Подключение трехфазного двигателя через магнитный пускатель: Подключение трехфазного двигателя через магнитный пускатель
Подключение трехфазного двигателя через магнитный пускатель
Рассмотрение общепринятых схем монтажа магнитного пускателя позволит пользователю самостоятельно подключить трехфазный асинхронный двигатель самостоятельно, избежав при этом распространённых ошибок, не прибегая к услугам профессиональных электриков.
Необходимость в специфическом кнопочном контакте
Известно, что контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления.
Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный (вспомогательный) контакт шунтирует (подключается параллельно) пусковую кнопку, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.
Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом.
Исходя из этого, кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC) (см. рис.)
Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп» и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск», «Вперёд», «Назад».
Простая схема — нереверсивный режим двигателя
Данный режим работы мотора означает, что вращение вала происходит только в одном направлении, запуск осуществляется при помощи кнопки «Пуск», а остановка происходит спустя некоторое время (из-за инерции) после нажатия «Стоп».
Существуют две распространенные разновидности данной схемы подключения – с катушкой управления 220 В и 380 В (подключение между двумя фазами).
Схема с применением катушки пускателя с номиналом на 220В требует подсоединения нулевого провода, но применение нуля более привычно для простого пользователя, поэтому вначале будет рассмотрен именно этот вариант подключения. Подключение эл. двигателя через магнитный пускатель на 220 ВНужно детально рассмотреть все соединения, чтобы полностью понять принцип работы данной схемы, после чего будет проще разобрать более сложные варианты.
Детальное рассмотрение электромонтажа
Для удобства нужно составить монтажную схему.
Вначале подключается контактор (само собой, напряжение на входном кабеле должно отсутствовать). В приведённой выше схеме напряжение, необходимое для управления, снимается с фазы «В» (L2), но выбор фазного провода в этом случае не имеет никакого значения (как будет удобно).
Проводник, идущий к кнопке «Стоп» подключается вместе с фазным проводом на клемме контактора. Чтобы не было путаницы, общепринято маркировать нормально разомкнутые контакты цифрами «1», «2», а размыкающие соответственно – «3», «4».
Далее нужно установить перемычку в кнопочном посте.
После чего подсоединяется провод, идущий от клеммы «1» пусковой кнопки к выводу А1 управляющей катушки контактора.
От клеммы «2» кнопки запуска нужно подсоединить провод к вспомогательному контакту NO13. В данном случае неважно, к какому выводу подключать данный провод, но лучше придерживаться схемы, чтобы потом не запутаться.
Далее необходимо подсоединить с помощью перемычки вывод NO14 вспомогательного контакта с клеммой А1, где уже подключён провод от кнопочного поста.
Осталось подсоединить вывод А2 катушки управления к нулевой шине.Теперь, перепроверив правильность монтажа можно подать напряжение и проверить работоспособность схемы.
Убедившись в работоспособности схемы, можно подсоединять выводы обмоток двигателя к выходным клеммам контактора.
Видео по подключению магнитного пускателя классическим способом:
youtube.com/embed/xOXyvLWfTEc» frameborder=»0″ allowfullscreen=»allowfullscreen»/>Использование катушки на 380В и теплового реле
Разумеется, что подключение кнопочного поста и трехфазного двигателя необходимо делать не одиночными проводами, а защищённым кабелем – приведённые выше примеры даны для того, чтобы пошагово объяснить весь процесс монтажа.
Выполняя шаг за шагом данные инструкции пользователь сможет самостоятельно собрать магнитный пускатель, даже не имея опыта в электротехнике.
Набравшись опыта и поняв принцип работы, можно использовать контактор номиналом на 380 В, в этом случае вывод с катушки А2 подключается не на нулевую шину, к одной из двух фаз, к которым не подключена клемма «4» («Стоп»).
Аналогично выглядит схема, если используется трёхфазная сеть с напряжением 220В.
В магнитном пускателе с тепловым реле схема немного меняется за счёт включения размыкающего контакта в разрыв провода от клеммы А2 контактора. Вывод А2 с катушки управления подключается к фазе или нулю через размыкающий контакт данного теплового реле P, подключённого последовательно в силовые цепи обмоток.(см. схему ниже)
Реверсивный электромагнитный пускатель
Для реверса электродвигателя (вращения вала в обратную сторону), необходимо изменить последовательность фаз, для чего применяют два контактора и кнопочный пост с тремя кнопками.
Подключение магнитных пускателей для реверса двигателяПри этом, для блокировки случайного одновременного включения обеих пускателей необходимо цепи управления запуском подключать через размыкающие контакты смежных контакторов.
Если у контакторов данные вспомогательные размыкающие контакты отсутствуют, то необходимо использовать контактную приставку.
Принцип работы, с использованием самоподхвата, остается прежним, но схема немного усложняется за счёт включения новых элементов.
Подключение эл. двигателя через реверсивные магнитные пускатели 220 ВКлючевым моментом является то, что размыкающий контакт контактора КМ2 включён в пусковую цепь КМ1, и наоборот. Необходимо рассмотреть процесс включения с самого начала, когда вспомогательные контактные мостики КМ1 и КМ2 замкнуты, то есть существует возможность запуска двигателя в любую сторону.
Запустим пускатель КМ1, при котором его нормально замкнутый контакт, через который подключёна цепь запуска в обратную сторону, разомкнётся, тем самым делая невозможным реверс до отключения КМ1. Аналогично блокируется КМ1 при работе КМ2. На контакторы устанавливается система перемычек.
Подключение эл. двигателя через реверсивные магнитные пускатели 380 ВДанный принцип сохраняется при использования катушек любого номинала.
Реверс часто используют для торможения двигателя, контролируя его обороты с помощью специального контроллера.
Переключение обмоток двигателя
Известно, что асинхронный электродвигатель потребляет меньшие стартовые токи при подключении обмоток «звездой», но максимум мощности развивает, если используется схема включения по типу «треугольника».
Поэтому, на производстве, для запуска особенно мощных электродвигателей используется переключение обмоток.
Подключение обмоток двигателе по схеме 1.»звезда» и 2.»треугольник»Электронный прибор контролирует обороты электродвигателя – как только они достигнут номинального значения, инициируется сигнал, переключающий контакторы, вследствие чего обмотки двигателя переключатся от «звезды» к «треугольнику».
Готовый вариант пускателя
Тепловые реле, помимо уставки тока и регулировки выдержки, также имеют рычажок отключения, который часто используют в компактных магнитных пускателях, размещая кнопку «Стоп» на крышке корпуса напротив.
Включение контактора происходит при механической передаче усилия нажатия от стартовой кнопки к специальной кнопочной приставке, прикрепляемой к контактору. Схема подключения остаётся прежней, только в данном случае кнопочный пост совмещён с контактором в едином корпусе магнитного пускателя.
Поскольку подсоединение и монтаж кнопок в данных изделиях осуществляются непосредственно производителем, то пользователю необходимо только подключить питание и нагрузку, и отрегулировать тепловое реле.
через магнитный пускатель и реле, с помощью контактора, меры предосторожности
Любой электрический прибор имеет устройство для его подключения к электросети, будь то чайник, кофемолка или более сложный механизм. Это может быть как простое устройство, так и более сложное. Порой, если оно вышло из строя, необходимо заменить его либо самому собрать для электроприбора.
Способы подключения
В чем может быть сложность подключения? Необходимо обеспечить безопасность пользователей от поражения электрическим током или пожара, сохранность самого прибора от полного или значительного повреждения при его неисправности. По принципам, которые используются в этих устройствах, их можно разделить на:
- электронные;
- электромеханические.
Электронные аппараты полностью состоят из приборов, в которых не используется механическая, мускульная сила. Для коммутации в них используются транзисторы и тиристоры. Такие устройства полностью автоматизированы. Они отличаются быстродействием, отсутствием шума. В них не возникают искры или электрическая дуга. По размерам они значительно меньше электромеханических. Также они выигрывают по весу и, что немаловажно, по цене.
Тем не менее электромеханические устройства еще широко используются. Пожалуй, единственным преимуществом у них является сравнительная простота. Если их классифицировать по разъединяемому току, то можно выделить три группы:
- реле;
- пускатели;
- контакторы.
Через реле
Реле — самые маломощные, работают с малым током и напряжением. В связи с этим могут работать с относительно большими частотами, чем остальные два. Используются в автоматике, телефонии, для маломощных агрегатов. Могут применяться в виде основного коммутатора либо совместно с более мощным, например, пускателем.
Реле имеет металлический или пластиковый корпус и диэлектрическую пластину, из которой выходят вывода для крепления проводов. К пластине крепится катушка и контакты. По числу контактов можно выделить:
- одноконтактные;
- много контактные.
Катушка представляет собой намотанный на каркас провод, а в центре ее находится металлический сердечник. Вблизи сердечника располагается металлическая пластина, к которой через изолирующую прокладку крепится один или несколько контактов. В некоторых конструкциях их может быть 20−30. Когда по катушке проходит ток, сердечник намагничивается и притягивает пластину с коммутирующим устройством. Чтобы коммутатор вернулся в свое первоначальное положение после снятия напряжения с обмотки катушки, к нему с противоположной стороны крепится пружина.
Те коммутирующие устройства, которые находятся в движении, называют подвижными. Другие — неподвижные, они не перемещаются во время работы реле. На каждый подвижный контакт приходится один или два неподвижных. В связи с этим их можно разделить на три группы:
- замыкающие;
- размыкающие;
- переключающие.
Замыкающими называют пару контактов, которые при срабатывании катушки замыкаются. Размыкающие, естественно, будут размыкаться при подаче на катушку напряжения. У переключающих подвижной коммутатор находится между двумя неподвижными, причем при отсутствии магнитного поля подвижные соединены с одним контактом, а при появлении магнитного поля они переключаются на другой.
Обычно на корпусе реле есть схема контактов, где показано, в каком положении при отсутствии напряжения на катушке находятся подвижные. Они пронумерованы, как и выводы на корпусе, что помогает определить, какой вывод соответствует тому или иному контакту. Отдельно показаны выводы катушки, они обозначаются буквами «А» и «Б».
На электрической схеме реле обозначается прямоугольником, а рядом ставится буква К. Если в схеме несколько реле, рядом с буквой ставится цифра — индекс. Сам прямоугольник обозначает обмотку катушки. Чтобы легче было читать схему, контакты могут располагаться отдельно от реле. Для идентификации рядом с ними ставится буква «К» и цифры (индекс), указывающие принадлежность к тому или иному реле. Если в реле несколько пар контактов, в индексе указывается их порядковый номер.
Магнитный пускатель
В быту и производстве широкое применение получил магнитный пускатель. Он используется для подключения потребителей различных мощностей. Корпус, изготовленный из электроизоляционного материала, полностью защищает человека от случайного поражения электрическим током.
Внутри корпуса крепится катушка с сердечником. Она подключается, на это необходимо обратить особое внимание, к напряжению 220 или 380 вольт. Несоблюдение этого требования приведет либо к плохой работе пускателя, либо к выходу из строя катушки. Номинальное напряжение указывается на самой катушке, а она ставится таким образом, что эту надпись можно было увидеть, не разбирая корпуса.
Как и в реле, обмотка с сердечником образует электромагнит, но гораздо большей мощности. Это позволяет увеличить скорость размыкания коммутирующего устройства за счет увеличения упругости пружины, что, в свою очередь, дает возможность подключать значительные токи к цепи.
Из-за размыкания больших токов возникает электрическая дуга. Она опасна тем, что может перекрыть соседние коммутирующие устройства, это приведет к короткому замыканию. Также увеличивается время разрыва цепи. Сами контакты под действием высокой температуры начинают плавиться и выгорать. Повышается сопротивление в них, что может плохо повлиять на работу электроприбора. Хуже всего, пожалуй, когда коммутирующие устройства слипаются, а то и вовсе привариваются, тогда цепь не сможет разомкнуться. Последствия предугадать несложно.
Для борьбы с этим нежелательным явлением существует несколько способов:
- Увеличение площади достигается засчет размера самого контакта. По сравнению с реле у пускателя она намного больше. Позднее придумали более оригинальный способ, сделали спаренный контакт. На самом подвижном контакте находится не одна, а две площадки. На неподвижном, соответственно, их тоже две.
- Второй метод сводится не только к подбору материала стойкого к температуре. Необходимо обеспечить малое сопротивление в контактах, в противном случае будет происходить потеря энергии. Таким требованиям больше всего соответствует серебро.
- В дугогасительных устройствах применяются разные принципы. Самый простой состоит в том, что между контактами в момент их разрыва вставляется изоляционная пластина. Она перерезает дугу. Другой способ заключается в выдувании дуги с помощью магнитного поля. Для этого к контакту подключается катушка, намотанная на ферромагнитный сердечник. К сердечнику крепятся две пластины из того же материала. Пластины же находятся возле контактов. Когда контакты размыкаются, по катушке проходит ток, создавая в сердечнике магнитное поле, а оно, в свою очередь, переходит на пластины. Между пластинами возникает мощное магнитное поле, которое разрывает электрическую дугу. Иногда пластины заменяют решеткой, которая действует аналогично. Но здесь используется еще и другой принцип. Поскольку дуга — это раскаленный ионизированный газ, то пластина или решетка выполняет роль огнетушителя, поскольку забирает тепло.
- Шунтирование контактов. При разрыве цепи, в которую включена индуктивность, а это катушки, двигатели, трансформаторы, ток не может сразу остановиться, поэтому возникает дуга. Чтобы предотвратить ее, необходимо ток направить по другому направлению. Это можно сделать двумя способами через конденсатор и резистор.
При использовании конденсатора необходимо подобрать емкость такой величины, чтобы она соответствовала индуктивности нагрузки. При малой емкости между контактами будут появляться искры, а при большой — сдвиг синуса по временной шкале, в худшем случае — срезание верхушек. Простым языком, ток будет выпрямляться, а это скажется на работе электроприборов.
Резистор устраняет эту проблему, но добавляет свою. При малом сопротивлении при разомкнутых контактах через пускатель будет идти ток. Это приведет к потере энергии и может представлять опасность для людей, находящихся, например, в сырых помещениях. При большом сопротивлении опять может возникнуть дуга.
Использование контактора
Контактор похож на магнитный пускатель, но работает со значительно большими токами. Обязательно имеет дугогасительную камеру, отличается быстрым срабатыванием. В отличие от магнитного пускателя не имеет защиты по току. В некоторых устройствах имеется не один, а два электромагнита. Для замыкания контактов используется основной, мощный, а для удержания применяется меньшей мощности.
Особенности подключения трехфазного двигателя
В домашних условиях иногда возникает необходимость подключения трехфазного двигателя через магнитный пускатель. На что необходимо обратить внимание? В магнитных пускателях предусмотрена защита по току. Она представляет собой биметаллическую пластину, по которой проходит ток. При нагревании пластина меняет форму, это используется для замыкания или размыкания контактов управления.
На корпусе пускателя имеются внешние контакты, которые также используются в цепи управления. Их обычно две пары, одни замыкающие, другие — размыкающие.
Основные контакты пускателя непосредственно подключают двигатель к трехфазной сети. Конструктивно две фазы уже проходят через биметаллические пластины, которые, в случае необходимости, разрывают цепь питания катушки пускателя.
Второй конец катушки идет по двум направлениям:
- к нормально разомкнутым контактам на корпусе;
- к кнопке «пуск».
После чего цепь вновь объединяется и идет к кнопке «Откл». После чего подсоединяется к фазе или нулю, в зависимости от типа катушки.
Если необходимо чтобы двигатель работал в двух направлениях, ставят второй пускатель по той же схеме и со своими кнопками управления. Разница будет заключаться в фазировке. Это можно будет сделать опытным путем. Двигатель пускается через один пускатель, отключается, пускается через другой. Если вращение происходит в одну и ту же сторону, две любые фазы на пускателе меняют местами.
Возможные неисправности
В процессе работы из-за износа или внешних факторов могут возникнуть неисправности:
- При включении пускателя контакты начинают дребезжать или не включаются.
- При отключении — залипают, между контактами появляются искры.
Что может быть причиной в первом случае? При замене катушки выбрали номинал большего значения. Стояла на 220 в, поставили на 380. Если не меняли, в катушке появились короткозамкнутые витки, и магнитное поле уменьшилось. Необходимо заменить катушку. При полном разборе пускателя поставили более мощную пружину на контактах.
Во втором случае либо контакты подпорчены, либо слишком большая нагрузка. Необходимо сверить ток потребителя и номинал пускателя. Если соответствуют — поменять контакты.
Схемы подключения трёхфазного электродвигателя — Ремонт220
СтатьиАвтор Фома Бахтин На чтение 2 мин. Просмотров 3.3k. Опубликовано Обновлено
Типовая схема подключения трёхфазного электродвигателя состоит из самого электродвигателя, магнитного пускателя и защиты от сверхтоков (автоматический выключатель – автомат).
Схемы подключения могут быть разными, в зависимости от магнитного пускателя, точнее от рабочего напряжения его катушки К – 220 в или 380 в, от наличия теплового реле, которое подключается последовательно с катушкой пускателя. Превышения тока, потребляемого электродвигателем вызывает размыкание контактов теплового реле, что приводит к обесточиванию катушки и отключению электродвигателя.
Схема подключения трёхфазного электродвигателя
Обозначения: 1 – выключатель автоматический (3х-полюсный автомат), 2 – тепловое реле с размыкающими контактами, 3 – группа контактов магнитного пускателя, 4 – катушка магнитного пускателя (в данном случае рабочее напряжение катушки – 220 в), 5 – блок-контакт нормально разомкнутый, 6 – кнопка “Пуск”, 7 – кнопка “Стоп”.
Отличие этих схем подключения электродвигателей состоит в использовании разных магнитных пускателей в этих схемах. В первом случае используется магнитный пускатель с рабочим напряжением катушки 4 – 220 в; для её питания используется фаза С (можно любую другую) и ноль – N.
Во втором случае электродвигатель подключается через магнитный пускатель с катушкой 4 на 380 в. Для её питания используются фазы B и С.
Как быстро и просто подключить трехфазный двигатель в однофазную сеть DuMA8819
Подключение к трехфазной сети. Часть 2: соединение звезда-треугольник
Подключить электродвигатель 380 на 220 через пускатель
Широко применяемые на производствах электродвигатели асинхронные соединяют «треугольником» или «звездой». Первый тип в основном используют для моторов продолжительного пуска и работы. Совместное подключение применяют для пуска высокомощных электродвигателей. Подключение «звезда» используют в начале пуска, переходя затем на «треугольник». Применяется также схема подключения трехфазного электродвигателя на 220 вольт.
Разновидностей моторов много, но для всех, главной характеристикой является напряжение, подаваемое на механизмы, и мощность самих двигателей.
При подключении к 220в на мотор действуют высокие пусковые токи, снижающие его срок эксплуатации. В промышленности редко используют соединение треугольником Мощные электродвигатели подключают «звездой».
Для перехода со схемы подключения электродвигателя 380 на 220 есть несколько вариантов, каждый из которых отличается преимуществами и недостатками.
Переподключение с 380 вольт на 220
Очень важно понимать, как подключается трехфазный электродвигатель к сети 220в. Чтобы трехфазный двигатель подключить к 220в, заметим, что у него есть шесть выводов, что соответствует трем обмоткам. При помощи тестера провода прозванивают, чтобы найти катушки. Их концы соединяем по два – получается соединение «треугольник» (и три конца).
Для начала, два конца сетевого провода (220 в) подключаем к любым двум концам нашего «треугольника». Оставшийся конец (оставшаяся пара скрученных проводов катушки) подсоединяется к концу конденсатора, а оставшийся провод конденсатора также соединяется с одним из концов сетевого провода и катушек.
От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Проделав все указанные действия, запускаем двигатель, подав на него 220 в.
Электромотор должен заработать. Если этого не произошло, или он не вышел на требуемую мощность, необходимо вернуться на первый этап, чтобы поменять местами провода, т.е. переподключить обмотки.
Если при включении, мотор гудит, но не крутиться, требуется дополнительно установить (через кнопку) конденсатор. Он будет в момент пуска давать двигателю толчок, заставляя крутиться.
Видео: Как подключить электродвигатель с 380 на 220
Прозванивание, т.е. измерение сопротивления, проводится тестером. Если такой отсутствует, воспользоваться можно батарейкой и обычной лампой для фонарика: в цепь, последовательно с лампой, подсоединяют определяемые провода. Если концы одной обмотки найдены – лампа загорается.
Труднее гораздо найти определить начало и концы обмоток. Без вольтметра со стрелкой не обойтись.
Подсоединить потребуется к обмотке батарейку, а к другой — вольтметр.
Разрывая контакт провода с батарейкой, наблюдают, отклоняется ли стрелка и в какую сторону. Те же действия проводят с оставшимися обмотками, изменяя, если нужно, полярность. Добиваются чтобы отклонялась стрелка в ту же сторону, что при первом измерении.
Схема звезда-треугольник
В отечественных моторах часто «звезда» собрана уже, а треугольник требуется реализовать, т.е. подключить три фазы, а из оставшихся шести концов обмотки собрать звезду. Ниже дан чертеж, чтобы разобраться было легче.
Главным плюсом соединения трехфазной цепи звездой считают то, что мотор вырабатывает наибольшую мощность.
Тем не менее, подобное соединение «любят» любители, но не часто применяют на производствах, поскольку схема подключения сложная.
Чтобы она работала необходимо три пускателя:
К первому из них –К1 с одной стороны подключается обмотка статора, с другой – ток. Оставшиеся концы статора соединяют с пускателями К2 и К3, а затем для получения «треугольника» к фазам подключаются и обмотка с К2.
Подключив в фазу К3, незначительно укорачивают оставшиеся концы для получения схемы «звезда».
Важно: недопустимо одновременно включать К3 и К2, чтобы не произошло короткое замыкание, которое может приводить к отключению автомата мотора электрического. Во избежание этого, применяют электроблокировку. Работает это так: при включении одного из пускателей, другой отключается, т.е. его контакты размыкаются.
Как работает схема
При включении К1 с помощью реле времени включается К3. Мотор трехфазный, включенный по схеме «звезда» работает с большей мощностью, чем обычно. После некоторого времени, размыкаются контакты реле К3, но запускается К2. Теперь схема работы мотора — «треугольник», а мощность его становится меньше.
Когда требуется отключение питания, запускается К1. Схема повторяется при последующих циклах.
Очень сложное соединение требует навыков и не рекомендуется к реализации новичками.
Другие подключения электродвигателя
Схем несколько:
- Более часто, чем вариант описанный, применяется схема с конденсатором, который поможет значительно уменьшить мощность. Одни из контактов рабочего конденсатора подключается к нулю, второй – к третьему выходу мотора электрического. В результате имеем агрегат малой мощности (1,5 Вт). При большой мощности двигателя, в схему потребуется внесение пускового конденсатора. При однофазном подключении он просто компенсирует третий выход.
- Асинхронный мотор несложно соединить звездой или треугольником при переходе с 380в на 220. У таких моторов обмоток три. Чтобы изменить напряжение, необходимо выходы, идущие к вершинам соединений, поменять местами.
- При подключении электромоторов, важно тщательно изучить паспорта, сертификаты и инструкции, потому что в импортных моделях встречается часто «треугольник», адаптированный под наши 220В. Такие моторы при игнорировании этого и включении «звездой, просто сгорают. Если мощность более 3 кВт, к бытовой сети мотор нельзя. Чревато это коротким замыканием и даже выход из строя автомата УЗО.
Рекомендуем:
Включение трехфазного двигателя в однофазную сеть
Ротор, подключенного к трехфазной цепи трехфазного двигателя, вращается благодаря магнитному полю, создаваемом током, идущим в разное время по разным обмоткам. Но, при подключении такого двигателя к цепи однофазной, не возникает вращающий момент, который мог бы вращать ротор. Наиболее простым способом подключения двигателей трехфазных к однофазной цепи является подсоединение его третьего контакта через фазосдвигающий конденсатор.
Включенные в однофазную сеть такой мотор имеет такую же частоту вращения, как при работе от трехфазной сети. Но о мощности нельзя сказать этого: ее потери значительны и зависят они от емкости конденсатора фазосдвигающего, условия работы мотора, выбранной схемы подключения. Потери на ориентировочно достигают 30-50%.
Цепи могут быть двух — , трех-, шестифазными, но наиболее применяемыми являются трехфазные. Под трехфазной цепью понимают совокупность цепей электрических с одинаковой частотой синусоидальной ЭДС, которые отличаются по фазе, но создаются общим источником энергии.
Если нагрузка в фазах одинакова, цепь является симметричной. У трехфазных несимметричных цепей – она разная. Полная мощность складывается из активной мощности трехфазной цепи и реактивной.
Хотя большинство двигателей справляется с работой от однофазной сети, но хорошо работать могут не все. Лучше других в этом смысле двигатели асинхронные, которые рассчитаны на напряжение 380/220 В (первое — для звезды, второе – треугольника).
Это рабочее напряжение всегда указывают в паспорте и на прикрепленной к двигателю табличке. Также там указана схема подключения и варианты ее изменения.
Если присутствует «А», это свидетельствует о том, что использоваться может как схема «треугольник», так и «звезда». «Б» сообщает о том, что подключены обмотки «звездой» и не могут быть соединены по – другому.
Получится в результате должно: при разрыве контактов обмотки с батареей, электрический потенциал той же полярности (т.е. отклонение стрелки происходит в ту же сторону) должен появляться на двух оставшихся обмотках. Выводы начала (А1, В1, С1) и конца (А2, В2, С2) помечают и подсоединяют по схеме.
Использование магнитного пускателя
Применение схемы подключения электродвигателя 380 через пускатель хорошо тем, что пуск производить можно дистанционно. Преимущество пускателя перед рубильником (или другим устройством) в том, что пускатель можно разместить в шкафу, а в рабочую зону вынести элементы управления, напряжение и токи при этом минимальны, следовательно, провода подойдут меньшего сечения.
Помимо этого, подключение с использованием пускателя обеспечивает безопасность в случае, если «пропадает» напряжение, поскольку при этом происходит размыкание силовых контактов, когда же напряжение вновь появится, пускатель без нажатия пусковой кнопки его не подаст на оборудование.
Схема подключения пускателя асинхронного двигателя электрического 380в:
На контактах 1,2,3 и пусковой кнопке 1 (разомкнутой) напряжение присутствует в начальный момент. Затем оно подается через замкнутые контакты этой кнопки (при нажатии на «Пуск») на контакты пускателя К2 катушки, замыкая ее. Катушкой создается магнитное поле, сердечник притягивается, контакты пускателя замыкаются, приводя в движение мотор.
Одновременно с этим происходит замыкание контакта NO, с которого подается фаза на катушку через кнопку «Стоп». Получается, что, когда отпускают кнопку «Пуск», цепь катушки остается замкнутой, как и силовые контакты.
Нажав «Стоп», цепь разрывают, возвращая размыкая силовые контакты. С питающих двигатель проводников и NO исчезает напряжение.
Видео: Подключение асинхронного двигателя. Определение типа двигателя.
Бывает, что в руки попадает трехфазный электродвигатель. Именно из таких двигателей изготавливают самодельные циркулярные пилы, наждачные станки и разного рода измельчители. В общем, хороший хозяин знает, что можно с ним сделать. Но вот беда, трехфазная сеть в частных домах встречается очень редко, а провести ее не всегда бывает возможным. Но есть несколько способов подключить такой мотор к сети 220в.
Следует понимать, что мощность двигателя при таком подключении, как бы вы ни старались — заметно упадет. Так, подключение «треугольником» использует только 70% мощности двигателя, а «звездой» и того меньше — всего 50%.
В связи с этим двигатель желательно иметь помощнее.
Итак, в любой схеме подключения используются конденсаторы. По сути, они выполняют роль третьей фазы. Благодаря ему, фаза к которой подключен один вывод конденсатора, сдвигается ровно настолько, сколько необходимо для имитации третьей фазы. Притом что для работы двигателя используется одна емкость (рабочая), а для запуска, еще одна (пусковая) в параллель с рабочей. Хотя не всегда это необходимо.
Например, для газонокосилки с ножом в виде заточенного полотна, достаточно будет агрегата 1 кВт и конденсаторов только рабочих, без надобности емкостей для запуска. Обусловлено это тем, что двигатель при запуске работает на холостом ходу и ему хватает энергии раскрутить вал.
Если взять циркулярную пилу, вытяжку или другое устройство, которое дает первоначальную нагрузку на вал, то тут без дополнительных банок конденсаторов для запуска не обойтись. Кто-то может сказать: «а почему не подсоединить максимум емкости, чтобы мало не было?» Но не все так просто. При таком подключении мотор будет сильно перегреваться и может выйти из строя. Не стоит рисковать оборудованием.
Рассмотрим сначала как подключается трехфазный двигатель в сеть 380в.
Трехфазные двигатели бывают, как с тремя выводами — для подключения только на «звезду», так и с шестью соединениями, с возможностью выбора схемы ― звезда или треугольник. Классическую схему можно видеть на рисунке. Здесь на рисунке слева изображено подключение звездой. На фото справа, показано как это выглядит на реальном брне мотора.
Видно, что для этого необходимо установить специальные перемычки на нужные вывода. Эти перемычки идут в комплекте с двигателем. В случае когда имеется только 3 вывода, то соединение в звезду уже сделано внутри корпуса мотора. В таком случае изменить схему соединения обмоток попросту невозможно.
Некоторые говорят, что так делали для того, чтобы рабочие не воровали агрегаты по домам для своих нужд. Как бы там ни было, такие варианты двигателей, можно с успехом использовать для гаражных целей, но мощность их будет заметно ниже, чем соединенных треугольником.
Схема подключения 3-х фазного двигателя в сеть 220в соединенного звездой.
Как видно, напряжение 220в распределяется на две последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.
Максимальной мощности двигателя на 380в в сети 220в можно достичь, только используя соединение в треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Схема подключения такого электродвигателя изображено на рисунке 1.
На рис.2, изображено брно с клеммой на 6 выводов для возможности подключения треугольником. На три получившихся вывода, подается: фаза, ноль и один вывод конденсатора. От того, куда будет подключен второй вывод конденсатора ― фаза или ноль, зависит направление вращения электродвигателя.
На фото: электродвигатель только с рабочими конденсаторами без емкостей для запуска.
Если на вал будет начальная нагрузка, необходимо использовать конденсаторы для запуска. Они соединяются в параллель с рабочими, используя кнопку или переключатель на момент включения. Как только двигатель наберет максимальные обороты, емкости для запуска должны быть отключены от рабочих. Если это кнопка, просто отпускаем ее, а если выключатель, то отключаем. Дальше двигатель использует только рабочие конденсаторы. Такое соединение изображено на фото.
Как подобрать конденсаторы для трехфазного двигателя, используя его в сети 220в.
Первое, что нужно знать ― конденсаторы должны быть неполярными, то есть не электролитическими. Лучше всего использовать емкости марки ― МБГО. Их с успехом использовали в СССР и в наше время. Они прекрасно выдерживают напряжение, скачки тока и разрушающее воздействие окружающей среды.
Также они имеют проушины для крепления, помогающие без проблем расположить их в любой точке корпуса аппарата. К сожалению, достать их сейчас проблематично, но существует множество других современных конденсаторов ничем не хуже первых. Главное, чтобы, как уже говорилось выше, рабочее напряжение их не было меньше 400в.
Расчет конденсаторов. Емкость рабочего конденсатора.
Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на 380в. На каждые 100 Вт (0,1 кВт) берется — 7 мкФ. Например, если двигатель 1 кВт, то рассчитываем так: 7 * 10 = 70 мкФ. Такую емкость в одной банке найти крайне трудно, да и дорого. Поэтому чаще всего емкости соединяют в параллель, набирая нужную емкость.
Емкость пускового конденсатора.
Это значение берется из расчета в 2-3 раза больше, чем емкость рабочего конденсатора. Следует учитывать, что эта емкость берется в сумме с рабочей, то есть для двигателя 1 кВт рабочая равна 70 мкФ, умножаем ее на 2 или 3, и получаем необходимое значение. Это 70-140 мкФ дополнительной емкости — пусковой. В момент включения она соединяется с рабочей и в сумме получается — 140-210 мкФ.
Особенности подбора конденсаторов.
Конденсаторы как рабочие, так и пусковые можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.
Кроме указанного выше типа конденсатора — МБГО, можно использовать тип — МБГЧ, МБГП, КГБ и тому подобные.
Реверс.
Иногда возникает необходимость менять направление вращения электродвигателя. Такая возможность есть и у двигателей на 380в, используемых в однофазной сети. Для этого нужно сделать так, чтобы конец конденсатора, подключенный к отдельной обмотке, оставался неразрывным, а другой мог перебрасываться с одной обмотки, где подключен «ноль», к другой где — «фаза».
Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».
Более подробно можно увидеть на рисунке.
youtube.com/embed/7NmynWRYgDM»/>
Магнитный пускатель — устройство, отвечающее за бесперебойную и соответствующую требованиям стандартов работу оборудования. С его помощью осуществляют распределение питающего напряжения и управляют работой подключенных нагрузок.
Чаще всего через него подают питание на электродвигатели. И через него же осуществляют реверс двигателя, его остановку. Все эти манипуляции позволит осуществить правильная схема подключения магнитного пускателя, которую можно собрать и самостоятельно.
В этом материале мы расскажем об устройстве и принципах работы магнитного пускателя, а также разберемся в тонкостях подключения устройства.
Отличие магнитного пускателя от контактора
Часто при подборе коммутационного устройства возникает путаница между магнитными пускателями (МП) и контакторами. Эти устройства, несмотря на свою схожесть во многих характеристиках, все же разные понятия. Магнитный пускатель объединяет в себе ряд приборов, они соединены в одном управляющем узле.
В МП может быть включено несколько контакторов, плюс защитные устройства, специальные приставки, управляющие элементы. Все это заключено в корпус, имеющий какую-то степень влаго- и пылезащиты. С помощью этих устройств в основном управляют работой асинхронных двигателей.
Контактор — моноблочный прибор с набором функций, предусмотренных конкретной конструкцией. Тогда как пускатели применяют в схемах достаточно сложных, контакторы в основном присутствуют в простых схемах.
Устройство и назначение прибора
Сравнив подключение МП и контактора, можно сделать заключение, что первое устройство отличается от второго тем, что его применяют для запуска электродвигателя. Можно даже сказать, что МП — тот же контактор, с помощью которого управляют электродвигателем.
Отличие это настолько условно, что в последнее время многие производители называют МП контакторами переменного тока, но с малыми габаритами. Да и постоянное усовершенствование контакторов сделало их универсальными, потому они стали многофункциональными.
Назначение магнитного пускателя
Встраивают МП и контакторы в силовые сети, транспортирующие ток с переменным или постоянным напряжением. Действие их базируется на электромагнитной индукции.
Устройство оснащено контактами сигнальными и теми, через которые питание подается. Первые названы вспомогательными, вторые — рабочими.
МП дистанционно управляют электроустановками, в том числе и электродвигателями. Их роль, как защиты, нулевая — только исчезает напряжение или хотя бы падает до предела ниже 50%, силовые контакты размыкаются.
После остановки оборудования, в схему которого вмонтирован контактор, оно никогда не включится самостоятельно. Для этого придется нажать клавишу «Пуск».
Для безопасности это очень важный момент, поскольку полностью исключены аварии, спровоцированные самопроизвольным включением электроустановки.
Пускатели, в схему которых включены тепловые реле, охраняют электродвигатель или другую установку от длительных перегрузок. Эти реле могут быть двухполюсными (ТРН) либо однополюсными (ТРП). Срабатывание наступает под воздействием тока перегрузки двигателя, протекающего по ним.
Конструкция и функционирование прибора
Для корректной работы МП необходимо придерживаться определенных правил монтажа, иметь понятие об основах релейной техники, грамотно выбрать схему питания оборудования.
Поскольку устройства предназначены для функционирования на протяжении небольшого временного промежутка, наиболее популярными являются МП с обычно разомкнутыми контактами. Наибольшим спросом пользуются МП серий ПМЕ, ПАЕ.
Первые встраивают в сигнальные цепи для электродвигателей мощностью 0,27 – 10 кВт. Вторые — мощностью 4 – 75 кВт. Рассчитаны они на напряжение 220, 380 В.
Вариантов исполнения четыре:
- открытый;
- защищенный;
- пылеводозащищенный;
- пылебрызгонепроницаемый.
Пускатели ПМЕ включают в свою конструкцию двухфазное реле ТРН. В пускателе серии ПАЕ количество встраиваемых реле зависит от величины.
При напряжении около 95% от номинального катушка пускателя способна обеспечить надежную работу.
Состоит МП из следующих основных узлов:
- сердечника;
- электромагнитной катушки;
- якоря;
- каркаса;
- механических датчиков работы;
- групп контакторов — центральной и дополнительной.
Также в конструкцию могут включать в качестве дополнительных элементов, защитное реле, электропредохранители, добавочный комплект клемм, пусковое устройство.
По сути, это реле, но отключающее гораздо больший ток. Поскольку электромагниты у этого устройства довольно мощные, оно отличается большой скоростью срабатывания.
Электромагнит в виде катушки с большим числом витков рассчитан на напряжение 24 – 660 В. Которая размещена на сердечнике, большая мощность нужна для преодоления усилия пружины.
Последняя предназначена для быстрого рассоединения контактов, от скорости которого зависит величина электрической дуги. Чем быстрее произойдет размыкание, тем меньше дуга и в тем лучшем состоянии будут сами контакты.
Нормальное состояние, когда контакты разомкнуты. Пружина при этом удерживает в приподнятом состоянии верхний участок магнитопровода.
Когда на магнитный пускатель поступает питание, через катушку проходит ток и формирует электромагнитное поле. Оно привлекает мобильную часть магнитопровода посредством сжатия пружины. Контакты замыкаются, на нагрузку поступает питание, в результате, она включается в работу.
В случае отключения питания МП электромагнитное поле исчезает. Выпрямляясь, пружина делает толчок, и верхняя часть магнитопровода оказывается вверху. Как следствие, расходятся контакты, и пропадает питание на нагрузку.
Некоторые модели пускателей оснащены ограничителями перенапряжений, которые применяют в полупроводниковых управляющих системах.
Питание катушки управления после подключения магнитного пускателя реализуется от переменного тока, но для этого устройства род тока не имеет значения.
Пускатели, как правило, оснащены двумя видами контактов: силовыми и блокировочными. Посредством первых подключается нагрузка, а вторые предохраняют от неправильных действий при подключении.
Силовых МП может быть 3 или 4 пары, все зависит от конструкции устройства. В каждой из пар есть как мобильные, так и неподвижные контакты, соединенные с клеммами, находящимися на корпусе, посредством металлических пластин.
Первые отличаются тем, что на нагрузку постоянно поступает питание. Вывод из рабочего состояния происходит только после срабатывания пускателя.
На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.
Нормально замкнутые отличаются тем, что на нагрузку постоянно поступает питание, а отсоединение наступает исключительно после срабатывания пускателя. На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.
Особенности монтажа пускателя
Неправильный монтаж магнитного пускателя, может иметь последствия в виде ложных срабатываний. Чтобы избежать этого, нельзя выбирать участки, подверженные вибрации, ударам, толчкам.
Конструкционно МП устроен так, что его можно монтировать в электрощите, но с соблюдением правил. Устройство будет работать надежно, если местом его установки будет поверхность прямая, плоская и расположенная вертикально.
Тепловые реле не должны подвергаться подогреву от посторонних источников тепла, что отрицательно скажется на функционировании устройства. По этой причине их нельзя размещать в местах, подверженных нагреву.
Устанавливать магнитный пускатель в помещении, где смонтированы устройства с током от 150 А, категорически нельзя. Включение и выключение таких устройств провоцирует быстрый удар.
Чтобы не допустить перекоса пружинных шайб, находящихся в контактном зажиме пускателя, конец проводника загибают П-образно или в кольцо. Когда нужно подключить 2 проводника к зажиму, нужно чтобы их концы были прямыми и находились по две стороны зажимного винта.
Включению в работу пускателя должен предшествовать осмотр, проверка исправности всех элементов. Подвижные детали должны перемещаться от руки. Электрические соединения нужно сверить со схемой.
Популярные схемы подключения МП
Наиболее часто используют монтажную схему с одним устройством. Чтобы соединить ее основные элементы используют 3-жильный кабель и два разомкнутых контакта в случае, если устройство выключено.
В нормальных обстоятельствах контакт реле Р замкнут. При нажатии клавиши «Пуск» цепь замыкается. Нажатие кнопки «Стоп» разбирает схему. В случае перегрузки тепловой датчик Р сработает и разорвет контакт Р, машина остановится.
При этой схеме большое значение имеет номинальное напряжение катушки. Когда усилие на ней 220 В, двигателя 380 В, в случае соединения в звезду, такая схема не подходит.
Для этого применяют схему с нейтральным проводником. Применять ее целесообразно в случае соединения обмоток двигателя треугольником.
Тонкости подключения устройства на 220 В
Независимо от того, как решено подключить магнитный пускатель, в проекте обязательно присутствуют две цепи — силовая и сигнальная. Через первую подают напряжение, посредством второй управляют работой оборудования.
Особенности силовой цепи
Питание для МП подключают через контакты, обычно обозначаемые символами А1 и А2. На них попадает напряжение 220 В, если сама катушка рассчитана на такое напряжение.
Удобнее «фазу» подключать к А2, хотя принципиальной разницы в подключении нет. Источник питания подключают к контактам, находящимся ниже на корпусе.
Тип напряжения не имеет значения, главное, чтобы номинал не выходил за пределы 220 В.
Минусом этого варианта подключения является тот момент, что для ее включения или отключения нужно совершать манипуляции с вилкой. Схему можно усовершенствовать путем установки перед МП автомата. С его помощью включают и отключают питание.
Изменение цепи управления
Эти изменения не касаются силовой цепи, модернизируется в этом случае лишь цепь управления. Вся схема в целом претерпевает незначительные изменения.
Клавиши встраивают последовательно перед МП. Первая — «Пуск», за ней идет «Стоп». Контактами магнитного пускателя манипулируют посредством управляющего импульса.
Источником его является нажатая пусковая кнопка, открывающая путь для подачи напряжения к управляющей катушке. «Пуск» не обязательно удерживать во включенном состоянии.
Оно поддерживается по принципу самозахвата. Заключается он в том, что параллельно кнопке «Пуск» подключаются добавочные самоблокирующиеся контакты. Они и снабжают напряжением катушку.
После их замыкания, катушка самоподпитывается. Разрыв этой цепи приводит к отключению МП.
Отключающая клавиша «Стоп» обычно красная. Стартовая кнопка может иметь не только надпись «Пуск», но и «Вперед», «Назад». Чаще всего она зеленого цвета, хотя может быть и черного.
Подсоединение к 3-фазной сети
Возможно подключение 3-фазного питания через катушку МП, функционирующей от 220 В. Обычно схему применяют с асинхронным двигателем. Сигнальная цепь при этом не изменяется.
Силовая цепь имеет отличия, но не очень существенные. Три фазы подают на входы, обозначенные на плане, как L1, L2, L3. Трехфазную нагрузку подключают к T1, T2, T3.
Ввод в схему теплового реле
В промежутке между магнитным пускателем и асинхронным электродвигателем последовательно подсоединяют тепловое реле. Выбор его осуществляют в зависимости от типа мотора.
Подключают реле к выводу с магнитным пускателем. Ток в нем проходит к мотору последовательно, попутно нагревая реле. Верх реле оснащен придаточными контактами, объединенными с катушкой.
Нагреватели реле рассчитывают на предельную величину тока, протекающего через них. Делают это для того, чтобы, когда двигатель окажется в опасности из-за перегрева, реле смогло бы отключить пускатель.
Также рекомендуем прочесть другую нашу статью где мы рассказали о том как выбрать и подключить электромагнитный пускатель на 380 В. Подробнее – переходите по ссылке.
Запуск мотора с реверсным ходом
Для функционирования отдельного оборудование необходимо, чтобы двигатель мог вращаться как влево, так и вправо.
Схема подключения для такого варианта содержит два МП, кнопочный пост либо отдельные три клавиши — две стартовые «Вперед», «Назад» и «Стоп».
От к.з. силовую цепь защищают контакты нормально замкнутые КМ1.2, КМ2.2.
Подготовку схемы к работе осуществляют следующим образом:
- Включают АВ QF1.
- На силовые контакты МП КМ1, КМ2 поступают фазы А, В, С.
- Фаза, которая снабжает цепь управления (А) через SF1 (автомат защиты сигнальных цепей) и клавишу SB1 «Стоп» подается на контакт 3 (клавиши SB2, SB3), контакт 13НО (МП КМ1, КМ2).
Далее схема работает по алгоритму, зависящему от направления вращения мотора.
Управление реверсом двигателя
Вращение начинается при задействовании клавиши SB2. При этом фаза А через КМ2.2 подается на катушку МП КМ1. Начинается включение пускателя с замыканием нормально разомкнутых контактов и размыканием нормально замкнутых.
Замыкание КМ1.1 провоцирует самоподхват, а за смыканием контактов КМ1 следует подача фаз А, В, С на идентичные контакты обмоток двигателя и он начинает вращение.
Предпринятое действие разъединит цепь, на дроссель КМ1 перестанет подаваться управляющая фаза А, а сердечник с контактами, посредством возвратной пружины, восстановится в исходном положении.
Контакты разъединятся, на двигатель М прекратится подача напряжения. Схема будет пребывать в ждущем режиме.
Запускают ее путем нажатия на кнопку SB3. Фаза А через КМ1.2 поступит на КМ2, МП, сработает и через КМ2.1 окажется на самоподхвате.
Далее, МП посредством контактов КМ2 поменяет фазы местами. В результате двигатель М изменит направление вращения. В это время соединение КМ2.2, находящееся в цепи, питающей МП КМ1, рассоединится, не допуская включения КМ1 пока функционирует КМ2.
Работа силовой схемы
Ответственность за переключение фаз для перенаправления вращения двигателя возложена на силовую схему.
При срабатывании контактов МП КМ1 на первую обмотку поступает фаза А, на вторую обмотку — фаза В, а на третью — фаза С. При этом мотор вращается влево.
Когда срабатывает КМ2, передислоцируются фазы В и С. Первая попадает на третью обмотку, вторая — на вторую. Изменений по фазе А не происходит. Двигатель начнет вращаться вправо.
Выводы и полезное видео по теме
Подробности об устройстве и подключении контактора:
Практическая помощь в подключении МП:
По приведенным схемам можно подключить магнитный пускатель своими руками как к сети 220, так и 380 В.
Необходимо помнить, что сборка не отличается сложностью, но для реверсивной схемы важно наличие двухсторонней защиты, делающей невозможным встречное включение. При этом блокировка может быть как механической, так и посредством блокировочных контактов.
Если у вас появились вопросы по теме статьи, пожалуйста, оставляйте свои комментарии в расположенном ниже блоке. Там же вы можете сообщить интересную информацию или дать совет по подключению магнитных пускателей посетителям нашего сайта.
Подключение 3 фазного двигателя через магнитный пускатель
Для осуществления дистанционного включения оборудования используется магнитный пускатель или магнитный контактор. Как подключить магнитный пускатель по простой схеме и как подключить реверсивный пускатель мы и рассмотрим в этой статье.
Магнитный пускатель и магнитный контактор
Отличие между магнитным пускателем и магнитным контактором в том, какую мощность нагрузки могут коммутировать эти устройства.
Магнитный пускатель может быть «1», «2», «3», «4» или «5» величины. Например пускатель второй величины ПМЕ-211 выглядит так:
Названия пускателей расшифровываются следующим образом:
- Первый знак П — Пускатель;
- Второй знак М — Магнитный;
- Третий знак Е, Л, У, А… — это тип или серия пускателя;
- Четвертый цифровой знак — величина пускателя;
- Пятый и последующие цифровые знаки — характеристики и разновидности пускателя.
Некоторые характеристики магнитных пускателей можно посмотреть в таблице
Отличия магнитного контактора от пускателя весьма условны. Контактор выполняет ту же роль, что и пускатель. Контактор производит аналогичные подключения, как и пускатель, только электропотребители имеют большую мощность, соответственно и размеры у контактора значительно больше, и контакты у контактора значительно мощней.Магнитный контактор имеет немного другой внешний вид:
Габариты контакторов зависят от его мощности. Контакты коммутирующего прибора необходимо разделять на силовые и управляющие. Пускатели и контакторы необходимо применять когда простые устройства коммутации не могут управлять большими токами. За счёт этого магнитный пускатель может размещаться в силовых шкафах рядом с силовым устройством, которые он подключает, а все его управляющие элементы в виде кнопок и кнопочных постов на включение могут размещаться в рабочих зонах пользователя.
На схеме пускатель и контактор обозначаются таким схематичным знаком:
где A1-A2 катушка электромагнита пускателя;
L1-T1 L2-T2 L3-T3 силовые контакты, к которым подключается силовое трехфазное напряжение (L1-L2-L3) и нагрузка (T1-T2-T3), в нашем случае электродвигатель;
13-14 контакты, блокирующие пусковую кнопку управления двигателем.
Данные устройства могут иметь катушки электромагнитов на напряжения 12 В, 24 В, 36 В, 127 В, 220 В, 380 В. Когда требуется повышенный уровень безопасности, есть возможность использовать электромагнитный пускатель с катушкой на 12 или 24 В, а напряжение цепи нагрузки может иметь 220 или 380 В.
Важно знать, что подключенные пускатели для подключения трехфазного двигателя способны обеспечить дополнительную безопасность при случайной потере напряжения в сетях. Это связано с тем, что при исчезновении тока в сети, напряжение на катушке пускателя пропадает и силовые контакты размыкаются. А когда напряжение возобновится, то в электрооборудовании будет отсутствовать напряжения до тех пор, покуда кнопку «Пуск» не активируют. Для подключения магнитного пускателя имеется несколько схем.
Стандартная схема коммутации магнитных пускателей
Это схема подключения пускателя требуется для того, чтобы произвести запуск двигателя через пускатель с помощью кнопки «Пуск» и обесточивания этого двигателя кнопкой «Стоп». Это проще понимается, если разделить схему на две части: силовую и цепь управления.
Силовую часть схемы следует запитать трёхфазным напряжением 380 В, имеющим фазы «A», «B», «C». Силовая часть состоит из трёхполюсного автоматического выключателя, силовых контактов магнитного пускателя «1L1-2T1», «3L2-4T2», «5L3-6L3», а также асинхронного трехфазного электродвигателя «M».
К управляющей цепи подаётся питание 220 вольт от фазы «A» и к нейтрали. К схеме управляющей цепи относится кнопка «Стоп» «SB1», «Пуск» «SB2», катушка «KM1» и вспомогательный контакт «13HO-14HO», что подключён параллельно контактам кнопки «Пуску». Когда автомат фаз «A», «B», «C», включается, ток проходит к контактам пускателя и остаётся на них. Питающая цепь управления (фаза «А») проходит через кнопку «Стоп» к 3 контакту кнопки «Пуск», и параллельно на вспомогательный контакт пускателя 13HO и остаётся там на контактах.
Если активируется кнопка «Пуск», к катушке приходит напряжение — фаза «А» с пускателя «KM1». Электромагнит пускателя срабатывает, контакты «1L1-2T1», «3L2-4T2», «5L3-6L3» замыкаются , после чего напряжение 380 вольт подается на двигатель по данной схеме подключения и начинает свою работу электродвигатель. При отпускании кнопки «Пуск» ток питания катушки пускателя течет через контакты 13HO-14HO, электромагнит не отпускает силовые контакты пускателя, двигатель продолжает работать. При нажатии кнопки «Стоп» цепь питания катушки пускателя обесточивается, электромагнит отпускает силовые контакты, напряжение на двигатель не подается, двигатель останавливается.
Как подключить трехфазный двигатель можно дополнительно посмотреть на видео:
Схема коммутации магнитных пускателей через кнопочный пост
Схема для подключения магнитного пускателя к электродвигателю через кнопочный пост, включает в себя непосредственно сам пост с кнопками «Пуск» и «Стоп», а также две пары замкнутых и разомкнутых контактов. Также сюда относится пускатель с катушкой 220 В.
Питание для кнопок берётся с силовых контактовых клемм пускателя, а напряжение доходит к кнопке «Стоп». После этого по перемычке оно проходит сквозь нормально замкнутый контакт на кнопку «Пуск». Когда активирована кнопка «Пуск», нормально разомкнутый контакт будет замкнут. Отключение происходит путём нажатия на кнопку «Стоп», тем самым размыкая ток от катушки и после действия возвратной пружины, пускатель отключится и устройство обесточится. После выполнения вышеуказанных действий электродвигатель будет отключён и готов к последующего пуска с кнопочного поста. В принципе работа схемы аналогична предыдущей схемы. Только в данной схеме нагрузка однофазная.
Реверсивная схема коммутации магнитных пускателей
Схема подключения реверсивного магнитного пускателя применяется тогда, когда требуется обеспечение вращение электродвигателя в обоих направлениях. К примеру, реверсивный пускатель устанавливается на лифт, грузоподъемный кран, сверлильный станок и прочие приборы требующие прямой и обратный ход.
Реверсивный пускатель состоит из двух обыкновенных пускателей собранных по специальной схеме. Выглядит он так:
Схема подключения реверсивного магнитного пускателя отличается от других схем тем, что имеет два совершенно одинаковых пускателя, которые работают попеременно. При подключении первого пускателя двигатель вращается в одну сторону, при подключении второго пускателя, двигатель вращается в противоположную сторону. Если вы внимательно посмотрите на схему, то заметите, что при переменном подключении пускателей, две фазы меняются местами. Это и заставляет трехфазный двигатель вращаться в разные стороны.
К имеющемуся в предыдущих схемах пускателю добавлены второй пускатель «КМ2» и дополнительные цепи управления вторым пускателем. Цепи управления состоят из кнопки «SB3», магнитного пускателя «КМ2», а также изменённой силовой частью подачи питания к электродвигателю. Кнопки при подключении реверсивного магнитного пускателя имеют названия «Вправо» «Влево», но могут иметь и другие названия, такие, как «Вверх», «Вниз». Чтобы защитить силовые цепи от короткого замыкания, до катушек добавлены два нормально замкнутых контакта «КМ1.2» и «КМ2.2», что взяты от дополнительных контактов на магнитных пускателях КМ1 и КМ2. Они не дают возможности включиться обоим пускателям одновременно. На выше приведенной схеме цепи управления и силовые цепи одного пускателя имеют один цвет, а другого пускателя — другой цвет, что облегчает понимание, как работает схема. Когда включается автоматический выключатель «QF1», фазы «A», «B», «C» идут к верхним силовым контактам пускателей «КМ1» и «КМ2», после чего ожидают там включения. Фаза «А» питает управляющие цепи от защитного автомата, проходит через «SF1» — контакты тепловой защиты и кнопку «Стоп» «SB1», переходит на контакты кнопок «SB2» и «SB3» и остается в ожидании нажатия на одну из этих кнопок. После нажатия пусковой кнопки ток движется через вспомогательный пусковой контакт «КМ1.2» или «КМ2.2» на катушку пускателей «КМ1» или «КМ2». После этого один из реверсивных пускателей сработает. Двигатель начинает вращаться. Что бы запустить двигатель в обратную сторону, надо нажать кнопку стоп (пускатель разомкнет силовые контакты), двигатель обесточится, дождаться остановки двигателя и после этого нажать другую пусковую кнопку. На схеме показано, что подключен пускатель «КМ2». При этом его дополнительные контакты «КМ2.2» разомкнули цепь питания катушки «КМ1», что не даст случайного подключения пускателя «КМ1».
Для подачи питания на двигатели или любые другие устройства используют контакторы или магнитные пускатели. Устройства, предназначенные для частого включения и выключения питания. Схема подключения магнитного пускателя для однофазной и трехфазной сети и будет рассмотрена дальше.
Контакторы и пускатели — в чем разница
И контакторы и пускатели предназначены для замыкания/размыкания контактов в электрических цепях, обычно — силовых. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до 440 В постоянного тока и до 600 В переменного. Имеют:
- некоторое количество рабочих (силовых) контактов, через которые подается напряжение на подключаемую нагрузку;
- некоторое количество вспомогательных контактов — для организации сигнальных цепей.
Так в чем разница? Чем отличаются контакторы и пускатели. В первую очередь они отличаются степенью защиты. Контакторы имеют мощные дугогасительные камеры. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами. На малые токи — до 10 А — выпускают исключительно пускатели. Они, кстати, на большие токи не выпускаются.
Внешний вид не всегда так сильно отличается, но бывает и так
Есть еще одна конструктивная особенность: пускатели выпускаются в пластиковом корпусе, у них наружу выведены только контактные площадки. Контакторы, в большинстве случаев, корпуса не имеют, потому должны устанавливаться в защитных корпусах или боксах, которые защитят от случайного прикосновения к токоведущим частям, а также от дождя и пыли.
Кроме того, есть некоторое отличие в назначении. Пускатели предназначены для запуска асинхронных трехфазных двигателей. Потому они имеют три пары силовых контактов — для подключения трех фаз, и одну вспомогательную, через которую продолжает поступать питание для работы двигателя после того, как кнопка «пуск» отпущена. Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы.
Видимо потому что «начинка» и функции обоих устройств почти не отличаются, во многих прайсах пускатели называются «малогабаритными контакторами».
Устройство и принцип работы
Чтобы лучше понимать схемы подключения магнитного пускателя, необходимо разобраться в его устройстве и принципе работы.
Основа пускателя — магнитопровод и катушка индуктивности. Магнитопровод состоит из двух частей — подвижной и неподвижной. Выполнены они в виде букв «Ш» установленные «ногами» друг к другу.
Нижняя часть закреплена на корпусе и является неподвижной, верхняя подпружинена и может свободно двигаться. В прорези нижней части магнитопровода устанавливается катушка. В зависимости от того, как намотана катушка, меняется номинал контактора. Есть катушки на 12 В, 24 В, 110 В, 220 В и 380 В. На верхней части магнитопровода есть две группы контактов — подвижные и неподвижные.
Устройство магнитного пускателя
При отсутствии питания пружины отжимают верхнюю часть магнитопровода, контакты находятся в исходном состоянии. При появлении напряжения (нажали кнопку пуск, например) катушка генерирует электромагнитное поле, которое притягивает верхнюю часть сердечника. При этом контакты меняют свое положение (на фото картинка справа).
При пропадании напряжения электромагнитное поле тоже исчезает, пружины отжимают подвижную часть магнитопровода вверх, контакты возвращаются в исходное состояние. В этом и состоит принцип работы эклектромагнитного пускателя: при подаче напряжения контакты замыкаются, при пропадании — размыкаются. Подавать на контакты и подключать к ним можно любое напряжение — хоть постоянное, хоть переменное. Важно чтобы его параметры не были больше заявленных производителем.
Так выглядит в разобранном виде
Есть еще один нюанс: контакты пускателя могут быть двух типов: нормально замкнутыми и нормально разомкнутыми. Из названий следует их принцип работы. Нормально замкнутые контакты при срабатывании отключаются, нормально разомкнутые — замыкаются. Для подачи питания используется второй тип, он и есть наиболее распространенным.
Схемы подключения магнитного пускателя с катушкой на 220 В
Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп». Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.
Кнопки могут быть в одном корпусе или в разных
С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.
Подключение пускателя с катушкой 220 В к сети
Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.
Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).
Сюда можно подать питание для катушки
Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.
Подключение контактора с катушкой на 220 В
При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть. Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.
Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания уличного освещения. В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).
Схема с кнопками «пуск» и «стоп»
Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже. Обратите внимание, что
Схема включения магнитного пускателя с кнопками
Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.
Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата
В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.
Питание для двигателя или любой другой нагрузки (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.
Подробно показано в какой последовательности лучше подключать провода в следующем видео. Вся разница в том, что использованы не две отдельные кнопки, а кнопочный пост или кнопочная станция. Вместо вольтметра можно будет подключить двигатель, насос, освещение, любой прибор, который работает от сети 220 В.
Подключение асинхронного двигателя на 380 В через пускатель с катушкой на 220 В
Эта схема отличается только тем, что в ней подключаются к контактам L1, L2, L3 три фазы и также три фазы идут на нагрузку. На катушку пускателя — контакты A1 или A2 — заводится одна из фаз. На рисунке это фаза B, но чаще всего это фаза С как менее нагруженная. Второй контакт подсоединяется к нулевому проводу. Также устанавливается перемычка для поддержания электропитания катушки после отпускания кнопки ПУСК.
Схема подключения трехфазного двигателя через пускатель на 220 В
Как видите, схема практически не изменилась. Только в ней добавилось тепловое реле, которое защитит двигатель от перегрева. Порядок сборки — в следующем видео. Отличается только сборка контактной группы — подключаются все три фазы.
Реверсивная схема подключения электродвигателя через пускатели
В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Например, для работы лебедки, в некоторых других случаях. Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами (например, фазы B и C). Схема состоит из двух одинаковых пускателей и кнопочного блока, который включает общую кнопку «Стоп» и две кнопки «Назад» и «Вперед».
Реверсивная схема подключения трехфазного двигателя через магнитные пускатели
Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно.
Пускатели могут быть с катушкой на 380 В или на 220 В (указано в характеристиках на крышке). В случае если это 220 В, на контакты катушки подается одна из фаз (любая), а на второй подается «ноль» со щитка. Если катушка на 380 В, на нее подаются две любые фазы.
Также обратите внимание, что провод от кнопки включения (вправо или влево) подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Рядом с катушкой пускателей изображены контакты KM1 и KM2. Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора.
Магнитный пускатель с установленной на нем контактной приставкой
Так как нормально замкнутые контакты есть не во всех пускателях, можно их взять, установив дополнительный блок с контактами, который называют еще контактной приставкой. Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса.
На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен.
02 Мар 2014г | Раздел: Электрика
Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем. В первой части статьи мы с Вами познакомились с устройством, назначением и работой магнитного пускателя, а сегодня рассмотрим его электрическую схему подключения.
Но прежде чем собирать схему, давайте сделаем небольшое отступление и познакомимся с одним важным элементом схемы управления работой магнитного пускателя – кнопка.
Как Вы уже догадались кнопками «Пуск», «Стоп», «Вперед», «Назад» осуществляется дистанционное управление магнитным пускателем, а значит и нагрузкой, которую он коммутирует. Управляющие кнопки выпускают двух видов: с размыкающим и замыкающим контактом.
Кнопка «Стоп».
Кнопку «Стоп» легко отличить по красному цвету.
В кнопке используется размыкающий (нормально замкнутый) контакт, через который проходит напряжение питания в схему управления пускателем.
В начальном положении, когда кнопка не нажата, подвижный контакт кнопки поддавливается снизу пружиной и собой замыкает два неподвижных контакта, соединяя их между собой. И если кнопка стоит в электрической цепи, то в этот момент через нее протекает ток.
Когда же необходимо разомкнуть цепь — кнопку нажимают, подвижный контакт отходит от неподвижных контактов и цепь размыкается.
При отпускании кнопка опять возвращается в исходное положение пружиной, поддавливающей подвижный контакт, и он опять замыкает собой оба неподвижных контакта. На рисунке показаны контакты кнопки в нажатом и не нажатом положении.
Кнопка «Пуск».
Как правило, кнопку «Пуск» раскрашивают в черный или зеленый цвета.
В кнопке используется замыкающий (нормально разомкнутый) контакт, при замыкании которого через кнопку начинает проходить электрический ток.
Кнопка «Пуск» устроена так же, как и кнопка «Стоп», и отличается лишь только тем, что в начальном положении ее подвижный контакт не замыкает неподвижные контакты — то есть всегда находится в не замкнутом состоянии. В левой части рисунка видно, что подвижный контакт не замкнут и пружиной поддавливается вверх.
При нажатии на кнопку подвижный контакт опускается и замыкает оба неподвижных контакта. Когда же кнопка отпускается, то ее подвижный контакт под действием пружины возвращается в исходное верхнее положение и контакты размыкаются.
Схемы подключения магнитного пускателя.
Первая, классическая схема, предназначена для обычного пуска электродвигателя: кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Причем вместо двигателя Вы можете подключать любую нагрузку, например, мощный ТЭН.
Для удобства понимания схема разделена на две части: силовая часть и цепи управления.
Силовая часть запитывается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В силовую часть входит: трехполюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный эл. двигатель М.
Цепь управления получает питание от фазы «А».
В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, включенный параллельно кнопке «Пуск».
При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на контакт №3 кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах. Схема готова к работе.
При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на эл. двигатель. Двигатель начинает вращаться.
Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.
Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО. На нижнем рисунке стрелкой показано движение фазы «А».
А если не будет самоподхвата, придется все время держать нажатой кнопку «Пуск» пока будет работать эл. двигатель или любая другая нагрузка, питающаяся от магнитного пускателя.
Чтобы отключить эл. двигатель достаточно нажать кнопку «Стоп»: цепь разорвется, управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель от трехфазного питающего напряжения.
А теперь рассмотрим монтажную схему цепи управления пускателем.
Здесь все практически так же, как и на принципиальной схеме, за небольшим исключением реализации самоподхвата.
Чтобы не тянуть лишний провод на кнопку «Пуск», ставится перемычка между выводом катушки и одним из ближних вспомогательных контактов: в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на контакт №3 кнопки «Пуск».
Ну вот, мы с Вами и разобрали простую классическую схему подключения магнитного пускателя. Также на одном пускателе можно собрать схему автоматического ввода резерва (АВР), которая предназначена для обеспечения бесперебойного электроснабжения потребителей электроэнергией.
Ну а если остались вопросы или сомнения по работе пускателя, то посмотрите видеоролик, из которого Вы дополнительно подчерпнете нужную информацию.
youtube.com/embed/xOXyvLWfTEc»/>
Следующая схема будет немного сложнее этой, так как в ней будут задействованы два магнитных пускателя и три кнопки и называется эта схема реверсивной. При помощи такой схемы можно будет, например, вращать двигатель влево – вправо, поднимать и опускать лебедку.
Схема подключения трехфазного электродвигателя на 220 (видео)
Трёхфазный двигатель незаменим для использования мощных устройств, работающих от сети 220. Устройство на три фазы в разы превосходит однофазный механизм. Правильная схема подключения трехфазного электродвигателя на 220, а также пусковые приборы, обмотки, необходимы для обеспечения высокой эффективности эксплуатации.
Метод включения электродвигателя на 220 вольт зависит от вида электропусковой системы. Типы соединений бывают следующие:
Использование магнитных пускателей
Довольно популярная модель присоединения электромоторов.
Подсоединение АД через магнитный контактор к сети 220
L1 –первый провод, L2 – вторая провод, L3 – третья провод, КМ – магнитный пускатель
Рассмотрим схему включения электродвигателя через магнитный контактор 220 подробней.
Три провода под напряжением проходят через пускатель. Для управления включением в сеть есть кнопка Пуск. А для выключения используется кнопка Стоп. Кнопки можно вынести на пульт через провода.
Питание 220 цепи проходит с первого провода, то есть сL1 на нормально замкнутую фазу Стоп.
Бывают ситуации, когда пускатель не действует из-за подгорания контактов. Если включить Пуск, то произойдёт замыкание цепи питания катушки. Контакты пускателя замыкают, а на двигатель поступают три фазы. Подобные чертежи могут иметь ещё один добавочный контакт. Он называется блокировочный или контакт-самоподхвата.
Активируя пускатель кнопкой включения блокировочный контакт замыкается. А если он замкнут, то цепь питания катушки пускателя будет замкнутой, даже отжав кнопку пуска. Эксплуатация прибора будет происходить до выключения кнопки Стоп.
Пуск через двухполюсник
Под данным термином имеется в виду объем конденсатора, который зависит от вида подключения обмоток двигателя. При соединении треугольником ёмкость равняется 70 умножить на номинальную мощность мотора.
Соединение звездой
Подключение электродвигателя по схеме «звезда»
Сп пусковой конденсатор, Ср рабочий конденсатор, 1, 2, 3 начало обмоток, 4, 5, 6 концы обмоток
Выбор неправильного объёма в большую сторону приведет к тому, что мотор будет нагреваться. А недостаточная ёмкость снизит мощность. Поэтому подбирать ёмкость рекомендуется при включенном в сеть 220 конденсаторе, воспользовавшись щипцами. Прибор должен быть в обычном режиме.
Для определения пусковой ёмкости необходимо создать момент запуска. Объём впуска определяется суммой рабочего и пускового конденсатора.
При запуске без нагрузки, ёмкости пусковые одинаковы с рабочими. В таком случае в электропусковом конденсаторе необходимости нет. Схема становится проще и дешевле.
При нагрузке на впуске необходима дополнительная ёмкость. Большее отключение ёмкости увеличит момент запуска. Дальнейшее увеличение уменьшает момент. Следовательно, электропусковая ёмкость превосходит рабочую в 2—3 раза. Общая продолжительность действия конденсатора несколько секунд.
Подключение через УЗО
УЗО является защитным устройством, которое отключает двигатель от сети 220.
УЗО имеет три фазы и четыре полюса. Во время соединения могут использоваться все полюсы, а могут подсоединяться три полюса, как показано на картинке выше.
Схема может быть двух вариантов.
Треугольник
Данная схема позволяет контролировать утечки тока на корпус. При подключении треугольником идут в ход фазные провода, а нейтральная клемма не подсоединены к обмоткам. При нормальной работе двигателя, УЗО не работает, так как оно измеряет векторную разность токов.
На схеме изображено подсоединение мотора способом звезда. Особенность подключения через УЗО— это количество проводов, которые входят и отходят. УЗО работает на 4 полюса, а нейтральная клемма присоединяется к отдельной клемме, расположенной со стороны рычага.
Ток пусковой нагрузки двигателя превышает его рабочую нагрузку в 4—5 раз, пока ротор не начинает вращаться. Тогда ток уменьшается. Для того чтобы избежать замыкания и обеспечить способность мотора запускаться, необходимо использовать УЗО.
Подключение звездой
Данный вид включения (2а) обеспечивает плавный пуск.
Начала обмоток статора соединить в одной точке, а концы обмоток соединяются с тремя фазами электропитания.
Пуск треугольником
Для достижения полной мощности двигателя необходимо подключение треугольником (2б).
Обмотки статора подсоединяется между собой. Начало следующей обмотки соединяется с концом предыдущей. К местам их соединения проводятся трехфазное питание 220.
На рисунке выше изображена схема включения «звезда треугольник». Редко используется для пуска двигателя.
Сначала применяется звезда на впуске, а в рабочем режиме треугольник. Таким образом, достигается максимальная мощность, но сложным исполнением.
Для функционирования необходимо 3 пускателя. На первый подключается питание, которое соединяется с концом обмоток статора. Начало подсоединяется с другими двумя контакторами. Со второго устройства начало обмотки соединяется с другими фазами в треугольник. При запуске третьего устройства образуется звезда, закорачивая все провода.
Важно! Нельзя включать одновременно 2, 3-й пускатель, иначе может произойти аварийное отключение автоматической защиты. Необходимо сделать блокировку между ними.
Работает схема так: сначала пускатель подает сигнал на 3-йконтактор, при этом механизм начинает работать.Далее отключается третий контактор, а второй включается. Далее применяется треугольник. Отключает двигатель первый пускатель.
Трёхфазный двигатель может работать от сети 220 вольт по чертежу звезда треугольник. Но если розетка обычная бытовая, то необходим частотный преобразователь.
Внимание! Используя любой способ подключения, будьте предельно внимательны, так как неправильные соединения могут привести к сгоранию устройства.
Корректно подобранная схема соединения трехфазного электродвигателя на 220 обеспечит плавность пуска, стабильность и работы.
звезда, треугольник, трехфазная сеть 380В, однофазная сеть 220В
Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»
Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).
Например:
— зачем шесть контактов в двигателе?
— а почему контактов всего три?
— что такое «звезда» и «треугольник»?
— а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
— а как измерить ток в обмотках?
— что такое пускатель?
и т.п.
Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:
1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.
В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.
Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.
В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.
Возможные схемы подключения обмоток электродвигателей
Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.
Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.
Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).
Подключение электродвигателя по схеме звезда
Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.
Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.
Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.
Подключение электродвигателя по схеме треугольник
Название этой схемы также идёт от графического изображения (см. правый рисунок):
Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.
То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).
Подключение электродвигателя к трёхфазной сети на 380 В
Последовательность действий такова:
1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):
Двигатель для однофазной сети 220В
(~ 1, 220В)
Двигатель для трехфазной сети
220В/380В (220/380, Δ / Y)
Двигатель для трехфазной сети 380В
(~ 3, Y, 380В)
Двигатель для трехфазной сети
(380В / 660В (Δ / Y, 380В / 660В)
3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
— использование автоматического выключателя или автомата защиты электродвигателя
Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.
— использование пускателя
Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).
Устройство электромагнитного пускателя:
Магнитный пускатель устроен достаточно просто и состоит из следующих частей:
(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).
При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).
Типовая схема подключения электродвигателя с использованием пускателя:
При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).
5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса
Как подключить поплавковый выключатель к трёхфазному насосу
Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.
Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.
Подключение электродвигателя к однофазной сети 220 В
Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку
Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).
Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.
Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.
Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.
Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.
Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).
Использование частотного преобразователя
В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.
Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).
Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:
— регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
— при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.
Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.
Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.
Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.
Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.
Данные насосы используются в качестве дозирующих насосов на пищевом производстве.
Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).
Технический директор
ООО «Насосы Ампика»
Моисеев Юрий.
Все о магнитных пускателях двигателей
Пускатели двигателей — это устройства, которые запускают и останавливают электродвигатели с помощью ручных или автоматических переключателей и обеспечивают защиту цепей двигателя от перегрузки. Основные характеристики включают предполагаемое применение, тип пускателя, электрические характеристики, включая количество фаз, ток, напряжение и номинальную мощность, а также характеристики. Пускатели двигателей используются везде, где работают электродвигатели с определенной мощностью. Существует несколько типов пускателей, в том числе ручные, магнитные, плавные, многоскоростные и пускатели полного напряжения.В этой статье рассматриваются магнитные пускатели двигателей и объясняется принцип их работы, их применение и некоторые соображения по выбору пускателя двигателя.
Как работает магнитный пускатель двигателя?
Магнитные пускатели работают при помощи электромагнитов. У них есть набор контактов с электромагнитным управлением, который запускает и останавливает подключенную нагрузку двигателя, и реле перегрузки. Реле перегрузки отключает управляющее напряжение на катушку стартера, если обнаруживает перегрузку двигателя.Схема управления с мгновенными контактными устройствами, подключенными к катушке, выполняет функцию пуска и останова.
Трехполюсный пускатель магнитного двигателя полного напряжения имеет следующие устройства: набор неподвижных контактов, набор подвижных контактов, катушка соленоида, неподвижный электромагнит, нажимные пружины, набор магнитных затеняющих катушек и подвижный якорь. . В магнитных пускателях используются управляющие устройства с мгновенным контактом (например, переключатели и реле), которые требуют перезапуска после потери мощности или если из-за низкого напряжения контактор отключается.Их также можно подключить для автоматического перезапуска двигателей, если этого требует приложение.
Контактор магнитного пускателя похож на реле, но переключает большее количество электроэнергии и обрабатывает нагрузки с более высоким напряжением. Контактор имеет контактный носитель с электрическими контактами для подключения входящего сетевого силового контакта к контакту нагрузки. Он также состоит из электромагнита, который обеспечивает силу для замыкания контактов, и корпуса, изолирующего материала, который удерживает детали вместе и защищает компоненты. Контакторы обычно изготавливаются с контактами, которые остаются разомкнутыми, если не замкнуты принудительно, то есть мощность не поступает на нагрузку до тех пор, пока катушка не сработает, замыкая контактор.
Когда контактор замкнут, ток идет на электромагнит. Этот ток может иметь то же напряжение, что и мощность, проходящая через контакты, или может иметь более низкое «управляющее» напряжение, которое используется только для возбуждения катушки. Когда катушка находится под напряжением, это создает магнитную связь между контактами и держателем контактов, позволяя им оставаться вместе и току течь к двигателю до тех пор, пока система не будет отключена путем отключения питания катушки.В обесточенном состоянии пружина заставляет контакты разъединяться и останавливать поток энергии через контакты, и двигатель выключается.
Некоторые обычно доступные магнитные пускатели двигателей включают в себя полное напряжение (линейное), пониженное напряжение и реверсирование. Как следует из названия, пускатель полного напряжения или магнитный пускатель двигателя подает на двигатель полное напряжение. Это означает, что он предназначен для правильной обработки уровней пускового тока, возникающего при запуске двигателя. Пускатели пониженного напряжения предназначены для ограничения воздействия пускового тока во время запуска двигателя и доступны в электромеханическом и электронном вариантах.Реверсивные стартеры переключают вращение вала трехфазного двигателя. Это происходит из-за того, что любые двухпроводные провода, питающие нагрузку двигателя, меняются местами. Реверсивный магнитный пускатель двигателя имеет пускатель прямого и обратного хода. Он также имеет электрические и механические блокировки, которые обеспечивают одновременное включение только переднего или заднего стартера.
Приложения и отрасли
Пускатели двигателей— это специальные электрические устройства, предназначенные для обработки высокого электрического тока, который двигатели мгновенно потребляют при запуске из состояния покоя, при этом защищая двигатели от чрезмерного нагрева от перегрузок во время нормальной работы. Пусковой ток может в несколько раз превышать ток, потребляемый двигателем при его рабочей скорости. Если бы использовался только предохранитель или автоматический выключатель, это устройство сработало бы или отключилось при каждом запуске.
Вместо этого в двигателях используются магнитные реле перегрузки, чтобы ввести временную задержку во время запуска, когда двигатель подвергается воздействию высокого «пускового» тока. Если двигатель заклинивает — так называемый сценарий с заблокированным ротором — он будет постоянно потреблять такой же пусковой ток. В этом случае реле перегрузки будут нагреваться сверх времени, отведенного для нормальных мгновенных уровней броска тока, и отключат переключатель или контактор и, следовательно, двигатель.
Магнитные пускатели двигателей часто используются для двигателей, потребляющих несколько лошадиных сил и выше. Примеры включают деревообрабатывающие станки, такие как столярные пилы или формовщики. Машины с меньшими нагрузками, включая большинство ручных инструментов, обычно используют только выключатель вместо пускателя двигателя. Магнитные пускатели являются стандартными компонентами для многих машин, а стартеры для вторичного рынка также используются в качестве запасных компонентов или для модернизации старых машин. Они используются в линейных приложениях и в качестве пускателей пониженного напряжения для одно- и трехфазных двигателей.
Пускатели двигателейдоступны в открытых конфигурациях, которые устанавливаются в панели управления, или они могут быть автономными блоками с кожухами, сертифицированными по NEMA или IEC. Стандартные размеры NEMA варьируются от 00 до 9, чтобы охватить диапазон типоразмеров двигателей от 1,5 л.с. до 900 л.с.
Соображения
Большинство производителей стартеров предлагают продукцию как в соответствии с рейтингом NEMA, так и IEC. Пускатели NEMA, как правило, больше и дороже, чем пускатели IEC, но могут быть указаны на основе только мощности и напряжения, тогда как спецификации пускателей IEC более точно настроены.Как правило, североамериканские инженеры-конструкторы будут указывать применимость либо NEMA, либо IEC, а для новых покупок специалисты по спецификациям могут выбирать из соответствующих предложений поставщиков в этих двух диапазонах. Машиностроители в Северной Америке часто используют пускатели IEC в своих панелях управления из-за их способности более точно настраивать пускатель в соответствии с приложением, что необходимо в соответствии с более детальными критериями выбора IEC.
Сводка
В этой статье представлено понимание магнитных пускателей двигателей.Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.
Прочие изделия для стартеров двигателей
Больше от Machinery, Tools & Supplies
Промышленные пускатели для двигателей| Магнитный пускатель двигателя
ВведениеПускатели двигателя — одно из основных изобретений в области управления двигателями. Как следует из названия, стартер — это электрическое устройство, которое регулирует электрическую мощность для запуска двигателя. Эти электрические устройства также используются для остановки, реверсирования и защиты электродвигателей. Ниже приведены два основных компонента пускателя:
- Контактор: Основная функция контактора — управлять электрическим током, подаваемым на двигатель. Контактор может включить или отключить питание цепи.
- Реле перегрузки: Перегрев и потребление слишком большого тока могут привести к перегоранию двигателя и его практически бесполезному использованию. Реле перегрузки предотвращают это и защищают двигатель от любой потенциальной опасности.
Пускатель — это сборка этих двух компонентов, которая позволяет ему включать или выключать электродвигатель или электрическое оборудование, управляемое электродвигателем. Пускатель также обеспечивает необходимую защиту цепи от перегрузки.
Типы пускателей двигателейСуществует несколько типов пускателей двигателей. Тем не менее, два основных типа этих электрических устройств:
Ручные пускателиРучные пускатели — это устройства, которые управляются вручную. Эти стартеры чрезвычайно просты в эксплуатации и не требуют вмешательства специалиста. Стартер включает в себя кнопку (или поворотную ручку), которая позволяет пользователю включать и выключать подключенное оборудование. Кнопки имеют механические связи, которые размыкают или замыкают контакты, запуская или останавливая двигатель. Следующие особенности ручного пускателя делают его предпочтительным выбором по сравнению с другими типами:
- Эти пускатели обеспечивают безопасную, а также экономичную работу.
- Компактные размеры этих устройств делают их пригодными для широкого спектра приложений.
- Они обеспечивают защиту двигателя от перегрузки, защищая его от любого потенциального повреждения.
- Эти устройства поставляются с большим выбором корпусов.
- Первоначальная стоимость ручного стартера невысока.
Это другой основной тип пускателя двигателя. Он работает от электромагнита. Это означает, что нагрузка двигателя, подключенная к пускателю двигателя, обычно запускается и останавливается с использованием более низкого и безопасного напряжения, чем напряжение двигателя.Как и другие пускатели двигателей, магнитный пускатель также имеет электрический контактор и реле перегрузки для защиты устройства от слишком большого тока или перегрева.
Схема и работа стартера двигателяВ пускателе двигателя есть две цепи, а именно:
- Цепь питания: Цепь питания соединяет линию с двигателем. Он обеспечивает передачу электроэнергии через контакты стартера, реле перегрузки, а затем на двигатель.Ток двигателя передается по силовым (главным) контактам контактора.
- Цепь управления: Это другая цепь пускателя двигателя, которая включает или выключает контактор. Главные контакты контактора отвечают за разрешение или прерывание прохождения тока к двигателю. Для этого контакты в цепи управления либо разомкнуты, либо замкнуты. Схема управления возбуждает катушку контактора, которая создает электромагнитное поле. Силовые контакты притягиваются этим электромагнитным полем в закрытое положение.Это замыкает цепь между двигателем и линией. Таким образом, дистанционное управление становится возможным с помощью схемы управления. Схема управления может быть подключена двумя способами:
- Метод 1: Один из наиболее широко используемых методов подключения схемы управления называется «Двухпроводным методом». При двухпроводном способе подключения цепи управления используется пилотное устройство с поддерживаемым контактом, такое как датчик присутствия, термостат или поплавковый выключатель.
- Метод 2: В отличие от двухпроводного метода, в «трехпроводном методе» подключения цепи управления используется контакт удерживающей цепи и управляющие устройства с мгновенным контактом.
Цепь управления может получать мощность одним из следующих трех способов:
- Общее управление: Этот тип управления возникает, когда источник питания схемы управления такой же, как и у двигателя.
- Раздельное управление: Это самый популярный тип управления. Как следует из названия, в этой схеме схема управления получает питание от отдельного источника. Как правило, получаемая мощность ниже по напряжению по сравнению с источником питания двигателя.
- Управление трансформатором: Как следует из названия, цепь управления получает питание от трансформатора цепи управления. Как правило, получаемая мощность ниже по напряжению по сравнению с источником питания двигателя.
В зависимости от того, как они подключены в цепь, существует множество типов пускателей с магнитным приводом, например:
1. Пускатель с прямым подключением-Онлайн-пускатель — это простейший вариант пускателя двигателя, кроме ручного пускателя.Контроллер этого стартера обычно представляет собой простую кнопку (но может быть селекторным переключателем, концевым выключателем, поплавковым выключателем и т. Д.). Нажатие кнопки пуска замыкает контактор (путем подачи питания на катушку контактора), подключенный к основному источнику питания и двигателю. Это обеспечивает ток питания двигателя. Для выключения мотора предусмотрена кнопка остановки. Для защиты от перегрузки по току цепь управления подключается через нормально замкнутый вспомогательный контакт реле перегрузки. Когда реле перегрузки срабатывает, нормально замкнутый вспомогательный контакт размыкается и обесточивает катушку контактора, а главные контакты контактора размыкаются.
Преимущества использования пускателей двигателя с прямым включением двигателя:- Они имеют компактную конструкцию.
- Они экономичны.
- Они имеют простую конструкцию.
В пускателе сопротивления ротора три сопротивления соединены таким образом, что они включены последовательно с обмотками ротора. Это помогает значительно снизить ток ротора, а также увеличивает крутящий момент двигателя.
Преимущества использования пускателей электродвигателей с сопротивлением ротора:- Они экономичны.
- У них простой метод регулирования скорости.
- Они обеспечивают низкий пусковой ток, большой пусковой момент и большой момент отрыва.
Пускатель сопротивления статора состоит из трех резисторов, которые последовательно соединены с каждой фазой обмоток статора. На каждом резисторе возникает падение напряжения, поэтому возникает необходимость подавать низкое напряжение на каждую фазу.Эти сопротивления устанавливаются в начальное или максимальное положение на этапе запуска двигателя. Пусковой ток в пускателях этого типа поддерживается на минимальном уровне. Кроме того, необходимо поддерживать пусковой момент двигателя.
Преимущества использования пускателей электродвигателей с сопротивлением статора:- Они подходят для использования в системах управления скоростью.
- Они обладают чрезвычайно гибкими пусковыми характеристиками.
- Обеспечивают плавный разгон.
В случае пускателя автотрансформатора трансформатор подает определенный процент первичного напряжения на вторичную обмотку трансформатора. Автотрансформатор подключен по схеме звезды. В пускателе этого типа три вторичных обмотки трансформатора с ответвлениями подключены к трем фазам двигателя. Это помогает снизить напряжение, подаваемое на клеммы двигателя.
Преимущества использования пускателей двигателей с автотрансформатором:- Их можно использовать для ручного управления скоростью, но с ограниченными возможностями.
- Они обладают чрезвычайно гибкими пусковыми характеристиками.
- Имеют высокий выходной крутящий момент.
5.
Пускатель звезда-треугольникПо сравнению с другими типами пускателей, пускатель звезда-треугольник широко используется. Как следует из названия, в пускателях звезда-треугольник три обмотки соединены звездой. Определенное время устанавливается таймером или любой другой схемой контроллера. По истечении этого времени обмотки подключаются по схеме треугольник.Фазное напряжение при соединении звездой снижается до 58%, а общий потребляемый ток составляет 58% от нормального тока. Это приводит к снижению крутящего момента.
Преимущества использования пускателей электродвигателей звезда-треугольник:- Они идеальны для длительного разгона.
- У них меньший импульсный ток на входе по сравнению с другими пускателями.
- У них более простая конструкция по сравнению с другими пускателями.
Сегодня пускатели двигателей широко используются из-за их ряда полезных свойств.Ниже приведены некоторые особенности этих очень полезных электрических устройств:
- Они облегчают запуск и остановку двигателя.
- Пускатели рассчитаны на мощность (в лошадиных силах, киловатт) и ток (в амперах).
- Они обеспечивают необходимую защиту двигателя от перегрузки.
- Электрическое устройство обеспечивает функцию дистанционного включения / выключения.
- Эти устройства позволяют быстро включать и отключать ток (включение и выключение).
Ниже перечислены основные функции, которые должен выполнять пускатель:
- Управление: Функция управления в основном выполняется контакторным компонентом пускателя.Он контролирует размыкание и замыкание силовой электрической цепи. Переключение осуществляется главными контактами (полюсами) контактора. Электромагнитная катушка находится под напряжением, которая размыкает или замыкает контакты. Эта электромагнитная катушка имеет номинальное управляющее напряжение и может быть переменным или постоянным напряжением.
- Защита от короткого замыкания: В промышленных приложениях нормальный ток нагрузки может достигать тысяч ампер. В случае короткого замыкания ток короткого замыкания может превысить 100 000 ампер.Это может привести к серьезному повреждению оборудования. Защита от короткого замыкания отключает питание и безопасным образом предотвращает возможное повреждение. Защита от короткого замыкания обеспечивается предохранителями или автоматическими выключателями в комбинированном контроллере двигателя.
- Защита от перегрузки: Когда двигатель потребляет больше тока, чем он рассчитан, возникает состояние перегрузки. Основная задача реле перегрузки — обнаружение избыточных токов. При обнаружении перегрузки вспомогательный контакт реле перегрузки размыкает цепь и предотвращает перегрев или перегрев двигателя.Электронные или электромеханические реле перегрузки используются в сочетании с контактором для обеспечения необходимой защиты от перегрузки.
- Отключение и отключение: Чтобы предотвратить непреднамеренный перезапуск, необходимо отключить двигатель от основной цепи питания. Чтобы безопасно выполнять техническое обслуживание двигателя или стартера, двигатель должен отключаться и быть изолированным от источника питания. Эту функцию выполняет размыкающий выключатель цепи. Отключение и отключение обеспечивается размыкающим выключателем или автоматическим выключателем в Комбинированном контроллере двигателя (или может быть установлен удаленно от стартера).
Номинальные параметры пускателя двигателя зависят от многих факторов, таких как тепловой ток, длительный ток, напряжение двигателя и мощность.
Тепловой ток зависит от теплопроводности (k), которая является свойством, указывающим на теплопроводность материала. Это означает, что тепловой ток прямо пропорционален теплопроводности.
Продолжительный ток, который также обычно называют номинальным постоянным током, является мерой способности пускателя, управляющего двигателем, выдерживать ток в течение непрерывного времени.
Номинальная мощность пускателя двигателя зависит от типа используемого двигателя. Пускатели двигателей постоянного тока рассчитаны на мощность постоянного тока. С другой стороны, пускатели двигателей переменного тока имеют номинальную мощность однофазного и трехфазного тока.
Характеристики пускателя двигателя основаны на размере и типе нагрузки, на которую он рассчитан. Стартеры соответствуют стандартам и рейтингам Underwriters Laboratories (UL), Канадской ассоциации стандартов (CSA), Международной электротехнической комиссии (IEC) и Национальной ассоциации производителей электрооборудования (NEMA).
Рейтинг NEMAНоминальные значения NEMA стартера в значительной степени зависят от максимальной номинальной мощности, указанной в стандарте ISCS2 Национальной ассоциации производителей электрооборудования. Выбор стартеров NEMA осуществляется на основе их размера NEMA, который варьируется от размера 00 до размера 9.
Стартер NEMA с его заявленной мощностью может использоваться в широком диапазоне приложений, от простых до и от приложений к приложениям для подключения к сети и бегу трусцой, которые более требовательны. При выборе подходящего пускателя двигателя NEMA необходимо знать напряжение и мощность двигателя. В случае значительного количества закупорок и толчков, потребуется снижение номинальных характеристик устройства, соответствующего требованиям NEMA.
Рейтинг МЭКМеждународная электротехническая комиссия (МЭК) определила эксплуатационные и рабочие характеристики устройств МЭК в публикации МЭК 60947. Стандартные размеры не указаны МЭК.Типичный рабочий цикл устройств IEC определяется категориями использования. Что касается общих применений для запуска двигателей, наиболее распространенными категориями использования являются AC3 и AC4.
В отличие от типоразмеров NEMA, они обычно рассчитываются по максимальному рабочему току, тепловому току, номинальной мощности и / или кВт.
Существуют и другие параметры, которые важно учитывать при выборе пускателей двигателя, такие как ускорение с ограничением по времени, ускорение линии тока, управляющее напряжение, количество полюсов и рабочая температура. Мы расскажем об этом в будущем официальном документе.
Мы надеемся, что этот краткий технический документ дал вам хорошее базовое представление о пускателях двигателей. Другие статьи c3controls ищите на c3controls.com/blog.
Отказ от ответственности:
Содержимое, представленное в этом техническом документе, предназначено исключительно для общих информационных целей и предоставляется при том понимании, что авторы и издатели не участвуют в предоставлении технических или других профессиональных консультаций или услуг.Инженерная практика определяется обстоятельствами конкретного объекта, уникальными для каждого проекта. Следовательно, любое использование этой информации должно осуществляться только после консультации с квалифицированным и лицензированным специалистом, который может учесть все соответствующие факторы и желаемые результаты. Информация в этом техническом документе была размещена с разумной тщательностью и вниманием. Однако возможно, что некоторая информация в этих официальных документах является неполной, неверной или неприменимой к конкретным обстоятельствам или условиям. Мы не несем ответственности за прямые или косвенные убытки, возникшие в результате использования информации, содержащейся в этом техническом документе, или действий на ее основе.
Пускатели двигателей | Через линию | Миннеаполис, Миннесота
ISC Companies является дистрибьютором деталей механической передачи энергии и компонентов промышленной автоматизации. Мы также гордимся тем, что являемся сертифицированным магазином панелей UL 508A / 698A. Для получения дополнительной информации о брендах, которые мы предлагаем, и / или ценах, свяжитесь с нами по телефону 763-559-0033 или по электронной почте custserv @ isccompanies.com, или заполнив нашу онлайн-форму для связи.
Пускатель двигателя включает или выключает электродвигатель, обеспечивая защиту от перегрузки. Существует два основных типа пускателей: ручной и магнитный. В меньших размерах пускатель двигателя представляет собой переключатель с ручным управлением. Защита от низкого напряжения (LVP), которая предотвращает автоматический перезапуск после сбоя питания, обычно невозможна с ручным пускателем. В более крупных двигателях или в двигателях, требующих дистанционного или автоматического управления, используются магнитные контакторы.Очень большие двигатели, работающие от источников питания среднего напряжения, могут использовать силовые выключатели.
Магнитные пускатели двигателей переменного токадля одно- и трехфазной работы состоят из двух основных частей; контактор (подключает двигатель к входящей мощности) и перегрузка (вызывает электрическое отключение контактора (срабатывание), когда он определяет ток, превышающий нормальный).
Все пускатели двигателей имеют следующие функции:
- Номинальный ток (амперы) или мощность (лошадиные силы)
- Дистанционное включение / выключение
- Защита двигателя от перегрузки
- Запуск и остановка (электрическая долговечность)
- Заткание и толчок (быстрый включающий и отключающий ток)
Пускатели полного напряжения
Пускатели полного напряжения, также называемые линейными пускателями или пускателями прямого включения (DOL), являются нереверсивными (FVNR) при полном напряжении и подключают двигатель к линии питания. Ручные пускатели ограничены однофазными двигателями мощностью около 5 л.с. при 320 В переменного тока и трехфазными до 10 л.с. при 460 и 575 В переменного тока. Пускатели обычно разрабатываются в соответствии со стандартами NEMA (США) или IEC (Европа). Два типа пускателей различаются номиналами, сроком службы и типами перегрузки.
Номинальные характеристики рамы
СтандартыNEMA определяют 11 размеров магнитных пускателей (00–9) для низковольтных пускателей и указывают номинальную мощность в лошадиных силах для каждого размера. Номинальные параметры пускателей IEC включают 15 размеров, и их физический размер может быть меньше.
Срок службы контактора
СтандартыNEMA требуют, чтобы производители проектировали все контакторы для тяжелых условий эксплуатации; поэтому они обычно больше, чем соответствующие контакторы IEC. Стандарты IEC определяют различные уровни обслуживания, называемые категориями использования. Стартеры NEMA обычно имеют более длительный срок службы.
Реле перегрузки
Промышленность практически прекратила использование устройств защиты от перегрузок нагревательных элементов в пользу электронных полупроводниковых устройств защиты от перегрузок, которые обеспечивают большую защиту.Электронная система защиты от перегрузки контролирует фактический ток двигателя и отключает его за три секунды или меньше, когда он превышает предварительно установленный номинал. Они также защищают от потери фазы, фазового дисбаланса и короткого замыкания.
СтандартыNEMA требуют, чтобы реле перегрузки имели сменные нагреватели или электронные устройства защиты от перегрузки для обеспечения характеристик отключения по классу 20 при 600% тока полной нагрузки. Большинство электронных перегрузок имеют выбираемые на месте классы срабатывания от 5 до 30.
Реверсивные пускатели
Двигатели с тремя фразами меняются местами путем переключения любых двух из трех выводов питания на двигатель.Пускатели с реверсивным полным напряжением (FVR) имеют два контактора (прямой и обратный ход). Когда двигатель работает в одном направлении, а контактор противоположного направления находится под напряжением, это называется заглушкой. Двигатель быстро замедляется и ускоряется в противоположном направлении. Когда приложение требует быстрого замедления, но не последующего обратного вращения, двигатель может быть оснащен выключателем. Штекерный выключатель — это центробежный выключатель, который передает на двигатель противоположную мощность вращения для быстрого замедления, но полностью отключается, когда скорость двигателя приближается к нулю.
Пускатели пониженного напряжения
Пускатели пониженного напряжения (RVS) используются в приложениях с двигателями большой мощности. Они используются для уменьшения пускового тока, ограничения выходного крутящего момента и механической нагрузки на нагрузку.
Пускатель пониженного напряжения предотвращает бросок тока, позволяя двигателю набирать скорость небольшими шагами за счет меньших приращений тока. Этот стартер не является регулятором скорости. Снижает шок только при запуске.
- Пускатели с первичным резистором : В простейшем пускателе пониженного напряжения резисторы вставляются последовательно с двигателем во время фазы пуска.Система рассеивает мощность в виде тепла во время запуска. В приложениях, в которых потери были бы неприемлемыми, часто используются реакторы, а не резисторы. Пускатели реакторов стоят дороже и имеют меньший коэффициент мощности при запуске.
- Пускатели автотрансформатора : Во время разгона сниженное входное напряжение подается на двигатель через автотрансформатор, который ограничивает ток и предотвращает перенапряжение цепи двигателя. Когда достигается рабочая скорость, срабатывает второй контактор для обхода трансформатора и подает полное напряжение на двигатель.Третий контактор используется для заполнения временного интервала во время переключения (пускатель с закрытым переходом). Если третий контактор не используется, это пускатель с открытым переходом.
Пускатели с пониженным пусковым током
- Пускатели звезда-треугольник : Во время запуска пускатель звезда-треугольник последовательно соединяет три набора обмоток статора для увеличения электрического сопротивления и ограничения пускового тока. Когда достигается рабочая скорость, таймер подключает их параллельно, и все три набора обмоток получают одинаковое линейное напряжение.Они используются в устройствах с низким пусковым моментом, таких как воздуходувки или центробежные насосы.
- Пускатели с частичной обмоткой : Для них требуются двигатели, которые имеют специальную разводку, позволяющую пускателю подключаться только к части обмоток во время запуска. Во время разгона таймер вызывает замыкание второго контактора, запитывая другие обмотки. Пускатель с частичной обмоткой является наименее дорогим, но пусковой ток выше и требуется специальная проводка.
Твердотельные пускатели
В твердотельных пускателях тиристоры используются в качестве клапанов переменного напряжения. Они включают в себя рампы ускорения и замедления с регулируемым напряжением для медленного увеличения напряжения и скорости двигателя, чтобы избежать ударной нагрузки и ограничить пусковой ток. Твердотельные пускатели могут использовать либо линейное изменение предела тока, либо обратную связь от тахометра. Твердотельные устройства плавного пуска доступны как автономные устройства, когда пускатель уже используется. Они популярны при перекачивании.
Пускатели комбинированные
Североамериканские электрические нормы и правила требуют, чтобы, если в ответвленной цепи есть двигатель, она также должна иметь устройство защиты от короткого замыкания и отключающее устройство в дополнение к пускателю двигателя.В случае короткого замыкания требуется дополнительная защита в виде предохранителя или автоматического выключателя. Когда отключающее устройство, устройство защиты от короткого замыкания и пускатель двигателя объединены как узел, это называется комбинированным пускателем.
- Разъединители с предохранителями : Предохранители с выдержкой времени позволяют переносить большие нагрузки в течение короткого времени и обеспечивают долгосрочную защиту от перегрузки. У них есть токоограничивающие возможности.
- Автоматические выключатели : Удобнее, но по более высокой цене.Они служат средством отключения двигателя и пускателя от сети и защиты параллельной цепи от чрезмерного тока.
Существует три класса напряжения: низкий (менее 600 В), средний (от 600 до 15 000 В) и высокий (более 15 000 В). Три типа конструкции: литой корпус, изолированный корпус и низковольтный источник питания. Автоматические выключатели срабатывают или отключаются, когда ток превышает номинальное значение выключателя после временной задержки.
Контент на этой странице был создан с использованием выдержек из Справочника по передаче электроэнергии (5 -е издание) , которое написано и продается Ассоциацией дистрибьюторов силовых передач (PTDA).
Закажите копию здесь
Зачем нужно устанавливать стартер с двигателем? Электрические технологии
Зачем нужно соединять стартер с двигателями?
Необходимость и необходимость стартера с двигателемДвигатели мощностью менее 1 л.с. (0,7457) напрямую подключаются к источнику питания без стартера, поскольку их сопротивление якоря очень велико, и они имеют возможность пропускать и пропускать более высокий ток из-за высокое сопротивление.Таким образом, обмотки якоря защищены от высокого пускового тока при пуске двигателя.
В случае двигателей больших размеров они имеют очень низкое сопротивление якоря. Если мы подключим эти типы двигателей непосредственно к источнику питания (в основном, трехфазному питанию), тогда начнет течь большой ток, и это приведет к разрушению обмотки якоря из-за низкого сопротивления на начальном этапе запуска, когда двигатель не работает в нормальном положении. Двигатель не запускается на этом этапе, потому что нет обратной стороны E. М.Ф. в моторе. Обратная ЭДС двигателя достигается на полной скорости, когда двигатель работает на полной скорости и номинальной нагрузке.
Это точная причина, по которой мы последовательно подключаем стартер к двигателю. Пускатель, включенный последовательно с двигателем (т.е. сопротивление), снижает высокий пусковой ток, поскольку якорю требуется низкий ток из-за номинальных значений на начальном этапе, а затем он работает с нормальной скоростью.
Но это не конец истории. После запуска двигателя на малом токе сопротивление стартера уменьшается поворотом ручки ручного стартера (в случае автоматического стартера процесс может быть автоматическим).Таким образом, номинальный ток начнет протекать через обмотки якоря, и якорь двигателя начнет вращаться на полной скорости.
Что произойдет, если мы не подключим стартер к двигателю?Рассмотрим следующий пример.
Мы знаем, что ток якоря можно найти по следующей формуле.
I a = V — E b / R a ……… (I = V / R, закон Ома)
Где,
- I a = Ток якоря
- В = Напряжение питания
- E b = Задний E. MF
- R a = Сопротивление якоря
Связанное сообщение: Основная разница между контактором и пускателем
Предположим,
Двигатель мощностью 5 л.с. (3,73 кВт) с 440 В и сопротивлением якоря 0,25 Ом и нормальный ток полной нагрузки составляет 50 ампер. если мы подключим двигатель напрямую к источнику питания без стартера, результат будет следующим:
Подставление значений в уравнение, приведенное выше.
I a = 440 В — 0 / 0,25 Ом
I a = 1760 A
Ач! Этот высокий ток разрушит обмотку якоря, поскольку его ток в 35,2 раза превышает нормальный ток полной нагрузки двигателя.
1760 А / 50 А = 35,2
Вот почему нам нужно установить стартер с двигателем.
Похожие сообщения:
Вопрос | Ответ |
---|---|
ПОДСКАЗКА: Что такое пускатель магнитного линейного напряжения? | Электромагнитный выключатель с защитой от перегрузки |
Сколько полюсов требуется на пускателях следующих двигателей: а. Однофазный асинхронный двигатель на 240 В б. Трехфазный асинхронный двигатель на 440 В | a. 2 б. 3 |
Если пускатель двигателя установлен в соответствии с инструкциями, но не запускается, какова общая причина отказа при запуске? | Нагреватели без перегрузки |
ПОДСКАЗКА: Что вызывает гудение или дребезжание переменного тока в электромагнитных устройствах переменного тока? | , потому что использовалось напряжение переменного тока с нулевым напряжением. когда он достигает 0, якорь не испытывает тяги, заставляя его опускаться под действием силы тяжести и втягиваться обратно по принципу соленоида. |
ПОДСКАЗКА: Каково соотношение фаз между потоком в главном полюсе магнита и потоком в заштрихованной части полюса? | 90 градусов друг от друга |
В каких устройствах переменного тока используется принцип заштрихованного полюса? | Магнитные пускатели на контакторной секции Реле |
Какой тип защитного корпуса используется чаще всего и каков его номер NEMA? | NEMA 1 общего назначения |
Магнитный пускатель удерживается закрытым а. механически б. на 15% пониженного напряжения c. на 15% перенапряжения d. электрически магнитно | d. электрически магнитно |
, когда катушка пускателя двигателя обесточена, а. контакты остаются закрытыми б. закрывается механически c. открытые контакты под действием силы тяжести и натяжения пружины d. он должен остыть для перезапуска | c. открытые контакты под действием силы тяжести и натяжения пружины |
Переменный ток Магнит переменного тока может чрезмерно гудеть из-за а.неправильное выравнивание б. посторонние предметы между контактными поверхностями c. неплотное ламинирование d. все эти | д. все эти |
Магниты переменного тока изготовлены из ламинированного железа а. для лучшей индукции б. для уменьшения теплового эффекта c. для переменного и постоянного тока d. для предотвращения дребезга | b. для уменьшения теплового эффекта |
Цель защиты двигателя от перегрузки — защитить а. двигатель от длительных сверхтоков б.провод от высоких токов c. двигатель от длительного перенапряжения d. двигатель от коротких замыканий | а. двигатель от длительных сверхтоков |
Число полюсов магнитного пускателя относится к а. количество контактов питания, двигателя или нагрузки б. количество управляющих контактов c. количество северных и южных полюсов d. все эти | а. количество контактов питания, двигателя или нагрузки |
Двигатели могут перегореть из-за а.перегрузка б. высокие температуры окружающей среды c. плохая вентиляция d. все вышеперечисленное | d. все вышеперечисленное |
Назначение затеняющей катушки на наконечнике электромагнитного полюса переменного тока состоит в том, чтобы а. предотвратить перегрев катушки б. ограничить ток отключения c. ограничить ток включения d. предотвратить вибрацию | d. предотвратить дребезжание |
СОВЕТ: Какие преимущества дает использование комбинированных стартеров? | у нас есть как размыкающий выключатель, так и защита от пуска |
какую функцию безопасности обеспечивает комбинированный пускатель, чего нет в отдельных пусковых агрегатах двигателя? | пусковая защита: предохранители и автоматические выключатели |
УКАЗАНИЕ: перечислите возможные причины, по которым якорь не срабатывает после обесточивания магнитного пускателя. | механическое переплетение; воздушный зазор в магните разрушен; липкое вещество на поверхностях магнита; слабое давление наконечника; сварка контактного наконечника |
как размер нагревателей перегрузки выбирается для конкретной установки? | Получите паспортную табличку в токе полной нагрузки (FLA) двигателя и посмотрите на заводскую крышку. |
Ток, потребляемый двигателем, равен а. низкий при запуске б. точное измерение нагрузки двигателя c. неточное измерение нагрузки двигателя d.не из них | б. точное измерение нагрузки двигателя |
тепловые реле перегрузки реагируют на а. высокие температуры окружающей среды и чрезмерный нагрев из-за токов перегрузки б. тяжелые механические нагрузки c. из FLA двигателя и таблицы выбора производителя d. по температуре окружающей среды | а. высокая температура окружающей среды и чрезмерный нагрев из-за токов перегрузки |
когда кнопка сброса не восстанавливает цепь управления после перегрузки, вероятной причиной является а.нагреватель перегрузки слишком мал б. расцепитель перегрузки недостаточно остыл c. перегорел подогреватель перегрузки | б. отключение по перегрузке недостаточно охладилось |
если оператор нажимает кнопку пуска на трехфазном асинхронном двигателе, и двигатель начинает гудеть, но не работает, вероятная проблема а. один предохранитель перегорел, и двигатель однофазный б. отключение по перегрузке требует сброса c. вспомогательный контакт — ш | а.один предохранитель перегорел, и двигатель однофазный |
комбинированный пускатель обеспечивает а. средства отключения б. защита от перегрузки c. защита от короткого замыкания d. все эти | д. все эти |
что означает IEC? | Международная электротехническая комиссия |
WEG Управление электродвигателем трехфазным магнитным пускателем мощностью 5 л.с. NEMA4X 20 — компрессор-источник
WEG PESW-18V24EX-R32 Трехфазный магнитный пускатель мощностью 5 л.с.
NEMA 4X Enclosure
Совершенно новый WEG PESW-18V24EX-R32 5 лошадиных сил, трехфазный, магнитный пускатель 208–240 В с корпусом NEMA 4X.Это стартер отличного качества со встроенной перегрузкой, регулируемой в диапазоне 11-17 ампер, и оснащен кнопкой ручного сброса.
Магнитные пускатели PESW идеально подходят для защиты двигателей и обеспечения надежной работы из года в год. Смонтированы вместе в корпусе NEMA 4x с кнопкой RESET на крышке для быстрой и простой работы.
Корпус NEMA 4X предназначен для использования в помещении или на открытом воздухе и обеспечивает определенную степень защиты от падающей грязи, дождя, мокрого снега, снега, переносимой ветром пыли, брызг воды и воды, направляемой из шланга.Не будет поврежден внешним обледенением корпуса.
РЕКОМЕНДУЕТСЯ ПРОФЕССИОНАЛЬНАЯ УСТАНОВКА
Технические характеристики
• HP при 208–240 Вольт: 5 HP
• Мин. Диапазон перегрузки (А): 11
• Максимальный диапазон перегрузки (А): 17
• Напряжение катушки: 208–240 Вольт
• Фаза: три
• Частота: 60 Гц
• Класс защиты: NEMA 4X
• Материал корпуса: пластик
• Функция кнопки: сброс
• Вес: 1.7
• Приблизительные размеры (Ш x В x Г): 3-7 / 8 «x 7-1 / 16» x 4-1 / 4 «
Стандартные характеристики
• Быстрое ускорение и высокий начальный крутящий момент
• Биметаллические реле перегрузки — класс 10
• Регулируемый ток срабатывания
• Температурная компенсация от -4 ° F до 140 ° F
• Защита от обрыва фазы
• Выбор ручного или автоматического сброса
• Электрически изолированные вспомогательные контакты NO-NC
• Сертификаты
Если вы используете этот стартер на воздушном компрессоре, вам также понадобится реле давления для управления стартером.В этом случае реле давления управляет включением и выключением стартера в соответствии с настройкой давления реле давления.
Разница между контакторами и пускателями двигателей (и пускателями пониженного напряжения)
Электродвигатели абсолютно необходимы для автоматизации бесчисленных приложений по всему миру. В большинстве случаев, , приводящий в движение двигателей — подача на них электроэнергии — требует некоторой инженерной системы, которая также должна быть совместима с устройством обмотки двигателя.Поскольку эти системы питания двигателей часто используются или вместе с другими электрическими устройствами управления и связи, уже описанными в этом Руководстве по проектированию, мы рассмотрим их наиболее распространенные варианты. Дополнительную информацию о моторных приводах, имеющих функции помимо пускателя двигателей, можно найти в этой статье motioncontroltips.com.
Только самые простые и самые маленькие конструкции — обычно с однофазными двигателями мощностью 5 л.с. или меньше или трехфазными двигателями мощностью 15 л.с. или меньше — допускают прямое подключение к сети (также называемое , проходящее через линию ). источник без риска перенапряжения двигателя и пониженного напряжения в сети.Трехфазные двигатели, приводимые в действие таким образом, могут иметь обмотки, соединенные простой звездой (также называемой звездой) или , треугольник … а двигатели с двойным напряжением (удобно, поскольку они могут принимать входное напряжение 230 В или 460 В) имеют комплекты сдвоенных катушек, которые могут работать параллельно или (для более высокого напряжения) последовательно.
Этот автоматический выключатель Siemens SIRIUS 3RV2011-1HA10 типоразмера S00 является токоограничивающим выключателем для фидеров нагрузки до 3 кВт при трехфазном напряжении 400 В переменного тока. Защита от короткого замыкания 104 А и регулируемая защита от перегрузки 5.От 5 до 8 А надежно защищает электродвигатели. Изображение любезно предоставлено Automation24 Inc.Повсюду в других местах пуск двигателя через линию представляет слишком много проблем для самого двигателя, а также для систем, подключенных к двигателю, включая вредные электрические эффекты, а также чрезмерный износ компонентов механической передачи энергии. Цели проектирования, связанные с безопасностью, производительностью и точностью, обычно требуют использования более совершенных подходов к управлению автомобилем.
Пусковой ток является важным параметром при выборе правильного размера и сопряжения двигателей и пускателей двигателей.Пусковой ток от пускателя двигателя должен быть достаточным для обеспечения соответствия двигателя требованиям по крутящему моменту и ускорению, но не должен вызывать чрезмерного падения напряжения в линии электропитания. Терминологическая основа: Различия между контакторами и пускателями двигателейВ предыдущем разделе этого Руководства по проектированию мы подробно описали, как контакторы и реле являются отдельными компонентами, несмотря на то, что время от времени в промышленности используются термины, предполагающие иное. Контакторы и пускатели двигателей также являются отдельными компонентами.Здесь термины используются взаимозаменяемо, потому что их ядро является той же самой точной технологией — переключателем, способным работать с высокими напряжениями.
Этот пускатель двигателя с прямым включением представляет собой SIRIUS 3RM1001-1AA04 от Siemens с управляющим напряжением 24 В постоянного тока и регулируемым расцепителем перегрузки по току срабатывания от 0,1 до 0,5 А. Он обеспечивает твердотельную защиту двигателя и подходит для систем с малым током. двигатели мощностью до 0,12 кВт Стандартная ширина 22,5 мм занимает минимум места внутри шкафов управления. Изображение предоставлено Automation24 Inc.Разница в том, что пускатели двигателей имеют одну дополнительную систему или системы, которых нет в контакторах — реле перегрузки определенного типа для отключения входа напряжения , если это реле обнаруживает перегрузку двигателя или термически опасное состояние из-за продолжительной перегрузки по току. Пускатели двигателей с самозащитой также включают защиту от короткого замыкания. Здесь снова ключевое значение имеет точное использование терминологии: вместо того, чтобы использовать короткое замыкание для обозначения какой-либо электрической неисправности, целесообразно использовать этот термин только при обсуждении внезапного сверхтока, возникающего из-за потока электроэнергии, который нашел какой-то непреднамеренный путь путешествовать.Защита от короткого замыкания действует мгновенно, отключая систему от источника питания.
Это пример силового контактора. Это Siemens SIRIUS 3RT2015-1BB41 для питания трехфазных двигателей и электрических систем отопления мощностью до 3 л.с. при 480 В переменного тока. В силовом контакторе используется управляющее напряжение 24 В постоянного тока, имеется замыкающий контакт и винтовые кабельные розетки.Фактически, существует множество размеров и версий этого силового контактора для фидеров нагрузки с автоматическими выключателями и различных коммутационных устройств SIRIUS для безопасного и функционального переключения электрических нагрузок.
• Контакторы 3RT2 бывают типоразмеров от S00 до S3. Контакторы 3RT1 бывают типоразмеров от S6 до S12
• Силовые контакторы 3RT.0 и вакуумные контакторы 3RT12 предназначены для переключения моторизованных нагрузок
• Четырехполюсные контакторы 3RT23 (и трехполюсные контакторы 3RT24 / 3RT14) переключают резистивные нагрузки
• Четырехполюсные 3RT25 контакторы предназначены для изменения полярности двигателей подъемных редукторов
• контакторные реле 3Rh3 переключаются в цепи управления
• конденсаторные контакторы 3RT26 переключают емкостные нагрузки (AC-6b)
• контакторы 3RT1 / 3RT2 / 3Rh3 имеют расширенный рабочий диапазон… 3RT10 / 3RT20 / Контакторы 3Rh31 предназначены для использования на рельсах… а реле сопряжения 3RT20 / 3Rh31 предназначены для системного взаимодействия с электронными контроллерами
• 3RT1… -.Контакторы S.36 имеют входы отказоустойчивого управления для приложений, связанных с безопасностью.
Также доступны реверсивные контакторы в сборе, а также контакторы для пуска трехфазных двигателей с уменьшенными пиками пускового тока (в виде комплектов контакторов для схем звезда-треугольник.
Еще одно различие между контакторами и пускателями двигателей связано с тем, как эти два компонента рассчитаны и указаны. Контакторы обычно классифицируются по их допустимому напряжению. В отличие от них, пускатели двигателей обычно оцениваются в соответствии с их текущей мощностью и мощностью двигателей, для которых они предназначены. re совместимы … даже при учете пускового тока при запуске без ложного отключения.Обычно это достигается за счет небольшой задержки срабатывания реле — многие двигатели (особенно двигатели меньшего размера) могут достичь полной рабочей скорости всего за несколько секунд.
На принципиальных схемах типовых вариантов контакторов, пускателей двигателя полного напряжения и устройств плавного пуска показаны их различия и сходства. Нажмите, чтобы увеличить.Пуск двигателя на самом базовом уровне подразделяется на ручной или автоматический.
Ручной запуск включает переключатели включения-выключения, которые просто замыкают или размыкают входную цепь двигателя при активации персоналом завода.Некоторые версии, которые квалифицируются как настоящие пускатели двигателя (как указано выше), включают реле тепловой перегрузки для обесточивания двигателя в случае его перегрева.
Напротив, запуск двигателя с автоматическим запуском иногда называют магнитным запуском для электромеханических контакторов, которые являются основными в этой конструкции.
Как и в любой технологии электромеханических реле, они имеют неподвижные электромагнитные катушки, которые (по команде от кнопки, концевого выключателя, таймера, поплавкового выключателя или другого реле) объединяют две цепи.Эти цепи включают в себя входные силовые контакты и ответный носитель, который (будучи замкнутым вместе) позволяет току течь в обмотки двигателя. Одним из вариантов этой конструкции является комбинированный пускатель, который включает в себя магнитное действие, а также некоторый способ отключения электроэнергии, когда это необходимо… либо с помощью предохранителя, прерывателя или переключателя цепи двигателя.
Пуск двигателя звезда-треугольник (один из типов системы пониженного броска) передает полное линейное напряжение на обмотки двигателя в звезду во время запуска — хотя напряжение на каждой обмотке двигателя уменьшается на величину, обратную корню квадратному из трех (57.7%), поэтому такое расположение иногда (довольно неточно) называют пуском при пониженном напряжении. Затем схема (обычно с контактором для каждой фазы, реле перегрузки, таймером и механической блокировкой) переключает вход двигателя для подачи полного линейного напряжения на его обмотки треугольником.
Пуск двигателя с частичной обмоткой — используется вместе со специальными двигателями с двумя напряжениями, упомянутыми выше — подает линейное напряжение только на одну часть (половину или две трети) обмоток двигателя (обычно девять или двенадцать) после Начните.Затем, когда установленное время истекло или было обнаружено установленное напряжение, срабатывает реле или таймер и подает команду на добавление остальных обмоток и подачу питания. Ускорение может быть нерегулярным, но пусковое сопротивление двигателя с частичной обмоткой не влияет на пусковой момент… и позволяет запускать с низким крутящим моментом, что полезно для насосов, вентиляторов и нагнетателей. Как и пуск по схеме звезда-треугольник, пуск с частичной обмоткой представляет собой тип системы с уменьшенным пусковым током и обеспечивает пониженное полное линейное напряжение при запуске двигателя, но технически не квалифицируется как пуск с пониженным напряжением.
Реверсивный пуск при полном напряжении определяет, как асинхронные двигатели изменяют направление вращения при изменении направления вращения любых двух силовых проводов. Системы реверсивного пуска просто включают в себя пару зеркальных контакторов, дополненных блокирующими подкомпонентами, которые позволяют работать в условиях прямого и обратного хода. Более быстрое изменение направления вращения может быть выполнено с помощью , подключающего , который является временным питанием обеих цепей.
Больше управляемости: Пускатели электродвигателей пониженного напряженияПомимо линейки опций пуска двигателя при полном напряжении, есть пускатели пониженного напряжения.Там, где оси станка требуют плавного разгона без сотрясений до полной скорости (для защиты присоединенного оборудования станка или некоторой присоединенной нагрузки), необходимы пускатели двигателей с пониженным напряжением. Фактически, они также полезны в настройках, регулируемых местными энергосистемами, которые ограничивают колебания напряжения и скачки тока на источниках питания во время запуска двигателя.
Пускатели двигателей с пониженным напряжением включают четыре общих подтипа.
Первичный резистор пускателя двигателяПускатели двигателей с первичным резистором — это экономичный вариант, в котором используются резисторы и некоторое количество контакторов, причем последнее определяет количество ступеней пускового напряжения.Эти шаги могут быть несколько резкими из-за низкой индуктивности схемы. Хотя резисторы могут быть громоздкими и снижать эффективность, этот тип стартера обеспечивает надежный пусковой момент двигателя.
Пускатели электродвигателей первичного реактораПускатели электродвигателей с первичным реактором наиболее распространены на больших высоковольтных электродвигателях. В них используется реактор (индуктор) в цепи, как в пускателе двигателя с первичным резистором. Возможны относительно длительные плавные ускорения (даже до дюжины секунд или более), хотя дополнительная индуктивность системы может снизить общую эффективность, а низкий коэффициент мощности ухудшает составляющие тока, генерирующие крутящий момент, и магнитный поток двигателя.
Пускатели автотрансформаторныеПускатели электродвигателей первичного реактора относительно дороги, но полезны там, где требуется регулируемый пусковой момент. В пускателях двигателей с автотрансформатором используется однообмоточный электрический трансформатор, который является пассивным электрическим устройством для передачи электроэнергии от одной цепи к другой. Более конкретно, пускатели автотрансформатора используют три электрических контактора на автотрансформаторе, имеющем выбираемые ответвления.Это обеспечивает ступенчатый запуск напряжения для длительного плавного ускорения при запуске — даже до нескольких десятков секунд. Пусковое напряжение может составлять от 50% до 80% линейного напряжения для высоких пусковых моментов в приложениях, где это (а не эффективность) является основной целью проектирования.
Устройства плавного пускаУстройства плавного пуска , использующие твердотельные полупроводники, обладают наибольшей управляемостью из всех вариантов пускателя двигателя. Они также наиболее бережно относятся к внутренним компонентам двигателей и присоединенным механизмам передачи энергии.По своей сути устройства плавного пуска состоят из различных тиристоров или тиристоров… так, например, в некоторых конструкциях есть по паре тиристоров на каждой из трех линий двигателя. Ознакомьтесь с разделом настоящего Руководства по проектированию, посвященным твердотельным реле, чтобы узнать основы этой технологии. Эти переключающие устройства работают для управления подачей электроэнергии на обмотки двигателя (как показано на схеме устройства плавного пуска, показывающей углы зажигания), при этом задействуя низкое напряжение двигателя, а также ток и крутящий момент при первоначальном запуске.Затем они постепенно повышают напряжение и крутящий момент в соответствии с установленной программой.
Программирование устройства плавного пуска двигателя определяет точные параметры увеличения заданного напряжения. Рассмотрим работу типичного устройства плавного пуска на основе SCR: здесь проводящий (закрытый) SCR имеет подвижную точку затвора… и обратная регулировка этого значения скорости (называемого временем линейного изменения) вызывает увеличение накопления напряжения перед включением SCR. Затем, когда обмотки двигателя достигают полного напряжения, SCR отключается.
Одно предостережение: Чрезмерное время разгона может привести к тому, что ток превысит пределы безопасности двигателя или приведет к аварийному отключению по ограничению тока.
Помимо уже упомянутых преимуществ, устройства плавного пуска обеспечивают защиту двигателя (даже во время дисбаланса фаз во время сбоев в электросети), а также возможность плавного останова. Последнее полезно, когда двигатели приводят в движение такие конструкции, как конвейеры, которые имеют инерцию, способную смещаться или ломаться во время транспортировки.
Конечно, частотно-регулируемые приводы (VFD) — еще один вариант для функции плавного пуска. Они обеспечивают те же функции управляемого пуска и останова, что и устройство плавного пуска, хотя и другим способом — путем изменения частоты входного напряжения двигателя, а не величины напряжения. Другие преимущества частотно-регулируемого привода перед устройствами плавного пуска включают возможность управления скоростью двигателя во всем рабочем диапазоне. Частотно-регулируемые приводы также могут обеспечивать мощность для удерживающего момента (полный крутящий момент при нулевой скорости), который является ключевым в приложениях с моторным приводом, таких как краны и лифты.
Однако для некоторых конструкций ЧРП слишком дороги и сложны. Пускатели двигателей с пониженным напряжением, как правило, более подходят, чем частотно-регулируемые приводы, для которых нет выигрыша в эффективности от работы подключенного двигателя ниже его максимальной скорости.
.