие-либо подвижные части.

Приборы имеют различные конструкции и схемы подключения, от которых зависят их сферы применения. Прежде чем использовать устройство, необходимо разобраться в его принципе действия, узнать об особенностях функционирования и подключения разных видов реле. Ответы на обозначенные вопросы подробно изложены в представленной статье.

Содержание статьи:

Устройство твердотельного реле

Современные твердотельные реле (ТТР) представляют собой модульные полупроводниковые приборы, являющиеся силовыми электропереключателями.

Ключевые рабочие узлы этих устройств представлены симисторами, тиристорами или транзисторами. ТТР не имеют подвижных частей, чем отличаются от электромеханических реле.

Размер твердотельного реле во многом зависит от максимально допустимой нагрузки и возможности отводить тепло путем теплопередачи и конвекции (+)

Внутреннее устройство этих приборов может сильно различаться в зависимости типа регулируемой нагрузки  и электрической схемы.

Простейшие твердотельные реле включают такие узлы:

  • входной узел с предохранителями;
  • триггерная цепь;
  • оптическая (гальваническая) развязка;
  • переключающий узел;
  • защитные цепи;
  • узел выхода на нагрузку.

Входной узел ТТР представляет собой первичную цепь с последовательно подключенным резистором. Предохранитель в эту цепь встраивается опционально. Задача узла входа – принятие управляющего сигнала и передача команды на коммутирующие нагрузку переключатели.

При переменном токе для разделения контролирующей и основной цепи применяют гальваническую развязку. От её устройства во многом зависит принцип работы реле. Ответственная за обработку входного сигнала триггерная цепь может включаться в узел оптической развязки или располагаться отдельно.

Защитный узел препятствует возникновению перегрузок и ошибок, ведь в случае поломки прибора может выйти из строя и подключенная техника.

Основное предназначение твердотельных реле – замыкание/размыкание электрической сети с помощью слабого управляющего сигнала. В отличие от электромеханических аналогов, они имеют более компактную форму и не производят в процессе работы характерных щелчков.

Принцип работы ТТР

Работа твердотельного реле довольно проста. Большинство ТТР предназначено для управления автоматикой в сетях 20-480 В.

Оптическая развязка позволяет создавать управленческие сигналы минимальной мощности, что критически важно для датчиков, работающих от автономных источников питания (+)

При классическом исполнении в корпус прибора входит два контакта коммутируемой цепи и два управляющих провода. Их количество может изменяться при увеличении количества подключенных фаз. В зависимости от наличия напряжения в управляющей цепи, происходит включение или выключение основной нагрузки полупроводниковыми элементами.

Особенностью твердотельных реле является наличие небесконечного сопротивления. Если контакты в электромеханических устройствах полностью разъединяются, то в твердотельных отсутствие тока в цепи обеспечивается свойствами полупроводниковых материалов.

Поэтому при повышенных напряжениях возможно появление небольших токов утечки, которые могут негативно сказаться на работе подключенной техники.

Классификация твердотельных реле

Сферы применения реле разнообразны, поэтому и их конструктивные особенности могут сильно отличаться, в зависимости от потребностей конкретной автоматической схемы. Классифицируют ТТР по количеству подключенных фаз, виду рабочего тока, конструктивным особенностям и типу схемы управления.

По количеству подключенных фаз

Твердотельные реле используются как в составе домашних приборов, так и в промышленной автоматике с рабочим напряжением 380 В.

Поэтому эти полупроводниковые устройства, в зависимости от количества фаз, разделяются на:

  • однофазные;
  • трехфазные.

Однофазные ТТР позволяют работать с токами 10-100 или 100-500 А. Их управление производится с помощью аналогового сигнала.

К трехфазному реле рекомендуется подключать провода различных цветов, чтобы при монтаже оборудования можно было правильно их присоединить

Трехфазные твердотельные реле способны пропускать ток в диапазоне 10-120 А. Их устройство предполагает реверсивный принцип функционирования, который обеспечивает надежность регуляции одновременно нескольких электрических цепей.

Часто трехфазные ТТР используются для обеспечения работы асинхронного двигателя. В его электросхему управления обязательно включаются быстрые предохранители из-за высоких пусковых токов.

По виду рабочего тока

Твердотельные реле нельзя настроить или перепрограммировать, поэтому они могут нормально работать только при определенном диапазоне электропараметров сети.

В зависимости от потребностей ТТР могут управляться электроцепями с двумя видами тока:

  • постоянным;
  • переменным.

Аналогично можно классифицировать ТТР и по виду напряжения активной нагрузки. Большинство реле в бытовых приборах работают с переменными параметрами.

Постоянный ток не используется в качестве основного источника электроэнергии ни в одной стране мира, поэтому реле такого типа имеют узкую сферу применения

Устройства с постоянным управляющим током характеризуются высокой надежностью и используют для регуляции напряжение 3-32 В. Они выдерживают широкий диапазон температур (-30..+70°С) без значительного изменения характеристик.

Реле, регулирующиеся переменным током, имеют управляющее напряжение 3-32 В или 70-280 В. Они отличаются низкими электромагнитными помехами и высокой скоростью срабатывания.

По конструктивным особенностям

Твердотельные реле часто устанавливают в общий электрощит квартиры, поэтому многие модели имеют монтажную колодку для крепления на DIN-рейку.

Кроме того, существуют специальные радиаторы, располагающиеся между ТТР и опорной поверхностью. Они позволяют охлаждать прибор при высоких нагрузках, сохраняя его рабочие характеристики.

Реле крепиться на DIN-рейку преимущественно через специальный кронштейн, который имеет и дополнительную функцию – отводит излишки тепла при работе прибора

Между реле и радиатором рекомендуется наносить слой термопасты, который увеличивает площадь соприкосновения и увеличивает теплоотдачу. Существуют и ТТР, предназначенные для крепления к стене обычными шурупами.

По типу схемы управления

Не всегда принцип работы регулируемой реле техники требует его мгновенного срабатывания.

Поэтому производители разработали несколько схем управления ТТР, которые используются в различных сферах:

  1. Контроль «через ноль». Такой вариант управления твердотельным реле предполагает срабатывание только при значении напряжения, равном 0. Используется в устройствах с емкостной, резистивной (нагреватели) и слабой индуктивной (трансформаторы) нагрузкой.
  2. Мгновенное. Используется при необходимости резкого срабатывания реле при подаче управляющего сигнала.
  3. Фазовое. Предполагает регулирование выходного напряжения методом изменения параметров управляющего тока. Применяется для плавного изменения степени нагрева или освещения.

Твердотельные реле различаются и по многим другим, менее значимым, параметрам. Поэтому при покупке ТТР важно разобраться в схеме работы подключаемой техники, чтобы приобрести максимально соответствующее ей регулировочное устройство.

Обязательно должен быть предусмотрен запас мощности, потому что реле имеет эксплуатационный ресурс, который быстро расходуется при частых перегрузках.

Преимущества и недостатки ТТР

Твердотельные реле не зря вытесняют с рынка обычные пускатели и контакторы. Эти полупроводниковые приборы обладают множеством преимуществ перед электромеханическими аналогами, которые заставляют потребителей останавливать выбор именно на них.

Реле для микросхем имеет компактные размеры и сильно ограничены по максимально пропускаемому току. Крепятся они преимущественно путем припаивания специальных ножек

К таким достоинствам относят:

  1. Низкое потребление электроэнергии (на 90% меньше).
  2. Компактные габариты, позволяющие монтировать устройства в ограниченном пространстве.
  3. Высокая скорость запуска и отключения
  4. Пониженная шумность работы, отсутствуют характерные для электромеханического реле щелчки.
  5. Не предполагается техническое обслуживание.
  6. Длительный срок службы благодаря ресурсу в сотни миллионов срабатываний.
  7. Благодаря широким возможностям по модификации электронных узлов, ТТР имеют расширенные сферы применения.
  8. Отсутствие электромагнитных помех при срабатывании.
  9. Исключается порча контактов вследствие их механического удара.
  10. Отсутствие прямого физического контакта между цепями управления и коммутации.
  11. Возможность регулирования нагрузки.
  12. Наличие в импульсных ТТР автоматических цепей, защищающих от перегрузок.
  13. Возможность использования во взрывоопасных средах.

Указанных преимуществ твердотельных реле не всегда достаточно для нормальной работы оборудования. Именно поэтому они ещё не полностью вытеснили электромеханические контакторы.

Для стабильной работы мощных твердотельных реле важен эффективный отвод тепла, потому что при повышенных температурах резко искажается напряжение нагрузки (+)

ТТР имеют и недостатки, которые не позволяют им использоваться во многих случаях.

К минусам относят:

  1. Невозможность работы большинства устройств с напряжениями свыше 0,5 кВ.
  2. Высокая стоимость.
  3. Чувствительность к высоким токам, особенно в пусковых цепях электродвигателей.
  4. Ограничения по использованию в условиях повышенной влажности.
  5. Критическое снижение рабочих характеристик при температурах ниже 30°С мороза и выше 70°С тепла.
  6. Компактный корпус приводит к избыточному нагреву устройства при стабильно высоких нагрузках, что требует применения специальных устройств пассивного или активного охлаждения.
  7. Возможность расплавления устройства от нагрева при коротком замыкании.
  8. Микротоки в закрытом состоянии реле могут быть критическими для работы оборудования. Например, подключенные в сеть люминесцентные лампы могут периодически вспыхивать.

Таким образом, твердотельные реле имеют определенные сферы применения. В цепях высоковольтного промышленного оборудования их использование резко ограничено из-за несовершенных физических свойств полупроводниковых материалов.

Однако в бытовой технике и автомобильной промышленности ТТР занимают прочные позиции за счет своих положительных свойств.

Возможные схемы подключений

Схемы подключения твердотельных реле могут быть самые разнообразные. Каждая электрическая цепь строится, исходя из особенностей подключаемой нагрузки. В схему могут добавляться дополнительные предохранители, контроллеры и регулирующие устройства.

Благодаря тому, что цепи управления и нагрузки в приборе не перекрываются, их электрические характеристики могут отличаться любыми параметрами (+)

Далее будут представлены наиболее простые и распространенные схемы подключения ТТР:

  • нормально-открытая;
  • со связанным контуром;
  • нормально-закрытая;
  • трехфазная;
  • реверсивная.

Нормально-открытая (разомкнутая) схема – реле, нагрузка в котором находится под напряжением при наличии управляющего сигнала. То есть подключенная техника оказывается в отключенном состоянии при обесточенных входах 3 и 4.

 

Перед покупкой реле необходимо определиться с требуемым типом его первоначального состояния (замкнутое или разомкнутое), чтобы обеспечить правильную работу подключенной техники (+)

Нормально-замкнутая схема – подразумевается реле, нагрузка в котором находится под напряжением при отсутствии управляющего сигнала. То есть подключенная техника оказывается в рабочем состоянии при обесточенных входах 3 и 4.

Существует схема подключения твердотельного реле, в которой управляющее и нагрузочное напряжение одинаково. Такой способ можно использовать одновременно для работы в сетях постоянного и переменного тока.

Трехфазные реле подключаются несколько по иным принципам. Контакты могут соединяться в вариантах «Звезда», «Треугольник» или «Звезда с нейтралью».

Выбор трехфазной схемы подключения реле во многом зависит от особенностей работы техники, подключенной к нему в качестве нагрузки

Реверсные твердотельные реле применяются в электродвигателях в соответствующем режиме. Они изготавливаются в трехфазном варианте и включают два контура управления.

Если для реле важно соблюдение полярности подключения контактов, то на маркировке всегда будет указано, куда подключать фазу и ноль

Собирать электрические цепи с ТТР необходимо только после их предварительной прорисовки на бумаге, потому что неверно подключенные устройства могут выйти из строя из-за короткого замыкания.

Практическое применение устройств

Сфера использования твердотельных реле довольно обширна. Из-за высокой надежности и отсутствия потребности в регулярном обслуживании их часто устанавливают в труднодоступных местах оборудования.

Во многих реле подключение проводов управляющего контура требует соблюдения полярности, что необходимо учитывать в процессе монтажа оборудования

Основными же сферами применения ТТР являются:

  • система терморегуляции с применением ТЭНов;
  • поддержание стабильной температуры в технологических процессах;
  • контроль работы трансформаторов;
  • регулировка освещения;
  • схемы датчиков движения, освещения,  и т.п.;
  • управление электродвигателями;
  • .

С увеличением автоматизации бытовой техники твердотельные реле приобретают все большее распространение, а развивающиеся полупроводниковые технологии постоянно открывают новые сферы их применения.

При желании, собрать твердотельное реле можно собственноручно. Подробная инструкция представлена в .

Выводы и полезное видео по теме

Представленные видеоролики помогут лучше понять работу твердотельных реле и ознакомиться со способами их подключения.

Практическая демонстрация работы простейшего твердотельного реле:

Разбор разновидностей и особенностей работы твердотельных реле:

Тестирование работы и степени нагрева ТТР:

Смонтировать электрическую цепь из твердотельного реле и датчика может практически каждый человек.

Однако планирование рабочей схемы требует базовых знаний в электротехнике, потому что неправильное подключение может привести к удару током или короткому замыканию. Зато в результате правильных действий можно получить массу полезных в быту приборов.

Есть, что дополнить, или возникли вопросы по теме подключения и применения твердотельных реле? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом использования таких устройств. Форма для связи находится в нижнем блоке.

Реле ограничения пусковых токов LED-ламп: Меандр МРП-101, F&F МК-5-1, Mean Well ICL и другие (обновлено ‘2020) – CS-CS.Net: Лаборатория Электрошамана

Реле компенсации пусковых токов Меандр МРП-101 и F&F МК-5-1

Этот пост был переработан в 2020 году (исходный пост был написан 30.10.2018): я разделил его на две части. Эта часть, которую вы читаете, посвящена реле компенсации стартовых токов. А та часть поста, в которой я рассказал про панель распределения питания и применение МРПшки, уехала в новый пост — читайте и его тоже.

Также я выражаю огромную благодарность моему читателю с ником Pressmaster, который предоставил мне право показать вам фотки Siemens ICL230 и кратко рассказать его историю перегрева МРП-101 и ругани с Меандром по этому поводу. Копирайт на фотографии, которые он прислал, сохраняется за ним. Здесь они публикуются с его разрешения.

Итак, начинаем с технической части, чтобы она была полезной для технарей. У нас возникла проблема, про которую я уже писал в посте про стартовые токи светодиодных ламп — почитайте его обязательно! Сама проблема начала существовать ещё раньше, но просто в моих кругах она стала проявляться со светодиодными лампами. Суть её вот в чём: все блоки питания, которые вас окружают — электронной техники, зарядки, LED-лент и LED-ламп — чаще всего импульсные. И чем дальше — тем больше проблем начинается с LED-лампами и блоками питания LED-лент.

Внутри импульсных блоков питания стоит выпрямитель и фильтрующий конденсатор, который заряжается (при включении блока в сеть) и создаёт бросок тока! И чем мощнее блок питания (или чем их больше на одной линии), тем этот бросок тока будет больше. От этого броска тока может вышибать автомат, могут спаяться контакты Siemens Logo или мелких релюшек. А что делать, если у вас будет стартовать промышленный блок питания Mean Well серии SDR (напоминаю, что я дополнил тот пост про блоки питания)?

Когда я написал пост про стартовые токи LED-ламп, все стали искать решение по тому, как ограничить ток. Кое-чего нашли аудиофилы: для их разработок выпускались такие реле, но они были не всегда доступны для заказа, потому что их к нам мало кто возил. И вот сейчас всё поменялось — Меандр выпустил специальные реле для ограничения пусковых токов серии МРП. Они делают именно то, что нам надо! Но как и насколько хорошо? Вот ща я и буду разбираться (живой пример будет на видео в конце поста).

Также ближе к 2019-2020 годам подтянулись и другие производители (F&F, Mean Well) и появилась информация от моего читателя Pressmaster про жуткий перегрев первых партий МРП-101. Собственно, из-за этого всего я и обновил данный пост. От старого поста осталась только информация про МРПшки, а вся остальная информация — новая. И пост будет ещё дополняться, так как приколы с Меандровскими МРПшками не закончились!

1. Реле ограничения пусковых токов МРП-101 (2018 год выпуска).

Первым делом мне в руки попалось реле от Меандра — МРП-101. Так совпало, что у меня народ стал спрашивать про него в комментариях, а у парочки заказчиков стали периодически залипать контакты Logo на свет (например, на щитах в Переделкино). В итоге я сначала посоветовал им купить эти реле, потом посоветовал их в салон красоты (мне звонили по телефону и спрашивали, что бы такое поставить, чтобы C16 на свет перестало выбивать)… а потом решил купить эти реле для поста и затестить их!

Вообще, Меандр выпустил аж целую линейку этих реле. МРП-102 ставится перед выключателем (оно каким-то образом определяет то, что по цепи потёк ток и срабатывает после этого), а МРП-101 — после выключателя (или исполнительного реле от ПЛК/Logo внутри щита).

Меня заинтересовало реле МРП-101, которое рассчитано на то, чтобы включаться после выключателя (реле). Это именно то, что нам надо, потому что можно не париться с основной начинкой щита: если начались проблемы — то просто воткнуть на соплях это реле после управляющих реле, или прям в люстру, или закинуть его валяться за потолок. Ну а если мы заранее знаем, что у нас будут линии с высокими стартовыми токами, то сразу заложить его в щит. У меня сейчас как раз заказан щит в Дмитров, где заказчик ОЧЕНЬ попросил поставить в щит 10 блоков питания для LED-лент. И вот как раз туда-то я и поставлю МРПшки, чтобы Logo мог эти блоки питания нормально коммутировать через промежуточные релюшки.

До этого заказа я заказал три штуки МРП-101 лично для себя: две на питание светового оборудования, и одну — разобрать и посмотреть, как оно устроено. Правда, как вы узнаете из этого поста, судьба распоряжается иначе: одну штучку я отдам заказчику, у которого начали спаиваться контакты в Logo, а две другие я поставил себе в панельку с выключателями.

Релюшка поставляется в стандартной Меандровской коробочке:

Реле ограничения пусковых токов МРП-101 (вид коробочки)

Спереди на реле нарисована схема подключения. Очень жаль, что на самом реле нет никакой индикации того, включено оно или нет. Уж раз внутри него стоит обычное электромагнитное реле (зачем — это мы позжее узнаем), то можно было бы вытащить на переднюю панель светодиодик — так реле было бы приятнее и живее! И сразу можно было бы видеть: включена ли нагрузка или нет.

Реле ограничения пусковых токов МРП-101 (передняя панель)

Меандр прочитал мой пост и, хоть они на меня в обиде — но реле они потом доработали: индикация появилась. Это хорошо! Но ещё позже оказалось, что эти реле АДСКИ греются. Про это читайте в конце поста (информация будет дополняться).

Я не нашёл нигде (рыл инструкцию и сайт Меандра), но вроде как у этого реле нет входа или выхода и подключать его можно как угодно (снизу или сверху). Почему это так — я поясню чуть позже, когда мы увидим внутренности этого реле и вспомним самодельные усилители.

Теперь немного неприятного в плане корпуса. Вот как-то давно я ругался на Меандр, когда они хотели лишить нас УЗМ-51м в угоду маркетингу, и в том посте упоминал ещё и непонятную затею Меандра с узкими (13 мм против 17,5) корпусами на DIN-рейку.

Я считаю, что эта затея чуток вредна, потому что лишает Меандр взаимозаменяемости: если я набью всю длинную DIN-рейку их релюшками шириной в 13мм, то их у меня влезет больше по количеству. Но что делать, если это глубинка, реле сдохло, Меандр едет долго, а его надо чем-то заменить? А ведь во всём мире принят стандарт DIN-модулей в 17,5 мм. Получается, что если у меня на DIN-рейке, забитой модулями шириной в 13 мм, их сдохнет парочка — то заменить будет не на что в плане физическом (а не торговом, ибо аналоги есть), ибо оно туда просто не влезет.

Вторая претензия была к тому, что Меандр сделал защёлки на своих корпусах так, что их торцы стали овальными. Из-за этого на корпусе не остаётся места, куда можно было бы наклеить маркировку элемента (а мы помним правило: в щитах с пластроном никакая внутренняя маркировка за пластрон выступать не должна!).

Вот как это всё выглядит в реале. Зацените за счёт чего они сделали корпус шириной в 13мм: в его стенках есть прорези, в которые попадает кусочек платы со встроенным исполнительным реле. И за счёт этого ширина корпуса уменьшается! =) Не, реально — лучше бы сделали светодиодик для индикации работы — оно реально было бы полезно!

Реле ограничения пусковых токов МРП-101 (вид сбоку)

Кроме этих моментов, у меня нет претензий к корпусу и самому реле. Клеммы у него хорошие, и провода в них закручиваются на ура!

Теперь разломаем корпус и заглянем внутЫрь! Опытный глаз уже кое-чего видит! =) Четыре резистора по 26 Ом каждый, включенные параллельно (это даёт 6,5 Ома суммарно, если я не ошибся в расчётах), мелкий резистор, конденсатор и релюшка.

Реле ограничения пусковых токов МРП-101 (внутренности)

Печатная плата и внутренний монтаж реле сделаны качественно: плата чистенькая, все дорожки хорошие, пайка тоже чистая. А сам внутренний монтаж реле сделан кусками лужёной медной проволоки, одетой во фторопластовые трубочки!

Реле ограничения пусковых токов МРП-101 (боковая сторона платы)

Итак, как это всё работает? Да вы не поверите!! Никто не помнит, как убирали броски тока при включении самодельных мощных усилителей? Я сейчас найду вам в Сети такую схемку:

Стандартная схемка для ограничения стартовых токов усилителей

Как она работает? Да просто! На резисторе R1 и конденсаторе C1 сделана цепочка задержки по времени: через резистор конденсатор C1 будет заряжаться плавно, за определённое время. Напряжение на этом конденсаторе будет тоже плавно нарастать. А параллельно конденсатору у нас подключено реле. Пока конденсатор ещё не заряжен, реле не хватит напряжения для того, чтобы оно включилось. А когда напряжение на конденсаторе подрастёт — реле включится. Ну а контакты реле включают питание этого некоего усилителя или через мощные резисторы, которые и ограничивают стартовый ток, или потом — напрямую.

И вот этой схеме уже наверное лет пятьдесят или больше! Ничего нового нет — да и не требуется. Вот Меандр и сделал нам на основе этой схемы хороший готовый продукт. Реле имеет катушку на 110 вольт (чтобы не морочиться с высоким потребляемым током), мелкий резистор, диод и конденсатор составляют ту самую RC-цепочку для задержки времени, а мощные резисторы ограничивают ток.

Реле ограничения пусковых токов МРП-101 (резисторы ограничения тока)

Я проверил это реле на своём световом оборудовании (про это — в конце поста, когда я дорасскажу про панельку с выключателями). Штатно, когда я включал свои девайсы вилкой в розетку, у меня проскакивала довольно мощная искра (ниже скриншот из видео) и иногда вышибало автомат в 16А на комнату.

Искра при включении импульсных блоков питания (без МРП-101)

Для теста я подцепил эту же линию через реле МРП-101 и начал так же тыкать вилкой в розетку. Хрена с два я получил какую-либо искру после этого! Меня этот результат полностью удовлетворил. А самое интересное — что с этим реле предохранители на 10А в панельке с выключателями не сгорают! То есть, реле реально ограничивает броски тока!

Дальше будет испытание на заказчике, у которого подгорают контакты Logo и на заказчике щита в Дмитров с мощными блоками питания для LED-лент (испытание прошло успешно — с контактами Logo и реле всё хорошо).

Внутреннее реле в МРП-101 щёлкает где-то через полсекунды после подачи питания и отключается примерно через секунду, когда питание пропадает. То есть, если по питанию будут кратковременные провалы — МРП-101 НЕ ограничит стартовый ток. А если провал будет больше чем секунда-полторы — то оно перезапустится и снова сработает, ограничив бросок тока.

Мне всё понравилось, и я начинаю думать о том, на какие линии и где его закладывать. Например, на питание компов или ещё какой техники. Только, чур, не параноить! А то я знаю вас: вы ща как начитаетесь, а потом мне же и будут сыпаться ёбнутые заказы вида «А давайте на все линии поставим МРП-101, мало ли чего — вот пишут что у холодильника высокий стартовый ток».

2. Реле ограничения пусковых токов (модуль защиты контактов) F&F МК-5-1.

Так как мы знаем принцип работы всех реле компенсации стартового тока (фактически это реле времени — задержка на включение, которое нормально замкнутыми контактами подкючает последовательно в цепь резистор большой мощности и небольшого сопротивления), то нам проще разобраться и с другими аналогичными реле. На очереди — F&F МК-5-1.

Реле компенсации пусковых токов Меандр МРП-101 и F&F МК-5-1 (вид рядом)

Хоть я не люблю F&F из-за их ебанутого реле F&F CP-721, которое мне попортило много крови и нервов, но я прикупил для вас парочку штук реле компенсации стартовых токов (у F&F они называются «модуль защиты контактов») и сейчас покажу их вам.

Сбоку реле нарисована схема включения. У этого реле ввод питания находится строго сверху, а выход — строго снизу. Это даже хорошо и сходится с негласными стандартами в нашей стране.

Реле компенсации пусковых F&F МК-5-1 (вид на обозначения)

А вот вам внутренности этого реле. Всё точно так же: стоит мощный резистор на 30 Ом и 10 Ватт, коммутирующее реле, индикаторный светодиод…

Внутренности реле компенсации пусковых F&F МК-5-1

Но есть более классная вещь! Рядом с ограничительным резистором стоит термопредохранитель! То, о чём Меандр вообще не подумал, мать его! Здесь, если реле не сработает, резистор будет сильно греться и термопредохранитель спасёт щит от пожара.

Термозащита внутри реле компенсации пусковых F&F МК-5-1

На самой плате стоит диодный мостик и резисторы для питания светодиода. Забавно, что силовая линия сделана жёлто-зелёными проводами. Ну, хех, внутри реле — похеру =)

Задняя сторона платы реле F&F МК-5-1

Коммутирующее реле тут стоит на 24V, а питается оно через гасящий конденсатор и диодный мост. Это лучше, чем мелкий резистор у Меандра.

Марка реле внутри F&F МК-5-1

В общем, F&F имеет право на жизнь так же, как и МРПшка. Главный плюс F&F — в термозащите! А вот главный минус Меандра — в его узких корпусах. Представляете, если надо будет заменить дофига Меандра на F&F в силу каких-то причин? Это не получится сделать!

3. Реле ограничения пусковых токов Siemens ICL230.

Когда Pressmaster (читатель моего блога, попавший на проблемы с Меандром) столкнулся с проблемами МРП-101, то он стали искать альтернативы. И для теста купил брендовое реле компенсации стартовых токов от Сименса — Siemens ICL230, которое идёт как реле в линейке Logo для подключения к нему нагрузок с высокими стартовыми токами.

Реле компенсации стартовых токов Siemens ICL230

Вход питания у этого реле строго снизу, а выход — строго сверху (под европейский стандарт). Pressmaster разобрал его и прислал мне часть фотографий. Сейчас мы их посмотрим.

Внутренности реле компенсации стартовых токов Siemens ICL230

Во-первых, блок питания у нас тут сделан побрутальнее и содержит побольше компонентов. Вижу жирный диодный мост, защитные диоды, транзистор D2NK9 (видимо, на нём сделан стабилизатор). После этого идут мелкие транзисторы и RC-цепочка для задержки. Коммутационное реле — на 48 вольт и на 10А.

А дальше у нас снова стоит термопредохранитель! Ну какого чёрта только Меандр делает без них?

Термопредохранитель внутри реле компенсации стартовых токов Siemens ICL230

А вот и задняя сторона платы. Под транзистором есть полигон на плате, который работает как радиатор. А ещё угарно выведен светодиод — через световодную призму. Любит Сименс извращаться, мать его!

Задняя сторона платы реле компенсации стартовых токов Siemens ICL230

4. Применение реле ограничения пусковых токов (панель распределения питания).

Сейчас мы снова вернёмся в 2018 год, и я расскажу вам про то, как применил МРП-101, устроив концепту реле ограничения пусковых токов жёсткие тесты. Дело в том, что у меня появилась панелька (ShowTec DJ Switch 6), у которой спереди есть выключатели, а сзади — обычные розетки под обычные вилки (у меня 6 штук, есть версии на 12). Подробнее про эту панельку можно прочитать в посте про распределение питания (куда уехали все подробности).

Панель питания ShowTec DJSwitch 6

Я искал такую панельку для того, чтобы перестать тыркать вилки в розетки: у меня есть парочка прожекторов для фоновой засветки другой половины комнаты. Я использую их для того, чтобы контрастность по освещению между зоной рабочего стола и остальной комнатой была небольшая. И вот каждый день я их то включаю, а то выключаю (а в 2019 сюда ещё и рабочий свет для сборки щитов добавился).

Панелька с выключателями сюда идеально подходит. Ну, а как я уже писал выше, при включении моего сценосвета в розетке проскакивала адская искра и иногда вышибало автомат на 16А на комнату. Вот я взял эту панельку и на парочку её каналов воткнул МРПшки, бросив их валяться внутри:

Подключаем реле и прочие соединения

Каждая линия на панельке защищена предохранителем на 10А. Так вот с МРПшкой этот предохранитель ни разу не выбивало. А уж автомат в 16А на комнату — тем более.

Саму панельку я прикрутил к краю стола вот так:

Панель питания закреплена сбоку рабочего стола

Сильно под ноги она не попадает и не мешается, а пользоваться стало дико удобно. Теперь не надо будет перед сном подлезать под розетку у кровати и выдирать вилку дежурного прожектора!! Ура!

В итоге на 2018 год (когда я писал пост) я остался всем доволен: релюхи МРП-101 показали себя охрененно круто! Буду их теперь ставить в проблемные места! И очень доволен панелькой. Наверное, при случае возьму ещё одну такую на другие нужды — в рэковый шкаф или ещё куда! С тех пор (на 2020 год) панелька вовсю работает, всё живо (предохранители в панельке и автомат). МРПшки я ставлю в щиты вовсю (на 17 февраля 2020 поставил 52 штуки O_o).

Держите обещанное видео про панельку и МРПшки. Там видна эта панелька вживую и мощная искра при старте МРП-101:

5. Проблема с перегревом реле Меандр МРП-101 (‘2019). Неприятный сюрприз!

Не зря я тут упоминаю про Pressmaster! Незримо он присутствует на блоге и тащится от моих решений. Например, его втащил Siemens Logo и он делает на нём разные проекты. Так вот один из проектов у него чуть НЕ СГОРЕЛ НАХУЙ! Он затеял разборки с Меандром, которые привели к тому, что на февраль 2020 года Меандр в третий (!!) раз переделывает МРП-101 заново, устраняя косяки. Пока я могу выложить только часть информации, которой и делюсь с любезного разрешения Pressmaster.

Концепт его щита был в том, что ему надо было сделать его на Logo, но место и бюджет щита были очень ограничены. не мог он, как я, наставить кучу внешних исполнительных реле и клемм для подключения кабелей ламп. А так как у него было много линий, которые могли повредить контакты встроенных реле Logo высокими стартовыми токами, то когда он увидел мой пост про МРПшки, он сделал ход конём.

Так как у МРПшек можно подавать ввод и снизу и сверху, то Pressmaster поставил на все группы света МРПшки таким образом, чтобы можно было подключить кабели ламп к их верхним контактам и сразу же, поставив там же выше шину PE, утащить их на потолок на группы света.

Дальше идёт пересказ истории в моём стиле.

Ну, хули блядь! Меандр, пиздатые корпуса в 13 мм вместо 17,5, плотный монтаж! Врубил он все группы на тестирование и ушёл себе в соседнюю комнату. А потом через пару часов работы эти МРПшки стекли вниз. Он написал Меандру — те прислали ему новые на замену. Он их снова поставил и стал мерить температуру. Хули! +80 — как с куста! Он снова написал Меандру. Те переработали реле (тогда и светодиод появился), стало чуть легче. Но всё равно они ДИКО греются.

В общем, получилось как при групповой прокладке кабелей: каждый кабель (а тут — реле) немного греется. Но когда они находятся плотно в одном месте, то они начинают подогревать друг друга — и общая температура повышается.

Pressmaster рыдал и плакал. Потому что, бля, он купился на ебанутые 13 модулей ширины и уже замуровал корпус щита у заказчика (и там готова отделка). То есть даже вложив большие деньги, нельзя заменить на Siemens ICL или F&F — это не влезет в щит.

После того, как Меандр немного переработал свои реле, Pressmaster нашёл единственно годное решение для своего щита — разделять МРПшки попарно клеммой для кнопок света. Вот так:

Щит от Pressmaster, в котором перегревались МРП-101 (до +60 градусов и выше)

В таком режиме МРПшки греются до +60 градусов через два часа работы. Это уже не +80. Хотя бы не стекут на пол, бля.

Перегрев Меандр МРП-101 внутри щита (щит от Pressmaster)

Когда я про это узнал — я ОХУЕЛ. Потому что у меня на этот момент было несколько щитов, в которых эти МРПшки были заказаны и ехали из Меандра. А ещё несколько щитов были собраны и сданы. Я знаю, что мне немного повезёт из-за коэффициента спроса: у меня МРПшки стоят только на светодиодные ленты. А светодиодные ленты стоят в разных комнатах и вероятность того, что врубят все ленты одновременно, — средняя. Будут плавиться — буду менять на обновлённые.

А вывод в том, что Меандр подложил свинью своим узким корпусом. И за это я его ненавижу. Потому что теперь все реле в своих щитах я разделяю фиксатором BAM4 для вентиляции. И 13 мм превращаются в 13+8 = 21 мм. Вот такая вот пиздец-инновационная узкая ширина!

Пример установки реле МРП-101 внутри щита с охлаждающими проставками из фиксаторов BAM4

Тут надо сказать про то, что другие реле компенсации стартовых токов тоже сильно греются (F&F и Siemens) по тестам Pressmaster’а. Но не так сильно, как Меандр. Ошибка большинства производителей в том, что они делают простой блок питания (с гасящим резистором или транзистором), на котором падает большая мощность, переходящая в тепло.

И это ещё не всё! Это же была первая переделка МРПшек. А какая вторая?

А вот какая:

Реле Меандр МРП-101 образца декабря 2019 года (изменена начинка)

Меандр полностью переработал всю начинку реле и сделал более грамотно (но, надеюсь, не глючно!): реле теперь стало поляризованное и не требует мощного источника питания. За выдержкой времени следит микроконтроллер, который заодно включает это реле при переходе сетевого напряжения через ноль.

Но есть два классных пиздеца. Первый — это то, что термодатчик так и не появился.

А второй — на фотке (охуейте ещё раз):

Реле Меандр МРП-101 образца декабря 2019 года (изменена начинка)

Да! Меандру стало неудобно и он решил ничтоже сумняшеся поменять к херам назначение клемм реле. Если раньше у нас с каждой стороны реле были L-N входа/выхода, то теперь снизу реле у нас нули, а сверху реле — вход фазы и выход фазы.

Блядь! Это фейл! Ну почему? Ну почему вы думаете жопой?! Начали же такой хороший продукт — и делаете детские ошибки! Вот как менять теперь эти реле, если предыдущие кривые поделки выйдут из строя? Провода-то в щите будут сделаны под предыдущее расположение клемм реле… Значит надо перебирать весь щит?

Мы с Pressmaster обсуждали, стоит ли показывать этот вариант или нет. В контексте поста и глючности Меандра я считаю, что нужно, потому что скрывать тут нечего. И если Меандр таким хуёвым образом относится к своим клиентам — то надо про это рассказать. И я напоминаю, что я готов выставить Меандру счёт для оплаты за те решения и консультации, которые я делаю на своём блоге, разбирая их ошибки. И Pressmaster’у тоже советую заслать им счёт.

С разрешения Pressmaster добавил один из его роликов в пост. Там он меряет температуры разных реле:

А на данный момент Меандр быстренько переделывает свои реле в третий раз… Обещает вернуть предыдущее расположение контактов, как было. Ждём!

6. МРП-101 от Февраля ‘2020. Переделали. Вернули расположение L/N как надо… и старую жаркую схему!

Ну что? Сегодня, 3 марта 2020 года, я получил от ЭТМихи свою мега-доставку материалов для щита! А вместе с ней — те обновлённые МРПшки, про которые только что рассказывал Pressmaster в видео — в которых Меандр обещал поправить расположение контактов на такое, как должно быть — L-N сверху и L-N снизу. При этом схема реле должна остаться новой и крутой — с включением по переходу через ноль, бистабильным реле.

Поглядим?! Итак, вот одно моё реле, которое я заказал для себя на изнасилование. Дата выпуска — Февраль 2020 года.

Реле МРП-101 от Февраля 2020: Вид на дату выпуска

Смотрим в коробочку, и видим расположение контактов «как было», которое правильное — L-N сверху и L-N снизу. Хорошо, молодцы!

Реле МРП-101 от Февраля 2020: Вид на упаковку

На всякий случай заснял маркировку реле и кусочек паспорта — мало ли сгодится какая-то информация оттуда, чтобы сравнить следующие версии Меандровского креатива.

Реле МРП-101 от Февраля 2020: Вид на маркировку и паспорт реле

Также заснял серийный номер реле и версию паспорта, который с этим реле прилагался. Интересно, серийник уникальный или нет? А то раньше на всех реле пару лет красовалось одно и то же обозначение «№91М20», создавая видимость номера партии или какого-то серийника.

Реле МРП-101 от Февраля 2020: Серийный номер реле и версия паспорта

Вскрываем реле — и… ОБОЖЕМОЙ! Pressmaster, если ты это читаешь — рви волосы на жопе, блядь! ДА!!! Меандр ПЕРЕДЕЛАЛ реле — выкинул всю крутую начинку с запуском при переходе через ноль и биполярным реле и ебанул сюда самую первую версию схемы, которая греется как печка!

Реле МРП-101 от Февраля 2020: Вид на печатную плату (вернули старую опасную схему)

Блядь! Ну как нахуй так-то?! Сука, я просто не понимаю этой пиздни! Что у Меандра с разрабочиками? Почему можно делать одно и то же реле аж с 2018 года — два года? Почему надо за наш счёт его тестировать? Блядь… эти вопросы я задавал в 2016 году, и они так и остались без ответа!..

Ладно, глядим далее, хотя уже всё понятно — реле будет перегреваться, как и модель 2018 года. Сзади платы ничего нет и пустота.

Реле МРП-101 от Февраля 2020: Вид на печатную сзади

Модель реле — обычное на 110V постоянного тока. Тоже с (пламенным?) приветом из 2018 года.

Реле МРП-101 от Февраля 2020: Вид на модель реле (W15-1C2S)

Ну и сзади платы видно, что фаза проходит через реле и резисторы, а ноль перемычкой передаётся со входа на выход.

Реле МРП-101 от Февраля 2020: Вид на монтаж реле снизу (проволочки для нулей и фаз)

У меня даже никакая поговорка на ум не приходит… Я в шоке! Меняли-меняли, меняли-меняли — и поменяли на тоже, что и было! Это верх маркетинга. Чёрт побери, да это ж тоже совок: «Как сделать хорошо? Сделайте ещё хуже, а потом верните как было». Чёрт побери, ну когда Меандр перестанет делать совок? Казалось бы, у них своё проиводство печатных плат есть — сделай прототипы, раскидай по нам — спецам — на тесты, оплати тестирование, получи результат.

Буду краток. Я знаю, что Меандр до сих пор меня читает. Так вот на данный момент у меня куплена 61 штука МРП-101. Вот кусочек отчёта:

Кусочек отчёта из CS CRM о том, сколько МРПшек было куплено на 3 Марта 2020 года

Две штуки ушло в панельку розеток, одну я разобрал сегодня. 61 — 2 — 1 = 58. Вот я публично заявляю следующее.

Когда Меандр разродится нормальной версией МРП-101 и оттестирует её, то пускай свяжется со мной и пришлёт мне 58 штук новых МРП-101 на замену в моих щитах. За счёт Меандра, конечно же. Так как сейчас условно можно считать, что некоторые из моих щитов заминированы МРПшками.

Договор с заказчиками у меня составлен таким образом, что если сейчас из-за этих МРПшек в щитах сгорят дома или квартиры, то заказчики будут подавать в суд на производителя той модульки, из-за которой всё сгорело. Так что я жду новых реле и письменного ответа «Мы готовы отвечать по судебным искам и возмещать стоимость ущерба».

А мы все будем ждать продолжение сериала «Back in USSR».

7. Реле ограничения пусковых токов от Mean Well: ICL-16x и ICL-28x.

Реле компенсации стартовых токов Mean Well ICL (вариант на DIN-рейку)

К нам тут бруталити подтянулись — от моего любимого бренда Mean Well (напоминаю пост про их блоки питания, который я периодически дополняю новыми моделями, например сейчас дописал про серию HDR с фотками внутренностей). Они сделали линейку реле компенсации стартовых токов ICL (ссылка на их сайт с поиском по «ICL» и ссылка на их статью про ICL-16).

Вот фотки моделей, которые сейчас доступны:

Реле компенсации стартовых токов Mean Well ICL (фотографии продукции из каталога)

Модельный ряд тут имеет такие модификации:

  • Ток: 16А или 28А;
  • Вариант исполнения: R — на DIN-рейку, L — в виде плоского блока, который можно под потолок закинуть;
  • Ограничение пускового тока до: 23А у ICL-16 и до 48А у ICL-28;
  • Время ограничения тока: 0,3 секунды у ICL-16 и 0,15 секунды у ICL-28.

Размеры у ICLок большие, поэтому я не вижу смысла ставить их в щиты для компенсации стартовых токов каждой мелкой группы света. Мне кажется, что эти ICLки из-за своих размеров и брутальности будут востребованы на линиях офисного или промышленного освещения, где свет включается контакторами, а мощность светодиодных блоков питания выходит далеко за 500 Ватт.

Ещё их можно ставить в цепь включения не только освещения, а любого оборудования с импульсными блоками питания: сценический свет (линии на 16 или 25А для питания софитов световых приборов), щиты/шкафы автоматики (компенсация токов включения мощных блоков питания). Вот я у себя начну ставить их на свои щиты с ПЛК, чтобы старт блоков питания проходил более плавно.

Сейчас я использую компактные блоки питания серии HDR, которые занимают меньше места, чем старые DR. И благодаря этому сэкономленному месту можно будет ICL-16R ставить. Хех, а то у меня в последних щитах уже стандартный набор — это два блока питания на 150 +100 Ватт =)

Сама конструкция ICLок мне понравилась (вопросы вызывает только подключение предохранителей, и мы с PressMaster уже это по телефону пару дней как обсуждаем).

Как только ICLки появились, их мало где можно было купить. Сейчас они появились в списке товаров Электронщика (ссылка на ICL-16R и ссылка на ICL-28R), где их можно купить легко и без проблем как на частное лицо, так и на юрлицо. Собственно, в Электронщике я всё и покупаю уже как много лет.

Корпуса у ICLок имеют много вентиляционных отверстий, так же как и у блоков питания серии HDR (только блоки HDR чёрные, а эти — бежевые). ICL-16R занимает 1,5 DIN-модуля, а ICL-28R — два DIN-модуля.

Корпуса реле плавного включения Mean Well ICL имеют много вентиляционных отверстий

Так как все такие реле компенсации стартовых токов делаются по схеме «резистор и реле, которое его закорачивает», то первым делом решил проверить самонагрев ICLок: у Меандр МРП-101 в первых версиях внутреннее реле питалось через резистор, который грелся почти до 100 градусов и плавил корпус МРПшке. Если у ICLок реле питается также — то они будут дико греться. Вот это я и захотел проверить.

Как раз от доставки Электронщика у меня осталась пупырка. Я взял свои две ICLки, включил их по утру, накрыл этой пупыркой и так до вечера и оставил.

Тест на перегрев Mean Well ICL: положили на весь день под пупырчатую плёнку

Вечером я сделал все нужные замеры (про них ниже), а следующим утром приоткрыл корпуса ICLок и включил их в таком виде на пару часов, чтобы посмотреть на то, какие элементы на плате будут нагреты больше всего.

Тест на перегрев Mean Well ICL: прикрыли крышкой, чтобы померить нагрев внутренних реле

У меня есть простенький тепловизор из AliExpress. Вот им я сделал эти снимки:

Тепловизионная съёмка Mean Well ICL: под плёнкой (1), с открытой плёнкой (2) и нагрев реле внутри корпуса (3)

Первый снимок — это ICLки под пупыркой после полдня работы. Максимальный нагрев — 40 градусов (39,9). Второй снимок — это те же самые ICLки, но после того как я снял с них пупырку. Тут максимальный нагрев 54 градуса (53,7). Против Меандровских 80 градусов это очень хорошо! Третий снимок — это то, что греется больше всего на плате. Оказалось, что это реле. 63 градуса (62,2). Для реле это нормально. У меня ABBшные CR-P греются на 55 и работают годами.

Так что за нагрев — зачёт! Кроме реле, на плате ничего больше не греется. Значит схема питания реле не такая простая, как была у Меандра.

Теперь посмотрим на внутренности наших ICLок. Снимаем крышки, и… мне НРАВИТСЯ!!!

Внутреннее устройство реле компенсации стартовых токов Mean Well ICL: дофига резисторов и термопредохранителей

Сцуко, ДА! ДАааа!! Вот ТАК надо делать реле компенсации стартовых токов на большие номиналы токов!!! Ставить полноценные керамические проволочные резисторы большой мощности!!

Вот вам номиналы этих резисторов для тех, кому будет интересно:

Номиналы резисторов Mean Well ICL: слева — ICL-16 (7,5 Ом последовательно), справа — ICL-28 (7,2 Ом параллельно-последовательно)

Резисторы включены таким образом:

  • ICL-16R: 7,5 Ом 7 Вт последовательно с 7,5 Ом 7 Вт;
  • ICL-28R: (7,2 Ом 7 Вт параллельно с 7,2 Ом 7 Вт) последовательно с (7,2 Ом 7 Вт параллельно с 7,2 Ом 7 Вт).

На фотографиях печатных плат хорошо это видно:

Вид на печатные платы реле Mean Well ICL (слева ICL-16R, справа ICL-28R)

Про сами платы и то, что я на них увидел, я скажу следующее:

  • Схема питания внутренних реле — это стабилизатор на транзисторе. Греется меньше, чем у Меандра. Это прям жирный плюс!
  • Все платы покрыты лаком. Это ещё один плюс!
  • Около термопредохранителей есть защитная фрезеровка, чтобы при расплавлении предохранитель не смог замкнуть цепь ну никак. Круто!
  • По всему свободному месту платы ICL-28R пущен медный полигон с двух сторон, нашпигованный переходными отверстиями и кучей припоя. Это такой хитрый теплоотвод: плата тоже будет служить радиатором, если что-то случится и резисторы будут греться.
  • Ноль питания — СКВОЗНОЙ. Этим реле он нужен только для работы, так что в сложных случаях его можно подавать к реле проводом небольшого сечения.

Ну и на закуску — термопредохранители. Плата ими буквально нашпигована, а сами предохранители приклеены к резисторам (а резисторы между собой), чтобы тепло быстрее передавалось между ними.

Вид на термопредохранители в реле Mean Well ICL (слева ICL-16R, справа ICL-28R)

То, что не совсем понятно с предохранителями — это то, что все они включены параллельно: две штуки в ICL-16R и четыре штуки в ICL-28R. А что будет, если они все не сгорят одновременно? Ну-ка, полезем в каталог таких предохранителей… Ага! Все предохранители такого формата имеют номинал рабочего тока — внимание — 15 ампер. Одну штучку до 16ти не дотягивает!

Поэтому-то здесь Mean Well решили объединить предохранители параллельно, чтобы набрать нужный ток и снизить падение напряжения на самих предохранителях: две штуки в ICL-16 дают 30А с запасом, четыре штуки в ICL-28 дают 60А с запасом.

А вот Меандр и F&F мухлюют, ставя по одному такому предохранителю, который работает там в предельном режиме. Опаньки!

Вид на силовые реле внутри у Mean Well ICL (слева ICL-16R, справа ICL-28R)

Но как же быть с одновременным сгоранием таких предохранителей? А вот не знаю и спрошу у Mean Well, если ответят. Мне видится следующее. Коммутационное реле внутри может или всегда включаться, или никогда не включаться, если помрут его цепи управления. В этом случае нагрузка всегда будет работать через резисторы, которые будут бесконечно греться и дожгут все предохранители разом или друг за другом. И в итоге цепь отключится.

В общем, мне ICLки ОЧЕНЬ понравились! Это очень охрененский образец отличной работы и отличного изделия. Главный их минус — это большие размеры. Но вы же хотели честные 16А (и даже 28А) и хорошую защиту?

Модульные однофазные реле контроля тока с интегрированным токовым трансформатором

Модульные однофазные реле контроля тока с интегрированным токовым трансформатором.

Реле тока предназначены для сигнализации превышения тока в контролируемой цепи. Эти устройства также используются для защиты цепей и источников питания от перегрузки и короткого замыкания. Реле тока измеряют его величину в контролируемой цепи и срабатывают при превышении установленного значения.

ОСНОВНЫЕ ПРИНЦИПЫ РАБОТЫ

Реле тока представляет собой устройство (как правило, электромагнитное или электронное), реагирующее на превышение контролируемой величины во входной цепи. При превышении установленной величины выходные контакты переключаются, и этот сигнал используется для управления цепями сигнализации или устройствами силовой коммутации (отключения нагрузки). При снижении тока ниже установленного значения, реле тока возвращается в исходное состояние, и его выходной сигнал обрабатывается цепями автоматики, управляющей силовыми цепями.

Рассмотрим реле тока с интегрированным токовым трансформатором различных производителей.

Реле с интегрированным токовым трансформатором, позволяет протянуть через переднюю панель изделия провод, в котором происходит замер тока. От провода с контролируемым переменным током осуществляется питание реле.

Схема подключения у всех реле данного типа одна.


Выгодой в данном случае является универсальное напряжение питания устройства.

Реле тока РТ-15М (Москва)

Реле РТ-15М предназначено для контроля тока в электрических цепях. Срабатывание реле происходит с регулируемой временной задержкой при величине тока выше установленного значения.

Если измеренное значение тока превысит установленное пороговое значение, исполнительное реле включится после отсчета установленной потенциометром «t» выдержки времени. При снижении тока до значения 0,9 Iуст,реле выключается без задержки. Если во время этого отсчета значение тока вернется в пределы установленных значений, работа будет продолжена без переключения исполнительного реле. Величина тока срабатывания устанавливается потенциометром «порог» в пределах 10…100% от максимального значения тока.

Контролируемый ток:

2,5…25А, 4…40А, 10…100А 50Гц

Особенности: Питание осуществляется от провода с контролируемым переменным током, который пропускается через боковое отверстие в корпусе реле.

Реле приоритета нагрузки РПН-1 (Санкт-Петербург)

Реле приоритета РПН-1 позволяют ограничивать потребление электроэнергии в электрических системах с лимитированной максимальной мощностью. В течение определенного времени измеряется суммарный ток электрической системы и в том случае, если потребление электроэнергии превысит заданное значение, то реле приоритета отключит неприоритетную нагрузку.

Диапазон измерения тока (по исполнениям)

 2.5-25A AC

 4-40А АС

 10-100А АС

Рассмотрим реле тока с интегрированным токовым трансформатором в которых питание гальванически изолировано от измерительного контура. 

Эта конструкция снижает тепловые потери изделия по сравнению с изделиями со встроенным шунтом, а также повышает токовый диапазон и гальванически изолирует замеряемый участок.

Реле тока PRI-32 (Чехия)

Реле контроля PRI-32 предназначено для контроля уровня токав однофазныз AC цепях. Плавная настройка подаваемого тока позволяет использовать реле в аппликациях c необходимостью индикации проходящего тока, используется также как реле выбора. Выходное реле в нормальном состоянии разомкнуто. При превышении настроенного уровня силы тока реле замкнется. Выгодой в данном случае является универсальное напряжение питания.

  • Диапазон измерения тока: 1-20A AC
  • универсальное напряженеи питания: AC 24 — 240 V и DC 24 V
  • питание гальванически изолировано от контура замера
  • превышение тока — ток, проходящим по контрольному проводу не должен кратковременно превышать 100 А
  • выходные контакты 1x переключ. 8 A

Реле тока PRI-52 (Чехия)

Реле PRI-52 служит для контроля силы тока в монофазовых AC цепях. Плавная настройка обеспечивающего тока предназначает реле для многих и разных электроинсталляций. Реле выхода в нормальном состоянии выключено. При превышении заданного уровня тока реле после настроенной задержи замкнет. При возвращении из состояния ошибки в нормальное состояние проявляется гистерезис . Диапазон PRI-52 можно увеличит с помощью внешнего токового трансформатора. Выгодой для PRI-52 является расположение отверстие для проходящего провода под уровнем покрытия в распредщите — проходящий провод таким образом не досягаем для неподходящих манипуляций в рапредщите .

  • можно использовать для регистрации силы тока до 600A с внешнего токового трансформатора
  • плавная настройка обеспечивающего тока — диапазон AC 0.5 … 25A
  • плавная настройка задержки потенциометром — настраиваемая в диапахоне 0.5 …10с
  • напряжение питания AC 230 V; выходной контакт 1x переключ.8 A (AC1)

Реле тока РТ-40У (Санкт-Петербург)

Реле контроля тока РТ-40У предназначено для выдачи управляющего сигнала при превышении измеряемого тока выше установленного значения. Реле контроля тока служит для контроля перегрузок станков, электродвигателей или другого электрооборудования, для контроля потребления, максимальной токовой защиты, диагностики удаленного оборудования (замыкание, пониженное или повышенное потребление тока). Диапазон измерений можно расширить с помощью стандартного токового трансформатора.

  • Три диапазона измерения тока (0.1-1А, 0.5-5А и 2.5-25А)
  • Порог срабатывания регулируется от 10 до 100% максимального значения тока диапазона (1А, 5А или 25 А)
  • Большая перегрузочная способность в длительном режиме в соответсвии с диапазоном (1А — до 4А, 5А — до 15А, 25А — до 400А)
  • Задержка срабатывания исполнительного реле регулируется от 0,2 с до 20 с
  • 1 переключающий контакт 16А, 250 В

Реле тока  RM17JC (Schneider Electric)

Реле RM17 JC00MW предназначено для контроля повыш енного тока (сверхтока). Если уровень тока превышает порог срабатывания, установленный на лицевой панели реле, контакты прибора замыкаются и размыкаются, когда уровень тока опускается ниже величины, которая рассчитывается как порог срабатывания минус гистерезис. При соединении клеммы Y1 с клеммой A1 (+), действие выхода реле становится обратным. Таким образом, контакты реле размыкаются если уровень тока превыш ает порог срабатывания, установленный с лицевой панели реле, и замыкаются, когда уровень опускается ниже величины гистерезиса.

  • напряжение питания: 24-240 V AC, 24 V DC
  • диапазона измерения тока: 2…20 А
  • 1 перекидной контакт, 5А

Остальные токовые реле:

PRI-51, РКТ-1, РКТ-2, РКТ-40, PR-612, PR-613, PR-615, RM35 JA, CM-SRS.1, CM-SRS.2, RM35 JA

Наша компания представила вам обзор реле тока с интегрированным токовым трансформатором отечественного производства и зарубежных производителей.  С каждым годом используется все более мощные электроприборы и техника, в связи с чем совершенствуется и электротехническая продукция для защиты электросетей. Чтобы не допустить выхода из строя дорогой электроники и электротехники в сети с недопустимыми параметрами, ее лучше отключить, и сигнал для этого выдает реле тока.

Импульсное реле для управления освещением: схема подключения

При монтаже автоматических систем управление освещением могут использоваться различные виды выключателей. Некоторые устройства, например, маршевые и проходные изделия позволяют обеспечить довольно высокий уровень комфорта при осуществлении контроля над светильниками, но наиболее простым и удобным является схема с импульсным реле. Такое устройство может находиться в 2 различных состояниях, которыми можно управлять дистанционно. Более подробно об импульсном реле, применяемом для управления освещением, будет рассказано далее.

С какой целью применяются импульсные прерыватели электрической цепи

Особенностью реле этого типа является возможность фиксации в каком-либо одном положении, после подачи на его контакты электрического сигнала. Подобная бистабильность электронного элемента удобна для управления многими приборами и механизмами, но в быту, наиболее часто, его применяют в схемах включения осветительных приборов. Например, свет в длинном коридоре можно отключить из различных комнат, что позволяет легко «путешествовать» по дому или квартире всегда поддерживая необходимый уровень освещения там, где это необходимо.

Одним из преимуществ импульсного устройства является возможность «запоминать» последнее положение контактов, даже в случаях, когда происходит полное обесточивание электрической сети последнее положение контактов сохраняется.

Достоинство реле импульсного типа заключается также в том, что для его работы может быть использовано низкое напряжение. Благодаря такой электрической разводке выключатель можно расположить в очень влажном помещении, например, в ванной комнате или подвале. Таким образом, достигается значительно более высокий уровень безопасности при эксплуатации электрических систем, в сравнении с обычными выключателями.

Где купить

Приобрести устройство можно как в специализированном магазине, так и онлайн в Интернет-магазине. Во втором случае, особого внимания заслуживает бюджетный вариант приобретения изделий на сайте Алиэкспресс. Для некоторых товаров есть вариант отгрузки со склада в РФ, их можно получить максимально быстро, для этого при заказе выберите «Доставка из Российской Федерации»:

Устройство и принцип работы

Конструкция импульсного устройства очень проста, но этот факт не является недостатком изделия, наоборот, наличие небольшого количества элементов позволяет существенно повысить надежность изделия. Состоит такой электронный прибор из следующих частей:

  • Катушки.
  • Сердечника.
  • Подвижного якоря.
  • Контактов.

Катушка реле состоит из большого количества витков медной проволоки. При изготовлении, проводники обрабатываются специальным лаком, который позволяет исключить вероятность короткого замыкания (при стандартном режиме работы устройства). Сердечник состоит из магнитного материала и является подвижным элементом, воздействующим на якорь, который, в свою очередь и приводит в движение электрические контакты.

Благодаря особенности конструкции системы размыкания контактов в импульсном устройстве, удается добиться надежной фиксации этих элементов в каком-либо одном положении.

Разновидности импульсного реле

Выше был описан наиболее распространенный электромеханический тип импульсного устройства, но современные устройства этого типа могут быть реализованы на управляющей микросхеме. Такая конструкция потребляет больше электроэнергии из-за постоянного нахождения устройства в состоянии ожидания, но производит меньше шума во время срабатывания контактов.

Импульсные устройства, оснащенные микроконтроллером, имеют более широкий функционал. Например, кроме возможности фиксации выключателя в определенном положении, можно задать время выключения света (для устройств, оснащенных таймером).

Электронные реле также имеют размыкающие контакты, но приводятся они в движение посредством электронной схемы, которая управляет моментом их фиксации. Устанавливать устройства этого типа можно в электрические системы с различным напряжением питания.

Основным недостатком электронных реле является низкая устойчивость к помехам и перепадам напряжения. По стоимость такие изделия также существенно проигрывают электромеханическим изделиям (электронные ИР стоят дороже).

Технические характеристики

При монтаже систем освещения, которые будут включаться от импульсного устройства, необходимо учитывать основные параметры такого изделия. Если устройство не будет рассчитано на нагрузку подключения либо напряжение в сети, то оно может моментально выйти из строя.  В документации к импульсному устройству, производителем указываются наиболее важные характеристики. Среди числа основных параметров, которые необходимо знать до принятия решения об использования той или иной модели ИР можно назвать:

  • Выходной ток — максимальное значение силы тока, возникающей в катушке при перемещении якоря (для электромеханических устройств).
  • Значение срабатывания — обозначает сигнал, который приводит к автоматическому срабатыванию реле.
  • Ток при втягивании — минимальное значение силы тока для срабатывания реле.
  • Возвратный коэффициент — соотношение тока выхода якоря к току втягивания.

При выборе и использовании реле следует также учитывать предельные значении напряжения и силы тока, на которые рассчитано реле.

В паспорте устройства может быть также указано время срабатывание. Различают изделия быстрого типа, которые включаются за 0.001–0.05 с и приборы с долгой задержкой (около 1 с).

Схемы подключения

Импульсное реле может быть использовано для управления светом. Для обеспечения работоспособности электрических систем с установленными коммутационными элементами этого типа, необходимо правильно выполнить работы по подключению проводников.

Прежде всего, следует иметь в виду, что реле импульсного типа не оснащается какими-либо элементами защиты, поэтому при возникновении в электропроводке осветительных приборов короткого замыкания, может произойти не только подгорание контактов реле, но и воспламенение любых легковозгораемых предметов, находящихся в непосредственной близости от медного проводника. Чтобы минимизировать возможные последствия установка импульсных реле должна осуществляться только после автомата (или плавких предохранителей (пробок)).

Для переключений режимов реле используются кнопочные выключатели. Такие элементы электрической арматуры оснащаются пружинными элементами, которые возвращают кнопку в исходное положение сразу после прекращение механического давления на ее поверхность. Это очень важный момент, ведь если контакт будет замкнут слишком долго, то может произойти перегрев обмотки катушки и изделие (электромеханическое) выйдет из строя.

Многие производители импульсных выключателей указывают в документации на товар о невозможности длительной подачи электрического тока на катушку (обычно не более 1 с).

Количество выключателей, с помощью которых подается сигнал к импульсному реле ничем не ограничено, но, во многих случаях, в схеме подключения устройства находятся 3–4 кнопки. Этого достаточно для управления светом из нескольких мест.

Все кнопочные выключатели подключаются параллельно друг другу. Эта особенность управления импульсным устройством позволяет использовать значительно меньшее количество проводов, в сравнении с другими способами монтажа системы управления одним световым прибором из разных мест. Один провод контактной системы выключателей соединяется с фазой электропроводки, другой — подключается к импульсному реле (контакт А1).

Кроме подведения фазного провода от выключателей, фаза подключается на контакт «2» импульсного устройства. Таким образом, обеспечивается передача сигнала о включении (выключении), а также обеспечение устройства электрическим током для подачи напряжения к потребителям (приборам освещения).

К контакту «2» подключается «ноль». Приборы же освещения соединяются с «землей» не через коммутационное устройство. Нулевой провод подключается к осветительному прибору от нулевой шины.

Физическое размещение импульсного реле возможно как в электрических щитках, так и непосредственной близости от осветительного прибора (установка осуществляется в распределительной коробке).

Плюсы устройства

Применение импульсного реле для организации управления электрическим освещением имеет большое количество преимуществ. Основными положительными свойствами таких систем являются:

  • Относительно невысокая цена.
  • Большой срок эксплуатации.
  • Можно использовать неограниченное количество выключателей (кнопок).
  • Относительно небольшое энергопотребление.
  • Более простой монтаж в сравнении с маршевыми выключателями.

При использовании устройств электронного типа можно задать время, после которого произойдет отключение электроэнергии.

Минусы импульсного реле

Реле импульсного типа не лишены недостатков. Наиболее заметными минусами применения таких систем являются:

  • Генерация электрических помех.
  • Довольно громкий щелчок при включении контактов.
  • Возможен быстрый износ подвижных частей (при очень интенсивном использовании).

Практически полностью избавиться от перечисленных недостатков можно установкой электронных реле, но такие устройства будут стоить значительно дороже электромеханических (в 2–3 раза).

Советы и рекомендации

Перед приобретением и установкой импульсного реле нелишним будет ознакомиться с наиболее распространенными ошибками, которые могут возникнуть на данном этапе. Опытные мастера, которые занимаются установкой коммутационных систем этого типа, часто советуют придерживаться следующих рекомендаций:

  • Если приобретается электронное реле импульсного типа, то лучше отдать предпочтение моделям, оснащенным таймером. Благодаря наличию этой функции можно задать автоматическое отключение электроэнергии после определенного промежутка времени. Такая функция будет очень полезна для организации освещения на улице, а также в помещениях, которые посещаются часто, но ненадолго.
  • Если планируется устанавливать выключатели (кнопки) с подсветкой, то следует заранее уточнить у продавца возможность работы реле с такими элементами электрической арматуры. Многие ИР очень чувствительны к появлению даже незначительного тока в электрической цепи и наличие резистивного элемента приведет к активации системы. Кроме того, прибор может испортиться, ведь катушка будет находиться постоянно под напряжением.
  • Во время выполнения монтажных работ, все детали по которым движется электрический ток, должны быть хорошо изолированы. Для этой цели можно использовать специальные термоусадочные кембрики, а также ПВХ-изоленту.
  • Если в доме есть маленький ребенок, то лучше установить кнопки для активации реле повыше. Такие изделия хорошо изолированы и практически безопасны во время эксплуатации, но дети часто начинают играть с кнопочками подолгу удерживая их во включенном состоянии. Подобные действия часто приводят к выходу из строя импульсные реле электромеханического типа.
  • Большая часть моделей импульсных реле с катушкой рассчитана на 220 В. Такие изделия очень просто подключить к электрической сети, но если необходимо обеспечить высокий уровень безопасности во влажных помещениях, то следует выбирать модели на 12 или  24 Вольта.
  • Если необходимо установить несколько импульсных реле, которые будут использоваться для выключения различных световых приборов, то следует выбирать модели с центральным управлением. Такое устройство можно принудительно выключить, подав на один из его контактов электрический ток. Следовательно, если соединить с одним выключателем несколько таких элементов, то можно одним нажатием кнопки погасить весь свет в доме.
  • Если нет желания или возможности приобретать новые кнопки для включения света посредством импульсного реле, то можно переделать обычные выключатели. Для этой цели необходимо установить небольшие пружины под клавиши, чтобы после прекращения нажатия они возвращались в исходное положение.
  • При установке большого количества импульсных выключателей, для экономии места, кнопки можно располагать в одном подрозетнике.

Импульсное реле является очень интересным по своей конструкции и функционалу изделием, которое можно и нужно использовать для организации более комфортного управления осветительными приборами. Если будет выбрано качественное устройство, а установка изделия будет осуществлена без ошибок, то такая система прослужит в течение многих лет.

Видео по теме

Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Pinterest

Работа реле, типы, символы и характеристики

Реле необходимы для систем автоматизации и управления нагрузками. Кроме того, реле — лучший способ гальванической развязки между частями цепи с высоким и низким напряжением. Существуют сотни различных типов реле. Давайте сначала узнаем, как работает реле.

Базовая работа реле

Контакты

Прежде чем перейти к различным типам реле, я сначала объясню, что и как работает основное реле.Каждое реле имеет внутри две механические части.

Первый — это контакт (ы) реле. Контакты работают аналогично контактам простого переключателя или кнопки. Вы должны рассматривать контакты как пару металлов, как показано на следующей схеме:

Контактный номер и NC

Два терминала работают как переключатель. Когда контакты находятся в «контакте», ток течет от клеммы 1 к клемме 2. Есть два типа контактов: нормально разомкнутые и нормально замкнутые.

NO обозначает нормально открытый контакт, а NC обозначает нормально закрытый контакт. Нормально открытый — это контакт, подобный показанному на предыдущем рисунке. Когда контакт неподвижен, через него не течет ток (потому что это ОТКРЫТЫЙ контур).

С другой стороны, нормально замкнутый контакт позволяет току течь, когда контакт неподвижен. Ниже показаны оба этих контакта:

Вы можете заметить, что НЗ контакт перевернут по сравнению с НО контактом.Это сделано специально. Таким образом, оба контакта (NO и NC) изменят состояние при приложении силы к левому металлическому направлению с ВВЕРХ на ВНИЗ.

Следующая анимация показывает, как замыкающий контакт работает при включении лампочки:

Что касается контактов NC, он работает прямо противоположно контактам NO. Посмотрите следующую анимацию:

Комбинация контактов

Реле может иметь комбинацию вышеуказанных контактов. Посмотрите на следующую иллюстрацию

В этом случае есть третий терминал, называемый «ОБЩИЙ».Контакты NO и NC относятся к ОБЩЕЙ клемме. Между NC и NO контакта нет контакта в любое время!

Следующая анимация показывает, как работает эта пара:

А кто определяет НОРМАЛЬНОЕ состояние?

Хорошо, у нас есть НОРМАЛЬНО открытый и НОРМАЛЬНО замкнутый контакт. Но какое состояние считается НОРМАЛЬНЫМ? Подойдя на шаг ближе к срабатыванию реле, находим пружину.

Эта пружина определяет НОРМАЛЬНОЕ положение ОБЩИХ контактов.Если вы видите 3 приведенных выше анимации, вы заметите, что один раз сила F применяется к ОБЩЕМУ терминалу, а в другой раз сила не применяется. Что ж, на самом деле это неправильно.

Действительно, существует другая сила, которая притягивает контакт к ВВЕРХ, и эта сила применяется ВСЕГДА. Эта сила исходит от пружины. Посмотрите следующее изображение:

Теперь вы можете видеть, кто все время тянет ОБЩИЙ терминал ВВЕРХ. Таким образом, пружина определяет, что является НОРМАЛЬНЫМ состоянием, и, таким образом, определяет, какой контакт является НОРМАЛЬНО ОТКРЫТЫМ, а какой — НОРМАЛЬНО ЗАКРЫТО.

Другими словами, НОРМАЛЬНОЕ состояние определяется как состояние, при котором к ОБЩЕМУ выводу НЕ прилагается никакая другая сила, кроме силы пружины.

Последняя часть — КТО двигает общий контакт реле?

Это последняя часть работы реле. Устройство, которое заставляет терминал двигаться, на самом деле является электромагнитом! Катушка размещается прямо под контактом.

Когда через эту катушку проходит ток, создается магнетизм. Этот магнетизм может преодолевать силу пружины и притягивать контакт к себе, тем самым изменяя его положение! А из-за того, что контакт обычно представляет собой небольшой кусок металла, который не может тянуть электромагнит, к общему контакту присоединяется другой кусок металла.

Этот кусок металла называется «Арматура». Ниже приводится (наконец) полная иллюстрация основного реле:

Теперь представьте, что кто-то хочет управлять нагрузкой 220 Вольт мощностью 1 кВт с помощью команды, поступающей от батареи на 5 Вольт. Для этого приложения следует использовать реле нагрузки.

Катушка реле приводится в действие напряжением 5 В. Контакты этого реле (NO) будут подключены последовательно с питанием нагрузки.

Таким образом, нагрузка будет работать только при срабатывании реле.Наш друг ниже заведет электрическую духовку голыми руками !!!

Заглянем внутрь реле

Я использовал реле восьмеричного типа. Эти реле легко открываются (винтами или зажимами), и они достаточно велики, чтобы иметь хороший обзор. Итак, вот реле разомкнуто:

Вы можете ясно видеть общий контакт, нормально разомкнутые и нормально замкнутые контакты, а также электромагнитную катушку и возвратную пружину. Якорь — это толстый металл, на котором закреплены общие контакты.

Типы реле

Существует так много разных типов реле, что мне было бы буквально невозможно добавить их в эту статью.

Поэтому я разделю типы реле на следующие категории:

1. Включение / выключение работы
2. Катушка
3. Контакты

Категория 1. Включение / выключение работы

Реле нормальные

В этой категории в основном есть два типа реле. Первый тип — это обычное реле включения / выключения.Это реле меняет состояние, пока электромагнит активирован, и возвращается в расслабленное состояние, когда электромагнит больше не приводится в действие.

Это наиболее распространенный тип реле, широко используемый в автоматизации.

Переключающие реле

Реле этого типа работает как триггер. Когда катушка срабатывает один раз, реле изменит состояние и останется в этом состоянии, даже если катушка больше не сработает.

Он снова изменит состояние только при следующем импульсе, который приведёт в действие катушку.Это очень удобно в современном домашнем освещении.

Имея это реле вместо переключателя, вы можете включать и выключать свет одной кнопкой. Вы нажимаете кнопку один раз, и свет включается. При следующем нажатии кнопки свет выключается.

Реле фиксации

Этот тип реле работает точно так же, как триггер R-S. У него две разные катушки вместо одной. Когда срабатывает первая катушка, реле переходит в положение SET и остается там, независимо от того, остается ли эта катушка включенной.Он изменит свое состояние (в положение СБРОС) только в том случае, если сработает другая катушка.

Этот тип реле широко используется в приложениях, где состояние реле необходимо сохранять как есть, даже после сбоя питания или перезапуска.

Реле защитные

Я разделю этот тип реле на два подтипа. Первый подтип — это реле защиты от утечки тока, а второй тип — реле защиты от перегрузки.

а. Реле защитные — токовые

Эти реле знают почти все.На самом деле у них нет электромагнитной катушки. Вместо этого они все время остаются вооруженными. Два электромагнита размещены друг напротив друга. Между ними — арматура. Этот якорь намагничивается от обоих электромагнитов.

Первый электромагнит включен последовательно с фазой, а другой — последовательно с нейтралью. Если ток, протекающий через оба электромагнита, одинаков, то якорь сохраняется в равновесии.

Но если ток, протекающий через второй электромагнит, меньше тока, протекающего через первый электромагнит, то якорь тянется к первому электромагниту, который имеет большую магнитную силу! А как это могло случиться? Легко, если какой-то ток течет на землю установки.

Эти реле могут (и ДОЛЖНЫ) быть найдены в любой домашней электроустановке сразу после главного выключателя. Посмотрите на следующую иллюстрацию:

Лампочка включается, потому что магнитная мощность обеих катушек одинакова. Теперь посмотрим, что произойдет, если «каким-то образом» ток в нейтрали будет меньше тока в фазе.

Магнитная сила электромагнитов не равна, поэтому реле отключит питание и наш друг будет спасен.Из соображений безопасности, если это произойдет, реле можно восстановить только механически, если кто-то снова потянет рычаг реле вверх:

г. Реле защиты от перегрузки

Очень распространенные реле в двигателях, а также во всех электрических установках. Эти реле не возбуждают электромагнитную катушку для перемещения якоря. Вместо этого у них есть биметаллическая полоса, внутри которой течет ток.

Материал и толщина этой полосы тщательно выбираются, чтобы она нагревалась (и, таким образом, изгибалась) выше заданного значения тока.

Когда биметаллическая полоса изгибается, реле отключает питание. По соображениям безопасности реле можно восстановить только механически, сдвинув рычаг вручную.

Это основная идея рисунка реле защиты от перегрузки ниже

Если одна линия перегружена, биметаллическая полоса перегревается и, следовательно, изгибается, нарушая таким образом контакт. показано на рисунке ниже

Следует также отметить, что существует еще один вид реле защиты от перегрузки, называемый «электромагнитное реле».Он работает точно так же, как реле защиты от перегрузки, но имеет внутри еще один электромагнит.

Если на этот электромагнит подается питание, то реле будет вынуждено разорвать соединение, как если бы оно было перегрето. Эта функция позволяет проверить наличие неисправностей и остановить двигатель, чтобы избежать других проблем, даже если сам двигатель не перегрет.

Реле температуры

Эти реле работают аналогично реле защиты от перегрузки, указанным выше. Основное отличие состоит в том, что биметаллическая полоса нагревается не током, протекающим внутри полосы, а внешним фактором.

Этим фактором может быть окружающий воздух, температура воды, температура другого жидкостного холодильника и т. Д. Вы можете знать эти реле под другим названием… термостаты, широко используемые в системах отопления.

Еще одно отличие от реле защиты состоит в том, что реле температуры обычно не нуждаются во внешнем механическом движении для восстановления своего состояния. Процесс происходит автоматически в зависимости от температуры биметаллической полосы.

Герконовые реле

Вы можете представить себе герконовое реле как реле без электромагнита.Якорь герконового реле приводится в действие от любого другого внешнего магнитного поля. Герконовые реле можно найти в системах контроля дверей.

Постоянный магнит прикреплен к двери, а герконовое реле находится прямо над магнитом. Если дверь открывается, состояние герконового реле изменяется. Другое распространенное применение герконовых реле — это измерители скорости велосипедов.

Постоянный магнит прикреплен к колесу велосипеда, а герконовое реле закреплено на «вилке» велосипеда.Каждый раз, когда колесо вращается и магнит проходит перед герконовым реле, оно посылает импульс на микроконтроллер.

Реле прочие

Есть много других типов реле, таких как таймеры и функциональные реле, но они используют какие-то схемы для выполнения различных действий. Я не буду вдаваться в эти категории, поскольку эта статья интересует только те реле, которые не используют никаких других схем, а только механические варианты.

Категория 2. Срабатывание катушки

Другой тип категоризации реле — катушка.В этой категории я разделяю реле в соответствии с тем, как на их катушку подается питание для приведения в действие якоря. Итак, имеем:

Реле AC / DC

Катушка может работать как от переменного, так и от постоянного напряжения.

Реле нейтрали

У этих реле самая обычная катушка. Якорь срабатывает, когда через катушку проходит ток, независимо от полярности.

Реле смещения

Это разновидность реле нейтрали. Эти реле имеют точно такую ​​же катушку, что и реле нейтрали, но они несут постоянный магнит на якоре.Поляризация магнитного поля катушки зависит от полярности питания.

Следовательно, якорь приводится в действие только в том случае, если полярность магнитного поля катушек противоположна полярности магнитного поля постоянного магнита. Таким образом, реле срабатывает, только если катушка правильно смещена.

Реле поляризованные

Этот тип реле работает точно так же, как реле смещения. Единственное отличие состоит в том, что эти реле не имеют постоянного магнита, вместо этого они имеют диод, подключенный последовательно к катушке.Если диод правильно смещен, на катушку будет подано питание, и сработает якорь.

Разница, которая отличает эти два типа реле, заключается в том, что реле с смещением позволяют току проходить через катушку, даже если реле имеет обратное смещение! Очень важно, если кто-то хочет последовательно соединить катушки двух или более реле.

Твердотельные реле (SSR)

Это современный тип реле. Эти реле не имеют катушки или какой-либо другой движущейся части, поэтому их называют твердотельными.Они используются для быстрого переключения (до нескольких сотен Гц) и для управления нагрузками во взрывоопасных или суровых условиях.

Они имеют значительно больший срок службы, чем обычные реле, поскольку их контакты не подвержены коррозии из-за влажности, пыли или других причин. Собственно контактов у них нет! Вместо этого для имитации контактов используется полевой транзистор или симистор. Главный минус — цена…

Категория 3. Контакты

Третья и последняя категория — это контакты реле.

Реле отличаются 3 основными характеристиками:

1. Максимальное напряжение: эта характеристика определяется зазором, который существует между контактами, а также сплавом, из которого сделан контакт. Чем больше зазор, тем выше напряжение, которое может отключить реле.

2. Максимальный ток: эта характеристика определяется толщиной контактов, а также сплавом, из которого они изготовлены. Чем толще контакты, тем выше ток, с которым может справиться реле.

3. Частота коммутации: эта характеристика определяется механической конструкцией реле. Чем легче конструкция, тем быстрее переключение.

4. Количество контактов:… Просто количество контактов.

Что касается номера контактов, то реле (как и переключатели) имеют какую-то кодировку. Общая кодовая форма такова:

xPyT

Буква «P» означает «ПОЛЮСА». «X» — это количество «ПОЛЮСОВ» реле.Таким образом, если реле имеет 1 контактную пару (ПОЛЮС), код будет SP как для однополюсного. Для двух контактных пар это будет DP как для двухполюсного. Над 2 контактными парами x обозначает количество полюсов, например, для 3 полюсов это будет 3P и т. Д.

Буква «T» означает «БРОСКА», а «y» — количество «БРОСОВ». «Y» может быть одинарным или двойным. Single Throw (ST) означает, что имеется только один NO или NC контакт. Двойной бросок (DT) означает, что реле имеет пары контактов NO / NC.

Обозначения реле

Количество символов реле не ограничено.Каждый производитель может сделать свой собственный символ для конкретного реле, которое имеет разные внутренние соединения и характеристики, выполняя конкретную задачу. Я проиллюстрирую самые основные типы реле:

Характеристики реле

Реле характеризуют следующие характеристики:

Напряжение катушки: это напряжение, при котором катушка может приводить в действие якорь. Это значение также должно указывать, является ли ток переменным или постоянным током

.

Ток катушки: это значение указывает ток, который катушка будет потреблять, когда она запитана с указанным напряжением катушки.Очень важная характеристика, которую следует учитывать при разработке драйвера реле. Ток, который проходит через драйвер, должен быть достаточным для приведения в действие якоря.

Напряжение выключения: эта характеристика показывает минимальное напряжение, при котором якорь притягивается электромагнитом. Если напряжение упадет ниже этого значения, пружина преодолеет силу магнитного поля и реле изменит состояние.

Количество / тип контактов: Это SPST? ДПСТ? DPDT? Или что?

Мощность контактов: эта характеристика указывает максимальную мощность, с которой могут справиться контакты.Некоторые производители будут использовать напряжение и амперы, другие — напряжение и киловатты, а третьи укажут все три значения.

Рабочая температура: Температура, при которой реле может работать без проблем

Частота коммутации: максимальная частота отключения

Пакет: И последнее, но не менее важное — это пакет. Некоторые корпуса (например, восьмеричный тип) поставляются с соответствующим основанием, в то время как другие напрямую припаяны / подключены к печатной плате / электрическому шкафу.

Применение реле в электронных схемах | Средства автоматизации | Промышленные устройства

Японский (Япония) Английский (Глобальный) Английский (Азиатско-Тихоокеанский регион) Китайский (Китай)


1. Релейное управление с помощью транзистора

1. Метод подключения

Если реле управляется транзисторами, мы рекомендуем использовать реле на стороне коллектора.
Напряжение, подаваемое на реле, всегда соответствует номинальному напряжению катушки, а во время выключения напряжение полностью равно нулю во избежание неисправностей при использовании.

(Хорошо) Подключение коллектора (Уход) Подключение эмиттера (Уход) Параллельное соединение

При этом наиболее распространенном соединении работа стабильна.

Когда обстоятельства делают использование этого соединения неизбежным, если напряжение не полностью подается на реле, транзистор не работает полностью, и работа ненадежна.

Когда мощность, потребляемая всей схемой, становится большой, необходимо учитывать напряжение реле.

2 Меры защиты от импульсных перенапряжений транзистора управления реле

Если ток в катушке внезапно прерывается, в катушке возникает внезапный импульс высокого напряжения.Если это напряжение превышает напряжение пробоя транзистора, транзистор выйдет из строя, и это приведет к повреждению. Совершенно необходимо подключить диод в схему, чтобы предотвратить повреждение противоэдс. В качестве подходящих номиналов для этого диода ток должен быть эквивалентен среднему выпрямленному току в катушке, а обратное напряжение блокировки должно быть примерно в 3 раза больше напряжения источника питания. Подключение диода — отличный способ предотвратить скачки напряжения, но при размыкании реле будет значительная задержка по времени.Если вам нужно уменьшить эту временную задержку, вы можете подключить между коллектором транзистора и эмиттером стабилитрон, который сделает напряжение стабилитрона несколько выше, чем напряжение питания.

Позаботьтесь о «Зоне безопасной эксплуатации (ASO)».

3. мгновенное действие (характеристика реле при повышении и падении напряжения)

В отличие от характеристики, когда напряжение медленно прикладывается к катушке реле, это тот случай, когда необходимо достичь номинального напряжения за короткое время, а также за короткое время понизить напряжение.

Неимпульсный сигнал

(Не работает) Без мгновенного действия

Импульсный сигнал (прямоугольная волна)

(Хорошо) Мгновенное действие

4.Цепь Шмитта (Цепь мгновенного действия)

(схема выпрямления волны)
Когда входной сигнал не производит мгновенного действия, обычно используется триггерная схема Шмитта для обеспечения безопасного мгновенного действия.

Характеристические точки
  • 1. Резистор с общим эмиттером R E должен иметь достаточно маленькое значение по сравнению с сопротивлением катушки реле.
  • 2. Из-за тока обмотки реле разница в напряжении в точке P, когда T 2 проводит, и в точке P, когда T 1 проводит, создает гистерезис в способности обнаружения цепи Шмитта, и необходимо соблюдать осторожность. взятые при установке значений.
  • 3. Когда во входном сигнале присутствует дребезг из-за колебаний формы волны, RC-цепочка постоянной времени должна быть вставлена ​​в каскад перед цепью триггера Шмитта. (Однако скорость отклика падает.)

5. Избегайте подключений к цепи Дарлингтона.

(Высокое усиление)
Эта схема представляет собой ловушку, в которую легко попасть при работе с высокотехнологичными схемами.Это не означает, что это напрямую связано с дефектом, но это связано с проблемами, которые возникают после длительных периодов использования и при работе многих устройств.

(Плохо) Соединение Дарлингтона

• Из-за чрезмерного потребления электроэнергии выделяется тепло.
• Необходим сильный Tr1.

(Хорошее) Подключение эмиттера

Tr2 полностью проводит ток.
Tr1 достаточно для использования сигнала.

6. Остаточное напряжение катушки

В коммутационных приложениях, где полупроводник (транзистор, UJT и т. Д.) Подключен к катушке, на катушке реле сохраняется остаточное напряжение, что может привести к неполному восстановлению и неправильной работе. Использование катушек постоянного тока может уменьшить; опасность неполного восстановления, контактное давление и вибростойкость.Это связано с тем, что падение напряжения составляет 10% или более от номинального напряжения, что является низким значением по сравнению с катушкой переменного тока, а также существует тенденция к увеличению срока службы за счет снижения напряжения падения. Когда сигнал с коллектора транзистора берется и используется для управления другой схемой, как показано на рисунке справа, через реле проходит минутный темновой ток, даже если транзистор выключен. Это может вызвать проблемы, описанные выше.

Подключение к следующей ступени через коллектор

Вернуться к началу

2.Релейный привод с помощью SCR

1. Метод обычного привода

Для привода SCR необходимо уделять особое внимание чувствительности затвора и ошибочной работе из-за шума.

Необходимо подключить
IGT Нет проблем даже с током, превышающим номинальный ток более чем в 3 раза.
RGK 1 кОм.
RC Предназначен для предотвращения ошибки зажигания из-за внезапного повышения напряжения источника питания или шума. (Противодействие dv / dt)

2. Меры предосторожности в отношении цепей управления ВКЛ / ВЫКЛ
(при использовании для схем управления температурой или аналогичных цепей управления)

Когда контакты реле замыкаются одновременно с однофазным источником питания переменного тока, необходимо соблюдать осторожность, поскольку электрический срок службы контактов сильно сокращается.

  • 1. Когда реле включается и выключается с помощью тиристора, тиристор сам по себе служит полуволновым источником питания, и есть множество случаев, когда тиристор легко восстановить.
  • 2. Таким образом, срабатывание реле и время восстановления легко синхронизируются с частотой источника питания, а время переключения нагрузки также легко синхронизируется.
  • 3. Когда нагрузкой для регулирования температуры является высокоточная нагрузка, такая как нагреватель, переключение может происходить только при пиковых значениях, и это может происходить только при нулевых значениях фазы, как явление этого типа управления.(В зависимости от чувствительности и скорости срабатывания реле)
  • 4. Соответственно, результат может быть либо чрезвычайно долгим, либо чрезвычайно коротким, с большими вариациями, и необходимо позаботиться о первоначальной проверке качества устройства.

Вернуться к началу

3. Релейный привод от внешних контактов

Реле

для использования на печатных платах обладают высокой чувствительностью и быстродействием, и, поскольку они в достаточной степени реагируют на дребезжание и дребезжание, необходимо соблюдать осторожность при их приводе.
Когда частота использования низкая, с задержкой времени отклика, вызванной конденсатором, можно поглотить дребезжание и подпрыгивание.
(Однако нельзя использовать только конденсатор. С конденсатором также следует использовать резистор.)

Вернуться к началу

4. Последовательные и параллельные подключения светодиодов

1) Последовательно с реле

Потребляемая мощность:
Совместно с реле (Хорошо)
Неисправный светодиод:
Реле не работает (Плохо)
Цепь низкого напряжения:
Со светодиодом, 1.5 В ниже (не работает)
Количество деталей: (хорошо)

2) R параллельно со светодиодом

Потребляемая мощность:
Совместно с реле (Хорошо)
Неисправный светодиод:
Реле работает (Хорошо)
Цепь низкого напряжения:
Со светодиодом, 1,5 V вниз (не работает)
Количество деталей: R 1 (Уход)

3) Параллельное соединение с реле

Потребляемая мощность:
Токоограничивающий резистор R 2 (Осторожно)
Неисправный светодиод:
Реле работает стабильно (Хорошо)
Цепь низкого напряжения: ( Хорошо)
No.частей: R 2 (Уход)

Вернуться к началу

5. Электронное управление цепями с помощью реле

1. Бесшаттерная электронная схема

Несмотря на то, что характеристика бесшумности является особенностью реле, это в полной мере бесшумная электрическая цепь, во многом такая же, как ртутное реле. Чтобы удовлетворить требования, предъявляемые к таким схемам, как вход двоичного счетчика, существует электронный метод без вибрации, в котором дребезжание абсолютно недопустимо.Даже если болтовня развивается с одной стороны, либо N.O. боковые контакты или Н.З. боковые контакты, триггер не реверсируется, и на схему счетчика можно подавать импульсные сигналы без промаха. (Тем не менее, следует избегать прыжков со стороны N.O. на сторону N.C.)

Примечания: 1. Линии A, B и C должны быть как можно короче.
2. Необходимо, чтобы в контактной части не было шума от секции катушки.

2-й Triac Drive

Когда в электронной схеме используется прямой привод от симистора, электронная схема не будет изолирована от силовой цепи, и из-за этого могут возникнуть проблемы из-за неправильной работы и повреждения. Внедрение релейного привода — наиболее экономичное и эффективное решение. (Схемы фотоэлемента и импульсного трансформатора сложны.)
Если необходима характеристика переключения через нуль, следует использовать твердотельное реле (SSR).

Вернуться к началу

6. Цепь источника питания

1. Цепь постоянного напряжения

В целом электронные схемы чрезвычайно уязвимы для таких явлений, как пульсации источника питания и колебания напряжения.Хотя источники питания реле не так уязвимы, как электронные схемы, следите, чтобы пульсации и регулировка не выходили за рамки спецификации.
Если колебания напряжения источника питания большие, подключите стабилизированную цепь или цепь постоянного напряжения, как показано на рис. 1.
Если потребляемая мощность реле велика, удовлетворительные результаты могут быть достигнуты путем реализации конфигурации схемы, показанной на рис. 2.

2.Предотвращение падения напряжения из-за скачка тока

В схеме, показанной на рис. 3, от лампы или конденсатора протекает бросок тока. Как только контакты замыкаются, напряжение падает, и реле срабатывает или дребезжит. В этом случае необходимо увеличить мощность трансформатора или добавить сглаживающий контур.

На рис. 4 показан пример модифицированной схемы.
На рис. 5 показан вариант с батарейным питанием.

Вернуться к началу

7. Рекомендации по проектированию печатной платы

1. Схема расположения реле

  • Поскольку реле влияют на электронные схемы, создавая шум, следует отметить следующие моменты.
  • Держите реле подальше от полупроводниковых приборов.
  • Создайте следы узора для наименьшей длины.
  • Поместите поглотитель перенапряжения (диод и т. Д.) Рядом с катушкой реле.
  • Избегайте следов трассировки, чувствительных к шуму (например, для аудиосигналов) под секцией катушки реле.
  • Избегайте сквозных отверстий в местах, которые не видны сверху (например, в основании реле).
  • Припой, протекающий через такое отверстие, может вызвать повреждение, например, разрыв уплотнения.
  • Даже для одной и той же схемы необходимо учитывать дизайн шаблона, который сводит к минимуму влияние включения / выключения катушки реле и лампы на другие электронные схемы.
(Плохо)

Токи катушек реле и токи электронных схем протекают вместе через A и B.

(хорошее)

• Токи катушки реле состоят только из A 1 и B 1 .
• Токи электронных схем состоят только из A 2 и B 2 . Простое рассмотрение конструкции может изменить безопасность операции.

Диаметр отверстия и площадки

Диаметр отверстия и контактная площадка сделаны так, чтобы отверстие было немного больше, чем выводной провод, чтобы компонент можно было легко вставить. Кроме того, при пайке припой будет накапливаться в виде проушины, увеличивая прочность крепления.Стандартные размеры диаметра отверстия и фаски показаны в таблице ниже.

Стандартные размеры для диаметра отверстия и площадки

мм дюйм

Стандартный диаметр отверстия Допуск Диаметр земли
0,8 .031 ± 0,1 ± 0,039 от 2,0 до 3,0 .079 до .118
1.0 .039
1.2 0,047 от 3,5 до 4,5 от 0,138 до 0,177
1,6 0,063

Замечания

  • 1. Диаметр отверстия делается на 0,2-0,5 мм. От 0,008 до 0,020 дюйма больше, чем диаметр шага. Однако, если используется струйный метод пайки (волновой, струйный), из-за опасения, что припой попадет на сторону компонентов, Лучше сделать диаметр отверстия равным диаметру вывода + 0,2 мм.
  • 2.Диаметр фаски должен быть в 2-3 раза больше диаметра отверстия.
  • 3. Не вставляйте более одного провода в одно отверстие.
Расширение и сжатие

Как использовать реле

Просмотры сообщений: 5 644

Реле — это переключатель с электрическим управлением. Ток, протекающий через катушку реле, создает магнитное поле, которое притягивает рычаг и изменяет контакты переключателя. Ток катушки может быть включен или выключен, поэтому реле имеют два положения переключения, и они являются переключателями с двойным ходом (переключающими).

Переключатели реле обычно помечены как COM (ПОЛЮС), NC и NO:

COM / POLE = Общий, NC и NO всегда подключаются к нему, это подвижная часть переключателя.

NC = нормально замкнутый, COM / POLE подключен к нему, когда катушка реле не намагничена.

NO = нормально разомкнутый, к нему подключен COM / POLE, когда катушка реле НАМАГНИЧЕНА, и наоборот.

Реле, показанное на рисунке, является электромагнитным или механическим реле.

Рис.Реле и его условное обозначение

В реле 5 контактов. Два контакта A и B — это два конца катушки, которые находятся внутри реле. Катушка намотана на небольшой стержень, который намагничивается всякий раз, когда через нее проходит ток.

COM / POLE всегда подключен к контакту NC (нормально подключенный). Поскольку ток проходит через катушки A, B, полюс подключается к нормально разомкнутому контакту реле.

Вот пример,

Прежде всего попробуйте следующую схему.

Это цепь датчика темноты.

Рис. Датчик темноты на двух транзисторах

Компоненты для этого эксперимента доступны на buildcircuit.net.

Выход этой схемы: Когда вы блокируете свет, падающий на LDR, схема включает светодиод-D1.

Теперь замените LED-D1 и R2- 330R реле и диодом.

Измените конфигурацию цепи, как показано на рисунке ниже:

Примечание: в R3 вы можете оставить любой резистор от 330R до 4.7К, этот резистор предназначен для чувствительности датчика темноты.

Следующая схема также работает как датчик темноты. Когда вы блокируете свет, падающий на LDR, реле активируется, и полюс реле подключается к контакту NO, который в конечном итоге подает питание на светодиод-D1.

Рис. Датчик темноты на двух транзисторах и реле.

Датчик освещенности с использованием реле и транзисторов

В этом случае конфигурация реле была изменена.Здесь NO (нормально открытый) терминал оставлен открытым. В нормальном случае светодиод D1 остается включенным. Когда свет, падающий на LDR, прерывается, полюс реле подключается к клемме NO. Следовательно, клемма NC (нормально подключенная) не получает питания, и это выключает светодиод D1-.

Рис. Датчик освещенности на двух транзисторах и реле.

Подключите к COM (полюс) и NO, если вы хотите, чтобы коммутируемая цепь была включена, когда катушка реле включена.

Подключите к COM (полюс) и NC, если вы хотите, чтобы коммутируемая цепь была включена, когда катушка реле выключена.


Все компоненты, необходимые для этого эксперимента, можно купить на buildcircuit.net.


РАБОТА С 220В

ВНИМАНИЕ: ЕСЛИ ВЫ НОВИНКА, НЕ ИГРАЙТЕ С 220 В переменного тока. ПОЗВОНИТЕ ДЛЯ ПОМОЩИ ОПЫТНОГО ЧЕЛОВЕКА.

Рис. Схема датчика темноты для светильников с питанием 220В.

Реле может использоваться для включения света, работающего от сети переменного тока 220В. Лампа с питанием от сети переменного тока должна быть подключена к реле, как показано на рисунке выше.

Рис. Соединительные провода на реле

На следующем видео показан готовый прототип.

ЗАЩИТНЫЙ ДИОД РЕЛЕ

Рис. Защитный диод в цепи

Транзисторы и ИС должны быть защищены от кратковременного высокого напряжения, возникающего при отключении катушки реле. На схеме показано, как сигнальный диод (например, 1N4148, 1N4001 или 1N4007) подключается «в обратном направлении» через катушку реле для обеспечения этой защиты.

Ток, протекающий через катушку реле, создает магнитное поле, которое внезапно исчезает при отключении тока. Внезапный коллапс магнитного поля вызывает кратковременное высокое напряжение на катушке реле, которое с большой вероятностью может повредить транзисторы и ИС. Защитный диод позволяет индуцированному напряжению пропускать кратковременный ток через катушку (и диод), поэтому магнитное поле исчезает быстро, а не мгновенно. Это препятствует тому, чтобы индуцированное напряжение стало достаточно высоким, чтобы вызвать повреждение транзисторов и микросхем.

ОБЩИЕ ХАРАКТЕРИСТИКИ РЕЛЕ

06VDC — означает, что напряжение на катушке реле должно быть 6V-DC.

50/60 Гц — реле может работать при переменном токе 50/60 Гц.

7A, 240VAC — Максимальные характеристики переменного тока и напряжения переменного тока, которые могут проходить через нормально замкнутые, нормально разомкнутые и полюсные контакты / клеммы реле.

Еще один пример (обновление 19.3.2014)

05VDC — Это означает, что вам нужно 5V для активации реле.Другими словами, это означает, что напряжение на катушке реле должно быть 5 В постоянного тока.

10A 250VAC 10A 125VAC — Максимальный переменный ток и напряжение переменного тока, которые могут быть пропущены через NC, NO и полюсные контакты / клеммы реле. В некоторых странах есть стандарт питания 220 В переменного тока, поэтому он работает и в этих странах.

10A 30VDC 10A 28VDC- Максимальный постоянный ток и напряжение постоянного тока, которые могут быть пропущены через NC, NO и полюсные контакты / клеммы реле.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *