Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Параметры светодиодов белого свечения: Светодиоды: классификация, назначение, основные характеристики

Содержание

Характеристики светодиодов

Рынок предлагает большое количество самых разных светодиодов по самой разной стоимости. Разобраться в этом многообразии и выбрать именно то, что нужно поможет понимание характеристик светодиодов.

Первое, на что нужно обратить внимание, это производитель светодиода. Вернее, важно не столько конкретное название производителя, сколько сама возможность его идентифицировать. Смысл в том, что если у светодиода есть конкретный производитель, то к остальным заявленным его характеристикам появляется какое-то доверие, которое тем больше, чем известней и именитей этот производитель есть. В противном случае, практически всегда заявленные характеристики окажутся завышенными, а сама покупка превращается в своего рода лотерею. Особая внимательность требуется, когда нужна серия светодиодов, которые будут работать вместе. Чем менее известен производитель таких светодиодов, тем более вероятность того, что светодиоды даже вроде бы из одной партии будут иметь разные оттенки, яркость и надежность свечения.

Пример плохой светодиодной ленты — светодиоды имеют разную температуру свечения

Следующая важная характеристика светодиодов это цвет для цветных или цветовая температура для белых светодиодов. На данный момент производятся светодиоды от ультрафиолетовых до инфракрасных. Каждый конкретный цветной светодиод излучает свет в узком спектральном диапазоне – 5-10 нм.

Соответствие излучаемой длины волны к цвету светодиода

Конкретная длина волны может быть важна при выборе светодиодов для растений или аквариума. Встречаются также трехцветные RGB-светодиоды, которые представляют собой фактически три светодиода – красный, синий, зеленый – размещенные на одной подложке. Обычно они имеют общий анод или катод. Также должна указываться длина волны каждого цвета. Бывают двухцветные (например, красный и зеленый) светодиоды. Это, как правило, индикаторные светодиоды совсем небольшой мощности.

RGB-светодиод

Белые светодиоды излучают свет широкого спектра и различаются оттенками – цветовой температурой – от теплой белой до холодной. Цветовая температура измеряется в кельвинах и должна указываться в характеристиках конкретного светодиода.

Цветовая температура — диаграмма

Ведущие производители, например, CREE, приводят в технической документации спектральные характеристики своих белых светодиодов. В каких-то случаях это может быть очень важно. Более подробно об источниках света производства этой компании читайте в статье «Светодиоды CREE».

Спектр белого светодиода на примере CREE MT-G2

Визуально – чем теплее белый свет, тем он желтее. Чем холоднее – тем синее.

Визуальные различия свечения разной температуры

Следующие связанные параметры светодиода – это его максимальный рабочий ток, падение напряжения и их произведение – максимальная потребляемая мощность светодиода. Потребляемая мощность во многом определяет область применения светодиода – десятые доли ватта (рабочий ток до 50мА) для индикаторных светодиодов и до десятков ватт для мощных осветительных светодиодов. Индикаторные светодиоды не требуют дополнительного охлаждения, могут иметь разные размеры и варианты исполнения для выводного или поверхностного монтажа.

Индикаторные светодиоды разных размеров

Достаточно распространены осветительные светодиоды для поверхностного монтажа малой и средней мощности. Такие светодиоды имеют размеры до 5х6 мм и рассчитаны на рабочий ток до 50мА. Монтируя линейки из нескольких таких светодиодов можно получить достаточно мощные источники света. Также часто такие светодиоды продаются в виде готовых осветительных лент.

SMD-светодиоды собранные на ленте

Мощные светодиоды в процессе работы на максимальных токах выделяют большое количество тепла и это, безусловно, необходимо учитывать при проектировании готового устройства. Обычно такие светодиоды припаиваются к алюминиевой подложке, которая, в свою очередь, крепится к радиатору.

Мощный светодиод на алюминиевой подложке — «звездочке»

Хороший теплоотвод очень важен, поскольку при перегреве снижается эффективность работы светодиода, значительно ускоряется деградация кристалла и, соответственно, уменьшается срок его службы. Опять же, если теплоотвода будет совсем недостаточно, то светодиод в итоге банально сгорит.

Мощность светодиода также определяет способ его питания. Для маломощных индикаторных светодиодов можно обойтись ограничивающими ток резисторами. Мощные светодиоды требуют более внимательного подхода и здесь уже не обойтись без подходящих по мощности драйверов.

Совсем не рекомендуется превышать максимальный рабочий ток светодиода – может произойти пробой и светодиод необратимо разрушится. Вообще, если рассчитывать на долговременную эксплуатацию, то реальный рабочий ток не должен превышать 70-75% от максимально допустимого. Безусловно, при достаточно эффективной системе теплоотвода.

Следующая важная характеристика светодиодов – это величина светового потока, излучаемого светодиодом. Световой поток измеряется в люменах на ватт мощности и определяется энергоэффективностью светодиода (подробнее – в статье «Энергоэффективность светодиодов»). Световой поток и освещенность связаны с физиологическими человеческими особенностями.

Человеческий глаз наиболее чувствителен к желто-зеленому свету с длиной волны 555нм. Поэтому понятия энергоэффективности и величины светового потока фактически могут быть отнесены только к белым светодиодам. Более того, в силу различия излучаемого спектра, белые светодиоды с холодной цветовой температурой будут более эффективны, чем светодиоды с теплым белым светом. Сегодня лидером по энергоэффективности является компания CREE. Серийно производимые ими светодиоды на сегодня имеют эффективность до 200 люменов на ватт мощности. И эта цифра постоянно растет.

Для практического применения светодиодов также важен такой их параметр как угол распространения света. Плоский кристалл светодиода излучает свет узким пучком, что не всегда удобно. Для расширения светового пучка используются те или иные оптические системы. Обычно это небольшие рефлекторы и линзы, устанавливаемые на светодиод.

Оптические системы на индикаторных и мощных светодиодах

Тем не менее, мощность излучения существенно падает по мере увеличения угла. Это хорошо иллюстрирует следующий график.

Зависимость интенсивности свечения светодиода от угла рассеивания света

Часто в характеристиках светодиода указывается только одно число – угол рассеивания. Например, 130 градусов. Это означает, что наблюдатель, расположенный под углом в 65 градусов к центральной оси светового пучка, получит всего 10-20% светового потока.

Срок службы современных светодиодов составляет десятки тысяч часов, что, скорее всего, будет гораздо больше, чем период работы готового изделия в целом. По этой характеристике светодиоды разных производителей отличаются мало, разве что совсем уж непредсказуемый китайский производитель NoName преподнесет неприятный сюрприз.

Также при нормальных условиях эксплуатации световой поток светодиода совсем незначительно ухудшается с течением времени – единицы процентов на несколько тысяч часов. Заметно ухудшить этот параметр может системный перегрев светодиода в работе или превышение его максимального рабочего тока.

Светодиоды становятся все более доступны для самых разных областей применения. Многообразие их вариаций способно запутать самого искушенного потребителя. Знание и понимание самых разных характеристик светодиодов было и остается ключевым для того, чтобы то или иное принятое решение о покупке было единственно правильным.

Характеристика светодиодов: напряжение, ток, мощность, светоотдача

Давно прошли те времена, когда светодиоды применялись исключительно в качестве световых индикаторов. Сегодня это достойная альтернатива привычным в быту и промышленных условиях лампам накаливания. Благодаря расширяющемуся спектру применения LED-приборов открывается безграничный простор в сфере наполнения искусственным светом улиц и помещений. Сегодня поговорим об этом на beton-area.com.

Разновидности светоизлучающих диодов

В основе работы LED-приборов лежит процесс пропускания фотонов через полупроводниковый кристаллик. Именно от применяемого материала зависит цвет возникающего свечения. Совсем не светофильтры делают свечение красным или синим.

Увеличения интенсивности светового излучения добиваются с помощью специальных присадок или способом создания нескольких слоев — внутрь помещают нитрид алюминия.

Цвет свечения светодиодов зависит от материала кристалла

Светодиоды делят на две группы по способу применения:

  • Индикация и декорация. К этой категории относятся цветные светодиоды. Их помещают в просвечивающийся корпус. Для управления техникой на расстоянии применяют модели с инфракрасными индикаторами.
  • Освещение. В этом случае используют LED-источники белого свечения. Соответственно потребностям подбирают теплые или холодные оттенки.

По способу монтажа выделяют осветительные светодиоды:

  • SMD. При такой модификации кристаллик расположен на специальной подложке, которая помещается в корпус. Контакты соединяются. При поломке одного кристаллика его заменяют, восстанавливая работу всей системы.

  • ОСВ. В таком устройстве множество кристаллов размещены на одной плате. Все они покрытых люминофором. Степень свечения таких ламп высокая, а производство недорогое. Систему придется заменить полностью даже при выходе из строя всего одного светодиода.

Общая характеристика LED-источников

Как выбрать светодиод нужной конфигурации? Для этого важно разобраться в основных характеристиках. Одна из них — ток потребления. Под эту величину подбираются стабилизаторы и ограничители. Для расчетов нужно знать напряжение. Чтобы эффективно заменить LED-источниками лампы накаливания нужно вычислить мощность.

При создании определенного интерьера важно учитывать размер светоизлучающего диода, а также оттенок светового потока. Имея дело с LED-источниками, принято брать во внимание угол свечения. Разобравшись в перечисленных параметрах, можно подобрать наиболее подходящий светодиод.

При выборе светодиодов важно учитывать такие характеристики: сила тока, напряжение, мощность, эффективность, угол свечения, размер устройства

Ток потребления LED

Стабилизаторы тока очень важны в работе светодиодов. Даже небольшое колебание величины тока в большую сторону приведет к изменению излучаемого кристаллами светового оттенка на более холодный и преждевременному выходу осветительного устройства из строя. Значительный скачок электрического тока приводит к мгновенному перегоранию диода.

LED –лампы всегда снабжают стабилизаторами для преобразования тока. Отдельный светоизлучающий диод нужно подключать с применением резистора для ограничения тока.
Для одного кристалла обычно необходим ток в 0,02 А. Для четырех кристаллов потребуется соответственно больший показатель — 0,08 А.

Светодиоды будут долго и слаженно работать только с применением ограничителя тока

Совет! Очень важно правильно подобрать ограничительный резистор для светодиода. Облегчить процедуру поможет специально разработанный калькулятор, находящийся в свободном доступе в интернете.

Напряжение на светодиоде

В случае с LED-источниками, говоря о напряжении, имеют в виду ту величину, которая остается после прохождения тока, так сказать, на выходе. Зная ее, определяют остаточное напряжение на кристалле.
Напряжение у светоизлучающих диодов зависит от материалов, применяемых в качестве полупроводников. Возможно ли определить это самостоятельно?

Приблизительное значение можно установить даже «на глаз». Так, если диод светит желтым или, к примеру, красным цветом — напряжение находится в пределах 1,8-2,4 Вольт. Его величина при синем свечении больше — приблизительно 3 Вольта.

Напряжение при синем свечении — 3 В

Важно! Ток должен соответствовать номинальному напряжению LED-источника. В противном случае часть из них может сгореть или выдавать менее яркое свечение.

Мощность и эффективность светодиодов

Как подобрать диодную замену лампы накаливания, ориентируясь на мощность? Часто можно встретить подробно расписанные таблицы, но все гораздо проще. Необходимо мощность лампы накаливания поделить на 8, и получим необходимую мощность светодиода. Так, вместо лампы мощностью 75 Вт необходимо подобрать светодиодный прибор, мощностью 10 Вт.

Необходимую мощность светодиода определяем делением мощности лампы накаливания на 8

В создании освещения с помощью системы светодиодов необходимо учитывать такой момент, как эффективность. Она рассчитывается путем деления показателя светового потока на мощность. У лампы накаливания он составляет 10-12 лм/Вт, а у светодиодного устройства — 130-140 лм/Вт.

Светоотдача, угол рассеивания

Что касается светоотдачи, то сравнить показатели принципиально разных устройств довольно сложно. Для ориентировки: светодиоды диаметром 5 мм дают световой поток 1-5 лм. Лампа накаливания на 70 Вт дает 750 лм.

Кроме прочего, заботясь об освещенности помещения, важно учитывать угол рассеивания. У светодиодов он может быть от 20 до 120 градусов. Самый яркий свет оказывается в центре угла, а к краям они рассеиваются. Таким образом, светодиоды часто подходят для освещения не целого помещения, а конкретного места. При этом не требуется больших затрат мощности.

Температура свечения светодиодов

На упаковке каждого светодиодного устройства для освещения имеется маркировка (4 цифры), обозначающая температуру свечения. 1800 К — это красный, 3300 К — желтый, а 7500 — синий. Для белого света применяются различные величины в зависимости от оттенка. Самые холодные находятся ближе к значению синего. Цветные светодиоды могут найти применение как декоративные элементы и в качестве приборов для досвечивания растений. А каково применение белых ламп?

  • Теплый свет — для жилых домов, школ и офисов.
  • Нейтральный (дневной) свет — для производственных построек.
  • Холодный свет — наружное освещение и карманные фонарики.
Температура свечения светодиодов
SMD-диоды: сведения, типоразмеры

Аббревиатура SMD применяется для устройств поверхностного монтажа. Диодный чип при их производстве устанавливается на печатную плату. Эти последователи корпусных диодов, которые обошли предшественников по мощности излучаемого света, равномерному отводу тепла и другим характеристикам.

Подбор SMD осуществляют по размеру. Он представлен в виде четырехзначного числа. Например, SMD 3014 — это 3,0 мм × 1,4 мм. Основные параметры каждого из них разнятся. Наиболее популярные: SMD 2835, SMD 5050, SMD 5730.

Светодиоды SMD

SMD 2835

Структурной особенностью светодиодного модуля SMD 2835 является прямоугольная форма и, соответственно, достаточно широкая площадь излучения. Она выше, чем у формата 3528, имеющего круглую форму. Высота SMD 2835 — 0,8 мм, а светоотдача — 50 лм.

Светодиод SMD 2835

Светодиоды SMD 2835 характеризуются сверхпрочным корпусом, выдерживающим 240 С. За 3 тысячи часов функционирования происходит всего 5-процентная деградация излучения. Cветодиодный кристалл имеет t- 130 C. Max рабочий ток — 0,18 А. По температуре свечения SMD 2835 выпускается в четырех вариантах: от 4000 К до 7500 К. Для качественного освещения помещения важно знать, что SMD 2835 холодных оттенков светят ярче.

SMD 5050

Конструкция SMD 5050 включает три кристалла одинакового типа. Их параметры аналогичны параметрам предыдущего. Для долгой и слаженной работы поступающий ток должен быть в пределах 0,06 А.

Светодиод SMD 5050

Светоотдача SMD 5050 — 18-21 лм, напряжение — 3-3,3 В, мощность — 0,21 Вт. Цвет свечения не ограничивается оттенками белого. В одном приборе могут сочетаться сразу несколько цветов. SMD 5050 с помощью контроллеров можно настроить на плавное изменение цвета. Регулируется также яркость.

SMD 5730

Размеры корпуса SMD 5730 ясны из цифрового обозначения. Что касается деградации, то она составляет 1 % за 3000 часов. Такой важный во многих случаях показатель, как угол свечения, равен 120 градусам.

Этот тип светодиодов на фоне остальных выгодно отличает:

  • использование новых высококачественных материалов;
  • высокая мощность и эффективность;
  • удлиненный срок службы;
  • устойчивость в условиях сырости, вибрации и нестабильности температуры.

    • Светодиод SMD 5730

SMD 5730 делят на два вида:

1. SMD 5730 – 0,5 Вт. Пост. ток — 0,15 А, импульс. — до 0,18 А; свет. поток — 45 лм.
2. SMD 5730 – 1 Вт. Пост. ток — 0,35 А, импульс.— 0, 8 А. свет. поток — 110 лм.

Светодиоды Cree — главные особенности

Американская компания Cree выпускает сверхмощными и сверхяркими светодиодами нового поколения. Одной из ведущих линейкой, выпускаемых компанией, является Xlamp. Здесь можно найти однокристальные и многокристальные модели. Первые компании удалось создать с увеличенным углом свечения, то есть хорошим освещением по краям.

XQ-E High Intensity (однокристальная серия) характеризуется таким особенностями: 3 В, 330 лм, 100-145 о, 1,6 × 1,6 мм.

Многокристальные отличаются высокой светоотдачей при небольших габаритах. По мощности их делят на группы:

  1. до 4 Вт
  2. свыше 4 Вт.
Сверхяркий многокристальный светодиод Cree
Подключение LED к 220 В

Подключение LED-приборов к сети 220 В производят по двум основным схемам:

1. Через драйвер. От мощности драйвера зависит количество светоизлучающих элементов, которые можно подключить. Резистор отсутствует.
2. С помощью блока питания. В схему включают резистор, иначе устройство быстро перестанет исполнять функцию. Очень важно подобрать резистор с соответствующим номиналом.

Принцип подключения LED-источника к сети 220 В

 

 

 

Сопротивление — принципы расчета для светодиодов

Формула сопротивления включает напряжение (U) и силу тока (I):

R = U/I

Разберем на стандартном примере подключения LED-источника с параметрами: 3 В и 0,02 А. По формуле получается 100 Ом. Полученный результат — ориентир в выборе ограничителя.

Во многих случаях рассчитанное по формуле сопротивление не относится к стандартным характеристикам резисторов. Например, может получиться величина в 128 Ом. Что делать тогда? В таком случае подбирать необходимо резистор с самым близким сопротивлением в большую сторону. Это хорошо скажется на ресурсе светодиода. Снижение светового потока будет минимальным — до 10 %.

Совет! Удобно проводить точные расчеты с помощью специально разработанных калькуляторов. Достаточно только правильно вбить параметры, чтобы получить сопротивление, которое должен иметь ограничитель.

Подключение светодиода с резистором

Можно применять как параллельное, так и последовательное подключение. При использовании более 5 разных по характеристике устройств нужно подбирать резистор под каждый. Если будет использоваться один на все — некоторые из светодиодов будут излучать менее мощный свет, а работа такого устройства не будет длительной. Это не относится к LED-источникам с одинаковыми параметрами.

При последовательном подключении вся цепь LED-устройств использует ток, необходимый для одного из них; при параллельном — требуемое для суммированного потребления каждого диода.

Подключение светоизлучающего диода к 12 В

Некоторые LED- приборы сконструированы с резистором. В этом случае можно совершенно без проблем подключить их к 12 или 5 В. Но если светоизлучающие диоды по задумке производителя не включают резисторы (это встречается чаще всего), необходимо подобрать подходящий ограничитель тока. Это возможно при точном знании характеристик подключаемых диодов. Требуемая формула:

U= R/I

В качестве примера возьмем светоизлучающий диод с такими характеристиками: 2 В, 0,02 А (I). При подключении диода к 12 Вольтам нужно погасить 10 В, это наше R. Итак:

10/0,02=500 Ом

Но ограничительного резистора с таким номиналом не найти в продаже. Выход есть: необходимо приобрести ближайший в большую сторону — 510 Ом.

Необходимо также вычислить мощность резистора. Для этого пользуются формулой:

P= U*I

В нашем случае получаем:

10*0,02=0,2 Вт

Значит, в данной ситуации подойдет ограничительный резистор на 0,25 Вт.

Важное уточнение: если в цепи несколько светоизлучающих диодов, падение напряжения будет соответственно больше, а напряжение, которое нужно погасить — меньше.

Проверка LED-источника мультиметром

Тестирование лучше производить в затемненном помещении, так как свет, который нужно будет уловить взглядом, может оказаться достаточно слабым. Мультиметр создан для тестирования LED-устройств любой конфигурации.

Первый шаг — установка устройства для тестирования в режим прозвона. Далее соединяем щупы с выводами: когда красный будет касаться катода появится «1», при смене положения щупов — светодиод начнет светиться.

Тестирование светодиода мультиметром

Один из часто задаваемых вопросов: как проверить светоизлучающий диод не выпаивая? Это делают так: к обоим щупам припаивают отрезки металлической скрепки. При этом важно позаботиться об изоляции. Дальше проводится тестирование светодиодов с помощью щупов мультиметра без выпаивания по стандартной схеме.

Стабилизатор тока для LED

Для длительной бесперебойной работы одного LED-устройства или целой цепи, следует позаботиться о стабильности питания. Особенно чувствительны к перемене тока белые светодиоды. Если показатель будет превышать норму в течение двух часов, они выйдут из строя. Чтобы все диоды в цепи создавали одинаковое по интенсивности свечение, нужно позаботиться, чтобы каждый получал одинаковый ток.

При подключении к 220 В чаще всего применяют стабилизатор LM317. Это выгодный и простой вариант. Резистор требуется в единственном экземпляре. Ток стабилизируется на 1 А и 0,1 А.

Схема подключения мощного светодиода через стабилизатор LM317

 

Устройства из светодиодов своими руками
ДХО для автомобиля из LED-устройств

В условиях плохой видимости риск автомобильных аварий на дороге резко увеличивается. Чтобы его снизить применяют дневные ходовые огни. Они делают автомобиль боле заметным встречным водителям и пешеходам в дневное время. Подойдут далеко не любые LED-источники, ведь ДХО должны соответствовать ГОСТу.

ДХО из светодиодов — схема подключения

Можно поступить так: взять алюминиевую плату и прикрепить к ней светодиоды необходимых параметров с помощью теплопроводного клея. На каждый диод устанавливается правильно подобранные линзы. Вывод проводов можно обеспечить в любую сторону. Созданный модуль располагают внутри профиля. Найти подходящую схему подключения не составит труда.

ДХО из LED-источников

Схемы мигающих светодиодов

В чем секрет мигания LED-источников? В изменении питания на выводах устройства. Стандартная схема представлена ниже. Она может быть реализована только при подключении к 12 В. Когда конденсатор накапливает 9-10 В, транзистор передает энергию светодиоду.

Схема мигающих светодиодов

 

Светомузыка из светодиодов

Схема запитывается от 6-12 В. Эффект светомузыки при схеме с одним LED-источником будет достигаться только при условии определенного уровня звука. Для полноценного эффекта создают трехканальную схему. В этом случае нужен источник 6 В. Существует множество вариантов: одноцветная и RGB лента, плавное включение, бегущие огни.

Трехканальная схема светомузыки

Индикатор напряжения на светодиодах

Можно использовать старые компоненты электрических приборов. Больше всего для создания индикатора напряжения подходят светоизлучающие диоды на 1,5 В.

Светодиоды — практичные устройства в руках радиолюбителя. Существует масса способов их эффективного применения. LED- устройства являются экономически выгодными и практичными.

Все про светодиоды: от простых до мощных, характеристика

Характеристики светодиодов, применение и схема подключения

Со времен изобретения электрического освещения учеными создавались все более экономичные источники. Но настоящим прорывом в этой области стало изобретение светодиодов, которые не уступают по силе светового потока предшественникам, однако расходуют во много раз меньше электроэнергии. Их созданию, начиная от первого индикаторного элемента и заканчивая ярчайшим на сегодня диодом «Cree», предшествовало огромное количество работы. Сегодня мы попробуем разобрать различные характеристики светодиодов, узнаем, как эволюционировали эти элементы и как их классифицируют.

Все эти элементы внутреннего монтажа уже уходят в прошлое

Читайте в статье:

Принцип работы и устройство световых диодов

Светодиоды отличает от привычных осветительных приборов отсутствие в нем нити накала, хрупкой колбы и газа в ней. Это принципиально отличный от них элемент. Говоря научным языком, свечение создается за счет наличия в нем материалов р- и n-типа. Первые накапливают положительный заряд, а вторые – отрицательный. Материалы р-типа накапливают в себе электроны, в то время, как в n-типе образуются дырки (места, где электроны отсутствуют). В момент появления на контактах электрического заряда они устремляются к р-n-переходу, где каждый электрон инжектируется именно в р-тип. Со стороны обратного, отрицательного контакта n-типа в результате подобного движения и возникает свечение. Оно обусловлено выделением фотонов. При этом не все фотоны излучают видимый человеческим глазом свет. Сила, которая заставляет двигаться электроны, называется током светодиода.

Эта информация ни к чему обычному обывателю. Достаточно знать, что светодиод имеет прочный корпус и контакты, которых может быть от 2-х до 4-х, а также то, что каждый светодиод имеет свое номинальное напряжение, необходимое для свечения.

Устройство светового диода с пояснениями

Полезно знать! Подключение производится всегда в одинаковом порядке. Это значит, что если к контакту «-» на элементе подключить «+», то свечения не будет – материалы р-типа просто не смогут зарядиться, а значит не будет и движения к переходу.

Классификация светодиодов по их области применения

Такие элементы могут быть индикаторными и осветительными. Первые были изобретены раньше вторых, при этом они уже давно используются в радиоэлектронике. А вот с появлением первого осветительного светодиода начался настоящий прорыв в электротехнике. Спрос на осветительные приборы подобного типа неуклонно растет. Но и прогресс не стоит на месте – изобретаются и внедряются в производство все новые виды, которые становятся все ярче, не потребляя при этом больше энергии. Разберем более подробно, какими бывают светодиоды.

Индикаторные светодиоды: немного истории

Первый такой светодиод красного цвета был создан в середине ХХ века. Хотя он имел низкую энергоэффективность и излучал тусклое свечение, направление оказалось перспективным и разработки в этой обрасти продолжились. В 70-х годах появляются зеленые и желтые элементы, а работы по их усовершенствованию не прекращаются. К 90-му году сила их светового потока достигает 1 Люмена.

В наше время светодиодные лампы могут быть даже такими

1993 год ознаменован появлением в Японии первого синего светодиода, который был намного ярче предшественников. Это означало, что теперь, совмещая три цвета (которые и составляют все оттенки радуги), можно получить любой. В начале 2000-х сила светового потока уже достигает 100 Люмен. В наше время светодиоды не перестают совершенствоваться, наращивая яркость без увеличения потребляемой мощности.

Использование светодиодов в бытовом и промышленном освещении

Сейчас подобные элементы используются во всех отраслях, будь то машино- или автомобилестроение, освещение производственных цехов, улиц или квартир. Если взять последние разработки, то можно сказать, что даже характеристики светодиодов для фонариков порой не уступают старым галогеновым лампам на 220 В. Попробуем привести один пример. Если взять характеристики светодиода 3 Вт, то они будут сопоставимы с данными лампы накаливания с потреблением 20-25 Вт. Получается экономия электроэнергии почти в 10 раз, что при ежедневном постоянном использовании в квартире дает весьма существенную выгоду.

Фонари на диодах со специальными линзами светят на расстояние до 3 км
Чем хороши светодиоды и есть ли в них минусы

О положительных качествах световых диодов можно сказать многое. Основными из них можно назвать:

  • Экономичность без потери силы светового потока – здесь они вне конкуренции;
  • Прочный корпус – отсутствует опасность механического повреждения;
  • Долговечность – такие элементы работают в десятки раз дольше ламп накаливания;
  • Компактность – имеют малые габариты;
  • Наиболее безопасны – работают от сети 3-24 В;
  • Экологичны – не требуют специальной утилизации.

Что же касается отрицательных сторон, то их всего две:

  • Работают только с постоянным напряжением;
  • Вытекает из первого – высокая стоимость ламп на их основе по причине необходимости использования драйвера(электронного стабилизирующего блока).
Ультрафиолетовый и инфракрасный световые диоды – изготавливают даже такие

Каковы основные характеристики светодиодов?

При выборе таких элементов для той или иной цели, каждый обращает внимание на их технические данные. Основное, на что следует обратить внимание, приобретая приборы на их основе:

  • ток потребления;
  • номинальное напряжение;
  • потребляемая мощность;
  • температура цвета;
  • сила светового потока.

Это то, что мы можем увидеть на маркировке светодиодных ламп. На самом же деле, характеристик намного больше. О них сейчас и поговорим.

Ток потребления светодиода – что это такое

Ток потребления светодиода равен 0.02 А. Но это относится лишь к элементам с одним кристаллом. Существуют и более мощные световые диоды, в составе которых может быть 2, 3 и даже 4 кристалла. В этом случае ток потребления будет увеличиваться, кратно числу чипов. Именно этот параметр и диктует необходимость подбора резистора, который впаивается на вводе. В этом случае сопротивление светодиода не дает высокому току мгновенно сжечь LED элемент. Это может произойти по причине высокого тока сети.

RGB прожекторы с контроллером и пультом ДУ действительно хороши

Номинальное напряжение

Напряжение светодиода имеет прямую зависимость от его цвета. Это происходит по причине разности материалов для их изготовления. Рассмотрим эту зависимость.

Цвет светодиодаМатериалПрямое напряжение при 20 мА
Типовое значение (В)Диапазон (В)
ИКGaAs, GaAlAs1,21,1-1,6
КрасныйGaAsP, GaP, AlInGaP2,01,5-2,6
ОранжевыйGaAsP, GaP, AlGaInP2,01,7-2,8
ЖелтыйGaAsP, AlInGaP, GaP2,01,7-2,5
ЗеленыйGaP, InGaN2,21,7-4,0
ГолубойZnSe, InGaN3,63,2-4,5
БелыйСиний/УФ диод с люминофором3,62,7-4,3

Сопротивление световых диодов

Сам по себе один и тот же светодиод может иметь различное сопротивление. Меняется оно в зависимости от включения в цепь. В одну сторону – около 1 кОм, в другую – несколько МОм. Но здесь есть свой нюанс. Сопротивление светодиода нелинейно. Это значит, что оно может изменяться в зависимости от подаваемого на него напряжения. Чем выше напряжение, тем ниже будет сопротивление.

Точечный потолочный светильник на диодах очень экономичен

Светоотдача и угол свечения

Угол светового потока светодиодов может различаться, в зависимости от их формы и материала изготовления. Он не может превышать 1200. По этой причине, если требуется большее рассеивание, применяют специальные отражатели и линзы. Это качество «направленного света» и способствует наибольшей силе светового потока, которая может достигать 300-350 Лм у одного светодиода на 3 Вт.

Мощность светодиодных ламп

Мощность светодиода – величина сугубо индивидуальная. Она может варьироваться в диапазоне от 0.5 до 3 Вт. Определить ее можно по закону Ома P = I×U, где I – сила тока, а U – напряжение светодиода.

Мощность – довольно важный показатель. Особенно когда необходимо рассчитать какой блок питания необходим для того или иного количества элементов.

Цветовая температура

Этот параметр схож с другими лампами. Наиболее приближены то температурному спектру к светодиодным люминесцентные лампы. Измеряется цветовая температура в К (Кельвин). Свечение может быть теплым (2700-3000К), нейтральным (3500-4000К) или холодным (5700-7000К). На самом деле оттенков много больше, здесь указаны основные.

На такой платформе могут быть сотни кристаллов

Размер чипа LED элемента

Этот параметр самостоятельно измерить при покупке не удастся и сейчас уважаемому читателю станет понятно почему. Самые распространенные размеры – это 45х45 mil и 30х30 mil (соответствуют 1 Вт), 24х40 mil (0.75 Вт) и 24х24 mil (0.5 Вт). Если перевести в более привычную систему измерений, то 30х30 mil будут равны 0.762х0.762мм.

Чипов (кристаллов) в одном светодиоде может быть много. Если элемент не имеет слоя люминофора (RGB – цветной), то количество кристаллов можно подсчитать.

Важно! Не стоит приобретать очень дешевые светодиоды китайского производства. Они могут оказаться не только низкого качества, но и характеристики их чаще всего завышены.

Подделку довольно тяжело отличить от оригинала при покупке

Что такое SMD светодиоды: их характеристики и отличие от обычных

Четкая расшифровка этой аббревиатуры выглядит как Surface Mount Devices, что в буквальном переводе означает «монтируемый на поверхности». Чтобы было понятнее, можно вспомнить, что обычные световые диоды цилиндрической формы на ножках утапливаются ими в плату и припаиваются с другой стороны. В отличие от них SMD-компоненты фиксируются лапками с той же стороны, где находятся и сами. Такой монтаж дает возможность создания двусторонних печатных плат.

Такие светодиоды намного ярче и компактнее обычных и являются элементами нового поколения. Их габариты указываются в маркировке. Но не стоит путать размер SMD светодиода и кристалла (чипа) которых в составе компонента может быть множество. Разберем несколько таких световых диодов.

Вот они, LED SMD2835. Маленькие, но света от них достаточно

Параметры LED SMD2835: размеры и характеристики

Многие начинающие мастера путают маркировку SMD2835 с SMD3528. С одной стороны они должны быть одинаковы, ведь маркировка указывает, что эти светодиоды имеют размер 2.8х3.5 мм и 3.5 на 2.8 мм, что одно и то же. Однако это заблуждение. Технические характеристики светодиода SMD2835 намного выше, при этом он имеет толщину всего 0.7 мм против 2 мм у SMD3528. Рассмотрим данные SMD2835 с различной мощностью:

ПараметрКитайский 28352835 0,2W2835 0,5W2835 1W
Сила светового потока, Лм82050100
Потребляемая мощность, Вт0,090,20,51
Температура, в градусах С+60+80+80+110
Ток потребления, мА2560150300
Напряжение, В3,2

Как можно понять, технические характеристики SMD2835 могут быть довольно разнообразны. Все зависит от количества и качества кристаллов.

Характеристики светодиода 5050: более габаритный SMD-компонент

Довольно удивительно, что при больших габаритах этот светодиод имеет меньшую силу светового потока, чем предыдущий вариант – всего 18-20 Лм. Причиной этому малое количество кристаллов – обычно их всего два. Наиболее распространенное применение такие элементы нашли в светодиодных лентах. Плотность из в полосе обычно составляет 60 шт/м, что в общей сложности дает около 900 Лм/м. Достоинство их в этом случае в том, что лента дает равномерный спокойный свет. При этом угол ее освещения максимальный и равен 1200.

На таких элементах делается лампа «кукуруза»

Выпускаются такие элементы с белым свечением (холодного или теплого оттенка), одноцветными (красный, синий или зеленый), трехцветными (RGB), а так же четырехцветными (RGBW).

Характеристики светодиодов SMD5730

По сравнению с этим компонентом, предыдущие уже считаются устаревшими. Их уже можно назвать даже сверх яркими светодиодами. 3 вольта, которые питают и 5050, и 2835 выдают здесь до 50 Лм при 0.5 Вт. Технические характеристики SMD5730 на порядок выше, а значит их необходимо рассмотреть.

ПараметрПоказатель
Сила светового потока, Лм45-50
Потребляемая мощность, Вт0,5
Диапазон рабочих температур, в градусах СОт -40 до +80
Номинальный ток, мА150
Рабочее напряжение, В3,1-3,2
Угол освещения120 градусов

И все-таки это не самый яркий из SMD-компонентов светодиод. Сравнительно недавно на российском рынке появились элементы, которые в прямом смысле «заткнули за пояс» все остальные. О них сейчас и пойдет речь.

Элементы на ленте могут располагаться и в 2 ряда для яркости

Светодиоды «Cree»: характеристики и технические данные

На сегодняшний день аналогов продукции фирмы Cree не существует. Характеристики сверх ярких светодиодов их производства действительно поражают. Если предыдущие элементы могли похвастаться силой светового потока лишь в 50 Лм с одного кристалла, то, к примеру, характеристики светодиода XHP35 от «Cree» говорят о 1300-1500 Лм так же от одного чипа. Но и мощность их больше – она составляет 13 Вт.

Если обобщить характеристики различных модификаций и моделей светодиодов этой марки, то можно увидеть следующее:

МодификацияXM-LXR-E, XP-G, XP-E, XP-C
Сила светового потока, Лм/втT5 (от 260 до 280)T6 (от 280 до 300)U2 (от 300 до 320)Q2 (от 87,4 до 93,9)Q3 (от 93,9 до 100)Q4 (от 100 до 107)Q5 (от 107 до 114)R2 (от 114 до 122)

Сила светового потока SMD LED «Cree» называется бином, который в обязательном порядке проставляется на упаковке. В последнее время появилось очень много подделок под эту марку, в основном китайского производства. При покупке их сложно отличить, а вот уже через месяц использования их свет тускнеет и они перестают отличаться от других. При довольно высокой стоимости такое приобретение станет довольно неприятным сюрпризом.

Нить накала постепенно уходит в историю

Предлагаем Вам небольшое видео на эту тему:

Проверка светодиода мультиметром – как ее выполнить

Самым простым и доступным способом является «прозвонка». На мультиметрах есть отдельное положение переключателя, специально для диодов. Переключив прибор в нужную позицию, прикасаемся щупами к ножкам светодиода. Если на дисплее высветилась цифра «1», следует поменять полярность. В этом положении зуммер мультиметра должен издавать звуковой сигнал, а светодиод светиться. Если подобного не произошло, значит, он вышел из строя. Если же световой диод исправен, но при впайке его в схему не работает, этому может быть две причины – неправильное его расположение или выход из строя резистора (у современных SMD-компонентов он уже встроен, что будет ясно в процессе «прозвонки»).

Мультиметром довольно просто прозвонить световой диод

Цветовая маркировка световых диодов

Общепринятой мировой маркировки подобных изделий не существует, каждый производитель обозначает цвет так, как ему это удобно. В России применяют цветовую маркировку светодиодов, но ею мало кто пользуется, потому, как список элементов с буквенными обозначениями довольно внушителен и запоминать его вряд ли кому-то захочется. Наиболее распространенно буквенное обозначение, которое многие и считают общепринятым. Но такая маркировка чаще встречается не на мощных элементах, а на светодиодных лентах.

Такие обозначения могут встретится на маркировке ленты

Расшифровка кода маркировки светодиодной ленты

Для того, чтобы понять, как маркируется лента, нужно обратить внимание на таблицу:

Позиция в кодеНазначениеОбозначенияРасшифровка обозначения
1Источник светаLEDСветодиод
2Цвет свеченияRКрасный
GЗеленый
BСиний
RGBЛюбой
CWБелый
3Способ монтажаSMDSurface Mounted Device (Устройство, монтируемое на поверхность)
4Размер чипа30283,0 х 2,8 мм
35283,5 х 2,8 мм
28352,8 х 3,5 мм
50505,0 х 5,0 мм
5Количество светодиодов на метр длины30
60
120
6Степень защиты:IPInternational Protection
7От проникновения твердых предметов0-6Согласно ГОСТ 14254-96 (стандарт МЭК 529-89) «Степени защиты, обеспечиваемые оболочками (код IP)»
8От проникновения жидкости0-6

Для примера возьмем конкретную маркировку LED CW SMD5050/60 IP68. Из нее можно понять, что перед нами светодиодная лента белого цвета для поверхностного монтажа. Элементы, установленные на ней, имеют размер 5х5мм, в количестве 60 шт/м. Степень защиты позволяет ей длительное время работать под водой.

Ассортимент ламп для дома на световых диодах довольно широк

Что можно сделать из светодиодов своими руками?

Это вопрос очень интересный. И если отвечать на него развернуто, то на это уйдет очень много времени. Наиболее частое применение световых диодов – это подсветка подвесных и натяжных потолков, рабочей зоны на кухне или даже клавиатуры компьютера.

Мнение эксперта

Игорь Мармазов

Инженер-проектировщик ЭС, ЭМ, ЭО (электроснабжение, электрооборудование, внутреннее освещение) ООО «АСП Северо-Запад»

Спросить у специалиста

“Для работы таких элементов необходим стабилизатор питания или контроллер. Его можно взять даже со старой китайской гирлянды. Многие «умельцы» пишут, что достаточно обычного понижающего трансформатора, но это не так. В этом случае диоды будут моргать.”

Стабилизатор для диодных ламп – подобный можно спаять самостоятельно

Стабилизатор тока – какую функцию он выполняет

Стабилизатор для светодиодов – это источник питания, который понижает напряжение и выравнивает ток. Другими словами, создает условия для нормальной работы элементов. При этом он защищает от повышения или падения напряжения на светодиодах. Существуют стабилизаторы, которые могут не только регулировать напряжение, обеспечивая плавное затухание световых элементов, но и управлять режимами цвета или мерцания. Они называются контроллерами. Подобные устройства можно увидеть на гирляндах. Так же они продаются в магазинах электротехники для коммутации с RGB-лентами. Такие контроллеры оснащаются пультами дистанционного управления.

Схема такого устройства не сложна, и при желании простейший стабилизатор можно изготовить и своими руками. Для этого понадобятся лишь небольшие знания в радиоэлектронике и умение держать в руках паяльник.

Схема подключения дневных ходовых огней на автомобиле

Дневные ходовые огни на автомобиль

Применение световых диодов в автомобильной промышленности довольно распространено. К примеру, ДХО изготавливаются исключительно с их помощью. Но если авто не оснащено ходовыми огнями, то их приобретение может ударить по карману. Многие автолюбители обходятся дешевой светодиодной лентой, но это не очень удачная мысль. Особенно, если сила ее светового потока невелика. Неплохим выходом может стать приобретение самоклеящейся ленты на диодах «Cree».

Вполне можно сделать ДХО и при помощи уже вышедших из строя, поместив внутрь старых корпусов новые, мощные диоды.

Важно! Дневные ходовые огни созданы именно для того, чтобы авто было заметно днем, а не ночью. Нет смысла проверять, как они будут светить, в темное время суток. ДХО должны быть заметны при свете солнца.

Такую рекламу легко можно сделать самостоятельно

Мигающие светодиоды – для чего это нужно?

Неплохим вариантом использования подобных элементов станет рекламное табло. Но если оно будет статично светиться, то это не привлечет должного внимания. Основной задачей является сборка и спайка щита – для этого нужны некоторые навыки, приобрести которые несложно. После сборки можно вмонтировать контроллер от той же гирлянды. В результате получается мигающая реклама, которая явно привлечет внимание.

Цветомузыка на световых диодах – сложно ли ее сделать

Это работа уже не для новичков. Для того, чтобы собрать полноценную цветомузыку своими руками нужен не только точный расчет элементов, но и знания радиоэлектроники. Но все же простейший ее вариант вполне по силам каждому.

Простейшая цветомузыка – осталось подключить датчик звука

В магазинах радиоэлектроники всегда можно найти датчик звука, да и во многих современных выключателях он есть (свет по хлопку). Если у Вас есть светодиодная лента и стабилизатор, то пустив с блока питания «+» на полосу через подобную хлопушку можно добиться желаемого результата.

Индикатор напряжения: что делать, если он перегорел

Современные индикаторные отвертки состоят как раз из светового диода и сопротивлений с изолятором. Чаще всего это эбонитовая вставка. При перегорании элемента внутри его вполне можно заменить на новый. А цвет уже будет выбирать сам умелец.

Этот диод можно с легкостью заменить при желании

Еще один из вариантов – это изготовление прозвонки цепи. Для этого понадобится 2 пальчиковых батарейки, провода и световой диод. Соединив элементы питания последовательно, одну их ножек элемента припаиваем к плюсу батареи. Провода будут идти от другой ножки и от минуса батареи. В итоге при замыкании диод засветится (если полярность не перепутать).

Схемы подключения светодиодов – как все правильно выполнить

Подобные элементы можно подключить двумя способами – последовательно и параллельно. При этом нельзя забывать, что световой диод должен быть расположен правильно. В противном случае схема работать не будет. В обычных элементах с цилиндрической формой это можно определить так: на катоде (-) виден флажок, он немного крупнее анода (+).

Такова схема последовательного подключения световых диодов

Как рассчитать сопротивление светодиода

Расчет сопротивления светового диода очень важен. Иначе элемент просто сгорит, не выдержав величины тока сети.

Разберемся, как рассчитать сопротивление для светодиода.

Сделать это можно по формуле:

R = (VS – VL) / I,где

  • VS–напряжение питания;
  • VL –номинальное напряжение для светодиода;
  • I – ток светодиода (обычно это 0.02 А, что равно 20 мА).

При желании возможно все. Схема довольно проста – используем блок питания от сломанного мобильного телефона или любой другой. Главное, чтобы в нем был выпрямитель. Важно не переусердствовать с нагрузкой (с численностью диодов), иначе есть риск сжечь блок питания. Стандартное зарядное устройство вполне выдержит 6-12 элементов. Можно смонтировать цветную подсветку для клавиатуры компьютера, взяв по 2 синих, белых, красных, зеленых и желтых элемента. Получается довольно красиво.

При желании возможно все. Схема довольно проста – используем блок питания от сломанного мобильного телефона или любой другой. Главное, чтобы в нем был выпрямитель. Важно не переусердствовать с нагрузкой (с численностью диодов), иначе есть риск сжечь блок питания. Стандартное зарядное устройство вполне выдержит 6-12 элементов. Можно смонтировать цветную подсветку для клавиатуры компьютера, взяв по 2 синих, белых, красных, зеленых и желтых элемента. Получается довольно красиво.

Полезная информация! Напряжение, которое выдает блок питания равно 3.7 В. Это значит, что диоды нужно соединить последовательно скоммутированными парами параллельно.

Параллельное и последовательное соединение: как они выполняются

По законам физики и электротехники при параллельном соединении напряжение распределяется равномерно по всем потребителям, оставаясь неизменным на каждом из них. При последовательном монтаже поток делится и на каждом из потребителей оно становится кратным их количеству. Иными словами если взять 8 световых диодов, соединенных последовательно, они будут нормально работать от 12 В. Если же из подключить параллельно – они сгорят.

Параллельно подключенные последовательные тройки световых диодов

Подключение световых диодов на 12 В как самый оптимальный вариант

Любая светодиодная лента рассчитана на подключение к стабилизатору, выдающему 12 или 24 В. На сегодняшний день на прилавках российских магазинов представлен огромный ассортимент изделий различных производителей с этими параметрами. Но все же преобладают ленты и контроллеры именно 12 В. Это напряжение более безопасно для человека, да и стоимость таких приборов более низка. О самостоятельном подключении к сети 12 В говорилось чуть выше, ну а с подключением к контроллеру проблем возникнуть не должно – к ним прилагается схема, с которой разберется даже школьник.

Идеальная подсветка потолка при помощи светодиодной ленты

В заключение

Популярность, которую набирают световые диоды, не может не радовать. Ведь это заставляет прогресс двигаться вперед. И кто знает, быть может, уже в ближайшее время появятся новые светодиоды, которые будут на порядок выше по характеристикам, чем существующие сейчас.

Надеемся, наша статья была полезна уважаемому читателю. При возникновении вопросов по теме просим задавать их в обсуждениях. Наша команда всегда готова на них ответить. Пишите, делитесь опытом, ведь он может кому-то помочь.

Видео: как правильно подключить светодиод

Светодиод 8мм, белого свечения, 0,5Вт 4500-6500К. 100шт

Широкоугольный, ультра яркий 8мм светодиод белого свечения, повышенной яркости 10000 мкд-11000 мкд. Производитель указывает цветовую температуру 5500-6500К, но в партии могут быть светодиоды с цветовой температурой 4500-6500К. (Если нужна точная цветовая температура, смотрите светодиоды премиум класса-они не имеют разброса цветовой температуры, намного ярче и надежнее).  Максимальный рабочий ток указан производителем 150мА, но для 8мм светодиодов класса «стандарт» рекомендуемый рабочий ток  не более 120мА. Несмотря на заявленные производителем неточности, данные светодиоды, ввиду своей низкой стоимости, находят широкое применение для использования в рекламе, светильниках, а также отлично подходят для замены в фонариках и фарах дневного света где используются широкоугольные светодиоды совместно с узконаправленным отражателем при этом яркость фонарика будет выше, потому что производители обычно используют дешевые светодиоды эконом класса с меньшей яркостью.
В упаковке 100шт светодиодов.

Технические характеристики от производителя:
Напряжение питания постоянного тока:   3.0 В — 3.2 В
Максимальный рабочий ток:             150мА
Номинальный рабочий ток:    60-120мА
Сила света (Яркость):    10 00мкд-11 000мкд
Световой поток:          30 Лм-35 Лм
Излучаемый свет:  БЕЛЫЙ
Цветовая температура:  4500К-6500К
Цвет корпуса: прозрачный
Диаметр корпуса:     8мм
Высота корпуса:       7мм
Угол рассеивания:  120º

Характеристики
Входное напряжение
DC 3.0 В-3.2 В
Высота корпуса7мм
Диаметр корпуса8мм
Максимальный рабочий ток150мА
Номинальный рабочий ток60-120мА
Световой поток Lm30-35Лм
Сила света (Яркость) mcd10 000 -11 000мкд
Угол излучения120º
Цвет корпусапрозрачный

Надежность белых светодиодов.

Деградация параметров.

Статья посвящена анализу надежности люминофорных светодиодов белого цвета свечения различных производителей и может быть полезна разработчикам устройств на базе твердотельных источников света. В статье использованы публикации результатов испытаний и характеристики образцов светодиодов и их сравнение с параметрами, заявленными производителем.

См. также:                                                      Температурный режим белых светодиодов
Неисправности светодиодов. Механизмы возникновения и методы анализа
Светодиоды с высокой эффективностью при больших значениях тока
Современный подход к разработке светодиодного освещения

Применение белых светодиодов

Значительный прогресс в технологии изготовления светодиодов в 2005-2009 годах дал толчок к широкому применению светодиодных технологий в различных отраслях человеческой деятельности и в быту. Совершенствование технологии изготовления, как самих светодиодов, так и схем управления и источников питания позволило создать достаточно эффективный светодиодный источник света для целей освещения.

И такое уникальное качество, как отсутствие хрупких элементов, взрывобезопасность, сделали светодиод незаменимым в некоторых областях применения. Кроме того, в условиях глобальных усилий по снижению энергозатрат, вслед за экспансией люминесцентных источников света, на рынок активно продвигаются светодиодные устройства. Повышенный спрос на твердотельные источники света приводит к снижению их стоимости за счет массового производства и значительной конкуренции.

Наиболее широко источники светодиодного освещения предлагаются для бытового и промышленного освещения в качестве замены ламп накаливания и люминесцентных ламп. Судя по заявлениям производителей, светильники на основе белых светодиодов позволяют достичь большей на 20-50% эффективности и значительно, в разы большей долговечности, по сравнению с люминесцентными лампами сравнимой мощности. Таким образом, стоимость владения таким источником света становится сравнимой или даже меньше, чем аналогичные по светосиле люминесцентные светильники.

Кроме светильников, за счет малых размеров и низкого тепловыделения, светодиодная подсветка используется в различных приборах, в автомобилестроении, в качестве декоративной подсветки, в рекламе, для изготовления электронных табло.

Технология изготовления белых светодиодов

Физика получения белого цвета свечения базируется на преобразовании спектра исходного излучения при помощи люминофора. В качестве исходного, в нашем случае, используется излучение кристалла на основе AlInGaN синего цвета, чаще всего излучающего в диапазоне длин волн 450–465 нм. После преобразования происходит сильное увеличение ширины спектра за счет добавления в спектр переизлученной люминофором мощности в желтой и красной областях спектра (рис. 1). Спектр такого сочетания синего кристалла и люминофора получается гораздо шире и более заполненным, чем спектр люминесцентной лампы или вольтовой дуги.

Рис. 1. Спектры свечения синего и белого люминофорного светодиода на его базе, линия видности по МКО.

Таким образом, зависимости многих параметров белых светодиодов будут определяться соответствующими параметрами базового синего кристалла, поэтому рассмотрим его параметры. На рис. 2 показаны зависимости отношения люмена к потребляемым ваттам (далее — лм/Вт) от плотности тока для кристаллов производства Cree.

Рис. 2. Зависимости светового выхода лм/Вт и КПД для различных чипов на основе AlInGaN производства компании Cree от плотности тока через кристалл.

Для оценки эффективности выбраны зависимости от плотности тока, а не от его полного значения. Это дает возможность оценить характеристики, не связанные с геометрическими параметрами излучающих чипов, понять их абсолютную эффективность.

Из графиков на рис. 2 видно, что снижение эффективности светового выхода с ростом плотности тока ярко выражено и не зависит от размера чипа. Видно, что светоотдача, или квантовая эффективность, максимальна при малых значениях плотности тока и снижается более чем в два раза при увеличении плотности тока до максимальных значений. Это снижение вероятнее всего определяется разогревающим эффектом при прохождении тока через кристалл. Наиболее эффективным становится конструкция излучателя с минимальным тепловым сопротивлением чип — подложка, позволяющим снизить температуру. Следовательно, повышение эффективности теплоотвода становится приоритетным направлением при разработке высокоэффективных излучателей.

Точно такие же зависимости можно увидеть и на графиках, показанных на рис. 3, которые получены для светодиодов белого цвета свечения. Следует отметить хорошо заметный на этих графиках максимум при малых значениях плотности тока. Возможно, это связано с резонансной особенностью работы системы параллельных структур кристалла. При больших плотностях тока, начинают действовать другие причины, снижающие эффективность излучения: последовательное сопротивление структуры и подложки, а значит и разогрев, безизлучательная рекомбинация, неравномерность плотности тока по площади чипа.

Рис. 3. Графики эффективности и КПД от прямого тока для различных белых светодиодов компании Cree.

Сопоставляя значения эффективности, показанные на рис. 3, можно определить коэффициент преобразования люминофора. Для различных значений плотности тока получается следующая картина: (табл. 1).

Таблица 1. Эффективность излучения и коэффициент преобразования люминофора

Если световой поток первичного синего кристалла света равен 11,5 лм, то при том же токе в 350 мA, световой поток светодиода с люминофором белого цвета свечения на основе этого же кристалла будет 34,5 лм, что в 3 раза больше. В различных вариантах исполнения белых люминофорных светодиодов, отношение светового потока к излучению исходного синего чипа может доходить до пяти, и как правило, для большинства светодиодов ведущих производителей имеет значение не менее четырех, что свидетельствует о высоком качестве используемого люминофора. Этот коэффициент, как показывают исследования, практически не зависит от плотности тока в диапазоне паспортных значений, как видно из таблицы 1, и указывает на то, что коэффициент преобразования определяется только свойствами люминофора. Максимальный коэффициент преобразования люминофора можно наблюдать в светодиодах компании Nichia с кристаллами на подложках из сапфира.

В общем случае, видно, что зависимость эффективности белых светодиодов от плотности тока хорошо повторяет такие зависимости для синих светодиодов, составляющих основу белых светодиодов. Можно сделать вывод о прямой зависимости светоотдачи от температуры p-n перехода.

Тенденции развития технологии

Совершенствование технологии производства всех компонентов светодиодов, излучающие кристаллы, метод их установки на эвтектический сплав, линзы из кварцевого стекла, корпуса из керамики, люминофорное покрытие кристалла, существенно повысило надежность и энергетический выход излучения. В современных светодиодах уменьшено тепловое сопротивление p-n-переход–кристаллодержатель, которое достигает у некоторых производителей уровня не более 8 °С/Вт. Это стало возможным с началом применения SiC в качестве подложки светодиодных чипов, что позволило монтировать чип на теплоотвод с применением эвтектического сплава. Кроме того, толщина подложки снижена до 2–3 мкм. Применение этой технологии при изготовлении чипов большого размера позволило достичь большого светового выхода — более 100 лм/Вт за счет уменьшения прямого напряжения при плотностях тока в 50 и более A/cм2. Усовершенствование коснулось и процесса выращивания самих полупроводниковых структур, сто способствовало повышению равномерности растекания тока по объему материала кристалла. Кроме того, проводимость эвтектического сплава выше проводимости токопроводящего эпоксидного клея, что особенно сказывается на больших плотностях тока. Увеличение светоотдачи достигается и в результате оптимизации формы самого излучающего кристалла, позволяющей более эффективно выводить излучение за его пределы.

В поиске пути снижения теплового сопротивления p-n-переход — кристаллодержатель, некоторые производители светодиодов пробуют переворачивать чип p-n-переходом к теплоотводу, метод «Flip-Chip». Это существенно снижает температуру p-n-перехода одновременно с улучшением условий выхода излучения из кристалла. Эта технология позволяет увеличить плотность тока через кристалл. Развивается и методика производства кристаллов с применением эффекта Пельтье (полупроводниковый охладитель) непосредственно под излучающим кристаллом.

Деградация параметров белых светодиодов

Задача достоверной оценки стабильности параметров светодиодных излучателей для проектирования на их базе разнообразных изделий значительно усложняется из-за возникающей в процессе работы светодиодов деградации параметров излучения. Разработчика ответственных устройств с применением светодиодов уже не может устроить стандартный параметр надежности, который указывает большинство производителей светодиодов, например, гарантированная наработка 100 000 часов с потерей до 30% светового потока, поскольку этот параметр не подтверждается расчетами и фактами. Совершенно очевидно, что опытным путем никто не проверял, насколько эта величина соответствует реальному положению дел, хотя бы потому, что для этого требуется не меньше десяти лет, к тому же, изменение параметров зависит от различных факторов, в том числе, от режимов и условий эксплуатации. Оценка деградации параметров на базе методов ускоренного старения при работе в предельных режимах не может считаться корректной из-за воздействия в таких режимах других физических особенностей работы полупроводниковой структуры, которые не всегда работают в нормальных условиях эксплуатации.

Видимо в связи с наработкой экспериментов в последнее время некоторые производители светодиодов стали указывать в спецификациях зависимости некоторых параметров от наработки. Чаще всего такую информацию предоставляют крупные фирмы, заинтересованные в качестве своей продукции и имеющие возможности для проведения соответствующих затратных исследований. Публикует такие данные, основанные на экспериментах и фирма Cree. Однако, как показали параллельные независимые исследования, наблюдаются несоответствия между реальными параметрами и заявленными.

Несмотря на то, что основной физической характеристикой излучения светодиодов является световой поток, зависимости изменения светового потока удобнее рассматривать одновременно с анализом изменения связанных параметров, например, силы света (рис. 4).

Исследования проводились при указанном изготовителем токе 350 мA и теплоотводе площадью более 100 кв.см, что значительно больше требуемого. Сначала обратим внимание на световой поток, обозначенный на графиках как Ф(Т). Показанные зависимости светового потока от наработки дают различное изменение параметров при разных начальных его значениях. Как видно на графике, бóльшему значению светового потока (рис. 4б) (а значит и бóльшему отношению лм/Вт) соответствует бóльшее падение значения светового потока со временем по сравнению с приборами меньшей эффективности. Видно, что завершение периода стабилизации параметров и начало снижения светового потока ниже первоначального значения по информации компании Cree наблюдается в районе 5000 часов, тогда как у реальных образцов этот момент наблюдается при наработке от 800 до 2500 часов. Но самое существенное, что к указанному производителем моменту в 5000 часов, световой поток реальных образцов достигает уже совсем неприемлемого уровня. Это означает, что уже через полгода снижение светового потока может достигнуть 6–8%, хотя зависимость на рис. 4а говорит о другом. На первый взгляд, это не очень много, но если учесть дальнейшие рассуждения, то можно прийти к выводу, что это это достаточно существенно.

Конечно, максимально достоверные результаты деградации параметров могут быть получены лишь при реальной наработке в течение всего заявленного срока службы. Но такие продолжительные эксперименты (10–12 лет) реализовать достаточно затруднительно. Однако, опыт исследований, знание физических основ работы полупроводниковых структур, расчеты и моделирование с использованием данных по наработке в течение относительно небольшого периода работы, позволяет разработать методики оценки без проведения длительных исследований и операций искусственного старения. На рисунке 5 представлены данные таких расчетов на основе измерений значений светового потока светодиодов в течение 8000 часов наработки.

Рис. 5. Расчетные деградационные характеристики светодиодов Cree.

Как следует из рис. 5, 4б и 4в, для некоторых «ранков» светодиодов, уже при 10–12 тысяч часов наработки (1,5 года) световой поток падает на 10–12%. А при достижении значения предельной наработки, указанного изготовителем, снижение уже составляет от 55 до 75%.

Причины такого поведения характеристик детально рассмотрены в работе [1]. Не буду повторять рассуждения автора, остановлюсь на выводе. Большая площадь поверхности кристалла приводит к неравномерности распределения плотности тока по поверхности чипа и соответственно, светового потока, что усиливается при наработке. Для белых люминофорных  светодиодов достоверный ответ как на причины деградации, так и на правильную оценку параметров светодиодов для разработчиков, оказывается неоднозначной. Во первых, нанесенный на поверхность кристалла люминофор значительно сглаживает все неравномерности, во вторых, начинают проявляться другие механизмы, свойственные только излучению широкого спектра, близкого к белому. Можно увидеть, что характер изменения светового потока белых светодиодов с различными отношениями эффективности излучения полностью соответствует диаграмме исходного синего. Однако и здесь видно, что наиболее резкие и большие по амплитуде изменения свойственны светодиодам с наибольшими показателями эффективности.

Помимо рассмотренных выше особенностей белых светодиодов на основе люминофора, существует также проблема неравномерности цветовых параметров излучения светодиодов по диаграмме направленности. Это, прежде всего, связано с неравномерностью нанесения люминофора на кристалл при его изготовлении. Совершенно понятно, что чем больше площадь чипа, тем труднее нанести слой люминофора одинаковой толщины и качества. К тому же, с наработкой вступают вступают факторы, связанные с качеством изготовления самого чипа, как то локальный перегрев, что влияет на изменение цветовых параметров в процессе наработки.

Так же как и в случае со световым потоком, наибольшему разбросу цветности светодиодов различных «ранков» в зависимости от значения эффективности соответствуют приборы с высокими значениями эффективности. Очевидно, что это обусловлено именно неравномерностью плотности тока.

Выводы

Ни у кого не вызывают сомнения хорошие перспективы применения осветительных светодиодов. По мере совершенствования технологии изготовления, увеличивается срок службы таких изделий. Сегодня основная борьба в области развития технологий касается совершенствования внутренней структуры светодиода в целях снижения теплового сопротивления системы размещения полупроводникового чипа, характеристик и точности воспроизведения параметров самого чипа, состава и методов нанесения люминофора. Белые светодиоды «хороших» производителей становятся достаточно стабильными для большинства применений. Доля старения люминофора в деградации всего светодиодного устройства снижается, не за горами время, когда основной и подавляющей причиной изменения свойств светодиодов станет деградация полупроводниковой структуры, а общая надежность светодиодного источника позволит не учитывать её в большинстве разработок.

Литература

1. Никифоров С. Исследование параметров семейства светодиодов CREE XLamp. Компоненты и технологии. 2006 №11

2. Полищук А. Деградация полупроводниковых светодиодов на основе нитрида галлия и его твердых растворов. Компоненты и технологии. 2008 №2

3. Никифоров С. Самые современные источники света. ExpoElectronica & ElectronTechExpo 2008

4. Никифоров С. Исследование нового семейства мощных светодиодов CREE XLamp XP-E для устройств освещения. Полупроводниковая светотехника. №2 2009

5. Никифоров С. Новые возможности светодиодов Luxeon REBEL. Полупроводниковая светотехника. №2 2011

 

Назад к каталогу статей >>>

Типы и виды современных светодиодов

Для того чтобы не растеряться среди многообразия видов и типов светодиодов, нужен единый стандарт, в соответствии с которым все светоизлучающие диоды можно разделить на группы по тем или иным параметрам. Но как оказалось, такого стандарта не существует, и каждый производитель светодиодов классифицирует продукцию по своему усмотрению. Причина такого подхода очевидна. Оптоэлектроника стремительно развивается, появляются все новые модели светодиодов, сделанные по более совершенным технологиям.

К сожалению, перечислить сначала основные, а затем второстепенные характеристики также не получится. Такое деление весьма субъективно. Поэтому придется приступить к детальному рассмотрению вопроса, чтобы читатель наглядно смог ознакомиться со всеми наиболее распространенными видами и типами светоизлучающих диодов.

Классификация по цветовой гамме

Нынешние технологии позволяют получить кристалл светодиода с любым цветом излучения в видимом диапазоне. Для этого используют химические соединения полупроводниковых материалов индия и галлия с разными элементами. С целью унификации, кроме цвета, на упаковке с изделием указывают ещё одну характеристику: длину волны излучения. Она помогает максимально точно идентифицировать оттенок. Например, к светодиоду с зелёным свечением можно отнести любой светоизлучающий кристалл с длиной волны от 500 до 570 нм. При этом экземпляр с λ=500-520 нм будет иметь цвет морской волны, а с λ более 550 нм — салатный оттенок. Промежуточные цвета получают методом близкого расположения трёх кристаллов: синего, красного и зеленого с последующим управлением мощностью их свечения. Это так называемые RGB-светодиоды. Существуют также двуцветные виды, используемые в основном в индикаторной подсветке.

Отдельным абзацем следует упомянуть о белых типах светодиодов. Они имеют широкий спектр излучения и формируются, как правило, на базе ультрафиолетового светодиода, покрытого люминофором. Светодиоды белого свечения имеют свою градацию по оттенкам (теплый, нейтральный, холодный), что выражается в виде такого параметра как цветовая температура.

УФ и ИК типы излучающих диодов хотя и не работают в видимом спектре, но своей практической пользой также заслуживают место в перечне разновидностей светодиодов.

Различия по мощности

В зависимости от назначения мощность потребления может составлять от единиц мВт до десятков Вт. Первые, самые маленькие типы светодиодов – это бескорпусные кристаллы. Их используют для создания COB-матриц с применением последних технологий. Ко второму типу условно можно отнести изделия мощностью от 60 мВт до 1 Вт (ультраяркие в прозрачном корпусе, SMD 3528 и их производные). В третью группу войдут светодиоды с мощностью рассеивания более 1 Вт, требующие применения дополнительной системы охлаждения. Самыми мощными принято считать COB-матрицы. Один такой модуль размером 35х35 мм способен рассеивать до 180 Вт.

Сила света

Данная характеристика напрямую связана с такими параметрами как мощность, угол свечения и технологией производства. Чем меньше угол, тем больше яркость в точке измерения. Сверхъяркие светодиоды с углом рассеивания светового потока 110° имеют силу света около 1000 мкд, а с углом 15° – силу света 35000 мкд.

В американской корпорации Cree каждое поколение мощных белых светодиодов заносят в отдельную группу (S5, T6, U3…). Таким образом, производитель старается выделить каждый новый тип светодиода, имеющий повышенный световой поток при прежней мощности потребления.
 

Стоит отметить, что устаревшие диффузные светодиоды типа АЛ307 с силой света 0,4-6 мкд перестали быть востребованы и практически вытеснены сверхъяркими аналогами со светоотдачей в тысячи раз больше.

Классификация по напряжению

Падение напряжения однокристальных светодиодов определяется их мощностью и цветом излучения и имеет фиксированные рамки. Например, в характеристике белого светоизлучающего диода может быть указано падение напряжения от 3,3 до 3,6 В.

Наращивание тока через кристалл с целью увеличения яркости не могло продолжаться бесконечно. В итоге компании наладили выпуск многокристальных светодиодов, которые рассчитаны на напряжение 9, 12, 18, 24, 48, 72 вольт. Ярким представителем этого семейства является COB-матрицы белого свечения.

Нельзя не вспомнить о филаментах, которые питаются постоянным напряжением около 70 В. Эти специфические стержни используются в лампах с имитацией нити накала.

Тип исполнения и назначение

Если вдаваться в детали, то этот раздел станет очень обширным. Ведь каждый производитель выпускает сотни видов светодиодов, отличающихся геометрическими размерами. И всё же существуют признаки, по которым можно их упорядочить. Перечислим основные типы светодиодов.

  1. Слаботочные. Сверхъяркие двухвыводные светодиоды в круглом прозрачном корпусе 3, 5 или 10 мм. Чаще всего данный тип светодиодов применяют в качестве индикаторов, рекламно-информационных модулях или светофорах. Вторая подразновидность слаботочных светодиодов – компоненты в SMD корпусе прямоугольной или квадратной формы размером до 3х3,5 мм. SMD варианты наиболее часто используются в построении бегущих строк и систем индикации.
  2. Мощные SMD. Собраны на одном кристалле без линзы, применяется данный тип в светодиодных лампах и лентах широкого потребления. Также есть варианты, собранные на нескольких кристаллах с общей линзой. Многокристальные виды светодиодов используются для промышленного и декоративного освещения.
  3. COB-модули. Изделия белого свечения могут достигать размера 38х38 мм в квадратном исполнении и 50х6 мм в форме линеек. Из-за повышенного светового потока востребованы в конструировании прожекторов и фонарей уличного освещения.
  4. Filament LED. Выполнен в виде стержня длиной около 30 мм с множеством кристаллов на поверхности. В настоящее время возможности филаментных светильников только раскрываются. Пока Filament LED массово применяются только для создания нитевидных ламп на 220В.
  5. OLED. Этот тип тонкопленочных органических светодиодов применяется для построения органических дисплеев.
  6. Излучающие диоды в ИК и УФ-диапазоне. Выпускают как в корпусе с выводами, так и в SMD исполнении. Среди товаров широкого потребления их можно увидеть в пультах ДУ и лампах для сушки ногтей.

В заключение стоит отметить, что приведенная классификация светодиодов не является полной и может быть ещё дополнена подвидами и группами. То же самое касается постоянно расширяющейся сферы применения. Но общая концепция, которую выдвигают лидеры в производстве оптоэлектроники Nichia, Cree и Philips в данной статье описана максимально подробно.

Устройство светодиода принцип работы светодиода преимущества

Светодиод: устройство, принцип работы, преимущества

Интерес к светодиодам растет быстрее, чем территория их применения в светотехнике. Производители и потребители, продавцы и покупатели — все как будто замерли на старте, боясь отстать от других. И только дизайнеры уже вовсю пользуются уникальными возможностями светодиодов. Давно прошло то время, когда светодиоды были интересны одним лишь ученым. Теперь светодиодная тема у всех на слуху. Говорят, за ними будущее.

Светодиоды излучают не только уникальный по своим характеристикам свет, но и завидный оптимизм по поводу своего места на рынке светотехники. Особенно активно экспансия LED разворачивается в области интерьерного оформления и светодизайна.

Настоящая публикация не случайно построена в форме вопросов и ответов (FAQ, frequently asked questions — часто задаваемые вопросы). Именно так заинтересованный человек подходит к новому для него объекту, с тем чтобы «пощупать» его с разных сторон и уж потом решить: нужен — не нужен. А мне задавать правильные вопросы и находить на них верные ответы помогал профессор МГУ Александр Эммануилович Юнович, один из ведущих российских специалистов по светодиодам.

1. Что такое светодиод?

Светодиод — это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. Кстати, по-английски светодиод называется light emitting diode, или LED.

2. Из чего состоит светодиод?

Из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные светодиоды мало похожи на первые корпусные светодиоды, применявшиеся для индикации.

Рис. 1. Конструкция светодиода Luxeon фирмы Lumileds lighting.

3. Как работает светодиод?

Свечение возникает при рекомбинации электронов и дырок в области p-n-перехода. Значит, прежде всего нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.

Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу.

Реально, чтобы соблюсти оба условия, одного р-п-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.

4. Означает ли это, что чем больший ток проходит через светодиод, тем он светит ярче?

Разумеется, да. Ведь чем больше ток, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени. Но ток нельзя увеличивать до бесконечности. Из-за внутреннего сопротивления полупроводника и p-n-перехода диод перегреется и выйдет из строя.

5. Чем хорош светодиод?

В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и, теоретически, это можно сделать почти без потерь. Действительно, светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы достигает 100 тысяч часов, что в 100 раз больше, чем у лампочки накаливания, и в 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод — низковольтный электроприбор, а стало быть, безопасный.

6. Чем плох светодиод?

Только одним — ценой. Пока что цена одного люмена, излученного светодиодом, в 100 раз выше, чем галогенной лампой. Но специалисты утверждают, что в ближайшие 2-3 года этот показатель будет снижен в 10 раз.

7. Когда светодиоды начали применяться для освещения?

Первоначально светодиоды применялись исключительно для индикации. Чтобы сделать их пригодными для освещения, необходимо было прежде всего научиться изготавливать белые светодиоды, а также увеличить их яркость, а точнее светоотдачу, то есть отношение светового потока к потребляемой энергии.

В 60-х и 70-х годах были созданы светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации. По светоотдаче светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Одно было плохо — не существовало светодиодов синего, сине-зеленого и белого цвета.

К концу 80-х годов в СССР выпускалось более 100 млн светодиодов в год, а мировое производство составляло несколько десятков миллиардов.

8. От чего зависит цвет светодиода?

Исключительно от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника, и от легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.

9. Какие трудности пришлось преодолеть ученым, чтобы изготовить голубой светодиод?

Голубые светодиоды можно сделать на основе полупроводников с большой шириной запрещенной зоны — карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы. (Помните таблицу Менделеева?)

У светодиодов на основе SiC оказался слишком мал КПД и низок квантовый выход излучения (то есть число излученных квантов на одну рекомбинировавшую пару). У светодиодов на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегревались из-за большого сопротивления и служили недолго. Оставалась надежда на нитриды.

Нитрид галлия GaN плавится при 2000 °С, при этом равновесное давление паров азота составляет 40 атмосфер; ясно, что растить такие кристаллы непросто. Аналогичные соединения — нитрилы алюминия и индия — тоже полупроводники. Их соединения образуют тройные твердые растворы с шириной запрещенной зоны, зависящей от состава, который можно подобрать так, чтобы генерировать свет нужной длины волны, в том числе и синий. Но… проблему не удавалось решить до конца 80-х годов.

Первым, еще в 70-х, голубой светодиод на основе пленок нитрида галлия на сапфировой подложке удалось получить профессору Жаку Панкову (Якову Исаевичу Панчечникову) из фирмы IBM (США). Квантовый выход был достаточен для практических применений, однако руководство сказало: «Ну, это ж на сапфире — дорого и не так уж ярко, к тому же p-n-переход нехорош. ..» — и работы Панкова не поддержали.

Между тем группа Сапарина и Чукичева из МГУ обнаружила, что под действием электронного пучка GaN с примесью цинка становится ярким люминофором, и даже запатентовала устройство оптической памяти. Но тогда загадочное явление объяснить не удалось.

Это сделали японцы — профессор И. Акасаки и доктор X. Амано из университета Нагоя. Обработав пленку GaN с примесью магния электронным пучком со сканированием, они получили ярко люминесцирующий слой р-типа с высокой концентрацией дырок. Однако разработчики светодиодов не обратили должного внимания на их публикации.

Лишь в 1989 году доктор Ш. Накамура из фирмы Nichia Chemical, исследуя пленки нитридов элементов III группы, сумел воспользоваться результатами профессора Акасаки. Он так подобрал легирование (Мд, Zn) и термообработку, заменив ею электронное сканирование, что смог получить эффективно инжектирующие слои р-типа в GaN-гетероструктурах. Вот как был получен голубой светодиод.

Фирма Nichia запатентовала ключевые этапы технологии и к концу 1997 года выпускала уже 10-20 млн голубых и зеленых светодиодов в месяц, а в январе 1998 года приступила к выпуску белых светодиодов.

10. Что такое квантовый выход светодиода?

Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электроннодырочную пару. Различают внутренний и внешний квантовый выход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться). Внутренний квантовый выход для хороших кристаллов с хорошим теплоотводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а для синих — 35%.

Внешний квантовый выход — одна из основных характеристик эффективности светодиода.

11. Как получить белый свет с использованием светодиодов?

Существует три способа получения белого света от светодиодов. Первый — смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа. И, наконец, в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой светодиод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.

12. Какой из трех способов лучше?

У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные светодиоды. Этим процессом можно управлять вручную или посредством программы, можно также получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномерного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.

Белые светодиоды с люминофорами существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них в принципе не проблема попасть в точку с координатами (0.33, 0.33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих — люминофор тоже стареет, причем быстрее, чем сам светодиод. Промышленность выпускает как светодиоды с люминофором, так и RGB-матрицы — у них разные области применения.

13. Каковы электрические и оптические характеристики светодиодов?

Светодиод — низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше — от нескольких сотен мА до 1А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно, и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).

При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.

Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.

14. Как реагирует светодиод на повышение температуры?

Говоря о температуре светодиода, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.

Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у AlGalnP- и AeGaAs-светодиодов, то есть у красных и желтых, и меньше у InGaN, то есть у зеленых, синих и белых.

15. Почему нужно стабилизировать ток через светодиод?

Как видно из рисунка 2, в рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.

Рис. 2. Зависимость силы тока от напряжения питания светодиода.

16. Для чего светодиоду требуется конвертор?

Конвертор (в англоязычной терминологии driver) для светодиода — то же, что балласт для лампы. Он стабилизирует ток, протекающий через светодиод.

17. Можно ли регулировать яркость светодиода?

Яркость светодиодов очень хорошо поддается регулированию, но не за счет снижения напряжения питания — этого-то как раз делать нельзя, — а так называемым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером управления цветом RGB-матрицы). Метод ШИМ заключается в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет. Небольшое изменение цветовой температуры светодиода при диммировании несравнимо с аналогичным смещением для ламп накаливания.

18. Чем определяется срок службы светодиода?

Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время 20-50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.

19. «Портится» ли цвет светодиода с течением времени?

Старение светодиода связано не только со снижением его яркости, но и с изменением цвета. В настоящее время нет стандартов, которые позволили бы выразить количественно изменение цвета светодиодов в процессе старения и сравнить с другими источниками.

20. Не вреден ли светодиод для человеческого глаза?

Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Хорошо это или плохо — доподлинно не известно, потому что, насколько я знаю, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии светодиодов на человеческий глаз отсутствуют.

Есть надежда, что вскоре влияние светодиодов на зрение будет изучено досконально. Проблемой заинтересовался академик Михаил Аркадьевич Островский — крупный специалист в области цветного зрения. Тема, за решение которой он взялся, называется так: «Психофизическое восприятие светодиодного освещения системой зрения человека».

21. Когда и как сверхъяркие светодиоды появились в России?

Об этом лучше всех расскажет профессор Юнович.

Люминесценцию карбида кремния впервые наблюдал Олег Владимирович Лосев в Нижегородской радиотехнической лаборатории в 1923 г. и показал, что она возникает вблизи p-n-перехода. Первая научная статья о кристаллах нитрида галлия была опубликована профессором МГУ Г.С. Ждановым в 30-х гг. Люминесценцию в гетероструктурах на основе арсенида галлия впервые исследовали в лаборатории Ж.И. Алферова в 60-х гг. и показали, что можно создать структуры с внутренним квантовым выходом близким к 100%. Разработки структур и светодиодов на основе нитрида галлия велись в ленинградских Политехническом и Электротехническом институтах, в Калуге, в Зеленограде в 70-х гг., но они тогда не привели к созданию эффективных голубых светодиодов.

В 1995 году я прочел первые статьи Накамуры и понял, что «голубая проблема» в принципе решена. Тогда же я получил грант соросовского фонда. В декабре на эти деньги я смог поехать на конференцию в США, и там профессор Жак Панков познакомил меня с Ш. Накамурой. Я забросил наживку: мол, хочу приобщить студентов Московского университета к передовым достижениям в области голубых светодиодов и рассказать им о столь замечательном изобретении. Рыбка клюнула, и в феврале я получил от д-ра Ш. Накамуры из Японии бандеролью 10 светодиодов от фиолетового до зеленого. Все потом оказалось просто — фирма Nichia Chemical начинала выпуск светодиодов на рынок и была заинтересована в научной рекламе. В лаборатории МГУ мы их досконально исследовали, сняли все характеристики и получили новые научные результаты. Д-р Ш. Накамура дал любезное согласие на совместную публикацию наших первых статей.

Одновременно специалисты из группы Бориса Ферапонтовича Тринчука в Зеленограде продемонстрировали образцы зеленых светодиодов начальникам из ГАИ и получили положительный отзыв. Все дело в том, что эта группа сделала опытный образец светодиодного светофора, но у них не было хороших зеленых светодиодов. Светофоры с новыми сверхъяркими зелеными светодиодами намного превосходили светофоры с лампами, и московское правительство сделало заказ на 1000 светодиодных светофоров к 850-летию Москвы. Такое везение!

Как раз тогда у нас гостила киргизская скрипачка Райкан Карагулова — выпускница Московской консерватории, ученица моей жены, которая работала в Японии первым концертмейстером симфонического оркестра в Осаке. Выяснилось, что место ее работы находится неподалеку от фирмы Nichia Chemical! Б.Ф. Тринчук дал ей тысячу долларов и попросил купить на них и прислать на мой адрес 200 зеленых светодиодов. Из них были изготовлены первые светофоры из той юбилейной тысячи. Москва стала первым в мире городом с массовым применением светодиодных светофоров.

Наши ученые и инженеры в НИИ «Сапфир» пытались повторить достижение японцев и изготовить структуры на основе нитридов для голубых и зеленых светодиодов на старой эпитаксиальной установке, которую пришлось модернизировать, чтобы достичь более высоких температур и давлений. Но инициатива заглохла из-за отсутствия денег и интереса руководства.

22. Какие на сегодняшний день существуют технологии изготовления светодиодов и светодиодных модулей?

Что касается выращивания кристаллов, то основная технология — металлоорганическая эпитаксия. Для этого процесса необходимы особо чистые газы. В современных установках предусмотрены автоматизация и контроль состава газов, их раздельные потоки, точная регулировка температуры газов и подложек. Толщины выращиваемых слоев измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон. Разные слои необходимо легировать примесями, донорами или акцепторами, чтобы создать p-n-переход с большой концентрацией электронов в n-области и дырок — в р-области.

Рис. 3. Схематическое представления светодиода.

За один процесс, который длится несколько часов, можно вырастить структуры на 6-12 подложках диаметром 50-75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек. Стоимость установок для эпитаксиального роста полупроводниковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5-2 млн долларов. Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необходимыми параметрами можно за время от одного года до трех лет. Это технология, требующая высокой культуры.

Важным этапом технологии является планарная обработка пленок: их травление, создание контактов к n- и р-слоям, покрытие металлическими пленками для контактных выводов. Пленку, выращенную на одной подложке, можно разрезать на несколько тысяч чипов размерами от 0,24 x 0,24 до 1 x 1 мм2/.

Следующим шагом является создание светодиодов из этих чипов. Необходимо смонтировать кристалл в корпусе, сделать контактные выводы, изготовить оптические покрытия, просветляющие поверхность для вывода излучения или отражающие его. Если это белый светодиод, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нужный телесный угол. Около половины стоимости светодиода определяется этими этапами высокой технологии.

Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного светодиода перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности. В связи с этим на смену традиционной технологии и несколько более совершенной SMD-технологии (surface montage details — поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board). Светодиод, изготовленный по технологии СОВ, схематически изображен на рисунке.

Светодиоды, выполненные по SMD- и СОВ-технологии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиатора — в этом случае она делается из металла. Так создаются светодиодные модули, которые могут иметь линейную, прямоугольную или круглую форму, быть жесткими или гибкими, короче, призваны удовлетворить любую прихоть дизайнера. Появляются и светодиодные лампы с таким же цоколем, как у низковольтных галогенных, призванные им на замену. А для мощных светильников и прожекторов изготавливаются светодиодные сборки на круглом массивном радиаторе.

Раньше в светодиодных сборках было очень много светодиодов. Сейчас, по мере увеличения мощности, светодиодов становится меньше, зато оптическая система, направляющая световой поток в нужный телесный угол, играет все большую роль.

23. Кто в мире сегодня производит светодиоды?

Чтобы делать качественные светодиоды в нужном количестве, понадобилось слияние двух отраслей — электронной и светотехнической. Все западные гиганты, производящие светодиоды для светотехники по полному циклу, начиная с производства чипов и заканчивая различными светодиодными модулями и сборками, а также светильниками на их основе, идут по этому пути. General Electric заключила союз с производителем полупроводниковых приборов Emcore, создав компанию GEL Core. Philips Lighting совместно с Agilent, дочерней компанией Hewlett-Packard, создали предприятие LumiLeds. Osram объединяет усилия с полупроводниковыми предприятиями своей материнской компании Siemens. Как заметил Макаранд Чипалкатти, менеджер по маркетингу из подразделения Opto Semiconductors компании Osram Sylvania, специализирующемуся на устройствах LED, производители светотехники сами уничтожают свой бизнес. Но если сегодня не «наступить на горло собственной песне», то завтра придут другие и сделают это куда более жестко.

Впрочем, существуют компании, специализирующиеся только на производстве чипов. Это предприятия радиоэлектронной промышленности, и они не занимаются светотехникой. К их числу относится Nichia Corporation.

24. Каковы основные производители светодиодных модулей и сборок и представленные ими модельные ряды?

Чипы и отдельные светодиоды производят компании Nichia Corporation, Сгее, LumiLeds Lighting, Opto Technology, Osram Opto Semiconductors, GEL Core. Массовое производство структур и чипов для светодиодов ведут тайваньские фирмы Lite-On, Taiwan Oasis и др.

В России светодиоды производят компании Корвет Лайт, Светлана Оптоэлектроника, Оптэл, Оптоника. По конструкции и технологическому исполнению наши светодиоды не уступают зарубежным, специалисты перечисленных компаний имеют соответствующие патенты. В Москве и Санкт-Петербурге есть возможность выращивать собственные чипы — например, эпитаксиальная установка имеется в Санкт-Петербургском физтехе, — но для промышленного производства необходимо крупное финансирование, и пока наши компании используют зарубежные чипы.

25. Где сегодня целесообразно применять светодиоды?

Светодиоды находят применение практически во всех областях светотехники, за исключением освещения производственных площадей, да и там могут использоваться в аварийном освещении. Светодиоды оказываются незаменимы в дизайнерском освещении благодаря их чистому цвету, а также в светодинамических системах. Выгодно же их применять там, где дорого обходится частое обслуживание, где необходимо жестко экономить электроэнергию, и где высоки требования по электробезопасности.

26. Возможности и применение

Изобретение первых светодиодов — полупроводниковых диодов в эпоксидной оболочке, выделяющих монохроматический свет при подключении к электротоку — относится к 1960-м годам. Однако до 1980-х низкая яркость, отсутствие светодиодов синего и белого цветов, а также высокие затраты на их производство ограничивали их массовое применение в качестве источников света. Поэтому светодиоды в основном использовали в наружных электронных табло, ими оборудовали системы регулирования дорожного движения, применяли в оптоволоконных системах передачи данных и медицинском оборудовании.

Появление сверх ярких, а также синих (в середине 1990-х годов) и белых диодов (в начале XXI века) и постоянное снижение их рыночной стоимости привлекли внимание многих производителей к данным источникам света. Светодиоды стали использовать в качестве индикаторов режимов работы электронных устройств, в подсветке жидкокристаллических экранов различных приборов, в том числе — мобильных телефонов и пр. Впоследствии применение светодиодов основных цветов (красного, синего и зеленого) позволило получать цвета вывесок фактически любых оттенков, а также конструировать из них дисплеи с выводом полноцветной графики и анимации.

Светодиоды, за счет их малой потребности в электроэнергии, — оптимальный выбор декоративного освещения в местах, где существуют проблемы с энергетикой.

Срок службы светодиодов, превышающий в 6-8 раз долговечность люминесцентных ламп, относительная простота в работе с ними на этапе сборки изделий, отсутствие необходимости в регулярном обслуживании и их антивандальные качества делают эти источники света конкурентоспособными с более традиционными газоразрядными, люминесцентными лампами и лампами накаливания. Одним из немногих и существенных аспектов, за счет которого неон удерживает свои позиции в сегменте подсветки вывесок, является пока еще более высокая стоимость светодиодов.

27. Преимущества

Экономично. ..

Одним из достоинств светодиодов является их долговечность. Данные источники света обладают ресурсом использования 100 000 часов, а ведь это 10-12 лет непрерывной работы. Для сравнения — максимальный срок работы неоновых и люминесцентных ламп составляет 10 тыс. часов.

За это же время в световом модуле, использующем люминесцентные лампы, их нужно будет сменить 8-10 раз, а лампы накаливания придется заново «вкручивать» от 30 до 40 раз. Использование светодиодных модулей позволяет снизить затраты на электроэнергию до 87%!

Удобно…

Светодиодный модуль — многокомпонентная структура с неприхотливой схемой подключения. В цепочке, скажем, из полусотни светодиодов один-два неисправных не только не выводят рекламный фрагмент из строя, но даже не влияют на суммарное световое излучение. Гигантский ресурс работы светодиодов практически решает проблемы, связанные с необходимостью их замены. Кроме того, светоизлучающие диоды способны надежно функционировать в самом широком диапазоне рабочих температур.

Надежно…

Есть надежность совершенно особого рода — та, от которой порою зависят человеческие жизни. Применение светодиодов в устройствах отображения информации (дорожные знаки, светофоры, информационные табло и т.д.) ведет к значительному увеличению расстояния их восприятия человеческим глазом. Неслучайно во многих крупных городах развитых стран уже нет обычных светофоров, а светодиодные схемы используются в воздушных и надводных навигационных системах.

Другим аспектом, благодаря которому светодиодам некоторыми заказчиками отдается предпочтение, являются их прочность и антивандальные качества. В отличие от стеклянных трубок данные источники света изготовлены из пластика. За счет этого их нелегко вывести из строя посредством механических повреждений. Характерное напряжение, необходимое для работы одного светодиода, — 3-4 вольта. Поэтому в условиях, когда требуется соблюдение повышенных мер безопасности или нет возможности использовать высокие напряжения, светодиоды являются оптимальным выбором. Рабочее напряжение светодиодных модулей, как упоминалось ранее, составляет 10-12 В. Очевидно, что при низком напряжении не требуется применять провода большого сечения с сильной изоляцией. Это также облегчает подключение светодиодов к электросети. У газоразрядных трубок, в отличие от светодиодов, есть порог срабатывания: чтобы источник света загорелся, в начале необходимо подать на разряд необходимое напряжение. Светодиоды же начинают излучать свет сразу при подключении к электросети, и их яркость легко регулировать наращиванием или снижением напряжения практически сразу после включения. Одним из важных преимуществ светодиодов является устойчивость к воздействию низких температур. Известно, что на морозе внутри газоразрядных источников света происходит вымерзание ртути, и это приводит к снижению яркости свечения. При отрицательных температурах также возникают проблемы с включением неона. Светодиоды лишены этих минусов.

Красиво…

Если бы LED-технологии не изобрели светотехники, их бы создали дизайнеры. Светодиоды, в отличие от ламп с неоном, имеют практически неограниченные возможности для «игры» со спектрами, цепочки которых можно выстроить таким образом, чтобы световые акценты точно работали на образ. Плавные, почти незаметные для глаза световые переходы от пика к пику в плане выразительности, конечно, уступают живописи, но оставляют далеко позади другие источники света. Изощренная цветодинамика, характерная для светодиодных модулей, способна удовлетворить требования самого требовательного дизайнера. Интересно, что игра со спектрами имеет и экологическое значение. Ведь кривые чувствительности, скажем, растений и человеческого глаза не совпадают: те спектры, которые комфортны для нашего глаза, часто дискомфортны для растений, и наоборот. Зональное использование различных светодиодных «цепочек» в тех интерьерах, где одновременно пребывают и растения, и человек, снимают эту проблему.

Представительно…

Светодиодные модули необычайно компактны. Различные сувениры, миниатюрные стенды и компактные табло, украшенные светодиодной символикой компании, смотрятся на удивление выразительно и необычно. Доля рынка светотехнических изделий, занимаемая светодиодами, составляет ничтожную долю. В развитых странах, особенно в крупных городах и столицах, она медленно, но верно возрастает. Своеобразным символом этой нежной и неизбежной революции стало гигантское 500-метровое полотно из светодиодов, непрерывно протянувшееся над главной улицей Лас-Вегаса.

Как получается белый свет с помощью светодиодов? | Системы светодиодного освещения | Ответы на освещение

Как получается белый свет с помощью светодиодов?

В настоящее время существует два подхода к созданию белого света.

Смешанный белый свет: один из подходов — смешать свет от нескольких цветных светодиодов (рис. 4) для создания спектрального распределения мощности, которое выглядит белым. Точно так называемые трехфосфорные люминесцентные лампы используют три люминофора, каждый из которых излучает относительно узкий спектр синего, зеленого или красного света при получении ультрафиолетового излучения от ртутной дуги в ламповой трубке.Поместив красный, зеленый и синий светодиоды рядом друг с другом и правильно смешав количество их выходного сигнала (Zhao et al. 2002), полученный свет станет белым на вид.

Рисунок 4. Спектральное распределение мощности нескольких типов светодиодов.

Белый свет с преобразованием люминофора: Другой подход к созданию белого света заключается в использовании люминофоров вместе с коротковолновыми светодиодами. Например, когда один люминофор, используемый в светодиодах, освещается синим светом, он излучает желтый свет, имеющий довольно широкое спектральное распределение мощности. За счет включения люминофора в корпус синего светодиода с максимальной длиной волны от 450 до 470 нанометров, часть синего света будет преобразована люминофором в желтый свет. Оставшийся синий свет при смешивании с желтым светом дает белый свет. Новые люминофоры разрабатываются для улучшения цветопередачи, как показано на рисунке 5.

Рис. 5. Спектральное распределение мощности первых белых светодиодов на основе люминофора (слева) и белых светодиодов с использованием недавно разработанных люминофоров (справа) с увеличенной выходной мощностью от 600 до 650 нанометров.

Технические параметры | Greenie-world.com

Существуют также другие источники света, например, декоративные лампочки или дуговые лампы в кинопроекторах, а также ртутные лампы, ранее использовавшиеся на складах и в производственных цехах, а также на железных дорогах.

Важно отметить, что вся система цоколя и светодиодной лампы будет иметь гораздо меньший КПД, чем светодиодный диод, который является только частью такого устройства.Светодиодные источники света хорошего качества имеют эффективность более 80 лм / Вт. В случае промышленных решений они должны иметь эффективность более 85-90 лм / Вт.

Индекс цветопередачи CRI — определяет, насколько хорошо источник света воспроизводит цвета, это число от 0 до 100. Аббревиатура «CRI» означает индекс цветопередачи. Значение 0 относится к одноцветному свету (монохромному), то есть к одной длине электромагнитной волны видимого диапазона (380-760 нм), максимально возможное значение индекса цветопередачи — 100 — относится к белому свету с непрерывным спектром.

Наряду с увеличением значения индекса цвет предметов стал лучше и естественнее. Низкие значения индекса CRI конкретного источника света делают цвета блеклыми, а в исключительных случаях — черными. Например, если осветить стену из красного кирпича только голубым светом, то эту стену будет очень трудно увидеть, не говоря уже о невозможности определить цвет самой стены.

Натриевые лампы низкого давления имеют самый низкий индекс цветопередачи среди широко известных и используемых источников света, в то время как наиболее распространенные в уличном освещении натриевые лампы высокого давления обеспечивают цветопередачу 20-30.Светодиодные лампы, используемые снаружи, обеспечивают индекс цветопередачи 70 или более.

В случае офисных приложений мы можем найти его для люминесцентных ламп с кодом 740 или 840, они обеспечивают свет с индексом цветопередачи 70+ и 80+. В таких применениях светодиода наименьшее значение индекса цветопередачи составляет 80+, есть также светодиоды с цветопередачей 90+ и даже специальные модули с 95+ CRI.

Рекомендации, связанные с индексом цветопередачи:

Очень высокий CRI — 90+ рекомендуется для работ, в которых важно распознавание определенных цветов, например.грамм. магазины, полиграфия, настройка цветовых шаблонов, арт-студии.

Высокий индекс цветопередачи — от 80 до 90, рекомендуется для офисной работы в аудиториях и аудиториях, а также в текстильной промышленности и других работах, требующих точности. Это самая распространенная рекомендация, она касается большинства работ, выполняемых внутри и в местах длительного проживания людей.

Средний и низкий индекс цветопередачи — ниже 80, однако выше или равен 40 используется для промышленных работ, в которых различение цветов не имеет существенного значения.

Цветовая температура света — определяет цвет белого света, но не включает яркость, правильная единица — Кельвин [K].

Цветовая температура тесно связана с теорией Совершенного Черного Тела, которое в действительности не существует, физического тела, которое поглощает все направленное на него электромагнитное излучение. В случае нагрева такого тела выше определенной температуры, выраженной в градусах Кельвина, оно будет генерировать электромагнитное излучение в видимом диапазоне, максимум которого увеличивается вместе с повышением температуры.

Например, источник света, излучающий белый свет с цветовой температурой 4000K, светит так же, как и идеально черное тело, нагретое до такой температуры. Однако в случае светодиода это не означает, что такой источник света достигает такой высокой температуры в любой точке конструкции.

По источникам, обеспечивающим белый цвет света, можно выделить три группы:

Теплый белый цвет — Согласно стандарту PN-EN 12464-1, касающемуся освещения рабочих мест в помещении, это цветовая температура ниже 3300 K.Светодиоды этого цвета имеют такую ​​же цветовую температуру, как и свет от классической лампочки. Светодиодные лампы прекрасно заменят старые энергоемкие источники света.

Нейтральный белый цвет — согласно стандарту PN-EN 12464-1 это цветовая температура в диапазоне от 3300 K до 5300 K. Это цвет, наиболее часто используемый для люминесцентных ламп. В случае светодиодов диапазон цветовой температуры обычно уже и составляет 3800-4200 или 4000-4500 К. Свет нейтрального цвета наиболее близок к чисто белому свету, идеально подходит для всех типов магазинов и коммерческих помещений.

Холодный белый цвет — стандарт PN-EN 12464-1 определяет его как цветовую температуру более 5300 K. Это холодно-белый свет, но в случае светодиодов он дает больше света, чем более теплый цвет, поэтому он особенно подходит для наружного применения и в местах, где наиболее важным является обеспечение максимально возможного количества света с минимальным потреблением энергии.

Кроме того, стандарт PN-EN 12464-1 (Свет и освещение, освещение рабочих мест Часть 1: Внутренние рабочие места) содержит требования к цветовой температуре в зависимости от значения средней освещенности.Наряду с увеличением средней освещенности должна увеличиваться и цветовая температура источника.

Средняя освещенность рабочей поверхности:
• Ниже 300 лк -> Цветовая температура должна быть ниже 3300 К — это теплый белый цвет
• 300 ÷ 750 лк -> Цветовая температура в пределах 3300 ÷ 5300 К — рекомендуется нейтральный белый цвет
• Свыше 750 лк -> Цветовая температура должна быть выше 5300 K — холодный белый цвет

Основные электрические параметры для выбора светодиода

Использование светодиодов

за последние несколько лет выросло в геометрической прогрессии, и конца этому не видно. На вторичном рынке наблюдается рост числа приложений, использующих светодиодные устройства по сравнению с другими вариантами индикаторов и освещения. Использование светодиодов растет — от повышенной гибкости конструкции до эффективного использования энергии и защиты окружающей среды. Ниже мы рассмотрим основные параметры, которые необходимо учитывать при внедрении светодиодного устройства в вашу конструкцию.

Электрические параметры светодиодов

Максимальные электрические параметры

Рассеиваемая мощность: Это максимальная мощность, которая может рассеиваться светодиодом до того, как он выйдет из строя.

Непрерывный прямой ток : это максимально допустимый прямой ток через светодиод.Превышение этого значения приведет к отказу цепи.

Обратное напряжение : это максимально допустимое напряжение, которое может быть приложено к диоду при обратной полярности. Светодиод не будет проводить ток при приложенном обратном напряжении, но если это напряжение превышает максимально допустимое значение обратного напряжения, произойдет сбой светодиода.

Рабочая температура : это диапазон температур, в котором светодиод может безопасно работать. Эффективного управления теплом можно добиться с помощью радиаторов и вентиляторов.

Обратный ток: Это максимально допустимое значение обратного тока.

Прямое напряжение: Это максимально допустимое прямое напряжение на светодиоде для безопасной работы. Прямое напряжение зависит от материала светодиода, но обычно составляет около 2–4 В постоянного тока.

Номинальные оптоэлектрические характеристики

Сила света : Это мера светового потока (кандела –Cd или люмен – лм) при заданном прямом напряжении и прямом токе.Это значение имеет решающее значение для конструкции и назначения вашей светодиодной схемы. Для различных применений светодиодов может потребоваться широкий диапазон требований к силе света.

Угол обзора : это угол от центра источника света до области или устройства, на которое попадает свет. Максимальные углы обзора обеспечивают максимальную гибкость при проектировании и производстве. Когда светодиодная индикация является частью процесса, угол обзора становится жизненно важным элементом светодиодной конструкции.

Цвет — Цвет фактически является одной из первых характеристик светодиода, которые выбираются.Красный, Синий, Янтарный, Белый или другие комбинации могут использоваться для обозначения состояния или передачи факторов процесса.

Кто может мне помочь Выбрать правильное светодиодное устройство для моего приложения? Когда вы ищете поставщика светодиодов, выбор VCC гарантирует, что у вас будет профессиональная и опытная команда инженеров и продавцов, которые найдут подходящее решение для каждого из ваших проектов. VCC будет работать напрямую с вашей командой дизайнеров, чтобы обеспечить технологичность новых конструкций, помогать в настройке светодиодов для максимального увеличения площади и использования панели при минимизации затрат и соблюдении технических требований вашего проекта.Свяжитесь с VCC сегодня по всем вопросам, связанным с дизайном светодиодов.

Основные понятия и соответствующие параметры для светодиода Что такое светодиод

В 19 веке люди вступили в эпоху электрического освещения. После разработка, теперь это твердый источник света четвертого поколения — эпоха светодиодного освещения. Давайте посмотрим на знания о светодиодном освещении.

Глоссарий: LED — это аббревиатура от Light Emitting Diode

В зависимости от используемых полупроводниковых материалов цвет излучения для светодиоды излучают разное, традиционно бывает красный, зеленый, оранжевый, желтый, синий, и т.п.Так что он будет называться синим светодиодом. Белый свет — это составной свет, поэтому так называемый светодиодный белый свет модулируется на основе выше.

Основные параметры для применения освещения:

световой поток

Относится к человеческому глазу, который может ощущать мощность излучения, то есть соотношение свет, излучаемый источником света. Единица измерения — LW ​​(люмен). Номинальный световой поток лампы накаливания мощностью 40 Вт составляет 360 лм, номинальный световой поток лампы 40 Вт. дневная люминесцентная лампа 2100 лм, а световой поток стандарт 400 Вт натриевая лампа высокого давления 48000 лм.

Световая отдача

Отношение светового потока к электрической мощности, обычно составляет лм / Вт. Светоотдача представляет собой энергосберегающие характеристики света. источник, который является важным показателем работоспособности современного света источники.

Сила света и распределение силы света

Сила люминесценции светодиода представляет собой представление силы света в определенное направление. Поскольку светодиоды сильно различаются по разным пространственным углам, это необходимо понимать характеристики распределения интенсивности света ВЕЛ.Этот параметр имеет реальное значение, которое напрямую влияет на минимальную Угол наблюдения светодиодного дисплея.

длина волны

Для спектральных характеристик светодиода мы в основном видим, однотонность хорошая, и следует отметить, что основные цвета красный, желтый, синий, зеленый, белый светодиоды и другие основные цвета являются чисто положительными. Потому что во многих случаях, например, светофоры более строгие требования к цвету, но, согласно наблюдениям, некоторые светодиоды загораются в от зеленого к синему, от красного к малиновому, судя по явлению, мы посвятили спектральный Характеристики светодиода очень нужны и содержательны.

Цветовая температура

Свет, который видят обычные люди, состоит из спектра семь разноцветных огней. Однако некоторые из них голубоватые, а другие — красноватый, Цветовая температура — это метод, который используется исключительно для измерения и рассчитать цветовые составляющие света. Единица измерения — К. Цветовая температура Источник света другой, цвет света также отличается, а ощущение не то же самое:

<3300K теплый (с красновато-белым)

3000-5000K средний (белый) освежающий

> 5000K холодный (с сине-белым) холодный

CRI (индекс цветопередачи)

Цветопередача способность объекта от источника света, называемого индекс цветопередачи по сравнению с цветом внешнего вида объекта под та же эталонная цветовая температура или эталонный источник света (лампа накаливания лампа или крашеный свет).Цветоделение двух типов, одно точное окраска, может точно отображать исходный цвет материала, который необходимо использовать высокий индекс цветопередачи (Ra) источника света, значение близко к 100, цветопередача самая лучшая. Другой — эффект цвет, необходимо четко выделить для конкретного цвета, Срок службы красоту можно использовать для усиления цветового эффекта путем добавления цвета. Используя низкий — облучение источника цветовой температуры, может сделать красный цвет более ярким; Примите теплый источник света среднего цвета для освещения, сделайте синий с чувством здорово; Источник света с высокой цветовой температурой делает объект холодным чувство.

Оценка индекса цветопередачи (Ra) и общего применения

90-100 1A отлично подходит для тех, кому требуется точный контраст цвет

80-89 1B для места, требующего правильного суждения цвет

60-79 2 Нормальный для места, где требуется индекс нейтральной цветопередачи

40-59 3 для места с менее требовательными к цветопередаче и менее

Цвет

20-39 4 для места без особых требований к восстановлению цвета индекс.

Описание светодиодных лент и фотометрических параметров

Чтение новой таблицы данных светодиодов без полного знания значений параметров, измерений или графиков может быть головной болью; даже для человека, имеющего некоторый опыт в этой теме. Некоторым людям может быть сложнее понять спецификации светодиодных лент и фотометрические параметры. Но что, если мы как производитель (SIRS-E®) обеспечим легкий доступ к пониманию тестируемых параметров и причин, по которым эти параметры были выбраны в первую очередь?

Здесь, в SIRS-E®, мы рады представить наши новые и улучшенные технические спецификации для наших последних линеек высококачественных светодиодных лент: AcuVivid ™ White, AcuVibrant ™ RGB и серии AcuHue ™ RGBW и RGBA.


Размышляя об улучшении нашей линейки светодиодных лент, сделав ее инновационной и качественной, мы также учитывали наших клиентов и их легкость в получении полной и легкодоступной технической информации, необходимой для их проектов.

* Перейдем к списку фотометрических определений и графиков.

Чтобы разработать хорошую таблицу данных, включающую все необходимые параметры, нашей инженерной группе SIRS-E® пришлось вернуться к работе с учебниками и стиранию заметок.Мы использовали новейшие и наиболее узнаваемые стандарты освещения в отрасли, чтобы обеспечить параметры, необходимые для отрасли, а не только те, которые мы хотим предоставить. Мы использовали параметры, рекомендованные стандартами, разработанными Североамериканским обществом инженеров по освещению (IES), Американским национальным институтом стандартов (ANSI), Международной комиссией по освещению (CIE) и другими.

Еще в 2006 году, когда наша команда инженеров разрабатывала первые линейки продуктов светодиодных лент, в отрасли использовалось всего несколько стандартов освещения, что заставляло каждого производителя светодиодных лент использовать свои собственные предпочтения в параметрах и измерениях в своих технических паспортах.Хотя тогда это не было большой проблемой, индустрия твердотельного освещения (SSL) сильно изменилась в технологическом плане, и сегодня у нас есть четко определенный набор стандартов, с которыми согласились научное сообщество и производители светодиодов.

Хотя эти стандарты продолжают развиваться, SIRS-E® позаботился о внедрении последних и наиболее важных стандартов светодиодного освещения, используемых сегодня в индустрии SSL для измерения и оценки наших новых светодиодных лент. Мы предоставляем наши измеренные параметры в соответствии со стандартами освещения, такими как:

— IES LM-79-2008: утвержденный метод электрических и фотометрических измерений продуктов SSL.
— IES TM-30-2015: новый метод измерения цветопередачи
— ANSI C78.377-2015: Спецификации цветности твердотельных осветительных приборов
— ANSI / IES LM-80-2015: Измерение светового потока светодиодных источников света
Спецификация малых различий в цветности Дэвида Л. Макадама
— CIE 13.3- 1995: Метод измерения и определения свойств цветопередачи источников света
— CIE 15-2004: Колориметрия (наука, используемая для измерения восприятия цвета человеком).

Нашей инженерной группе пришлось решить (используя эти стандарты), какие параметры являются наиболее актуальными в индустрии светодиодного освещения и полезными для профессионалов в области освещения сегодня.Например, мы обнаружили такие параметры, как эллипсы Макадама (изобретенные Дэвидом МакАдамом в 1943 году), описывающие небольшие изменения цветности в четырехугольнике CCT, что простыми словами означает, насколько сильно изменяется цветовая температура, обычно используется в SSL для обозначения изменений цветности из партии. замесить. Между тем, это отличный параметр для понимания консистенции CCT, а также устаревший способ измерения консистенции цвета.

Вот почему мы использовали стандарт ANSI C78.377-2015 для включения параметра Duv в наши таблицы данных, который является более инновационным и эффективным способом измерения сдвига цвета.В этом отчете ANSI упоминает, что «круг u’v’ — это альтернативный способ определения допусков цветности в более простом определении, заменяющий старые эллипсы Макадама, как рекомендовано CIE. 1


1 Американский национальный стандарт для электрических ламп — Спецификации цветности твердотельных осветительных приборов (стр. 12, технический № ANSI C78.377-2015 ). (2015). Росслин, Вирджиния: NEMA.
1 Техническое примечание CIE — Спецификация разницы в цветности для источников света (стр.3-4, Тех. № CIE TN 001: 2014 ). (2014). CIE.


  • Фотометрические определения и графики

Итак, если вы прочитали это до сих пор, это означает, что вам действительно интересно узнать больше о наших таблицах данных и параметрах фотометрии; Итак, вот список наиболее важных терминов и определений, используемых в наших таблицах данных:



— Входное напряжение: напряжение, используемое для питания полосы.(В постоянного тока)
— Метод управления ограничением: постоянное напряжение (CV) поддерживает постоянное напряжение и изменяет ток, постоянное управление током (CC) поддерживает постоянный ток.
— Потребляемая мощность: энергия, необходимая для питания полосы определенной длины. (Вт / фут) Мы используем в техническом описании максимум, указанный UL для класса 2, истинное энергопотребление можно найти в фотометрических отчетах
— Светодиодный чип: корпус SMD, содержащий 3 диода (белые и полосы RGB) или 4 диода ( Полосы RGBW)
— Тип платы: медная печатная плата плотностью 4 унции.Это означает, что на каждый квадратный фут площади печатной платы приходится 4 унции меди. Платы более высокого качества значительно минимизируют падение напряжения.

— Поддержание светового потока: представляет собой уменьшение светового потока с течением времени, обычно указывается в часах (часах).
— Окружающая среда: IP40 (Сухая, Внутренняя среда), IP68 (Влажная, Влажная, Наружная среда)
— Монтаж: Клейкая лента 3M VHB (Very High Bonding) — это высококачественная вспененная акриловая лента, которая также используется в автомобилестроении. , промышленные и аэрокосмические приложения.


  • Параметры IES LM-79-2008, ANSI C78.377-2015, CIE 13.3-1995 и CIE 15-2004

— Цветной диод: цвет каждого отдельного диода внутри корпуса светодиодного чипа.
— Пиковая длина волны: длина волны пика кривой спектральной плотности. (нм)
— Доминирующая длина волны: описывает воспринимаемый цвет светодиода, показанный на диаграмме CIE.
— Координаты цветности CIE: представляет диаграмму черного тела со всеми возможными длинами цветовых волн в видимом спектре, координаты указывают на конкретную точку на диаграмме (x, y)
— CRI: индекс цветопередачи (Ra) показывает среднее измерение того, как источник света воспринимает цвета по сравнению с естественным источником света.Значение того, насколько «настоящий» цвет.

— Номинальная цветовая температура: коррелированная цветовая температура с шагом 100K, наиболее близкая к истинной цветовой температуре (целевой цветовой температуре). Он измеряется в градусах Кельвина (K), потому что он представляет «температурный» цвет, который больше напоминает воспринимаемый цвет в спектре. Показано на диаграмме цветности CIE Планковским локусом.
— Световой поток: количество силы света, воспринимаемой человеческим глазом. (люмен)
— Световая отдача: эффективность источника света, представленная интенсивностью света в зависимости от потребляемой мощности (лм / Вт) — Средняя хорошая эффективность 80-120 лм / Вт
— Duv: расстояние между истинной координатой цветности и Планковский локус.Другими словами, это изменение цвета с зеленого на розовый на диаграмме CIE.

Расчет CCT и Duv и практическая формула преобразования

Расчет CCT и Duv и практическая формула преобразования


  • IES TM-30-2015 Параметры

— Точность (Rf) и Гамма (Rg): Точность (значения 0-100) характеризует цветопередачу с 99 значениями, где типичные тесты CRI 14.Gamut (значения 60–140) сравнивает область, заключенную в координатах средней цветности, чтобы охарактеризовать уровни насыщенности. TM-30 показывает, насколько насыщена или ненасыщена цветопередача на свету.


Какая картинка выглядит лучше?

Рисунок A

Рисунок B

Большинство людей скажут, что Изображение B выглядит лучше, но на самом деле изображение B перенасыщено.

Изображение A Изображение B (слишком много зеленого и красного)

IES TM-30-2015 показывает нам, что цветная векторная графика представлена ​​следующим образом:

Energy Star — Качество цвета освещения и показатели



— ANSI: Американский национальный институт стандартов
— IES: Общество инженеров освещения
— CIE: (Международная комиссия по освещению) Международная комиссия по освещению
— IES LM-79-2008: утвержденный метод проведения электрических и фотометрических измерений полупроводниковых осветительных приборов
— IES TM-30-2015: Метод измерения цветопередачи
— ANSI C78.377-2015: Спецификации цветности твердотельных осветительных приборов
— ANSI / IES LM-80-2015: Измерение светового потока светодиодных источников света
Спецификация малых различий цветности Дэвида Л. Макадама
— CIE 13.3- 1995: Метод измерения и определения свойств цветопередачи источников света
— CIE 15-2004: Колориметрия (наука, используемая для измерения человеческого восприятия цвета.
— CIE TN 001-2014: Спецификация разницы цветности для источников света


В начало

Автор: Хорхе Баррера
Отредактировал: Диего Иорио

IRJET-Запрошенная вами страница не была найдена на нашем сайте

IRJET приглашает статьи из различных инженерных и технологических дисциплин для Тома 8, выпуск 5 (май-2021)

Отправить сейчас


IRJET Vol-8, выпуск 5, Май 2021 г. Публикация продолжается…

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 5 (май 2021 г.)

Отправить сейчас


IRJET Vol-8, выпуск 5, май 2021 г. Публикация продолжается…

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 5 (май 2021 г.)

Отправить сейчас


IRJET Vol-8, выпуск 5, май 2021 г. Публикация продолжается…

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 5 (май 2021 г.)

Отправить сейчас


IRJET Vol-8, выпуск 5, май 2021 г. Публикация продолжается…

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 5 (май 2021 г.)

Отправить сейчас


IRJET Vol-8, выпуск 5, май 2021 г. Публикация продолжается…

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 5 (май 2021 г.)

Отправить сейчас


IRJET Vol-8, выпуск 5, май 2021 г. Публикация продолжается…

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 5 (май 2021 г.)

Отправить сейчас


IRJET Vol-8, выпуск 5, май 2021 г. Публикация продолжается…

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 5 (май 2021 г.)

Отправить сейчас


IRJET Vol-8, выпуск 5, май 2021 г. Публикация продолжается…

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


Понимание основных параметров светодиодных осветительных приборов

Светодиодные осветительные приборы обычно используемые параметры, такие как: яркость, длина волны, цветовая температура и т. Д., А также использование стандартов для определения плюсов и минусов.Здесь объясняется большинство тех, кто покупает светодиодные осветительные приборы с общими параметрами, которые расскажут вам, как выбирать светодиодные осветительные приборы.

1, Яркость

Яркость светодиодных фонарей включает:

Яркость L: световой поток в определенном направлении телесного угла на единицу площади. Единица: Непал выкл. (Кд / м).

Поток φ: сумма количества света, излучаемого светящимся телом за секунду. Единица: Люмен (Лм), указывает, сколько светового свечения, излучающего больше, чем больше количество люменов.

Тогда: чем больше количество люмен, тем больше световой поток, тем выше яркость лампы.

2, длина волны

Светодиод такой же длины волны, одинаковый цвет. Никаким производителям светодиодных устройств спектрального разделения сложно получить чистые цвета.

3, Цветовая температура

Цветовая температура — это единица измерения для определения цвета света, что означает значение K. Желтый — «ниже 3300k», белый — «выше 5300k», есть виды промежуточного цвета «3300k-5300k».Клиенты могут выразить свои личные предпочтения, среду применения и необходимость создания атмосферы световых эффектов и выбрать правильную цветовую температуру источника света.

4, ток утечки

Светодиод

— это односторонний проводящий свет, если есть обратный ток, это называется утечкой, ток утечки — большой светодиод, короткий срок службы.

5, антистатическая способность

Антистатическая способность светодиода, долгий срок службы и соответственно более высокая цена.Обычно статические светодиоды, превышающие 700 В, могут использоваться для светодиодного освещения (визуализация реновации освещения).

6, срок службы

Качество — залог другой жизни, жизнь определяется тусклым светом. Легкий распад, долгая жизнь.

7, пр.

Каждый продукт будет иметь различный дизайн, разные конструкции для разных целей, надежность конструктивных аспектов светодиодного освещения включает в себя: электробезопасность, пожарную безопасность, применимую экологическую безопасность, механическую безопасность, здоровье и безопасность, безопасное использование времени и другие факторы.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *