Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Насос и: Насос — Википедия – 30 видов насосов. Типы насосов. Устройство и работа насоса

Содержание

Насос — Википедия

Условное графическое обозначение нереверсивного нерегулируемого насоса

Насо́с — гидравлическая машина, преобразующая механическую энергию приводного двигателя или мускульную энергию (в ручных насосах) в энергию потока жидкости, служащую для перемещения и создания напора жидкостей всех видов, механической смеси жидкости с твёрдыми и коллоидными веществами или сжиженных газов[1]. Разность давлений жидкости на выходе из насоса и присоединённом трубопроводе обусловливает её перемещение.

Неполная классификация насосов по принципу действия и конструкции выглядит следующим образом:

Изобретение насоса приписывается Ктесибию и описано в трудах как Герона Александрийского, так и Витрувия.

Приложение 2 ГОСТ 17398.jpg
НАСОСЫ I. Фиг. 1 и 2. Всасывающие насосы. Фиг. 3 и 4. Нагнетательные насосы. Фиг. 5. Крыльчатый насос (разрез). Фиг. 6. Насос Фозе. Фиг. 7. Воздушный насос Ватта. Фиг. 8. Насос Вортингтона.
(рисунок из «ЭСБЕ»)
Приложение 2 ГОСТ 17398.jpg НАСОСЫ II. Фиг. 9—13. Двухцилиндровый воздушный насос. Фиг. 14. Ртутный воздушный насос Бессель-Гагена. Фиг. 15. Ртутный воздушный насос Кальбаума.
(рисунок из «ЭСБЕ»)
Приложение 2 ГОСТ 17398.jpg
НАСОСЫ III. Фиг. 16. Питательный насос. Фиг. 17. Вращательный насос. Фиг. 18. Крыльчатый насос (внешний вид). Фиг. 19. Насос для жидкой грязи.
(рисунок из «ЭСБЕ»)

Патрубок (точка в гидравлической системе, в которой установлен насос), из которого насос забирает жидкость, называется всасывающим, патрубок, в который нагнетает, — напорным. Патрубки могут находиться на разной высоте, при этом часть энергии насос тратит на преодоление разницы гидростатических давлений между высотой напора z1 и высотой всасывания z0 (это может быть и отрицательная величина).

Напор насоса H{\displaystyle H} — приращение механической энергии единицы массы жидкости между его выходом и входом. Обычно мерой энергии служит высота столба перекачиваемой жидкости (имеющей удельный вес γ{\displaystyle \gamma } при ускорении свободного падения g{\displaystyle g}, здесь в формуле именно удельный вес, а не плотность жидкости): для i{\displaystyle i}-го элемента жидкости с давлением p{\displaystyle p} и скоростью жидкости vi{\displaystyle v_{i}}:

Ei=piγ+zi+vi22g,{\displaystyle E_{i}={\frac {p_{i}}{\gamma }}+z_{i}+{\frac {v_{i}^{2}}{2g}}{\mbox{,}}}

соответственно, напор насоса:

H=E1−E0=p1−p0γ+(z1−z0)+v12−v022g.{\displaystyle H=E_{1}-E_{0}={\frac {p_{1}-p_{0}}{\gamma }}+(z_{1}-z_{0})+{\frac {v_{1}^{2}-v_{0}^{2}}{2g}}{\mbox{.}}}

Подача — количество жидкости, подаваемое насосом за единицу времени. Может рассматриваться массовая подача G{\displaystyle G} или объёмная подача Q{\displaystyle Q}:

G=γQ{\displaystyle G=\gamma Q}.

Мощность N{\displaystyle N} — потребление насосом энергии за единицу времени. Полезная мощность Nh{\displaystyle N_{h}} — это приращение энергии всего потока жидкости в насосе: Nh=GH=γQH{\displaystyle \textstyle N_{h}=GH=\gamma QH}. Внутренняя мощность насоса Ni{\displaystyle N_{i}} — его полная мощность за исключением потерь на трение механических частей насоса, то есть мощность, сообщаемая жидкости в виде тепловой и механической энергии.

Соотношение полезной и подведённой мощности — это коэффициент полезного действия насоса:

η=NhN{\displaystyle \eta ={\frac {N_{h}}{N}}}.

При этом следует учитывать размерности величин: если, например, напор выражен в метрах, а подача в килограммах в секунду, то мощность в киловаттах вычисляется по формуле:

N[кВт] = G[кг]H[м]102η[безразм.].

Потери в насосе могут быть гидравлическими (затраты на преодоление гидравлических сопротивлений внутри насоса), объёмными (сокращение подачи насоса по сравнению с подачей рабочего органа) и механическими (трение деталей насоса о жидкость — внутренние механические потери, трение их друг об друга в подшипниках и т. д. — внешние). Учитываются, соответственно, гидравлическим КПД ηг, объёмным ηоб и механическим, разделяющимся на внутренний и внешний, ηммiηмe. η=ηгηобηм; Ni = Nηмe.

Минимальный избыточный напор всасывания H0u min{\displaystyle H_{0u~min}} над давлением парообразования жидкости ps{\displaystyle p_{s}} — запас механической энергии жидкости на входе в насос, необходимый для того, чтобы в насосе не возникла кавитация. Избыточный напор всасывания определяется как:

H0u=p0a−psγ+v022g,{\displaystyle H_{0u}={\frac {p_{0a}-p_{s}}{\gamma }}+{\frac {v_{0}^{2}}{2g}}{\mbox{,}}}

где p0a{\displaystyle p_{0a}} — давление на входе в насос, отнесённое к уровню оси насоса. На практике величину необходимого кавитационного запаса насоса принимают с некоторым коэффициентом запаса ϕ{\displaystyle \phi } = 1,2…1,4. Допустимая высота всасывания определяется с учётом давления на поверхности жидкости в резервуаре, откуда она забирается, pb{\displaystyle p_{b}} и сопротивления (в линейных единицах) всасывающих трубопроводов hc{\displaystyle h_{c}} как:

[H0u]=pb−psγ−φH0umin−hc″<math>pb{\displaystyle [H_{0u}]={\frac {p_{b}-p_{s}}{\gamma }}-\varphi H_{0u\mathrm {min} }-h_{c}»<math>p_{b}}</math>

Для открытых сосудов pb{\displaystyle p_{b}} — это атмосферное давление, для закрытых сосудов с кипящей жидкостью pb=ps,{\displaystyle \textstyle p_{b}=p_{s}{\mbox{,}}}.

Классификация насосов по принципу действия[править | править код]

По характеру сил преобладающих в насосе: объёмные, в которых преобладают силы давления, и динамические, в которых преобладают силы инерции.

По характеру соединения рабочей камеры с входом и выходом из насоса: периодическое соединение (объёмные насосы) и постоянное соединение входа и выхода (динамические насосы).

Объёмные насосы используются для перекачки вязких жидкостей. В этих насосах одно преобразование энергии — энергия двигателя непосредственно преобразуется в энергию жидкости (механическая => кинетическая + потенциальная). Это высоконапорные насосы, они чувствительны к загрязнению перекачиваемой жидкости. Рабочий процесс в объёмных насосах неуравновешен (высокая вибрация), поэтому необходимо создавать для них массивные фундаменты. Также для этих насосов характерна неравномерность подачи. Большим плюсом таких насосов можно считать способность к сухому всасыванию (самовсасыванию).

Для динамических насосов характерно двойное преобразование энергии (1 этап: механическая → кинетическая + потенциальная; 2 этап: кинетическая → потенциальная). В динамических насосах можно перекачивать загрязнённые жидкости, они обладают равномерной подачей и уравновешенностью рабочего процесса. В отличие от объёмных насосов, они не способны к самовсасыванию.

Объёмные насосы[править | править код]

Процесс объёмных насосов основан на попеременном заполнении рабочей камеры жидкостью и вытеснении её из рабочей камеры. Некоторые виды объёмных насосов:

  • Импеллерные насосы — обеспечивают ламинарный поток перекачиваемого продукта на выходе из насоса и могут использоваться в качестве дозаторов. Могут быть изготовлены в пищевом, маслобензостойком и кислотощёлочестойком исполнении
  • Пластинчатые насосы — обеспечивают равномерное и спокойное всасывание перекачиваемого продукта на выходе из насоса, могут использоваться для дозирования. Могут быть как регулируемыми, так и нерегулируемыми. В пластинчатых регулируемых насосах изменение подачи осуществляется за счёт изменения объёма рабочей камеры благодаря изменению эксцентриситета ротора и статора. В качестве регулирующего устройства применяются гидравлические и механические регуляторы.
  • Винтовые насосы — обеспечивают ровный поток перекачиваемого продукта на выходе из насоса, могут использоваться для дозирования
  • Поршневые насосы могут создавать весьма высокое давление, плохо работают с абразивными жидкостями, могут использоваться для дозирования
  • Перистальтические насосы создают невысокое давление, химически инертны, могут использоваться для дозирования
  • Мембранные насосы — создают невысокое давление, могут использоваться для дозирования

Общие свойства объёмных насосов:

  • Цикличность рабочего процесса и связанные с ней порционность и пульсации подачи и давления. Подача объёмного насоса осуществляется не равномерным потоком, а порциями.
  • Герметичность, то есть постоянное отделение напорной гидролинии от всасывающей (лопастные насосы герметичностью не обладают, а являются проточными).
  • Самовсасывание, то есть способность объёмных насосов создавать во всасывающей гидролинии вакуум, достаточный для подъёма жидкости вверх во всасывающей гидролинии до уровня расположения насоса(лопастные насосы не являются самовсасывающими).
  • Независимость давления, создаваемого в напорной гидролинии, от подачи жидкости насосом

Динамические насосы[править | править код]

Динамические насосы подразделяются на:

  • Лопастные насосы, рабочим органом у которых служит лопастное колесо или мелкозаходный шнек. В них входят:
    • Центробежные, у которых преобразование механической энергии привода в потенциальную энергию потока происходит вследствие центробежных сил, возникающих при взаимодействии лопаток рабочего колеса с жидкостью. Центробежные насосы подразделяют на:
      • Центробежно-шнековый насос — вид центробежного насоса с подводом жидкости к рабочему органу выполненному в виде мелкозаходного шнека большого диаметра (дисков), расположенному по центру, с выбросом по касательной вверх или бок от корпуса. Такие насосы способны перекачивать карамелизующиеся и склеивающиеся массы, типа клея
      • Консольный насос — вид центробежного насоса с односторонним подводом жидкости к рабочему колесу, расположенному на конце вала, удалённом от привода.
      • Радиальные насосы, рабочими органами которых служат радиальные рабочие колеса. Тихоходные одноступенчатые и многоступенчатые насосы с высокими значениями напора при низких значениях подач.
    • Осевые (пропеллерные) насосы, рабочим органом которых служит лопастное колесо пропеллерного типа. Жидкость в этих насосах перемещаются вдоль оси вращения колеса. Быстроходные насосы с высоким коэффициентом быстроходности, характеризуются большими значениями подач, но низких значениях напора.
      • Полуосевые (диагональные, турбинные) насосы, рабочим органом которых служит полуосевое (диагональное, турбинное) лопастное колесо.
  • Вихревые насосы — отдельный тип лопастных насосов, в которых преобразование механической энергии в потенциальную энергию потока (напор) происходит за счёт вихреобразования в рабочем канале насоса.
  • Струйные насосы, в которых перемещение жидкости осуществляется за счёт энергии потока вспомогательной жидкости, пара или газа (нет подвижных частей, но низкий КПД).
  • Тараны (гидротараны), использующие явление гидравлического удара для нагнетания жидкости (минимум подвижных частей, почти нет трущихся поверхностей, простота конструкции, способность развивать высокое давление на выходе, низкие КПД и производительность)

Вихревые насосы[править | править код]

Вихревые насосы — динамические насосы, жидкость в которых перемещается по периферии рабочего колеса в тангенциальном направлении. Преобразование механической энергии привода в потенциальную энергию потока (напор) происходит за счёт множественных вихрей, возбуждаемых лопастным колесом в рабочем канале насоса. КПД реальных насосов обычно не превышает 30 %

[источник не указан 904 дня].

Применение вихревого насоса оправдано при значении коэффициента быстроходности ns<40{\displaystyle n_{s}<40}. Вихревые насосы в многоступенчатом исполнении значительно расширяют диапазон рабочих давлений при малых подачах, снижая коэффициент быстроходности до значений, характерных для насосов объёмного типа.

Вихревые насосы сочетают преимущества насосов объёмного типа (высокие давления при малых подачах) и динамических насосов (линейная зависимость напора насоса от подачи, равномерность потока).

Вихревые насосы используются для перекачки чистых и маловязких жидкостей, сжиженных газов, в качестве дренажных насосов для перекачки горячего конденсата.

Вихревые насосы обладают низкими кавитационными качествами. Кавитационный коэффициент быстроходности[неизвестный термин] вихревых насосов C=100..110{\displaystyle C=100..110}.

Подобие лопастных насосов[править | править код]

Методы теории подобия и анализа размерностей позволяют на научном основании обобщать экспериментальные данные о показателях насосов. Движение жидкости в насосе некоторых геометрических пропорций определяется в упрощённой модели: диаметром колеса

D, м; расходом Q, м³/с; частотой оборотов n, с−1; плотностью жидкости ρ, кгс·с24; вязкостью μ, кгс·с/м². Зависимыми параметрами являются момент на валу насоса M, кгс·м, и напор H, м. Система сводится к зависимости безразмерных комплексов M¯=f(Re,St){\displaystyle \textstyle {\bar {M}}=f(Re,St)}:

  • M¯=Mρn2D5{\displaystyle {\bar {M}}={M \over \rho n^{2}D^{5}}} — безразмерный момент,
  • Re=ρQμD{\displaystyle Re={\rho Q \over \mu D}} — аналог числа Рейнольдса,
  • St=nD3Q{\displaystyle St={nD^{3} \over Q}} — аналог числа Струхаля.

Внутренняя мощность пропорциональна моменту на валу, умноженному на число оборотов:

Ni=ρn3D5f′(Re,St){\displaystyle N_{i}=\rho n^{3}D^{5}f'(Re,St)};

напор отнесём к скоростному напору: Hv2/2g∼HD2n2/g{\displaystyle \textstyle {H \over v^{2}/2g}\sim {H \over D^{2}n^{2}/g}} (напор в первом приближении пропорционален окружной скорости на периферии колеса),

H=D2n2gf″(Re,St){\displaystyle H={D^{2}n^{2} \over g}f»(Re,St)}.

Тогда для двух геометрически подобных насосов с масштабным соотношением D1/D2 = λ при верном равенстве St1=St2{\displaystyle St_{1}=St_{2}} (то естьQ1/Q2=λ3n1/n2{\displaystyle \textstyle Q_{1}/Q_{2}=\lambda ^{3}n_{1}/n_{2}}) верны и уравнения подобия для насосов:

Ni1Ni2=λ5(n1n2)3ρ1ρ2{\displaystyle {\frac {N_{i1}}{N_{i2}}}=\lambda ^{5}\left({n_{1} \over n_{2}}\right)^{3}{\frac {\rho _{1}}{\rho _{2}}}},
h2h3=λ2(n1n2)2{\displaystyle {\frac {H_{1}}{H_{2}}}=\lambda ^{2}\left({n_{1} \over n_{2}}\right)^{2}}.

Данные уравнения верны с точностью до масштабного эффекта, вызванного изменением критерия Re и относительной шероховатости поверхности. Уточнённая форма включает изменение соответствующих КПД при изменении Re и D:

Q1Q2=λ3n1n2ηo6 1ηo6 2{\displaystyle {\frac {Q_{1}}{Q_{2}}}=\lambda ^{3}{n_{1} \over n_{2}}{\eta _{\mbox{o6 1}} \over \eta _{\mbox{o6 2}}}},
N1N2=λ5(n1n2)3ρ1ρ2ηMe1ηMe2{\displaystyle {\frac {N_{1}}{N_{2}}}=\lambda ^{5}\left({n_{1} \over n_{2}}\right)^{3}{\frac {\rho _{1}}{\rho _{2}}}{\eta _{\mathrm {M} e1} \over \eta _{\mathrm {M} e2}}},
h2h3=λ2(n1n2)2ηΓ1ηΓ2{\displaystyle {\frac {H_{1}}{H_{2}}}=\lambda ^{2}\left({n_{1} \over n_{2}}\right)^{2}{\eta _{\Gamma 1} \over \eta _{\Gamma 2}}}.

Следствием из уравнений подобия является соотношение частот подобных насосов (при равных КПД)

n1n2=Q2Q1(h3h2)3/4.{\displaystyle {\frac {n_{1}}{n_{2}}}={\frac {\sqrt {\frac {Q_{2}}{Q_{1}}}}{\left({\frac {H_{2}}{H_{1}}}\right)^{3/4}}}{\mbox{.}}}

Характеристики быстроходности лопастных насосов[править | править код]

Удельное число оборотов nr, с−1, характеризует конструктивный тип рабочего колеса насоса; оно определяется как число оборотов эталонного насоса, подобного данному, с подачей 1 м³/с при напоре 1 м:

nr = n√Q[м³/с](H[м])3/4.

Безразмерное удельное число оборотов — более универсальный параметр, не зависящий от размерности применяемых величин:

n¯r=nQ(gH)3/4.{\displaystyle {\bar {n}}_{r}^{=}{\frac {n{\sqrt {Q}}}{(gH)^{3/4}}}{\mbox{.}}}

При метрической системе (n, с−1; Q, м³/с; H, м; g = 9,81 м/с²) r ≈ 0,180 nr−1].

Коэффициент быстроходности ns, с−1, — это число оборотов эталонного насоса, подобного данному, с полезной мощностью 75 кгс·м/с при напоре 1 м; при этом принимается, что такой насос работает на воде (γ=1000 кгс/м³) и имеет тот же КПД.

ns = 3,65n√Q[м³/с](H[м])3/4.

Данные величины позволяют сравнивать различные насосы, если пренебречь разницей гидравлических и объёмных КПД. Поскольку повышение числа оборотов позволяет, как правило, снизить размеры и вес насоса и его двигателя, и потому выгодно. Колёса малой быстроходности позволяют создавать большие напоры при малой подаче, колёса большой быстроходности применяются при больших подачах и малых напорах.

Типы рабочих колёс в зависимости от коэффициента быстроходности
ns, с−1 Тип насоса
40÷80 ~2,5 Центробежные тихоходные
80÷140 ~2 Центробежные нормальные
140÷300 1,4÷1,8 Центробежные быстроходные
300÷600 1,1÷1,2 Диагональные или винтовые
600÷1800 0,6÷0,8 Осевые

Кавитационное удельное число оборотов nr*{\displaystyle \textstyle n_{r}^{\mbox{*}}}, с−1, — характеристика конструкции проточной части насоса с точки зрения всасывающей способности; представляет собой число оборотов насоса, подобного данному, с подачей 1 м³/с и H0u min = 10 м:

nr*{\displaystyle \textstyle n_{r}^{\mbox{*}}} = n√Q[м³/с](H0u min[м]/10)3/4.

Классификация насосов по реализации[править | править код]

  • Механические
  • Магниторазрядные
  • Струйные
  • Сорбционные
  • Криогенные

Классификация насосов по типу перекачиваемой среды[править | править код]

Химические насосы[править | править код]

Химические насосы предназначены для перекачки различных агрессивных жидкостей, поэтому основными областями их применения являются химическая и нефтехимическая промышленность (перекачивание кислот, щелочей, нефтепродуктов), лакокрасочная промышленность (краски, лаки, растворители и др.) и пищевая промышленность.

Химические насосы предназначены для перекачки агрессивных жидкостей (кислот, щёлочей), органические жидкостей, сжиженных газов и т. п., которые могут быть взрывоопасны, с различной температурой, токсичностью, склонностью к полимеризации и налипанию, содержанием растворённых газов. Характер перекачиваемых жидкостей обуславливает то, что детали химических насосов, соприкасающихся с перекачиваемыми жидкостями изготавливаются из химически стойких полимеров или коррозионностойких сплавов, либо имеют корозионностойкие покрытия.

Фекальные насосы[править | править код]

Фекальные насосы используются для перекачки загрязненных жидкостей и сточных вод. Они рассчитаны на бо́льшую вязкость перекачиваемой среды и содержание в ней взвешенных частиц, в том числе, малых и средних абразивных частиц (песка, гравия). Фекальные насосы могут быть погружными или полупогружными, также их конструкция может снабжаться режущим механизмом для измельчения крупных твёрдых кусков, переносимых потоком жидкости. Современные модели таких насосов иногда имеют поплавок автоматического включения/выключения насоса.

Основная среда применения — на канализационных станциях.

Изобретение насоса относится к глубокой древности. Первый известный поршневой насос для тушения пожара, который изобрёл древнегреческий механик Ктесибий, упоминается ещё в I веке до н. э. Первый в мире автоматический всасывающий насос создал турецкий физик Османской империи — Аль-Азари в 13 веке[источник не указан 1907 дней]. В Средние века насосы использовались в различных гидравлических машинах. Один из первых центробежных насосов со спиральным корпусом и четырёхлопастным рабочим колесом был предложен французским учёным Д. Папеном. До XVIII века насосы использовались гораздо реже чем водоподъёмные машины (устройства для безнапорного перемещения жидкости), но с появлением паровых машин насосы начали вытеснять водоподъёмные машины. В XIX веке с развитием тепловых и электрических двигателей насосы получили широкое распространение. В 1838 году русский инженер А. А. Саблуков на основе созданного им ранее вентилятора построил центробежный насос и работал над применением его при создании судового двигателя.

Центробежные насосы: принцип действия, конструкция, классификация

Принцип действия

Центробежные насосы –  одни из наиболее распространенных машин промышленности. По количеству они уступают только электрическим двигателям. Т.к. электрические двигатели используются для приведения в действие насосов, то, можно сказать, что львиная доля электроэнергии мира расходуется на транспортировку жидкости центробежными насосами.

Центробежные насосы получили своё название от способа, в котором жидкость передаётся энергии.

Когда жидкость подводится к насосу, она соприкасается с вращающимся колесом и выталкивается в напорный патрубок с центробежной силой через полость специальной формы, называемой спиральным кожухом. Все центробежные насосы работают по такому принципу, но среди них могут быть конструктивные различия.

Насос передает кинетическую энергию жидкости. Кинетическая энергия подразумевает скорость жидкости. Скорость – это всего лишь половина уравнения.

Рис.1 – Центробежный насос

Жидкость входит в насос по центру колеса через всасывающее отверстие. Трение между частицами жидкости и рабочим колесом заставляет жидкость вращаться. Например, как трение между дорогой и резиной шины заставляет машину двигаться.

Рабочее колесо тянет частички жидкости, поэтому они вращаются при контакте с ними. Жидкость выталкивается наружу колеса с помощью центробежной силы – явление, которое выталкивает прочь любой объект из центра круга к его границам. Вот так жидкость получает кинетическую энергию от колеса.

Поэтому эти насосы называются центробежными.

Количество энергии, передаваемое жидкости зависит от трех факторов: 

  • плотности жидкости:
  • частоты вращения рабочего колеса:
  • диаметра рабочего колеса:

После рабочего колеса жидкость попадает в полость спирального корпуса, откуда попадает в напорный патрубок.

Давление. Насос также должен создавать избыточное давление, чтобы отвечать требованиям системы. Обычно это преодоление гравитации при подъёме жидкости из низшего уровня на высший, и сопротивление трения трубопроводов.

Проще говоря, давление – это возможность выполнить задание. А скорость жидкости – это то, как скоро оно будет выполнено.

Насосы должны превращать динамическое давление в статическое.

По мере прохождения жидкости по спиральному корпусу она замедляется, так как площадь прохода увеличивается, потому что производительность или количество жидкости, перекачиваемое за какое-то время, зависит от двух факторов: первое – это скорость жидкости, второе – размеры полости, через которую она продвигается.

Если поток постоянный, то увеличение проходного сечения ведёт к уменьшению скорости и росту давления. Достигая напорного патрубка, большая часть кинетической энергии превращается в давление. 

Если скорость падает, то увеличивается давление. Если скорость падает, то увеличивается давление.

Конструкция

Насос – это машина, которая превращает механическую энергию в кинетическую энергию, перекачиваемую жидкость с электро-транспортировки ее из одной точки в другую.

Центробежный насос состоит из двух основных компонентов.

  1. Первый – это вращающийся диск с изогнутыми лопастями. Он называется рабочим колесом.
  2. Второй – это труба специальной формы, называемая спиральным корпусом, в котором содержится рабочее колесо и транспортная жидкость.

Есть 5 элементов конструкции, которые могут различаться:

  • вид колеса;
  • вид подшипника;
  • расположение корпуса;
  • крепление двигателя;
  • число ступеней.

Корпус

Он сделан в форме спирали с уменьшающимся радиусом, похожим на раковину улитки. Полость этого корпуса не остается одной и той же везде. Площадь проходного сечения увеличивается при приближении к напорному патрубку.

Если скорость падает, то увеличивается давление.

 

Там, где заканчивается спиральный корпус и начинается напорный патрубок, есть выступающий клин, называемый водорезом.

Он физически разделяет спиральный корпус и напорный патрубок и гарантирует, что жидкость будет покидать насос, а не просто крутиться по кругу в спиральном корпусе.

Если скорость падает, то увеличивается давление.

Расширяющаяся часть спирального корпуса очень важна, т. к. с помощью неё насос создает давление.

Рабочее колесо

Есть 3 вида рабочих колёс:

  • открытые,
  • полузакрытые
  • закрытые

Самая простая конструкция у открытого колеса, которая состоит из острых, как лезвие, лопастей, равномерно расположенных на втулке.

Открытое колесоОткрытое колесо

Большой неограниченный подвод жидкости позволяет этому виду колес транспортировать жидкости содержащие грязь, пыль, осадки, твёрдые примеси, что делает их идеальными для мусорных насосов.

Применяется на водоочистных заводах, где перекачиваются сточные воды для обработки грубых шламов с твердыми примесями. Поэтому он имеет режущие лопатки спереди колеса, чтобы резать очень большие примеси.

Если лопасти размещены на задней пластине, то такое колесо называется полузакрытым.

Полузакрытое колесо
Полузакрытое колесо

Если лопасти находятся между двумя пластинами, то оно называется закрытым.

Закрытое колесоЗакрытое колесо

Закрытые колеса более эффективны, чем полузакрытые и открытые колеса. Потому что поток жидкости идет по строго заданному пути. Значит, больше жидкости выходит из насоса и меньше просто циркулирует внутри колеса.

Их недостаток это то, что они могут легко загрязниться мусором.

Очень популярное заблуждение, будто закрученные лопасти помогают толкать жидкость. Но на самом деле это не то, для чего они предназначены.

Назначение лопаток – это проводить жидкость по наиболее плавному пути. Закрученные назад лопасти помогают стабилизировать условия течения жидкости на высоких скоростях и уменьшить нагрузку на двигатель.

Закрытое колесо

Правильное направление вращения для этого колеса – противочасовое. Поэтому по направлению сгибов лопастей можно сказать направление движения колеса.

Вал и подшипники

Какой бы вид колеса  не применялся, он закреплен на вращающемся валу. Вал должен быть закреплен в корпусе подшипниками одним из 2 способов:

  1. Консольно
  2. Симметрично

Консольное закрепление

При консольном укреплении вала, рабочее колесо закреплено на одном конце, а подшипники на другом.

Закрытое колесо

Такая конструкция располагает всасывающее и напорное отверстие перпендикулярно друг другу, а всасывающее отверстие – прямо перед центром колеса.

Закрытое колесо

Такие насосы называются насосы с торцевым всасыванием.

Они широко распространены из-за своей дешевизны и простоты производства, но они имеют один недостаток, связанный с путём движения жидкости.

Закрытое колесо

Во время работы насоса, создается зона с низким давлением во всасывающем отверстии.

Есть зона повышенного давления на выходе из колеса, из которого жидкость, получившая энергию, попадает в спиральный кожух.   

Жидкость течет к задней пластине в открытых и полуоткрытых колесах, что полностью разрушает баланс  давлений. В результате возникает осевая сила или нагрузка – выталкивающая колесо к всасывающему отверстию.

Это можно компенсировать, устанавливая сильные подшипники или просверлив дырки в пластине колеса для выравнивания давлений. Но это не эффективные способы.

Симметричное крепление

Более действенное решение – расположение вала на подшипниках с двух сторон. Это называется симметричной конструкцией.

Поддержку вала улучшает не только расположения подшипников с двух сторон, но и возможность использовать симметрические закрытые колеса с двойным всасыванием.

Закрытое колесо

Поскольку есть такие же зоны с высоким и низким давлением на обеих сторонах колеса, это успешно устраняет нагрузочные силы, благодаря балансу давлений. Так же эта конструкция имеет иное преимущество. Всасывающее и напорное отверстия расположены параллельно друг другу на противоположных сторонах насоса, и корпус разделён по оси.

Просто открутив болты и сняв крышку, обслуживающий техник может добраться до вращающейся части насоса внутри него без извлечения всего насоса из системы.

Благодаря раздельной осевой конструкции, насосы в симметричном расположении подшипников называют насосами с разборным корпусом.

Всё это, конечно же, очень весомые причины для того чтобы установить в своей шахте такой насос прямо сейчас. Но есть некоторые недостатки. Потому что обслуживающие операции и требования к уплотнению более сложные для насосов с разборным корпусом, чем для насосов с торцевым всасыванием. Они так же более дорогие.

Расположение вала

Центробежные насосы обычно расположены горизонтально. Но иногда вертикально.  
Закрытое колесо

Вертикальные насосы применяются для уменьшения места под установку. Вы можете встретить их на дне скважины или колодца, соединенными длинным-длинным валом с двигателем сверху. Это подводит нас к соединению с двигателем. Обычно электрического.

Тип присоединения вала

Есть 2 способа предать вращения от двигателя к насосу: через муфту или напрямую.

Если насос и двигатель – это две отдельные машины, то они должны быть соединены муфтой.

Соединение муфтойСоединение муфтой

Муфты бывают разных форм, размеров и исполнений. И одно общее требование к ним – обеспечение правильной целостности валов, иначе без них обеспечение целостности было бы очень изощренным процессом.

Для облегчения и поддержания целостности, двигатель и насос установлены на общей опоре – опорной плите.

Или, в случае с вертикальными установками, двигатель расположен на раме.

Такой вид соединения двигателя и насоса называется муфтовым. Для больших мощных установок и насосов с разборным корпусом соединение через муфту единственно возможное.

Второй способ соединенияпрямой. Двигатель и насос находятся на общем валу  с колесом, расположенном консольно на другой стороне вала двигателя. В этом случае установка не требует муфты или сложных процедур по поддержанию целостности.

Соединение муфтой

Тем не менее, из-за того, что двигатель и насос расположены на одном валу, поддерживаемые лишь подшипниками двигателя, этот способ подходит только для маленьких и средних насосов с торцевым всасыванием.

Количество ступеней

Насос классифицируется по количеству ступеней, которое он имеет. Большинство насосов имеет одну ступень с одним рабочим колесом и одним спиральным кожухом. Тем не менее, некоторые насосы имеют дополнительные ступени, соединённые последовательно для увеличения давления.

Соединение муфтойРотор многоступенчатого насоса

Суть в том, что одно колесо придает энергию жидкости, а затем направляет его в следующее колесо, которое добавляет еще энергии жидкости, а затем направляет ее к следующему колесу, и так далее, пока, в конце концов, жидкость не попадает в напорный патрубок.

Водяной насос. Виды и работа. Устройство и применение. Как выбрать

Если в загородном доме нет централизованного водоснабжения, то одним из первых устройств, которое понадобится, является водяной насос. В зависимости от назначения указанного оборудования, он сможет снабжать дом питьевой водой или использоваться для полива огорода, проведения осушительных работ и других целей.

Виды водяных насосов

Есть много видов насосов, поэтому перед приобретением надо определиться, для каких целей будет использоваться водяной насос.

Условно можно разделить насосы на три вида:
  1. Водяные. Такие насосы используются для подачи питьевой воды, поэтому дополнительно оборудуются системой очистки. Такую воду можно не только пить и готовить из нее пищу, но и использовать для принятия душа или полива огорода.
  2. Дренажные. Этот вид применяется для перекачивания воды, в которой есть небольшие примеси мусора. Они могут подавать воду для полива участка прямо из пруда, речки или другого водоема. Основная их задача – откачка сточных вод, например, из подвала, бассейна и в других аналогичных случаях.
  3. Фекальные. Такое оборудования является самым дорогим, оно предназначено для откачки жидкости из фекальных ям. По своей конструкции, такие насосы похожи на дренажное оборудование, но имеют большую функциональность.
Каждый вид указанного оборудования, в зависимости от своей конструкции, может быть поверхностным или погружным.
Поверхностный водяной насос

Если на участке есть неглубокий колодец или в водоеме чистая вода, то для ее подачи можно использовать поверхностный насос. Такие агрегаты находятся на поверхности воды, для этого они снабжаются специальным поплавком. Можно устанавливать такое оборудование и рядом с колодцем или водоемом. В зависимости от модели поверхностного насоса и от его мощности, глубина всасывания составляет 5-9 м. Дорогие поверхностные насосы, оснащенные эжектором, могут подавать воду на высоту до 30-40 м.

Такие насосы в свою очередь делятся на:
  • Вихревые – перекачивание воды происходит вихреобразно под высоким давлением.

  • Центробежные, они могут быть одно или многоступенчатыми, работает такое оборудование за счет центробежной силы и они надежнее вихревого типа.

  • Самовсасывающие – перекачивают воду с воздухом.

  • Жидкостно-кольцевые – кроме воды, могут перекачивать и такие жидкости как дизельное топливо.

  • Портативно-переносные – это вид самовсасывающих насосов, они за счет своей конструкции, способны удалять из воды воздух.
Погружной водяной насос
Такое оборудование может использоваться для подачи воды с глубины, при этом неважно, она будет большой или нет. По своему назначению, эти насосы могут быть таких типов:
  • Колодезные – они могут работать как частично, так и полностью погруженными в воду, имеют поплавковый выключатель, он отключает насос, когда уровень воды в колодце становится критическим.

  • Скважинные – подают воду с большой глубины, с их помощью можно подавать жидкость с небольшими примесями земли или гравия.

  • Дренажные – они применяются для откачки воды, имеющей незначительное загрязнение.

  • Фекальные – используют для откачки канализационных стоков.

Когда будете выбирать водяной насос, учитывайте, что подача воды с глубины 1 м соответствует ее горизонтальному перемещению на расстояние 10 м.

Устройство

В зависимости от типа оборудования, будет отличаться и его устройство, но общий принцип у всех насосов одинаковый. В зависимости от типа оборудования, оно может перекачивать жидкость в вертикальном или горизонтальном направлении.

Вихревой насос

Это оборудование состоит из корпуса, в нем находится электрический мотор, а также рабочего элемента, подающего воду. Внутреннее устройство будет отличаться от того, каким способом происходит преобразование электрической энергии в кинетическую. Между собой насосы отличаются устройством рабочего элемента.

Лопастный или центробежный водяной насос имеет диск с лопастями. Лопасти имеют изгиб, который направлен в противоположную сторону вращения крыльчатки. Если рабочее колесо одно, то это одноступенчатая модель, а если их несколько, то многоступенчатая.

Вибрационные насосы в своем составе не имеют вращающихся деталей. В них есть поршень, который во время работы совершает возвратно-поступательные движения и за счет этого подается вода. В действие поршень приводится при помощи электромагнита, поэтому такие модели еще называют электромагнитными насосами.

Принцип действия насосов
Принцип работы будет отличаться от того, какой водяной насос используется:
  • Центробежный насос. Это наиболее распространенное оборудование. Рабочее колесо зафиксировано на валу электродвигателя, которым оно и приводится в действие. Вода заполняет пространство между лопастями и когда рабочее колесо начинает движение, за счет центробежной силы, на входе создается пониженное, а на выходе повышенное давления и вода подается в выходной патрубок.
  • Мембранные или вибрационные насосы. Мембрана разделяет внутреннюю часть на две половинки. В одну полость поступает вода. Когда начинает работать электромагнит, он приводит в действие мембрану, и она начинает изгибаться в обе стороны. За счет этого меняется давление, и вода подается в выходной парубок. Наличие обратного клапана не дает ей возможности вернуться назад.

Производительность будет выше у центробежных насосов, они также имеют большой срок службы, но стоимость вибрационного оборудования значительно меньше.

Область применения

В зависимости от типа выбранного оборудования, оно может использоваться для различных целей. Если необходимо подавать питьевую воду с неглубокого колодца или чистую воду из водоема для полива участка, то надо использовать поверхностный водяной насос.

При необходимости подачи воды из глубокой скважины или колодца, понадобится погружной скважинный насос. Чтобы поливать участок слегка загрязненной водой из пруда или для удаления воды с погреба, бассейна, необходимо использовать дренажные насосы. Они могут перекачивать воду, в которой есть незначительные включения твердых частиц.

Фекальные насосы применяются для очистки сточных ям и могут перекачивать воду, в которой есть твердые частички. По своему устройству они похожи на дренажное оборудование, но могут работать с более грязными жидкостями, что значительно расширяет область их применения.

Особенности выбора

Для совершения правильного выбора водяного насоса, в первую очередь надо смотреть на такую его характеристику, как производительность. Если в доме проживает семья, состоящая из 4 человек, то для снабжения его питьевой водой, будет достаточно оборудования производительностью 40 литров в минуту.

Кроме этого, большое значение имеет напор или высота подачи воды. Большинство бытовых насосов способны поднимать воду с глубины 5-9 м и подавать ее на высоту 10-15 м. Это важно, так как часто воду надо не только достать из-под земли, но и подать на 2-3 этаж. Все это влияет на давление, которое сможет создавать оборудование в системе. Для расчета давления в водопроводе, надо будет учитывать, как модель насоса и его параметры, так и уровень залегания воды, размер и рельеф участка, а также ваши потребности.

Кроме основных параметров, покупая водяной насос, надо учитывать следующее:
  • Состояние и качество водовода, его диаметр, наличие клапанов, поворотников и тройников.
  • Наличие контролера холостого хода, этот элемент останавливает работу насоса, когда нет воды.
  • Наличие реле давления, которое позволяет контролировать напор в системе водоснабжения.
  • Гидроаккумулятор, он не дает возможности перегружать насос и позволяет контролировать рабочее давление.
  • Качество изготовления оборудования, так как только хорошая электроизоляция обеспечивает безопасное и длительное использование насоса.
  • Насосы могут быть электрические и бензиновые, последние используются в местах, где нет доступа к электросети.
  • Соответствие скважинного насоса диаметру скважины, он должен быть хотя бы на 10 мм меньше.
  • Система охлаждения насоса, она может быть водяной или масляной, последняя надежнее, но стоимость такого оборудования будет выше.
  • Число фаз, так как мощные насосы требуют подключения к трехфазной сети, а это возможно не на всех участках.
  • Материал корпуса, чугунный корпус более тяжелый, но он гасит шум во время работы насоса, а нержавеющий или металлопластиковый легче, но более шумный.
  • Возможность сервисного обслуживания в центрах, расположенных недалеко от места проживания.
Преимущества и недостатки
Преимущества центробежных насосов:
  • Вода подается под непрерывным напором.
  • Простое устройство.
  • Недорогой ремонт.
  • Простое обслуживание.
  • Для них проще устанавливать автоматику.
  • Надежность, поэтому такие насосы имеют большой срок службы.
  • Доступная стоимость.

Среди недостатков это: вначале работы такого оборудования, его корпус надо заполнить водой, так как центробежной силы может быть недостаточно для засасывания жидкости.

Вихревые насосы имеют высокую всасывающую способность. Не боятся наличия в системе воздуха, имеют небольшой вес и размеры. Среди их недостатков, надо отметить быстрый износ деталей и сравнительно низкую эффективность.

Вибрационные насосы или их еще называют электромагнитные, они не имеют вращающихся деталей, поэтому могут подавать воду с твердыми примесями небольшого размера, это может быть песок, ил, они имеют невысокую стоимость. Главным недостатком такого оборудования является то, что оно постоянно вибрирует, поэтому часто выходит из строя. Для защиты от перепадов напряжения необходимо использовать стабилизатор.

Похожие темы:

Насос — это… Что такое Насос?

править] История

Изобретение насоса относится к глубокой древности. Первый известный поршневой насос для тушения пожара, который изобрёл древнегреческий механик Ктесибий, упоминается ещё в I веке н. э. В Средние века насосы использовались в различных гидравлических машинах. Один из первых центробежных насосов со спиральным корпусом и четырёхлопастным рабочим колесом был предложен французским учёным Д. Папеном. До XVIII века насосы использовались гораздо реже чем водоподъёмные машины (устройства для безнапорного перемещения жидкости), но с появлением паровых машин насосы начали вытеснять водоподъёмные машины. В XIX веке с развитием тепловых и электрических двигателей насосы получили широкое распространение. В 1838 году русский инженер А. А. Саблуков на основе созданного им ранее вентилятора построил центробежный насос и работал над применением его при создании судового двигателя.

Классификация насосов по принципу действия

По характеру сил преобладающих в насосе: объёмные, в которых преобладают силы давления и динамические, в которых преобладают силы инерции.

По характеру соединения рабочей камеры с входом и выходом из насоса: периодическое соединение (объёмные насосы) и постоянное соединение входа и выхода (динамические насосы).

Объёмные насосы используются для перекачки вязких жидкостей. В этих насосах одно преобразование энергии — энергия двигателя непосредственно преобразуется в энергию жидкости (механическая => кинетическая + потенциальная). Это высоконапорные насосы, они чувствительны к загрязнению перекачиваемой жидкости. Рабочий процесс в объёмных насосах неуравновешен (высокая вибрация), поэтому необходимо создавать для них массивные фундаменты. Также для этих насосов характерна неравномерность подачи. Большим плюсом таких насосов можно считать способность к сухому всасыванию (самовсасыванию).

Для динамических насосов характерно двойное преобразование энергии (1 этап: механическая => кинетическая + потенциальная; 2 этап: кинетическая => потенциальная). В динамических насосах можно перекачивать загрязнённые жидкости, они обладают равномерной подачей и уравновешенностью рабочего процесса. В отличие от объёмных насосов, они не способны к самовсасыванию.

Объёмные насосы

Процесс объёмных насосов основан на попеременном заполнении рабочей камеры жидкостью и вытеснении её из рабочей камеры. Некоторые виды объёмных насосов:

  • Импеллерные насосы — обеспечивают ламинарный поток перекачиваемого продукта на выходе из насоса, и могут использоваться в качестве дозаторов
  • Пластинчатые насосы — обеспечивают равномерное и спокойное всасывание перекачиваемого продукта на выходе из насоса, могут использоваться для дозирования. Могут быть как регулируемыми, так и нерегулируемыми. В пластинчатых регулируемых насосах изменение подачи осуществляется за счёт изменения объёма рабочей камеры благодаря изменению эксцентриситета ротора и статора. В качестве регулирующего устройства применяются гидравлические и механические регуляторы.
  • Винтовые насосы — обеспечивают ровный поток перекачиваемого продукта на выходе из насоса, могут использоваться для дозирования
  • Поршневые насосы могут создавать весьма высокое давление, плохо работают с абразивными жидкостями, могут использоваться для дозирования
  • Перистальтические насосы создают невысокое давление, химически инертны, могут использоваться для дозирования
  • Мембранные насосы — создают невысокое давление, могут использоваться для дозирования
  • Импеллерные (ламельные) насосы. Могут быть изготовлены в пищевом, маслобензостойком и кислотощёлочестойком исполнении

Общие свойства объёмных насосов:

  • Цикличность рабочего процесса и связанные с ней порционность и пульсации подачи и давления. Подача объёмного насоса осуществляется не равномерным потоком, а порциями.
  • Герметичность, то есть постоянное отделение напорной гидролинии от всасывающей (лопастные насосы герметичностью не обладают, а являются проточными).
  • Самовсасывание, то есть способность объёмных насосов создавать во всасывающей гидролинии вакуум, достаточный для подъёма жидкости вверх во всасывающей гидролинии до уровня расположения насоса(лопастные насосы не являются самовсасывающими).
  • Независимость давления, создаваемого в напорной гидролинии, от подачи жидкости насосом

Динамические насосы

Динамические насосы подразделяются на:

  • Лопастные насосы, рабочим органом у которых служит лопастное колесо или мелкозаходный шнек . В них входят:
    • Центробежные, у которых преобразование механической энергии привода в потенциальную энергию потока происходит вследствие центробежных сил, возникающих при взаимодействии лопаток рабочего колеса с жидкостью. Центробежные насосы подразделяют на:
      • Центробежно-шнековый насос — вид центробежного насоса с подводом жидкости к рабочему органу выполненному в виде мелкозаходного шнека большого диаметра (дисков), расположенному по центру, с выбросом по касательной вверх или бок от корпуса. Такие насосы способны перекачивать карамелизующиеся и склеивающиеся массы, типа клея
      • Консольный насос — вид центробежного насоса с односторонним подводом жидкости к рабочему колесу, расположенному на конце вала, удалённом от привода.
      • Осевые (пропеллерные) насосы, рабочим органом которых служит лопастное колесо пропеллерного типа. Жидкость в этих насосах перемещаются вдоль оси вращения колеса. Быстроходные насосы с высоким коэффициентом быстроходности, характеризуются большими значениями подач, но низких значениях напора.
      • Полуосевые (диагональные, турбинные) насосы, рабочим органом которых служит полуосевое (диагональное, турбинное) лопастное колесо.
      • Радиальные насосы, рабочими органами которых служат радиальные рабочие колеса. Тихоходные одноступенчатые и многоступенчатые насосы с высокими значениями напора при низких значениях подач.
    • Вихревые насосы — отдельный тип лопастных насосов, в которых преобразование механической энергии в потенциальную энергию потока (напор) происходит за счёт вихреобразования в рабочем канале насоса.
  • Струйные насосы, в которых перемещение жидкости осуществляется за счёт энергии потока вспомогательной жидкости, пара или газа (нет подвижных частей, но низкий КПД).
  • Тараны (гидротараны), использующие явление гидравлического удара для нагнетания жидкости (минимум подвижных частей, почти нет трущихся поверхностей, простота конструкции, способность развивать высокое давление на выходе, низкие КПД и производительность)

Вихревые насосы

Вихревые насосы — динамические насосы, жидкость в которых перемещается по периферии рабочего колеса в тангенциальном направлении. Преобразование механической энергии привода в потенциальную энергию потока (напор) происходит за счёт множественных вихрей, возбуждаемых лопастным колесом в рабочем канале насоса. КПД идеального вихревого насоса не превышает 45 %.[источник не указан 1201 день] КПД реальных насосов обычно не превышает 30 %.

Применение вихревого насоса оправдано при значении коэффициента быстроходности[неизвестный термин]. Вихревые насосы в многоступенчатом исполнении значительно расширяют диапазон рабочих давлений при малых подачах, снижая коэффициент быстроходности до значений, характерных для насосов объёмного типа.

Вихревые насосы сочетают преимущества насосов объёмного типа (высокие давления при малых подачах) и динамических насосов (линейная зависимость напора насоса от подачи, равномерность потока).

Вихревые насосы используются для перекачки чистых и маловязких жидкостей, сжиженных газов, в качестве дренажных насосов для перекачки горячего конденсата.

Вихревые насосы обладают низкими кавитационными качествами. Кавитационный коэффициент быстроходности вихревых насосов .

Классификация насосов по реализации

  • Механические
  • Магниторазрядные
  • Струйные
    • Водокольцевые
    • Паромасленные дифузионные
    • Паромасленные бустерные
  • Сорбционные
  • Криогенные

Классификация насосов по типу перекачиваемой среды

Химические насосы

Химические насосы предназначены для перекачки различных агрессивных жидкостей, поэтому основными областями их применения являются химическая и нефтехимическая промышленность (перекачивание кислот, щелочей, нефтепродуктов), лакокрасочная промышленность (краски, лаки, растворители и др.) и пищевая промышленность.

Химические насосы перекачивают кислоты и щёлочи, органические продукты, сжиженные газы и т. п., которые характеризуются взрывоопасностью, различной температурой, токсичностью, склонностью к полимеризации и налипанию, содержанием растворенных газов. Характер перекачиваемых жидкостей обуславливает то, что химические насосы изготавливаются полностью из химостойких полимеров или коррозионно-стойких сплавов.

Фекальные насосы

Фекальные насосы используются для перекачки легко загрязненных жидкостей и сточных вод. Они рассчитаны на большую вязкость и содержание малых и средних амбразивных частиц. Фекальные насосы могут быть погружными или полупогружными, также их конструкция может снабжаться режущим механизмом. Современные модели имеют поплавок автоматического включения/выключения насоса.

Основная среда применения — канализационные станции.

Примечания

См. также

Ссылки

Question book-4.svg В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 14 мая 2011.

Циркуляционный насос — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 апреля 2018; проверки требуют 13 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 апреля 2018; проверки требуют 13 правок.

Циркуляционный насос — одна из главных составляющих системы отопления и горячего водоснабжения. Предназначен для обеспечения принудительного движения жидкости по замкнутому контуру (циркуляции), а также рециркуляции. При расчете производительности насоса, работающего в циркуляционной системе, следует учитывать только потери на трение в трубопроводе. Высота системы (здания) не имеет значения, так как жидкость, которая подается насосом в подающий трубопровод, толкает воду также в обратном направлении. Поэтому можно использовать относительно небольшую мощность насоса для обеспечения циркуляции рабочей жидкости.

Циркуляционный насос для систем отопления. Внешний вид.

Существует множество различных классификаций циркуляционных насосов. Вот некоторые из них:

«С мокрым ротором» и «с сухим ротором»

«Мокрые» циркуляционные насосы имеют ротор с рабочим колесом, находящийся в жидкости, которую они перекачивают. От статора ротор отделен стаканом, который, как правило, изготавливается из нержавеющей стали. Вал ротора может изготавливаться как из метала, так и из керамики. Перекачиваемая жидкость выполняет две функции: смазывает детали и охлаждает двигатель. Коэффициент полезного действия насоса «с мокрым ротором» составляет порядка 50 %. Новое поколение насосов с мокрым ротором конструируется в соответствии с модульным принципом. Блоки группируются в зависимости от габаритов насоса и требуемой подачи. Таким образом, облегчается и проведение ремонта путём замены определённых деталей. Рабочее колесо таких насосов соединяет в себе преимущества аксиального и радиального колёс. Вал с подшипниками и ротором образуют в «картуше» единый блок. Важным качеством этой конструкции является её способность к самоудалению воздуха при пуске.

Для перекачивания больших объёмов в больших установках применяются насосы с сухими роторами. Своё название эти насосы получили из-за того, что моторы этих насосов не соприкасаются с перекачиваемой водой. Характерным отличием является наличие уплотнения между насосной частью и электродвигателем. В качестве уплотнения используется «скользящее торцевое уплотнение». Между поверхностями скольжения образуется тонкая плёнка воды, так как вода в отопительном контуре находится под повышенным давлением по сравнению с окружающей атмосферой. Данная плёнка воды герметизирует насос, когда поверхности вращаются друг относительно друга. Кольца изготавливаются обычно из агломерированного угля. Для работы в сложных условиях они могут быть изготовлены из керамики или нержавеющей стали. Такие агрегаты обычно имеют более высокую мощность и производительность, но издают шум при работе, поэтому их применение огранивается установкой в изолированных помещениях или зданиях.[1] Конструктивно различаются два типа насосов с сухим ротором. Это — центробежные насосы с при- фланцованным мотором и большие центробежные насосы с мотором и муфтовым соединением. Если всасывающий и напорный патрубки расположены на одной оси и имеют одинаковые условные проходы, то такие насосы называются насосами прямопоточного исполнения. Такие насосы могут устанавливаться непосредственно в трубопровод. Либо трубопровод необходимо закрепить с помощью консоли, либо насос устанавливается на фундамент или на собственную консоль. При прямопоточной конструкции положение мотора и вала не оказывают влияния на работу насоса. Большие центробежные насосы с мотором и муфтовым соединением могут устанавливаться на общей опорной раме. В данном случае речь идёт о консольных насосах на фундаментной раме, соответствующих стандарту DIN 24255. В зависимости от перекачиваемой среды возможно исполнение насоса со скользящим торцевым уплотнением или с сальником. Вертикально расположенный напорный патрубок определяет условный проход насоса. А всасывающий патрубок, расположенный горизонтально, имеет, как правило, больший диаметр.

До появления электричества, в системах отопления, применялась природная циркуляция нагретой воды. Нагревшись в котле, вода стремится вверх, и ее место вытесняет более холодная и плотная вода из радиатора. Горячая вода попадает в радиатор и там остывает, постепенно опускаясь в его нижнюю часть, после того на повторный цикл в котел.

Так было, пока вестфальский инженер Вильгельм Оплендер ( нем. Wilhelm Opländer ), разработал первый в мире «ускоритель циркуляции» для контуров отопления и, таким образом, предшественник современного циркуляционного насоса, и получил на нее патент в 1929 г. Крыльчатка насоса была установлена в изгиб трубы, и имела форму пропеллера. Крыльчатка приводилась в движение валом, который, в свою очередь, вращался закапсулированным электродвигателем.

  1. ↑ Как подобрать циркуляционный насос для системы отопления (неопр.). Дата обращения 13 февраля 2019.

Принцип действия и классификация объемных насосов

Каждый механизм подразделяется на 2 категории в зависимости от того, какой тип  движения он использует. Существует поступательное и вращательное движение.

Поступательные насосы

Первая категория это поступательные насосы. Каждый поступательный насос имеет расширяющуюся и сжимающуюся камеру и клапаны, чтобы подводить жидкость к насосу, а затем направлять её в трубопровод. 

Поршневой насос

Механизм состоит из поршня внутри цилиндра с обратными клапанами на входе и на выходе.

Поршневой насосПоршневой насос

 Когда поршень совершает ход (вверх в данном случае), объем внутри цилиндра расширяется. Давление снижается и открывается всасывающий клапан, а жидкость через подводящее отверстие попадает в цилиндр.

 

По определению обратные клапаны пропускают жидкость только в одном направлении. Поэтому они предотвращают обратные потоки жидкости и направляют жидкость через насос.

Когда  открывается всасывающий клапан, то нагнетательный закрывается. При нагнетательном ходе поршня, в ходе вниз в данном случае, поршень давит на жидкость в цилиндре, давление нарастает, всасывающий клапан закрывается, а нагнетательный открывается, чтобы выпустить жидкость в трубопровод.

Аксиально-поршневой насос

Аксиально-поршневой насосАксиально-поршневой насос

Он более сложен, чем демонстрационный пример, но его принцип действия такой же.

Аксиально-поршневой насос имеет множество поршней, которые равно распределены на вращающейся под углом плите.

Когда плита вращается, поршень направляется внутрь цилиндров или наружу.

Как и большинство поступательных насосов, поршневые насосы довольно эффективны и способны создавать большое давление.

Когда плита вращается, поршень направляется внутрь цилиндров или наружу.Когда плита вращается, поршень направляется внутрь цилиндров или наружу.

Плунжерный насос

Плунжерные насосы схожи с поршневыми насосами, но они работают немного по-другому. В отличие от  плотно закрепленного поршня, плунжер закреплен свободно.

Физическая масса плунжера изменяет объём камеры и перемещает жидкость.

Плунжерный насосПлунжерный насос

Это – плунжерный насос тройного действия, у которого плунжеры расположены в шахматном порядке для плавного нагнетания жидкости.

Плунжерный насосПлунжерный насос

Диафрагменный насос

В отличие от плунжерного насоса и поршневого, здесь есть растягивающаяся резиновая диафрагма. Когда она растягивается, объем камеры изменяется, что заставляет жидкость входить и выходить из рабочей камеры.

Диафрагменный насосДиафрагменный насос

Например, пневматический насос с двумя диафрагмами. Он имеет две диафрагмы расположенные обратно друг к другу. Диафрагмы связаны штоком, поэтому он двустороннего действия.

Диафрагменный насосДиафрагменный насос

Основное преимущество диафрагменных  насосов в том, что он не требует уплотнения, потому что сухая и мокрая часть насоса отделены друг от друга самой диафрагмой.

Вращающиеся насосы

Все вращающиеся насосы используют движущуюся камеру, которая улавливает жидкость и доставляет с одной стороны насоса в другую.

Шестерёнчатый насос

Шестерёнчатый насос правильно называть внешним. Механизм состоит из 2 вращающихся шестерен внутри овального корпуса. Одна шестерня – ведомая, другая – ведущая.

Шестерёнчатый насос (внешний)Шестерёнчатый насос (внешний)

 

Во всасывающем отверстии жидкость попадает между зубьями шестерни и внутрь стенки корпуса. Вращательное движение двигает полость из одной части насоса в другую. И когда зубья снова уходят в сцепление – полость закрывается, выталкивая жидкость через нагнетательное отверстие.

Другая конфигурация шестерёнчатого механизма – внутренняя.

Шестерёнчатый насос (внутренний)Шестерёнчатый насос (внутренний)

 

Здесь нижняя шестерня в круглом корпусе двигает внутреннюю шестерню. Шестерни разделены полукругом. Жидкость попадает в одну из двигающих полостей между внутренней шестерней и полукругом, или внешней шестерней и полукругом. Как и во внешнем шестерёнчатом насосе, полость двигаются из одной части насоса в другую. Когда зубья возвращаются за сцепление, полость закрывается, выталкивая жидкость через нагнетательное отверстие.

Кулачковый насос

Кулачковый насос работает схоже с шестерёнчатым насосом.

Кулачковый насосКулачковый насос

Но роторы двигаются независимо с синхронными шестернями. Роторы имеют два или более кулачков, и двигающаяся полость формируется между внешней поверхностью кулачков и внутренней стенкой овального корпуса. Когда один из кулачков вращается от центра корпуса, частный зазор между кулачком и другим ротором закрывает полость и выталкивает жидкость в нагнетательное отверстие.

Лопастной насос

Его роторы имеют пазы для скользящих лопаток. Центробежная сила выбрасывает лопатки до соприкосновения с внутренней части круглого корпуса, создавая герметичную полость. Когда вращается ротор, лопатки, то выпадают из пазух, то заново впадают в них. Полость, проходя через всасывающее отверстие, увеличивается и захватывает жидкость. Проходя через нагнетательное отверстие, камера уменьшается, выталкивая жидкость. Достоинства этих насосов в том, что они изнашиваются равномерно, потому что их лопатки всегда соприкасаются со стенками.

Лопастной насосЛопастной насос

Перистальческий насос

Перистальческий насос имеет растягивающийся шланг, зажатый между роликами  и внутренней частью корпуса. Так как, ролики вращаются вокруг центральной оси, они сжимают жидкость, и двигают её через шланг к всасывающему отверстию. Как и диафрагменные насосы, перистальческие насосы не требуют уплотнения, потому что жидкость полностью находится внутри шланга. Они превосходны при перекачивании вязких жидкостей с кучей солей.

Перистальческий насосПеристальческий насос

Винтовой насос

Они могут иметь один вал с множеством винтов на нём. Но обычно они имеют два или три вала. Центральный вал двигает другие валы, как винт или червячная передача. Когда винт вращается в корпусе, жидкость попадает в шаги между резьбой, проходит по всей длине камеры  и попадает в нагнетательное отверстие.

Винтовой насосВинтовой насос

Кавитационный насос

Этот необычный насос очень похож на винтовой насос, но он функционирует иначе. Ротор имеет форму спирали, а корпус внутри имеет форму двойной спирали. Когда ротор расширяется и качается внутри корпуса, создается полость, проходящая по длине всего корпуса, жидкость попадает в эту полость и доходит до нагнетающего отверстия.

Кавитационный насосКавитационный насос

Поршневой насос — Википедия

Материал из Википедии — свободной энциклопедии

Поршневой насос (плунжерный насос) — один из видов объёмных гидромашин, в котором вытеснителями являются один или несколько поршней (плунжеров), совершающих возвратно-поступательное движение.

Рис. 1. Конструктивная схема простейшего поршневого насоса одностороннего действия Рис. 2. Дифференциальная схема включения поршневого насоса. Во время движения поршня влево часть жидкости отводится в штоковую полость, объём которой меньше объёма вытесняемой жидкости за счёт того, что часть объёма штоковой полости занимает шток

В отличие от многих других объёмных насосов, поршневые насосы не являются обратимыми, то есть, они не могут работать в качестве гидродвигателей из-за наличия клапанной системы распределения.

Поршневые насосы не следует путать с роторно-поршневыми, к которым относятся, например, аксиально-поршневые и радиально-поршневые насосы.

Принцип работы таков: за счет поступательного движения поршня создаётся разрежение в полости под ним, и туда засасывается жидкость из подводящего (всасывающего) трубопровода. При обратном движении поршня на всасывающем трубопроводе закрывается клапан, предотвращающий протечку жидкости обратно, и открывается клапан на нагнетательном трубопроводе, который был закрыт при всасывании. Туда вытесняется жидкость, которая находилась под поршнем, и процесс повторяется. Недостаток такого насоса в том, что жидкость движется по трубопроводу с различной скоростью (скачками). Этот момент обычно обходят созданием насосов, в которых несколько поршней. Основное преимущество в том, что он способен закачивать жидкость, будучи в момент пуска незаполненным ею (сухое всасывание), и поэтому применяется обычно там, где этим преимуществом необходимо воспользоваться.

Рис. 3.Принцип работы поршня

Одной из разновидностей поршневого насоса является диафрагменный насос.

Одним из недостатков поршневых насосов, как и других объёмных насосов, являются пульсации подачи и давления. Пульсации можно уменьшить, расположив несколько поршней в ряд и соединив их с одним валом таким образом, чтобы циклы их работы были сдвинуты друг относительно друга по фазе на равные углы. Другим способом борьбы с пульсацией является использование дифференциальной схемы включения насоса (рис. 2), при которой нагнетание жидкости осуществляется не только во время прямого хода поршня, но и во время обратного хода.

Также широко применяют насосы двустороннего действия, у которых как поршневая, так и штоковая полость имеют (в отличие от дифференциальной схемы включения) свою клапанную систему распределения. У таких насосов коэффициент пульсаций ниже, а КПД выше, чем у насосов одностороннего действия (рис. 1).

Для борьбы с пульсацией также применяют гидроаккумуляторы, которые в момент наибольшего давления запасают энергию, а в момент спада давления отдают её.

Поршневые насосы используются с глубокой древности. Известно их применение для целей водоснабжения со II века до нашей эры. В настоящее время поршневые насосы используются в системах водоснабжения, в пищевой и химической промышленности, в быту. Диафрагменные насосы используются, например, в системах подачи топлива в двигателях внутреннего сгорания.

  1. Гидравлика, гидромашины и гидроприводы: Учебник для машиностроительных вузов/ Т. М. Башта, С. С. Руднев, Б. Б. Некрасов и др. — 2-е изд., перераб. — М.: Машиностроение, 1982.
  2. Гейер В. Г., Дулин В. С., Заря А. Н. Гидравлика и гидропривод: Учеб для вузов. — 3-е изд., перераб. и доп. — М.: Недра, 1991.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *