Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Подключение заземления в щитке: соединять ли ноль и землю

Содержание

соединять ли ноль и землю

Уют и комфорт в частном доме или квартире трудно представить без налаженной системы электроснабжения. Потребление электроэнергии постоянно увеличивается, поэтому защита людей и домашних животных от поражения электрическим током осложняется. Устранить риски, минимизировать последствия травм можно с помощью заземляющей системы, соединяющей точки электрической сети или энергетического потребителя с заземляющей конструкцией.

Конструкция и назначение заземляющих устройств

Подобные конструкции подразделяются на рабочие и защитные устройства.

  1. Рабочее используется для организации безопасности функционирования агрегатов промышленного назначения. Также распространено в частных хозяйствах.
  2. Система защитного заземления обязательна для электросетей в жилом секторе.

Установка заземляющего устройства (ЗУ) требуется в соответствии с Правилами устройства электроустановок и Правилами эксплуатации электроустановок потребителей.

Прикосновение людей к токоведущим частям, открытым в результате неправильной эксплуатации электрооборудования, дефектов конструкции, прихода в негодность изоляции и других причин, встречается часто. Некачественная конструкция ЗУ и ее монтаж может повлечь тяжелые последствия для людей: электрический шок, ожоги, нарушение работы сердца и иных органов человека поражение током часто приводит к ампутации конечностей, инвалидности и даже летальным исходам.

Система заземления состоит из наружной и внутренней частей, которые стыкуются в электрическом щитке. Наружное заземляющее устройство состоит из комплекса металлических электродов и проводников, отводящих аварийный ток от электрооборудования в землю в безопасных для людей местах. Электроды называются заземлителями. Электрические жилы – это заземляющие проводники, представляют собой штыри длиной 1,5 м, диаметром 1 мм.

Изготавливаются промышленностью из меди или стали, покрытой медью. Их основное достоинство — повышенная проводимость тока. Вбиваются в землю молотами или кувалдами на глубину 50 см, контакт с землей должен быть максимально прочным, иначе ухудшится способность конструкции отводить ток.

Простая конструкция изготавливается из одного электрода. Применяется в молниеотводах или для защиты удаленных объектов и оборудования. В индивидуальных хозяйствах предпочтение отдается многоэлектродным устройствам. Размещаются в один ряд и называются линейными профилями ЗУ. Стандартная длина цепи — 6 метров. Между собой соединяются латунными муфтами, крепление резьбовое, сварка не рекомендуется. Заземляющие проводники устанавливаются через клеммы. Скручивания, пайки жил исключаются.

По-прежнему распространено такое устройство, как контур заземления (замкнутый вариант). Сооружается на расстоянии не ближе 1 метра и не далее 10 метров от дома. Размещается в траншее в виде равностороннего треугольника. Длина стороны 3 м, глубина – 50 см, ширина – 40 см. По углам вбиваются заземлители. Эта же операция проделывается с другими вертикальными электродами (не свыше пяти единиц). Заземлители в нижней опорной части свариваются с горизонтальными изделиями.

Изготавливаются из меди, покрытого медью или цинком стального уголка (полка 5 мм, полоса 40 мм), Часто применяется стандартный уголок из нержавеющей стали любого профиля. Изделия не окрашиваются, так как в этом случае ухудшатся электротехнические свойства из-за ослабления контакта с землей.

Конструкция контура несложная, ее можно сделать собственными руками. Но работа упрощается при использовании готовых заземляющих устройств, представленных на рынке, в комплекте с которыми есть провода заземления. Финансовые потери окупятся за счет применения качественных материалов, стойких к коррозии и с большим сроком эксплуатации.

Подключение наружной части ЗУ к щитку

Для определения точного порядка подключения заземления к щитку требуется знание способа применения нейтрали. Она бывает изолированной и заземленной. Изолированная жила используется в сетях с повышенными значениями напряжения 3-35 кВ. При электроснабжении 380 В и 220 В эффективно работают оба варианта. Однако новые правила ПУЭ требуют заземлять нейтраль. Контуры должны возводиться под напряжение до 1000 В.

Популярны системы заземления TN-C, TN-S, TN-C-S. Двухфазная TN-C устарела, но по-прежнему применяется в строениях, имеющих длительный срок эксплуатации. Их замена связана с трудностями технического и финансового характера. В этой схеме в качестве защитного заземляющего провода используется нулевая жила. С практической точки зрения, для жильцов квартир и домов кабельная и проводниковая продукция с 4 жилами выгодна: ее стоимость ниже, монтажные работы проще.

Интерес представляет вопрос, как подключить заземление в многоэтажном доме. Проводники подключаются к общей шине ЗУ. Затем шина выводится на корпус электрического щитка на этаже. Аналогичен процесс перевода TN-C на TN-C-S в домашнем щитке. Суть заключается в подключении нулевых защитных проводников на единую шину ЗУ с последующим креплением перемычкой с нулевой шиной.

Главный недостаток связан с опасностью повреждения нулевого провода. Тогда заземляющая конструкция придет в негодность. Регламентирующими документами введен запрет на использование TN-C в новостройках. Но для полной замены системы потребуются десятилетия.

Принцип работы TN-S основан на том, что нулевые рабочая и защитная линии подводятся к потребителю отдельными жилами от трансформаторной подстанции. В РФ и странах СНГ распространен промежуточный вариант TN-C-S, при котором разделение проводников производится непосредственно при вводе в дом. В обоих вариантах функции безопасности выполняет устройство защитного отключения (УЗО).

Однако для полноценного предупреждения и локализации последствий электрических ударов комплект защитных средств должен включать также автоматические выключатели в щитках, шину заземления РЕ для подсоединения нулевых проводников и контура заземления.

Последний обеспечивает условия для бесперебойной работы электрической техники. Кроме того, он снижает уровень излучения электрических агрегатов, кабелей и проводов, локализует шумовые явления в электросети.

Заземление в щитке проводится в следующем порядке (система TN-C-S). Два питающих провода, состоящих из фазного и совмещенного рабочего нулевого и защитного (REN), разделяются на три отдельные жилы. Для подключения фазной и рабочей жил используют изолированную от щита шину заземления. Каждая шина (N и Re) должна иметь собственную маркировку и цвет: ноль – синего, земля – желтого цвета. Жила N закрепляется на электрическом щитке с использованием изоляторов. Заземляющий контакт RE устанавливается на корпус. Между собой соединяются перемычкой из токопроводящего материала.

В дальнейшем эти провода заземления должны быть изолированы друг от друга во избежание короткого замыкания.

Многие пользователи отдают предпочтение варианту, когда кабели REN сохраняют свою целостность и подключаются к шине N, играя роль нулевых защитных проводников. Достоинство этой схемы заключается в том, что на свободную шину RE замыкаются провода заземления бытовых потребителей электрической энергии. При перегорании линии REN, все токоприемники будут продолжать сохранять заземляющие контакты.

Ошибки при установке ЗУ

К типовым недостаткам, часто встречающимся на практике, относятся:

  1. Использование в качестве контура металлических заборов или мачт. Не учитывается сопротивление току и создается опасность тяжелого поражения током людей в случае аварии в системе.
  2. Подключение контура непосредственно к корпусу электроприборов, минуя заземляющие шины в щите.
  3. Установка отдельных выключателей в нулевом проводнике. При выходе устройства из строя электроприборы могут оказаться под напряжением. Иногда контакт нулевого провода не прочен. Последствия те же.
  4. Использование для заземлителей изделий меньшего сечения или толщины. Подобные электроды под воздействием коррозии быстро выходят из строя.
  5. Использование как заземлителя рабочего «ноля». Повышается вероятность того, что система окажется под напряжением.
  6. Расположение горизонтальных заземлителей на поверхности земли. При аварии зона поражения увеличится.
  7. Подключение заземления к трубе отопления. Нельзя сказать, какое направление возьмут блуждающие токи, поскольку неизвестна ситуация в соседней квартире. Возрастает вероятность поражения током посторонних людей.

По завершении монтажных работ проводится проверка системы. Внимание обращается на величину сопротивления рассеиванию тока. Для проведения этой работы желательно привлечение специалиста с соответствующей аппаратурой.

Схема подключения заземления в загородном доме

Полную инструкцию по заземлению и молниезащите для частного дома (в картинках) смотрите на отдельной странице.

Сегодня практически каждый загородный дом оснащен электрическими приборами. Безопасность их эксплуатации обеспечивается соединением установленного в помещениях электрооборудования с заземляющим устройством. Грамотно выполненное защитное заземление исключит вероятность поражения людей электрическим током и предотвратит выход из строя бытовой техники и сложных технических устройств от воздействия перенапряжений, если они защищаются УЗИП. Выбор схемы подключения зависит от различных факторов. В частном доме, в отличие многоквартирного, заземление можно сделать самостоятельно. Разобраться в вопросе его подключения поможет данная инструкция.

Основные элементы схемы подключения заземления загородного дома и правила по их выполнению

Схема подключения заземления в загородном доме выглядит следующим образом: электроприбор— розетка — электрический щит — заземляющий проводник — контур заземления — земля.

Подключение начинается с выполнения на придомовом участке заземляющего устройства в соответствие с правилами, определенными в главе 1. 7 ПУЭ 7-го издания. Заземлитель представляет собой металлическую конструкцию, имеющую большую площадь контакта с землей. Предназначен для выравнивания разности потенциалов и уменьшения потенциала заземленного оборудования, в случае замыкания на корпус или появления избыточного напряжения в электросети. Конструкция и глубина его установки определяется исходя из сопротивления грунта на участке (например, сухой песок или влажный чернозем).

От выполненного на участке заземляющего устройства (заземления) прокладываем заземляющий проводник, который подключаем к главной заземляющей шине, с использованием болтового соединения, зажима или сварки. Выбираем проводник сечением не менее 6 мм

2 для меди и 50 мм2 для стали, при этом он должен соответствовать требованиям к защитным проводникам, указанным в таблице 54.2 ГОСТ Р 50571.5.54-2013, а для системы ТТ иметь сечение не менее 25 мм2 для меди. Если проводник голый и прокладывается в земле, то его сечение должно соответствовать приведенному в таблице 54. 1 ГОСТ Р ГОСТ Р 50571.5.54-2013.

В электрощитке заземляющий проводник через шину заземления соединяется с защитными проводниками, проложенными к розеткам, имеющим заземляющий контакт и остальным электроприемникам в доме. В результате чего, каждый электроприбор оказывается подключенным к системе заземления.

Зависимость схемы подключения заземления от контура заземления

Если у столба линии электропередач выполнено повторное заземление, то схема подключения заземления в загородном доме выполняется по системам TN-C-S или TT. Когда состояние сетей не вызывает опасений, в качестве заземляющего устройства дома следует использовать повторное заземление линии и подключать дом в соответствии с системой заземления TN-C-S. Если воздушная линия старая, либо качество выполнения повторных заземлений подлежит сомнению, лучше выбрать систему ТТ и оборудовать индивидуальное заземляющее устройство на придомовом участке.

Для заземляющего устройства в первую очередь следует использовать естественные заземлители - сторонние проводящие части, имеющие непосредственный контакт с грунтом (водопроводы, трубы скважин, металлические и железобетонные конструкции загородного дома и прочее). (см. п.1.7.54, 1.7.109 ПУЭ 7-го издания).

При отсутствии таковых, выполняем искусственное заземляющее устройство, используя вертикальные или горизонтальные электроды, которые вкапываем в землю. Выбор конфигурации заземлителя главным образом от требуемого сопротивления и особенностей придомового участка.

При отсутствии таковых, выполняем искусственное заземляющее устройство, используя вертикальные или горизонтальные электроды, которые вкапываем в землю. Выбор конфигурации заземлителя главным образом от требуемого сопротивления и особенностей придомового участка.

Наиболее эффективен в использовании, если на вашем участке почва представлена суглинком, торфом, насыщенным водой песком, обводненной глиной. Стандартная длина стержней составляет от 1,5‑х до 3‑х м. Выбирая длину вертикальных электродов, исходим из водонасыщенности вмещающих пород на участке. Заглубленные грунт вертикальные заземлители объединяются горизонтальным электродом, например, полосой, а для минимизации экранирования располагаются на расстоянии, соразмерном длине самих штырей.

Конструкцию заземляющего устройства рекомендуют располагать на расстоянии одного метра от фундамента строения (см. п. 1.7.94 ПУЭ 7-го издания).

Зависимость схемы подключения от типа системы заземления

Заземление объектов жилого фонда выполняют по следующим системам: ТN (подсистемы TN-C, TN-S, TN-C-S) или ТТ. Первая буква в названии обозначает заземление источника питания, вторая – заземление открытых частей электрооборудования.

Последующие буквы после N указывают на совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников. S - нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены. С - функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (РЕN-проводник).

Электробезопасность обеспечивается полноценно, когда уменьшение сопротивления заземлителя не влечет за собой увеличения показателей тока замыкания на землю. Рассмотрим, как схема подключения заземления зависит от выполненной на объекте системы электрической сети.

Система заземления TN-S


Рисунок 1. Система TN-S

На объектах, оборудованных электросетью по системе TN-S, нулевые рабочий и защитный проводники разделены по всей длине, и в случае пробоя изоляции фазы, аварийный ток отводится по защитному РЕ-проводнику. Устройства УЗО и дифавтоматы, реагирующие на появление утечки тока через защитный ноль, отключают сеть с нагрузкой.

Достоинством подсистемы заземления TN-S является надежная защита электрооборудования и человека от поражения аварийным током при пользовании электросетями. За счет чего данную систему относят к наиболее современной и безопасной.

Для выполнения заземления по системе TN-S, требуется прокладка от трансформаторной подстанции отдельного провода заземления к своему строению, что приведет к значительному удорожанию проекта. По этой причине, для заземления объектов частного сектора, подсистема заземления TN-S практически не используется.

Система заземления TN-C. Необходимость перехода на ТN-C-S


Рисунок 2. Система TN-S

Заземление по системе TN-C наиболее распространено для старых построек жилого фонда. Преимуществом является экономичность и проста ее выполнения. Существенным недостатком - отсутствие отдельного проводника РЕ, что исключает наличие в розетках загородного дома заземления и возможности уравнивания потенциалов в ванной.

К загородным постройкам электрических ток подводится по воздушным линиям. К самому строению подходят два проводника: фазный L и совмещенный PEN. Подключить заземление можно, только при наличии в частном доме трехжильной проводки, что требует переделки системы TN-C на TN-C-S, путем разделения нулевого рабочего и нулевого защитного проводника в электрическом щите (см. п. 1.7.132 ПУЭ 7-го издания).

Подключение заземления по системе TN-C-S

Для подсистемы заземления TN-C-S характерно объединение нулевого рабочего и нулевого защитного проводников на участке от линий электропередач до ввода в здание. Заземление по данной системе достаточно простое в техническом исполнении, за счет чего рекомендуется для широкого применения. К недостатку можно отнести потребность в постоянной модернизации, во избежание обрыва PEN проводника, в результате чего электроприборы могут оказаться под опасным потенциалом.

Рассмотрим схему подключения заземления в загородном доме по системе TN-C-S на примере перехода к ней от системы TN-C.


Рисунок 3. Схема главного распределительного щита

Как уже отмечалось, для получения трехжильной проводки, необходимо произвести правильное разделение PEN проводника в распределительном щитке дома. Начинаем с того, что в электрощит устанавливаем шину с обеспечением прочной металлической связи с ним, и подключаем к этой шине идущий со стороны линии электропередач объединенный проводник PEN. Шину PEN соединяем перемычкой со следующей установленной шиной РЕ. Теперь шина PEN выступает в качестве шины нулевого рабочего проводника N.


Рисунок 4. Схема подключения заземления (переход с TN-C на TN-C-S)


Рисунок 5. Схема подключения заземления TN-C-S

Выполнив указанные подключения, соединяем распределительный щиток с заземлителем: от заземляющего устройства заводим проводна шину РЕ. Таким образом, в результате несложной модернизации, мы оснастили дом тремя отдельными проводами (фазным, нулевым защитным и нулевым рабочим).

Правилами устройства электроустановок требуется выполнение повторного заземления для РЕ - и РEN-проводников на вводе в электроустановки, с использованием, в первую очередь, естественных заземлителей, сопротивление которых при напряжении электросети 380/220 В должно быть не более 30 Ом (см. п. 1.7.103 ПУЭ 7-го издания).

Подключение заземления по системе TТ


Рисунок 6. Система TT

Другим вариантом схемы является подключения заземления загородного дома по системе ТТ с глухозаземленной нейтралью источника тока. Открытые токопроводящие элементы электрооборудования такой системы подсоединены к заземляющему устройству, не имеющему электрической связи с заземлителем нейтрали источника питания.

При этом должно соблюдаться следующее условие: значение произведения величины тока срабатывания устройства защиты (Iа) и суммарного сопротивления заземляющего проводника и заземлителя (Rа) не должно превышать 50 В (см. п.1.7.59 ПУЭ). Rа Iа ≤ 50 В.

Для соблюдения этого условия “Инструкция по устройству защитного заземления и уравнивания потенциалов в электроустановках” И 1.03-08 рекомендует выполнять заземляющее устройство с сопротивлением 30 Ом. Данная система достаточно востребована на сегодняшний день и применяется для частных, преимущественно мобильных построек, при невозможности обеспечения достаточного уровня электробезопасности системой TN.

Заземление по системе TТ не требует разделения совмещенного PEN проводника. Каждый из подходящих к дому отдельных проводов подсоединяем к изолированной от электрощита шине. А сам PEN проводник, в таком случае, считаем нулевым проводов (нулем).


Рисунок 7. Схема подключения заземления по системе TT


Рисунок 8. Схема подключения заземления и УЗО по системе TT

Как следует из схемы, системы TN-S и ТТ очень похожи между собой. Отличие состоит в полном отсутствии у ТТ электрической связи между заземляющим устройством и PEN проводником, что, в случае отгорания последнего со стороны источника питания, гарантирует отсутствие избыточного напряжения на корпусе электрических приборов. В этом и состоит очевидное преимущество системы ТТ, обеспечивающее более высокий уровень безопасности и надежности в эксплуатации. Недостатком ее использования можно назвать лишь дороговизну, поскольку для защиты пользователей при косвенном прикосновении, обязательна установка дополнительных устройств защитного отключения питания (УЗО и реле напряжения), что, в свою очередь, требует прохождение апробации и заверение специалистом энергонадзора.

Заключение

Схема заземления в общем виде представляет собой соединение ее элементов: электрооборудования, вводно-распределительного щита, заземляющего проводника РЕ, заземлителя.

Для установки заземляющего устройства в загородном доме необходимо разобраться в особенностях его подключения, в зависимости от следующих факторов:

  • способ питания электрической сети (воздушными линиями или кабелем от трансформаторной подстанции)
  • тип грунта на придомовом участке, где выполняется контур заземления.
  • наличие системы молниезащиты, дополнительных источников питания или специфического оборудования.

Выполняя подключение заземления самостоятельно, необходимо руководствоваться положениями раздела 1.7 Правил устройства электроустановок. При невозможности использования естественных заземлителей, выполняем заземляющее устройство с применением искусственных заземлителей.. Заземление частного дома может быть выполнено по двум системам: TN-C-S или ТТ. Наиболее широкое применение получила модернизированная система TN-C - TN-C-S, за счет простоты ее технического исполнения. Для обеспечения электробезопасности загородного дома по системе TN-C-S, требуется разделение PEN проводника, на нулевой рабочий и нулевой защитный проводники.

Выполнив контур заземления, необходимо проверить качество его монтажа, и произвести замеры сопротивления на соответствие нормам ПУЭ при помощи специальных приборов, для чего может потребоваться привлечение специалистов.

Полную инструкцию по заземлению и молниезащите для частного дома (в картинках) смотрите на отдельной странице.

Требуется консультация по организации заземления и молниезащиты для вашего объекта? Обратитесь в Технический центр ZANDZ.ru!


Смотрите также:


Смотрите также:

заземление и молниезащита для частного дома, дачи, коттеджа

Уважаемые читатели! Инструкция объёмная, поэтому специально для вашего удобства мы сделали навигацию по её разделам (см. ниже).

Дом только что построен или куплен - перед вами именно то заветное жилище, которое вы ещё недавно видели на эскизе или фотографии в объявлении. А может быть вы живёте в собственном доме уже не первый год, и каждый уголок в нём стал родным. Обладать своим личным домом замечательно, но вместе с ощущением свободы, в довесок вы получаете и ряд обязанностей. И сейчас мы не будем говорить о домашних хлопотах, речь пойдёт о такой необходимости, как заземление для частного дома. Любой частный дом включает в себя следующие системы: электрическую сеть, водопровод и канализацию, газовую или электрическую систему обогрева. Дополнительно устанавливаются система охраны и сигнализации, вентиляции, система «умный дом» и др. Благодаря этим элементам, частный дом становится комфортной средой жизни современного человека. Но по-настоящему он оживает благодаря электрической энергии, которая приводит в работу оборудование всех указанных выше систем.

К сожалению, электричество имеет и обратную сторону. У всего оборудования есть срок службы, в каждый прибор заложена определенная надёжность, поэтому работать они будут не вечно. Кроме того, при проектировании или монтаже самого дома, электрики, коммуникаций или оборудования также могут быть допущены ошибки, которые способны сказаться на электробезопасности. В силу этих причин часть электрической сети может оказаться повреждённой. Характер аварий бывает разный: могут произойти короткие замыкания, которые отключаются автоматическими выключатели, а могут случиться пробои на корпус. Сложность в том, что проблема пробоя носит скрытый характер. Произошло повреждение проводки, поэтому корпус электрической плиты оказался под напряжением. При неправильных мерах заземления, повреждение никак себя не проявит, пока человек не прикоснется к плите и не получит удар током. Поражение электричеством случится из-за того, что ток ищет путь в землю, а единственным подходящим проводником послужит тело человека. Допускать этого нельзя.

Такие повреждения представляют наибольшую угрозу для безопасности людей, потому что для их раннего обнаружения, а, следовательно, чтобы защититься от них, обязательно нужно иметь заземление. В рамках данной статьи рассматривается, какие действия нужно предпринять по организации заземления для частного дома или дачи.

Необходимость установки заземления в частном доме определяется системой заземления, т.е. режимом нейтрали источника питания и способом прокладки нулевого защитного (PE) и нулевого рабочего (N) проводников. Также может быть важен тип питающей сети - воздушная линия или кабельная. Конструктивные различия систем заземления позволяют выделить три варианта электроснабжения частного дома:

Система TN-S

Основная система уравнивания потенциалов (ОСУП) объединяет все крупные токопроводящие части здания, в обычном состоянии не имеющие электрического потенциала, в единый контур с главной заземляющей шиной. Рассмотрим графический пример выполнения СУП в электроустановке жилого дома.

Вначале рассмотрим самый прогрессивный подход к электрическому питанию дома – систему TN-S. В этой системе PE и N проводники разделены на всем протяжении, и необходимости в установке заземления у потребителя нет. Нужно только завести PE-проводник на главную шину заземления, и далее развести с нее проводники заземления к электроприборам. Реализуется такая система как кабельной, так воздушной линией, в случае последней прокладывается ВЛИ (воздушная линия изолированная) с помощью самонесущих проводов (СИП).

Но такое счастье выпадает далеко не всем потому, что старые воздушные линии передачи используют старую систему заземления – TN-C. В чём же её особенность? В данном случае PE и N на всём протяжении линии прокладываются одним проводником, в котором совмещены функции и нулевого защитного и нулевого рабочего проводников - так называемый PEN-проводник. Если раньше использовать такую систему разрешалось, то с введением в 2002 году ПУЭ 7 изд., а именно пункта 1.7.80 применение УЗО в системе TN-C оказалось под запретом. Без использования УЗО ни о какой электробезопасности не может быть речи. Именно УЗО отключает питание при повреждении изоляции, как только оно произошло, а не в тот момент, когда человек прикоснется к аварийному прибору. Чтобы соблюсти все необходимые требования, систему TN-C необходимо модернизировать до TN-C-S.

 

Система TN-C-S

В системе TN-C-S по линии так же прокладывается PEN-проводник. Но, теперь уже, пункт 1.7.102 ПУЭ 7 изд. говорит, что на вводах ВЛ к электроустановкам должны быть выполнены повторные заземления PEN-проводника. Выполняются они, как правило, у электрического столба, с которого выполняется ввод. При повторном заземлении производится разделение PEN-проводника на отдельные PE и N, которые и заводятся в дом. Норма повторного заземления содержится в пункте 1.7.103 ПУЭ 7 изд. и составляет 30 Ом, либо 10 Ом (при наличии в доме газового котла). Если заземление у столба не выполнено, необходимо обратиться в Энергосбыт, в чьём ведомстве находится электрический столб, распределительный щит и ввод в дом потребителя, и указать на нарушение, которое должно быть исправлено. Если распределительный щит находится в доме, разделение PEN нужно выполнить в этом щите, а повторное заземление сделать возле дома.

 

В таком виде TN-C-S успешно эксплуатируется, но с некоторыми оговорками:

  • если состояние ВЛ вызывает серьезные опасения: старые провода находятся не в лучшем состоянии, из-за чего возникает риск обрыва или перегорания PEN-проводника. Это чревато тем, что на заземленных корпусах электроприборов окажется повышенное напряжение, т.к. путь тока в линию через рабочий ноль прервется, и ток вернется с шины, на которой выполнялось разделение, через нулевой защитный проводник на корпус прибора;
  • если на линии не выполнены повторные заземления, то есть опасность, что ток повреждения перетечёт в единственное повторное заземление, что также приведёт к повышению напряжения на корпусе.

В обоих случаях электробезопасность оставляет желать лучшего. Решением этих проблем является система ТТ.

Система ТТ

В системе ТТ PEN-проводник линии используется в качестве рабочего нуля, а отдельно выполняется индивидуальное заземление, которое можно установить возле дома. Пункт 1.7.59 ПУЭ 7 изд. оговаривает такой случай, когда невозможно обеспечить электробезопасность, и разрешает использовать систему ТТ. Обязательно должно быть установлено УЗО, а его правильная работа должна обеспечиваться условием Rа*Iа<=50 В (где Iа - ток срабатывания защитного устройства; Ra - суммарное сопротивление заземлителя). «Инструкция по устройству защитного заземления» 1.03-08 уточняет, что для соблюдения этого условия сопротивление заземляющего устройства должно быть не более 30 Ом, а в грунтах с высоким удельным сопротивлением – не более 300 Ом.

 

Цель заземления для частного дома состоит в том, чтобы получить необходимое сопротивление заземления. Для этого используются вертикальные и горизонтальные электроды, которые в совокупности должны обеспечить необходимое растекание тока. Вертикальные заземлители подходят для монтажа в мягком грунте, тогда как в каменистом их заглубление связано с большими трудностями. В таком грунте подойдут горизонтальные электроды.

Защитное заземление и заземление молниезащиты выполняются общими, один заземлитель будет универсальным и выполнять оба назначения, об этом говорится в пункте 1.7.55 ПУЭ 7 изд. Поэтому полезно будет узнать, как унифицировать молниезащиту и заземление. Чтобы наглядно увидеть процесс монтажа этих систем, описание процесса заземления для частного дома будет разделено на этапы.

Этап 1. Установка защитного заземления

Отдельным пунктом следует выделить защитное заземление в системе TN-S. Исходной точкой для установки заземления будет тип системы питания. Различия систем питания были рассмотрены в предыдущем пункте, поэтому мы знаем, что для системы TN-S заземление монтировать не нужно, нулевой защитный (заземляющий) проводник приходит с линии – требуется только присоединить его к главной заземляющей шине, и в доме будет заземление. Но нельзя говорить, что дому не нужна молниезащита. Значит это лишь то, что мы, не обращая внимание на этапы 1 и 2, сразу можем перейти к этапам 3-5, см. ниже
Системы TN-C и TT всегда требуют установку заземления, поэтому перейдём к самому главному.

Защитное заземление устанавливается у столба, либо у стены дома, в зависимости от того в каком месте выполняется разделение PEN-проводника. Желательно располагать заземлитель в непосредственной близости от главной заземляющей шины. Отличия TN-C от TT лишь в том, что в TN-C место заземления привязано к месту разделения PEN. Сопротивление заземления в обоих случаях должно быть не более 30 Ом в грунте с удельным сопротивлением 100 Ом*м, например суглинке, и 300 Ом в грунте с удельным сопротивлением более 1000 Ом*м. Значения одинаковые, хоть и опираемся мы на разные нормативы: для системы TN-C 1.7.103 ПУЭ 7 изд., а для системы ТТ — на пункт 1.7.59 ПУЭ и 3.4.8. Инструкции И 1.03-08. Так как отличий в необходимых мероприятиях нет, будем рассматривать общие решения для этих двух систем.

Для заземления достаточно забить шестиметровый вертикальный электрод.

Такое заземление получается очень компактным, установить его можно даже в подвале, никакие нормативные документы этому не противоречат. Необходимые действия для заземления описаны для мягкого грунта с удельным сопротивлением 100 Ом*м. Если грунт имеет сопротивление выше, требуются дополнительные расчёты, обратитесь к техническим специалистам ZANDZ.ru за помощью в расчётах и подборе материалов.

Этап 2. Заземление для газового котла

Если в доме установлен газовый котел, тогда, газовая служба может потребовать заземление с сопротивлением не более 10 Ом, руководствуясь пунктом 1.7.103 ПУЭ 7 изд. Данное требование должно быть отражено в проекте газификации.

Тогда для достижения нормы необходимо установить 15-ти метровый вертикальный заземлитель, который устанавливается в одну точку.

Установить можно и в несколько точек, например, в две или три, соединив затем горизонтальным электродом в виде полосы вдоль стены дома на расстоянии 1 м и на глубине 0,5-0,7 м. Установка заземлителя в несколько точек послужит также для цели молниезащиты, чтобы понять каким образом, перейдём к её рассмотрению.

Этап 3. Заземление для молниезащиты

Перед тем как монтировать заземление, нужно сразу решить, будет ли выполняться защита дома от молнии. Так, если конфигурация заземлителя для защитного заземления может быть любой, то заземление для молниезащиты должно быть определенного типа. Устанавливаются минимум 2 вертикальных электрода длиной 3 метра, объединённые горизонтальным электродом такой длины, чтобы между штырями было не менее 5 метров. Данное требование содержится в пункте 2.26 РД 34.21.122-87. Монтироваться такое заземление должно вдоль одной из стен дома, оно будет являться своего рода соединением в земле двух спущенных с крыши токоотводов. Если токоотводов несколько, правильным решением выглядит прокладка контура заземления для дома на расстоянии 1 м от стен на глубине 0,5-0,7 м, а в месте соединения с токоотводом установка вертикального электрода длиной 3 м.

Теперь настало время узнать, как сделать молниезащиту частного дома. Состоит она из двух частей: внешней и внутренней.

Этап 4. Внешняя молниезащита

Выполняется в соответствии СО 153-34.21.122-2003 «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (далее СО) и РД 34.21.122-87 «Инструкция по устройству молниезащиты зданий и сооружений» (далее РД).

Защита зданий от разрядов молнии осуществляется с помощью молниеотводов. Молниеотвод представляет собой возвышающееся над защищаемым объектом устройство, через которое ток молнии, минуя защищаемый объект, отводится в землю. Оно состоит из молниеприёмника, непосредственно воспринимающего на себя разряд молнии, токоотвода и заземлителя.

Молниеотводы устанавливаются на кровлю таким образом, чтобы обеспечивалась надёжность защиты более 0,9 по СО, т.е. вероятность прорыва через молниеприёмную систему должна быть не более 10%. Более подробно о том, что такое надёжность защиты читайте в статье «Молниезащита частного дома». Как правило, они устанавливаются по краям конька кровли, если крыша двускатная. Когда крыша мансардная, четырёхскатная или ещё боле сложной формы, молниеприёмники могут быть закреплены на дымовых трубах.
Все молниеприёмники соединяются между собой токоотводами, спуски токоотводов выполняются к заземляющему устройству, которое у нас уже имеется.

Установка всех этих элементов обеспечит защиту дома от молнии, а точнее от опасности, которую несёт её прямой удар.

Этап 5. Внутренняя молниезащита

Защита дома от перенапряжений выполняется с помощью УЗИП. Для их установки необходимо заземление, потому что ток отводится в землю с помощью нулевых защитных проводников, присоединяемых к контактам этих устройств. Варианты установки зависят от наличия или отсутствия внешней молниезащиты.

  1. Имеется внешняя молниезащита
    В таком случае устанавливается классический защитный каскад из расположенных последовательно устройств классов 1, 2 и 3. УЗИП класса 1 монтируется на вводе и ограничивает ток прямого удара молнии. УЗИП класса 2 устанавливается либо также в вводном щитке, либо в распределительном, если дом большой, и расстояние между щитами больше 10 м. Предназначен он для защиты от наведенных перенапряжений, их он ограничивает до уровня 2500 В. Если в доме есть чувствительная электроника, то желательно установить и УЗИП класса 3, ограничивающий перенапряжения до уровня 1500 В, такое напряжение может выдержать большинство устройств. Устанавливается УЗИП класса 3 непосредственно у таких приборов.
  2. Внешняя молниезащита отсутствует
    Прямое попадание молнии в дом не берётся в расчёт, поэтому необходимости в УЗИП класса 1 нет. Остальные УЗИП устанавливаются так же, как описано в пункте 1. Выбор УЗИП также зависит от системы заземления.

На рисунке показан дом с установленными защитным заземлением, системой внешней молниезащиты и и комбинированным УЗИП класса 1+2+3, предназначенным для установки в системе ТТ.

Перечень оборудования для заземления и молниезащиты:

В таблице учтено устройство защиты от импульсного перенапряжения (УЗИП) комбинированного типа класса 1+2+3 для системы ТТ. Выбор подходящей модели УЗИП зависит от системы заземления и других факторов, которые были учтены в приведённом примере.

Этап 6. Измерение сопротивления заземления

После установки системы заземления необходимо произвести замеры и получить протокол измерения сопротивления. Право оформлять и выдавать протокол имеют специалисты зарегистрированной в Ростехнадзоре электротехнической лаборатории. Найти уполномоченных специалистов можно в нашем Клубе Экспертов, который работает на всей территории России.

Протокол нужен для приёма газового оборудования в эксплуатацию, для газовой службы это будет подтверждением, что заземление соответствует норме 10 Ом. Понадобится протокол и для того, чтобы быть уверенным, что обеспечивается электробезопасность частного дома. Соблюдение требований нормативов будет гарантией безопасной эксплуатации электрической системы.

Рассмотрев поэтапно необходимые мероприятия, вы уже знаете, что нужно делать, чтобы обеспечить частный дом надёжными заземлением и молниезащитой.

 


Смотрите также:


Смотрите также:

Как подключить заземление | Для дома, для семьи

Здравствуйте, уважаемые читатели сайта sesaga.ru. В этой статье мы будем с Вами разбираться, как подключить заземление. Эта тема довольно-таки обширная и имеет множество нюансов, и здесь так просто не скажешь — делай так или подключай сюда. Поэтому, чтобы Вы понимали меня, а мне было легче Вам объяснить, будет и теория и практика.

Заземление в нашей современной жизни является неотъемлемой частью. Конечно, можно обойтись и без заземления, ведь, сколько мы жили без него. Но, с появлением современной бытовой техники, заземление является просто обязательным условием для защиты человека от поражения электрическим током.

Общие понятия.

Заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.

Заземление предназначено для отвода токов утечки, возникающих на корпусе электрооборудования при аварийном режиме работы этого оборудования, и обеспечение условий к немедленному отключению напряжения с поврежденного участка сети путем срабатывания устройств защитного и автоматического отключения.

Например: произошел пробой изоляции между фазой и корпусом электрооборудования — на корпусе появился некоторый потенциал фазы. Если оборудование заземлено, то это напряжение потечет по защитному заземлению, обладающему низким сопротивлением, и даже, если не сработает устройство защитного отключения, то при прикосновении человека к корпусу, ток, который остался на корпусе, будет не опасен для человека. Если же оборудование не заземлено — весь ток потечет через человека.

Заземление состоит из заземлителя и заземляющего проводника, соединяющего заземляющее устройство с заземляемой частью.

Заземлителем является металлический стержень, чаще всего стальной, или другой металлический предмет, имеющий контакт с землей непосредственно или через промежуточную проводящую среду.

Заземляющий проводник – это провод, соединяющий заземляемую часть (корпус оборудования) с заземлителем.

Заземляющее устройство – это совокупность заземлителя и заземляющих проводников.

Немного теории.

Все Вы видели во дворах небольшие кирпичные сооружения, в которые заходят и выходят силовые кабеля — это трансформаторные подстанции (электроустановки). Трансформаторные подстанции служат для приема, преобразования и распределения электрической энергии. Любая подстанция имеет силовой трансформатор, служащий для преобразования напряжения, распределительные устройства и устройства автоматического управления и защиты.

Принимая высоковольтное напряжение сети 6 – 10 kV (киловольт) подстанция преобразует его и передает потребителю — то есть нам. Прием и преобразование напряжения обеспечивает силовой трансформатор, с выхода которого к потребителю уходит трехфазное переменное напряжение 0,4 kV или 400 Вольт.

Для питания домашнего однофазного оборудования (телевизор, холодильник, утюг, компьютер и т.д.) используется одна из трех фаз L1; L2; L3 и нулевой рабочий проводник «N».

Это стандартная схема обеспечения потребителей электрической энергией, на базе которой были разработаны дополнительные схемы, различающиеся по способу подключения защитного заземления, подключения и защиты электрооборудования, а также принятых мер для защиты людей от поражения электрическим током.

Трансформаторная подстанция имеет свой контур заземления, к которому подключены все металлические корпуса оборудования подстанции. Контур заземления представляет собой вбитые в землю металлические стержни, связанные между собой металлической шиной при помощи сварки. Эту шину называют шиной заземления.

Шина заземления заводится в здание подстанции и прокладывается по периметру здания. К ней привариваются болты, к которым уже через заземляющие проводники подключается все оборудование подстанции.

Согласно ПУЭ (Правила Устройства Электроустановок) заземляющий проводник (нулевой защитный) на электрических схемах имеет буквенное обозначение «РЕ» и цветовую маркировку с чередующимися поперечными или продольными полосами желтого и зеленого цветов.

Системы заземления.

Системы заземления различаются по способу заземления нулевого рабочего «N» проводника на вторичной обмотке силового трансформатора и потребителей электрической энергии (двигатель, телевизор, холодильник, компьютер и т.д.), питающихся от этого трансформатора.

Рассмотрим на примере трансформаторной подстанции.
Вторичная обмотка силового трансформатора подстанции имеет три катушки соединенные «звездой», где начала катушек соединяются в общую точку, называемую нейтралью «N», которая непосредственно соединена с заземляющим устройством.

Свободные концы катушек подключаются к проводам трехфазной сети, уходящей к потребителям трехфазной или однофазной электрической энергии. Такое соединение нейтрали называется глухозаземленной и используется в системах заземления типа TN.

Здесь нейтраль «N», или еще ее называют рабочий ноль, выполняет две функции:

1. Совместно с одной из трех фаз образует напряжения 220 Вольт.
2. Выполняет защитную функцию, так как имеет прямой контакт с землей.

На данный момент существует 3 типа систем заземления:

1. TN – система, в которой нейтраль трансформатора заземлена, а открытые проводящие части присоединены к нейтрали;
2. TT — система, в которой нейтраль трансформатора заземлена, а открытые проводящие части заземлены при помощи заземляемого устройства, электрически независимого от заземленной нейтрали трансформатора;
3. IT — система, в которой нейтраль трансформатора изолирована от земли или заземлена через устройства, имеющие большое сопротивление, а открытые проводящие части заземлены.

Все три системы заземления разработаны для защиты людей и электрооборудования от действия электрического тока. Данные системы заземления считаются равноценными для защиты людей, но они не равноценны по способу обеспечения надежности (безотказности, ремонтопригодности) электроснабжения потребителей электрической энергией.

Обозначаются системы заземления двумя буквами.
Первая буква определяет связь нейтрали трансформатора с землей:

T – нейтраль заземлена;
I – нейтраль изолирована от земли.

Вторая буква определяет связь открытых проводящий частей с землей:

T – открытые проводящие части непосредственно заземлены;
N – открытые проводящие части присоединены к глухозаземленной нейтрали трансформатора.

Теперь рассмотрим все системы по порядку.

1. Система заземления TN.

Система «TN» — это система, в которой нейтраль трансформатора заземлена, а открытые проводящие части присоединены к нейтрали посредством нулевых защитных проводников.

Открытая проводящая часть – доступная прикосновению проводящая часть электроустановки (например: корпус бытовых электроприборов), которая в нормальном режиме работы электроустановки не находится под напряжением, но может оказаться под напряжением в случае повреждения изоляции.

Как правило, повреждение изоляции может быть вызвано многими факторами: это и старение оборудования, механические повреждения, длительная эксплуатация при максимальных нагрузках, скопление пыли между корпусом оборудования и токоведущими частями, образование влаги на пыльной поверхности, находящейся рядом с токоведущими частями, климатическое воздействие, заводской брак и т.д.

Так вот, в свою очередь система TN разделяется еще на три подсистемы:

1. TN-C — система, в которой нулевой защитный «РЕ» и нулевой рабочий «N» проводники совмещены в одном проводнике «PEN» на всем протяжении системы;
2. TN-S — система, в которой нулевой защитный «РЕ» и нулевой рабочий «N» проводники разделены на всем протяжении системы;
3. TN-C-S — система, в которой функции нулевого защитного «РЕ» и нулевого рабочего «N» проводников совмещены в одном проводнике в какой-то ее части, начиная от силового трансформатора.

Система TN-С.

Система TN-C — это одна из первых систем заземления, которая еще встречается в старом жилищном фонде построенном до середины 90-х годов, но, не смотря на это, она еще существует и действует. Эта система прокладывается четырехпроводным кабелем, в котором идут 3 фазных провода и 1 нулевой.

Здесь нулевой защитный «РЕ» и нулевой рабочий «N» проводники совмещены в одном проводнике на всем протяжении системы. То есть, для питания электрооборудования и его заземления используется один «PEN» проводник, и это на сегодняшний день является главным недостатком системы TN-C.

В то время практически не было электрооборудования требующего трехпроводное подключение и поэтому к защитному заземлению не придавалось особых требований, и такая система считалась надежной. Но с появлением в нашем быту современного трехпроводного оборудования, где предусмотрен заземляющий проводник «РЕ», система TN-C перестала обеспечивать нужный уровень электробезопасности.

На сегодняшний день, практически вся современная техника питается через импульсные блоки питания, которые не имеют гальванической развязки с сетью 220 Вольт.

Это связано с тем, что в импульсных блоках питания есть помехоподавляющие фильтры, которые предназначены для подавления высокочастотных помех питающей сети 220 Вольт, и которые через развязывающие конденсаторы соединены с корпусом оборудования.

Высокочастотные помехи, возникающие в питающей сети, через развязывающие конденсаторы, провод защитного заземления «PE», трехполюсную вилку и розетку стекают на «землю». Вот поэтому возникает опасность появления фазного напряжения на корпусе оборудования при пробое изоляции между фазой и корпусом или пропадании рабочего нуля «N» при питании современной техники используя систему заземления TN-C не имеющей отдельного проводника защитного заземления «РЕ».

Например: если оторвется или отгорит между этажным и квартирным щитом Ваш рабочий ноль «N», то возникает опасность появления фазового напряжения на корпусе, работающего в данный момент бытового оборудования. И если оно не будет заземлено, то при прикосновении к металлическому неокрашенному корпусу голой рукой, через Вас потечет ток, и Вы получите заряд.

Хотя, благодаря импульсным блокам питания современная техника стала меньше, дешевле и легче, но и, естественно, требования в отношении уровня электробезопасности стали уже выше.

Но, как говорится, спасение утопающих дело рук самих утопающих, и поэтому некоторые умельцы, чтобы обезопасить себя, тянут заземление самостоятельно. Одни садятся на батареи центрального отопления, другие подключаются к корпусу этажного щита, ставят перемычку в розетке, устанавливают УЗО, а некоторые даже делают свой контур заземления.

Например: Вы подключились третьим проводником к корпусу этажного щита и думаете что заземлились. Это большое заблуждение. Вы сделали зануление — и не более того.

Защитное зануление – это преднамеренное электрическое соединение открытых проводящих частей электроустановки (например, корпус оборудования) с глухозаземленной нейтралью генератора или силового трансформатора, выполняемое в целях электробезопасности.

Глухозаземленная нейтраль – это нейтраль трансформатора, присоединенная непосредственно к заземляющему устройству.

Так вот, зануление на корпус этажного щита опасно тем, что в случае обрыва Вашего рабочего нуля «N» питание бытовых приборов, включенных в данный момент в розетку, будет проходить уже через защитный проводник «РЕ».

А это уже неправильная схема питания для бытовых приборов, которая приведет к короткому замыканию и поломке всей техники. Автомат защиты сработает, но только от тока короткого замыкания, который создаст Ваша уже сгоревшая техника. А если в этот момент Вы возьметесь за металлический неокрашенный корпус, то вдобавок, на мгновение, получите заряд бодрости.

Хотя в ПУЭ №7 зануление допускается и считается дополнительной мерой защиты. Но опять же возникает вопрос: в каком месте делать зануление. Здесь решать Вам.

Другой пример.
Вы подключились к батарее центрального отопления, пытаясь таким-образом обмануть счетчик или заземлиться. На Вашем стояке сосед снизу делает ремонт и заменил старые ржавые трубы на пластиковые. Как итог — Вы оказались отрезанными от Вашей мнимой земли. Теперь Вы и соседи сверху будут находиться в постоянной опасности.

Или еще пример.
Вы учли все нюансы и решили заземлиться другим способом. В подвале дома или возле дома вырыли яму, вбили штыри, сделали по всем правилам контур заземления, и заземляющий проводник «РЕ» провели к себе в квартиру. Все, дело сделано, и теперь можно спать спокойно. А вот и нет.

Вдруг Ваш сосед задумал подшутить над Вами из вредности или просто из зависти, что у Вас есть заземление, а у него его нет. Возьмет и отрежет заземляющий проводник. Или ответственный по дому увидит неположенный по проекту провод и уберет его, а Вы живете и знать не знаете, что остались без заземления. К тому же еще заземление должно периодически проверятся специальными приборами. Вы это будете делать? У Вас есть такие приборы?

Как вариант защиты Вы установили в двухпроводную линию УЗО. В принципе, это не такой уж плохой вариант, но тоже имеет свои нюансы.

УЗО срабатывает на токи утечки 10 mA, 30 mA и 300 mA, но для этого ему нужен защитный проводник «РЕ», относительно которого УЗО видит эти токи. В системе TN-C защитного проводника «РЕ» нет, зато он есть в системе TN-S, для которой и было разработано УЗО. На двухпроводной линии УЗО тоже сработает, но через ток утечки, который Вы создадите своим телом.

Возьмем, к примеру, все тот же пробой изоляции на корпус, и при этом, одновременное прикосновение к оголенной батарее центрального отопления.

В системе TN-S ток утечки, возникший на корпусе, сразу пойдет по защитному проводнику «РЕ», и если его порог превысит уставку УЗО, то оно сработает и отключит питание. И даже, когда для УЗО порог будет маленький и оно не сработает — Вы ничего не почувствуете, или Вас будет просто немного пощипывать.

В системе TN-C другой случай. При одновременном касании к корпусу и оголенной батарее центрального отопления через Вас на батарею потечет ток. Если будет стоять обыкновенный автомат, то Вы, в зависимости от силы тока, так и останетесь висеть между двух огней, так как проходящий через Вас ток не будет являться током короткого замыкания. Если же будет стоять УЗО, то по достижению порога уставки оно сработает и отключит питание.

И вот здесь наступает момент истины: УЗО, в системе TN-C, от поражения электрическим током Вас не спасет. Свой заряд бодрости Вы получите. Вопрос только во времени нахождения под действием электрического тока.

В ПУЭ №7 по поводу установки УЗО в систему TN-C сказано:

1.7.80. Не допускается применять УЗО, реагирующие на дифференциальный ток, в четырехпроводных трехфазных цепях (система TN-C). В случае необходимости применения УЗО для защиты отдельных электроприемников, получающих питание от системы TN-C, защитный РЕ-проводник электроприемника должен быть подключен к PEN-проводнику цепи, питающей электроприемник, до защитно-коммутационного аппарата.

Опять возникает вопрос: откуда тянуть защитный проводник. Так что, здесь опять решать Вам.

Поэтому, если Вы живете в домах старой постройки и у Вас двухпроводная сеть, то обезопасив свою квартиру заземлением, как Вам кажется, проблема не решиться, а только ухудшится для Вас или соседей. Проблему двухпроводной сети надо решать коллективно – всем домом:

1. Переделка или изменение системы питания дома с четырехпроводной на пятипроводную линию.
2. Замена старых этажных щитов на новые, рассчитанные для пятипроводной линии.

Но не подумайте, что все так страшно. В этой части статьи я рассказал о возможных ситуациях, которые могут возникнуть с нами при неправильном подключении и использовании защитного заземления. Во второй части статьи мы продолжим разбираться с оставшимися системами заземления.
Удачи!

Как подключить заземление. Заключительная часть

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разговор о подключении заземления. Во второй части статьи мы рассмотрели системы заземления TN-S и TN-C-S. Выяснили их преимущества и недостатки. Сегодня продолжаем и начнем с системы заземления ТТ.

4. Система заземления ТТ.

Система ТТ – система, в которой нейтраль силового трансформатора глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали силового трансформатора.

Эта система разработана для мобильных зданий, сделанных из металла или с металлическим каркасом, предназначенных для уличной торговли и бытового обслуживания населения (торговые павильоны, киоски, палатки, летние кафе, будки, фургоны и т.д.). Большую популярность система ТТ стала набирать и в домах в частном секторе.

Как видно из рисунка, в системе ТТ фазный L и нулевой рабочий N проводники электрически не связаны с нулевым защитным РЕ. Здесь делается свой контур заземления, который заводят в дом и подключают в местный внутренний щит.

От щита защитный проводник РЕ разводится по всем розеткам, а также подводится к месту крепления ламп освещения, чтобы заземлить металлические корпуса люстр. Как видите, система проста, но также имеет свои недостатки.

Например: произошло короткое замыкание фазы на «землю».

Автоматический выключатель здесь вряд ли поможет, так как сопротивление между фазным проводником и собственным контуром заземления очень велико. Ток, который возникнет между ними, будет очень мал и автоматический выключатель его не почувствует, так как такой ток не будет являться током короткого замыкания.

Если же будет стоять устройство защитного отключения типа УЗО, реагирующее на токи утечки, то оно сработает и отключит питание.
При коротком замыкании фазы и рабочего нуля выручит автоматический выключатель, а УЗО не среагирует. Поэтому в системе ТТ применяется комбинированная защита от действия электрического тока. А это получается немного дороговато — но жизнь дороже.

При построении схемы питания дома обязательное условие использования не менее двух устройств защитного отключения типа УЗО: одно общее на входе и одно после счетчика. Второе УЗО будет дублировать первое, на тот случай, если первое выйдет из строя.

Приведу оптимальную схему, где дом делят на группы потребителей, и уже для каждой группы устанавливают свое дополнительное УЗО. Например: санузел – группа №1, подсобное помещение – группа №2, комнаты – группа №3, кухня и прихожая – группа №4. Рассмотрим внутреннюю комплектацию и монтаж главного распределительного щита.

Разберем схему.

От линии 0,4 кВ «фаза» и «ноль» заходят в главный распределительный щит дома (ГРЩ) и подключаются на вход автоматического выключателя QF1. С выхода автомата QF1 «фаза» и «ноль» заходят в счетчик SW1, а с выхода счетчика подключаются на вход QF2 – устройство защитного отключения типа УЗО. Далее с выхода QF2 «фаза» и «ноль» попадают на входа автоматов QF3 и QF4 типа УЗО.

С выходов автоматов QF3 и QF4 каждая нулевая жила подключается на свою нулевую колодку N1 или N2, а фазные жилы от этих автоматов распределяются следующим образом:

1. QF3 – фаза подключается на входа автоматических выключателей SF1 и SF2, подающих питание на группу потребителей №1;

2. QF4 — фаза подключается на входа автоматических выключателей SF4 и SF5, подающих питание на группу потребителей №3.

3. С выхода QF2 фазная жила перемычкой подключается на вход автоматического выключателя SF3, подающего питание на группу потребителей №2.

Силовую часть схемы мы разобрали. Сечение жил фазы и нуля при монтаже в силовой части используется не менее 4-х квадратов (на рисунке жилы силовой части выделены толстыми линиями).

Теперь разберем, как запитываются группы потребителей на примере группы №1.

Допустим, мы распределили: автомат SF1 подает питание на розетки, а автомат SF2 на освещение. Начнем с розеток.

От главного щита к соединительной коробке прокладывается трехжильный провод сечением 2,5 квадрата. Первая жила подключается на выход автомата SF1, вторая жила подключается на нулевую колодку N1, а третья жила защитного заземления РЕ подключается на колодку заземления, на которую выведен свой контур заземления. Таким образом сделано и освещение, но только сечение жил для освещения берется 1,5 квадрата.

И теперь, если произойдет утечка тока в группе потребителей №1, то сработает QF3 и отключит питание от этой группы. При этом, к потребителям №2 и №3 напряжение поступать будет.

От соединительной коробки к каждой розетке и к каждой люстре прокладывается свой трехжильный провод. В этой статье монтаж нарисован более подробно.

Теперь разберем группу №2.
На вход автоматического выключателя SF3 подается фазная жила, которая берется с выхода общего автомата QF2, а нулевая жила приходит с нулевой колодки N.

Как правило, таким образом запитывается группа оборудования, к которому не предъявляются усиленные меры защиты по электробезопасности. И если произойдет утечка тока, то сработает QF2, но в этом случае, он отключит общее питание 220 Вольт, то есть всех потребителей.

И еще немного о защитном оборудовании:

QF2 – устройство защитного отключения с током утечки на 300 mA;
QF3, QF4 — устройства защитного отключения с током утечки на 30 mA;
SF1, SF4 — автоматические выключатели на розетки — 16 Ампер;
SF2, SF5 — автоматические выключатели на освещение — 10 Ампер;
SF3 — например, для мощного потребителя — 25 Ампер.

Только с появлением ГОСТ 30339-95/ГОСТ Р 50669-94 и ПУЭ-7 появилась возможность использования системы ТТ, а до этого момента она была запрещена. Но и в ПУЭ есть ограничения на использования системы заземления ТТ:

1.7.59. Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:
RаIа ,
где — ток срабатывания защитного устройства;
— суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников — заземляющего проводника наиболее удаленного электроприемника.

5. Система заземления IТ.

Система заземления IT – это система, в которой нейтраль трансформатора изолирована от земли или заземлена через большое сопротивление, а открытые проводящие части заземлены.

Система IT используется редко и применяется только в электроустановках, где не допускается перерыва питания при первом замыкании на землю или на открытые проводящие части, связанные с системой уравнивания потенциалов.

В таких электроустановках для защиты при косвенном прикосновении и при первом замыкании на землю должно быть выполнено защитное заземление в сочетании с контролем изоляции сети, или применены УЗО с номинальным отключающим дифференциальным током не более 30 мА. При двойном замыкании на землю должно быть выполнено автоматическое отключение питания.

Вот мы и рассмотрели все типы систем заземления, их преимущества и недостатки. И теперь, зная устройство и принцип работы любой из систем, Вы без труда сможете подключить заземление.
Удачи!

Литература:

1. Правила Устройства Электроустановок (ПУЭ) – седьмое издание.

2. ГОСТ 30339-95/ГОСТ Р 50669-94.
Межгосударственный стандарт. Электроснабжение и электробезопасность мобильных (инвентарных) зданий из металла или с металлическим каркасом для уличной торговли и бытового обслуживания населения. Технические требования.

3. ГОСТ Р 51628-2000.
Государственный стандарт Российской Федерации. Щитки распределительные для жилых зданий. Общие технические условия.

4. Системы заземления в электроустановках низкого напряжения. Выпуск №20. «Шнейдер Электрик».

5. Ветка форума Домодел.ru — «Заземление в квартире, как его сделать»
http://forum.domodel.ru/index.php?topic=225.0

Заземление дома своими руками. Как сделать? Что нужно знать?

Заземление – обязательный элемент организации электропроводки частного дома. Ведь при непредвиденном пробое электричества именно заземление защищает от удара током. Да и те, кто пробовал взяться за включенную в сеть стиральную машинку сзади, знают, как ощутимо «щипаются» её открытые металлические части.

Кроме стиральной машинки напрямую, а не через евророзетку, желательно заземлять:

  • микроволновые печи – при плохом контакте с розеткой она способна довольно ощутимо биться током, поэтому практически у всех моделей сзади есть винтовая клемма отдельного заземления;
  • электроплиты (духовки и варочные поверхности) – из-за высокой мощности очень велика вероятность пробоя, поэтому заземления через розетку недостаточно;
  • персональные компьютеры – заземляются за любой крепежный винт сзади на корпусе, что позволяет убрать плавающие потенциалы и улучшить скорость работы беспроводного интернета.

Кроме того, на один заземляющий контур можно подсоединять электроприборы и молниезащиту (при наличии УЗИП), что сэкономит время и силы при строительстве.

Что нужно знать о заземлении

Перед тем, как начать собирать своими руками контур заземления, необходимо разобраться в терминологии. Сам контур состоит из заземлителей и металлосвязи. Заземлители – металлические штыри длиной 2-3 м, полностью, погружаемые в землю. А металлосвязь соединяет между собой эти штыри и распределительный щит в доме.

В качестве заземлителей, согласно «Правилам устройства электроустановок», могут быть металлические трубы, уголки, пруты или многопроволочные канаты.

Категорически запрещается использовать арматуру для заземляющего контура – недостаточный диаметр сечения и ребристая поверхность быстро приводят к проржавению конструкции и потере заземляющих свойств.

Между собой заземлители можно соединять любыми из указанных проводников, но стоит учесть, что уголки и металлические ленты довольно сложно сгибать на поворотах.

Поэтому при выборе металлосвязи нужно заранее определиться со схемой контура и способом ввода заземляющего проводника в дом.

Схемы заземляющего контура – их преимущества и недостатки

От выбранной схемы будет зависеть надежность и долговечность всей конструкции. Так, условно контуры делятся на:

  • линейные – когда заземлители уложены в ряд и соединяются друг с другом последовательно;
  • с замкнутым контуром (треугольные, квадратные, овальные) – когда все заземлители соединены в замкнутый круг.

Линейная схема немного проще в исполнении – нужно на одно соединение меньше и не требуется много места. Монтаж уложенных в ряд заземлителей можно производить даже вдоль отмостки фундамента (но не ближе 1,2 м от края). Зато замкнутый контур надежнее – даже при выходе из строя одного соединения контур будет работать, ведь цепь не разомкнется.

Типы подключения заземления к распределительному щитку

Подключение к линии электропередач, в основной своей массе, происходит воздушными линиями. Заземление линий в этом случае выполнено по системе TN-C, когда в дом подводятся два провода – фаза (L) и ноль (совмещенный защитный и рабочий провод PEN), а нейтраль самого источник питания заземлена.

Чтобы в этом случае подключить контур заземления дома или дачи к электрическому щиту, необходимо самостоятельно переделать систему заземления:

  • с TN-C на TN-C-S – в этом случае провод PEN подключается к рабочему нулю N и защитному проводу PE;
  • с TN-C на ТТ – провод PEN подключается напрямую к нулю N, а PE выводится на шину заземления.

В первом варианте провод PEN разделяется и подключается на две отдельные шины N и PE, которые обязательно маркируются. Ноль – синей изолентой, заземление – желтым знаком заземления. Шина N должна крепиться в щитке специальными изоляторами, чтобы не контактировать с коррусом. А шина заземления PE крепится прямо на корпус. Обе шины соединяются с собой токопроводящей перемычкой.

При разделении PEN проводника ни в коем случае в дальнейшем нельзя соединять провода N и PE – это приведет к короткому замыканию!

Во втором варианте провод PEN не разделяется, а крепится к шине N и в дальнейшем считается нулем. К шине PE будут крепиться только провода заземления электроприборов. Этот способ предпочтительнее, так как при отгорании PEN-проводника все пользователи линии электропередач будут подключены на шины заземления в домах. И если заземление есть не у всех жителей, то это может привести к поломке техники у тех пользователей, кто всё же озаботился его устройством.

Единственный недостаток системы ТТ – необходимость установки УЗО или реле напряжения, что ведет за собой увеличение затрат на организацию электропроводки.

Как сделать заземление – детальная инструкция с фото

Устройство заземления делится на два этапа – монтаж заземлителей и подключение контура к щитку. Учитывая трудоемкость процесса, всю работу можно разделить на два дня. Главное, дождаться сухой погоды.

Устройство заземляющего контура

Соблюдая последовательность работ, сделать контур заземления сможет даже непрофессионал.

Единственное требование к работнику – физическая сила, так как придется хорошенько помахать кувалдой.

  1. Очень важно выбрать место для контура – в случае пробоя электричества над ним не должны находиться люди и животные. Идеальный вариант – спрятать заземление под огражденной клумбой или заасфальтированной дорожкой.
  2. Размечается место под контур. Самой популярной схемой является треугольник, так как для улучшения токопроводящих свойств минимальное количество заземлителей в контуре – три. Оптимальное расстояние между ними – 1,2 м, но может варьироваться от 1 м до 1,5 м. Важно соблюдать одинаковый шаг между заземлителями.
  3. Хотя размещать контур нужно не ближе 1 м от дома, максимальное расстояние не должно превышать 10 м.
  4. По разметке равнобедренного треугольника и по направлению к дому выкапывается траншея глубиной 50-70 см. В вершинах мощными ударами кувалды вбиваются металлические уголки или трубы на глубину ниже промерзания грунта (в среднем 2-3 м). Чем тяжелее кувалда – тем быстрее идет работа. А заземлители из медных труб очень удобно забивать обычным перфоратором.
  5. Верхние концы заземлителей не забивают до конца, но с таким расчетом, чтобы после засыпания траншеи над ними было еще 50 см земли.
  6. Соединяются вершины треугольника металлическими полосами или прутами. Очень важно места соединения сваривать – это позволит избежать регулярного подкручивания болтов при использовании крепежей. Если же контакта заземлителя с металлосвязью не будет, то вся работа по устройству контура бессмысленна. (13)
  7. Заземляющий проводник, идущий к дому, также приваривается к контуру. На конце, расположенном на стене дома, приваривается болт, к которому и будет идти заземляющий провод от шины в щитке.
  8. Все сварочные стыки после остывания замазываются битумной мастикой в несколько слоев. Это предотвратит коррозию и, как результат, потерю контакта.
  9. Траншея засыпается землей, а часть заземляющего проводника, находящегося на поверхности («земляная» шина), красится – для защиты металла от влаги. Традиционная краска для проводника заземления – красного цвета. Но ни в коем случае нельзя красить весь проводник – он должен контактировать с землей для рассеивания напряжения.

Работы по подключению заземления к щитку можно отложить на любой другой день – если всё сделано правильно, контур прослужит без ремонта 50-70 лет, поэтому спешить с подключением нужно только при наличии уже подключенных к сети электроприборов.

Правильное подключение заземления – залог безопасности и долгой службы техники

Очень важно правильно подключить «земляную» шину к щитку. Для этого используются медные, алюминиевые или стальные проводники. Для медных изделий сечение не должно быть меньше 10 кв.мм, для алюминиевых – 16 кв.мм, а для стальных – 75 кв.мм. Использоваться могут как металлические полосы, так и витые провода.

Для крепления металлических полос делается отверстие по диаметру болта и фиксируется гайкой с шайбой. Провода к болтам должны крепиться специальными клеммами, а ни в коем случае не накручиваться на них.

Место соединения должно быть зачищено до блеска и покрыто консистентной смазкой – она защищает металл от окисления и электрокоррозии.
К щиту заземляющий проводник крепится на корпус также винтовым соединением. Если дверца щита не заземлена, необходимо заземлить и её – еще одним проводником. Важно заранее подобрать шины заземления в щитке с достаточным количеством отверстий для разных приборов – крепить два провода в одну точку категорически запрещается.

Существует распространенное заблуждение, что электроприборы лучше заземлять «чисто», а не через общий контур заземления. Но в этом случае большое количество «индивидуальных» заземлителей создают свой контур, при этом при пробое электричества на одном приборе вполне вероятно появление напряжения на другом.

Проверка заземления

Очень важно не пренебрегать проверкой заземления. В идеале, проводить её нужно раз в несколько лет, чтобы удостовериться, что контакты в месте сварки не отошли. Проверка проводится специальными измерительными приборами, которые для одноразового пользования покупать нецелесообразно. Без специального же омметра проверять сопротивление контура бесполезно и даже опасно.

Так, при подключении обыкновенной лампочки к фазе и контуру она будет гореть, даже если вместо контура воткнуть в землю лом – из-за маленького электропотребления. Если же использовать мощный прибор, например, обогреватель, это может быть опасно для здоровья. К тому же нужно точно измерить сопротивление контура – оно не должно превышать 4 Ом.

Можно использовать трехэлектродный метод с амперметром и вольтметром, а в качестве источника тока взять понижающий трансформатор на 12-16 вольт, но ведь и эти приборы есть не у каждого. Поэтому лучше пригласить один раз электрика и быть уверенным в качественно выполненной работе!

Вам понравится

Заземление экрана - Dataforth

Экранирование кабеля используется в первую очередь для минимизации или устранения емкостной связи. помехи от электрических полей. При правильной реализации его также можно использовать минимизировать индуктивную связь от магнитных полей. Экранирование только эффективно от электрических полей, если он обеспечивает путь к земле с низким импедансом. Плавающий экран не обеспечивает защиты от помех. Заземление щитов может быть спорный вопрос, потому что есть несколько способов сделать это.Верное место для подключения электростатического экрана находится в опорном потенциале схемы содержится внутри щита. Этот момент будет варьироваться в зависимости от того, источник и приемник оба заземлены или один или другой плавающий.

Блок-схемы модулей SCM5B, которые можно найти в каталоге продукции, показывают опорный потенциал для входного сигнала (т.е. IN). Этот момент обычно также опорный потенциал схемы на стороне поля (обозначен символом заземления).Поскольку все модули SCM5B имеют высокий уровень изоляции между схемы на стороне поля и на стороне системы, соединения на стороне поля эффективно дифференциальные входы или выходы.

При использовании датчиков без подключения экрана к датчику подключите сигнальный Линия щит с опорным сигналом потенциала входного SCM5B (рисунок 1). Некоторые данные системы сбора данных требуют, чтобы датчик был заземлен. Это может быть найдено при использовании термопар или датчиков RTD, которые предназначены для вставки в защитные гильзы.В этой конфигурации модуль SCM5B обеспечивает изоляцию необходимо для устранения деградации сигнала из-за разницы потенциалов заземления и токи контура заземления. Если есть экран кабеля, его следует заземлить. на датчике (рисунок 2). Подключите экран к земле как можно ближе к земле. возможно подключение датчика к земле, чтобы избежать разницы потенциалов между заземлением сигнала и экрана. Эта разность потенциалов может вызывать шум на сигнальных линиях.

% PDF-1.4 % 452 0 obj> endobj xref 452 79 0000000016 00000 н. 0000002685 00000 н. 0000001876 00000 н. 0000002876 00000 н. 0000002902 00000 н. 0000002948 00000 н. 0000002983 00000 н. 0000003184 00000 п. 0000003262 00000 н. 0000003338 00000 н. 0000003416 00000 н. 0000003494 00000 н. 0000003572 00000 н. 0000003650 00000 н. 0000003728 00000 н. 0000003805 00000 н. 0000003882 00000 н. 0000003959 00000 н. 0000004036 00000 н. 0000004113 00000 п. 0000004190 00000 п. 0000004267 00000 н. 0000004344 00000 п. 0000004421 00000 н. 0000004498 00000 н. 0000004575 00000 н. 0000004652 00000 п. 0000004729 00000 н. 0000004806 00000 п. 0000004883 00000 н. 0000004960 00000 н. 0000005037 00000 н. 0000005114 00000 п. 0000005191 00000 п. 0000005268 00000 н. 0000005345 00000 н. 0000005422 00000 н. 0000005499 00000 н. 0000005575 00000 н. 0000005651 00000 п. 0000005775 00000 н. 0000006399 00000 н. 0000006911 00000 п. 0000006947 00000 н. 0000007132 00000 н. 0000007209 00000 н. 0000007399 00000 н. 0000008046 00000 н. 0000008724 00000 н. 0000009416 00000 н. 0000010102 00000 п. 0000010871 00000 п. 0000011469 00000 п. 0000012145 00000 п. 0000012316 00000 п. 0000014986 00000 п. 0000015043 00000 п. 0000015146 00000 п. 0000015238 00000 п. 0000015323 00000 п. 0000015418 00000 п. 0000015519 00000 п. 0000015651 00000 п. 0000015740 00000 п. 0000015832 00000 п. 0000015993 00000 п. 0000016154 00000 п. 0000016281 00000 п. 0000016449 00000 п. 0000016554 00000 п. 0000016685 00000 п. 0000016795 00000 п. 0000016902 00000 п. 0000016999 00000 н. 0000017107 00000 п. 0000017198 00000 п. 0000017287 00000 п. 0000017401 00000 п. 0000017515 00000 п. трейлер ] >> startxref 0 %% EOF 454 0 obj> поток xb``f`f` cg`a8Ġ! `

Решение проблем с контуром заземления: Цепи заземления

Ток, протекающий в контуре заземления, проходит через экран аудиокабеля.В симметричных соединениях ток, протекающий в экране, не должен воздействовать на сигнал в кабеле или на эти сигнальные соединения в оборудовании. Если оборудование хорошо спроектировано (заземление экрана кабеля выполнено правильным способом), то небольшие токи не вызывают никаких проблем. На практике оборудование не так хорошо спроектировано, и даже ток очень мал. может вызвать гудение в системе.

Если вы разрежете экран аудиокабеля, ток перестанет течь, но подвергает эту аудиолинию другим видам проблем: если одно из устройств не подключен к заземлению, значит оборудование не имеет любой общий грунт, который затем не работает должным образом.

Чтобы избежать такого рода проблем и при этом ограничить прохождение тока в проводе экрана кабеля до значения, не вызывающего проблем Введена схема под названием Ground Lift . Места наземного подъемника резистор (обычно около 100 Ом) между заземлением оборудования и экран кабеля. Этот резистор ограничивает ток, проходящий в контуре заземления. ситуации, но все же обеспечивает неплохое заземление. Этот К сожалению, система очень чувствительна к радиопомехам, поэтому Резистор 100 Ом обычно шунтируется с конденсатором небольшой емкости (обычно От 4 пФ до 10 нФ), что снижает импеданс на радиочастотах. но не пропускает слишком большой ток 50 Гц.

Прежде чем пытаться использовать Ground Lift цепь лучше всего проверить что в остальном все подключено правильно. Глупо использовать трюк с наземным подъемником, чтобы исправить другие проблемы в системе, потому что у наземного подъемника есть свои проблемы. Хороший документ как сделать аудио проводка правильно Rane Примечание 110: Подключение звуковой системы.

Подъем на грунт в сбалансированных соединениях

Цепи полного заземления для симметричного разъема XLR

 1 (не подключен) 1

2 --------------- 2

3 --------------- 3
 
Это самая простая схема заземления, которая хорошо работает, когда все оборудование заземлено и имеет симметричные входы / выходы.Поскольку экран кабеля разрезан, это расположение делает его кабель более склонен к улавливанию радиочастотных помех. Такие цепи заземления встроены в некоторые устройства. (можно активировать с помощью переключателя) и они доступны как готовые продукты (например, GLX GROUND LIFTER и аналогичные).

Экран кабеля подключается к контакту 1 только на одном конце кабеля. Это чаще привязать щит на передающем конце и поднять его на приемном конце. В любом случае будет работать, но привязка щита на передающем конце имеет некоторые преимущества для уменьшения перекрестных помех.

Частичное заземление с фильтрацией радиопомех для симметричных разъемов XLR

 10 нФ
   + --- || --- +
   | ____ |
1 - + - | ____ | - + - 1
     100 Ом
  
2 ------------ 2

3 ------------ 3
 
Это соединение заземления не полностью разрезает экран кабеля, несущего грунт, но увеличивает сопротивление настолько, что токи, протекающие в экрана в типичной ситуации контура заземления ограничены настолько низкими значениями, что они не влияют на производительность системы. Потому что земля не полностью отключите, тогда цепь также работает, когда незаземленное потребительское оборудование с RCA-> XLR переходниками подключаются к системе.Конденсатор обеспечивает непрерывность экрана кабеля. радиочастотные сигналы (защита от радиопомех предоставленный щит не теряется). Схема достаточно универсальна и Я использовал эту схему для успешного решения проблемы заземления некоторой балансной схемы. проблемы с петлей.

Кабели с телескопическим экраном

В мире аудио есть решение для контуров заземления, называемое «телескопическая» площадка и «щиты Фарадея». Телескопический Земля работает только с кабелем, который является симметричной линией, есть, тот, который имеет два провода для передачи сигнала и отдельный экран.В телескопическом заземлении экран подключается только на один конец. Это предотвращает завершение «контура заземления».

Лучшие кабели с телескопическим экраном (настоящие телескопические экраны) построены так, что у них есть два щита, которые оскорбляют формируют друг друга. Идея в том, что вы подключаете внутренний экран к земле только на приемный конец и внешний экран заземлять только на передающем конце.

 1 -------------
    ------------- 1

2 --------------- 2

3 --------------- 3
 
Таким образом, контур заземления эффективно разрывается, но радиочастотное экранирование свойства кабеля по-прежнему очень хорошие.Двойные экраны и емкостный соединение между собой (в кабеле они находятся рядом) образуют хороший экран для радиочастот. Утверждалось, что телескопирование экрана в кабелях с гибридным несбалансированные / банальные аудиосистемы часто очень успешно удаляют шум . Телескопический экран защищает внутренние проводники и стекает этот нежелательный шум в одном месте. Эффективность щита становится все меньше и меньше по мере вашего путешествия с заземленного конца.

Телескопические заземления нельзя использовать в несимметричных цепях, такие как несимметричные аудиосвязи и коаксиальный видеокабель, как два проводника необходимо отправить сигнал включает щит.То есть щит - это одновременно шумоподавляющая часть кабеля и сигнальный тракт. Разбейте его, и, если сигнал вообще пройдет, вы иметь самую шумную трассу в мире в качестве другого пути (что было щит) будет установлен через другое заземление путь через другую технику!

Некоторые примечания по использованию наземных подъемников

Отключение экрана в сбалансированном аудиокабеле приведет к разорвать контур заземления и, возможно, устранить гул. Но одно предупреждение перед отключением экрана.Если вы бежите оборудование от двух или более отдельных розеток питания, особенно если они расположены далеко друг от друга, а проводка в здании устарела или не соответствует требованиям, между ними могут быть остаточные напряжения 50 или 60 циклов. предполагаемые заземления. Они будут небольшими, порядка милливольт, если что-то не в порядке с системой здания, но они могут быть большими с точки зрения аудиосигналов и могут многое повреждение при подаче на аудиовход с высоким усилением. Поэтому важно сначала испытать эффект подъема грунта при низком усилении.

Наземный подъемник для несбалансированных соединений

Ситуации, когда два заземленных оборудования с несимметричными подключениями есть ли в соединениях проблемы с гудением, связанные с контуром заземления, решение помогает, тогда вы можете попробовать использовать грунтовый подъемник. Подъем на землю в несимметричных соединениях работает эффективно только тогда, когда оба оборудования правильно заземлены в той же точке. В некоторых случаях проблема с гудением может становится хуже, если используется грунтовый подъемник. Так грунтовый подъемник неуравновешен подключение не является надежным методом, и его следует использовать только как временное решение.

Вот типичная схема заземления для несимметричных соединений:

 Сигнал -------------------- Сигнал

Земля (не подключена) Земля
 
Используйте эту схему только в том случае, если вы знаете, что оба оборудования правильно заземлены. Если оборудование правильно заземлено, эта цепь вызовет огромные шумит и может повредить входной усилитель приемного оборудования из-за протекания паразитных токов на незаземленных оборудование. Лучшее решение для решения проблемы контуров заземления без заглушек использует изолирующий трансформатор звуковой линии.

Примечание по использованию схемы: поскольку эта схема разрезает экран аудиокабель, это значительно снижает радиочастотное экранирование, которое непрерывно кабель обычно обеспечивает экранирование. Если вы используете схему выше убедитесь, что нет серьезных источников радиопомех, например мобильных телефоны или радиостанции рядом с аудиосистемой. Экранирование RF схемы можно улучшить, используя схему aboe, которая обеспечивает целостность экрана кабеля для сигналов RF, но работает как заземление для звуковые частоты.

Если вы используете разъемы RCA в аудиоподключениях, вы можете попробовать, если этот подъемник помогает, если вы частично удалите разъемы RCA, так, чтобы центральный штифт касался домкрата, а внешнее заземление - не подключайте разъем со стороны. Если это решило проблему, вы можете сделать контур заземления. В разъемах RCA можно сделать заземление вставив свернутую бумажную полоску или пластиковый отрезок обратно между заземляющий экран разъема RCA и розетку. Другое решение - разрезать заземляющий провод внутри разъема.

Если вы собираетесь модифицировать кабель, чтобы включить наземный подъемник вариант я бы порекомендовал добавить малый капситор на место, где вы перерезаете кабель, чтобы уменьшить вероятность того, что кабель поднимется над землей для улавливания радиочастотных помех:

 Сигнал -------------------- Сигнал

Земля ------- || ---------- Земля
             10 нФ
 

Использование цепей заземления

Цепь заземления снизит вероятность появления слышимых контуров заземления.По-настоящему универсальная часть оборудования будет иметь переключатель для включения или выключения наземного подъемника. Чтобы проверить, есть ли у вашего оборудования заземление, вставьте сбалансированный кабель TRS или XLR в оборудование и измерьте сопротивление между контактом экрана открытого разъема и корпусом оборудования или заземляющим контактом сетевого кабеля оборудования. с помощью мультиметра. Если есть сопротивление от 100 Ом до 500 Ом, ваше оборудование заземлено.

Подъем на землю довольно эффективен в сбалансированных аудиоподключениях, но гораздо менее полезен в несимметричных соединениях, которые являются типом соединения используется почти во всем бытовом аудиооборудовании.Вы можете попробовать этот наземный подъемник схема с таким типом подключения, но результаты были бы намного хуже. Даже если вы можете ограничить ток разъема экрана до значений, которые не вызывают проблем, по-прежнему есть разность потенциалов земли

Arduino Shields - learn.sparkfun.com

Добавлено в избранное Любимый 16

Что такое щит?

Shields [1] - это модульные печатные платы, которые подключаются к вашей Arduino, чтобы придать ей дополнительную функциональность.Хотите подключить Arduino к Интернету и публиковать сообщения в Twitter? Для этого есть щит. Хотите сделать свой Arduino автономным вездеходом? Для этого есть щиты. Существуют десятки (сотни?) Экранов, и все они делают вашу Arduino больше, чем просто плату для разработки с мигающим светодиодом.

Менеджер каталога SparkFun RobertC. в трепете перед экстравагантным набором щитов.

Многие щиты Arduino можно штабелировать. Вы можете соединить множество экранов вместе, чтобы создать «Биг Мак» из модулей Arduino.Вы можете, например, объединить Arduino Uno с Voice Box Shield и WiFly Shield, чтобы создать WiFi Talking Stephen Hawking (TM).

Щиты часто поставляются либо с примером эскиза, либо с библиотекой. Таким образом, они не только просто подключаются к вашему Arduino, но и все, что вам нужно сделать, чтобы заставить их работать, - это загрузить некоторый пример кода в Arduino.

[1] Примечание: Обычно они называются «дочерними платами». Терминология и компоновка зависят от платформы среды и форм-фактора.Щиты для Arduino обычно используют посадочное место Arduino Uno R3. Однако в зависимости от архитектуры щиты могут иметь разную компоновку. Стекируемые печатные платы для Raspberry Pi называются HAT или pHAT, а BeagleBone называет их Capes. В этом уроке мы сосредоточимся на щитах Arduino.

Форм-фактор экрана

Каждый щит Arduino должен иметь тот же форм-фактор, что и стандартный Arduino. Контакты питания и заземления на одном восьмиконтактном разъеме (ранее шесть) и аналоговые контакты на шестиконтактном разъеме рядом с ним.Цифровые контакты закрывают другой край с другой стороны, восьмиконтактный разъем отделен от 10-контактного этим странным интервалом 0,5 дюйма. Некоторые экраны также требуют подключения к заголовку ICSP Arduino (программный заголовок 2x3 на конце).

Некоторые экраны используют каждый вывод на Arduino, в то время как другие используют только пару. При штабелировании щитов важно убедиться, что они не используют перекрывающиеся штифты. Некоторые экраны связываются с Arduino через SPI, I 2 C или последовательный порт, а другие используют прерывания или аналоговые входы Arduino.


Существует великое множество щитов Arduino - слишком много, чтобы включать их в это руководство. На следующей странице мы рассмотрим несколько наиболее популярных и уникальных щитов.

Щитстраваганза

Вот список наиболее популярных и уникальных щитов SparkFun. Это не исчерпывающий список всех щитов Arduino (для этого, проверьте shieldlist.org), но это хорошая коллекция. Они отсортированы по полулогическим категориям.

Если вы более склонны к визуализации, посмотрите нашу серию видео ShieldStravaganza (часть 1, часть 2 и часть 3). Эти три захватывающих видео до краев заполнены щитами, щитами, щитами, ох ... и другими щитами.

Прототипирование (и затем некоторые)

Щиты для прототипирования

не добавляют Arduino особой функциональности, но они помогают другим способом.Эти экраны могут сделать что-то столь же простое, как выломать контакты Arduino на винтовые клеммы. В целом они упрощают подключение к Arduino.

  • ProtoShield Kit - Одноименная звезда этой категории. Этот щит представляет собой большую площадку для прототипирования. Вы можете наклеить сверху мини-макет или просто припаять прямо к области прототипирования экрана.
  • ProtoScrew Shield - аналогично ProtoShield, но каждый штифт также имеет резьбовую клемму. Удобен для подключения к внешним двигателям или сверхмощным датчикам.
  • Go-Between Shield - Этот щит предназначен для размещения между двумя щитами. Он меняет местами штыри верхнего щита, чтобы они не мешали друг другу.
  • LiPower Shield - этот экран позволяет заряжать Arduino от литий-полимерной батареи.
  • Danger Shield - Самый крутой щит-эвар! Этот щит представляет собой безумное скопление дисплеев, потенциометров и других датчиков. Отлично подходит для изучения тонкостей Arduino или включения в проекты микширования звука.
  • Joystick Shield Kit - превращает ваш Arduino в простой контроллер. Благодаря джойстику и четырем кнопкам это отличный контроллер для робота.
  • microSD Shield - Arduino имеет ограниченное пространство для хранения, но этот простой в использовании экран (вместе с библиотекой SD) позволяет получить много дополнительного хранилища.

Ethernet, WiFi, беспроводной, GPS и т. Д.

  • Arduino Ethernet Shield - это один из наиболее классических экранов. Ethernet Shield предоставляет вашему Arduino возможность подключения к всемирной паутине.Есть отличная библиотека для его поддержки.
  • WiFly Shield - опора WiFi Shield от SparkFun, этот щит оснащает ваш Arduino возможностью подключения к беспроводным сетям 802.11b / g. Затем он может действовать как веб-сервер, клиент или и то, и другое.
  • Arduino Wi-Fi Shield - это Arduino Ethernet Shield без проводов. Этот экран может подключить ваш Arduino к маршрутизатору Wi-Fi, чтобы он мог размещать веб-страницы и просматривать Интернет.
  • Electric Imp Shield - Electric Imp - это уникальный модуль WiFi, который выглядит как SD-карта, но содержит мощный облачный контроллер WiFi.Это, вероятно, самый дешевый щит Arduino с поддержкой WiFi.
  • XBee Shield - XBee не позволит вам подключиться к Интернету, но они предоставляют надежное и дешевое средство для беспроводной связи. Вы можете использовать XBee для беспроводного запуска кофемашин, разбрызгивателей, фонарей или других бытовых приборов.
  • Cellular Shield w / SM5100B - Превратите ваш Arduino в сотовый телефон! Отправляйте текстовые SMS-сообщения или подключите микрофон и динамик и используйте их вместо iPhone.
  • GPS Shield - GPS не так сложен, как вы думаете. Благодаря GPS Shield ваш Arduino всегда будет знать, где он находится.

Музыка и звук

  • Music Instrument Shield - Используйте протокол MIDI, чтобы превратить Arduino в банк музыкальных инструментов. Он может создавать ударные, пианино, деревянные духовые, медные и всевозможные другие звуковые эффекты.
  • Spectrum Shield - Spectrum Shield слушает аудио и сортирует его по ячейкам с разными частотами.Используйте его, чтобы создать отличный графический эквалайзер.
  • VoiceBox Shield - дайте вашей Arduino механический роботизированный голос.

Дисплеи и камеры

  • Color LCD Shield - Оборудуйте свою Arduino уникальным цветным ЖК-дисплеем сотового телефона 128x128.
  • EL Escudo - Электролюминесцентный провод - это круто! Используйте этот экран, чтобы добавить к вашему проекту до восьми жил EL-провода. Наконец-то вы можете сделать этот костюм Трона на базе Arduino.
  • CMUcam - Этот модуль камеры добавляет видимости вашему Arduino.Вы можете использовать его для отслеживания капель, чтобы ваш робот не столкнулся с дорожными конусами.

Драйверы двигателей

  • Monster Moto Shield - Если вам нужно управлять более мощными моторами, чем Ardumoto Shield, это следующий шаг.
  • PWM Shield - Обычно, когда вы думаете о широтно-импульсной модуляции (PWM), вы можете подумать «затемнение светодиодов», но PWM также используется для управления серводвигателями. Этот щит можно использовать для управления вашим сумасшедшим гексаподом с 12 сервоприводами.

Многие экраны поставляются без прикрепленных заголовков.Это оставляет их окончательную судьбу открытой для вашей интерпретации (возможно, вы предпочтете использовать прямые мужские заголовки вместо обычных штабелируемых заголовков). На следующих страницах объясняется, как можно превратить свой скучный экран без заголовков в полностью функциональный, готовый к установке модуль.

Необходимые инструменты и материалы

Сборка экрана требует пайки. Припой помогает установить хорошее физическое и электрическое соединение. Без пайки соединение между экраном и Arduino будет прерывистым (в лучшем случае).Если это ваша первая пайка, ознакомьтесь с нашим руководством по пайке.

Вам понадобятся эти детали для установки заголовков на щит:

  • Щит Arduino - Подойдет любой щит. Все щиты Arduino должны иметь стандартный размер Arduino.
  • 4 заголовка - Количество контактов на заголовках зависит от того, имеет ли ваш щит более новую посадочную площадку R3 или исходную компоновку Arduino.
    • Оригинал: (2) 6-контактных и (2) 8-контактных разъема
    • R3: (1) 6-контактный, (2) 8-контактный и (1) 10-контактный разъем

И эти инструменты вам понадобятся:

  • Паяльник - Самый простой паяльник должен работать (ароматы включают США или Европу).
  • Припой - Если вы цените свое здоровье, используйте неэтилированный припой. Если вы цените свое время, используйте этилированный припой.
  • Влажная губка - Благодаря ей кончик утюга будет чистым и сияющим. Подойдет любая влажная губка. Используйте ту, что идет в комплекте с подставкой для утюга, или купите красивую латунную губку.

Эти инструменты не являются обязательными, но могут немного облегчить вашу жизнь:

  • Подставка для паяльника - убережет паяльник от пола и колен (ай!).
  • Третья рука. Если у вас кончаются руки, и вы не можете заставить доверяющего члена семьи что-то держать для вас, это сработает.
  • Фитиль для припоя может пригодиться, если вам нужно удалить припой из стыка.

Препарат

Перед тем, как вы начнете разогревать паяльник, давайте разберемся со сборкой.

Соответствуют ли ваши заголовки вашему щиту Arduino?

С момента появления Arduino до некоторого времени в 2012 году каждая Arduino имела одинаковую стандартную площадь основания: два 6-контактных разъема с одной стороны и два 8-контактных разъема с другой.Однако в последнее время Arduinos переходит на новую компоновку щита с заголовком, которая называется R3 footprint . Эта компоновка имеет 6-контактные и 8-контактные разъемы с одной стороны и 8-контактные и 10-контактные разъемы с другой.

Убедитесь, что разъемы у вас совпадают с выводом вашего щита! Также подумайте, совпадает ли ваша компоновка Arduino с вашим щитом. R3 Arduinos должен иметь обратную совместимость. должен иметь экраны старого образца, однако старые Arduinos не полностью совместимы с новыми экранами посадочного места R3 (что-то вроде вставки 10 контактов в 8-контактный разъем).

Какой тип заголовка использовать?

Существуют всевозможные разъемы, но есть только два, которые рекомендуется устанавливать на щиты: штабелируемые или штыревые.

Прямой охватываемый заголовок (слева) и штабелируемый заголовок (справа).

Штабелируемые заголовки особенно хороши для штабелирования щитов. Они также поддерживают вашу способность подключать перемычку к любому из контактов Arduino. Из этого туториала Вы узнаете, как установить штабелируемые заголовки. Стекируемые разъемы доступны в вариантах с 6, 8 и 10 контактами, или вы можете купить разъемы в упаковке для оригинальных щитов или щитов типа R3.

Слава штабелируемых заголовков. Они позволяют сделать беспроводной говорящий Arduino. Обратите внимание, что верхний щит имеет штыревые разъемы, а нижний щит складывается.

Простые, полосатые штекерные разъемы также являются вариантом для подключения экрана к Arduino. Штекерные заголовки полезны тем, что они создают стек более низкого профиля при подключении к Arduino.Если вы планируете поместить комбинацию Arduino / Shield в корпус, возможно, вам придется подумать об использовании мужских заголовков. В этом руководстве основное внимание уделяется установке штабелируемого заголовка, ознакомьтесь с разделом "Советы и приемы" для получения инструкций по сборке мужского заголовка.

Не устанавливайте разъемы с внутренней резьбой, прямоугольные разъемы с разъемами, швейцарские машинные заголовки, круглые заголовки или множество других заголовков, которые могут существовать там. Вам действительно следует использовать только те заголовки, которые имеют прямые, прямоугольные штыри.


А теперь подключите и начните нагревать эти паяльники. Пора заняться пайкой!

Шаг 1. Вставьте все четыре заголовка

Вставьте все четыре разъема в экран. Убедитесь, что вы вставляете их в правильном направлении . Штифты с внешней резьбой жатки должны входить в верхнюю часть экрана и выходить за нижнюю часть. Эта ориентация имеет первостепенное значение. Не паяйте ничего, пока не соберете правильные разъемы!

Заголовки вставлены, выровнены как можно лучше, готовы к пайке.

Вставив разъемы, переверните экран верхней стороной, чтобы он опирался на черную, охватывающую сторону разъемов. Надеюсь, у вас есть хорошее плоское рабочее место, на котором можно его положить. Постарайтесь выровнять все разъемы так, чтобы они были точно перпендикулярны плате экрана.

Шаг 2. Припаяйте по одному штырю к каждому разъему

Наконец-то время пайки! Важно, чтобы каждый из заголовков находился под хорошим углом 90 ° к печатной плате. Это гарантирует, что щит будет скользить прямо на ваш Arduino, и вам не придется при этом сгибать штыри.

Чтобы гарантировать, что каждый разъем является прямым, начинают с припайки только одного контакта на каждом . Если они находятся под странным углом, будет намного легче повторно нагреть только один штифт, регулируя выравнивание.

Один контакт установлен, один в процессе, еще два. Припаиваем по одному выводу к каждому разъему.

Четыре паяных соединения вниз, осталось только 24 (до 28)!

Шаг 3. Проверьте выравнивание заголовка

Припаяв эти четыре контакта, попробуйте подключить экран к Arduino, чтобы проверить выравнивание заголовка.Убедитесь, что ваш Arduino выключен, пока вы выполняете эту проверку выравнивания.

Временно вставляем экран, чтобы проверить совмещение всех контактов.

Все ли выстраивается? Не гнутся штифты? Если нет, найдите виноватый заголовок и попробуйте заново выровнять его. Снова разогрейте сустав утюгом, слегка переместите и отрегулируйте выравнивание жатки. Также будьте осторожны при извлечении частично припаянного экрана из Arduino. Поскольку все разъемы не припаяны, вы можете легко согнуть их, когда вытащите их из женских разъемов Arduino.

Шаг 4: Припаяйте все оставшиеся контакты

Если все ваши заголовки выровнены, вы можете атаковать оставшиеся нераспаянные штыри. Когда вы закончите, у вас должно получиться 28 (или 32) блестящих вулкана припоя.

Это красивое зрелище. Все запаяно.

Шаг 5: Проверьте наличие коротких замыканий или холодных стыков

Когда все припаяно, дважды проверьте исправность паяных соединений. Один из ваших суставов перешел в другой, создавая короткое замыкание? Если это так, вы можете поднести немного припоя к стыку или просто попробовать повторно нагреть короткое замыкание и «протолкнуть» припой в нужное место.

Ну это просто вопиюще! Остерегайтесь таких коротких паяных соединений.

Также проверьте соединения холодной пайкой - соединение, на котором есть припой, но не совсем соединяет две точки пайки вместе. Холодные суставы не всегда легко увидеть; обратите внимание на то, чтобы стыки не были такими блестящими, или булавки, которые все еще кажутся расшатанными.

Для этого последнего контакта можно было бы использовать немного больше припоя. Это не совсем похоже на установление связи.

Чтобы исправить холодное соединение, повторно нагрейте припой на штыре и добавьте еще немного.

Шаг 6: Подключите!

Обычно лучше всего выключить (отсоединить) ваш Arduino, прежде чем подключать к нему экран. Надеюсь, все контакты по-прежнему хорошо выровнены, и экран просто скользит прямо в Arduino. Будьте осторожны, чтобы не погнуть штифты при вставке, и убедитесь, что все они входят в соответствующие разъемы.

Это приятное ощущение, когда экран скользит прямо в ваш Arduino

Уловки сборки

На предыдущей странице сборки должно быть подробно описано все, что вам нужно знать о простой установке защитного заголовка.Однако есть несколько уловок, которые мы усвоили ...

Используйте старый щит, чтобы помочь выравниванию

Самый простой способ испортить сборку экрана - это выровнять каждый из этих коллекторов. Лучше избегать пайки штабелируемых заголовков, когда экран подключен к Arduino, поэтому метод, описанный в разделе сборки, обычно является лучшим. Если у вас есть запасной щит, вы можете воспользоваться еще одним маленьким трюком, используя его в качестве приспособления для выравнивания заголовка.

Начните с подключения всех разъемов к вашему запасному защитному приспособлению.

Зеленый щит будет использоваться в качестве нашего приспособления. Сначала вставьте в него штабелируемые заголовки.

Затем вставьте разъемы в ваш экран, который нужно припаять, и припаяйте их все. Предполагая, что запасной экран хорошо выровнен (вы можете сначала проверить это), он должен обрабатывать все выравнивание ваших новых заголовков.

Приспособление должно правильно выровнять все заголовки.Паяйте!

Установка штекерных разъемов

Если вы цените установку экрана с меньшим профилем, а не возможность складывать экраны и соединять перемычки, можно использовать штекерные разъемы.

В некотором смысле, мужские заголовки на самом деле легче выровнять и установить, потому что вы можете использовать свой Arduino как приспособление. Начните со вставки заголовков в ваш Arduino.

RedBoard делает специальный приспособление для выравнивания штырей.

Затем выровняйте и вставьте экран и отпаяйте.

Экран с выводами, готовый к пайке. Мы можем доверять Arduino, чтобы выровнять за нас мужские заголовки.

Будьте осторожны, используя этот метод, не оставляйте железо на контактах слишком долго, иначе вы рискуете сжечь разъемы Arduino. Если вы особенно беспокоитесь о том, чтобы сжечь женские разъемы Arduino, вы можете припаять только один контакт на каждом разъеме, удалить экран и припаять остальные.

Ресурсы и дальнейшее развитие

Теперь, когда у вас есть эти знания, вы можете согнуть практически любой щит Arduino по своему желанию.Если вы заинтересованы в дальнейшем изучении мира щитов, ознакомьтесь с категорией Arduino Shield на SparkFun. Shieldlist.org также имеет отличный список щитов.

Вы хотите узнать больше о программировании Arduino? Попробуйте ознакомиться с некоторыми из этих руководств:

Вот несколько забавных руководств по проектам, которые особенно ориентированы на использование щита Arduino:

Спасибо за чтение! Наслаждайтесь щитами с заголовком!

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *