Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Обозначение автоматического выключателя на однолинейной схеме: Как обозначаются автоматы на электрической схеме

Содержание

Дифавтомат на однолинейной схеме. Что это такое. Более надежная защита

В этой статье вы найдете 15 схем установки УЗО (устройства защитного отключения). При проектировании электропроводки УЗО располагаются в зонах защиты электрических цепей потребителей, с наибольшей вероятностью поражения малыми токами замыканий. Под эти условия попадают все бытовые приборы, имеющие контакт с водой, расположенных в мокрых и влажных комнатах, а также в детских комнатах для повышения безопасности.

При проектировании (установки) УЗО принимается во внимание ранжирование опасности и в различных схемах, количество УЗО, равно плановых помещений, может меняться. Для наиболее опасных, в смысле поражения током, бытовые приборов защищаются УЗО отдельно.

В каких цепях ставится УЗО

По своему основному назначению, УЗО защищает человека от малых токов, замыкания фазных проводов на проводящие корпуса приборов. Второе назначение УЗО это косвенное слежение за состоянием электропроводки и плотностью крепления жил проводов.

Это позволяет использовать его, как защитное средство от пожаров.

15 схем установки УЗО, устройства защитного отключения

Для начала, посмотрим, как обозначаются УЗО в принципиальных электрических схемах. По УЗО и дифференциальные автоматы защиты обозначаются следующим образом.

Буквенно-цифровое обозначение УЗО, согласно , выглядит так.

УЗО и групповые цепи

По нормативам, УЗО ставится на групповые цепи (функциональные группы) розеток, освещения, силового оборудования, а также, в электрических цепях одиночных установок (приборов).

Схема 3, подключение УЗО 380 В, 11 кВт

На данной схеме, УЗО подключаются в электрическую сеть, 380 Вольт, и расчетной нагрузкой до 11 кВт. Это может быть частный дом или квартира. Согласно схеме, общее противопожарное УЗО (25 А/100 мА) ставится вместе со счетчиком в УЭРМ (Устройство этажное распределительное многоящичное – современный этажный щит). Электросеть помещения разделена на 5 групп, три из которых защищены УЗО 16 А/30мА и цепь ванной, защищена УЗО 25А/10мА.

Схема 4, 8 групповых цепей

На схеме 4, УЗО подключаются в электрической сети 380 Вольт, и расчетной нагрузкой до 11 кВт. Данная схема, предусматривает 8 групповых цепей, 6 из которых защищены УЗО. (4 узо 16А/30мА и 1 узо 25А/10мА)

Примечание. Согласно стандартам, УЗО ставятся в распределительные, квартирные щитки и другие электрические шкафы. Открытая установка УЗО запрещена.

Схема 5, подключение УЗО в частном доме

Установка УЗО в частном доме с . Напряжение питания 220 Вольт.

Противопожарное УЗО (32А/100мА) ставится на вводе кабеля питания в ЩКВс (щит квартирный встраиваемый со стеклом) вместе со счетчиком. Вполне щит ЩКВс может быть заменен ЩКНс (щит квартирный навесной) или щитом ЩВУ (щит вводно-учетный).

Электрическая схема электропроводки большой квартиры или дома. Вводное защитное устройство поставлено до счетчика, вопрос зачем? Если мы говорим об установке УЗО, как такового, то такая установка УЗО до счетчика неправильная. Возможна установка защитного устройства до счетчика, если это дифференциальный автомат защиты, но здесь уже стоит автомат защиты.

Примечание. Номинал УЗО устанавливаемого после автомата защиты, должно иметь номинал на шаг больше номинала автомата защиты.

Схема 7, УЗО в сети tn-s

Устройство защитного отключения в квартире, без противопожарного узо, в сети типа tn-s.

Примечание: Сеть типа tn-s предполагает разделение нулевого рабочего (N) и защитного проводника (PE).

Если рассматривать данную схему, как схему только квартиры, то вполне допустимо, разделение PEN проводника на PE и N проводники в этажном щите, а сама сеть типа: tn-c-s.

Схемы 9 и 10, правильное и не правльное подключения узо

Это простые принципиальные схемы по правильному и не правильному подключению УЗО. Стоит обратить внимание, на неправильное подключение УЗО.

Примечание: К сожалению, на принципиальных схемах, не показаны особенности подключения нескольких узо для разных групповых цепей. Здесь важно, для каждой группы, на которой стоит УЗО, нужно ставить свою, независимую шину заземления и розетки этой группы присоединять только к этой шине.

На схеме 10

  • (1) это подключение дифференциального автомата,
  • (2) и (3) это подключение УЗО с автоматами защиты.

Схема 11 и схема 12, узо на принципиальных схемах

Простые принципиальные схемы, 220 Вольт. На них прекрасно и правильно показано подключение УЗО в сборке: вводной автомат-счетчик учета- УЗО противопожарное.

Схема 13, Муниципальная схема подключения квартиры

Муниципальная схема подключения квартиры. Противопожарное УЗО (50А/100мА) в этажном щите и общее УЗО в квартирном щитке (40А/30мА). Название говорит само за себя, схема экономичная.

Схема 14, Минимальная схема подключения квартиры

Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим.

На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.

Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:


Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.

Базовые изображения и функциональные признаки

Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.

Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.

Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты.

Они приведены на фото ниже.

Основные функции могут выполнять только неподвижные контакты.

Условные обозначения однолинейных схем

Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т.д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.

Основная особенность графических условных обозначений в электросхемах в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.

Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.

Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.

В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.

Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.

Изображение шин и проводов

В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).

Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.

На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.

Как изображают выключатели, переключатели, розетки

На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.

Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.

Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.

Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).

В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.

Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)

Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.

Светильники на схемах

В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.

В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.

Элементы принципиальных электрических схем

Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.

Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.

Буквенные условные обозначения в электрических схемах

Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.

В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.

Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта.

Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется обозначение узо на схеме .

Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы . но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

Обозначение узо на однолинейной схеме

Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным.

На какие нормативные документы следует ссылаться?

Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

  1. — ГОСТ 2. 755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
  2. — ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».

Графическое обозначение УЗО на схеме

Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

Или к примеру УЗО от Schneider Electric:

Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.

Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений — выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

Как обозначается дифавтомат на схеме?

По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

Буквенное обозначение узо на электрических схемах

Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и обязателен для применения ко всем элементам в электрических схемах.

Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специального буквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т. д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах .

Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

Второй вариант это использовать буквенно-цифровую комбинацию Q1D — для УЗО и комбинацию QF1D — для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – « дифференцирующий ».

Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

Какие можно сделать выводы из вышеописанного?

Ввиду того что обозначение УЗО и дифференциальных автоматов по ГОСТ отсутствует, информация рассмотренная в данной статье, не относится к нормативным документам обязательным для исполнения, а является всего лишь РЕКОМЕНДАЦИЕЙ. Каждый проектировщик может изображать на схемах эти элементы по своему усмотрению. Для этого нужно всего лишь привести условно графические обозначения (УГО) элементов, их расшифровку и пояснения к схеме. Все эти действия предусматриваются в ГОСТ 2.702-2011.

Как обозначается узо на однолинейной схеме — пример реального проекта

Как говорится в известной пословице «лучше один раз увидеть, чем сто раз услышать», поэтому давайте рассмотрим на реальном примере.

Предположим, что перед нами находится однолинейная схема электроснабжения квартиры. Из всех этих графических обозначение можно выделить следующее:

Вводное устройство защитного отключения расположено сразу после счетчика. Кстати как вы могли заметить буквенное обозначение УЗО – QD. Еще один пример как обозначается узо:

Заметьте, что на схеме помимо УГО элементов также наносится их маркировка, то есть: тип устройства по роду тока (А, АС), номинальный ток, дифференциальный ток утечки, количество полюсов. Далее переходим к УГО и маркировке дифференциальных автоматов:

Розеточные линии на схеме подключаются через диф.автоматы. Буквенное обозначение дифавтомата на схеме QFD1, QFD2, QFD3 и т.д.

Еще один пример как обозначаются диф.автоматы на однолинейной схеме магазина.

Вот и все дорогие друзья. На этом наш сегодняшний урок подошел к концу. Надеюсь, данная статья была для вас полезной и Вы нашли здесь ответ на свой вопрос. Если остались вопросы задавайте их в комментариях, с удовольствием отвечу. Давайте делиться опытом, кто как обозначает УЗО и АВДТ на схемах. Буду признателен на репост в соц.сетях))).

Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта.

Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется .

Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы , но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

Обозначение узо на однолинейной схеме

Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным .

На какие нормативные документы следует ссылаться?

Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

  1. — ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
  2. — ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».

Графическое обозначение УЗО на схеме

Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

Или к примеру УЗО от Schneider Electric:

Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.

Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений — выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

Как обозначается дифавтомат на схеме?

По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

Буквенное обозначение узо на электрических схемах

Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и обязателен для применения ко всем элементам в электрических схемах.

Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специальногобуквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т.д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах .

Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

Второй вариант это использовать буквенно-цифровую комбинацию Q1D — для УЗО и комбинацию QF1D — для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – «дифференцирующий ».

Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

Какие можно сделать выводы из вышеописанного?

Как обозначается узо на однолинейной схеме — пример реального проекта

Как говорится в известной пословице «лучше один раз увидеть, чем сто раз услышать», поэтому давайте рассмотрим на реальном примере.

Предположим, что перед нами находится однолинейная схема электроснабжения квартиры. Из всех этих графических обозначение можно выделить следующее:

Вводное устройство защитного отключения расположено сразу после счетчика. Кстати как вы могли заметить буквенное обозначение УЗО – QD. Еще один пример как обозначается узо:

Заметьте, что на схеме помимо УГО элементов также наносится их маркировка, то есть: тип устройства по роду тока (А, АС), номинальный ток, дифференциальный ток утечки, количество полюсов. Далее переходим к УГО и маркировке дифференциальных автоматов:

Розеточные линии на схеме подключаются через диф.автоматы. Буквенное обозначение дифавтомата на схеме QFD1, QFD2, QFD3 и т.д.

Еще один пример как обозначаются диф.автоматы на однолинейной схеме магазина.

Вот и все дорогие друзья. На этом наш сегодняшний урок подошел к концу. Надеюсь, данная статья была для вас полезной и Вы нашли здесь ответ на свой вопрос. Если остались вопросы задавайте их в комментариях, с удовольствием отвечу. Давайте делиться опытом, кто как обозначает УЗО и АВДТ на схемах. Буду признателен на репост в соц.сетях))).

Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта.

Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется .

Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы , но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

Обозначение узо на однолинейной схеме

Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным.

На какие нормативные документы следует ссылаться?

Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

  1. — ГОСТ 2. 755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
  2. — ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».

Графическое обозначение УЗО на схеме

Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

Или к примеру УЗО от Schneider Electric:

Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.

Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений — выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

Как обозначается дифавтомат на схеме?

По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

Буквенное обозначение узо на электрических схемах

Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и обязателен для применения ко всем элементам в электрических схемах.

Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специальногобуквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т. д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах .

Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

Второй вариант это использовать буквенно-цифровую комбинацию Q1D — для УЗО и комбинацию QF1D — для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – «дифференцирующий».

Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

Какие можно сделать выводы из вышеописанного?

electricvdome.ru

Основное назначение однолинейной схемы – графическое отображение системы электрического питания (электроснабжение объекта, разводка электричества в квартире и т.д.). Проще говоря, на однолинейной схеме изображается силовая часть электроустановки. По названию можно понять, что однолинейная схема выполняется в виде одной линии. Т.е. электрическое питание (и однофазное, и трёхфазное), подводимое к каждому потребителю, обозначается одинарной линией.


Чтобы указать количество фаз, на графической линии используются специальные засечки. Одна засечка обозначает, что электрическое питание однофазное, три засечки – что питание трёхфазное.

Кроме одинарной линии используются обозначения защитных и коммутационных аппаратов. К первым аппаратам относятся высоковольтные выключатели (масляные, воздушные, элегазовые, вакуумные), автоматические выключатели, устройства защитного отключения, дифференциальные автоматы, предохранители, выключатели нагрузки. Ко вторым относятся разъединители, контакторы, магнитные пускатели.

Высоковольтные выключатели на однолинейных схемах изображаются в виде небольших квадратов. Что касается автоматических выключателей, УЗО, дифференциальных автоматов, контакторов, пускателей и другой защитной и коммутационной аппаратуры, то они изображаются в виде контакта и некоторых поясняющих графических дополнений, в зависимости от аппарата.

Монтажная схема (схема соединения, подключения, расположения) используется для непосредственного производства электрических работ. Т.е. это рабочие чертежи, используя которые, выполняется монтаж и подключение электрооборудования. Также по монтажным схемам собирают отдельные электрические устройства (электрические шкафы, электрические щиты, пульты управления, и т. д.).


На монтажных схемах изображают все проводные соединения как между отдельными аппаратами (автоматические выключатели, пускатели и др.), так и между разными видами электрооборудования (электрические шкафы, щитки и т.д.). Для правильного подключения проводных соединений на монтажной схеме изображаются электрические клеммники, выводы электрических аппаратов, марка и сечение электрических кабелей, нумерация и буквенное обозначение отдельных проводов.

Схема электрическая принципиальная – наиболее полная схема со всеми электрическими элементами, связями, буквенными обозначениями, техническими характеристиками аппаратов и оборудования. По принципиальной схеме выполняют другие электрические схемы (монтажные, однолинейные, схемы расположения оборудования и др.). На принципиальной схеме отображаются как цепи управления, так и силовая часть.


Цепи управления (оперативные цепи) – это кнопки, предохранители, катушки пускателей или контакторов, контакты промежуточных и других реле, контакты пускателей и контакторов, реле контроля фаз (напряжения) а также связи между этими и другими элементами.

На силовой части изображаются автоматические выключатели, силовые контакты пускателей и контакторов, электродвигатели и т.д.

Кроме самого графического изображения каждый элемент схемы снабжается буквенно-цифровым обозначением. Например, автоматический выключатель в силовой цепи обозначается QF. Если автоматов несколько, каждому присваивается свой номер: QF1, QF2, QF3 и т.д. Катушка (обмотка) пускателя и контактора обозначается KM. Если их несколько, нумерация аналогичная нумерации автоматов: KM1, KM2, KM3 и т.д.

В каждой принципиальной схеме, если есть какое-либо реле, то обязательно используется минимум один блокировочный контакт этого реле. Если в схеме присутствует промежуточное реле KL1, два контакта которого используются в оперативных цепях, то каждый контакт получает свой номер. Номер всегда начинается с номера самого реле, а далее идёт порядковый номер контакта. В данном случае получается KL1.1 и KL1.2. Точно также выполняются обозначения блок-контактов других реле, пускателей, контакторов, автоматов и т. д.

В схемах электрических принципиальных кроме электрических элементов очень часто используются и электронные обозначения. Это резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры и другие элементы. Каждый электронный элемент на схеме также имеет своё буквенное и цифровое обозначение. Например, резистор – это R (R1, R2, R3…). Конденсатор – C (C1, C2, C3…) и так по каждому элементу.

Кроме графического и буквенно-цифрового обозначения на некоторых электрических элементах указываются технические характеристики. Например, для автоматического выключателя это номинальный ток в амперах, ток срабатывания отсечки тоже в амперах. Для электродвигателя указывается мощность в киловаттах.

Для правильного и корректного составления электрических схем любого вида необходимо знать обозначения используемых элементов, государственные стандарты, правила оформления документации.

aquagroup.ru

Вернутся в раздел: УЗО и Дифзащита Электрика

В данной статье рассмотрены несколько примеров подключения УЗО и Дифференциальных автоматов.

Основным условием при выборе УЗО и диф. автомата является соблюдение селективности (ПУЭ.РАЗДЕЛ 3 ):

В электротехнике под «селективностью» понимают совместную работу последовательно включенных аппаратов защиты электрических цепей (автоматические выключатели, УЗО, диф. автомат и т.п.) в случае возникновения аварийной ситуации. На рис. 1 привёден пример работы такой схемы, с учётом общего наминала автоматических выключателей 40 А (4шт. по 10А), вводный автомат 63 А.

Селективность используется при выборе номинала устройств защиты для отключения от общей системы питания только той ее части, где произошла авария. Это достигается за счет срабатывания только того автоматического выключателя, который защищает аварийную линию питания.

Во общем, для селективной работы автоматических выключателей при перегрузках нужно, чтобы номинальный ток (In) автоматического выключателя со стороны питания был больше In автоматического выключателя со стороны потребителей.

Условное обозначение УЗО и дифавтомата на электрических схемах:

Обозначение УЗО на принципиальных электрических схемах см. рис. 2. Слева – однофазное УЗО с током срабатывания 30 мА, справа – трехфазное УЗО на 100 мА. Сверху развернутое изображение, снизу однолинейное. Число полюсов при однолинейном представлении можно изображать и числом (вверху) и числом черточек. Условное обозначение Дифавтомата на принципиальных схемах см. рис. 3 и на однолинейных схемах рис. 4. Буквенное обозначение QF.

Рис. 4
Рис. 3

Схемы включения УЗО:

По конструкции УЗО различных производителей могут отличаться друг от друга не только параметрами, но и схемами подключения. На рис. 5 приведены наиболее распространенные схемы включения УЗО в различных вариантах:

Двухполюсные УЗО Рис. 5 (а).

Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен в фазное напряжение (Рис. 5 (б).

Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен на линейное напряжение (Рис. 5 (в).

При включении УЗО (дифавтомата) в любом случае смотрите схему, схема подключения приведена на лицевой или боковой поверхности корпуса УЗО, а также в паспорте технического устройства.

Ниже приведены монтажные схемы подключения УЗО (Рис. 6) и дифавтомата (Рис. 7).

  1. Вводный автомат.
  2. Прибор учёта (электросчетчик).
  3. УЗО или дифавтомат.
  4. Автоматический выключатель (освещения, как правило 6 ÷ 10 А, в зависимости от нагрузки светильников).
  5. Автоматический выключатель (розетки, как правило 16 ÷ 25 А, в зависимости от группы розеток).
  6. Автоматический выключатель (розетка «силовая», 16 ÷ 25 А, в зависимости от нагрузки электроплиты).
  7. Нулевая рабочая N — шина.
  8. Нулевая защитная РЕ — шина.

Более подробно про системы заземления и зануления см. в разделе

Вернутся в раздел: УЗО и Дифзащита Электрика

energetik.com.ru

Рабочий ток и быстродействие

Особенности конструкции дифавтоматов являются причиной того, что они обладают комбинированными характеристиками, используемыми при описании работы как АВ, так и УЗО. Основной рабочей характеристикой этих электротехнических изделий является номинальный рабочий ток, при котором прибор может оставаться включённым длительное время.

Данная характеристика прибора относится к строго стандартизированным показателям, вследствие чего ток может принимать лишь значения из определённого ряда (6, 10, 16, 25, 50 Ампер и так далее).

Помимо этого в обозначении устройств используется связанный с быстродействием токовый показатель, обозначаемый цифрами «B», «C» или «D», стоящими перед значением номинального тока.

Быстродействие – важная токовая и временная характеристика. Обозначение C16, например, соответствует дифавтомату с временной характеристикой «C», рассчитанный на номинальное значение 16 Ампер.

Ток отключения и напряжение

К группе технических характеристик дифавтомата относится ток отключения схемы (дифференциальный показатель), определяемый как «уставка по токовой утечке». Для большинства моделей допустимые значения этой характеристики укладываются в следующий ряд: 10, 30, 100, 300 и 500 миллиампер. На корпусе дифавтомата она обозначается значком «дельта» с числом соответствующим току утечки.

Ещё одной характеристикой эксплуатационных возможностей дифавтоматов является номинальное напряжение, при котором они способны работать длительное время (220 Вольт – для однофазной сети и 380 Вольт – для трехфазных цепей). Величина рабочего напряжения защитного дифференциального прибора может указываться под обозначением номинала с буквой или под клавишей выключателя.

Ток утечки и селективность

Следующая характеристика, по которой различаются все дифавтоматы – тип тока утечки. В соответствии с этим параметром любой из дифавтоматов может иметь следующие обозначения:

  • «A» – реагирующие на утечки синусоидального переменного (пульсирующего постоянного) тока;
  • «AC» – дифавтоматы, рассчитанные на срабатывания от утечек, содержащих постоянную составляющую;
  • «B» – комбинированное исполнение, предполагающее обе указанные ранее возможности.

Характеристика «тип встроенного УЗО» маркируется буквенным индексом или небольшим рисунком.

По аналогии с УЗО дифавтоматы могут работать по селективному принципу, предполагающему наличие задержки по времени срабатывания. Указанная возможность обеспечивает определённую выборочность отключения прибора от сети и электродинамическую устойчивость системы защиты. Согласно этой характеристике дифференциальные устройства обозначаются значком «S», что означает задержку порядка 200-300 миллисекунд, либо маркируются знаком «G» (60-80 миллисекунд).

Основные обозначения

Более подробно порядок маркировки дифавтомата (расположение его характеристик) рассмотрим на примере отечественного изделия марки «АВДТ32», используемого в цепях защиты промышленных и бытовых электросетей.

Для удобства систематизации излагаемой информации под графическим обозначением будет пониматься определённая маркировочная позиция.

На первой позиции указывается наименование и серия дифавтомата. Из этого обозначения следует, что он является АВ дифференциального типа со встроенной защитой от опасных токов утечки. Дифавтомат предназначен к использованию в электросетях однофазного переменного тока с номинальным напряжением 230 Вольт (50 Герц).

На месте, соответствующем позиции №3 (вверху), указывается такая характеристика, как значение номинального дифференциального тока короткого замыкания.

Обратите внимание! Иногда в этом месте можно увидеть значение предельной коммутационной способности прибора, свидетельствующей о величине максимального тока, при которой дифавтомат может отключаться многократно.

На той же позиции, но внизу приводится графическое обозначение типа встроенного автомата (в данном случае это тип «А», рассчитанный на работу с утечками пульсирующего постоянного и синусоидального переменного токов).

На месте 4-ой позиции можно увидеть модульную схему дифавтомата, на которой указываются входящие в его состав элементы, участвующие в реализации защитных функций. Для АВДТ32 на этой схеме условными знаками обозначаются следующие модули и узлы:

  • электромагнитные и тепловые расцепители, обеспечивающие защиту линий от токов КЗ и перегрузки соответственно;
  • специальная кнопка «Тест», необходимая для ручной проверки исправности автомата;
  • усилительный электронный модуль;
  • исполнительный узел (коммутирующее линию реле).

На позиции под номером семь на первом месте указывается связанная с быстродействием характеристика аварийного срабатывания электромагнитного расцепителя (для нашего примера – это «С»). Сразу за ним следует показатель номинального тока, означающего величину этого параметра в рабочем режиме (в течение длительного времени).

Минимальный ток отключения (срабатывания) расцепителя электромагнитного типа для дифавтомата с характеристикой «С» обычно берётся равным примерно пяти номинальным токам. При данной величине токовой характеристики тепловой расцепитель срабатывает примерно через 1,5 секунды.

На восьмой позиции обычно стоит значок «дельта» с показателем номинального тока утечки, который отключает дифференциальное устройство в случае опасности. Это все основные электрические характеристики.

Информационные знаки

На пятой позиции приводится температурная характеристика защитного устройства (от — 25 до + 40 градусов), а на шестой располагаются сразу два знака.
Один из них информирует пользователя о сертификате соответствия, то есть обозначает действующий отечественный ГОСТ на дифавтомат (ГОСТ Р129 – для данного случая).

Непосредственно под ним располагается закодированная в виде букв и цифр характеристика. Это обозначение организации, выдавшей сертификат.

Важно! Этот знак сообщает потребителю о законности происхождения товара и его качестве и при необходимости обеспечивает юридическую защищённость устройства.

Справа от него приводятся данные по сертификации и ГОСТу этой модели в отношении её пожарной безопасности.

И, наконец, на месте, соответствующем второй позиции, наносится логотип торговой марки компании-изготовителя (в данном случае – «ИЭК»).

Размеры и точки подключения

Основными габаритными характеристиками дифавтомата согласно ГОСТ являются его высота, ширина и толщина, а также размер по высоте и ширине выступающей с лицевой стороны полочки с клавишей управления. Помимо этого, приводятся размеры расположенных на тыльной стороне полочек, ограничивающих зазор для посадки прибора на фиксирующую его дин-рейку.

Современные модели дифавтомата могут иметь тот или иной размер, с каждым из которых можно ознакомиться в прилагаемой к этому изделию документации. Но в большинстве случаев габаритные характеристики схожи, что упрощает размещение в щитке.

Относительно контактных точек подключения данного прибора к защищаемой схеме необходимо отметить следующее. В однофазной сети устанавливаются дифференциальные устройства, имеющие по два вводных и два выводных контакта. Одна из этих групп служит для подключения так называемого «фазного» провода, а к другой подсоединяется «нулевая» жила питания. Как правило, все контакты (верхние и нижние) маркируются значками «L» и «N», обозначающими соответственно те места, куда подключаются фаза и ноль.

При включении устройства в электрическую цепь к верхним контактам подсоединяются фазный и нулевой провода, приходящие от вводно-распределительного устройства или электрического счётчика . Нижние его клеммы предназначаются для коммутации проводников, идущих непосредственно к защищаемой нагрузке (к потребителю).

Подключение дифференциального прибора в силовые цепи трёхфазного питания полностью аналогично рассмотренному ранее варианту. Отличие в данном случае состоит лишь в том, что к дифавтомату при этом подсоединяются сразу три фазы: «A», «B» и «C». По аналогии со случаем однофазной линии питания 220 Вольт клеммы трёхфазного дифавтомата также маркируются (с целью соблюдать фазировку) и обозначаются как «L1», «L2», «L3» и «N».

Грамотный выбор подходящего для заявленных целей прибора невозможен без внимательного изучения основных рабочих характеристик дифавтомата и соответствующей им маркировки. В связи с этим перед приобретением дифференциального прибора постарайтесь тщательно изучить весь изложенный в этой статье материал.

evosnab.ru

Назначение, технические характеристики и выбор

Дифавтомат или дифференциальный автомат защиты объединяет в себе функции автомата защиты и УЗО. То есть, одно это устройство защищает проводку от перегрузок, короткого замыкания и тока утечки. Ток утечки образуется при неисправности изоляции или при прикосновении к токоведущим элементам, то есть он еще защищает человека от поражения электричеством.

Дифавтоматы устанавливаются в электрические распределительные щитки, чаще всего на дин-рейки. Они ставятся вместо связки автомат+УЗО, физически занимают немного меньше места. Насколько конкретно — зависит от производителя и типа исполнения. И это — основной их плюс, который может быть востребован при модернизации сети, когда место в щитке ограничено, а необходимо подключить некоторое количество новых линий.

Второй положительный момент — экономия средств. Как правило, дифавтомат стоит меньше, чем пара автомат+УЗО с аналогичными характеристиками. Еще один положительный момент — необходимо определиться только с номиналом автомата защиты, а УЗО встроен по умолчанию с требующимися характеристиками.

Недостатки тоже имеются: при выходе и строя одной из частей дифавтомата менять придется все устройство, а это дороже. Также не все модели снабжены флажками, по которым можно определить, по какой причине сработало устройство — из-за перегрузки или тока утечки — что принципиально важно при выяснении причин.

Характеристики и выбор

Так как дифавтомат объединяет в себе два устройства, имеет он характеристики их обоих и при выборе надо учитывать все. Разберемся что обозначают эти характеристики и как выбирать дифференциальный автомат.

Номинальный ток

Это максимальный ток, который может длительное время выдерживать автомат без потери работоспособности. Обычно он указывается на лицевой панели. Номинальные токи стандартизованы и могут быть 6 А, 10 А, 16 А, 20 А, 25 А, 32 А, 40 А, 50 А, 63А.

Малые номиналы — 10 А и 16 А — ставят на линии освещения, средние — на мощных потребителей и розеточные группы, а мощные — 40 А и выше — в основном используют как вводный (общий) дифавтомат. Подбирается в зависимости от сечения кабеля, точно также, как при выборе номинала автомата защиты.

Время-токовая характеристика или тип электромагнитного расцепителя

Отображается рядом с номиналом, обозначается латинскими буквами B, C, D. Указывает на то, при каких перегрузках относительно номинала происходит отключение автомата (для игнорирования кратковременных стартовых токов).

Категория B — если ток превышен в 3-5 раз, C — при превышении номинала в 5-10 раз, тип D отключается при нагрузках, которые превышают номинал в 10-20 раз. В квартирах обычно ставят дифавтоматы типа C, в сельской местности можно ставить B, на предприятиях с мощным оборудованием и большими стартовыми токами — D.

Номинальное напряжение и частота сети

Для каких сетей предназначен аппарат — 220 В и 380 В, с частотой 50 Гц. Других в нашей торговой сети не бывает, но все равно, стоит проверить.

Дифференциальные автоматы могут иметь двойную маркировку — 230/400 V. Это говорит о том, что данное устройство может работать и в сети на 220 В и на 380 В. В трехфазных сетях подобные устройства ставят на розеточные группы или на отдельных потребителей, там где используется лишь одна из фаз.

В качестве водных дифавтоматов на трехфазные сети необходимы устройства с четырьмя вводами, а они значительно отличаются габаритами. Спутать их невозможно.

Номинальный отключающий дифференциальный ток или ток утечки (уставки)

Отображает чувствительность устройства к образующимся токам утечки и показывает, при каких условиях сработает защита. В быту используются только два номинала: 10 мА для установки на линии, в которых установлено только одно мощное устройство или потребитель, в котором сочетаются два опасных фактора — электричество и вода (проточный или накопительный электрический водонагреватель, варочная поверхность, духовой шкаф, посудомоечная машина и т.п.).

Для линий с группой розеток и наружного освещения ставят дифавтоматы с током утечки 30 мА, на линии освещения внутри дома их не обычно ставят — для экономии.

На устройстве может быть написан просто значение в миллиамперах (как на фото слева) или может быть нанесено буквенное обозначение тока уставки (на фото справа), после которого стоят цифры в амперах (при 10 мА стоит 0,01 А, при 30 мА цифра 0,03 А).

Класс дифференциальной защиты

Показывает от токов утечки какого типа защищает это устройство. Есть буквенное и графическое изображение. Обычно ставят значок, но может быть и буква (смотрите в таблице).

Буквенное обозначение Графическое обозначение Расшифровка Область применения
АС Реагирует на переменный синусоидальный ток Ставят на линии, к которым подключена простая техника без электронного управления
А Реагирует на синусоидальный переменный ток и пульсирующий постоянный Применяется на линиях, от которых запитывается техника с электронным управлением
В Улавливает переменный, импульсный, постоянный и сглаженный постоянный. В основном применяется на производстве с большим количеством разнообразной техники
S С выдержкой времени отключения 200-300 мс В сложных схемах
G С выдержкой времени отключения60-80 мс В сложных схемах

Выбор класса дифференциальной защиты дифавтомата происходит исходя из типа нагрузки. Если это техника с микропроцессорами, необходим класс А, на линии освещения или включения питания простых устройств подойдет класс AC. Класс В в частных домах и квартирах ставят редко — нет необходимости «отлавливать» все типы токов утечки. Подключение дифавтомата класса S и G имеет смысл в многоуровневых схемах защиты. Их ставят в качестве входных, если в схеме дальше есть другие дифференциальные устройства отключения. В этом случае при срабатывании одного из нижестоящих по току утечки, входной не отключится и исправные линии будут в работе.

Номинальная отключающая способность

Показывает, какой ток в состоянии дифавтомат отключить при возникновении КЗ и остаться при этом работоспособным. Есть несколько стандартных номиналов: 3000 А, 4500 А, 6000 А, 10 000 А.

Выбор дифавтомата по этому параметру зависит от типа сети и от дальности расположения подстанции. В квартирах и домах на достаточном удалении от подстанции используют дифавтоматы с отключающей способностью 6 000 А, близко к подстанциям ставят на 10 000 А. В сельской местности, при подводе электропитания по воздушке и в давно не модернизированных сетях достаточно 4 500 А.

На корпусе эта цифра указана в квадратной рамке. Местоположение надписи может быть разным — зависит от производителя.

Класс токоограничения

Чтобы ток короткого замыкания принял максимальное значение, должно пройти какое-то время. Чем быстрее будет отключено электропитание от поврежденной линии, тем меньше меньше вероятность получения повреждений. Класс токоограничения отображается цифрами от 1 до 3. Третий класс — отключает линию быстрее всего. Так что выбор дифавтомата по этому признаку прост — желательно использовать устройства третьего класса, но они дороги, зато дольше остаются работоспособными. Так что при наличии финансовой возможности, ставьте дифавтоматы этого класса.

На корпусе эта характеристика изображена в маленькой квадратной рамке рядом с номинальной отключающей способностью. Она может стоять справа (у Legranda) или снизу (у большинства других производителей). Если вы такой отметки не нашли ни на корпусе, ни в паспорте, значит этот автомат не имеет тоокограничения.

Температурный режим использования

Большинство дифференциальных защитных автоматов рассчитаны на работу в помещениях. Они могут эксплуатироваться при температурах от -5°C до + 35°C. В этом случае на корпусе ничего не ставят.

Иногда щитки стоят на улице и обычные защитные устройства не подойдут. Для таких случаев выпускаются дифавтоматы с более широким диапазоном температур — от -25°C до +40°C. В этом случае на корпусе ставят специальный знак, который немного похож на звездочку.

Наличие маркеров о причине сработки

Дифавтоматы не все электрики любят ставить, так как считают, что связка защитный автомат+УЗО более надежна. Вторая причина — если устройство сработает, невозможно определить, что стало тому причиной — перегрузка, и надо просто выключить какой-то прибор, или ток утечки, и надо искать где и что произошло.

Чтобы решить хотя бы вторую проблему, производители стали делать флажки, которые показывают причину сработки дифавтомата. В некоторых моделях это небольшая площадка, по положению которой определяется причина отключения.

Если отключение вызвала перегрузка, индикатор остается вровень с корпусом, как а фото справа. Если дифавтомат сработал при наличии тока утечки, флажок выступает на некоторое расстояние от корпуса.

Тип конструктивного исполнения

Есть диф автоматы двух типов: электромеханические или электронные. Электромеханические более надежны, так как они сохраняют работоспособность даже при пропадании питания. То есть, если пропадет фаза, они смогут сработать и отключить еще и ноль. Электронные же для работы требуют питания, которое берут с фазного провода и при пропадании фазы теряют работоспособность.

Производитель и цена

В электричестве не стоит экономить, тем более на устройствах, которые обеспечивают защиту проводки и жизни. Потому рекомендуют всегда покупать комплектующие известных производителей. Лидирует на рынке Legrand (Легранд) и Schneider (Шнайдер), Hager (Хагер) но их продукция дорога, да и много подделок. Не настолько высокие цены у IEK (ИЕК), ABB (АББ), но и проблем с нм бывает больше. С неизвестными производителями в данном случае лучше не связываться, так как они зачастую просто неработоспособны.

Выбор на самом деле не такой и маленький, даже если ограничиться только этими пятью фирмами. У каждого производителя есть несколько линеек, которые отличаются по цене, причем значительно. Чтобы понять в чем разница, надо внимательно смотреть на технические характеристики. На цену оказывает влияние каждая и них, так что внимательно изучайте все данные перед покупкой.

Как подключить дифавтомат

Начнем со способов монтажа и порядка подключения проводников. Все очень просто, никаких особых сложностей нет. В большинстве случаев монтируется он на динрейку. Для этого есть специальные выступы, которые удерживают устройство на месте.

Электрическое подключение

Подключение дифавтомата к электросети происходит проводами в изоляции. Сечение выбирается исходя из номинала. Обычно линия (подвод питания) подключается в верхние гнезда — они подписываются нечетными цифрами, нагрузка — в нижние — подписываются четными цифрами. Так как к дифференциальному автомату подключается и фаза и ноль, чтобы не перепутать, гнезда для «ноля» подписаны латинской буквой N.

В некоторых линейках подключать линию можно и в верхние, и в нижние гнезда. Пример такого устройства на фото выше (слева). В этом случае на схеме пишется нумерация через дробь — 1/2 вверху и 2/1 внизу, 3/4 вверху и 4/3 внизу. Это и обозначает, что не имеет значения сверху или снизу подключать линию.

Перед подключением линии с проводов снимают изоляцию примерно на расстоянии 8-10 мм от края. На нужной клемме слегка ослабляют крепежный винт, вставляют проводник, винт затягивают с достаточно большим усилием. ЗАтем провод несколько раз дергают, чтобы убедиться что контакт нормальный.

Проверка работоспособности

После того, как вы подключили дифавтомат, подали питание, необходимо проверить работоспособность системы и правильность установки. Для начала тестируем сам агрегат. Для этого есть специальная кнопка, подписанная «Test» или просто буквой T. После того, как перевели переключатели в рабочее состояние, нажимаем на эту кнопку. При этом устройство должно «выбить». Эта кнопка искусственно создает ток утечки, так что мы проверили работоспособность дифавтомата. Если сработки не было — надо проверить правильность подключения, если все верно, устройство неисправно

Дальнейшая проверка — подключение простой нагрузки к каждой розетке. Этим вы проверите правильность расключения розеточных групп. И последнее — поочередное включение бытовой техники, на которую заведены отдельные линии электропитания.

Схемы

При разработке схемы электропроводки в квартире или доме может быть много вариантов. Отличаться они могут удобством и надежностью эксплуатации, степенью защиты. Есть простые варианты, требующие минимума затрат. Они обычно реализуются в небольших сетях. Например, на дачах, в небольших квартирах с малым количеством бытовой техники. В большинстве случаев приходится ставить большое количество устройств, которые обеспечивают безопасность проводки и защищают от поражения током людей.

Простая схема

Не всегда имеет смысл устанавливать большое количество защитных устройств. Например, на даче сезонного посещения, где есть всего несколько розеток и освещение, достаточно поставить всего один дифавтомат на входе, от которого на группы потребителей — розетки и освещение — через автоматы пойдут отдельные линии.

Эта схема не потребует больших затрат, но при появлении тока утечки на любой из линий дифавтомат сработает, обесточив все. До выяснения и устранения причин света не будет.

Более надежная защита

Как уже говорили, отдельные дифавтоматы ставят на «мокрые» группы. К ним относятся кухня, ванная, наружное освещение, а также техника, использующая воду (кроме стиральной машинки). Такой способ построения системы дает более высокую степень безопасности и лучше защищает проводку, оборудование и человека.

Реализация этого способа устройства проводки потребует больших материальных затрат, но работать система будет более надежно и стабильно. Так как при сработке одного из защитных устройств, остальная часть останется работоспособной. Такое подключение дифавтомата применяется в большинстве квартир и в небольших домах.

Селективные схемы

В разветвленных сетях электроснабжения возникает необходимость сделать систему еще более сложной и дорогостоящей. В таком варианте после счетчика устанавливается входной дифференциальный автомат класса S или G. Далее, на каждую группу идет свой автомат, а при необходимости ставятся еще и на отдельных потребителей. Подключение дифавтомата для этого случая смотрите на фото ниже.

При таком построении системы при сработке одного из линейных устройств все остальные останутся в работе, так как входной автомат дифференциального отключения имеет задержку в срабатывании.

Основные ошибки подключения дифавтоматов

Иногда после подключения дифавтомата он не включается или вырубается при подключении любой нагрузки. Это значит, что что-то сделано не так. Есть несколько типичных ошибок, которые встречаются при самостоятельной сборке щитка:

  • Провода защитного нуля (земля) и рабочего нуля (нейтраль) где-то объединены. При такой ошибке дифавтомат вообще не включается — рычаги не фиксируются в верхнем положении. Придется искать где объединены или перепутаны «земля» и «ноль».
  • Иногда при подключении дифавтомата ноль на нагрузку или на ниже расположенные автоматы взят не с выхода устройства, а напрямую с нулевой шины. В таком случае рубильники становятся в рабочее положение, но при попытке подключить нагрузку, они моментально отключаются.
  • С выхода дифавтомата ноль подается не на нагрузку, а идет обратно на шину. Ноль на нагрузку тоже берется с шины. В этом случае рубильники становятся в рабочее положение, но кнопка «Тест» не работает и при попытке включить нагрузку происходит отключение.
  • Перепутано подключение ноля. С нулевой шины провод должен идти на соответствующий вход, обозначенный буквой N, который находится вверху, а не вниз. С нижней нулевой клеммы провод должен уходить на нагрузку. Симптомы аналогичны: рубильники включаются, «Тест» не работает, при подключении нагрузки происходит срабатывание.
  • При наличии в схеме двух дифавтоматов перепутаны нулевые провода. При такой ошибке оба устройства включаются, «Тест» работает на обоих устройствах, но при включении любой нагрузки выбивает сразу оба автомата.
  • При наличии двух дифавтоматов, идущие от них нули где-то дальше соединили. В этом случае оба автомата взводятся, но при нажатии на кнопку «тест» одного из них, вырубаются сразу два устройства. Аналогичная ситуация возникает при включении любой нагрузки.

Теперь вы не только можете выбрать и подключить дифференциальный автомат защиты, но и понять почему он выбивает, что именно пошло не так и самостоятельно исправить ситуацию.

stroychik.ru

Что нужно знать об УЗО

Перед тем, как углубиться в вопросы, касающиеся схемы установки УЗО, рассмотрим особенности этих устройств, а также основные требования к ним, на основе которых производится их выбор. В данной статье мы не коснёмся индексации, так как углубление в неё требует серьёзных знаний в области электротехники, а также эта надобность отпадает в связи с тем, что выбор защитного устройства будет совершен исключительно на основе исходных данных. Для этого необходимо выполнить несколько пунктов:

  • Продумать о необходимости подключения отдельного УЗО с автоматом или дифавтомата.
  • Определиться с номинальным током устройства. Для автомата актуально значение данного тока выбирать на одну ступень выше данных тока отсечки, в том же случае, если используется дифавтомат, то указываемое значение должно быть равно току отсечки.
  • С помощью простого расчёта вычислить значение отсечки по экстратоку (перегрузке). Для его расчёта необходимо знать максимально допустимый ток потребления, а затем умножить полученное значение на 1,25. Далее необходимо отталкиваться от таблицы значений стандартного ряда токов. Если результат отличен он указанных параметров, то он округляется в большую сторону.
  • Определить допустимый ток утечки. В обычных устройствах он равен 30 или 100 мА, но бывают и исключения. Выбор будет зависеть от типа проводки.

Если необходимо использование «пожарного» УЗО, то следует определиться с типом и расположением вторичных «жизненных» устройств.

Обозначение УЗО на однолинейной схеме

Говоря о схемах и проектах, очень важно уметь их правильно прочитать. Как правило, изображение УЗО на графической и проектной документации зачастую выполнено условно, наряду с другими элементами. Это несколько затрудняет понимание принципов работы схемы и отдельных её компонентов в частности. Условное изображение устройства защиты можно сравнить с изображением обычного выключателя, с той лишь разницей, что элемент на нелинейной схеме представлен в виде двух параллельно поставленных выключателей. На однолинейной схеме полюса, провода и элементы не прорисовываются визуально, а изображаются символически.

Этот момент подробно продемонстрирован на рисунке снизу. На нём изображено двухполюсное УЗО с током утечки 30 мА. На это указывает расположенная в верхней части цифра «2». Около неё можно увидеть пересекающую линию питания косую черту. Двухполюсность устройства дублируется и в нижней части схематического изображения элемента, в качестве двух косых чёрточек.

Разберём типовую схему «квартирного» подключения защитного устройства с учётом наличия счётчика на примере, приведённом на рисунке снизу. Ознакомившись более детально с принципом подключения, можно сделать вывод об оптимальном расположении УЗО, которое должно быть максимально приближенно к вводу. Это должно быть осуществлено таким образом, что бы между ними были расположены счётчик и главный автомат. Тем не менее, существует несколько ограничительных нюансов. Так, например, общее устройство защиты не может быть подключено к системе типа TN-C в связи с её принципиальными особенностями. Устаревший образец советских времён имеет защитный проводник, который напрямую соединён с нейтралью, что и становится причиной «несовместимости».

Устройство защитного отключения, представляющее собой устаревший образец советских времён с защитным проводником, соединённым с нейтралью, не представляет возможным подключить к ней общее устройство защиты.

Это лучший пример того, как подключить УЗО с заземлением. Схема также имеет желтые полосы, демонстрирующие принцип подключения дополнительных защитных аппаратов для групп потребителей, которые схематически должны быть расположены за соответствующими им автоматами. При этом номинальный ток каждого вторичного устройства на пару ступней превышает показатель назначенного ему автомата.

Но всё это характерно для современной электропроводки, с учётом наличия «земли».

Чтобы в дальнейшем более детально познакомиться с основами УЗО, обозначение на схеме необходимо выучить или по мере изучения статьи возвращаться к ней.

Подключение УЗО без заземления. Схема и особенности

Отсутствие контуров заземления в домах – ситуация распространённая, требующая больших усилий и знаний, ведь придётся вспомнить основы электродинамики, но она не является приговором. Главное следовать четырём обобщённым правилам:

  • Проводка типа TN-C не допускает установку дифавтомата или общего УЗО.
  • Следует определить потенциально опасных потребителей и защитить их дополнительным отдельным устройством.
  • Следует выбрать кратчайший «электрический» путь для защитных проводников розеток и розеточных групп на входную нулевую клемму УЗО.
  • Каскадное подключение защитных аппаратов допустимо при условии, что ближайшие к электровводу УЗО являются менее чувствительными, чем оконечные.

Многие, даже дипломированные, электрики, забыв или банально не зная принципы электродинамики, не задумываются о том, как подключить УЗО без заземления. Схема, предлагаемая ими, выглядит обычно так: ставится общее устройство защиты, а затем все PE (нулевые защитные проводники) заводятся на входной ноль УЗО. С одной стороны, здесь без сомнения видна разумная логическая цепочка, ведь на защитном проводнике не будет происходить коммутация. Но всё гораздо сложнее.

  • В обмотке может произойти кратковременный всплеск тока, компенсирующий разбаланс токов в фазе и нуле, называемый «Анти-дифференциальным» эффектом. Возникает он довольно редко.
  • Более распространённым вариантом является неконтролируемое усиление разбаланса токов, называемое «Супер-дифференциальным» эффектом. Возникновение подобной ситуации заставляет срабатывать устройство защиты без свойственной ему утечки. Тем не менее, это не вызовет серьёзных сбоев или поломок, а лишь принесёт определённый дискомфорт при постоянном «выбивании».

Сила «эффектов» зависит от длины РЕ. Если его длина превышает два метра, то вероятность несрабатывания УЗО достигает вероятности 1 к 10000. Числовой показатель довольно мал, тем не менее, теория вероятности вещь практически непредсказуемая.

Схема подключения УЗО в однофазной сети

Так как в квартирах зачастую используется однофазное подключение сети. В данном случае в качестве защиты оптимально выбирать однофазные двухполюсные УЗО. Существует несколько вариантов схемы подключения для данного устройства, но мы рассмотрим наиболее распространённую, показанную на рисунке ниже.

Подключение аппарата довольно простое. В паспорте и на приборе указана основная маркировка и точки подключения фазы (L) и нуля (N). На схеме изображены вторичные автоматы, но их установка не является обязательной. Они нужны для распределения подключаемых бытовых приборов и освещения по группам. Таким образом, проблемный участок никак не затронет остальные части или комнаты квартиры. При этом важно учитывать, что установка максимально допустимых токов на автоматах не должна превышать настроек УЗО. Это объясняется отсутствием в устройстве ограничения по току. Внимательно следует отнестись и к подключению фазы с нулём. Невнимательность может привести не только к отсутствию питания микросхемы, но и к поломке устройства защиты.

Схема включения УЗО в однофазной сети, по мнению специалистов, должна располагаться в непосредственной близости со счетчиком электрической энергии (рядом с источником электропитания)

Ошибки и их последствия при подключении УЗО

Как и любая электрическая схема, схематическое изображение подключения защитного устройства в общую сеть, должно быть составлено, как и прочитано в дальнейшем, без малейших изъянов. Даже самый скромный недочёт может привести к неисправной работе системы в целом или самого УЗО, в то время как серьёзные отклонения могут принести довольно серьёзный ущерб. Ошибки могут быть допущены самые разные, но среди них можно выделить ряд наиболее распространённых:

  • Нейтраль и заземление соединяются после УЗО. В данном случае можно неверно интерпретировать схему, соединив нулевой рабочий проводник, с открытой частью электроустановки или с нулевым защитным проводником. В обоих случаях итог будет идентичен.
  • УЗО может быть подключено неполнофазно. Допущение такой ошибки приведёт к ложному срабатыванию, возникающему, из-за того, что до УЗО нагрузка была подключена к нулевому рабочему проводнику.
  • Пренебрежение правилами соединения в розетках нулевого и заземляющего проводника. Проблема кроется в процессе установки розеток, в котором допускается соединение защитного и нулевого рабочего проводников. При этом устройство будет срабатывать даже тогда, когда в розетку ничего не подключено.
  • Объединение нулей в схеме с двумя устройствам защиты. Распространённой ошибкой является неправильное соединение в зоне защиты нулевых проводников обоих УЗО. Она допускается из-за невнимательности и неудобства электромонтажа внутри стеновой панели. Оплошность приведёт к неконтролируемым выключениям устройств.
  • Применение двух или более УЗО усложняют работу по подключению нулевых проводов. Последствия невнимательности могут быть довольно серьёзными. Не поможет и тестирование, так как при нём работа устройства не вызовет никаких нареканий. Но первое же подключение электроприборов может вызвать ошибку и срабатывание всех УЗО.
  • Невнимательность при подключении фазы и нуля, если они взяты с разных УЗО. Проблема возникает при соединении нагрузки с нулевым проводником, относящимся к другому устройству защиты.
  • Несоблюдение полярности подключения, что выражается в подключении фазы и нуля, соответственно сверху и снизу. Это спровоцирует движение токов в одном направлении, вследствие чего создаются условия для невозможности взаимокомпенсации магнитных потоков. Это говорит о том, что перед покупкой нового УЗО следует внимательно изучить принцип подключения старого, так как расположение клемм может быть отличным.
  • Пренебрежение деталями при подключении трехфазного УЗО. Распространённой ошибкой в подключении четырёхполюсного УЗО является использование клемм одноимённой фазы. Тем не менее, работа однофазных потребителей никак не повлияет на работу такого защитного устройства.

prokommunikacii.ru

Установка УЗО значительно повышает уровень безопасности при работе на электроустановках. Если УЗО обладает высокой чувствительностью (30 мА), то при этом обеспечивается защита от прямого контакта (прикосновения).

Тем не менее, установка УЗО не означает от выполнения обычных мер предосторожности при работе на электроустановках.

Кнопку тест необходимо нажимать регулярно, как минимум один раз в 6 месяцев. Если тест не срабатывает, то надо задуматься о замене УЗО, так как уровень электробезопасности снизился.

Установите УЗО на панели или корпусе. Подключите оборудование в точном соответствии со схемой. Включите все нагрузки, подключенные к защищаемой сети.

Срабатывает УЗО.

Если УЗО срабатывает, выясните, какое устройство является причиной срабатывания, путем последовательного отключения нагрузки (отключаем по очереди эл. оборудование и смотрим результат). При обнаружении такого устройства его необходимо отключить от сети и проверить. Если электрическая линия имеет очень большую длину, обычные токи утечки могут быть достаточно велики. В этом случае имеется вероятность ложных срабатываний. Чтобы избежать этого, необходимо разделить систему, по крайней мере, на два контура, каждый из которых будет защищен своим УЗО. Можно расчитать длинну электрической линии.

При невозможности определения документальным способом суммы токов утечки проводки и нагрузок, можно пользоваться примерным расчетом (в соответствии с СП 31-110-2003), принимая ток утечки нагрузки равным 0,4мА на 1А потребляемой нагрузкой мощности и ток утечки электросети равным 10мкА на один метр длины фазового провода электропроводки.

Пример расчета УЗО.

Для примера рассчитаем УЗО для электроплиты, мощностью 5 кВт, установленную на кухне малогабаритной квартиры.

Примерное расстояние от щитка до кухни может составлять 11 метров, соответственно расчетная утечка проводки составляет 0,11мА. Электроплита, на полной мощности, потребляет (приближенно) 22.7А и обладает расчетным током утечки 9,1мА. Таким образом, сумма токов утечки данной электроустановки составляет 9,21мА. Для защиты от токов утечки можно использовать УЗО с номиналом тока утечки 27,63мА, что округляется до ближайшего большего значения существующих номиналов по диф. току, а именно УЗО 30мА.

Следующим шагом, является определение рабочего тока УЗО. При указанном выше максимальном токе, потребляемым электроплитой, можно использовать номинал (с небольшим запасом) УЗО 25А, или с большим запасом — УЗО 32А.

Таким образом мы расчетно определили номинал УЗО, которое можно использовать для защиты электроплиты: УЗО 25А 30мА или УЗО 32А 30мА. (надо не забыть защитить УЗО автоматическим выключателем 25А для первого номинала УЗО и 25А или 32А для второго номинала).

Обозначение УЗО.

На схеме УЗО обозначается следующим образом рис. 1 однофазное УЗО, рис. 2 -трехфазное УЗО.

Схема подключения УЗО рассмотрим на примере. На фото. 1 показан фрагмент распределительного шкафа.

Фото. 1 Схема подключения трехфазного УЗО с автоматическим выключателем (на фото цифра1 УЗО, 2- автоматический выключатель) и однофазных УЗО (3).

УЗО не защищает от токов короткого замыкания, поэтому его устанавливают в паре с автоматическим выключателем. Что ставить раньше УЗО или автоматический выключатель в данном случае не принципиально. Номинал УЗО должен быть равным или немного больше наминала автоматическо выключателя. Например, автоматический выключатель 16 Ампер, значит, УЗО ставим 16 или 25 А.

Как видно на фото. 1 на трехфазное УЗО (цифра 1) подходят три фазных и нулевой проводник, а после УЗО подключен автоматический выключатель (цифра 2). Потребитель будет подключаться: фазные проводники (красные стрелки) с автоматического выключателя; нулевой проводник (синяя стрелка) — с УЗО.

Под цифрой 3 на фото показаны дифференциальные автоматы, соединенные сборной шиной, принцип работы диф. автомата такой же, как у УЗО, но он дополнительно защищает от токов короткого замыкания и не требует дополнительной защита от КЗ.

А подключение, что у УЗО, что у диф. автоматов одинаковое.

Подключаем к клемме L фазу, к N ноль (обозначения нанесены на корпусе УЗО). Потребители подключаются также.

www.mirpodelki.ru

ГОСТ 2.755-87 ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения

ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ
ГРАФИЧЕСКИЕ В ЭЛЕКТРИЧЕСКИХ СХЕМАХ

УСТРОЙСТВА КОММУТАЦИОННЫЕ
И КОНТАКТНЫЕ СОЕДИНЕНИЯ

ГОСТ 2.755-87
(CT СЭВ 5720-86)

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ

Москва 1998

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ
В ЭЛЕКТРИЧЕСКИХ СХЕМАХ.

УСТРОЙСТВА КОММУТАЦИОННЫЕ
И КОНТАКТНЫЕ СОЕДИНЕНИЯ

Unified system for design documentation.

Graphic designations in diagrams.

Commutational devices and contact connections

ГОСТ
2.755-87

(CT СЭВ 5720-86)

Дата введения 01.01.88

Настоящий стандарт распространяется на схемы, выполняемые вручную или автоматизированным способом, изделий всех отраслей промышленности и строительства и устанавливает условные графические обозначения коммутационных устройств, контактов и их элементов.

Настоящий стандарт не устанавливает условные графические обозначения на схемах железнодорожной сигнализации, централизации и блокировки.

Условные графические обозначения механических связей, приводов и приспособлений — по ГОСТ 2. 721.

Условные графические обозначения воспринимающих частей электромеханических устройств - по ГОСТ 2.756.

Размеры отдельных условных графических обозначений и соотношение их элементов приведены в приложении.

1. Общие правила построения обозначений контактов.

1.1. Коммутационные устройства на схемах должны быть изображены в положении, принятом за начальное, при котором пусковая система контактов обесточена.

1.2. Контакты коммутационных устройств состоят из подвижных и неподвижных контакт-деталей.

1.3. Для изображения основных (базовых) функциональных признаков коммутационных устройств применяют условные графические обозначения контактов, которые допускается выполнять в зеркальном изображении:

1) замыкающих                                                                                    

2) размыкающих                                                                       

3) переключающих                                                                              

4) переключающих с нейтральным центральным положением     

1. 4. Для пояснения принципа работы коммутационных устройств при необходимости на их контакт-деталях изображают квалифицирующие символы, приведенные в табл. 1.

Таблица 1

Наименование

Обозначение

1. Функция контактора

2. Функция выключателя

3. Функция разъединителя

4. Функция выключателя-разъединителя

5. Автоматическое срабатывание

6. Функция путевого или концевого выключателя

7. Самовозврат

8. Отсутствие самовозврата

9. Дугогашение

Примечание . Обозначения, приведенные в пп. 1 — 4, 7 — 9 настоящей таблицы, помещают на неподвижных контакт-деталях, а обозначения в пп. 5 и 6 - на подвижных контакт-деталях.

2. Примеры построения обозначений контактов коммутационных устройств приведены в табл. 2.

Таблица 2

Наименование

Обозначение

1. Контакт коммутационного устройства:

1) переключающий без размыкания цепи (мостовой)

2) с двойным замыканием

3) с двойным размыканием

2. Контакт импульсный замыкающий:

1) при срабатывании

2) при возврате

3) при срабатывании и возврате

3. Контакт импульсный размыкающий:

1) при срабатывании

2) при возврате

3) при срабатывании и возврате

4. Контакт в контактной группе, срабатывающий раньше по отношению к другим контактам группы:

1) замыкающий

2) размыкающий

5. Контакт в контактной группе, срабатывающий позже по отношению к другим контактам группы:

1) замыкающий

2) размыкающий

6. Контакт без самовозврата:

1) замыкающий

2) размыкающий

7. Контакт с самовозвратом:

1) замыкающий

2) размыкающий

8. Контакт переключающий с нейтральным центральным положением, с самовозвратом из левого положения и без возврата из правого положения

9. Контакт контактора:

1) замыкающий

2) размыкающий

3) замыкающий дугогасительный

4) размыкающий дугогасительный

5) замыкающий с автоматическим срабатыванием

10. Контакт выключателя

11. Контакт разъединителя

12. Контакт выключателя-разъединителя

13. Контакт концевого выключателя:

1) замыкающий

2) размыкающий

14. Контакт, чувствительный к температуре (термоконтакт):

1) замыкающий

2) размыкающий

15. Контакт замыкающий с замедлением, действующим:

1) при срабатывании

2) при возврате

3) при срабатывании и возврате

16. Контакт размыкающий с замедлением, действующим:

1) при срабатывании

2) при возврате

3) при срабатывании и возврате

Примечание к пп. 15 и 16. Замедление происходит при движении в направлении от дуги к ее центру.

3. Примеры построения обозначений контактов двухпозиционных коммутационных устройств приведены в табл. 3.

Таблица 3

Наименование

Обозначение

1. Контакт замыкающий выключателя:

1) однополюсный

Однолинейное

Многолинейное

2) трехполюсный

2. Контакт замыкающий выключателя трехполюсного с автоматическим срабатыванием максимального тока

3. Контакт замыкающий нажимного кнопочного выключателя без самовозврата, с размыканием и возвратом элемента управления:

1) автоматически

2) посредством вторичного нажатия кнопки

3) посредством вытягивания кнопки

4) посредством отдельного привода (пример нажатия кнопки-сброс)

4. Разъединитель трехполюсный

5. Выключатель-разъединитель трехполюсный

6. Выключатель ручной

7. Выключатель электромагнитный (реле)

8. Выключатель концевой с двумя отдельными цепями

9. Выключатель термический саморегулирующий

Примечание. Следует делать различие в изображении контакта и контакта термореле, изображаемого следующим образом

10. Выключатель инерционный

11. Переключатель ртутный трехконечный

4. Примеры построения обозначений многопозиционных коммутационных устройств приведены в табл. 4.

Таблица 4

Наименование

Обозначение

1. Переключатель однополюсный многопозиционный (пример шестипозиционного)

Примечание. Позиции переключателя, в которых отсутствуют коммутируемые цепи, или позиции, соединенные между собой, обозначают короткими штрихами (пример шестипозиционного переключателя, не коммутирующего электрическую цепь в первой позиции и коммутирующего одну и ту же цепь в четвертой и шестой позициях)

2. Переключатель однополюсный, шестипозиционный с безобрывным переключателем

3. Переключатель однополюсный, многопозиционный с подвижным контактом, замыкающим три соседние цепи в каждой позиции

4. Переключатель однополюсный, многопозиционный с подвижным контактом, замыкающим три цепи, исключая одну промежуточную

5. Переключатель однополюсный, многопозиционный с подвижным контактом, который в каждой последующей позиции подключает параллельную цепь к цепям, замкнутым в предыдущей позиции

6. Переключатель однополюсный, шестипозиционный с подвижным контактом, не размыкающим цепь при переходе его из третьей в четвертую позицию

7. Переключатель двухполюсный, четырехпозиционный

8. Переключатель двухполюсный шестипозиционный, в котором третий контакт верхнего полюса срабатывает раньше, а пятый контакт — позже, чем соответствующие контакты нижнего полюса

9. Переключатель многопозиционный независимых цепей (пример шести цепей)

Примечания к пп. 1 — 9:

1. При необходимости указания ограничения движения привода переключателя применяют диаграмму положения, например:

1) привод обеспечивает переход подвижного контакта переключателя от позиции 1 к позиции 4 и обратно

2) привод обеспечивает переход подвижного контакта от позиции 1 к позиции 4 и далее в позицию 1; обратное движение возможно только от позиции 3 к позиции 1

2. Диаграмму положения связывают с подвижным контактом переключателя линией механической связи

10. Переключатель со сложной коммутацией изображают на схеме одним из следующих способов:

1) общее обозначение

(пример обозначения восемнадцатипозиционного роторного переключателя с шестью зажимами, обозначенными от А до F)

2) обозначение, составленное согласно конструкции

11. Переключатель двухполюсный, трехпозиционный с нейтральным положением

12. Переключатель двухполюсный, трехпозиционный с самовозвратом в нейтральное положение

5. Обозначения контактов контактных соединений приведены в табл. 5.

Таблица 5

Наименование

Обозначение

1. Контакт контактного соединения:

1) разъемного соединения:

— штырь

— гнездо

2) разборного соединения

3) неразборного соединения

2. Контакт скользящий:

1) по линейной токопроводящей поверхности

2) по нескольким линейным токопроводящим поверхностям

3) по кольцевой токопроводящей поверхности

4) по нескольким кольцевым токопроводящим поверхностям

Примечание . При выполнении схем с помощью ЭВМ допускается применять штриховку вместо зачернения

6. Примеры построения обозначений контактных соединений приведены в табл. 6.

Таблица 6

Наименование

Обозначение

1. Соединение контактное разъемное

2. Соединение контактное разъемное четырехпроводное

3. Штырь четырехпроводного контактного разъемного соединения

4. Гнездо четырехпроводного контактного разъемного соединения

Примечание . В пп. 2 - 4 цифры внутри прямоугольников обозначают номера контактов

5. Соединение контактное разъемное коаксиальное

6. Перемычки контактные

Примечание. Вид связи см. табл. 5 , п. 1.

7. Колодка зажимов

Примечание . Для указания видов контактных соединений допускается применять следующие обозначения:

1) колодки с разборными контактами

2) колодки с разборными и неразборными контактами

8. Перемычка коммутационная:

1) на размыкание

2) с выведенным штырем

3) с выведенным гнездом

4) на переключение

9. Соединение с защитным контактом

7. Обозначения элементов искателей приведены в табл. 7.

Таблица 7

Наименование

Обозначение

1. Щетка искателя с размыканием цепи при переключении

2. Щетка искателя без размыкания цепи при переключении

3. Контакт (выход) поля искателя

4. Группа контактов (выходов) поля искателя

5. Поле искателя контактное

6. Поле искателя контактное с исходным положением

Примечание. Обозначение исходного положения применяют при необходимости

7. Поле искателя контактное с изображением контактов (выходов)

8. Поле искателя с изображением групп контактов (выходов)

8. Примеры построения обозначений искателей приведены в табл. 8.

Таблица 8

Наименование

Обозначение

1. Искатель с одним движением без возврата щеток в исходное положение

2. Искатель с одним движением с возвратом щеток в исходное положение.

Примечание. При использовании искателя в четырехпроводном тракте применяют обозначение искателя с возвратом щеток в исходное положение

3. Искатель с двумя движениями с возвратом щеток в исходное положение

4. Искатель релейный

5. Искатель моторный с возвратом в исходное положение

6. Искатель моторный с двумя движениями, приводимый в движение общим мотором

7. Искатель с изображением контактов (выходов) с одним движением без возврата щеток в исходное положение:

1) с размыканием цепи при переключении

2) без размыкания цепи при переключении

8. Искатель с изображением контактов (выходов) с одним движением с возвратом щеток в исходное положение:

1) с размыканием цепи при переключении

2) без размыкания цепи при переключении

9. Искатель с изображением групп контактов (выходов) (пример искателя с возвратом щеток в исходное положение)

10. Искатель шаговый с указанием количества шагов вынужденного и свободного искания (пример 10 шагов вынужденного и 20 шагов свободного искания)

11. Искатель с двумя движениями с возвратом в исходное положение и с указанием декад и подсоединения к определенной (шестой) декаде

12. Искатель с двумя движениями, с возвратом в исходное положение и многократным соединением контактных полей несколькими искателями (пример, двумя)

Примечание. Если возникает необходимость указать, что искатель установлен в нужное положение с помощью маркировочного потенциала, поданного на соответствующий контакт контактного поля, следует использовать обозначение (пример, положение 7)

9. Обозначения многократных координатных соединителей приведены в табл. 9.

Таблица 9

Наименование

Обозначение

1. Соединитель координатный многократный.

Общее обозначение

2. Соединитель координатный многократный в четырехпроводном тракте

3. Вертикаль многократного координатного соединителя

Примечание. Порядок нумерации выходов допускается изменять

4. Вертикаль многократного координатного соединителя с m выходами

5. Соединитель координатный многократный с n вертикалями и с m выходами в каждой вертикали

Примечание. Допускается упрощенное обозначение: n — число вертикали, m — число выходов в каждой вертикали

ПРИЛОЖЕНИЕ

Справочное

Размеры (в модульной сетке) основных условных графических обозначений приведены в табл. 10.

Таблица 10

Наименование

Обозначение

1. Контакт коммутационного устройства

1) замыкающий

2) размыкающий

3) переключающий

2. Контакт импульсный замыкающий при срабатывании и возврате

3. Переключатель двухполюсный шестипозиционный, в котором третий контакт верхнего полюса срабатывает раньше, а пятый контакт — позже, чем соответствующие контакты нижнего полюса

4. Искатель с двумя движениями с возвратом в исходное положение и многократным соединением контактных полей несколькими искателями, например двумя

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Государственным комитетом СССР по стандартам

РАЗРАБОТЧИКИ

П. А. Шалаев, С.С. Борушек, С.Л. Таллер, Ю.Н. Ачкасов

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 27.10.87 № 4033

3. Стандарт полностью соответствует СТ СЭВ 5720-86

4. ВЗАМЕН ГОСТ 2.738-68 (кроме подпункта 7 табл. 1) и ГОСТ 2.755-74

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта

ГОСТ 2.721-74

Вводная часть

ГОСТ 2.756-76

Вводная часть

6. ПЕРЕИЗДАНИЕ. Октябрь 1997 г.

Обозначение узо и автоматов на схеме. Характеристики и выбор

Установка УЗО значительно повышает уровень безопасности при работе на электроустановках. Если УЗО обладает высокой чувствительностью (30 мА), то при этом обеспечивается защита от прямого контакта (прикосновения).

Тем не менее, установка УЗО не означает от выполнения обычных мер предосторожности при работе на электроустановках.

Кнопку тест необходимо нажимать регулярно, как минимум один раз в 6 месяцев. Если тест не срабатывает, то надо задуматься о замене УЗО, так как уровень электробезопасности снизился.

Установите УЗО на панели или корпусе. Подключите оборудование в точном соответствии со схемой. Включите все нагрузки, подключенные к защищаемой сети.

Срабатывает УЗО.

Если УЗО срабатывает, выясните, какое устройство является причиной срабатывания, путем последовательного отключения нагрузки (отключаем по очереди эл. оборудование и смотрим результат). При обнаружении такого устройства его необходимо отключить от сети и проверить. Если электрическая линия имеет очень большую длину, обычные токи утечки могут быть достаточно велики. В этом случае имеется вероятность ложных срабатываний. Чтобы избежать этого, необходимо разделить систему, по крайней мере, на два контура, каждый из которых будет защищен своим УЗО. Можно расчитать длинну электрической линии.

При невозможности определения документальным способом суммы токов утечки проводки и нагрузок, можно пользоваться примерным расчетом (в соответствии с СП 31-110-2003), принимая ток утечки нагрузки равным 0,4мА на 1А потребляемой нагрузкой мощности и ток утечки электросети равным 10мкА на один метр длины фазового провода электропроводки.

Пример расчета УЗО.

Для примера рассчитаем УЗО для электроплиты, мощностью 5 кВт, установленную на кухне малогабаритной квартиры.

Примерное расстояние от щитка до кухни может составлять 11 метров, соответственно расчетная утечка проводки составляет 0,11мА. Электроплита, на полной мощности, потребляет (приближенно) 22.7А и обладает расчетным током утечки 9,1мА. Таким образом, сумма токов утечки данной электроустановки составляет 9,21мА. Для защиты от токов утечки можно использовать УЗО с номиналом тока утечки 27,63мА, что округляется до ближайшего большего значения существующих номиналов по диф. току, а именно УЗО 30мА.

Следующим шагом, является определение рабочего тока УЗО. При указанном выше максимальном токе, потребляемым электроплитой, можно использовать номинал (с небольшим запасом) УЗО 25А, или с большим запасом — УЗО 32А.

Таким образом мы расчетно определили номинал УЗО, которое можно использовать для защиты электроплиты: УЗО 25А 30мА или УЗО 32А 30мА. (надо не забыть защитить УЗО автоматическим выключателем 25А для первого номинала УЗО и 25А или 32А для второго номинала).

Обозначение УЗО.

На схеме УЗО обозначается следующим образом рис. 1 однофазное УЗО, рис. 2 -трехфазное УЗО.

Схема подключения УЗО рассмотрим на примере. На фото. 1 показан фрагмент распределительного шкафа.

Фото. 1 Схема подключения трехфазного УЗО с автоматическим выключателем (на фото цифра1 УЗО, 2- автоматический выключатель) и однофазных УЗО (3).

УЗО не защищает от токов короткого замыкания, поэтому его устанавливают в паре с автоматическим выключателем. Что ставить раньше УЗО или автоматический выключатель в данном случае не принципиально. Номинал УЗО должен быть равным или немного больше наминала автоматическо выключателя. Например, автоматический выключатель 16 Ампер, значит, УЗО ставим 16 или 25 А.

Как видно на фото. 1 на трехфазное УЗО (цифра 1) подходят три фазных и нулевой проводник, а после УЗО подключен автоматический выключатель (цифра 2). Потребитель будет подключаться: фазные проводники (красные стрелки) с автоматического выключателя; нулевой проводник (синяя стрелка) — с УЗО.

Под цифрой 3 на фото показаны дифференциальные автоматы, соединенные сборной шиной, принцип работы диф. автомата такой же, как у УЗО, но он дополнительно защищает от токов короткого замыкания и не требует дополнительной защита от КЗ.

А подключение, что у УЗО, что у диф. автоматов одинаковое.

Подключаем к клемме L фазу, к N ноль (обозначения нанесены на корпусе УЗО). Потребители подключаются также.

Ниже приведена схема использования УЗО в квартире, для дополнительной защиты от поражения электрическим током.

Рис. 1 Схема УЗО в квартире.

В данном случае УЗО ставится до счетчика, на всю группу автоматических выключателей, чем обеспечивается дополнительная защита от поражения электрическим током и возникновения пожара.

Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта.

Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется .

Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы , но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

Обозначение узо на однолинейной схеме

Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным .

На какие нормативные документы следует ссылаться?

Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

  1. — ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
  2. — ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».

Графическое обозначение УЗО на схеме

Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

Или к примеру УЗО от Schneider Electric:

Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.

Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений — выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

Как обозначается дифавтомат на схеме?

По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

Буквенное обозначение узо на электрических схемах

Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и обязателен для применения ко всем элементам в электрических схемах.

Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специальногобуквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т.д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах .

Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

Второй вариант это использовать буквенно-цифровую комбинацию Q1D — для УЗО и комбинацию QF1D — для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – «дифференцирующий ».

Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

Какие можно сделать выводы из вышеописанного?

Как обозначается узо на однолинейной схеме — пример реального проекта

Как говорится в известной пословице «лучше один раз увидеть, чем сто раз услышать», поэтому давайте рассмотрим на реальном примере.

Предположим, что перед нами находится однолинейная схема электроснабжения квартиры. Из всех этих графических обозначение можно выделить следующее:

Вводное устройство защитного отключения расположено сразу после счетчика. Кстати как вы могли заметить буквенное обозначение УЗО – QD. Еще один пример как обозначается узо:

Заметьте, что на схеме помимо УГО элементов также наносится их маркировка, то есть: тип устройства по роду тока (А, АС), номинальный ток, дифференциальный ток утечки, количество полюсов. Далее переходим к УГО и маркировке дифференциальных автоматов:

Розеточные линии на схеме подключаются через диф.автоматы. Буквенное обозначение дифавтомата на схеме QFD1, QFD2, QFD3 и т.д.

Еще один пример как обозначаются диф.автоматы на однолинейной схеме магазина.

Вот и все дорогие друзья. На этом наш сегодняшний урок подошел к концу. Надеюсь, данная статья была для вас полезной и Вы нашли здесь ответ на свой вопрос. Если остались вопросы задавайте их в комментариях, с удовольствием отвечу. Давайте делиться опытом, кто как обозначает УЗО и АВДТ на схемах. Буду признателен на репост в соц.сетях))).

В одной из наших статей мы уже рассказывали про УЗО, про назначение и про его подключение. «УЗО схемы подключения, типы, принцип работы » В этой статье мы затронем тему маркировки УЗО. Именно по маркировке можно определиться с правильным выбором УЗО.

Маркировка устройства защитного отключения (УЗО)

Каждое устройство защитного отключения должно (УЗО) иметь стойкую маркировку, которая включает в себя следующие данные:

1.Наименование или торговый знак изготовителя.
2.Типовое обозначение УЗО и АВДТ дифференциальный автомат, каталожный или серийный номер.
3.Одно или несколько значений номинального напряжения Un ВДТ и АВДТ.
4.Номинальный ток In для ВДТ. Для АВДТ указывают номинальный ток In в амперах без указания единицы измерения с предшествующим обозначением типа мгновенного расцепления (B,C или D). Например, B16: тип мгновенного расцепления – B, номинальный ток – 16А.
5.Номинальную частоту, если ВДТ разработан для частоты, отличной от 50 и (или) 60 Гц, а АВДТ предназначен для работы только при одной частоте.
6.Номинальный отключающий дифференциальный ток IΔn ВДТ и АВДТ.
7.Значения отключающего дифференциального тока, если ВДТ и АВДТ имеют несколько таких значений.
8.Номинальную включающую и отключающую способность Im 1 ВДТ.
9.Номинальную коммутационную способность при коротком замыкании Icn АВДТ в амперах.
10.Номинальную дифференциальную включающую и отключающую способность IΔm, если она отличается от номинальной включающей и отключающей способности ВДТ. Номинальную дифференциальную включающую и отключающую способность IΔm,если она отличается от номинальной коммутационной способности при коротком замыкании АВДТ.
11.Степень защиты, при ее отличии от IP20.
12.Рабочее положение, при необходимости.
13.Символ для ВДТ и АВДТ типа S.
14.Указание на то, что ВДТ и АВДТ функционально зависят от напряжения, если это имеет место.
15.Обозначение органа управления контрольного устройства ВДТ и АВДТ буквой «Т».
16.Схему подключения ВДТ и АВДТ.
17.Рабочую характеристику при наличии дифференциальных токов с составляющими постоянного тока: ◦ВДТ и АВДТ типа АС маркируют символом;~
◦ВДТ и АВДТ типа А обозначают символом. ~-

18.Контрольную температуру калибровки АВДТ, если она отличается от 30 оС.

Маркировка должна быть четко видна после установки ВДТ и АВДТ. Если размеры устройств не позволяют разместить всю перечисленнуюинформацию, то данные, указанные в пп. 4, 6 и 151 для ВДТ и пп. 4, 6 и 13 для АВДТ, должны быть видны после их монтажа. Характеристики, перечисленные в пп. 1–3, 10, 12 и 16 для ВДТ,в пп. 1–3, 9 и 16 для АВДТ, могут быть нанесены на боковых и задних поверхностях устройств и быть видимыми только до их установки в низковольтном распределительном устройстве. Остальная информация должна быть приведена в эксплуатационной документации на изделия или в каталогах изготовителя.

В разделе 6 «Маркировка и другая информация об изделии» ГОСТ Р 51326. 1 и в соответствующем шестом разделе стандарта МЭК 61008-1 отсутствуют требования о маркировке на изделии или о представлении в ином виде следующих характеристик ВДТ:

Номинального условного тока короткого замыкания Inc;
номинального условного дифференциального тока короткого замыкания IΔc.

На устройство дифференциального тока, помимо маркировки, указанной в пп. 1–3, 5–7, 10–13 и 15, наносят значение максимального номинального тока автоматического выключателя, с которым УДТ может быть собрано, например – «63 А max», а также специальный символ:

После сборки устройства дифференциального тока с автоматическим выключателем не должны быть видны данные, приведенные в пп. 3 и 11, а также значение максимального номинального тока автоматического выключателя, с которым УДТ может быть собрано.Устройства дифференциального тока и автоматические выключатели, которые предназначены для совместной сборки, должны иметь одинаковое наименование изготовителя или торговый знак. Изготовитель должен предоставить допустимые для ВДТ значения характеристики I2t и пикового тока Ip. В противном случае применяют минимальные значения, приведенные в таблице 15 ГОСТ Р 51236.1 В каталоге или эксплуатационной документации на изделие изготовитель также должен указать сведения хотя бы об одном устройстве защиты от короткого замыкания, подходящем для защиты ВДТ. Разомкнутое (отключенное) положение устройства защитного отключения, управляемого органом оперирования, перемещаемым вверх–вниз (вперед–назад), должно обозначаться знаком О (окружностью), замкнутое (включенное) его положение маркируется знакомI (вертикальной чертой). Эти обозначения должны быть хорошо видны после установки УЗО. Для обозначения включенного и отключенного положений УЗО допускается также использование дополнительных символов. При необходимости различать входные и выходные выводы их следует четко обозначать, например, словами «линия» и «нагрузка», расположенными около соответствующих выводов, или стрелками, указывающими направление протекания электроэнергии.
Выводы устройства защитного отключения, предназначенные только для присоединения нейтрального проводника, должны быть маркированы буквой N.
Выводы устройства защитного отключения, которые используют исключительно лишь для присоединения защитного проводника, маркируют символом заземлени:

В статье использовались материалы «Книги защитного модульного оборудования производства ABB

Маркировка устройства защитного отключения (УЗО) ABB

Читайте также…

Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта.

Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется .

Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы , но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

Обозначение узо на однолинейной схеме

Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным.

На какие нормативные документы следует ссылаться?

Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

  1. — ГОСТ 2. 755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
  2. — ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».

Графическое обозначение УЗО на схеме

Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

Или к примеру УЗО от Schneider Electric:

Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.

Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений — выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

Как обозначается дифавтомат на схеме?

По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

Буквенное обозначение узо на электрических схемах

Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и обязателен для применения ко всем элементам в электрических схемах.

Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специальногобуквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т. д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах .

Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

Второй вариант это использовать буквенно-цифровую комбинацию Q1D — для УЗО и комбинацию QF1D — для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – «дифференцирующий».

Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

Какие можно сделать выводы из вышеописанного?

electricvdome.ru

Основное назначение однолинейной схемы – графическое отображение системы электрического питания (электроснабжение объекта, разводка электричества в квартире и т.д.). Проще говоря, на однолинейной схеме изображается силовая часть электроустановки. По названию можно понять, что однолинейная схема выполняется в виде одной линии. Т.е. электрическое питание (и однофазное, и трёхфазное), подводимое к каждому потребителю, обозначается одинарной линией.


Чтобы указать количество фаз, на графической линии используются специальные засечки. Одна засечка обозначает, что электрическое питание однофазное, три засечки – что питание трёхфазное.

Кроме одинарной линии используются обозначения защитных и коммутационных аппаратов. К первым аппаратам относятся высоковольтные выключатели (масляные, воздушные, элегазовые, вакуумные), автоматические выключатели, устройства защитного отключения, дифференциальные автоматы, предохранители, выключатели нагрузки. Ко вторым относятся разъединители, контакторы, магнитные пускатели.

Высоковольтные выключатели на однолинейных схемах изображаются в виде небольших квадратов. Что касается автоматических выключателей, УЗО, дифференциальных автоматов, контакторов, пускателей и другой защитной и коммутационной аппаратуры, то они изображаются в виде контакта и некоторых поясняющих графических дополнений, в зависимости от аппарата.

Монтажная схема (схема соединения, подключения, расположения) используется для непосредственного производства электрических работ. Т.е. это рабочие чертежи, используя которые, выполняется монтаж и подключение электрооборудования. Также по монтажным схемам собирают отдельные электрические устройства (электрические шкафы, электрические щиты, пульты управления, и т. д.).


На монтажных схемах изображают все проводные соединения как между отдельными аппаратами (автоматические выключатели, пускатели и др.), так и между разными видами электрооборудования (электрические шкафы, щитки и т.д.). Для правильного подключения проводных соединений на монтажной схеме изображаются электрические клеммники, выводы электрических аппаратов, марка и сечение электрических кабелей, нумерация и буквенное обозначение отдельных проводов.

Схема электрическая принципиальная – наиболее полная схема со всеми электрическими элементами, связями, буквенными обозначениями, техническими характеристиками аппаратов и оборудования. По принципиальной схеме выполняют другие электрические схемы (монтажные, однолинейные, схемы расположения оборудования и др.). На принципиальной схеме отображаются как цепи управления, так и силовая часть.


Цепи управления (оперативные цепи) – это кнопки, предохранители, катушки пускателей или контакторов, контакты промежуточных и других реле, контакты пускателей и контакторов, реле контроля фаз (напряжения) а также связи между этими и другими элементами.

На силовой части изображаются автоматические выключатели, силовые контакты пускателей и контакторов, электродвигатели и т.д.

Кроме самого графического изображения каждый элемент схемы снабжается буквенно-цифровым обозначением. Например, автоматический выключатель в силовой цепи обозначается QF. Если автоматов несколько, каждому присваивается свой номер: QF1, QF2, QF3 и т.д. Катушка (обмотка) пускателя и контактора обозначается KM. Если их несколько, нумерация аналогичная нумерации автоматов: KM1, KM2, KM3 и т.д.

В каждой принципиальной схеме, если есть какое-либо реле, то обязательно используется минимум один блокировочный контакт этого реле. Если в схеме присутствует промежуточное реле KL1, два контакта которого используются в оперативных цепях, то каждый контакт получает свой номер. Номер всегда начинается с номера самого реле, а далее идёт порядковый номер контакта. В данном случае получается KL1.1 и KL1.2. Точно также выполняются обозначения блок-контактов других реле, пускателей, контакторов, автоматов и т. д.

В схемах электрических принципиальных кроме электрических элементов очень часто используются и электронные обозначения. Это резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры и другие элементы. Каждый электронный элемент на схеме также имеет своё буквенное и цифровое обозначение. Например, резистор – это R (R1, R2, R3…). Конденсатор – C (C1, C2, C3…) и так по каждому элементу.

Кроме графического и буквенно-цифрового обозначения на некоторых электрических элементах указываются технические характеристики. Например, для автоматического выключателя это номинальный ток в амперах, ток срабатывания отсечки тоже в амперах. Для электродвигателя указывается мощность в киловаттах.

Для правильного и корректного составления электрических схем любого вида необходимо знать обозначения используемых элементов, государственные стандарты, правила оформления документации.

aquagroup.ru

Вернутся в раздел: УЗО и Дифзащита Электрика

В данной статье рассмотрены несколько примеров подключения УЗО и Дифференциальных автоматов.

Основным условием при выборе УЗО и диф. автомата является соблюдение селективности (ПУЭ.РАЗДЕЛ 3 ):

В электротехнике под «селективностью» понимают совместную работу последовательно включенных аппаратов защиты электрических цепей (автоматические выключатели, УЗО, диф. автомат и т.п.) в случае возникновения аварийной ситуации. На рис. 1 привёден пример работы такой схемы, с учётом общего наминала автоматических выключателей 40 А (4шт. по 10А), вводный автомат 63 А.

Селективность используется при выборе номинала устройств защиты для отключения от общей системы питания только той ее части, где произошла авария. Это достигается за счет срабатывания только того автоматического выключателя, который защищает аварийную линию питания.

Во общем, для селективной работы автоматических выключателей при перегрузках нужно, чтобы номинальный ток (In) автоматического выключателя со стороны питания был больше In автоматического выключателя со стороны потребителей.

Условное обозначение УЗО и дифавтомата на электрических схемах:

Обозначение УЗО на принципиальных электрических схемах см. рис. 2. Слева – однофазное УЗО с током срабатывания 30 мА, справа – трехфазное УЗО на 100 мА. Сверху развернутое изображение, снизу однолинейное. Число полюсов при однолинейном представлении можно изображать и числом (вверху) и числом черточек. Условное обозначение Дифавтомата на принципиальных схемах см. рис. 3 и на однолинейных схемах рис. 4. Буквенное обозначение QF.

Рис. 4
Рис. 3

Схемы включения УЗО:

По конструкции УЗО различных производителей могут отличаться друг от друга не только параметрами, но и схемами подключения. На рис. 5 приведены наиболее распространенные схемы включения УЗО в различных вариантах:

Двухполюсные УЗО Рис. 5 (а).

Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен в фазное напряжение (Рис. 5 (б).

Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен на линейное напряжение (Рис. 5 (в).

При включении УЗО (дифавтомата) в любом случае смотрите схему, схема подключения приведена на лицевой или боковой поверхности корпуса УЗО, а также в паспорте технического устройства.

Ниже приведены монтажные схемы подключения УЗО (Рис. 6) и дифавтомата (Рис. 7).

  1. Вводный автомат.
  2. Прибор учёта (электросчетчик).
  3. УЗО или дифавтомат.
  4. Автоматический выключатель (освещения, как правило 6 ÷ 10 А, в зависимости от нагрузки светильников).
  5. Автоматический выключатель (розетки, как правило 16 ÷ 25 А, в зависимости от группы розеток).
  6. Автоматический выключатель (розетка «силовая», 16 ÷ 25 А, в зависимости от нагрузки электроплиты).
  7. Нулевая рабочая N — шина.
  8. Нулевая защитная РЕ — шина.

Более подробно про системы заземления и зануления см. в разделе

Вернутся в раздел: УЗО и Дифзащита Электрика

energetik.com.ru

Рабочий ток и быстродействие

Особенности конструкции дифавтоматов являются причиной того, что они обладают комбинированными характеристиками, используемыми при описании работы как АВ, так и УЗО. Основной рабочей характеристикой этих электротехнических изделий является номинальный рабочий ток, при котором прибор может оставаться включённым длительное время.

Данная характеристика прибора относится к строго стандартизированным показателям, вследствие чего ток может принимать лишь значения из определённого ряда (6, 10, 16, 25, 50 Ампер и так далее).

Помимо этого в обозначении устройств используется связанный с быстродействием токовый показатель, обозначаемый цифрами «B», «C» или «D», стоящими перед значением номинального тока.

Быстродействие – важная токовая и временная характеристика. Обозначение C16, например, соответствует дифавтомату с временной характеристикой «C», рассчитанный на номинальное значение 16 Ампер.

Ток отключения и напряжение

К группе технических характеристик дифавтомата относится ток отключения схемы (дифференциальный показатель), определяемый как «уставка по токовой утечке». Для большинства моделей допустимые значения этой характеристики укладываются в следующий ряд: 10, 30, 100, 300 и 500 миллиампер. На корпусе дифавтомата она обозначается значком «дельта» с числом соответствующим току утечки.

Ещё одной характеристикой эксплуатационных возможностей дифавтоматов является номинальное напряжение, при котором они способны работать длительное время (220 Вольт – для однофазной сети и 380 Вольт – для трехфазных цепей). Величина рабочего напряжения защитного дифференциального прибора может указываться под обозначением номинала с буквой или под клавишей выключателя.

Ток утечки и селективность

Следующая характеристика, по которой различаются все дифавтоматы – тип тока утечки. В соответствии с этим параметром любой из дифавтоматов может иметь следующие обозначения:

  • «A» – реагирующие на утечки синусоидального переменного (пульсирующего постоянного) тока;
  • «AC» – дифавтоматы, рассчитанные на срабатывания от утечек, содержащих постоянную составляющую;
  • «B» – комбинированное исполнение, предполагающее обе указанные ранее возможности.

Характеристика «тип встроенного УЗО» маркируется буквенным индексом или небольшим рисунком.

По аналогии с УЗО дифавтоматы могут работать по селективному принципу, предполагающему наличие задержки по времени срабатывания. Указанная возможность обеспечивает определённую выборочность отключения прибора от сети и электродинамическую устойчивость системы защиты. Согласно этой характеристике дифференциальные устройства обозначаются значком «S», что означает задержку порядка 200-300 миллисекунд, либо маркируются знаком «G» (60-80 миллисекунд).

Основные обозначения

Более подробно порядок маркировки дифавтомата (расположение его характеристик) рассмотрим на примере отечественного изделия марки «АВДТ32», используемого в цепях защиты промышленных и бытовых электросетей.

Для удобства систематизации излагаемой информации под графическим обозначением будет пониматься определённая маркировочная позиция.

На первой позиции указывается наименование и серия дифавтомата. Из этого обозначения следует, что он является АВ дифференциального типа со встроенной защитой от опасных токов утечки. Дифавтомат предназначен к использованию в электросетях однофазного переменного тока с номинальным напряжением 230 Вольт (50 Герц).

На месте, соответствующем позиции №3 (вверху), указывается такая характеристика, как значение номинального дифференциального тока короткого замыкания.

Обратите внимание! Иногда в этом месте можно увидеть значение предельной коммутационной способности прибора, свидетельствующей о величине максимального тока, при которой дифавтомат может отключаться многократно.

На той же позиции, но внизу приводится графическое обозначение типа встроенного автомата (в данном случае это тип «А», рассчитанный на работу с утечками пульсирующего постоянного и синусоидального переменного токов).

На месте 4-ой позиции можно увидеть модульную схему дифавтомата, на которой указываются входящие в его состав элементы, участвующие в реализации защитных функций. Для АВДТ32 на этой схеме условными знаками обозначаются следующие модули и узлы:

  • электромагнитные и тепловые расцепители, обеспечивающие защиту линий от токов КЗ и перегрузки соответственно;
  • специальная кнопка «Тест», необходимая для ручной проверки исправности автомата;
  • усилительный электронный модуль;
  • исполнительный узел (коммутирующее линию реле).

На позиции под номером семь на первом месте указывается связанная с быстродействием характеристика аварийного срабатывания электромагнитного расцепителя (для нашего примера – это «С»). Сразу за ним следует показатель номинального тока, означающего величину этого параметра в рабочем режиме (в течение длительного времени).

Минимальный ток отключения (срабатывания) расцепителя электромагнитного типа для дифавтомата с характеристикой «С» обычно берётся равным примерно пяти номинальным токам. При данной величине токовой характеристики тепловой расцепитель срабатывает примерно через 1,5 секунды.

На восьмой позиции обычно стоит значок «дельта» с показателем номинального тока утечки, который отключает дифференциальное устройство в случае опасности. Это все основные электрические характеристики.

Информационные знаки

На пятой позиции приводится температурная характеристика защитного устройства (от — 25 до + 40 градусов), а на шестой располагаются сразу два знака.
Один из них информирует пользователя о сертификате соответствия, то есть обозначает действующий отечественный ГОСТ на дифавтомат (ГОСТ Р129 – для данного случая).

Непосредственно под ним располагается закодированная в виде букв и цифр характеристика. Это обозначение организации, выдавшей сертификат.

Важно! Этот знак сообщает потребителю о законности происхождения товара и его качестве и при необходимости обеспечивает юридическую защищённость устройства.

Справа от него приводятся данные по сертификации и ГОСТу этой модели в отношении её пожарной безопасности.

И, наконец, на месте, соответствующем второй позиции, наносится логотип торговой марки компании-изготовителя (в данном случае – «ИЭК»).

Размеры и точки подключения

Основными габаритными характеристиками дифавтомата согласно ГОСТ являются его высота, ширина и толщина, а также размер по высоте и ширине выступающей с лицевой стороны полочки с клавишей управления. Помимо этого, приводятся размеры расположенных на тыльной стороне полочек, ограничивающих зазор для посадки прибора на фиксирующую его дин-рейку.

Современные модели дифавтомата могут иметь тот или иной размер, с каждым из которых можно ознакомиться в прилагаемой к этому изделию документации. Но в большинстве случаев габаритные характеристики схожи, что упрощает размещение в щитке.

Относительно контактных точек подключения данного прибора к защищаемой схеме необходимо отметить следующее. В однофазной сети устанавливаются дифференциальные устройства, имеющие по два вводных и два выводных контакта. Одна из этих групп служит для подключения так называемого «фазного» провода, а к другой подсоединяется «нулевая» жила питания. Как правило, все контакты (верхние и нижние) маркируются значками «L» и «N», обозначающими соответственно те места, куда подключаются фаза и ноль.

При включении устройства в электрическую цепь к верхним контактам подсоединяются фазный и нулевой провода, приходящие от вводно-распределительного устройства или электрического счётчика . Нижние его клеммы предназначаются для коммутации проводников, идущих непосредственно к защищаемой нагрузке (к потребителю).

Подключение дифференциального прибора в силовые цепи трёхфазного питания полностью аналогично рассмотренному ранее варианту. Отличие в данном случае состоит лишь в том, что к дифавтомату при этом подсоединяются сразу три фазы: «A», «B» и «C». По аналогии со случаем однофазной линии питания 220 Вольт клеммы трёхфазного дифавтомата также маркируются (с целью соблюдать фазировку) и обозначаются как «L1», «L2», «L3» и «N».

Грамотный выбор подходящего для заявленных целей прибора невозможен без внимательного изучения основных рабочих характеристик дифавтомата и соответствующей им маркировки. В связи с этим перед приобретением дифференциального прибора постарайтесь тщательно изучить весь изложенный в этой статье материал.

evosnab.ru

Назначение, технические характеристики и выбор

Дифавтомат или дифференциальный автомат защиты объединяет в себе функции автомата защиты и УЗО. То есть, одно это устройство защищает проводку от перегрузок, короткого замыкания и тока утечки. Ток утечки образуется при неисправности изоляции или при прикосновении к токоведущим элементам, то есть он еще защищает человека от поражения электричеством.

Дифавтоматы устанавливаются в электрические распределительные щитки, чаще всего на дин-рейки. Они ставятся вместо связки автомат+УЗО, физически занимают немного меньше места. Насколько конкретно — зависит от производителя и типа исполнения. И это — основной их плюс, который может быть востребован при модернизации сети, когда место в щитке ограничено, а необходимо подключить некоторое количество новых линий.

Второй положительный момент — экономия средств. Как правило, дифавтомат стоит меньше, чем пара автомат+УЗО с аналогичными характеристиками. Еще один положительный момент — необходимо определиться только с номиналом автомата защиты, а УЗО встроен по умолчанию с требующимися характеристиками.

Недостатки тоже имеются: при выходе и строя одной из частей дифавтомата менять придется все устройство, а это дороже. Также не все модели снабжены флажками, по которым можно определить, по какой причине сработало устройство — из-за перегрузки или тока утечки — что принципиально важно при выяснении причин.

Характеристики и выбор

Так как дифавтомат объединяет в себе два устройства, имеет он характеристики их обоих и при выборе надо учитывать все. Разберемся что обозначают эти характеристики и как выбирать дифференциальный автомат.

Номинальный ток

Это максимальный ток, который может длительное время выдерживать автомат без потери работоспособности. Обычно он указывается на лицевой панели. Номинальные токи стандартизованы и могут быть 6 А, 10 А, 16 А, 20 А, 25 А, 32 А, 40 А, 50 А, 63А.

Малые номиналы — 10 А и 16 А — ставят на линии освещения, средние — на мощных потребителей и розеточные группы, а мощные — 40 А и выше — в основном используют как вводный (общий) дифавтомат. Подбирается в зависимости от сечения кабеля, точно также, как при выборе номинала автомата защиты.

Время-токовая характеристика или тип электромагнитного расцепителя

Отображается рядом с номиналом, обозначается латинскими буквами B, C, D. Указывает на то, при каких перегрузках относительно номинала происходит отключение автомата (для игнорирования кратковременных стартовых токов).

Категория B — если ток превышен в 3-5 раз, C — при превышении номинала в 5-10 раз, тип D отключается при нагрузках, которые превышают номинал в 10-20 раз. В квартирах обычно ставят дифавтоматы типа C, в сельской местности можно ставить B, на предприятиях с мощным оборудованием и большими стартовыми токами — D.

Номинальное напряжение и частота сети

Для каких сетей предназначен аппарат — 220 В и 380 В, с частотой 50 Гц. Других в нашей торговой сети не бывает, но все равно, стоит проверить.

Дифференциальные автоматы могут иметь двойную маркировку — 230/400 V. Это говорит о том, что данное устройство может работать и в сети на 220 В и на 380 В. В трехфазных сетях подобные устройства ставят на розеточные группы или на отдельных потребителей, там где используется лишь одна из фаз.

В качестве водных дифавтоматов на трехфазные сети необходимы устройства с четырьмя вводами, а они значительно отличаются габаритами. Спутать их невозможно.

Номинальный отключающий дифференциальный ток или ток утечки (уставки)

Отображает чувствительность устройства к образующимся токам утечки и показывает, при каких условиях сработает защита. В быту используются только два номинала: 10 мА для установки на линии, в которых установлено только одно мощное устройство или потребитель, в котором сочетаются два опасных фактора — электричество и вода (проточный или накопительный электрический водонагреватель, варочная поверхность, духовой шкаф, посудомоечная машина и т.п.).

Для линий с группой розеток и наружного освещения ставят дифавтоматы с током утечки 30 мА, на линии освещения внутри дома их не обычно ставят — для экономии.

На устройстве может быть написан просто значение в миллиамперах (как на фото слева) или может быть нанесено буквенное обозначение тока уставки (на фото справа), после которого стоят цифры в амперах (при 10 мА стоит 0,01 А, при 30 мА цифра 0,03 А).

Класс дифференциальной защиты

Показывает от токов утечки какого типа защищает это устройство. Есть буквенное и графическое изображение. Обычно ставят значок, но может быть и буква (смотрите в таблице).

Буквенное обозначение Графическое обозначение Расшифровка Область применения
АС Реагирует на переменный синусоидальный ток Ставят на линии, к которым подключена простая техника без электронного управления
А Реагирует на синусоидальный переменный ток и пульсирующий постоянный Применяется на линиях, от которых запитывается техника с электронным управлением
В Улавливает переменный, импульсный, постоянный и сглаженный постоянный. В основном применяется на производстве с большим количеством разнообразной техники
S С выдержкой времени отключения 200-300 мс В сложных схемах
G С выдержкой времени отключения60-80 мс В сложных схемах

Выбор класса дифференциальной защиты дифавтомата происходит исходя из типа нагрузки. Если это техника с микропроцессорами, необходим класс А, на линии освещения или включения питания простых устройств подойдет класс AC. Класс В в частных домах и квартирах ставят редко — нет необходимости «отлавливать» все типы токов утечки. Подключение дифавтомата класса S и G имеет смысл в многоуровневых схемах защиты. Их ставят в качестве входных, если в схеме дальше есть другие дифференциальные устройства отключения. В этом случае при срабатывании одного из нижестоящих по току утечки, входной не отключится и исправные линии будут в работе.

Номинальная отключающая способность

Показывает, какой ток в состоянии дифавтомат отключить при возникновении КЗ и остаться при этом работоспособным. Есть несколько стандартных номиналов: 3000 А, 4500 А, 6000 А, 10 000 А.

Выбор дифавтомата по этому параметру зависит от типа сети и от дальности расположения подстанции. В квартирах и домах на достаточном удалении от подстанции используют дифавтоматы с отключающей способностью 6 000 А, близко к подстанциям ставят на 10 000 А. В сельской местности, при подводе электропитания по воздушке и в давно не модернизированных сетях достаточно 4 500 А.

На корпусе эта цифра указана в квадратной рамке. Местоположение надписи может быть разным — зависит от производителя.

Класс токоограничения

Чтобы ток короткого замыкания принял максимальное значение, должно пройти какое-то время. Чем быстрее будет отключено электропитание от поврежденной линии, тем меньше меньше вероятность получения повреждений. Класс токоограничения отображается цифрами от 1 до 3. Третий класс — отключает линию быстрее всего. Так что выбор дифавтомата по этому признаку прост — желательно использовать устройства третьего класса, но они дороги, зато дольше остаются работоспособными. Так что при наличии финансовой возможности, ставьте дифавтоматы этого класса.

На корпусе эта характеристика изображена в маленькой квадратной рамке рядом с номинальной отключающей способностью. Она может стоять справа (у Legranda) или снизу (у большинства других производителей). Если вы такой отметки не нашли ни на корпусе, ни в паспорте, значит этот автомат не имеет тоокограничения.

Температурный режим использования

Большинство дифференциальных защитных автоматов рассчитаны на работу в помещениях. Они могут эксплуатироваться при температурах от -5°C до + 35°C. В этом случае на корпусе ничего не ставят.

Иногда щитки стоят на улице и обычные защитные устройства не подойдут. Для таких случаев выпускаются дифавтоматы с более широким диапазоном температур — от -25°C до +40°C. В этом случае на корпусе ставят специальный знак, который немного похож на звездочку.

Наличие маркеров о причине сработки

Дифавтоматы не все электрики любят ставить, так как считают, что связка защитный автомат+УЗО более надежна. Вторая причина — если устройство сработает, невозможно определить, что стало тому причиной — перегрузка, и надо просто выключить какой-то прибор, или ток утечки, и надо искать где и что произошло.

Чтобы решить хотя бы вторую проблему, производители стали делать флажки, которые показывают причину сработки дифавтомата. В некоторых моделях это небольшая площадка, по положению которой определяется причина отключения.

Если отключение вызвала перегрузка, индикатор остается вровень с корпусом, как а фото справа. Если дифавтомат сработал при наличии тока утечки, флажок выступает на некоторое расстояние от корпуса.

Тип конструктивного исполнения

Есть диф автоматы двух типов: электромеханические или электронные. Электромеханические более надежны, так как они сохраняют работоспособность даже при пропадании питания. То есть, если пропадет фаза, они смогут сработать и отключить еще и ноль. Электронные же для работы требуют питания, которое берут с фазного провода и при пропадании фазы теряют работоспособность.

Производитель и цена

В электричестве не стоит экономить, тем более на устройствах, которые обеспечивают защиту проводки и жизни. Потому рекомендуют всегда покупать комплектующие известных производителей. Лидирует на рынке Legrand (Легранд) и Schneider (Шнайдер), Hager (Хагер) но их продукция дорога, да и много подделок. Не настолько высокие цены у IEK (ИЕК), ABB (АББ), но и проблем с нм бывает больше. С неизвестными производителями в данном случае лучше не связываться, так как они зачастую просто неработоспособны.

Выбор на самом деле не такой и маленький, даже если ограничиться только этими пятью фирмами. У каждого производителя есть несколько линеек, которые отличаются по цене, причем значительно. Чтобы понять в чем разница, надо внимательно смотреть на технические характеристики. На цену оказывает влияние каждая и них, так что внимательно изучайте все данные перед покупкой.

Как подключить дифавтомат

Начнем со способов монтажа и порядка подключения проводников. Все очень просто, никаких особых сложностей нет. В большинстве случаев монтируется он на динрейку. Для этого есть специальные выступы, которые удерживают устройство на месте.

Электрическое подключение

Подключение дифавтомата к электросети происходит проводами в изоляции. Сечение выбирается исходя из номинала. Обычно линия (подвод питания) подключается в верхние гнезда — они подписываются нечетными цифрами, нагрузка — в нижние — подписываются четными цифрами. Так как к дифференциальному автомату подключается и фаза и ноль, чтобы не перепутать, гнезда для «ноля» подписаны латинской буквой N.

В некоторых линейках подключать линию можно и в верхние, и в нижние гнезда. Пример такого устройства на фото выше (слева). В этом случае на схеме пишется нумерация через дробь — 1/2 вверху и 2/1 внизу, 3/4 вверху и 4/3 внизу. Это и обозначает, что не имеет значения сверху или снизу подключать линию.

Перед подключением линии с проводов снимают изоляцию примерно на расстоянии 8-10 мм от края. На нужной клемме слегка ослабляют крепежный винт, вставляют проводник, винт затягивают с достаточно большим усилием. ЗАтем провод несколько раз дергают, чтобы убедиться что контакт нормальный.

Проверка работоспособности

После того, как вы подключили дифавтомат, подали питание, необходимо проверить работоспособность системы и правильность установки. Для начала тестируем сам агрегат. Для этого есть специальная кнопка, подписанная «Test» или просто буквой T. После того, как перевели переключатели в рабочее состояние, нажимаем на эту кнопку. При этом устройство должно «выбить». Эта кнопка искусственно создает ток утечки, так что мы проверили работоспособность дифавтомата. Если сработки не было — надо проверить правильность подключения, если все верно, устройство неисправно

Дальнейшая проверка — подключение простой нагрузки к каждой розетке. Этим вы проверите правильность расключения розеточных групп. И последнее — поочередное включение бытовой техники, на которую заведены отдельные линии электропитания.

Схемы

При разработке схемы электропроводки в квартире или доме может быть много вариантов. Отличаться они могут удобством и надежностью эксплуатации, степенью защиты. Есть простые варианты, требующие минимума затрат. Они обычно реализуются в небольших сетях. Например, на дачах, в небольших квартирах с малым количеством бытовой техники. В большинстве случаев приходится ставить большое количество устройств, которые обеспечивают безопасность проводки и защищают от поражения током людей.

Простая схема

Не всегда имеет смысл устанавливать большое количество защитных устройств. Например, на даче сезонного посещения, где есть всего несколько розеток и освещение, достаточно поставить всего один дифавтомат на входе, от которого на группы потребителей — розетки и освещение — через автоматы пойдут отдельные линии.

Эта схема не потребует больших затрат, но при появлении тока утечки на любой из линий дифавтомат сработает, обесточив все. До выяснения и устранения причин света не будет.

Более надежная защита

Как уже говорили, отдельные дифавтоматы ставят на «мокрые» группы. К ним относятся кухня, ванная, наружное освещение, а также техника, использующая воду (кроме стиральной машинки). Такой способ построения системы дает более высокую степень безопасности и лучше защищает проводку, оборудование и человека.

Реализация этого способа устройства проводки потребует больших материальных затрат, но работать система будет более надежно и стабильно. Так как при сработке одного из защитных устройств, остальная часть останется работоспособной. Такое подключение дифавтомата применяется в большинстве квартир и в небольших домах.

Селективные схемы

В разветвленных сетях электроснабжения возникает необходимость сделать систему еще более сложной и дорогостоящей. В таком варианте после счетчика устанавливается входной дифференциальный автомат класса S или G. Далее, на каждую группу идет свой автомат, а при необходимости ставятся еще и на отдельных потребителей. Подключение дифавтомата для этого случая смотрите на фото ниже.

При таком построении системы при сработке одного из линейных устройств все остальные останутся в работе, так как входной автомат дифференциального отключения имеет задержку в срабатывании.

Основные ошибки подключения дифавтоматов

Иногда после подключения дифавтомата он не включается или вырубается при подключении любой нагрузки. Это значит, что что-то сделано не так. Есть несколько типичных ошибок, которые встречаются при самостоятельной сборке щитка:

  • Провода защитного нуля (земля) и рабочего нуля (нейтраль) где-то объединены. При такой ошибке дифавтомат вообще не включается — рычаги не фиксируются в верхнем положении. Придется искать где объединены или перепутаны «земля» и «ноль».
  • Иногда при подключении дифавтомата ноль на нагрузку или на ниже расположенные автоматы взят не с выхода устройства, а напрямую с нулевой шины. В таком случае рубильники становятся в рабочее положение, но при попытке подключить нагрузку, они моментально отключаются.
  • С выхода дифавтомата ноль подается не на нагрузку, а идет обратно на шину. Ноль на нагрузку тоже берется с шины. В этом случае рубильники становятся в рабочее положение, но кнопка «Тест» не работает и при попытке включить нагрузку происходит отключение.
  • Перепутано подключение ноля. С нулевой шины провод должен идти на соответствующий вход, обозначенный буквой N, который находится вверху, а не вниз. С нижней нулевой клеммы провод должен уходить на нагрузку. Симптомы аналогичны: рубильники включаются, «Тест» не работает, при подключении нагрузки происходит срабатывание.
  • При наличии в схеме двух дифавтоматов перепутаны нулевые провода. При такой ошибке оба устройства включаются, «Тест» работает на обоих устройствах, но при включении любой нагрузки выбивает сразу оба автомата.
  • При наличии двух дифавтоматов, идущие от них нули где-то дальше соединили. В этом случае оба автомата взводятся, но при нажатии на кнопку «тест» одного из них, вырубаются сразу два устройства. Аналогичная ситуация возникает при включении любой нагрузки.

Теперь вы не только можете выбрать и подключить дифференциальный автомат защиты, но и понять почему он выбивает, что именно пошло не так и самостоятельно исправить ситуацию.

stroychik.ru

Что нужно знать об УЗО

Перед тем, как углубиться в вопросы, касающиеся схемы установки УЗО, рассмотрим особенности этих устройств, а также основные требования к ним, на основе которых производится их выбор. В данной статье мы не коснёмся индексации, так как углубление в неё требует серьёзных знаний в области электротехники, а также эта надобность отпадает в связи с тем, что выбор защитного устройства будет совершен исключительно на основе исходных данных. Для этого необходимо выполнить несколько пунктов:

  • Продумать о необходимости подключения отдельного УЗО с автоматом или дифавтомата.
  • Определиться с номинальным током устройства. Для автомата актуально значение данного тока выбирать на одну ступень выше данных тока отсечки, в том же случае, если используется дифавтомат, то указываемое значение должно быть равно току отсечки.
  • С помощью простого расчёта вычислить значение отсечки по экстратоку (перегрузке). Для его расчёта необходимо знать максимально допустимый ток потребления, а затем умножить полученное значение на 1,25. Далее необходимо отталкиваться от таблицы значений стандартного ряда токов. Если результат отличен он указанных параметров, то он округляется в большую сторону.
  • Определить допустимый ток утечки. В обычных устройствах он равен 30 или 100 мА, но бывают и исключения. Выбор будет зависеть от типа проводки.

Если необходимо использование «пожарного» УЗО, то следует определиться с типом и расположением вторичных «жизненных» устройств.

Обозначение УЗО на однолинейной схеме

Говоря о схемах и проектах, очень важно уметь их правильно прочитать. Как правило, изображение УЗО на графической и проектной документации зачастую выполнено условно, наряду с другими элементами. Это несколько затрудняет понимание принципов работы схемы и отдельных её компонентов в частности. Условное изображение устройства защиты можно сравнить с изображением обычного выключателя, с той лишь разницей, что элемент на нелинейной схеме представлен в виде двух параллельно поставленных выключателей. На однолинейной схеме полюса, провода и элементы не прорисовываются визуально, а изображаются символически.

Этот момент подробно продемонстрирован на рисунке снизу. На нём изображено двухполюсное УЗО с током утечки 30 мА. На это указывает расположенная в верхней части цифра «2». Около неё можно увидеть пересекающую линию питания косую черту. Двухполюсность устройства дублируется и в нижней части схематического изображения элемента, в качестве двух косых чёрточек.

Разберём типовую схему «квартирного» подключения защитного устройства с учётом наличия счётчика на примере, приведённом на рисунке снизу. Ознакомившись более детально с принципом подключения, можно сделать вывод об оптимальном расположении УЗО, которое должно быть максимально приближенно к вводу. Это должно быть осуществлено таким образом, что бы между ними были расположены счётчик и главный автомат. Тем не менее, существует несколько ограничительных нюансов. Так, например, общее устройство защиты не может быть подключено к системе типа TN-C в связи с её принципиальными особенностями. Устаревший образец советских времён имеет защитный проводник, который напрямую соединён с нейтралью, что и становится причиной «несовместимости».

Устройство защитного отключения, представляющее собой устаревший образец советских времён с защитным проводником, соединённым с нейтралью, не представляет возможным подключить к ней общее устройство защиты.

Это лучший пример того, как подключить УЗО с заземлением. Схема также имеет желтые полосы, демонстрирующие принцип подключения дополнительных защитных аппаратов для групп потребителей, которые схематически должны быть расположены за соответствующими им автоматами. При этом номинальный ток каждого вторичного устройства на пару ступней превышает показатель назначенного ему автомата.

Но всё это характерно для современной электропроводки, с учётом наличия «земли».

Чтобы в дальнейшем более детально познакомиться с основами УЗО, обозначение на схеме необходимо выучить или по мере изучения статьи возвращаться к ней.

Подключение УЗО без заземления. Схема и особенности

Отсутствие контуров заземления в домах – ситуация распространённая, требующая больших усилий и знаний, ведь придётся вспомнить основы электродинамики, но она не является приговором. Главное следовать четырём обобщённым правилам:

  • Проводка типа TN-C не допускает установку дифавтомата или общего УЗО.
  • Следует определить потенциально опасных потребителей и защитить их дополнительным отдельным устройством.
  • Следует выбрать кратчайший «электрический» путь для защитных проводников розеток и розеточных групп на входную нулевую клемму УЗО.
  • Каскадное подключение защитных аппаратов допустимо при условии, что ближайшие к электровводу УЗО являются менее чувствительными, чем оконечные.

Многие, даже дипломированные, электрики, забыв или банально не зная принципы электродинамики, не задумываются о том, как подключить УЗО без заземления. Схема, предлагаемая ими, выглядит обычно так: ставится общее устройство защиты, а затем все PE (нулевые защитные проводники) заводятся на входной ноль УЗО. С одной стороны, здесь без сомнения видна разумная логическая цепочка, ведь на защитном проводнике не будет происходить коммутация. Но всё гораздо сложнее.

  • В обмотке может произойти кратковременный всплеск тока, компенсирующий разбаланс токов в фазе и нуле, называемый «Анти-дифференциальным» эффектом. Возникает он довольно редко.
  • Более распространённым вариантом является неконтролируемое усиление разбаланса токов, называемое «Супер-дифференциальным» эффектом. Возникновение подобной ситуации заставляет срабатывать устройство защиты без свойственной ему утечки. Тем не менее, это не вызовет серьёзных сбоев или поломок, а лишь принесёт определённый дискомфорт при постоянном «выбивании».

Сила «эффектов» зависит от длины РЕ. Если его длина превышает два метра, то вероятность несрабатывания УЗО достигает вероятности 1 к 10000. Числовой показатель довольно мал, тем не менее, теория вероятности вещь практически непредсказуемая.

Схема подключения УЗО в однофазной сети

Так как в квартирах зачастую используется однофазное подключение сети. В данном случае в качестве защиты оптимально выбирать однофазные двухполюсные УЗО. Существует несколько вариантов схемы подключения для данного устройства, но мы рассмотрим наиболее распространённую, показанную на рисунке ниже.

Подключение аппарата довольно простое. В паспорте и на приборе указана основная маркировка и точки подключения фазы (L) и нуля (N). На схеме изображены вторичные автоматы, но их установка не является обязательной. Они нужны для распределения подключаемых бытовых приборов и освещения по группам. Таким образом, проблемный участок никак не затронет остальные части или комнаты квартиры. При этом важно учитывать, что установка максимально допустимых токов на автоматах не должна превышать настроек УЗО. Это объясняется отсутствием в устройстве ограничения по току. Внимательно следует отнестись и к подключению фазы с нулём. Невнимательность может привести не только к отсутствию питания микросхемы, но и к поломке устройства защиты.

Схема включения УЗО в однофазной сети, по мнению специалистов, должна располагаться в непосредственной близости со счетчиком электрической энергии (рядом с источником электропитания)

Ошибки и их последствия при подключении УЗО

Как и любая электрическая схема, схематическое изображение подключения защитного устройства в общую сеть, должно быть составлено, как и прочитано в дальнейшем, без малейших изъянов. Даже самый скромный недочёт может привести к неисправной работе системы в целом или самого УЗО, в то время как серьёзные отклонения могут принести довольно серьёзный ущерб. Ошибки могут быть допущены самые разные, но среди них можно выделить ряд наиболее распространённых:

  • Нейтраль и заземление соединяются после УЗО. В данном случае можно неверно интерпретировать схему, соединив нулевой рабочий проводник, с открытой частью электроустановки или с нулевым защитным проводником. В обоих случаях итог будет идентичен.
  • УЗО может быть подключено неполнофазно. Допущение такой ошибки приведёт к ложному срабатыванию, возникающему, из-за того, что до УЗО нагрузка была подключена к нулевому рабочему проводнику.
  • Пренебрежение правилами соединения в розетках нулевого и заземляющего проводника. Проблема кроется в процессе установки розеток, в котором допускается соединение защитного и нулевого рабочего проводников. При этом устройство будет срабатывать даже тогда, когда в розетку ничего не подключено.
  • Объединение нулей в схеме с двумя устройствам защиты. Распространённой ошибкой является неправильное соединение в зоне защиты нулевых проводников обоих УЗО. Она допускается из-за невнимательности и неудобства электромонтажа внутри стеновой панели. Оплошность приведёт к неконтролируемым выключениям устройств.
  • Применение двух или более УЗО усложняют работу по подключению нулевых проводов. Последствия невнимательности могут быть довольно серьёзными. Не поможет и тестирование, так как при нём работа устройства не вызовет никаких нареканий. Но первое же подключение электроприборов может вызвать ошибку и срабатывание всех УЗО.
  • Невнимательность при подключении фазы и нуля, если они взяты с разных УЗО. Проблема возникает при соединении нагрузки с нулевым проводником, относящимся к другому устройству защиты.
  • Несоблюдение полярности подключения, что выражается в подключении фазы и нуля, соответственно сверху и снизу. Это спровоцирует движение токов в одном направлении, вследствие чего создаются условия для невозможности взаимокомпенсации магнитных потоков. Это говорит о том, что перед покупкой нового УЗО следует внимательно изучить принцип подключения старого, так как расположение клемм может быть отличным.
  • Пренебрежение деталями при подключении трехфазного УЗО. Распространённой ошибкой в подключении четырёхполюсного УЗО является использование клемм одноимённой фазы. Тем не менее, работа однофазных потребителей никак не повлияет на работу такого защитного устройства.

prokommunikacii.ru

Установка УЗО значительно повышает уровень безопасности при работе на электроустановках. Если УЗО обладает высокой чувствительностью (30 мА), то при этом обеспечивается защита от прямого контакта (прикосновения).

Тем не менее, установка УЗО не означает от выполнения обычных мер предосторожности при работе на электроустановках.

Кнопку тест необходимо нажимать регулярно, как минимум один раз в 6 месяцев. Если тест не срабатывает, то надо задуматься о замене УЗО, так как уровень электробезопасности снизился.

Установите УЗО на панели или корпусе. Подключите оборудование в точном соответствии со схемой. Включите все нагрузки, подключенные к защищаемой сети.

Срабатывает УЗО.

Если УЗО срабатывает, выясните, какое устройство является причиной срабатывания, путем последовательного отключения нагрузки (отключаем по очереди эл. оборудование и смотрим результат). При обнаружении такого устройства его необходимо отключить от сети и проверить. Если электрическая линия имеет очень большую длину, обычные токи утечки могут быть достаточно велики. В этом случае имеется вероятность ложных срабатываний. Чтобы избежать этого, необходимо разделить систему, по крайней мере, на два контура, каждый из которых будет защищен своим УЗО. Можно расчитать длинну электрической линии.

При невозможности определения документальным способом суммы токов утечки проводки и нагрузок, можно пользоваться примерным расчетом (в соответствии с СП 31-110-2003), принимая ток утечки нагрузки равным 0,4мА на 1А потребляемой нагрузкой мощности и ток утечки электросети равным 10мкА на один метр длины фазового провода электропроводки.

Пример расчета УЗО.

Для примера рассчитаем УЗО для электроплиты, мощностью 5 кВт, установленную на кухне малогабаритной квартиры.

Примерное расстояние от щитка до кухни может составлять 11 метров, соответственно расчетная утечка проводки составляет 0,11мА. Электроплита, на полной мощности, потребляет (приближенно) 22.7А и обладает расчетным током утечки 9,1мА. Таким образом, сумма токов утечки данной электроустановки составляет 9,21мА. Для защиты от токов утечки можно использовать УЗО с номиналом тока утечки 27,63мА, что округляется до ближайшего большего значения существующих номиналов по диф. току, а именно УЗО 30мА.

Следующим шагом, является определение рабочего тока УЗО. При указанном выше максимальном токе, потребляемым электроплитой, можно использовать номинал (с небольшим запасом) УЗО 25А, или с большим запасом — УЗО 32А.

Таким образом мы расчетно определили номинал УЗО, которое можно использовать для защиты электроплиты: УЗО 25А 30мА или УЗО 32А 30мА. (надо не забыть защитить УЗО автоматическим выключателем 25А для первого номинала УЗО и 25А или 32А для второго номинала).

Обозначение УЗО.

На схеме УЗО обозначается следующим образом рис. 1 однофазное УЗО, рис. 2 -трехфазное УЗО.

Схема подключения УЗО рассмотрим на примере. На фото. 1 показан фрагмент распределительного шкафа.

Фото. 1 Схема подключения трехфазного УЗО с автоматическим выключателем (на фото цифра1 УЗО, 2- автоматический выключатель) и однофазных УЗО (3).

УЗО не защищает от токов короткого замыкания, поэтому его устанавливают в паре с автоматическим выключателем. Что ставить раньше УЗО или автоматический выключатель в данном случае не принципиально. Номинал УЗО должен быть равным или немного больше наминала автоматическо выключателя. Например, автоматический выключатель 16 Ампер, значит, УЗО ставим 16 или 25 А.

Как видно на фото. 1 на трехфазное УЗО (цифра 1) подходят три фазных и нулевой проводник, а после УЗО подключен автоматический выключатель (цифра 2). Потребитель будет подключаться: фазные проводники (красные стрелки) с автоматического выключателя; нулевой проводник (синяя стрелка) — с УЗО.

Под цифрой 3 на фото показаны дифференциальные автоматы, соединенные сборной шиной, принцип работы диф. автомата такой же, как у УЗО, но он дополнительно защищает от токов короткого замыкания и не требует дополнительной защита от КЗ.

А подключение, что у УЗО, что у диф. автоматов одинаковое.

Подключаем к клемме L фазу, к N ноль (обозначения нанесены на корпусе УЗО). Потребители подключаются также.

www.mirpodelki.ru

Буквенное обозначение узо. Температурный режим использования

В данной статье рассмотрены несколько примеров подключения УЗО и Дифференциальных автоматов.

Основным условием при выборе УЗО и диф. автомата является соблюдение селективности (ПУЭ.РАЗДЕЛ 3 ):

В электротехнике под «селективностью» понимают совместную работу последовательно включенных аппаратов защиты электрических цепей (автоматические выключатели, УЗО, диф. автомат и т.п.) в случае возникновения аварийной ситуации. На рис. 1 привёден пример работы такой схемы, с учётом общего наминала автоматических выключателей 40 А (4шт. по 10А), вводный автомат 63 А.

Селективность используется при выборе номинала устройств защиты для отключения от общей системы питания только той ее части, где произошла авария. Это достигается за счет срабатывания только того автоматического выключателя, который защищает аварийную линию питания.

Во общем, для селективной работы автоматических выключателей при перегрузках нужно, чтобы номинальный ток (In) автоматического выключателя со стороны питания был больше In автоматического выключателя со стороны потребителей.

Условное обозначение УЗО и дифавтомата на электрических схемах:

Обозначение УЗО на принципиальных электрических схемах см. рис. 2. Слева – однофазное УЗО с током срабатывания 30 мА, справа – трехфазное УЗО на 100 мА. Сверху развернутое изображение, снизу однолинейное. Число полюсов при однолинейном представлении можно изображать и числом (вверху) и числом черточек. Условное обозначение Дифавтомата на принципиальных схемах см. рис. 3 и на однолинейных схемах рис. 4. Буквенное обозначение QF.

Рис. 4
Рис. 3

Схемы включения УЗО:

По конструкции УЗО различных производителей могут отличаться друг от друга не только параметрами, но и схемами подключения. На рис. 5 приведены наиболее распространенные схемы включения УЗО в различных вариантах:

Двухполюсные УЗО Рис. 5 (а).

Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен в фазное напряжение (Рис. 5 (б).

Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен на линейное напряжение (Рис. 5 (в).

При включении УЗО (дифавтомата) в любом случае смотрите схему, схема подключения приведена на лицевой или боковой поверхности корпуса УЗО, а также в паспорте технического устройства.

Ниже приведены монтажные схемы подключения УЗО (Рис. 6) и дифавтомата (Рис. 7).

  1. Вводный автомат.
  2. Прибор учёта (электросчетчик).
  3. УЗО или дифавтомат.
  4. Автоматический выключатель (освещения, как правило 6 ÷ 10 А, в зависимости от нагрузки светильников).
  5. Автоматический выключатель (розетки, как правило 16 ÷ 25 А, в зависимости от группы розеток).
  6. Автоматический выключатель (розетка «силовая», 16 ÷ 25 А, в зависимости от нагрузки электроплиты).
  7. Нулевая рабочая N — шина.
  8. Нулевая защитная РЕ — шина.

Более подробно про системы заземления и зануления см. в разделе

Вернутся в раздел:

1. Введение и область действия. 3

2. Устройство и принцип действия УЗО. 4

2.1 Нормальный режим работы УЗО. 4

2.2 Срабатывание УЗО. 4

2.3 Электронные УЗО. 5

2.4 Параметры УЗО. 5

2.5 Обозначение УЗО на электрических схемах. 6

3. Проверка УЗО. 6

3.1 Проверка постоянным током. 6

3. 2 Проверка переменным током. 7

4. Назначение УЗО. 7

4.1 Электробезопасность. 8

4.1.1 Защита от прикосновения к токоведущим частям. 8

4.1.2 Быстродействующее отключение при замыкании на корпус. 8

4.2 Противопожарная безопасность. 9

5. Установка УЗО в схему. 9

5.1 Разделение объединенного нулевого (PEN) проводника. 9

5.1.1 Для щитов с металлическим (токопроводящим) корпусом. 10

5.1.2 Типичные ошибки при разделении PEN–проводника в щитах с металлическим корпусом. 11

5.1.3 Для устройств с не проводящим электрический ток корпусом. 13

5.2 Нулевой защитный и нулевой рабочий проводники. 14

5.3 Выбор типоразмера болтового соединения для ноля сети по току нагрузки. 15

6. Поиск причин срабатывания УЗО. 15

6.1 Неверное подключение электроприемников. 16

6.1.1 Ошибки монтажа. 16

6.1.2 Ошибки проектирования. 18

6.2 Неисправность сети или электроприемников. 21

6. 3 Алгоритм поиска причин срабатывания УЗО. 23

7. Приложение 1. Универсальный тестер УЗО. 24

7.1 Назначение устройства. 24

7.2 Принцип действия. 24

7.3 Инструкция по эксплуатации. 25

7.3.1 Проверка УЗО под напряжением. 25

7.3.2 Проверка демонтированного УЗО. 25

7.3.3 « Прозвонка» цепей. 26

7.3.4 Меры безопасности при использовании устройства. 26

8. Приложение 2. Контрольные лампы. 27

8.1 Проверка срабатывания УЗО. 27

8.2 Проверка типа УЗО. 28

Введение и область действия.

Прежде всего следует заметить, что устройств защитного отключения существует несколько видов, причем реагируют они на различные параметры электросети и защищают от различных поражающих факторов. В данной методике будут рассматриваться только электромеханические УЗО, реагирующие на дифференциальный ток (выключатели дифференциального тока), в дальнейшем тексте только они подразумеваются под аббревиатурой «УЗО».

Весь материал методики относится к электрическим сетям стандарта TN-C и TN-C-S.

Устройство и принцип действия УЗО.

Устройство УЗО демонстрирует Рисунок 1.

Рисунок 1. Устройство электромеханического дифференциального УЗО.

Нормальный режим работы УЗО.

Характеризуется тем, что результирующий магнитный поток 4-ех проводов электросети, пропущенных через магнитопровод 1, равен нулю или недостаточен для срабатывания электромагнитной защелки 2. Это условие выполняется при любом распределении нагрузки (одно-, двух-, трехфазная), так как любой ток, прошедший слева направо по схеме, вернется и обратно – на магнитопроводе ничего не наведется (магнитные потоки токов «туда» и «обратно» взаимно уничтожатся, ток I 2 равен нулю).

Срабатывание УЗО.

Происходит, если появляется ток утечки (I УТ) , то есть появляется электрическая связь между цепью, защищенной данным УЗО и любой другой цепью . В результате такой связи какая-то часть тока, проходящего через УЗО, вернется к источнику тока (на рисунке – «трансформаторная подстанция») помимо УЗО. В этом случае на магнитопроводе 1 образуется магнитный поток, пропорциональный току утечки, что, в свою очередь, наведет ток I 2 , который вызовет срабатывание электромагнитной защелки 2, которая при помощи механизма расцепления 3 отключит защищаемый участок сети (то, что правее по рисунку) от источника тока («трансформаторная подстанция»).

Ток утечки(I УТ) также называется дифференциальным (разностным, I Д или I ∆ ) током.

Электронные УЗО.

Наиболее дорогая часть УЗО – магнитопровод 1, так как для срабатывания электромагнитной защелки 2 магнитопровод должен иметь очень хорошее качество (или большие габариты). Удешевить магнитопровод оказалось возможно, если питать электромагнитную защелку не от тока I 2 , а непосредственно от сети, а от I 2 питать только электронный ключ, управляющий защелкой. Таким образом, электронные УЗО имеют существенный конструктивный недостаток – при ухудшении качества питающей сети (пропадание ноля, падение напряжения) они не отключаются даже в случае возникновения тока утечки .

Параметры УЗО.

УЗО подразделяются по следующим основным параметрам:

· числу полюсов – два для однофазной (трехпроводной) сети, четыре – для трехфазной (пятипроводной) сети;

· номинальному току нагрузки – 16, 20, 25, 32, 40, 63, 80, 100 Ампер;

· номинальному отключающему дифференциальному току – 10, 30, 100, 300 мА

· по типу дифференциального тока – AC (переменный синусоидальный ток, возникший внезапно либо медленно нарастающий), A (то же, что и AC, плюс выпрямленный пульсирующий ток), B (переменный и постоянный), S (задержка времени срабатывания для обеспечения селективности), G (то же, что и S, но время задержки меньше).

Следует отметить, что ток нагрузки УЗО ограничить не в состоянии и его (УЗО) необходимо защищать от токовых перегрузок и токов короткого замыкания (КЗ) аппаратами защиты (автоматическими выключателями, обеспечивающими как защиту от перегрузки по току, так и от токов КЗ, например, серии ВА-47-29, ВА-101 и т. д.). Ток нагрузки УЗО следует выбирать так, чтобы он был на ступень (номинального ряда токов) больше номинала тока автоматического выключателя защищаемой линии. То есть, если имеется нагрузка, защищенная автоматическим выключателем на ток 16 Ампер, то УЗО следует выбирать на ток нагрузки 25 Ампер.

Обозначение УЗО на электрических схемах.

Рисунок 2. Обозначение УЗО на принципиальных электрических схемах. Слева – однофазное УЗО с током срабатывания 30 мА, справа – трехфазное УЗО на 100 мА. Сверху развернутое изображение, снизу – однолинейное. Число полюсов при однолинейном представлении можно изображать и числом (вверху) и числом черточек.

Проверка УЗО.

Настоятельно необходима, так как их высокая стоимость воодушевляет злоумышленников на выпуск и продажу разнообразных имитаций УЗО. Особенно актуальна стала проверка после введения в действие новых ПУЭ, предписывающих в ряде случаев обязательную установку УЗО, что расширяет рынок сбыта фальшивок.

В современном мире сложно прожить без электричества. Но для подобных видов энергии требуется максимальная защита. Поэтому всегда создаются качественные установки, способные это реализовать. Современные разработки в этой отрасли создают все условия для взаимного контакта. УЗО — это устройство, без которого сложно обойтись.

Не каждый человек понимает, что это такое. Для ясности стоит узнать обозначение, назначение, принцип работы. Информация об этом будет изложена в данной статье.

О защите

Без электричества сложно представить жизнь человека, но требуется и создавать условия для защиты от поражения. Самое элементарное — это изоляция проводки, но полностью все обернуть не получится. Потому что схема должна иметь технические разрывы и контактные группы. Но никто не исключает вероятность:

  • Износа изоляции.
  • Порыва проводки.
  • Нарушения техники безопасности.
  • Неправильной эксплуатации и т. д.

Поэтому создать изоляцию и заземление — это самое лучшее решение. Но не всегда этого хватало. Поэтому много лет назад в Германии появилось первое УЗО. Обозначение его — на схеме, что представлена ниже.

Как устроена эта система? Она предполагает наличие:

  • минимального размера.
  • Поляризованного магнитного реле. Его чувствительность не более 99 миллиампер.

Создать что-то уникальное и более скоростное в прошлые века не получалось из-за отсутствия соответствующих материалов. Но уже в двадцатом веке появились усовершенствованные разработки. Главное, что была создана защита от ложного срабатывания в период непогоды. Помимо этого, от большого размера пришли к более компактному, способному расположиться на небольших подставках.

Сегодня разработчики не останавливаются на достигнутом, и в скором будущем будут сделаны системы защиты от поражения электрическим током с искусственным интеллектом. Благодаря разработкам устройство будет выполнять максимум функций и при необходимости оповещать пользователей.

Что за устройство и как функционирует?

Каждый желает знать обозначение УЗО. Как мы уже отметили, это От чего защищает УЗО? Аппарат имеет функцию защиты человека от удара током, а также от вероятности возгорания проводов и прочих установок.

УЗО — что это такое в электрике? В основе действия идут законы, которые основываются на входящей и выходящей электроэнергии в замкнутых цепях с максимальными нагрузками.

Это говорит о том, что ток должен иметь одно значение, независимо от фазы прохождения. Дальше все просто. Когда происходит касание человека или разрыв, то показатель в электропроводке меняет свое значение и перескакивает. Для УЗО это сигнал к тому, чтобы выключиться. Именно такая система берется за основу и реализуется в установках.

Весь процесс продуман до мелочей, поэтому даже незначительные утечки электроэнергии фиксируются. Чтобы понять принцип действия, это происходит так:


В этом условном обозначении каждое имеет свое значение — входной ток и выходной. УЗО обозначения имеет свои. Они применяются в электрических схемах, и люди с опытом о них знают.

Принцип работы

Назначение УЗО мы уже знаем — это защита от замыканий. Защита осуществляется в следующих направлениях:

  • Замыкание. Когда фазный провод дает сбой, это есть на многих бытовых приборах — машинках-автоматах, водонагревателях, посудомоечных машинах и т. д. Поломка часто происходит в момент нагрева основного элемента.
  • Нарушение монтажных правил при прокладке электропроводки. Если ее убрали под штукатурку, то УЗО будет срабатывать, пока не выполнится ремонт.
  • Нарушение соединения в электрическом щите. Если создаются условия, при которых происходит незначительная потеря тока, то эффективность работы всей установки в целом под вопросом. По этой причине идет срабатывание защиты.

Если посмотреть на схему, то увидеть нарушение не получается, а УЗО срабатывает. Это говорит о его точности и мельчайших фиксациях. Бывает и так, что неопытный человек не может найти, в чем причина отключения. Только тщательный анализ приведет к результату.

Исключения

Хотя бывают исключения из правил. Есть ситуации, в которых при попадании животного или человека в электроустановку реакции не происходит (из-за попадания на фазу и ноль). По этой причине иногда требуется вспомогательная защита.

Где встречается?

Важно понять назначение УЗО и принцип работы. Устройство получило расширенное применение в быту, на многих установках. Иногда схема разрабатывается на входе, но не исключается и на каждом приборе. Дело в том, что УЗО для мощных устройств небольшого размера дешевле. Но в местах группового пребывания людей будет целесообразно применять его обширно. При этом разделение происходит по группам — вся проводка не отключается, что удобно.

Чаще всего применяют типа. В его основе лежит та же система работы, но период срабатывания медленнее. Принцип в том, чтобы не выключать всю сеть, а вести работы по секциям (где прошла потеря, там система и обесточилась). К примеру, если в ресторане играет музыка, там происходит замыкание и различный заряд энергии, то выключится лишь аппаратура, а остальной свет останется работать.

В установках с переменным током должна быть повторная защита с применяемым УЗО для розеток. Это относится к разной бытовой технике. Большое значение при выборе имеет разрядность. Знать, как все функционирует, может не каждый, но понимать правила безопасности нужно обязательно. Система УЗО встречается не так часто, поэтому некоторые ее сами монтируют.

Самый простой прибор к пониманию — это водонагревательный агрегат. Какой тип УЗО и его применение здесь? Есть несколько вариантов:

  • По возникновению напряжения.
  • По утечке тока.
  • По времени срабатывания.

Когда человек находится в душе или просто моет руки теплой водой, будет утечка электроэнергии. Его уже ток не ударит, так как происходит срабатывание УЗО. Специалисты считают, чтобы эта установка функционировала в доме, важно грамотно распределить проводку. Иногда на старой не получается это сделать из-за неверного ввода от столбов.

Работа устройства

При нажатии кнопки «Пуск» начинается работа УЗО. Происходит измерение напряжения двух точек. Одна — это поток энергии, а вторая — требуемая защита. На втором участке не должно присутствовать напряжение. При появлении напряжения на участке под защитой достижения его заданной величины УЗО отключает ввод. Это защита по напряжению.

Защита по силе тока

Через встроенные трансформаторы происходит измерение входного и выходного тока. В нормальном режиме разница этих показателей должна равняться нулю. При создании аварийной ситуации, когда происходит утечка тока и величина несет опасность для человека или животного, УЗО отключает ввод.

Дифференциальное УЗО

Буквенно-цифровое обозначение УЗО в данном случае — QFD1. Оно характеризует себя с точки зрения быстрого действия. Чем больше показатель утечки тока, тем быстрее скорость отключения. Другие виды УЗО срабатывают по заданным временным отрезкам. Всегда при любых показателях время отключения стандартное. Преимущества дифференциального УЗО в том, что происходит измерение тока и напряжения.

Часто при подключении жилого строения проверяющие по предписанию заставляют сделать УЗО на счетчике. Это прописано в техприсоединении, проводка выполняется с учетом требований. В распредщите ставится УЗО и автомат. Как правило, занимаются этим люди без опыта, и когда это видит мастер, то выявляется много ошибок. По этой причине не происходит срабатывание. Перед установкой стоит понимать работу УЗО. Что это такое в электрике, мы уже рассмотрели.

Подключение без ошибок

Важно произвести грамотное подключение не только к источнику энергии, но и друг к другу. Есть два основных варианта:

  1. Самый распространенный и часто применяемый — основной автомат — счетчик учета — УЗО.
  2. Что будет работать эффективнее: основной автомат — счетчик учета — УЗО селективного типа — групповой автомат — групповое УЗО.

Условное обозначение УЗО на электрической схеме имеет свой символ — D. Специалисты по ним прочитывают и понимают, как функционирует вся система. Есть правила, которые не стоит нарушать:

  • После выхода из провод с нулевым показателем не должен соединяться клеммой заземления. Потому что это дает вероятность утечки тока и ложных отключений.
  • Важно подключить УЗО полностью. Когда провод от запитки идет мимо, появляется ток в Это воспринимается системой как нарушение, и идет срабатывание защиты.
  • Есть нулевые провода розеток, которые проверяются УЗО. Они не должны быть зафиксированы с заземлением. Потому что будет происходить отключение сети при маленьких колебаниях.
  • Когда создаются групповые защитные установки, то нельзя перехлестывать нулевые провода на входящих клеммах. Это приведет к защитной реакции всей установки.

Именно по этой причине всегда выполняется предварительная схема. Иначе можно запутаться даже специалисту. Не всегда процесс сложный, есть такие устройства, работа которых настраивается просто. Важно учесть все ошибки, способные происходить в сети. Когда в схему все внесено грамотно, работа УЗО приносит эффект. Сегодня имеются и аналоги такой системы защиты. Но перед выбором стоит понять, как они работают.

Обратите внимание

Теперь мы знаем расшифровку маркировки УЗО. В любом случае при работе с электроприборами и установками нужно не забывать о технике безопасности. Стоит периодически делать визуальный осмотр всех проводов. В случае их повреждения не нужно медлить с ремонтом. В противном случае подача энергии прекратится, так как в помещении сработает защитное устройство.

В одной из наших статей мы уже рассказывали про УЗО, про назначение и про его подключение. «УЗО схемы подключения, типы, принцип работы » В этой статье мы затронем тему маркировки УЗО. Именно по маркировке можно определиться с правильным выбором УЗО.

Маркировка устройства защитного отключения (УЗО)

Каждое устройство защитного отключения должно (УЗО) иметь стойкую маркировку, которая включает в себя следующие данные:

1.Наименование или торговый знак изготовителя.
2.Типовое обозначение УЗО и АВДТ дифференциальный автомат, каталожный или серийный номер.
3.Одно или несколько значений номинального напряжения Un ВДТ и АВДТ.
4.Номинальный ток In для ВДТ. Для АВДТ указывают номинальный ток In в амперах без указания единицы измерения с предшествующим обозначением типа мгновенного расцепления (B,C или D). Например, B16: тип мгновенного расцепления – B, номинальный ток – 16А.
5.Номинальную частоту, если ВДТ разработан для частоты, отличной от 50 и (или) 60 Гц, а АВДТ предназначен для работы только при одной частоте.
6.Номинальный отключающий дифференциальный ток IΔn ВДТ и АВДТ.
7.Значения отключающего дифференциального тока, если ВДТ и АВДТ имеют несколько таких значений.
8.Номинальную включающую и отключающую способность Im 1 ВДТ.
9.Номинальную коммутационную способность при коротком замыкании Icn АВДТ в амперах.
10.Номинальную дифференциальную включающую и отключающую способность IΔm, если она отличается от номинальной включающей и отключающей способности ВДТ. Номинальную дифференциальную включающую и отключающую способность IΔm,если она отличается от номинальной коммутационной способности при коротком замыкании АВДТ.
11.Степень защиты, при ее отличии от IP20.
12.Рабочее положение, при необходимости.
13.Символ для ВДТ и АВДТ типа S.
14.Указание на то, что ВДТ и АВДТ функционально зависят от напряжения, если это имеет место.
15.Обозначение органа управления контрольного устройства ВДТ и АВДТ буквой «Т».
16.Схему подключения ВДТ и АВДТ.
17.Рабочую характеристику при наличии дифференциальных токов с составляющими постоянного тока: ◦ВДТ и АВДТ типа АС маркируют символом;~
◦ВДТ и АВДТ типа А обозначают символом. ~-

18.Контрольную температуру калибровки АВДТ, если она отличается от 30 оС.

Маркировка должна быть четко видна после установки ВДТ и АВДТ. Если размеры устройств не позволяют разместить всю перечисленнуюинформацию, то данные, указанные в пп. 4, 6 и 151 для ВДТ и пп. 4, 6 и 13 для АВДТ, должны быть видны после их монтажа. Характеристики, перечисленные в пп. 1–3, 10, 12 и 16 для ВДТ,в пп. 1–3, 9 и 16 для АВДТ, могут быть нанесены на боковых и задних поверхностях устройств и быть видимыми только до их установки в низковольтном распределительном устройстве. Остальная информация должна быть приведена в эксплуатационной документации на изделия или в каталогах изготовителя.

В разделе 6 «Маркировка и другая информация об изделии» ГОСТ Р 51326.1 и в соответствующем шестом разделе стандарта МЭК 61008-1 отсутствуют требования о маркировке на изделии или о представлении в ином виде следующих характеристик ВДТ:

Номинального условного тока короткого замыкания Inc;
номинального условного дифференциального тока короткого замыкания IΔc.

На устройство дифференциального тока, помимо маркировки, указанной в пп. 1–3, 5–7, 10–13 и 15, наносят значение максимального номинального тока автоматического выключателя, с которым УДТ может быть собрано, например – «63 А max», а также специальный символ:

После сборки устройства дифференциального тока с автоматическим выключателем не должны быть видны данные, приведенные в пп. 3 и 11, а также значение максимального номинального тока автоматического выключателя, с которым УДТ может быть собрано. Устройства дифференциального тока и автоматические выключатели, которые предназначены для совместной сборки, должны иметь одинаковое наименование изготовителя или торговый знак. Изготовитель должен предоставить допустимые для ВДТ значения характеристики I2t и пикового тока Ip. В противном случае применяют минимальные значения, приведенные в таблице 15 ГОСТ Р 51236.1 В каталоге или эксплуатационной документации на изделие изготовитель также должен указать сведения хотя бы об одном устройстве защиты от короткого замыкания, подходящем для защиты ВДТ. Разомкнутое (отключенное) положение устройства защитного отключения, управляемого органом оперирования, перемещаемым вверх–вниз (вперед–назад), должно обозначаться знаком О (окружностью), замкнутое (включенное) его положение маркируется знакомI (вертикальной чертой). Эти обозначения должны быть хорошо видны после установки УЗО. Для обозначения включенного и отключенного положений УЗО допускается также использование дополнительных символов. При необходимости различать входные и выходные выводы их следует четко обозначать, например, словами «линия» и «нагрузка», расположенными около соответствующих выводов, или стрелками, указывающими направление протекания электроэнергии.
Выводы устройства защитного отключения, предназначенные только для присоединения нейтрального проводника, должны быть маркированы буквой N.
Выводы устройства защитного отключения, которые используют исключительно лишь для присоединения защитного проводника, маркируют символом заземлени:

В статье использовались материалы «Книги защитного модульного оборудования производства ABB

Маркировка устройства защитного отключения (УЗО) ABB

Действующие государственные стандарты (ГОСТ) не регламентируют графическое и буквенное обозначение УЗО (устройства защитного отключения), отсутствуют дополнительные графические символы, позволяющие точнее описать основные функции и свойства стандартного оборудования.

УЗО является одним из основных элементов электрических однолинейных схем, поэтому производителями модульного оборудования и проектировщиками принято следующее условное обозначение для него:

Такое схематическое отображение устройств защитного отключения, наиболее точно показывает его принцип работы и отличает от другого модульного оборудования, если знать, что такое УЗО и как оно работает.

При этом, так как государственные стандарты не регламентируют вид УЗО, обязательно на схемах и планах нужно показывать блок с условными графическими обозначениями (УГО), в котором давать расшифровку и пояснения к графическим элементам, даже если решено использовать иной от представленного вид. Возможность самим разработать условные обозначения, если их нет в стандартах указана в ГОСТ 2.702-2011.

Буквенная маркировка УЗО — QF, если пользоваться правилами их формирования по ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах». Это полностью совпадает с обозначением автоматического выключателя и некоторых других модульных устройств, делая однолинейные схемы менее читаемыми и понятными.

Многие вводят свои буквенные обозначения: Q, QFD, QDF и т.д. которые, если опираться на актуальные стандарты, неверны, не раскрывают функции УЗО, но помогают отличать от других элементов защитной автоматики на однолинейных схемах.

Это бывает важно, особенно если на схеме одновременно присутствуют УЗО, и дифавтоматы. Их графические обозначения похожи и не всегда их легко отличить друг от друга.Учитывая, что проектировщики электроустановок нередко максимально упрощают применяемые графические символы, опуская важные детали.

Рассмотрим условное Обозначение дифференциального автоматического автомата на однолинейной схеме и сравним его с УЗО.

rozetkaonline.ru

Если вы решили заменить проводку в квартире, то для начала необходимо составить подробную схему. Для того, чтобы правильно составить схему проводки, необходимо знать, как на схеме должны отображаться все ее основные элементы. Помимо этого, в данной статье будут рассмотрены некоторые типовые схемы проводки в квартире.

Разновидности схем проводки

При собственноручной замене проводки в квартире вам понадобится два варианта схемы – электромонтажная и принципиальная.

Схема, на которой показаны основные электрические связи, существующие между всеми элементами, которые изображены с помощью специальных условных графических и буквенно-цифровых обозначений, называется принципиальной схемой. Принципиальная схема чаще всего изображается однолинейной.

Однолинейной схемой называют такую схему, на которой все фазные провода отображены всего одной линией и не отображается нулевой проводник, а защитные аппараты и нагрузки изображены схематично, без указания схемы их подключения.

На электромонтажной схеме на план квартиры, который изображается в масштабе, наносят все обозначения. На электромонтажной схеме обязательно должно быть указано точное прохождение всех линий, расположение квартирного щита, выключателей, монтажных коробок, освещения и розеток.

Условные обозначения, используемые на схемах проводки для квартиры

Для правильного составления схемы проводки, необходимо знать обозначения различных элементов. Все эти обозначения нормируются ГОСТами и называют их условными графическими обозначениями.

Вот два ГОСТа, которые стоит изучить перед составлением схемы проводки: ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и ГОСТ 21. 614-88 «Изображения условные графические электрооборудования и проводок на планах».

Обозначения, которые применяются на принципиальных схемах

Автомат или выключатель автоматический (ГОСТ 2.755-87). Он обозначается буквами QF.

УЗО, дифавтомат. Обозначается буквами QF.

Электрический счетчик активной мощности (ГОСТ 2.729-68). Обозначается буквами PI.

Силовой щит (ГОСТ21.614-88).

Лампочка накаливания (ГОСТ 2.732-68). Обозначается буквами EL.

Обозначения, которые применяются на электромонтажных схемах

Все данные по этим обозначениям можно найти в ГОСТ 21.614-88.

Накладная розетка, имеющая защитный контакт.

Розетка со скрытой установкой, имеющая защитный контакт.

Примеры схем проводки в квартире

Первая из предложенных схем, является самой простой однолинейной схемой для однокомнатной или двухкомнатной квартиры. Питание квартиры осуществляется от одной фазы через этажный щит. Помимо этого, в квартиру заводится защитное и рабочее заземление с этажного щита. После этого идет двухполюсный вводный автомат, который отключает ноль и фазу. Согласно правил (п.1.5.36 ПУЭ), автомат должен быть установлен до счетчика электроэнергии – «Для того, чтобы можно было безопасно устанавливать и, по необходимости, заменять счетчики в сетях, имеющих напряжение до 380 В, необходимо предусмотреть возможность отключать счетчик с помощью установленных до него предохранителей или коммутационных аппаратов на расстоянии не больше 10 метров. Должна быть возможность снимать напряжение со всех фаз, присоединенных к счетчику».

За счетчиком должна устанавливаться шина, к которой подключаются автоматы освещения и плиты, а также розетки через дифавтомат (УЗО).

Вторая схема несколько сложнее и предназначена для двухкомнатных и трехкомнатных квартир. Такая схема отличается тем, что розетки запитываются через два двухполюсных дифавтомата (УЗО). Благодаря этому для комнат образуется отдельная линия питания и отдельная линия для кухни, туалета, коридора и ванной. На данной схеме электрическая плита запитывается через двухполюсный дифавтомат (УЗО). Делать это необязательно, но желательно, так как это повысит безопасность от попадания под так называемое косвенное напряжение.

Выше показана схема, которая выполнена с обозначением рабочего и защитного заземления. Данная схема является более подробным вариантом предыдущей схемы.

postroy-sam.com

Схема проводки в квартире | Всё для Вашего дома

Первым шагом при смене проводки в квартире является составление схемы. Для составления схемы необходимо познакомиться с тем как отображаются основные элементы на схеме. Так же в этой статье будут приведены несколько типовых схем проводки в квартире.

Виды схем проводки в квартире

При самостоятельно смене проводки в квартире понадобятся два вида схем: принциаиальная и электромонтажная схема.

Принципиальная схема – это схема показывает основные электрические связи между элементами, изброжённых при помощи специальных буквенно-цифровых и условных графических обозначений (УГО). Обычно принципиальная схема изображается однолинейной.

Однолинейная схема – это такая схема, на которой фазные провода отображаются одной линией, нулевой проводник не отображается, а нагрузки и защитные аппараты показаны схематично без схемы их подключения.

Электромонтажная схема – на такой схеме все обозначения наносят на план квартиры, который в свою очередь выполняется в масштабе. Обычно на электромонтажной схеме показано точное размещение квартирного щита, монтажных коробок, выключателей, розеток, освещения и прохождение всех линий.

Условные обозначения на квартирных схемах проводки

Для того чтобы правильно составить схему, нужно знать как обозначаются различные элементы. Эти обозначения называются условными графическими обозначениями (УГО) и нормируются ГОСТами.

Один из них ГОСТ 21.614-88 «Изображения условные графические электрооборудования и проводок на планах». Так же стоит изучить ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах».

Ниже приведены УГО основных элементов, которые понадобятся Вам при составлении схемы проводки в квартире.

Обозначения, применяемые на принципиальных схемах

Автоматический выключатель, автомат (ГОСТ 2.755-87). Буквенное обозначение – QF.

Дифавтомат, УЗО. Буквенное обозначение – QF.

Счётчик электрический активной мощности (ГОСТ 2.729-68). Буквенное обозначение – PI.

Щит силовой (ГОСТ 21.614-88).

Лампа накаливания (ГОСТ 2.732-68). Буквенное обозначение – EL.

Обозначения, применяемые на электромонтажных схемах

Все эти обозначения взяты из ГОСТ 21.614-88.

Монтажная коробка, осветительная коробка.

Выключатель накладной.

Выключатель скрытой установки.

Розетка накладная с защитным контактом.

Розетка скрытой установки с защитным контактом.

Пример типовых схем для квартирных проводок

Первая из представленных схем, это простейшая однолинейная схема для одно- или двухкомнатной квартиры. Поитание осуществляется через этажный щиток от одной фазы, так же с этажного щитка в квартиру заводится рабочее и защитное заземление. Далее следует вводный двухполюсный автомат, отключающий фазу и ноль. Вводный автомат устанваливается до щётчика электрической энергии согласно п.1.5.36. ПУЭ, который гласит:

«Для безопасной установки и замены счетчиков в сетях напряжением до 380 В должна предусматриваться возможность отключения счетчика установленными до него на расстоянии не более 10 м коммутационным аппаратом или предохранителями. Снятие напряжения должно предусматриваться со всех фаз, присоединяемых к счетчику».

За счётчиком распологается шина, к которой подключены автоматы плиты и освещения, а так же розетки через УЗО (дифавтомат).

Следующая схема немного сложнее и больше подходит для двух- и трёхкомнатных квартир. Эта схема отличается тем, что розетки запитаны через два двухполюсных УЗО (дифавтомата), таким образом, обеспечивается отдельная линия питания для комнат, и отдельная для ванной, туалета, кухни и коридора. Электрическая плита на этой схеме запитана через двухполюсное УЗО (дифавтомат), это делать не обязательно, но всё же желательно, для обеспечения повышенной безопасности от попадания под косвенное напряжение.

Читайте также…

Читаем схему в электрощите за 5 минут! | АВБ Электрика. Профессионально

В данной статье мы рассмотрим сведения, которые можно получить из однолинейной схемы; иначе говоря однолинейной электрической схемы, или однолинейной схемы электроснабжения.

Общий вид однолинейной схемы. Вокруг рамка — штамп ЕСКД, Основная надпись

Общий вид однолинейной схемы. Вокруг рамка — штамп ЕСКД, Основная надпись

Однолинейная схема, является одним из самых важных документов в проекте электроснабжения или исполнительной документации на выполненные электромонтажные работы. Обычно на один электрический щит составляется одна однолинейная схема.

Логически однолинейная схема представляет собой древовидную структуру, в верхней части которой находится один или несколько питающих кабелей, а в нижней части электроприемники, так называемые «отходящие линии». Слева находятся условные строки таблицы, а в нижней части столбцы для каждого потребителя.

Центральная часть схемы — сверху шины, ниже автоматы, кабели и электроприемники

Центральная часть схемы — сверху шины, ниже автоматы, кабели и электроприемники

Как мы видим, на рисунке, в центральной части схемы расположены аппараты защиты и управления, к которым относятся автоматические выключатели, контакторы, реле, выключатели дифференциального тока или рубильники.

На схеме обязательно должны быть указаны номиналы и тип автоматов

На схеме обязательно должны быть указаны номиналы и тип автоматов

Каждый параметр на схеме записывается на высоте подходящей для этого строки из таблицы, расположенной слева. На схеме выше видно, что на высоте «Номер» указано QF1, на высоте «Тип», указано IEK BA47-29 или ВД1-68, ниже указан номинальный ток (А). Однако у УЗО QD1 не указан ток утечки, его следует указать на уровне I отс (мА).

В строках таблицы слева приводятся обозначения следующих параметров:

  • номинальный ток,
  • марка и характеристика автоматического выключателя
  • марка кабеля, сечение и способ прокладки
  • обозначение электроприемника на схеме
  • подключенная фаза
  • расчетная и установленная мощность электроприменика
  • рабочий ток
  • дополнительные параметры

Рассматривая схему мы видим, что для каждого электропотребителя выделен свой автоматический выключатель . Обозначение потребителя указывается над нижней таблицей, и желательно чтобы оно соответствовало схеме на плане.

Обозначения электроприемников в схеме, такие же как на планах

Обозначения электроприемников в схеме, такие же как на планах

Название электропотребителя находится в нижней части таблицы. Там же указываются наиболее важные данные из таблицы расчета нагрузок.

Нижняя таблица содержит самые важные данные из расчета нагрузок

Нижняя таблица содержит самые важные данные из расчета нагрузок

Потребителем на однолинейной схеме может являться отдельный электроприбор — например двигатель, вентилятор, насос или бойлер. В других случаях это может быть группа электропотребителей, например несколько розеток в помещении или освещение в нескольких комнатах. Также электропотребителем может быть другой электрический щит, например, этажный щит освещения, подключенный к ГРЩ.

Самая важная информация которую вы можете получить из хорошо сделанной однолинейной схемы:

  • установленная мощность электрического щита
  • расчетная мощность электрощита
  • сечение питающего кабеля
  • марка и длина питающего кабеля
  • номинал вводного автомата или рубильника
  • количество подключенных электропотребителей и их тип

Для каждого электропотребителя можно видеть количество фаз, номинальную мощность, расчетный ток. Также в однолинейной схеме можно видеть тип, марку и характеристику автоматических выключателей, способ прокладки кабельных линий, их длину. Для вводного кабеля в схеме указывают также потерю напряжения и электроэнергии.

Следует понимать, что любая проектная документация обладает некоторым качеством, которое понимают профессионалы, имеющие опыт работы с проектами электроснабжения. Однолинейная схема отражает понимание проектировщиком стоящих перед ним задач, в ней отражается насколько правильно подобраны сечения кабелей, номиналы автоматов, мощности нагрузок. Глядя на проект, опытный монтажник может понять на каких кабельных линиях возможна перегрузка, а где заложено избыточное сечение кабеля и можно сэкономить деньги заказчика.

На изображении выше, можно видеть, как мы детализировали длины кабелей, для особо придирчивой службы Администрации Заказчика Красносельского района г.Санкт-Петербурга. Раздельно выписаны длины отрезков для каждой кабельной линии, — часть которая идет по лотку, гофре и кабель-каналу отдельно. А также указать запас кабеля на разделку в щите. Это дополнительное удорожание позволяет проверить все объемы материала и работ полностью.

Составление грамотной однолинейной схемы и согласование её в Ленэнерго, ПСК или экспертизе входит в наши компетенции. Практически на всех наших объектах были подготовлены или откорректированы схемы электроснабжения, проведена экспертиза или проведено согласование с технадзором. Профессионалы как правило легко увидят — проходил проект экспертизу или нет, рассматривая только однолинейную схему.

Подводя итог, отмечу, что однолинейная схема содержит максимальное соотношение полезной информации об электроустановке на единицу площади и обязательно должна быть у собственника помещения и эксплуатирующей организации.

Согласно действующих норм, обновлять однолинейную схему следует не реже чем 1 раз в 2 года.

Подробную консультацию по однолинейной схеме Вы можете получить по телефону.

Мы предлагаем Вам — качественный электромонтаж в Санкт-Петербурге, проектирование электроснабжения и обслуживание электрощитов по адекватным ценам и всегда высоком качестве. Звоните и мы решим все Ваши задачи по электрике!

У нас вы можете вызвать инженера электрика и заказать однолинейную схему. Спасибо!

Спасибо за внимание и до новых встреч!

PS Вам будет полезно и интересно!
  • Обращайтесь к нам для тщательной и независимой проверки вашей электрики в Санкт-Петербурге на самом высоком уровне!
  • Читайте наши статьи на Дзен-канале — АВБ Электрика. Профессионально
  • Ставьте лайки, если почерпнули что-то полезное — я пишу свой опыт и делюсь с Вами своими знаниями
  • Оставляйте комментариия отвечаю на каждый из них! И открываю их для свободного и конструктивного общения
  • Заходите на наш сайт, чтобы заказать качественный проект электрики или электромонтажные работы в Санкт-ПетербургеAVB. SPB.RU

Электрическая однолинейная схема. Часть вторая ~ Электрические ноу-хау


В предыдущей теме « Электрическая однолинейная схема — Часть первая » я перечислил типы электрических схем, с которыми может иметь дело любой инженер-электрик. Это были следующие типы:
  1. Блок-схемы
  2. Схематические диаграммы 
  3. Графические диаграммы 
  4. Схемы подключения
  5. Однолинейные диаграммы
  6. Другие типы диаграмм 

Сегодня я продолжу объяснение других типов электрических схем следующим образом.

5- Однолинейная схема



Однолинейная схема представляет собой принципиальную схему, где «однолинейная» схема представляет собой три фазы трехфазной энергосистемы. В дополнение к отображению номиналов и размеров электрооборудования и проводников цепи, правильно нарисованная однолинейная схема также покажет электрически правильное распределение мощности относительно тока, протекающего от источника питания к нижестоящим нагрузкам или щитам.

Важность однолинейных схем:


  • Используется для анализа электрической системы здания,
  • Персонал, обслуживающий здания, и электрики полагаются на однолинейные схемы, чтобы показать им путь вокруг электрической системы,
  • Неточность в этой документации и отсутствие регулярного обновления однолинейных схем, поскольку электрические системы неизбежно растут с течением времени, часто приводят к увеличению времени простоя при возникновении системных сбоев,
  • Руководители объектов могут использовать информацию, содержащуюся в однолинейных диаграммах, для значительного повышения эффективности обслуживания, 
  • Однолинейная схема предлагает несколько преимуществ для объекта, который она описывает, в частности: выявление возможных проблемных мест, улучшенное соответствие требованиям безопасности и повышенная безопасность персонала.

Построение

Однолинейные схемы:
  • Однолинейная схема представляет собой упрощенное обозначение трехфазной энергосистемы; Вместо представления каждой из трех фаз отдельной линией или клеммой представлен только один проводник.
  • Электрические элементы, такие как автоматические выключатели, трансформаторы, конденсаторы, шины и проводники, показаны стандартными схематическими символами.
  • Элементы на схеме не отражают физические размеры или расположение электрооборудования.
  • На однолинейных схемах питания компоненты обычно располагаются в порядке убывания уровней напряжения. Самая высокая составляющая напряжения показана в правом верхнем углу рисунка. Чтобы выяснить, как питание подается на компонент, начните с компонента и проследите поток энергии в обратном направлении по чертежу. Этот метод будет наиболее полезен при поиске правильного автоматического выключателя, чтобы изолировать компонент для обслуживания
  • Вы можете читать однолинейную диаграмму сверху вниз или слева направо на диаграмме.

На однолинейной схеме представлена ​​следующая информация:
  • Обозначения производителей и номинальные характеристики устройств.
  • Соотношения трансформаторов тока и мощности, отводы для использования в многоступенчатых трансформаторах и соединения двухступенчатых трансформаторов.
  • Номинальные соединения обмоток силового трансформатора по схеме «звезда» и «треугольник»
  • Номинальные параметры автоматического выключателя в вольтах и ​​амперах.
  • Номинал отключения, тип и количество катушек отключения на автоматических выключателях.
  • Номинальные параметры выключателей и предохранителей в вольтах и ​​амперах.
  • Размеры, тип и количество входящих и исходящих кабелей.
  • Напряжение, фаза и частота входных и выходных цепей. Доступные токи короткого замыкания и заземления в системе энергокомпании, а также тип используемого заземления.
  • Точки учета и тип учета.
  • Величина нагрузки на все фидеры.

Разработка однолинейной схемы (согласно IEEE и ANSI)

для ознакомления с методом однолинейной разработки ANSI и IEEE необходимо знать следующие пункты:

A- Сокращения, используемые для основных счетчиков:

Рис. (1): Сокращения, используемые для основных счетчиков

Аббревиатуры, используемые для обозначения основных счетчиков, приборов и других устройств (не включая реле, которые перечислены на рис.2) перечислены в рис.1 выше.

B-Номера функций устройства по стандарту ANSI

Рис. (2): Функциональные номера устройств по стандарту ANSI

  • Каждое устройство в автоматическом коммутационном оборудовании имеет функциональный номер устройства (см. рис. 2 ), который размещается рядом с символом устройства или внутри него на всех схемах подключения и монтажных чертежах, чтобы можно было легко определить его функцию и работу. .
  • Эти номера основаны на системе, которая была принята в качестве стандарта для автоматических распределительных устройств Американским национальным институтом стандартов (ANSI C37. 2).

При создании однолинейной схемы используются три этапа  (согласно IEEE и ANSI)

  1. Предварительная однолинейная схема,
  2. Частично развернутая диаграмма,
  3. Развернутая схема.

1- Предварительная однолинейная схема
Рис. (3): Предварительная однолинейная схема



 на предварительной однолинейной диаграмме (пример на рис.3 ), дизайнер должен показать следующее: 


  • Напряжение системы и номинальные параметры основных компонентов.
  • Основные длины, размеры и конструкция кабелей среднего напряжения. (В примере не показано.) Приблизительное количество и мощность всех двигателей.
  • Доступная способность системы питания к короткому замыканию в симметричных МВА (плюс отношение X/R) или на единицу R+jX (на заданной основе).

Используя данные однолинейной схемы, проектировщик выполнит некоторые расчеты короткого замыкания следующим образом: 



  • Сравните рассчитанный режим асимметричного тока «первого цикла» (мгновенный) с возможностью включения и блокировки автоматического выключателя.
  • Сравните рассчитанный токовый режим «от 1-1/2 до 4-х циклов» (отключение) с симметричной отключающей способностью автоматического выключателя. (согласно ANSI C37.010: Руководство по применению высоковольтных автоматических выключателей переменного тока, рассчитанных на основе симметричного тока).
  • Определите применимые номиналы автоматических выключателей.
  • Сравните предел нагрева питающего кабеля при коротком замыкании с максимально доступным током короткого замыкания время Kt умножить на Ko.(См. IEEE 242-1975: Рекомендуемая практика IEEE по защите и координации промышленных и коммерческих энергосистем).

Примечание: расчеты, выполненные в соответствии со ссылкой на (ANSI C37.010: Руководство по применению высоковольтных автоматических выключателей переменного тока, рассчитанных на основе симметричного тока), определяют только номинальные параметры автоматических выключателей среднего и высокого напряжения.
  • Выполните исследования короткого замыкания для определения рабочих токов реле в соответствии с процедурами, изложенными в IEEE 357-1973: Руководство IEEE по защитной ретрансляции межсоединений между сетью и потребителем).
  • Для других, кроме силовых автоматических выключателей, обратитесь к соответствующему стандарту ANSI для процедуры расчета короткого замыкания.

2- Частично разработанная однолинейная схема

Рис. (4): Частично развернутая однолинейная схема


На примере системы, показанной на рис. 3, частично развернутая однолинейная диаграмма показана на рис.4.

На

частично разработанной однолинейной схеме разработчик должен:

  • Покажите результаты выполненных расчетов короткого замыкания, используя предварительную однолинейную схему и выбранные номиналы автоматических выключателей.
  • Показать номиналы, выбранные для внешних устройств, таких как заземляющие резисторы, управляющие силовые трансформаторы, с учетом типа требуемой аппаратуры релейной защиты и учета.
  • Выберите ориентировочные коэффициенты трансформатора тока (ТТ) с учетом максимальной мощности трансформатора, мощности двигателя и мощности задействованных цепей.
  • Определите местонахождение трансформаторов тока и трансформаторов напряжения, принимая во внимание тип необходимой аппаратуры релейной защиты и учета.

3- Разработанная однолинейная схема

Рис. (5): Разработанная однолинейная схема


Разработанная однолинейная схема (для примера системы на рис.3) показан на рис.5.

В дополнение к информации, показанной на частично разработанной однолинейной схеме, Проектировщик должен: 



  • Показать все реле, контрольно-измерительные приборы и измерения.
  • Выберите реле, контрольно-измерительные приборы и счетчики.
  • Подтвердите выбор номиналов и характеристик реле, выполнив исследование короткого замыкания и координации всей системы. В соответствии со следующими стандартами IEEE:
  1. 141-1969: Распределение электроэнергии для промышленных предприятий.
  2. 142-1972: Рекомендации IEEE по заземлению промышленных и коммерческих энергосистем.
  3. 241-1974: Рекомендуемая практика IEEE для систем электроснабжения в коммерческих зданиях.
  4. 242-1975: Рекомендуемая практика IEEE по защите и координации промышленных и коммерческих энергосистем.

  • Включите в исследование проверку всех цепей на соответствие применимым местным и национальным нормам.
  • Убедитесь, что все проводники цепи находятся в пределах предела нагрева проводника при коротком замыкании.(Согласно IEEE 242-1975: Рекомендуемая практика IEEE по защите и координации промышленных и коммерческих энергосистем.) 

В следующей теме я объясню других типов электрических схем и символов электрических схем . Так что, пожалуйста, продолжайте следить.

Как читать и интерпретировать однолинейные схемы. Часть вторая ~ Электрические ноу-хау

Функция:

 

Трансформатор — это устройство, которое преобразует электрическую мощность в системе переменного тока из одного напряжения или тока в другое напряжение или ток.

Принцип действия:

  • Трансформаторы работают по принципу индукции, как показано на рисунке ниже. Когда магнитное поле проводника, по которому течет ток (первичная катушка), перемещается по другому проводнику (вторичной катушке), во втором проводнике за счет индукции создается напряжение.
  • Трансформаторы
  • могут «повышать» или «понижать» напряжение в зависимости от соотношения первичных и вторичных обмоток.Повышение означает, что выходное напряжение (вторичное) выше, чем входное. Шаг вниз означает, что выходное напряжение меньше входного.
 

Метод классификации:

Трансформаторы обозначаются символами в соответствии с их функциями, как показано на рисунке выше, и классифицируются в соответствии с:

  1. Способ охлаждения
  2. Количество фаз
  3. Назначение
  4. Изоляция между обмотками
  5. Способ монтажа
  6. Сервис

Где были/будут разъяснены следующие темы:

  • Конструкция трансформатора,
  • Тип трансформатора,
  • Компоненты трансформатора,
  • Трансформатор К-фактора,
  • Аксессуары для трансформаторов,
  • Запараллеливание трансформатора,
  • Защита трансформатора,
  • Номиналы трансформатора,
  • Данные паспортной таблички трансформатора,
  • Проверка трансформатора,
  • Поиск и устранение неисправностей трансформатора,
  • Словарь-трансформер.

Данные силового трансформатора

Для каждого символа силового трансформатора, который появляется на однолинейной схеме, рядом с символом печатается следующая информация:

  • Примечание, показывающее, представляет ли символ одиночного трансформатора группу из трех однофазных трансформаторов, трехфазный трансформатор или однофазный трансформатор,
  • Номинальные значения кВА с соответствующими обозначениями класса охлаждения,
  • Номинальные первичные и вторичные напряжения,
  • Полное сопротивление в процентах,
  • Схема полярности обмотки.

На рисунке ниже отмечена следующая информация:

  • Цепь 3-х фазная, 4-х полосная с частотой 60Гц.
  • Символ трансформатора со следующими данными 3,750 МВА указывает, что этот трансформатор имеет мощность 3,750 МВА
  • Обмотка высокого напряжения рассчитана на 13,8 линейных киловольт (кВ), а обмотка низкого напряжения рассчитана на 380 Y линейных вольт / 220 линейных вольт.
  • Трансформатор соединен высоковольтным треугольником, низковольтным треугольником, низковольтная нейтраль заземлена.

На рисунке ниже отмечена следующая информация:

  • Цепь 3-х фазная, 4-х полосная с частотой 60Гц.
  • имеется символ трансформатора со следующими данными 15/20 МВА OA/FA, идентифицирующий этот трансформатор как имеющий мощность 15 МВА при использовании охлаждающего оборудования класса OA (масло и воздух) и мощность 20 МВА при использовании его ТВС (вентиляторы и воздушное) охлаждающее оборудование.
  • Обмотка высокого напряжения рассчитана на линейное напряжение 69 киловольт (кВ), а обмотка низкого напряжения рассчитана на линейное напряжение 13,8 киловольт.
  • В примечании Z=7,6% указано, что импеданс трансформатора составляет 7,6%. Если не указано иное, полное сопротивление, показанное на однолинейной диаграмме, основано на номинальных характеристиках трансформатора.
  • На схеме полярности показано, что трансформатор подсоединен треугольником высокого напряжения, звездой низкого напряжения, а клемма нейтрали низкого напряжения заземлена.

Что такое однолинейная схема?

Независимо от того, есть ли у вас новый или уже существующий объект, однолинейная схема является жизненно важной дорожной картой для всех будущих испытаний, обслуживания и технического обслуживания. Таким образом, однолинейная диаграмма похожа на балансовый отчет для вашего объекта и дает снимок вашего объекта в определенный момент времени. Он должен меняться по мере изменения вашего объекта, чтобы обеспечить адекватную защиту ваших систем.

Посмотреть продукты и услуги


Эффективная однолинейная схема четко покажет, как связаны основные компоненты электрической системы, включая резервное оборудование и доступные запасные части. Он показывает правильный путь распределения мощности от входящего источника питания к каждой последующей нагрузке, включая номинальные характеристики и размеры каждого элемента электрооборудования, их проводников и защитных устройств.

На многих технологических объектах нагрузки постоянно добавляются или удаляются с небольшими приращениями.Чистый эффект не всегда виден до тех пор, пока какая-то часть системы не перегрузится или не появятся другие проблемы. Часто цепи добавляются без соответствующих модификаций стандартных настроек соответствующих автоматических выключателей. Используемые защитные устройства должны быть согласованы с их кривыми время/ток и друг с другом. Однолинейная схема представляет собой дорожную карту для обеспечения надлежащего проектирования оборудования, резервирования и защиты.

Требования

NFPA-70E требуют наличия точных и актуальных однолинейных схем.

Чтобы выполнить эти требования, Vertiv может провести всестороннее обследование объекта, чтобы разработать однолинейные схемы для вашего объекта или обновить существующие схемы. В опрос включены:

  • Провести инвентаризацию оборудования
  • Проверить наличие исполнительных чертежей и их адекватную доступность
  • Проверка наличия процесса, обеспечивающего поддержание исполнительных чертежей в текущем состоянии
  • Подтверждение подключения нагрузок к аварийным/резервным фидерам
  • Проверка потенциальных единых точек отказа
  • Оценка проектной избыточности критических систем (N, N+1, N+2. ..) и можно ли обслуживать все критическое оборудование без остановки
  • Составьте отчет с описанием результатов по сайтам вместе с рекомендуемыми действиями
  • Обновление предоставленных заказчиком однолинейных чертежей вплоть до распределительных щитов 480 В
  • Предоставить копию однолинейной электрической схемы в формате AutoCAD
  • Размещение исполнительных чертежей на каждом объекте

Актуальная однолинейная схема жизненно необходима для различных видов обслуживания, включая:

  • Расчет короткого замыкания
  • Координационные исследования
  • Исследования потока нагрузки
  • Исследования по оценке безопасности
  • Все прочие инженерные исследования
  • Процедуры электробезопасности
  • Эффективное обслуживание

Преимущества

  • Помощь в определении мест сбоев и упрощение поиска и устранения неисправностей
  • Выявление потенциальных источников электроэнергии при проведении процедуры ЛОТО
  • Обеспечение безопасности персонала
  • Оставайтесь в соответствии с требованиями NFPA 70E
  • Обеспечение безопасной и надежной работы объекта

Объем

Чтобы дать вам точное представление о вашей электрической системе, информация об однолинейной схеме обычно включает:

  • Входящие линии (напряжение и размер)
  • Входящие главные предохранители, клеммные колодки, выключатели, выключатели и главные/связные выключатели
  • Трансформаторы силовые (параметры, соединение обмоток и средства заземления)
  • Выключатели фидеров и выключатели с предохранителями
  • Реле (функция, использование и тип)
  • Трансформаторы тока/потенциала (размер, тип и коэффициент трансформации)
  • Трансформаторы управления
  • Все основные кабельные и проводные трассы с соответствующими разъединителями и муфтами (размер и длина трассы)
  • Все подстанции, включая встроенные реле и главные панели, а также точный характер нагрузки в каждом фидере и на каждой подстанции
  • Напряжение и размер критического оборудования (ИБП, батарея, генератор, распределитель питания, автоматический переключатель, кондиционер машинного зала)

Решение для однолинейных диаграмм | КонцепцияDraw.

ком

Решение

ConceptDraw One-line Diagrams включает 4 библиотеки трафаретов, содержащие 116 стандартных значков и электрических символов, а также 14 примеров.

Элементы дизайна — однолинейная схема

Элементы конструкции — автоматические выключатели и предохранители SLD

Элементы дизайна — Реле Переключатели Кнопки SLD

Элементы конструкции — трансформаторы SLD

Примеры

На этой странице вы видите несколько образцов, созданных в приложении ConceptDraw DIAGRAM с использованием решения «Однолинейные диаграммы». Некоторые возможности решения, а также профессиональные результаты, которых вы можете достичь, демонстрируются здесь, на этой странице.

Все исходные документы являются векторными графическими документами, которые всегда доступны для изменения, просмотра и/или преобразования в различные форматы, такие как MS PowerPoint, файл PDF, MS Visio и многие другие графические документы из ConceptDraw Solution Park или ConceptDraw STORE. Решение One-line Diagrams доступно всем пользователям ConceptDraw DIAGRAM для установки и использования во время работы в программном обеспечении для построения диаграмм и черчения ConceptDraw DIAGRAM.

Пример 1: Однолинейная схема — примеры применения автоматических выключателей

Эта диаграмма была создана в ConceptDraw DIAGRAM с использованием комбинации библиотек из решения для однолинейных диаграмм. Опытный пользователь потратил 10 минут на создание этого образца.

На этой однолинейной схеме показаны примеры применения автоматических выключателей.Автоматический выключатель — это устройство автоматического переключения контактов (механических или электронных), способное включать, проводить и отключать токи в цепи. Он используется для защиты электрической цепи от повреждений, вызванных коротким замыканием или перегрузкой по току. При обнаружении неисправности автоматический выключатель прерывает подачу тока, размыкая контакты. Позже устройство необходимо перезагрузить вручную или автоматически, чтобы возобновить нормальную работу. Для защиты цепей высокого напряжения и слаботочных цепей используются автоматические выключатели различных типоразмеров и типов.Что касается малых сетевых и низковольтных цепей, то, как правило, автоматические выключатели сами обнаруживают неисправности. В то время как автоматические выключатели для больших токов или цепей высокого напряжения поставляются с контрольными устройствами защитного реле для отслеживания повреждений. После устранения неисправности контакты должны снова замкнуться, и питание цепи восстановится.


Пример 2: Однолинейная схема — биполярный HVDC

Эта диаграмма была создана в ConceptDraw DIAGRAM с использованием комбинации библиотек из решения для однолинейных диаграмм.Опытный пользователь потратил 10 минут на создание этого образца.

На этом образце однолинейной схемы показана биполярная система передачи HVDC. Этот тип передачи имеет много преимуществ по сравнению с монопольной передачей. В этой схеме используется пара изолированных проводников. Они имеют противоположную полярность, высокий потенциал земли и могут работать как два параллельных монополя. AC – это обозначение линии переменного тока и линии постоянного тока для линии передачи постоянного тока соответственно.При нормальной нагрузке в земле протекает небольшой ток, что снижает потери в земле и воздействие на окружающую среду. При возникновении неисправности на одной из линий двухполюсной системы она продолжает работать, но с пониженной мощностью. Примерно половина номинальной мощности передается по неповрежденной линии в монополярном режиме с использованием земли в качестве обратного проводника. Для снижения потерь могут быть установлены промежуточные коммутационные пункты. Это, несомненно, главное преимущество биполярного HVDC. Каждый электрический символ был взят с полки из библиотек One-line Diagrams Solution.


Пример 3: Концепция проектирования выключателя и половины распределительного устройства

Эта диаграмма была создана в ConceptDraw DIAGRAM с использованием комбинации библиотек из решения для однолинейных диаграмм. Опытный пользователь потратил 10 минут на создание этого образца.

На этом образце однолинейной схемы показана конструкция полуторного выключателя, используемая на распределительных устройствах. Такая конфигурация гарантирует, что отказ одного автоматического выключателя не приведет к прерыванию питания других цепей. Однолинейная схема в обязательном порядке строится при планировании схемы подстанции. Как правило, на ней показано расположение коммутационной и защитной аппаратуры (выключатели, выключатели, трансформаторы), вводных питающих линий, отходящих фидеров, линий электропередач. Как правило, входящие линии имеют разъединитель, используемый для обеспечения изоляции, или автоматический выключатель, используемый в качестве защитного устройства.Оба этих устройства могут работать локально с подстанции или удаленно из центра диспетчерского управления. Выключатель генератора, выключатель соединителя и выключатель фидера установлены. Автоматический выключатель может включать и выключать нагрузку, отключать линию, когда мощность течет в неправильном направлении, и автоматически прерывать токи короткого замыкания, обнаруженные трансформаторами. Это полезно, когда требуется обесточить некоторые части для ремонта или обслуживания системы. Точка неисправности изолируется без нарушения остальной части системы.В свою очередь, ограничители перенапряжения на входе линии используются для защиты оборудования подстанции.


Пример 4: Однолинейная схема — инвертор источника тока

Эта диаграмма была создана в ConceptDraw DIAGRAM с использованием комбинации библиотек из решения для однолинейных диаграмм. Опытный пользователь потратил 10 минут на создание этого образца.

В этом образце однолинейной схемы показана топология привода инвертора с источником тока (CSI). Он также известен как инвертор с питанием от тока из-за его питания постоянным током. CSI работает в замкнутом контуре и не применяется для многодвигательных приводов. Привод CSI включает в себя выпрямитель, звено постоянного тока и инвертор. Входной ток и ток нагрузки постоянны в CSI. Выпрямитель преобразует переменный ток (AC) в постоянный ток (DC), протекающий только в одном направлении, а промежуточная цепь передает это постоянное напряжение на инвертор.В свою очередь инвертор преобразует постоянное напряжение в переменное, передает ток и частоту на двигатель, регулирует крутящий момент двигателя и рабочую скорость. Выход CSI является регулируемым трехфазным или однофазным переменным током. Привод с питанием CSI надежен и даже более надежен, чем привод VSI, однако он имеет меньший диапазон скоростей и более медленный динамический отклик. По причине высоких гармоник в приводе CSI требуется использование фильтров на входе и выходе.


Пример 5: Однолинейная схема — дифференциальная защита

Эта диаграмма была создана в ConceptDraw DIAGRAM с использованием комбинации библиотек из решения для однолинейных диаграмм.Опытный пользователь потратил 10 минут на создание этого образца.

На этом образце однолинейной схемы показана дифференциальная защита силового трансформатора. Дифференциальная защита — один из видов релейной защиты трансформаторов, автотрансформаторов, генераторов, генераторных блоков, двигателей, воздушных линий электропередач и сборных шин. Он характеризуется абсолютной избирательностью и высокой скоростью. Принцип работы основан на сравнении фазных токов, протекающих по участкам между защищаемыми участками линии.На схеме отображены два режима — нормальный (1) и режим короткого замыкания (2). Цепи включают трансформаторы тока (ТА1 и ТА2) и реле тока (КА). Трансформаторы используются для измерения силы тока на концах защищаемой зоны. Они подключены к реле тока (КА) так, что разница тока от этих трансформаторов приходится на обмотку реле. В нормальном режиме значения силы тока вычитаются друг из друга (I1-I2) и ток цепи обмотки реле в идеальном случае равен нулю.При коротком замыкании обмотка реле тока получает сумму токов (I1+I2), что вызывает замыкание контактов реле и отключение поврежденной секции.


Пример 6: Однолинейная схема — сеть электросталеплавильных печей

Эта диаграмма была создана в ConceptDraw DIAGRAM с использованием комбинации библиотек из решения для однолинейных диаграмм.Опытный пользователь потратил 10 минут на создание этого образца.

На этом образце однолинейного чертежа показана локальная электрическая сеть в электродуговой печи на сталелитейном заводе. Электродуговая печь (ЭДП) представляет собой печь, использующую электрическую дугу для нагрева материалов. Электрическая дуга воздействует на загружаемые материалы, и через нее проходит ток от выводов печи. В этом образце загружаемым материалом является сталь. Основное напряжение высокого напряжения составляет 110 кВ, вспомогательная сеть среднего напряжения металлургического завода — 34,5 кВ, а сеть среднего напряжения для больших нагрузок — 6 кВ.Локальная электросеть включает в себя регулируемый реактор печи с переключателем ответвлений под нагрузкой или без нагрузки, электроды, дуговую печь, фильтр гармоник, коррекцию коэффициента мощности, большой привод и сети низкого напряжения для небольших нагрузок. Он также включает в себя различные типы трансформаторов: главный силовой трансформатор, трансформатор ДСП и понижающие силовые трансформаторы. В настоящее время трансформаторы мощностью 60 МВА используются на сталеплавильных заводах, а их производительность составляет 80 тонн жидкой стали примерно за 50 минут.


Пример 7: Электрическая подстанция без распределительного устройства высокого напряжения

Эта диаграмма была создана в ConceptDraw DIAGRAM с использованием комбинации библиотек из решения для однолинейных диаграмм.Опытный пользователь потратил 10 минут на создание этого образца.

На этой электрической схеме показана электрическая подстанция без выключателей сбоку. Эта подстанция включает в себя три трансформатора (Т1, Т2, Т3), три разъединителя (Е1, Е2, Е3), три короткозамыкателя (SC1, SC2, SC3) и главный выключатель линии электропередачи (Q). В случае возникновения аварийной ситуации на линии одного из трансформаторов установленная на нем защита подает напряжение на коммутационную катушку соответствующего короткозамыкателя.Размыкатель, в свою очередь, замыкает свои контакты и вызывает искусственное замыкание на землю. Защита главной линии электропередачи реагирует на это короткое замыкание и отключает всю подстанцию ​​с помощью выключателя главной линии электропередачи. Пока подстанция выключена, соответствующий разъединитель поврежденного трансформатора замкнется и отключит его от цепи, тем самым отключив поврежденный участок. Через определенное время главный выключатель снова включится, и подстанция сможет работать.

Пример 8: Однолинейная схема — FACTS Шунтовая компенсация

Эта диаграмма была создана в ConceptDraw DIAGRAM с использованием комбинации библиотек из решения для однолинейных диаграмм. Опытный пользователь потратил 10 минут на создание этого образца.

В этом образце показаны примеры гибкой системы передачи переменного тока (FACTS) для параллельной компенсации.FACTS повышает управляемость и увеличивает пропускную способность сети. Это система, включающая статическое оборудование, использующее переменный ток для передачи электрической энергии. Шунтовая компенсация предполагает шунтовое соединение энергосистемы с ФАКТ и работает как управляемый источник тока. Примерами являются реактор с тиристорным управлением (TCR), реактор с тиристорным управлением (TSR), конденсатор с тиристорным управлением (TSC), конденсатор с механическим переключением (MSC) и статический синхронный компенсатор (STATCOM).ТКР включен последовательно с двунаправленным фазоуправляемым тиристорным вентилем, эквивалентное реактивное сопротивление которого изменяется непрерывно. ТСР подобен ТКР и отличается только нулевой или полной проводимостью тиристора, эквивалентное реактивное сопротивление изменяется ступенчато. Конденсатор и двунаправленный тиристорный вентиль соединены последовательно с нулевой или полной проводимостью в TSC, эквивалентное реактивное сопротивление аналогично TSR. Конденсатор в MSC включается автоматическим выключателем и компенсирует установившуюся реактивную мощность.

Пример 9: Однолинейная схема — заземляющие ножи

Эта диаграмма была создана в ConceptDraw DIAGRAM с использованием комбинации библиотек из решения для однолинейных диаграмм. Опытный пользователь потратил 10 минут на создание этого образца.

На этом образце показана схема защиты от случайного возврата напряжения.На ней показано, как отключить питание на распределительной подстанции. Согласно правилам техники безопасности на распределительной подстанции заземляющие ножи перед началом работы в обязательном порядке должны быть спущены в землю. Две горячие проволоки используются в США и три в Европе. На схеме показано, как полностью обесточить их для обслуживания или ремонта. Обесточивание осуществляется с помощью разъединителя, разъединителя или разъединителя. Это устройство размыкает цепь и управляется вручную или автоматически.Вместе с заземлителем выполняется и заземление изолированной части. Разъединитель не является обычным методом управления цепью; это просто метод защитной развязки и не содержит механизма гашения дуги. Они включаются только тогда, когда ток был предварительно прерван каким-либо управляющим устройством. Благодаря наличию метки для блокировки исключено случайное срабатывание.


Пример 10: Однолинейная схема — счетчик электроэнергии малой мощности

Эта диаграмма была создана в ConceptDraw DIAGRAM с использованием комбинации библиотек из решения для однолинейных диаграмм.Опытный пользователь потратил 10 минут на создание этого образца.

На этой схеме показан пример установки маломощного (


Пример 11: Однолинейная схема — монополярный HVDC

Эта диаграмма была создана в ConceptDraw DIAGRAM с использованием комбинации библиотек из решения для однолинейных диаграмм.Опытный пользователь потратил 10 минут на создание этого образца.

На этом образце инженерной схемы показана монополярная высоковольтная система передачи электроэнергии постоянного тока (HVDC) с заземлением. Как правило, система передачи электроэнергии HVDC использует постоянный ток (DC) для передачи электроэнергии. Он также может обеспечивать передачу электроэнергии между несинхронизированными системами передачи переменного тока или энергосистемами, работающими на разных частотах. Иногда монополярные системы в дальнейшем используются в составе биполярных систем.В монополярной системе по электродной линии постоянно течет тот же ток, что и по высоковольтному проводнику. Один вывод выпрямителя находится под высоким напряжением относительно земли и подключен к линии передачи. Второй вывод соединен с землей, и между двумя электродами течет ток. Для монополярной конфигурации с заземлением ток заземления является однонаправленным. Использование заземления предпочтительнее для передачи на большие расстояния. Однако может потребоваться установка металлического обратного проводника между двумя концами монополярной линии передачи.


Пример 12: Однолинейная схема — конфигурация кольцевой полосы

Эта диаграмма была создана в ConceptDraw DIAGRAM с использованием комбинации библиотек из решения для однолинейных диаграмм. Опытный пользователь потратил 10 минут на создание этого образца.

На этом образце однолинейной схемы показана конфигурация электрической кольцевой шины.Данная конфигурация используется для распределения электроэнергии внутри распределительных устройств, щитов, ограждений шинопроводов. Кроме того, он позволяет подключать низковольтное оборудование к батареям, а высоковольтное оборудование к распределительным устройствам. Системы кольцевых шин обычно не изолированы и имеют много преимуществ. Включены две линии. Начальная и конечная точки шины соединяются между собой с помощью кольца. Цепь кольцевой системы шин имеет два параллельных пути. Выход из строя одной из них не прерывает полностью работу схемы, поскольку другая линия используется как резервный путь.Обслуживание одной из цепей также возможно без полного отключения электроснабжения, необходимая часть просто изолируется до окончания работ. К недостаткам кольцевых шинных систем можно отнести сложность добавления новой линии цепи.


Пример 13: Однолинейная схема — статический компенсатор реактивной мощности

Эта диаграмма была создана в ConceptDraw DIAGRAM с использованием комбинации библиотек из решения для однолинейных диаграмм.Опытный пользователь потратил 10 минут на создание этого образца.

На этом образце показан типичный статический компенсатор реактивной мощности трансмиссии (SVC). Он не имеет значительных движущихся частей, кроме внутреннего распределительного устройства. SVC обеспечивает высокоскоростную реактивную мощность в сетях передачи высокого напряжения, регулирование напряжения и стабилизацию системы. Отличительной особенностью статических реактивных компенсаторов является их способность поддерживать изменения напряжения в системе, их реакция на них практически мгновенна. SVC включает в себя набор электрических устройств, включая тиристорно-управляемый реактор (TCR), тиристорный конденсатор (TSC), фильтр подавления гармоник, механически переключаемый конденсатор, механически переключаемый реактор, подключение к сети и понижающий трансформатор.Включенные конденсаторы или реакторы переключаются тиристорами, обеспечивая плавное управление и гибкость. Реактор обеспечивает бесступенчатую подачу или поглощение реактивной мощности в электрическую сеть. В свою очередь, конденсатор осуществляет грубую регулировку напряжения. Обычно тиристоры имеют электронное управление. Они выделяют тепло и охлаждаются деионизированной водой.


Пример 14: Однолинейная схема — топология инвертора источника напряжения

Эта диаграмма была создана в ConceptDraw DIAGRAM с использованием комбинации библиотек из решения для однолинейных диаграмм.Опытный пользователь потратил 10 минут на создание этого образца.

В этом примере показана топология привода с инвертором источника напряжения (VSI). Большинство приводов относятся к типу VSI с выходным напряжением PWM. VSI — это обычный инвертор мощности, используемый для преобразования напряжения постоянного тока в напряжение переменного тока с переменным значением и частотой. Выходное напряжение на VSI постоянно. Топология инвертора источника напряжения (VSI) является одной из типичных топологий. Привод VSI состоит из выпрямителя, звена постоянного тока и преобразователя. Диодный выпрямитель позволяет энергии течь только в одном направлении от источника питания к приводу, в то время как инвертор позволяет энергии течь в разных направлениях.Выходное постоянное напряжение подается на вход инвертора. Максимальное выходное напряжение ограничено, поскольку напряжение на входе инвертора ограничено пиковым междуфазным напряжением источника питания, а затем оно дополнительно снижается за счет падения напряжения на инверторе. Топология VSI обеспечивает высокую эффективность и минимальное время установки. Он очень надежен, обеспечивает быстрый динамический отклик и возможность запуска двигателей без ухудшения характеристик.


электрических сокращений — Archtoolbox

Список электрических сокращений, используемых в наборе строительных чертежей, варьируется от офиса к офису.Не забудьте проверить переднюю часть набора чертежей на наличие сокращений, используемых в этом конкретном наборе чертежей.

9 0155 EF 901 52 9 0153 Sym 4 4 4

Статья обновлена: 15 февраля 2021 г.

Помогите сделать Archtoolbox лучше для всех.Если вы обнаружили ошибку или устаревшую информацию в этой статье (даже если это всего лишь незначительная опечатка), сообщите нам об этом.

Однолинейная схема – обзор

Инженерные чертежи

Все инженерные проекты, кроме самых простых, требуют создания чертежей, чтобы каждый, кто участвует в проектировании и эксплуатации процесса, понимал, какое оборудование используется, как элементы связаны с между собой и характером условий эксплуатации.

Типы рисунок, используемые в процессе промышленности, включают следующее:

блок-схемы

Процесных поток диаграмм

Диаграмма трубопроводов и приборов

Электрические однолинейные схемы

Изометрические чертежи.

Блок-схемы

Блок-схема (BFD), иногда называемая графической блок-схемой, описывает процесс всего на одном или двух листах. Он не соответствует масштабу и будет содержать только очень ограниченную инженерную и технологическую информацию. BFD обычно состоит из следующих элементов:

Символы для более крупных единиц оборудования или групп оборудования. Эти блоки символов не будут включать номера оборудования.

Оборудование будет располагаться слева направо в порядке технологического потока и/или самотечного потока.Потоки жидкости, выходящие из блока, обычно отображаются как выходящие снизу, потоки газа — сверху.

Линии, соединяющие элементы оборудования, будут отмечены стрелками, указывающими направление потока.

На рис. 1.2 показан пример очень простого BFD. На нем видно, что процесс состоит из четырех операционных блоков и секции утилит. Сырье/сырье поступают в Раздел 100, где они очищаются и иным образом обрабатываются. Оттуда они перетекают в секцию 200, на стадию реакции.Затем потоки сырых продуктов направляются в секцию 300, где они очищаются. Оттуда они отправляются на хранение, секция 400. Коммунальные услуги, такие как пар, приборный воздух и охлаждающая вода, предоставляются секцией 500.

Рисунок 1.2. Простой БФД.

Приведенный выше эскиз можно развить более подробно, как показано на рис. 1.3.

Рисунок 1.3. Блок-схема потока.

Секция обработки корма разделена на две части. Общее количество материала, поступающего в систему, составляет около 110 т/сутки.

Сырье проходит реакцию и очищается. Непрореагировавшие материалы перерабатываются.

Около 90 т/сутки продукции производится и отправляется на хранение.

Побочные продукты также отправляются на хранение.

Схемы технологических процессов

Балансы материалов и энергии обычно показываются на PFD, которые являются развитием блок-схем, рассмотренных выше. PFD содержит информацию о процессе для всех значимых потоков.Эта информация обычно включает скорость потока, химический состав, фазы, температуру, давление, вязкость, теплопроводность и удельную теплоемкость. Он также обеспечивает полный тепловой и материальный баланс установки. Он также покажет некоторые детали, связанные с основными элементами оборудования. Это не в масштабе.

входит в типичный PFD следующая информация:

Основные технологические трубопроводы, включая направление потока

Основное оборудование, идентифицируемое упрощенным символом

Основные линии обхода и рециркуляции

Клапаны регулирующие

Запорные клапаны для ответственных процессов.

PFD обычно редко используются после постройки объекта. Они слишком сложны, чтобы дать простой обзор, например, полученный из BFD. Но они не содержат механической информации, поэтому их ценность для тех, кто занимается эксплуатацией или техническим обслуживанием, ограничена. Кроме того, как только предприятие введено в эксплуатацию, технологические условия обычно меняются вскоре после запуска, часто для получения либо более высокой производительности, либо повышения выхода продукции. Для объекта необычно поддерживать PFD в актуальном состоянии, чтобы отражать такого рода изменения, и поэтому их ценность со временем снижается.

Пример PFD предоставлен Engineering Toolbox (2016a).

Схемы трубопроводов и приборов

P&ID предоставляют подробную техническую информацию, такую ​​как размеры линий, спецификации материалов, требования к изоляции, а также структуру и функции всех контуров управления. Они предоставляют обширную информацию по всем инженерным дисциплинам, эксплуатации и техническому обслуживанию. Как таковые, они являются важными координирующими документами. Они не в масштабе и не отображают компоновку оборудования, кроме как в общем смысле.В отличие от PFD, P&ID не предоставляют информацию о процессе, связанную с составом потока, температурой и давлением.

Основным справочным документом по P&ID является ANSI/ISA S5.1, Контрольно-измерительные символы и идентификация (ANSI, 2009a). Следующая цитата взята из Введения к настоящему стандарту.

В промышленности по всему миру схема трубопроводов и приборов (P&ID) представляет собой документ, который используется для связи механического оборудования, трубопроводов, контрольно-измерительных приборов и средств управления, используемых на промышленном предприятии.Все, от технического обслуживания до высшего руководства, читают этот документ. Поскольку бизнес становится все более глобальным, а в промышленных процессах и установках участвуют компании со всего мира, важно использовать стандартную методологию для изображения измерений и контроля на этих чертежах. ISA-5.1 обеспечивает это средство для облегчения общего понимания автоматизации, связанной с производственным процессом.

P&ID содержат следующую информацию:

Подробные символы для всех элементов оборудования.Хотя эти символы даны не в масштабе, они должны дать приблизительное представление о сравнительных размерах.

Подробная информация об оборудовании, включая номинальное давление и материалы конструкции.

Прокладка всех технологических и коммунальных трубопроводов, включая небольшие соединения, такие как точки отбора проб, вентиляционные и дренажные линии, а также байпасные линии.

Подробная информация о трубопроводах, включая номера линий, характеристики материалов, размеры и характеристики давления.

Все клапаны, включая предохранительные клапаны.

Расположение и функции всех контрольно-измерительных приборов, как местных, так и центральных.

Функция всех контуров управления.

Паровой обогрев.

Сторонние интерфейсы и интерфейсы скид-пакетов.

Идентификация вышедшего из строя оборудования и трубопроводов.

Как правило, они исключают следующую информацию:

рейтинг оборудования или мощности

корневая Instrument клапаны

управления реле

Ручные переключатели сигнальные лампы

Трубки и клапаны КИП

Колена и другие стандартные фитинги

Поясн.

Многие примеры P&ID, такие как из Engineering Toolbox (2016b) и Informit (2012), доступны в Интернете.

Поскольку P&ID используются в самых разных видах деятельности и проектах, они лежат в основе работы PSM, такой как анализ опасностей, написание рабочих процедур и подготовка слепых списков. По этим причинам жизненно важно поддерживать P&ID в актуальном состоянии (действительно, это часто является нормативным требованием). Однако поддержание этих документов в актуальном состоянии является сложной задачей, поскольку почти каждый день в процесс или оборудование вносятся некоторые изменения, и эти изменения требуют модификации соответствующих P&ID.Если руководство должно обеспечить актуальность P&ID, им потребуется эффективная программа управления изменениями.

Символы

Стандартные символы оборудования, которые используются при подготовке P&ID, перечислены в работе Lucidchart (2016). На рис. 1.4 показано лишь несколько символов оборудования, трубопроводов и контрольно-измерительных приборов. Они основаны на уже упомянутом стандарте ANSI/ISA S5.1. (Дальнейшее обсуждение обозначений оборудования, трубопроводов и клапанов приведено в главах 3–5, главе 3, главе 4, главе 5, а также в главе 16: Человеческий фактор и эргономика.)

Рисунок 1.4. Репрезентативные символы P&ID.

Нумерация оборудования

В типичной системе нумерации оборудования используется идентификатор формы X-00000. Буква «Х» обозначает тип оборудования. Например, «P» — это насос, «E» — теплообменник, а «T» — бак. Две цифры обозначают технологическую систему. Например, «20» может означать технологическую жидкость, «30» — технологический газ, а «60» — топливный газ. Последние три цифры идентифицируют само оборудование. Таким образом, P20101 будет насосом, работающим с технологическим потоком.Их идентификационный номер 101.

Одна компания использует следующую симблогию:

Columns-C

Оборудование для теплового перевода (неполноценные) -E

Оборудование для теплообмена (выпустили) -F

Сосуды-V

Реакторы-R

Смесители-M

Сепараторы-S

Упакованные агрегаты и разное оборудование-A

насосов-P

Компрессоры и воздуходувки-K

Tanks-T

API RP 14C использует следующие коды для морских сооружений:

A — Атмосферное судно (температура окружающей среды)

B — Атмосферное судно (он ованные)

С-Компрессор

D-Корпус

E-сгорело или выпуск нагретого компонента

F-Трубопровод

G-заголовок

+

Н-теплообменник

+

J-нагнетательная линия

+

К-Трубопроводный

+

L-платформа

Сосуд под давлением (температура окружающей среды)

Сосуд N-давления (нагретый)

P-насос

Q-Wallhead

Z — Прочее

Разрывы спецификаций

В идеале вся установка должна быть рассчитана на самые суровые условия эксплуатации по температуре и давлению.Однако сделать это будет непозволительно дорого. Кроме того, материалы конструкции, возможно, придется изменить, чтобы отразить коррозионные свойства различных материалов, с которыми приходится работать. Правильный материал конструкции для одной зоны может быть неверным в другой части объекта. Поэтому материалы конструкции, а также номинальные значения давления и температуры будут различаться в зависимости от региона. Это означает, что необходимо внедрить системы, чтобы поддерживать рабочие условия в рамках правильного проектного диапазона.Например, если одна секция объекта работает при высоком давлении, то требуется, чтобы материалы, находящиеся под высоким давлением, не попадали в соседнее оборудование и трубопроводы, рассчитанные на более низкое давление. Аналогичные меры предосторожности применяются в отношении коррозионно-активных химикатов и строительных материалов.

Для того, чтобы разделить различные части спецификации объекта (spec), разрывы должны быть идентифицированы и показаны на соответствующих технических чертежах, особенно P&ID. Разрывы спецификаций определяют изменения давления, температуры, материалов конструкции и класса трубы.

Одной из задач группы анализа опасностей является определение того, как материалы или условия эксплуатации могут выйти за пределы спецификации, обычно из-за неправильного выравнивания клапана, что создаст небезопасные условия. Если считается вероятным, что нарушение спецификации может быть устранено, тогда система должна быть защищена сигнализацией, расцепителями или устройствами сброса давления.

Изометрические чертежи

Изометрический чертеж обеспечивает трехмерное расположение оборудования и трубопроводов. Обычно изометрические чертежи трубопроводов рисуются на предварительно распечатанной бумаге с линиями равносторонних треугольников, образующих угол 60°.Изометрические чертежи особенно важны на этапе строительства проекта. Они не в масштабе, поэтому размеры должны быть указаны. На практике большинство 3D-изометрий теперь создаются в программе автоматизированного проектирования. Изображения систем трубопроводов и соответствующие им изометрические символы предоставлены Wermac (2016). Как и в случае с P&ID, в Интернете есть много примеров (например, What Is Piping, 2016) изометрических чертежей технологических объектов.

Электрические однолинейные схемы

Электрические чертежи разрабатываются с возрастающей сложностью аналогично чертежам оборудования и трубопроводов.Они начинаются с простой блок-схемы, на которой одна линия может представлять один провод или группу проводов. Он дает обзор системы в целом, показывая общую работу и расположение основных компонентов.

Следующий уровень сложности — это электрическая однолинейная схема (SLD), также известная как однолинейная схема. фактическое физическое местоположение (скорее, как P&ID для механического оборудования и трубопроводов).Он показывает с помощью отдельных линий и стандартных символов пути, взаимосвязи и составные части электрической цепи или системы цепей.

На рис. 1.5 показан пример SLD для электрической системы, используемой для запуска автомобиля. Видео, показывающее, как разработать однолинейную диаграмму, доступно в EasyPower (2011).

Рисунок 1.5. Электрическая блок-схема.

Дальнейшее обсуждение электрических систем приведено в Главе 6: Контрольно-измерительные приборы.

Однолинейное представление: Принцип

Однолинейное представление схем используется для четкого документирования электрической конфигурации машин и установок. В отличие от многострочного представления, которое показывает все и общее количество компонентов, однострочное представление показывает значительно упрощенные компоненты с одним или максимум двумя соединениями и соединениями с одной линией.

После установки EPLAN вы можете сразу получить доступ к однолинейным схемам, которые содержатся в специальной библиотеке символов.Для создания доступен специальный тип страницы — «Схематическая однолинейная (I)». Схемы в однолинейном представлении отмечены в навигаторе страниц значком. Значок также виден в меньшем размере в разных, например. в навигаторе устройств.

Однолинейные компоненты можно вставлять в однолинейные и многолинейные страницы схемы. В зависимости от типа страницы, на которой размещена функция, созданная в навигаторе устройств, тип представления функции автоматически настраивается в соответствии с типом страницы.Это означает, что функция размещается как однолинейный символ на однолинейной странице схемы соединений и как многолинейный символ на многолинейной странице схемы соединений.

Если в проекте используются как однолинейные, так и многострочные символы, а символы с одинаковым номером символа и определением функции существуют в обеих библиотеках, тип представления затронутых символов можно изменить с помощью функции замены. Затем однострочный символ становится многострочным и наоборот.

При высокой плотности кабельных соединений на схеме соединения и кабельные соединения могут быть представлены в упрощенной форме с помощью .Точки соединения пучка используются в точках, где соединения или кабельные соединения входят и выходят из . Им можно присвоить номера точек соединения или цвета/номера соединений кабеля в виде .

Если функция появляется на схеме в нескольких местах на однолинейных, многолинейных или обзорных страницах, то могут быстро возникнуть отклонения в данных функции в одном из представлений. EPLAN позволяет синхронизировать их по всему проекту.

См. также

Обзоры установок

Подробная информация об использовании терминалов в однолинейном представлении

Подробная информация об использовании кабелей в однолинейном представлении

Схема чертежа в однолинейном представлении

Пакетное представление соединений на схемах

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.

# Номер
Ω Ом
Φ Фаза
ампера
AC Переменный ток
А / С Кондиционер
AFCI AFCI Схема неисправности дуги
AHU
AHU
AIC Ampere прерывая мощность
AL алюминий
ATS Автоматический трансфер Выключатель
ATC автоматический контроль температуры
AWG
AWG
British Thermal D40154
C COBEUIT
CATV Кабельная телевизор или сообщество Антенны телевидения 90 154
CB Критическая ветвь
C / B CIMENT PROWER
CBM Сертифицированный балласт Производитель
CCT Схема (также: CIR, CKT)
CCTV Закрытая цепь телевизор
CD Chdella
CIR Схема (см. CCT, CKT)
CKT Схема (также: CCT, CIR)
CLF Текущий предел предохранителей
CPT CO управления Power Transformer
CT Трансформатор тока
CU
DB Decibel
DC Direct Direct Direct
DIA Диаметр
EB Отвод оборудования
EC Электрический код или электрический подрядчик
EF
EVE
EVE ALAX EMT
EMT Электрические металлические трубки
EP аварийный мощность
EPO EPO
EWC
F Предохранитель
FA пожарная сигнализация
FAA Fire Alarm Andunciator
FLA Full Load Amperes
FMC
G
GFCI, GFI Схема замыкания на землю
Земля Земля 901 54
GRMC GRMC Оцинкованные жесткие металлические трубопроводы
HOA
HVAC Отопление, вентиляция, кондиционер
HZ Hertz
IEEE Институт электрических и электронных инженеров
IG
IMC
INT
int
KCMIL
KCMIL
KVA KILOVOLT-AMPERES
KVAR KIROVOLT-AMPERES REACTIVE
LFMC Жидкий жесткий гибкий металлический трубопровод
LTG
LRA Lock Rotor AMPS
MC Металл Cl Ad Cable
MCB Главный выключатель
MCC
MCP
MCP Защита от двигателя
MI Минеральный изолированный
MLO Главные проушины Только
MW MEGAWATT
NC
NC
NEC
NEMA Национальные электрические производители электротехники
NFPA Национальная ассоциация пожарной защиты
NL Night Light
NO Нормально открытый или номер
P полюс
PB кнопочный или Panic Button или Вытащите Box
PNL Панель
PWR PRO
PT потенциальный трансформатор
кол-во
REQ
REQ RCCB, RCB RCCB, RCB Автоматический выключатель остаточного тока
RCD Устройство остаточного тока
RMC
RMC REGID металлический трубопровод
RMS корневой средневеда
RNC Жесткий неметаллический трубопровод
RTS Удаленная тестовая станция
RTU Верхний верхний блок
SE Услуги обслуживания
SEB Сервисный концом Линия 4 Сервисный концом 4
SP
Запас
ST Путешествие
ПО Переключатель
Symmetrical
Тел Телефон
TGB
TGB TMCB TMCB Термальный магнитный выключатель
UG под землей
UL
UL
UL
UL Лаборатория андеррайтеров
V
V 60152 VA
VA
VFD Переменный частотный привод
VT Трансформатор напряжения
W Watt или провод
WH Водонагреватель
WP Всепогодный или водонепроницаемый
XFMR Трансформатор