Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Площадь сечения воздуховодов таблица: Расчет площади воздуховодов и фасонных изделий

Содержание

Сравнение круглых и прямоугольных воздуховодов

В этой статье мы расскажем о преимуществах и недостатках использования воздуховодов круглого и прямоугольного сечения.

Неотъемлемой частью вентиляционных систем является магистраль, по ней и доставляется воздух из пункта «А» в пункт «Б». Она состоит из воздуховодов, которые бывают двух видов – круглые и прямоугольные. Давайте разберемся, какие воздуховоды подойдут для решения Вашей задачи.

Круглые воздуховоды

Основным преимуществом воздуховодов круглого сечения является герметичность. Спирально-навивные воздуховоды имеют плотные швы, которые дают им дополнительную жесткость, а за счет того, что при соединении воздуховодов используется ниппель. Все фасонные изделия также имеют зауженное сечение — минимизируются потери транспортируемого воздуха.

«Живое » сечение круглого воздуховода охватывает весь его периметр, что совместно с плавными поворотами фасонных изделий позволяет использовать его аэродинамические свойства с максимальным КПД, и минимальной потерей давления.

Это напрямую отразится на стоимости вентиляционной установки и количестве потребляемой ей электроэнергии в пользу потребителя.

Не менее важным преимуществом является цена. Круглые воздуховоды значительно дешевле прямоугольных, потому что периметр прямоугольного воздуховода больше чем длина окружности круглого с такой же площадью сечения , соответственно на изготовление и дальнейшую изоляцию используется меньше материалов. Производство круглых воздуховодов на данный момент полностью автоматизировано. Это тоже позволяет снизить издержки при их изготовлении.

Собирать системы из таких воздуховодов тоже значительно проще – ниппель вставляется в воздуховод, скручивается саморезами в нескольких местах и проклеивается алюминиевым скотчем.

Основной недостаток круглых воздуховодов — это габариты. В помещениях с низкими потолками, узких шахтах и т.п. выгоднее использовать прямоугольные воздуховоды. По ГОСТ 24751-81 допустимое соотношение сторон прямоугольных воздуховодов 6,3.

Так, круглый воздуховод диаметром 315 мм можно заменить на прямоугольный 550х150мм, и сэкономить 165 мм пространства. Но тут важно учесть, что прямоугольные воздуховоды имеют выступы в виде фланцевых соединений.

С некоторыми неудобствами можно столкнуться при монтаже воздуховодов круглого сечения. Смонтировать врезку по месту, или изготовить недостающее фасонное изделие сможет только опытный монтажник, и для этого понадобится специальное оборудование.

Прямоугольные воздуховоды

Что касается воздуховодов прямоугольного сечения, то пожалуй, их единственным преимуществом является возможность маневрирования соотношением сторон, чтобы вместить систему в ограниченное пространство.

Эквивалентный диаметр — диаметр круглого воздуховода, в котором потеря давления на трение при одинаковой длине равна его потере в прямоугольном воздуховоде.

i Эквивалентный диаметр прямоугольного воздуховода можно вычислить по формуле:
de = 1.30 x ((a * b)0.625) / (a + b)0. 25) (1), где
de = эквивалентный диаметр (мм)
a = длина стороны A (мм)
b = длина стороны B (мм)
Это означает что площадь сечения прямоугольного воздуховода будет больше площади сечения круглого воздуховода с эквивалентным диаметром

Если S1 = S2, то A+A+B+B (периметр) > 2*π*R (длина окружности)

Надеемся, что наша статья будет полезной для Вас при подборе воздуховодов!

Автор статьи: Сергей Шаповалов
Заместитель генерального директора
по производству ООО “ЦВС”.

Диаметры круглых воздуховодов таблица

Нормируемые размеры круглых воздуховодов из листовой стали

Площадь поперечного сечения, м ²

Площадь поверхности 1 м, м ²

1) За нормируемые размеры допускается принимать наружные размеры поперечного сечения воздуховода, указанные в таблице.
2) Толщина листовой стали для воздуховодов (по которым перемещается воздух с температурой не более 80 ° С) диаметром до 200; 225-450; 500-800; 900-1600; 1800- 2000 мм следует принимать соответственно: 0,5; 0,6; 0,7; 1 ; 1,4 мм.
3) При перемещении воздуха с температурой более 80 ° С, а также воздуха с механическими примесями, следует применять листовую сталь толщиной 1,4 мм; при содержании в воздухе абразивной пыли необходимо пользоваться рекомендациями специальных пособий по проектированию.

Нормируемые размеры прямоугольных воздуховодов из листовой стали

Внутренний размер, мм

Площадь поперечного сечения, м ²

Площадь поверхности 1 м, м ²

Внутренний размер, мм

Площадь поперечного сечения, м ²

Площадь поверхности 1 м, м ²

1) За нормируемые размеры допускается принимать наружные размеры поперечного сечения воздуховода, указанные в таблице.
2) Толщина листовой стали для воздуховодов (по которым перемещается воздух с температурой не более 80 ° С) диаметром до 200; 225-450; 500-800; 900-1600; 1800- 2000 мм следует принимать соответственно: 0,5; 0,6; 0,7; 1 ; 1,4 мм.
3) При перемещении воздуха с температурой более 80 ° С, а также воздуха с механическими примесями, следует применять листовую сталь толщиной 1,4 мм; при содержании в воздухе абразивной пыли, необходимо пользоваться рекомендациями специальных пособий по проектированию.
4) Размеры, отмеченные звездочкой, следует применять только при соответствующем обосновании.
5) Толщину стали для воздуховодов прямоугольного сечения размером от 100х150 до 200х250; от 200х300 до 1000х1000; от 1000х1200 до 1600х2000 мм надлежит принимать равной соответственно 0,5; 0,7; 0,9 мм.

Нормируемые размеры крупногабаритных прямоугольных воздуховодов из листовой стали

Номограмма для быстрого подбора диаметра приведена на рисунке ниже. Способ пользования номограммой показан стрелками. Промежуточные диаметры не подписаны.

Если предусматриваются квадратные воздуховоды, вычисляется сторона квадрата , мм, которая округляется до 50 мм. Минимальный размер стороны равен 150 мм, максимальный – 2000 мм. При использовании номограммы получаемый по ее данным ориентировочный диаметр следует умножить на. При необходимости применения прямоугольных воздуховодов размеры сторон подбираются также по ориентировочному сечению, т.е. чтобыa×b≈fор, но с учетом того, что отношение сторон, как правило, не должно превышать 1:3. Минимальное прямоугольное сечение составляет 100×150 мм, максимальное – 2000×2000, шаг – 50 мм, так же, как и у квадратных.

2.2. Расчет аэродинамических сопротивлений.

После выбора диаметра или размеров сечения уточняется скорость воздуха: , м/с, гдеfф– фактическая площадь сечения, м 2 . Для круглых воздуховодов, для квадратных, для прямоугольныхм 2 . Кроме того, для прямоугольных воздуховодов вычисляется эквивалентный диаметр, мм. У квадратных эквивалентный диаметр равен стороне квадрата.

Далее по величине vфиd(илиdэкв) определяются удельные потери давления на трениеR, Па/м. Это можно сделать по таблице 22.15 [1] или по следующей номограмме (промежуточные диаметры не подписаны):

Можно также воспользоваться приближенной формулой . Ее погрешность не превышает 3 – 5%, что достаточно для инженерных расчетов. Полные потери давления на трение для всего участкаRl, Па, получаются умножением удельных потерьRна длину участкаl.

Если применяются воздуховоды или каналы из других материалов, необходимо ввести поправку на шероховатость βш. Она зависит от абсолютной эквивалентной шероховатости материала воздуховода Кэи величиныvф.

Абсолютная эквивалентная шероховатость материала воздуховодов [1]:

Штукатурка по сетке

Значения поправки βш [1]:

Для стальных и винипластовых воздуховодов βш= 1. Более подробные значения βшможно найти в таблице 22.12 [1]. С учетом данной поправки уточненные потери давления на трениеRlβш, Па, получаются умножениемRlна величину βш.

Затем определяется динамическое давление на участке , Па. Здесь ρв– плотность транспортируемого воздуха, кг/м 3 . Обычно принимают ρв= 1.2 кг/м 3 .

Далее на участке выявляются местные сопротивления, определяются их коэффициенты (КМС) ξ и вычисляется сумма КМС на данном участке (Σξ). Все местные сопротивления заносятся в ведомость по следующей форме:

ВЕДОМОСТЬ КМС СИСТЕМЫ ВЕНТИЛЯЦИИ

В колонку «местные сопротивления» записываются названия сопротивлений (отвод, тройник, крестовина, колено, решетка, плафон, зонт и т. д.), имеющихся на данном участке. Кроме того, отмечается их количество и характеристики, по которым для этих элементов определяются значения КМС. Например, для круглого отвода это угол поворота и отношение радиуса поворота к диаметру воздуховода r/d, для прямоугольного отвода – угол поворота и размеры сторон воздуховодаaиb. Для боковых отверстий в воздуховоде или канале (например, в месте установки воздухозаборной решетки) – отношение площади отверстия к сечению воздуховодаfотв/fо. Для тройников и крестовин на проходе учитывается отношение площади сечения прохода и стволаfп/fси расхода в ответвлении и в стволеL

о/Lс, для тройников и крестовин на ответвлении – отношение площади сечения ответвления и стволаfп/fси опять-таки величинаLо/Lс. Следует иметь в виду, что каждый тройник или крестовина соединяют два соседних участка, но относятся они к тому из этих участков, у которого расход воздухаLменьше. Различие между тройниками и крестовинами на проходе и на ответвлении связано с тем, как проходит расчетное направление. Это показано на следующем рисунке.

Здесь расчетное направление изображено жирной линией, а направления потоков воздуха – тонкими стрелками. Кроме того, подписано, где именно в каждом варианте находится ствол, проход и ответвление тройника для правильного выбора отношений fп/fс,fо/fсиLо/Lс. Отметим, что в приточных системах расчет ведется обычно против движения воздуха, а в вытяжных – вдоль этого движения. Участки, к которым относятся рассматриваемые тройники, обозначены галочками. То же самое относится и к крестовинам. Как правило, хотя и не всегда, тройники и крестовины на проходе появляются при расчете основного направления, а на ответвлении возникают при аэродинамической увязке второстепенных участков (см. ниже). При этом один и тот же тройник на основном направлении может учитываться как тройник на проход, а на второстепенном – как на ответвление с другим коэффициентом.

Примерные значения ξ [1] для часто встречающихся сопротивлений приведены ниже. Решетки и плафоны учитываются только на концевых участках. Коэффициенты для крестовин принимаются в таком же размере, как и для соответствующих тройников.

К качеству обустройства вентиляционного контура предъявляются жёсткие требования, будь то общественные, производственные или жилые помещения. И наибольшей популярностью пользуются именно круглые воздуховоды. Лучше ли они прямоугольных, какими бывают и как устанавливаются, рассмотрим в этой статье.

Что такое воздуховод и для чего он нужен

Воздуховод – это трубопроводная сеть вентиляционного контура, предназначенная для сбора и подачи потока воздушных масс в помещение или их вывода наружу.

Многочисленные функции воздуховодов сводятся к следующему:

  • Уравновешивание параметров воздушной среды (влажности, температуры и пр.) в одном или нескольких помещениях.
  • Обеспечения притока свежего или подогретого воздуха извне (рекуперация).
  • Отведение загрязнённых воздушных масс из помещения.
  • Организация системы дымоудаления или подачи специальной газовой смеси, препятствующей распространению огня.

Область применения

Воздуховоды используются повсеместно:

  • Без систем вентиляции и дымоудаления не обходится ни один торгово-развлекательный или офисный комплекс, поликлиника или детский сад.
  • В промышленности, научных и исследовательских центрах используется бесчисленное количество воздуховодных каналов различного назначения.
  • Привычный всем вытяжной контур над плитой присутствует в каждом доме и квартире. Системами вентиляции оборудуются ванные и туалетные комнаты.

Из каких материалов изготавливаются воздуховоды

Вентиляционные трубы бывают пластиковыми и металлическими. Последние представлены моделями из алюминия, нержавеющей, оцинкованной или чёрной стали. Некоторые дополнительно укомплектовываются шумопоглощающими и теплоизолирующими материалами.

  • Стальные воздуховоды огнеупорны, прочны и долговечны.

Из минусов – неустойчивость чёрного проката к коррозийным процессам. Однако изделия из оцинковки практически лишены этого недостатка, а воздуховоды из нержавейки, хоть и дороже, но вовсе не подвержены коррозии.

  • Основное достоинство алюминиевых моделей – пластичность, поэтому их делают гибкими.

Низкая прочность алюминиевой фольги компенсируется при производстве, благодаря чему срок службы гибких (полужёстких) воздуховодов составляет 10 лет. Из дополнительных бонусов — антикоррозийность и негорючесть.

  • Воздуховоды из пластика на порядок дешевле, но из-за неустойчивости к механическим и ударным нагрузкам срок их службы не так велик.

Помимо этого не все модели хорошо справляются с транспортировкой горячего воздуха, а горючесть изделий ограничивает сферу применения. Химическая инертность пластика к щелочам и кислотам – безусловный плюс. Это позволяет использовать пластиковые трубы на химических и фармацевтических предприятиях, а также облегчает задачу герметизации магистрали. В отличие от металла пластик не подвержен коррозии и лёгок, что упрощает его монтаж. Гладкая поверхность улучшает аэродинамические показатели.

Технология производства

Стальные воздуховоды круглого сечения изготавливаются в соответствии с нормами СНИП 41-01-2003 и ТУ 4863-001-75263987-2006. Необходимая конфигурация металлическим листам придаётся на специальном сталепрокатном оборудовании, а для соединения заготовок используется сварка или метод фальцевого замка.

Гибкие воздуховоды производятся спирально-навивным способом из алюминиевой фольги, сложенной в 5 и более слоёв, упроченных металлизированной лентой или проволокой. Навивная технология и гибкость изделий не ограничивает длину последних.

Спирально-навивным методом изготавливаются и жёсткие вентканалы. Для их производства используется металлическая лента (штрипс) толщиной до 1 мм и шириной не более 13 см.

Полимерные воздуховоды сначала раскраиваются из листовой заготовки, затем лист сворачивается, а его края под действием нагревательного элемента свариваются.

Плюсы и минусы воздуховодов круглого сечения

В сравнении с прямоугольными круглые имеют ряд преимуществ:

  • Более равномерное распределение воздушного потока и малое аэродинамическое сопротивление.
  • Меньший коэффициент шума.
  • Лучшая герметичность контура, т.к. использование длинных прямых отрезков сводит к минимуму количество соединительных элементов.
  • Меньшая стоимость и самих изделий и монтажных работ, чему способствует меньший расход материала при производстве и снижение затрат на фитинговые и крепёжные элементы, препятствующие провисанию магистрали.

Недостаток один – громоздкость. Из-за неё ограничено использование круглых вентканалов в малогабаритных помещениях, подвесных потолках и декоративных гипсокартонных коробах.

Виды и размеры

Способ изготовления предопределяет деление круглых вентканалов на:

  • Прямошовные.
  • Спирально-сварные.
  • Спирально-навивные.

По жёсткости изделия подразделяются на жёсткие, полужёсткие и гибкие (гофрорукава). Гибкие в свою очередь делятся на каркасные и бескаркасные.

На заметку! Особое преимущество гофрорукавов в возможности их использования в качестве фитингового соединения, меняющего направление контура.

По коэффициенту плотности воздуховоды классифицируются как плотные (маркировка «П») и нормальные («Н»). Данная классификация предопределяет возможность использования вентканала в системе вентиляции с принудительной циркуляцией.

По способу соединения выделяют фланцевые и бесфланцевые модели:

  • Фланцевый способ предполагает стыковку отдельных элементов трубопровода посредством болтов и уплотнительных прокладок.
  • Бесфланцевые воздуховоды соединяются по типу бандажа.

Прямошовные (промышленные)

Особенность прямошовных воздуховодов – дополнительная жёсткость конструкции, придаваемая сварным или замковым швом. Сварка обеспечивает вентиляционной магистрали наибольшую прочность и герметичность.

Длина прямошовных вентканалов стандартизирована и, как правило, не превышает 1,25 м. Это усложняет конструкцию вентиляционного контура и требует монтажа креплений на каждом стыковочном блоке.

Диапазон же диаметров прямошовных воздуховодов круглого сечения достаточно широк: от 10 сантиметров до 2 метров.

Спирально сварные и спирально навивные (замковые)

Воздуховоды спирального типа бывают только круглыми. Они признаются наиболее эффективными, т.к. идущие по спирали швы обеспечивают прочность вентканалам и увеличивают аэродинамические характеристики воздушного потока.

Диаметры спиральных вентканалов начинаются от 10 см и не превышают 2 м, а стандартные длины варьируются в диапазоне от 3 до 12 метров. Правильный подбор длины прямого контура поможет сэкономить на количестве комплектующих.

Советы по выбору

Выбирая подходящую модель воздуховода, нужно руководствоваться соответствием его технических характеристик условиям эксплуатации объекта и данным проектного расчёта:

  • Площадью помещения.
  • Температурным режимом.
  • Химическим составом и уровнем влажности транспортируемой среды.
  • Типом вентиляции (естественная или принудительная).
  • Мощностью вентиляционного оборудования и давлением, создаваемым им в контуре.
  • Целевой скоростью движения воздушного потока.

Обозначенные особенности предопределяют материал вентканала, его протяжённость, извилистость, толщину стенок и диаметр:

  • Для обустройства вентиляционных магистралей с функцией подачи (отведения) охлаждённого или горячего воздуха выбираются термоустойчивые материалы – сталь, ПВХ (поливинилхлорид) или ПВДФ (фторопласт).
  • Полипропиленовые трубы устойчивы к щелочам, кислотам и органике. Нагрев от кухонной плиты они также выдержат. Это позволяет их использовать при монтаже кухонной вытяжки.
  • При установке воздуховодов в помещениях с повышенной влажностью (ваннах, банях, бассейнах и пр.) приоритет следует отдавать пластику или нержавейке.
  • Для прокладки вертикальных контуров используются только жёсткие конструкции.
  • При покупке гибких или полужёстких гофрорукавов учитывается их длина в растянутом состоянии.
  • В полуподвальных и цокольных помещениях используются только жёсткие трубы.

Для определения диаметра вентиляционного трубопровода применяются различные формулы и таблицы.

Примерная цена

Стоимость воздуховодов зависит от ряда факторов: структуры материала, из которого он изготовлен, способа производства, габаритов и производителя.

БрендСтрана-изготовительТипМатериалДиаметр, ммДлина, мЦена, руб
DiaflexРоссияГибкий, утеплённыйАлюминиевая фольга и стекловата315105550
DECНидерландыГибкий, полужёсткий, спирально-навивнойАлюминий и полиэфир1003500
EraРоссияЖёсткийПВХ1251160
РоссияЖёсткий, прямошовныйОцинковка1501320

Что лучше для вентиляции: круглый или прямоугольный воздуховод

Если на поставленный вопрос отвечать с точки зрения эффективности, то круглые, безусловно, лучше. Сравнивая пропускную способность при одинаковой площади сечения, то круглые выигрывают. Благодаря минимальному сопротивлению, скорость движения воздушных масс в них выше. В прямоугольных по углам создаются ненужные вихревые потоки, снижающие скоростные показатели.

Если в приоритет ставить эстетику, то воздуховоды прямоугольной конфигурации вне конкуренции. Они компактны и не бросаются в глаза, а при необходимости их спрятать, легко скрываются под навесным (натяжным) потолком. Однако для компенсации недостаточности скоростного режима следует выбирать модели с диаметром чуть больше расчётного или же придётся вентиляцию делать принудительной.

Советы по монтажу

Строительные требования по установке воздуховодных каналов изложены в СП 60.13330.2016. и СП 73.13330.2016.

Рассмотрим основные аспекты:

  • Сборка начинается с крупных прямых участков, которые затем стыкуются между собой посредством фасонных элементов (переходников, углов, тройников и пр.).
  • Гибкие и полужёсткие гофрорукава устанавливаются, будучи полностью растянутыми.
  • Для исключения провисания каждые 1-1,5 м рукав фиксируется к опоре посредством траверсов, подвесов и хомутов. Система крепления выбирается в зависимости от нагрузки (см. на фото).

  • Число поворотов и изгибов должно сводиться к минимуму, а сам угол поворота должен превышать размер диаметра используемой вентиляционной трубы в 2 раза.
  • Отверстия в стенах и перекрытиях, через которые прокладывается магистраль, предварительно загильзовываются.
  • Швы обрабатываются герметиком.

Важно! Алюминиевые конструкции склонны накапливать статическое электричество, поэтому требуют заземления.

Заключение

Установка вентиляционной магистрали не вызывает особых сложностей и её вполне можно выполнить самостоятельно. Отдав же приоритет круглым вентканалам, Вы сделаете её более эффективной и экономичной.

Подписывайтесь, ведь впереди Вас ждёт ещё много полезной информации.

Скорость в воздуховоде

Какой должна быть скорость воздуха, что транспортируется по воздуховоду и как ее рассчитать?

Естественно, что скорость в воздуховоде, зависит в первую очередь от количества, воздуха перемещающегося внутри воздуховода за единицу времени, а также от площади поперечного сечения воздуховода. Чем больше расход воздуха и, конечно, чем меньше размеры воздуховода, тем выше значение скорости воздуха в нем.

Содержание статьи:

Скорость в воздуховоде строго не регламентируется нормативными документами, но в справочниках проектировщиков можно найти рекомендуемые значение этого параметра. Различают рекомендуемую скорость движения воздуха в воздуховоде для гражданских и для промышленных зданий. Значение рекомендуемой скорости для гражданских зданий равно 5-6 м/с, в то же время для промышленных — от 6-12 м/с. Ниже приведены значения скоростей в различных типах (участках) воздуховодов.

 

Таблица 1  — Значения рекомендуемой скорости движения воздуха по воздуховодам.

Тип зданияТип участкаРекомендуемая скорость, м/с
ПромышленноеМагистральные каналы вентиляции6-12
ГражданскоеМагистральные каналы вентиляции5-6
Промышленные и гражданскиеБоковые ответвления воздуховодов4-5
Промышленные и гражданскиеРаспределительный канал с
вентиляционными решетками
и дефлекторами
1,5-2,0

Проектировщики определяют скорость в воздуховоде во время выполнения аэродинамического расчета системы вентиляции. Но нет необходимости производить аэродинамический расчет для того, чтобы только определить скорость воздуха в вентиляционном канале. Поэтому, приведем пример простого расчета скорости в воздуховоде.

Пример расчета скорости воздуха в воздуховоде

Исходными данными в этом случае послужат: 

  • расход воздуха на участке;
  • рекомендуемая скорость движения воздуха, которую мы принимаем по таблице 1.

Алгоритм расчета скорости в воздуховоде:

  • определение расчетной площади сечения воздуховода;
  • по расчетной площади определяют фактическое значение скорости в воздуховоде.

Итак, начнем. Для примера возьмем гражданское здание. Допустим у нас есть расход на участке 1-2, который составляет 3000 м3/ч. Для удобства и наглядности занесем данные в таблицу:

Определим расчетную площадь Fр в м2 по формуле:

Fр = G/(3600*Vp),

где G — расход воздуха на участке, м3/ч;
Vp  — рекомендуемая скорость воздуха на участке, м/с.

Расчетная площадь в нашем случае равна:

Fр = 3000/(3600*5)= 0,167 (м2).

Внесем данные в таблицу:

Далее воспользуемся каталогом воздуховодов, чтобы заполнить ячейки «размеры» и «стандартная площадь».

По расчетной площади принимаем на наш участок, воздуховод размером 300х500 мм площадью сечения 0,15 м2. Данные заносим в нашу таблицу:

Теперь нам осталось посчитать только фактическую скорость, которая и будет скоростью движения воздуха по участку 1-2. Расчет ведется по такой формуле:

 = G/(3600*Fст),

где G — расход воздуха на участке, м3/ч;
Fст — стандартная (принятая по каталогу) площадь сечения воздуховода, м2;

Для нашего участка:

 = 3000/(3600*0,15)= 5,56 (м/с).

Окончательный вариант таблицы:

Вот мы и определили скорость в воздуховоде, которая равна 5,56 м/с, а это значит, что фактическая скорость соответствует рекомендуемым значениям.

Как Вы могли бы заметить, расчет скорости воздуха в воздуховоде влечет за собой подбор размеров воздуховода. После установки воздуховодов проверяют фактическую скорость воздуха в них. Для этого используют специальные приборы — анемометры.

Заключение

Этот несложный расчет является частью аэродинамического расчета системы вентиляции и кондиционирования воздуха. Такие расчеты выполняются в специализированных программах или, например, в Excel.

Следует помнить о том, что слишком высокие значения скоростей в воздуховодах являются негативным фактором, так как из-за них образуется шум и свист в сетях воздуховодов, что приводит к несоответствиям нормам акустики. Материалы для снижения шума в воздуховодах представлены в этом разделе нашего сайта.

Читайте также:

Расчет воздуховодов, площади сечения, сопротивления сети, мощности калориферов

Расчет воздуховодов или проектирование систем вентиляции


В создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции. Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов.

Расчет площади сечения воздуховодов

После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов.

Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму.

При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее.

Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности.

Площадь сечения воздуховода определяется по формуле:

Sс = L * 2,778 / V, где

 — расчетная площадь сечения воздуховода, см²;

L — расход воздуха через воздуховод, м³/ч;

V — скорость воздуха в воздуховоде, м/с;

2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).

Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.

Фактическая площадь сечения воздуховода определяется по формуле:

S = π * D² / 400 — для круглых воздуховодов,

S = A * B / 100 — для прямоугольных воздуховодов, где

S — фактическая площадь сечения воздуховода, см²;

D — диаметр круглого воздуховода, мм;

A и B — ширина и высота прямоугольного воздуховода, мм.

Расчет сопротивления сети воздуховодов

После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети.

Для расчета сопротивления участка сети используется формула:

P=R*L+Ei*V2*Y/2

Где R — удельные потери давления на трение на участках сети

L — длина участка воздуховода (8 м)

Еi — сумма коэффициентов местных потерь на участке воздуховода

V — скорость воздуха на участке воздуховода, (2,8 м/с)

Y — плотность воздуха (принимаем 1,2 кг/м3).

Значения R определяются по справочнику (R — по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi — в зависимости от типа местного сопротивления.

В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:

Где М=V2 *Y/2, W=M*Ei

Pmax=P1+P3+P5+P7=74,334 Па.

Таким образом, потери давления в вентиляционной сети составляют Р=74,334 Па

Расчет мощности калорифера воздуховодов

После того как вы определили сопротивление сети, следует рассчитать требуемую мощность калорифера.

Для этого необходимо учитывать желаемую температуру воздуха на выходе и минимальную температуру наружного воздуха.

Температура воздуха, поступающего в помещение, должна быть выше 18°С. Минимальная температура наружного воздуха зависит от конкретных климатических условий. Например в Московской области она составляет примерно —26°С в зимний период. Таким образом, включенный на полную мощность калорифер должен иметь потенциал для нагрева воздуха на 44°С. Для квартирного помещения расчетная мощность калорифера, как правило, варьируется от 1 до 5 кВт, а для офисов этот показатель составляет 5–50 кВт.

Для более точного расчета используйте следующую формулу:

P = ΔT * L * Cv / 1000, где

Р — мощность калорифера, кВт;

ΔT — разность температур воздуха на выходе и входе калорифера,°С.

Для Москвы ΔT=44°С, для других регионов — определяется по СНиП;

L — производительность вентиляции, м³/ч.

Cv — объемная теплоемкость воздуха, равная 0,336 Вт·ч/м³/°С. Этот параметр зависит от давления, влажности и температуры воздуха, но в расчетах мы этим пренебрегаем.

Для получения более подробной информации, расчета площади, стоимости и заказа воздуховодов обращайтесь в нашу компанию.

Источник

Определение расхода воздуха в воздуховоде в куб. Фут / мин с использованием датчика давления BAPI — Примечание по применению


Для расчета расхода воздуха в кубических футах в минуту (CFM) определите скорость потока в футах в минуту, затем умножьте это значение на площадь поперечного сечения воздуховода.

Расход воздуха в куб. Фут / мин (Q) = скорость потока в футах в минуту (V) x площадь поперечного сечения воздуховода (A)

Определение скорости потока

Самый простой способ определить скорость потока — это измерить скорость потока в воздуховоде с помощью узла трубки Пито, подключенного к датчику перепада давления.Узел трубки Пито включает датчик статического давления и датчик полного давления.

Датчик общего давления, установленный в потоке воздуха, измеряет скоростное давление в воздуховоде и статическое давление, которое равно общему давлению. Датчик статического давления, расположенный под прямым углом к ​​воздушному потоку, измеряет только статическое давление. Разница между показаниями общего давления и статического давления — это давление скорости.

Если вы подключите датчик общего давления к порту HIGH на датчике дифференциального давления, а датчик статического давления — к порту LOW на датчике дифференциального давления, то выходным сигналом датчика будет давление скорости, как показано на рисунках ниже.

Рис. 1: Узел трубки Пито BAPI, включая узлы датчиков статического и полного давления (ZPS-ACC12) Рис. 2: Датчик дифференциального давления зоны (ZPS) BAPI, измеряющий скорость Давление

Затем скорость потока определяется по следующему уравнению:
V = 4005 x √ΔP
V = скорость потока в футах в минуту.
√ = квадратный корень из числа справа.
ΔP = Скорость Давления, измеренная датчиком давления

Пример: измерение скоростного давления 0,75 дюйма Вт.C. соответствует скорости потока 3 468 футов / мин.

В = 4005 x √0,75
√0,75 = 0,866 • 4005 x 0,866 = 3468 • Скорость потока = 3468 футов / мин

Определение площади поперечного сечения воздуховода

После получения скорости потока из предыдущей процедуры, эта цифра теперь умножается на площадь поперечного сечения воздуховода для определения расхода воздуха в кубических футах в минуту. Существует два различных уравнения для определения площади поперечного сечения воздуховода: одно для круглых воздуховодов, а другое — для квадратных или прямоугольных воздуховодов.

Уравнение для квадратных или прямоугольных воздуховодов:
A = X x Y
A = Площадь поперечного сечения воздуховода
X = Высота воздуховода в футах
Y = Ширина воздуховода в футах.

Уравнение для круглого воздуховода:
A = π x r²
A = площадь поперечного сечения воздуховода
π = 3,14159
r = радиус воздуховода в футах

Пример:
Круглый воздуховод диаметром 18 дюймов имеет площадь поперечного сечения 1,77 фут²

A = π x r² или A = 3,14158 x 0,5625
Диаметр 18 дюймов равен 1.5 футов, следовательно, радиус составляет 0,75 фута • r² = 0,75² = 0,5265 • π = 3,14159
A = 3,14159 x 0,5625 = 1,77 фут²

Определение расхода воздуха в CFM

После получения скорости потока и площади поперечного сечения воздуховода из предыдущих двух процедур, воздушный поток в кубических футах в минуту определяется путем умножения двух:

Расход воздуха в куб. Фут / мин (Q) = скорость потока в футах в минуту (V) x площадь поперечного сечения воздуховода (A)

Пример:
Круглый воздуховод диаметром 18 дюймов с давлением скорости.75 ”W.C. имеет воздушный поток 6,128 кубических футов в минуту

Скорость потока составляет 3 468 футов / мин.
В = 4005 x √ΔP)
В = 4005 x √0,75)
√0,75 = 0,866 • 4005 x 0,866 = 3468 • Скорость потока = 3468 футов / мин

Площадь поперечного сечения воздуховода составляет 1,77 фут²
A = π x r²
π = 3,14159 • r² = 0,75² = 0,5625
Площадь поперечного сечения воздуховода (A) = 3,14159 x 0,5625 = 1,77 фут²

Расход воздуха в кубических футах в минуту составляет 6,128 фут3 / мин.
Расход воздуха в кубических футах в минуту (Q) = скорость потока в футах в минуту (V) x площадь поперечного сечения воздуховода (A)
Расход воздуха в кубических футах в минуту (Q) = 3468 футов в минуту х 1.77 футов² = 6 128 кубических футов в минуту

Если у вас есть какие-либо вопросы об этой процедуре, позвоните вашему представителю BAPI.


Версия этого документа в формате pdf для печати

Измерение расхода воздуха — Как измерить скорость воздуха в воздуховоде?

Расчет расхода через воздуховоды, трубы, вытяжки и дымовые трубы (для наших целей в совокупности называемые воздуховодами) никогда не был трудным. Площадь поперечного сечения воздуховода умножается на среднюю скорость воздуха, чтобы найти объем за время или скорость потока.Простой.

Сбор данных для точного и точного измерения скорости воздуха в воздуховодах был сложной задачей. А плохие процедуры сбора данных приводят к ошибкам в балансировке воздуховодов. В прошлом время измерения расхода воздуха с помощью анемометров было ограничено.

Новейшие микропроцессорные приборы обеспечивают точный сбор данных измерения расхода воздуха в воздуховоде ОВК, даже до того, как терпение специалистов по ОВКВ иссякнет.

Как измерить скорость воздуха в воздуховоде?

Более точный вопрос заключается в том, как получить измерение среднего расхода в различных поперечных сечениях воздуховода.

Физика относительно проста:

  • Воздух замедляется трением при контакте с краем воздуховода
  • Наибольшая скорость воздуха достигается в условиях ламинарного потока в середине поперечного сечения без трения
  • Профиль скорости в воздуховоде зависит от формы воздуховода (минимизация стенок периметра для достижения площади поперечного сечения) и силы, толкающей воздух
Промышленный датчик скорости / температуры воздуха Предпочтительными формами воздуховодов являются круглые, квадратные и прямоугольные в указанном порядке эффективности.

С учетом этих фактов, из скольких измерений расхода воздуха можно составить хорошую базу данных?

Линии сетки, которые определяют точки измерения расхода в воздуховоде, являются пересеченными. Логлинейный метод обеспечивает высокую точность (± 3%) суммирования расхода за счет измерения расхода воздуха, предпочтительно ближайшего к краям пространства воздуховода. Теперь вопрос в том, как измерить куб. метр в воздуховоде? Это будет зависеть от формы самого воздуховода.

Воздуховоды круглые

Бревно линейно-траверсное для круглых воздуховодов, трехдиаметрный подход.Логлинейная траверса для круглых каналов, подход по два диаметра. Три поперечины диаметром, равномерно разнесенные под углом 60 °, образуют шесть кусков пирога в круглом воздуховоде. Для каждого радиуса производятся три измерения расхода воздуха: по краю; одна треть к центру; две трети к центру. Обратите внимание, что воздух, наиболее подверженный трению, кажется чрезмерно представленным.

В общей сложности восемнадцать показаний точно описывают расход воздуха.

В случае, когда можно измерить только два хода, установите их под углом 90 градусов и возьмите пять образцов на каждом радиусе.Первые четыре равномерно распределяются по первой половине радиуса, начиная с края и двигаясь к центру. Пятая точка на две трети ближе к центру.

Эти двадцать точек данных не дадут такого точного среднего значения, как восемнадцать с тремя обходами, но результаты приемлемы.

Расход воздуха в воздуховодах прямоугольного или квадратного сечения

Пример линейной траверсы с 25 точками для прямоугольных воздуховодов. Точность требует от минимум двадцати пяти точек данных до максимум сорока девяти.Сторона воздуховода менее тридцати дюймов требует пяти пересечений. Сторона воздуховода больше тридцати шести требует семи пересечений. Шесть для длины посередине.

Для этих воздуховодов требуется как минимум шестнадцать измерений около края (около 7% общего расстояния), а остальные девять должны быть равномерно распределены по сетке. Обратите внимание, что шестьдесят четыре процента точек данных прямоугольного воздуховода будут близко к стенкам воздуховода, в то время как только тридцать три процента точек данных круглого воздуховода отражают трение от стен.Это измерение демонстрирует эффективность круглого воздуховода. Что, кстати, не означает, что раунд — всегда лучшее решение.

Соберите данные по этим показаниям и просто вычислите среднее значение. Или позвольте вашему микропроцессору сделать работу. Вы рассчитали скорость воздушного потока в воздуховоде.

Как измерить площадь поперечного сечения

Звучит достаточно просто: длина умножается на ширину или радиус в квадрате, умноженный на пи.

Три слова: запомните решетку.

Если решетка не используется, коэффициент применения равен 1,00. Таким образом, площадь поперечного сечения воздуховода не изменилась.

Если решетка имеет квадратную форму, умножьте общую площадь на 0,88. Решетка радиатора изменена в 0,78 раза; и решетка из стальных полос калибра 0,73.

Решетка служит для замедления скорости воздуха, а также для его рассеивания. Помните об этом факторе.

Приборы для измерения расхода воздуха в системах отопления, вентиляции и кондиционирования воздуха

Вы измерили расход воздуха, чистую площадь поперечного сечения и умножили их на расход.

Q = FAV, где:
F = коэффициент применения (см. Таблицу)
A = обозначенная площадь в квадратных футах

Тип решетки Фактор применения, F Обозначенный участок
Нет 1,00 Площадь воздуховода полностью
Квадрат с перфорацией 0,88 Свободная (дневная) зона
Штанга 0.78 Площадь ядра
Стальная полоса 0,73 Площадь ядра
Экономичный крыльчатый анемометр Современные приборы для измерения воздуха, такие как портативные анемометры, которые предлагают цифровые показания в кубических футах в минуту: автономный калькулятор, позволяющий сэкономить время и нервы для профессионалов в области HVAC.

Мы считаем важным, чтобы технические специалисты понимали теорию измерения расхода воздуха в воздуховодах, чтобы распознать, когда точка данных вряд ли будет правильной, ошибочные показания или расчет не кажутся правильными и должны быть проверены дважды.В сегодняшней среде «результат — сейчас» эти новые технологии ускоряют процесс. Ваш опыт будет дважды проверять процесс, но этот инструментарий быстро собирает и дважды проверяет необработанные данные.

Новые модели усовершенствованы в том, как рассчитывается расход воздуха и выводится в удобном для использования формате. Балансировка воздуховодов стала менее трудоемкой и более эффективной, больше науки, чем искусства.

Диаметр воздуховода — обзор

8.1 Роль ядерной системы вентиляции

На этом этапе мы обычно сразу переходим к нашей теме, но в данном конкретном случае стоит уделить время тому, чтобы прояснить популярное заблуждение, которое имеет отношение ко многим из того, что следует далее. Довольно часто предполагается, что роль ядерной системы вентиляции состоит в том, чтобы поддерживать чистоту загрязненной окружающей среды, высасывая частицы в воздухе из воздуха и отправляя их мчатся по воздуховодам в места, где с ними можно справиться, но это не так. работает.

Раньше все мы сталкивались с вытяжными вентиляторами в домашних условиях, на кухнях и в ванных комнатах, или в ресторанах, офисах и т.п. , они изо всех сил пытаются уловить дым или пар, пока тот не дойдет до них. Точно то же самое происходит с установленными системами вентиляции, где эффекты с точки зрения воздушного потока вокруг отверстий вытяжного воздуховода точно такие же. Рис. 8.1 показывает, что происходит.

Рис. 8.1. Выделите изолинии скорости.

© Билл Коллум.

Если мы примем, что воздушный поток на выходе из круглого вытяжного воздуховода имеет скорость 100%, то мы увидим, что на расстоянии, эквивалентном половине диаметра воздуховода, его скорость падает ниже 30%. И к тому времени, когда мы достигаем расстояния, равного диаметру воздуховода, скорость воздуха падает до менее 10% от скорости в его открытом устье. Так, например, 5 м / с через отверстие в воздуховоде диаметром 1 м будет ниже 0,5 м / с на том же расстоянии 1 м.

Если мы визуализируем вытяжной канал в потолке сильно загрязненной среды, скажем, экранированной пещеры, то становится ясно, что ее сфера влияния , способность воздуховода всасывать загрязнения из воздуха, действительно очень ограничена. Настолько сильно, что на практике в теле пещеры очень мало движения воздуха и, конечно, нет никакой перспективы извлечения значительного загрязнения из этой области. Да, относительно небольшое количество переносимого по воздуху загрязнения будет улавливаться и переноситься до тех пор, пока не достигнет фильтровальных установок, но это всего лишь побочный продукт основной цели системы.

Ключевой момент, о котором следует помнить, заключается в том, что все системы ядерной вентиляции предназначены для поддержания герметичности на стыках и между радиологическими зонами, которые мы обсуждали в главе 3. Проще говоря, если воздушное загрязнение пытается сместиться из зоны с высоким уровнем загрязнения в зону с более низким уровнем загрязнения. Во-первых, воздушные потоки системы будут настроены так, чтобы перетащить ее обратно на место. Независимо от того, насколько сложной может быть система вентиляции, она не может обеспечить мощное всасывание во все уголки и щели, чтобы удалить загрязнения; контуры скорости извлечения показывают, насколько это невозможно.

Ответственность за ограничение распространения загрязнения лежит на других лицах. Он начинается с того, что группа проектировщиков разрабатывает оборудование и процессы, которые, в первую очередь, сводят к минимуму количество генерируемого загрязнения, а затем возлагается на операторов завода, которые должны соблюдать режимы комплексного технического обслуживания и обслуживания, которые сохранят помещения как можно более радиологически чистыми. Теперь, когда мы это выяснили, мы готовы двигаться дальше.

Что происходит с потоком воздуха в воздуховодах при изменении размера?

Продолжая изучение качества и фильтрации воздуха в помещении, мы возвращаемся к конструкции воздуховодов.Сегодняшний урок посвящен интересной части физики, которая применима ко всему, что течет. Это может быть тепло, частицы или электромагнитная энергия. В нашем случае это воздух, жидкость, и рассматриваемая нами физика называется уравнением неразрывности. По сути, это закон сохранения, похожий на закон сохранения энергии, и я буду использовать диаграммы, чтобы рассказать историю.

Базовая преемственность

Во-первых, у нас есть воздуховод. Воздух поступает в воздуховод слева. Когда воздух движется по воздуховоду, он сталкивается с редуктором, а затем с меньшим воздуховодом.

Что мы знаем о потоке здесь? Размышляя о законах сохранения, мы можем с уверенностью предположить, что каждая капля воздуха, попадающая в воздуховод слева, должна где-то выходить из воздуховода. Мы возьмем идеально герметичный воздуховод, чтобы воздух не выходил наружу.

Но мы можем усилить наше утверждение, перейдя только от количества воздуха к скорости потока. Используя «эти раздражающие британские единицы измерения», мы можем сказать, что на каждый кубический фут в минуту (куб. Фут / мин) воздуха, поступающего в воздуховод слева, соответствующий кубический фут в минуту выходит из воздуховода справа.Мы обозначаем поток здесь символом q .

Итак, у нас есть сохранение воздуха — воздух не создается и не разрушается в воздуховоде — и у нас есть сохранение скорости потока. Скорость входящего потока равна скорости выходящего потока. Но чтобы сделать это второе утверждение, нам пришлось сделать предположение.

Мы знаем, что количество молекул воздуха должно быть одинаковым, несмотря ни на что, но сказать, что объем воздуха одинаковый, означает, что плотность не меняется. Когда мы говорим это, мы предполагаем, что воздух несжимаем.Это правда? Можем ли мы с полным основанием сказать, что воздух — несжимаемая жидкость?

Общий ответ на вопрос о несжимаемости, как вы знаете, состоит в том, что воздух, безусловно, является сжимаемой жидкостью. Но мы можем рассматривать его как несжимаемый в системах воздуховодов, потому что изменения давления, через которые он проходит, достаточно малы, и плотность воздуха не меняется.

Вот почему наше утверждение выше, что скорость потока (в кубических футах в минуту) воздуха, поступающего в канал, равна скорости потока воздуха, выходящего из канала.У нас преемственность!

Но что происходит со скоростью?

Скорость воздуха в воздуховодах — действительно важный фактор в том, насколько хорошо воздуховоды выполняют свою работу по эффективному и бесшумному перемещению нужного количества воздуха из одного места в другое. Мы рассмотрим эту тему подробнее в следующей статье, а пока давайте разберемся, что происходит со скоростью, когда воздух переходит из большего канала в меньший.

Во-первых, возвращаясь к нашему утверждению о равных расходах, давайте посмотрим на равные объемы воздуха, проходящего через систему воздуховодов.Допустим, узкая синяя полоска в большем воздуховоде представляет один кубический фут воздуха. Я показал поперечное сечение воздуховода A 1 под этой полосой.

В меньшем воздуховоде тот же кубический фут воздуха распространяется на большую длину, потому что поперечное сечение, A 2 , меньше. Имеет смысл, правда? Вы получаете равные объемы, потому что объем в каждом случае равен площади поперечного сечения, умноженной на длину.

Следующий шаг — понять, что эти разные длины означают для скорости.Согласно нашему уравнению для скоростей потока, q in = q out , в то же время, когда вся узкая воздушная пробка слева переместится на одну длину вперед, более широкая пробка воздуха справа будет также продвинуться на одну длину вперед.

Нравится.

Красная стрелка показывает начальное расстояние между двумя воздушными пробками. Как видите, расстояние между ними увеличилось.

В следующем временном блоке узкая пробка продвигается еще на одну длину.Толстая пробка также продвигается вперед на одну из своих длин.

А потом еще раз.

Каждый раз, когда воздух продвигается на один кубический фут, воздух в меньшем воздуховоде перемещается дальше, чем воздух в большем воздуховоде. Другими словами, скорость в меньшем воздуховоде выше, чем в большем. И это связано с площадью поперечного сечения.

Это уравнение для площади и скорости называется уравнением неразрывности для несжимаемой жидкости.

Стивен Доггетт, доктор философии, LEED AP, провел моделирование вычислительной гидродинамики (CFD), используя геометрию моих диаграмм выше, и получил несколько хороших изображений поля скорости. Вот первый, смоделированный для ламинарного потока:

Интересно посмотреть, как изменяется скорость в штуцере редуктора. Следует отметить, что это моделирование предполагало ламинарный поток, тогда как в реальных каналах была бы некоторая турбулентность. И поскольку вам сейчас интересно, вот его симуляция того же самого с турбулентностью:

Немного медленнее.Немного больше действий на углах. Немного льстит при сокращении. В целом, они очень похожи, и на них интересно смотреть.

Ключевой вывод здесь заключается в том, что воздух движется из большего канала в меньший, скорость увеличивается. Когда он движется от меньшего к большему воздуховоду, скорость уменьшается. В обоих случаях скорость потока — количество воздуха, проходящего через воздуховод, в кубических футах в минуту — остается неизменной.

Приложения уравнения неразрывности

Поскольку мы только что рассмотрели проблемы с фильтрацией воздуха в моей прошлой статье, вы можете подозревать, что это имеет какое-то отношение.И ты прав. Многие фильтры вызывают проблемы с воздушным потоком из-за чрезмерного падения давления. Чтобы решить эту проблему, вы должны понимать взаимосвязь между площадью фильтра, скоростью забоя и падением давления. Задействовано уравнение неразрывности. Я собираюсь углубиться в это в ближайшее время.

Уравнение неразрывности также имеет решающее значение для поддержания скорости в каналах там, где вы хотите. Если он поднимется слишком высоко, вы получите слишком большой перепад давления и, возможно, шум.

Кроме того, существует проблема подачи кондиционированного воздуха в помещения с надлежащей скоростью, чтобы обеспечить достаточное перемешивание воздуха в помещении. Это похоже на проблему с фильтром, когда вы должны смотреть на спецификации производителя для регистров подачи, за исключением того, что вы не пытаетесь минимизировать падение давления, как с фильтрами. Вы пытаетесь выбрать правильный регистр для количества воздушного потока, чтобы получить правильную величину выброса и разбрасывания.

Темой моего первого семестра вводного курса физики, которая мне понравилась больше всего, была гидродинамика, изучение движущихся жидкостей.Мы не касались вязкости, но мы узнали об уравнении Бернулли, трубках Вентури и скорости жидкости. В то время я понятия не имел, что буду использовать этот материал в реальном мире почти четыре десятилетия спустя.

Конечно, в 1980 году я даже не мог предсказать, что буду пекарем в Сент-Луисе в 1984 году, мыть окна в Сиэтле в 1986 году или преподавать физику в средней школе Тарпон-Спрингс во Флориде в 1989 году. Нильс Бор, возможно, сказал: «Трудно предсказать, особенно будущее.”

Статьи по теме

Основные принципы проектирования воздуховодов, часть 1

Преобразование нагрузок нагрева и охлаждения в поток воздуха — физика

Наука о провисании — гибкий воздуховод и воздушный поток

Две основные причины снижения потока воздуха в воздуховодах

ПРИМЕЧАНИЕ: Комментарии модерируются. Ваш комментарий не появится ниже, пока не будет одобрен.

7 причин, почему круглые воздуховоды лучше прямоугольных

1. Справочная информация

Система воздуховодов — важнейший компонент кондиционирования и вентиляции. Его функция состоит в том, чтобы передавать отрегулированный воздух к оконечному оборудованию с максимальной эффективностью в соответствии с расчетным потоком.

Обычно поперечное сечение воздуховода имеет три формы: прямоугольную, круглую и сплюснутую.

Изготовление прямоугольных воздуховодов обычно осуществляется путем клепки четырех стальных пластин. Круглый воздуховод изготавливается путем наматывания стальной пластины шириной 137 мм на спирально-формовочной машине. Сплюснутые протоки встречаются относительно редко. Обычно они образуются путем сжатия воздуховодов круглого сечения.

До 1960 года из-за простоты производственного процесса и небольшого пространства для установки в большинстве систем вентиляции использовались прямоугольные воздуховоды.

Благодаря успешной разработке машин для формовки больших спиральных круглых каналов, большое количество инженерных примеров доказало, что круглые воздуховоды намного лучше прямоугольных с точки зрения экономии и других технических параметров.

Большое количество воздуховодов из волоконной ткани, представленных в настоящее время на рынке, представляет собой системы распределения воздуха, которые объединяют такие функции, как вентиляционные отверстия, каналы подачи воздуха, камеры статического давления, теплоизоляционные материалы и демпферы. Преимущества точной и равномерной подачи воздуха, легкого монтажного блока, высокого внешнего вида, антибактериальной устойчивости и устойчивости к плесени были получены пользователями и широко используются.

Формы воздуховодов из волокнистой ткани бывают круглыми, полукруглыми, четвертькруглыми, овальными и полуовальными для соответствия требованиям различных строительных конструкций.

Канал круглый из волокнистой ткани

Таблица 1: Ежегодная доля рынка воздуховодов круглого сечения:

Страна 1960 1965 1970 1975 1980 1985 1990 2000
Скандинавский 5 15 40 60 70 80 85 90
Германия 5 5 10 15 20 25 25 50
Франция 5 10 20 30 40 50 50 65
Англия 5 10 15 20 25 35 35 55

С точки зрения экономического анализа, все затраты на систему воздуховодов в здании за весь срок его службы можно разделить на:

  1. Первоначальные вложения: включая затраты на проектирование, материалы и установку, затраты на помещения, затраты на ввод в эксплуатацию и т. Д.
  2. Операционные расходы: включая заработную плату персонала, затраты на электроэнергию и техническое обслуживание.
  3. Стоимость обновления: Включая стоимость ремонта и замены изношенных деталей.

Результаты зарубежных исследований показывают, что по многим параметрам системы круглых воздуховодов работают лучше, чем системы прямоугольных воздуховодов. В этой статье будут обобщены результаты этих исследований и сделана попытка сосредоточить сравнение на экономическом сравнении систем воздуховодов. В то же время, поскольку стоимость обновления составляет небольшую часть общей стоимости при нормальных обстоятельствах, эта часть стоимости будет проигнорирована в данном обсуждении.

2. Начальные инвестиции:

Отчасти причина того, почему первоначальные инвестиции, необходимые для системы воздуховодов круглого сечения, ниже, чем для системы воздуховодов прямоугольного сечения, заключается в следующем:

  • Круглый воздуховод проще в изготовлении и транспортировке.
  • Компоненты и арматура круглого воздуховода строго стандартизированы.
  • Конструктивно круглые воздуховоды лучше выдерживают давление без деформации. Прямоугольные воздуховоды требуют большего количества болтов, заклепок, опорных балок и других мер по усилению.
  • При том же гидравлическом диаметре количество металла, необходимое для изготовления круглого воздуховода, меньше, чем у прямоугольного воздуховода. Чем больше соотношение сторон прямоугольного воздуховода, тем выше расход металла.
  • Подвесная конструкция круглого воздуховода проще в установке, чем прямоугольный. В «Правилах строительства и приемки работ по вентиляции и кондиционированию воздуха» GB50243-2002 также указано, что расстояние между подвесами для прямоугольных воздуховодов с длинной стороной более 400 мм составляет 4 м. а расстояние между спиральными воздуховодами увеличено до 5 метров.
  • Точка измерения для измерения объема воздуха круглого воздуховода меньше, чем у прямоугольного воздуховода, поэтому, когда система воздуховодов сбалансирована, стоимость ввода в эксплуатацию также будет меньше, чем у прямоугольного воздуховода.
  • Круглый воздуховод может значительно снизить уровень низкочастотного шума в помещении. Следовательно, можно уменьшить шумоподавляющее оборудование.

Мы разработали две проектные схемы для системы вентиляции большого помещения с использованием воздуховодов круглого и прямоугольного сечения, а также сравнили высоту потери давления в системе и соответствующие экономические параметры.См. Рис. 1 (Примечание: экономический анализ основан на ценах на рынке Скандинавии за год).

Результаты расчетов показывают, что при тех же условиях конечного оборудования общая стоимость установки круглого воздуховода составляет только половину от прямоугольного воздуховода, а стоимость материала круглого воздуховода составляет 80% от прямоугольного воздуховода.

Полная потеря давления (Па): 150,0

Общая стоимость установки: 0.51R

Общая стоимость материалов: 0.8М

(A)

Полная потеря давления (Па): 165,4

Общая стоимость установки:

рэнд

Общая стоимость материалов: M

(B)

Рисунок 1: Сравнение проектных схем воздуховодов

(A) Круглый воздуховод (B) Прямоугольный воздуховод

Экономический анализ пространства, занимаемого системой воздуховодов, затруднен, поскольку он зависит от конструкции и назначения здания.

Вообще говоря, одна из основных причин использования прямоугольных воздуховодов — это экономия места.Но на самом деле для прямоугольных воздуховодов с близким соотношением сторон фактическая площадь, занимаемая ими, больше, чем у круглых воздуховодов. Это в основном связано с тем, что для прямоугольных воздуховодов для соединения требуются фланцы, а высота кромок фланцев обычно превышает 20 мм, см. Рисунок 2 (A).

Современный спиральный воздуховод можно соединять со стандартной гибкостью, см. Рисунок 2 (B).

Этот метод не только не требует дополнительного места, но и проще в установке. Следовательно, для прямоугольных воздуховодов с соотношением сторон, близким к 1, преимущества круглых воздуховодов не могут быть заменены.

(А)

(В)

Рисунок 2: Сравнение схемы подключения воздуховода

(A) Прямоугольный воздуховод (B) Круглый воздуховод

Для прямоугольных воздуховодов с большим соотношением сторон вместо них можно использовать несколько круглых воздуховодов, как показано на рисунке 3. Эта альтернатива может значительно упростить управление объемом воздуха.

При этом значительно снизятся и затраты на установку.

Хотя стоимость материалов может увеличиться, однако обследование показало, что при этой схеме первоначальные вложения почти такие же, как и в случае прямоугольного воздуховода.

Рис. 3. Альтернативный план замены прямоугольного воздуховода 550 мм × 150 мм двумя круглыми воздуховодами D = 200 мм

3. Операционные расходы

В нормальных условиях большую часть эксплуатационных расходов систем кондиционирования составляет потребление энергии.

Затраты на энергию включают энергию, потребляемую для нагрева или охлаждения воздуха, а также для транспортировки этого воздуха к конечному оборудованию.

Если вся система воздуховодов хорошо изолирована, утечка воздуха из воздуховода становится важным источником избыточного потребления энергии.

Для системы воздуховодов вентилятор является источником циркулирующей энергии, и давление ветра вентилятора обычно не превышает 650 Па.

Без учета потерь давления в оконечном оборудовании вентиляционной установки доступный напор всей системы воздуховодов составляет около 200–300 Па.

Таким образом, вам следует избегать больших потерь напора в системе воздуховодов. В то же время количество утечки воздуха также напрямую влияет на выбор мощности вентилятора. Согласно теореме вентилятора, мощность вентилятора пропорциональна кубу объема воздуха, то есть, если уровень утечки воздуха через воздуховод составляет 6%, мощность вентилятора увеличится на 20%, а скорость утечки спирального кругового воздуха труба намного меньше, чем у прямоугольной воздуховода.

3.1 Скорость утечки воздуха

Уровень утечки воздуховода можно рассчитать по следующей формуле:

  • f ref = коэффициент утечки по площади
  • q vl = утечка воздуха
  • A = площадь поверхности воздуховода
  • K = постоянная утечки воздуха
  • △ p ref = разница давлений между воздуховодом и снаружи

В Европе герметичность воздуховодов делится на четыре уровня (A, B, C, D) в соответствии с постоянной утечки воздуха.

В таблице 2 показаны максимально допустимые константы утечки воздуха для соответствующих марок.

Класс A КА = 0,027 × 10 -3 м 3 с -1 м -2 Па -0,65
Класс B КБ = 0,009 × 10 -3 м 3 с -1 м -2 Па -0,65
Класс C КС = 0.003 × 10 -3 м 3 с -1 м -2 Па -0,65
Класс D КД = 0,001 × 10 -3 м 3 с -1 м -2 Па -0,65

Таблица 2: Классификация воздухонепроницаемости в европейских системах воздуховодов

По сравнению с круглыми воздуховодами, прямоугольные воздуховоды требуют гораздо большего количества болтов и заклепок для соединения, поэтому утечка воздуха неизбежно намного больше.

Рисунок 4 представляет собой набор данных измерений в Бельгии. Данные показывают, что средняя скорость утечки прямоугольных каналов в 7 раз выше, чем у круглых.

В «Нормах для строительства и приемки работ по вентиляции и кондиционированию воздуха» GB50243-2002 также указано, что допустимая утечка воздуха в воздуховодах круглого сечения составляет 50% от утечки воздуха в прямоугольных каналах.

Рисунок 4: Измерения скорости утечки воздуха в 21 бельгийском здании (Carrié et al, 1999)

3.2 Потеря напора

Гидравлический эквивалент напрямую используется для оценки потери давления в системе прямоугольных воздуховодов для воздуховодов с таким же гидравлическим эквивалентным диаметром. Несмотря на разную форму поперечного сечения, они все равно имеют одинаковую потерю давления в пути.

На рис. 5 сравнивается потеря давления для круглого воздуховода (D = 0,5 м, U = 5 м / с, ∑ = 0,15 мм) и прямоугольного воздуховода с той же площадью и расходом.

Очевидно, что в этом случае потеря давления в прямоугольном воздуховоде намного больше, чем у круглого воздуховода, и по мере увеличения удлинения воздуховода потеря давления увеличивается.Это значит, что мощность вентилятора должна быть больше.

Рис. 5: Сравнение потерь давления между прямоугольным и круглым воздуховодами при постоянном расходе и скорости потока (расход = 1 м³ / с, v = 5 м / с)

Концепция «гидравлического эквивалентного диаметра» основана на предположении, что среднее напряжение сдвига вдоль границы прямоугольного воздуховода должно быть постоянным. Другими словами, изокинетическая линия должна быть параллельна границе воздуховода, но фактические результаты измерений показывают, что в прямоугольном воздуховоде градиент скорости вдоль диагональной линии затухает медленнее всего, а градиент скорости вдоль центральной линии затухает самым медленным. .Поэтому теоретически гидравлический эквивалентный диаметр следует использовать с осторожностью в следующих двух случаях.

  • Поток слишком мал, и поле потока не может достичь состояния полного турбулентного состояния.
  • Сечение трубы далеко от круга, то есть прямоугольника с большим соотношением длины к ширине.

Экспериментальные данные также ставят под сомнение универсальность гидравлического эквивалентного диаметра. ДЖОНС провел серию экспериментов по потере давления в гладких прямоугольных воздуховодах.Я повторно проанализировал его экспериментальные данные, как показано на рисунке 6. Несмотря на отсутствие данных для 10 <соотношение сторон <25, данные на рисунке 6 по-прежнему убедительно свидетельствуют о монотонно возрастающем влиянии отношения длины к ширине на потерю гидравлического эквивалентного диаметра давления. Эксперименты Григсетала с грубыми прямоугольными воздуховодами дали аналогичные результаты.

Рисунок 6: Сравнение потерь давления между гладким прямоугольным воздуховодом и круглым воздуховодом с различным соотношением длины и ширины

3.3 Затраты на техническое обслуживание

Чтобы не заболеть зданиями, необходимо регулярно чистить воздуховоды. Методы уборки включают сухой (с помощью пылесоса и щетки) или влажный (с помощью длинной швабры). В обоих случаях чистить круглые воздуховоды проще, чем прямоугольные.

4. Выводы

Экономический анализ систем воздуховодов — сложная задача. При этом необходимо учитывать множество факторов, а срок службы системы воздуховодов может превышать десять лет.В этом случае небольшое улучшение дизайна и качества может повысить рентабельность инвестиций. В связи с этим использование воздуховодов круглого сечения должно быть более экономичным решением.

Наконец, следует отметить, что из соображений тишины и простора прямоугольные воздуховоды по-прежнему рекомендуются для некоторых крупнопоточных и крупногабаритных частей системы воздуховодов, таких как впускные отверстия для всасывания свежего воздуха и выпускные отверстия для устройств обработки воздуха. .

Тепловые потери по уравнениям и калькулятору воздуховодов | Инженеры Edge

Связанные ресурсы: теплопередача

Расчет потерь тепла из воздуховодов

Теплообменная техника
Термодинамика
Инженерная физика

Потери тепла из воздуховодов в строительном уравнении и калькуляторе, а также стоимость потерянной энергии.

ВСЕ калькуляторы требуют членства Premium

Предварительный просмотр: тепловые потери из воздуховодов в строительном уравнении и калькуляторе

Где:

Q = скорость теплопередачи
м = массовый расход
C p = Удельная теплоемкость при постоянном давлении
ΔT = изменение температуры

Где:
p = плотность
P = Абсолютное давление
R = газовая постоянная
T = Абсолютная температура

м = массовый расход
p = плотность
A c = Площадь
V = Средняя скорость жидкости

Пример:

Потери тепла из каналов отопления в подвале:

5-метровый участок системы воздушного отопления дома проходит через неотапливаемое пространство в подвале (см. Рисунок выше).Сечение прямоугольного воздуховода системы отопления составляет 20 см х 25 см. Горячий воздух поступает в воздуховод при 100 кПа и температуре 60 ° C со средней скоростью 5 м / с. Температура воздуха в воздуховоде падает до 54 ° C из-за потери тепла в прохладное помещение в подвале.

Определите скорость потери тепла из воздуха в воздуховоде в подвал в устойчивых условиях. Кроме того, определите стоимость этих тепловых потерь в час, если дом отапливается печью на природном газе с КПД 80 процентов, а стоимость природного газа в этой зоне составляет 0 долларов.60 / терм (1 терм = 100 000 британских тепловых единиц = 105 500 кДж).

Решение : Температура воздуха в отопительном канале дома падает из-за потери тепла в прохладное помещение в подвале. Скорость потери тепла горячим воздухом и ее стоимость подлежат определению.

Допущения
1 Существуют стабильные рабочие условия.
2 Воздух можно рассматривать как идеальный газ с постоянными свойствами при комнатной температуре.

Свойства Удельная теплоемкость воздуха при постоянном давлении при средней температуре (54 ° C + 60 ° C) / 2 = 57 ° C равна 1.007 кДж / кг · ° C См. (Свойства воздуха при давлении 1 атм).

Анализ В качестве нашей системы мы принимаем подвальную часть системы отопления, которая представляет собой систему с установившимся потоком.

Площадь поперечного сечения воздуховода:

Тогда массовый расход воздуха через воздуховод и скорость теплопотерь становятся равными

следовательно,

или 5688 кДж / ч. Стоимость этих тепловых потерь для домовладельца составляет

.

Преобразование: 1 терм = 105480 кДж

Заключение:

Тепловые потери из каналов отопления в подвале обходятся домовладельцу в 4 цента в час.Если предположить, что обогреватель работает 2000 часов в течение отопительного сезона, ежегодные затраты на эти тепловые потери составляют 80 долларов. Большую часть этих денег можно сэкономить, изолировав отопительные каналы в неотапливаемых помещениях.

© Copyright 2000-2021, Engineers Edge, LLC www.engineersedge.com
Все права защищены
Отказ от ответственности | Обратная связь | Реклама | Контакты

Дата / Время:

Измерение поперечного воздушного потока в воздуховоде | Fluke

Правильный поток воздуха в воздуховодах ОВК имеет важное значение для хорошей работы оборудования.Когда потоки воздуха неправильные, воздух не может быть кондиционирован должным образом, эксплуатационные расходы повышаются, а ожидаемый срок службы оборудования сокращается.

Многие обстоятельства требуют измерения скорости или расхода воздуха, и пересечение воздуховода является наиболее точным методом получения этой информации. Траверс воздуховода состоит из ряда равномерно распределенных измерений скорости и давления воздуха по всей площади поперечного сечения прямого воздуховода (диаграмму см. В этой направляющей воздушного потока). В этой заметке по применению объясняется, как это сделать.

Проведение пересечения воздуховода

Для максимальной точности воздушного потока снимите несколько показаний в плоскости пересечения, преобразуйте их в скорость и затем усредните их. На рисунке 1 показаны точки вдоль плоскости поперечного сечения, в которых следует проводить измерения, в прямоугольных или круглых воздуховодах.

Измерьте расход воздуха как минимум в 25 точках, независимо от размера воздуховода.

  • Для сторон воздуховода короче 30 дюймов необходимо взять пять точек пересечения (по 5 с каждой стороны, 5 * 5 = 25).
  • Для сторон воздуховода от 30 до 36 дюймов необходимо взять шесть точек.
  • Для сторон воздуховода длиннее 36 дюймов необходимо снять семь точек.
  • Если сторона воздуховода меньше 18 дюймов, то любые показания, которые вы снимаете, следует снимать из центра равных областей, которые находятся на расстоянии не более 6 дюймов друг от друга, с минимум двумя точками на каждую сторону воздуховода.

Предпочтительное расположение траверсы в приточном воздуховоде должно быть на прямом участке воздуховода с 10 прямыми эквивалентными диаметрами воздуховода на входе и 3 прямыми эквивалентными диаметрами воздуховода после плоскости траверсы, хотя минимум 5 эквивалентных диаметров воздуховода на входе. и 1 канал эквивалентного диаметра ниже по потоку может дать адекватные результаты.

Когда траверса расположена рядом с вентилятором, условия потока обычно более благоприятны выше по потоку на стороне возврата. Траверса на входе вентилятора должна быть равной 0,5 диаметра воздуховода перед входом вентилятора.

Эквивалентный диаметр воздуховода = √ (4HV / π)
H = горизонтальный размер воздуховода
V = вертикальный размер воздуховода
π = 3,14

Установка измерительного устройства

Чтобы определить глубину погружения измерительного устройства, обратитесь к следующим таблицам .Предположим, у нас есть образец воздуховода со сторонами размером 24 x 15 дюймов. Для стороны 24 дюйма нашего образца прямоугольного воздуховода обратитесь к строке «5 линий пересечения».

Правило Лог-Чебычева для прямоугольных воздуховодов
Число точек или линий пересечения Положение относительно внутренней стены
5 0,074, 0,288, 0,500, 0,712, 0,926
6 0,061, 0,235, 0,437, 0,563, 0,765, 0,939
7 0.053, 0,0203, 0,366, 0,500, 0,634, 0,797, 0,947
6 90
Правило Лог-Чебычева для круглых воздуховодов
Число точек на диаметр Положение относительно внутренней стенки
0,032, 0,135, 0,321, 0,679, 0,865, 0,968
8 0,021, 0,117, 0,184, 0,345, 0,655, 0,816, 0,883, 0,981
10 0,019, 0,153, 0,217, 0,361, 0,639 , 0.783, 0,847, 0,923, 0,981

Обратите внимание на пять множителей, перечисленных в разделе «Положение относительно внутренней стены». Умножьте размер воздуховода (24 дюйма) на числа в таблице, чтобы получить различную глубину погружения для этой стороны воздуховода. Например, ближайшее к внутренней стене положение будет: 0,074 * 24 дюйма = 1,78 дюйма, и и т. д. Для стороны 15 дюймов следуйте приведенным выше текстовым инструкциям по выполнению измерений, когда стороны воздуховода меньше 18 дюймов.

Пошаговые инструкции

Вот как выполнить измерения скорости и давления с помощью Fluke 922

  • Подсоедините трубку общего давления к порту 922 «+», а трубку статического давления — к порту «-».
  • Выберите режим «Объем потока».
  • Выберите круглый или прямоугольный воздуховод.
  • Введите внутренние размеры воздуховода в соответствии с запросом.
  • Нулевой счетчик.
  • Поместите наконечник трубки Pitot-Static в воздуховод в первой точке пересечения.
  • Когда отображается стабильное показание объема воздуха, нажмите «Сохранить», чтобы сохранить показания.
  • Повторить для каждой точки перемещения
  • После того, как все показания точки перемещения были сохранены, нажмите «Расчет среднего» для среднего расхода воздуха

Общее давление минус статическое давление равно скоростному давлению.Fluke 922 автоматически преобразует давление скорости в скорость в режиме скорости. В режиме «Объем потока» 922 будет запрашивать геометрию и размеры воздуховода, чтобы отображать расход воздуха (куб. Фут / мин) непосредственно в реальном времени. Расчет скорости и расхода воздуха 922 основан на стандартном воздухе при 29,92 дюйма ртутного столба и температуре 70 ° F.

Советы

Когда мы говорим о размещении трубки Пито на 10 диаметров прямого канала вверх по потоку и 3 диаметра прямого канала после поперечной плоскости, нам нужно сначала преобразовать размеры прямоугольных воздуховодов в их эквивалентные диаметры окружности.

Для выполнения обхода с круглым воздуховодом, по существу, следуйте тем же правилам размещения плоскости обхода, что и для прямоугольного. Однако круглые воздуховоды требуют измерения по 3 диаметрам (см. Руководство по потоку воздуха), как минимум 6 измерений на диаметр. Умножьте количество точек, которые вы будете измерять, на цифру во второй половине таблицы 1, чтобы определить положение измерения относительно внутренней стенки воздуховода.

Примечания:

  1. При выполнении пересечения воздуховода всегда следите за тем, чтобы носик трубки Пито был параллелен стенке воздуховода и обращен к воздушному потоку.
  2. По возможности снимайте показания на длинных прямых участках воздуховода. Избегайте измерения сразу после локтей или других препятствий в дыхательных путях.

Дополнительные ресурсы

Для начала ознакомьтесь со стандартами ASHRAE 111 «Практика измерения, тестирования, регулировки и балансировки систем отопления, вентиляции, кондиционирования и охлаждения зданий» и стандартами ISO 3966. Первый включает общую главу, посвященную измерениям в воздухе, со ссылкой на правило Лога-Чебычева, разработанное в ISO 3966, в дополнение к дополнительным указаниям по размещению плоскости пересечения и методам измерения.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *