Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Получение водорода из воды в домашних условиях: Получение водорода в домашних условиях

Содержание

Получение водорода в домашних условиях

 

На Земле водород в чистом виде почти не встречается, и в повседневной жизни мы с ним не сталкиваемся. Но в соединениях — это второй по количеству атомов элемент в земной коре после кислорода. Все живые существа на Земле, включая нас с вами, примерно на 2/3 состоят из водорода.

Ключевые слова: водород, получение водорода.

 

Так что же такое водород? Каковы его свойства? Как его получают и применяют в земных условиях? Можно ли получить водород в домашних условиях, и как это делать лучше всего? На эти и другие вопросы мы постараемся ответить в ходе нашей научной работы.

Водород — это самый простой элемент в природе, состоящий из одного протона и вращающегося вокруг него электрона. Впервые получение водорода упоминается у английского учёного Роберта Бойля, который в 1671 году проводил реакцию между железными стружками и разбавленными кислотами.

Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году — по аналогии с «кислородом» М. В. Ломоносова. Официальное латинское название водорода «Hydrogenium».

В промышленности водород получают в основном из ископаемого топлива. В первую очередь это природный газ, метан, с которым большинство из нас может встретится на кухне, если вас есть газовая плита. Водород получают из лёгких фракций нефти. Третий по популярности источник водорода — это уголь.

Наиболее доступным для повторения в домашних условиях является разложение воды электрическим током (электролиз).

Для проведения нашего эксперимента мы взяли старую зарядку на 5 В 750мА и угольные электроды, извлечённые из обычных солевых батареек. Для измерения протекающего тока использовался мультиметр.

Для сбора и измерения получающихся газов, в бутылки налили воды, и закрепили их на основной ёмкости горлышком вниз, погрузив его при этом в электролит. Таким образом, чтобы воздух в бутылку попадать не смог. Всего в ёмкости и бутылках получилось около 1,5 литров воды. Как и ожидалось, с чистой водой, после подачи напряжения с зарядного устройства ничего не произошло. Мультиметр показывал почти нулевой ток. Но, когда в воду добавили две чайные ложки соды, электролиз пошёл бодрее, на обоих электродах начали появляться пузырьки газа, а мультиметр показал ток 15 мА. С таким маленьким током за сутки (24 часа) удалось собрать только 0,11 литра водорода (примерно полстакана). Во второй бутылке при этом собралось примерно в 2 раза меньше кислорода. Это означает, что в воде водорода в два раза больше, чем кислорода.

Наблюдение выделения водорода в результате взаимодействия металлов с разбавленными кислотами было самых первым в истории химии. И его относительно просто повторить в домашних условиях. Для этого нам понадобится металл, желательно поактивнее и кислота. В нашем эксперименте мы выбрали электролит для свинцовых аккумуляторов, который можно найти в ближайшем автомобильном магазине и цинк из использованных солевых батареек. Для сбора водорода, как и в случае электролиза, использовали перевёрнутую бутылку с опущенным в воду горлышком. Электролит дополнительно развели водой в пропорции 50 мл раствора серной кислоты на 150 мл. воды. Цинка из батарейки получилось примерно 1 г. За 12 часов весь металл растворился и мы получили 0.7 литра водорода.

Другой популярный метод — взаимодействие металлов с щелочами. Для эксперимента мы выбрали два варианта, которые были под рукой — кусочки провода и фольгу для запекания. Щёлочь (гидроксид натрия) можно найти в бытовых магазинах как средство для прочистки канализационных труб (КРОТ, например). Установку для получения использовали почти такую же, что и в опыте с кислотой и цинком. Раствор в обоих опытах был одинаковым: 20 мл щёлочи и 200 мл воды. В первом опыте использовали проволоку диаметром 1.5 мм, во втором — кусочки фольги. В обоих случаях масса алюминия была 1 г. В первом опыте удалось получить 1.2 л водорода, заняло это 34 часа. Во втором опыте фольга растворилась за 1 час 20 минут, выделив 1.

4 л водорода. Из этих опытов можно сделать вывод, что скорость реакции сильно зависит от площади поверхности, на которой она происходит. В опыте с фольгой площадь поверхности была во много раз выше, чем в опыте с проволокой. Ещё большей скорости можно добиться, если взять алюминий в порошке. В этом случае соотношение площади поверхности к массе будет наибольшим.

Таким образом, в экспериментах по получению водорода наиболее быстрым и доступным способом оказался вариант взаимодействия алюминиевой фольги со щёлочью. Но если необходимо получать водород регулярно и в больших количествах, то на первое место должен выйти электролиз, так как он не требует никаких расходных материалов кроме воды. Правда для этого понадобится более серьёзная установка, чем зарядка от телефона и пара бутылок.

В ходе научной работы мы познакомились с самым распространённым, но таким редким в быту веществом, как водород. Научились получать его различными способами и выбрали наиболее удобный для осуществления в домашних условиях — воздействие средства для прочистки труб, содержащего щёлочь, на алюминиевую фольгу.

Так же мы на собственном опыте убедились, что водород — горючий и взрывоопасный газ, но им вполне можно наполнять воздушные шарики, чтобы они летали. Правда при этом стоит держать их подальше от открытого огня.

Конкурс — Получение водорода тремя способами

Получить водород!  До недавнего времени это была моя мечта 🙂 . И я твёрдо решил осуществить ее.


В магазине я приобрёл все необходимые реактивы:

 

Далее заперся в своей комнате и начал творить! В итоге я в домашних условиях смог повторить все нижеописанные способы  получения водорода. И я просто обязан поделиться с вами своими знаниями. Итак, три способа получения водорода.

Способ №1 и все необходимые для него реактивы.

1 Сульфат меди (медный купорос ) его можно купить в любом цветочном магазине ( внимание не путайте с лавками где продоются только цветы нужен магазин с удобрениями ) просто зайдите и скажите что вам нужен медный купорос

2 Обычная пищевая соль

3 фольга (если честно то подойдёт любое алюминиевое изделие будь то ложка или проволока)

Вот собственно и все реактивы. Теперь немного о посуде в которой мы всё это будем делать.

1 Бутылка из толстого стекла ( отлично подойдёт из под вина, пива или шампанского )

2 Кострюля с холодной водой .

Для чего нужно было именно из толстого стекла и с холодной водой? А нужно это поскольку при данной реакции выделяется большоё количество тепла и бутылка может треснуть или вовсе лопнуть.

А теперь начнём!!!! Насыпаем в бутылку примерно четыре ложки сульфата меди и столько же соли ( соли желательно брать немного больше ) добавим воды  и всё это тщательно перемешиваем.  Если всё сделано правильно то раствор должен стать зелёным, если нет, то добавьте ещё соли. Раствор готов! Начнём кидать туда алюминий ИИИИИИИ УРА-УРА начал выделяться водород, при этом алюминий начнёт ржаветь , а вода начнёт пузыриться.

Но как-же это происходит, как идёт реакция??? Дело в том что образующися хлорид меди смывает защитную пленку с алюминия и на равне с восстановлением меди идет образование водорода.

Способ № 2 и реактивы.

  1. Гидроксид натрия. Раньше я незнал где его купить, но потом узнал что он продоётся как средство для прочистки труб — крот в любом магазине бытовой химии.
  2. Алюминий ( ну вы поняли).

Ну бутылка и вода как в способе №1

Нальём крота в бутылку(если у вас сухой и в гранулах, то разбавьте водой ) . Добавим алюминий (его лучше обжечь на костре перед добавлением). Через минуты две начнётся очень бурная реакция с выделением водорода в больших количествах.

Внимание!!!!!!!! Второй способ ООООчень опасный, советую проделывать его в перчатках( Гидроксид натрия сильно разъедает кожу!!!). Перчаток у меня не нашлось и я делал без них. Потом сильно пожалел. К вечеру у меня все руки были КРАСНЫМИ! и безумно болели. Но самая большая опасность в этой реакции это ВОДОРОД!!!!Его выделяется много!!!! И вообще я не советую проводить этот способ в домашних условиях!!!!

Тут всё тоже самое, только едкая щелочь намного быстрее смывает защитную плёнку с алюминия и далее идёт реакция с выделением водорода

Способ №3.

В этом способе не нужно реактивов. Ну кроме поваренной соли. Этот опыт будет проводится с помощью электролиза. Всё что нужно это пропустить через раствор поваренной соли электричество.Ток должен быть постоянным. ( Водород будет выделяться на аноде, а на катоде небольшие количества кислорода

Новый способ расщепления воды сделает производство водорода «зеленым»

Австралийские ученые разработали более дешевый и эффективный способ получения водорода из воды с использованием железных и никелевых катализаторов, вместо редкоземельных элементов, вроде рутения, платины и иридия, которые по стоимости обходятся в сотни раз дороже.

Развивающаяся концепция «водородной экономики» предполагает, что в скором времени сжатый водород станет таким же распространенным источником энергии, как бензин, а автомобили на топливных элементах будут встречаться не реже, чем электромобили на батареях и машины с двигателями внутреннего сгорания.

Недавно мы писали о первом танкере для транспортировки сжиженного водорода, который был запущен в Японии. Он предназначен для перевозки газа из Австралии, где его получают совсем не «чистым» способом: сжиганием бурого угля, 160 тонн которого дает всего 3 тонны водорода и 100 тонн выбросов С02.

В перспективе десятилетий рынок водорода как источника «чистой энергии» оценивается в триллионы долларов, и особенно это направление набирает обороты в Японии и Корее. Но его большие деньги становятся уже не такими привлекательными, когда речь заходит о технологиях, не причиняющих вреда окружающей среде.

Читайте также: И хранить, и генерировать энергию для зданий сможет гибридная батарея на основе «реверсивных» топливных элементов

Экологически безопасный способ получения водорода состоит в том, чтобы отделить его от воды с помощью электролиза. Пара электродов помещается в емкость с жидкостью и включается питание. Кислород притягивается к аноду, водород – к катоду, и если при этом электричество, которое участвует в процессе, генерируется возобновляемыми источниками, то на выходе можно получить так называемый «зеленый» водород.

Сегодня проблема промышленного производства водорода заключается в том, что расщепление воды является дорогостоящим и малоэффективным процессом. По этой причине такой вид топлива пока не может конкурировать с бензином. Новая разработка австралийских университетов UNSW, Griffith и Swinburne обещает совершить прорыв в этой области.

В документе, опубликованном в Nature Communications, команда ученых заявила, что им удалось заменить дорогую платину на углеродный катализатор.

«Мы покрываем электроды нашим катализатором, чтобы уменьшить потребление энергии, — уточнил профессор Школы химии UNSW Чуан Чжао. — На этом катализаторе имеется крошечный наноразмерный участок, где железо и никель взаимодействуют на атомном уровне. Именно здесь водород может быть отделен от кислорода, который выделяется в виде экологически чистых отходов».

Исследователи говорят, что наноуровень взаимодействия фундаментально меняет свойства материалов. Таким образом, никель-железный катализатор может быть таким же эффективным, как и платиновый. А дополнительным его преимуществом является возможность применения для катализа как водорода, так и кислорода, что значительно снижает производственные расходы.

Пока неясно, как скоро получится внедрить новую разработку в промышленность и насколько она повлияет на стоимость крупномасштабного производства водорода, но Чжао настроен оптимистично:

«Мы десятилетия говорили об эре водородной экономики, но сейчас эти разговоры могут стать реальностью».

Источник: unsw.edu.au

А вы что думаете по этому поводу? Дайте нам знать – напишите в комментариях!

Понравилась статья? Поделитесь ею и будет вам счастье!

Проект «Получение водорода методом электролиза» • Наука и образование ONLINE

Автор: Казаков Александр Артемович

Место работы/учебы (аффилиация): Лицей современных технологий управления № 2, г. Пенза, 4 класс

Научный руководитель: Кондрашин Владислав Игоревич

Во всем мире идет поиск экологически чистого источника энергии. Таким источником может быть водород, который применяется, прежде всего, в разных отраслях промышленности. В настоящее время все больше говорят о водороде как об экологически чистом виде топлива для автомобилей.

Существует множество различных способов получения водорода. Одни из них применяются уже давно, другие – это современные разработки. Сырьем для получения водорода является природный газ, уголь и нефть. И здесь возникает самая большая проблема из-за вредных выбросов при использовании этих ресурсов. Поэтому можно с уверенностью написать, что самый экологически чистый способ получения водорода – это электролиз воды.

Целью данной исследовательской работы было получение водорода методом электролиза воды.

Задачи, которые необходимо было решить во время исследований:

  1. Изучить условия необходимые для проведения электролиза;
  2. Сконструировать прибор – электролизер;
  3. Провести лабораторный опыт по электролизу воды и получить водород;
  4. Проверить, что выделился именно водород.

В процессе проведения опыта была изучена зависимость скорости протекания электролиза от чистоты воды в электролизере. Сделан вывод: электролиз проходит быстрее при наличии в воде катализатора, например поваренной соли.

При создании электролизера были испытаны электроды из различных металлов и разного размера. Выяснилось, что процесс электролиза зависит от использованных электродов (из какого материала они изготовлены, их размеров, расстояния между ними).

Для сбора водорода использовалась пробирка. Поскольку водород легче воздуха, он собирался вверху пробирки, постепенно вытесняя воздух. Чтобы проверить, собрался ли водород, нужно было поднести к краю пробирки огонь, например, зажженную спичку. Характерный хлопок означал сгорание водорода с одновременным выделением энергии, которую можно зафиксировать, если сжечь большее количество водорода. Также образовывалась вода (ее можно было наблюдать в пробирке в виде тумана).

Таким образом, получение водорода методом электролиза воды является доступным для проведения даже в домашних условиях. Однако у этого метода есть определенные недостатки. Во-первых, постоянно требуется электрическая энергия (в данной работе использовался источник постоянного тока). Во-вторых, при выделении водорода из электролита одновременно выделяется кислород. Смешиваясь, два этих газа образуют взрывоопасную смесь, поэтому метод довольно опасный. В-третьих, в процессе электролиза электроды также вступают в реакцию и быстро разрушаются.

При решении этих проблем получение водорода электролизом воды является простым и эффективным методом, поскольку основным источником водорода здесь служит вода, запасы которой на нашей планете огромны.

Получение водорода электролизом воды.

Давно хотел сделать подобную штуку. Но дальше опытов с батарейкой и парой электродов не доходило. Хотелось сделать полноценный аппарат для производства водорода, в количествах для того чтобы надуть шарик. Прежде чем делать полноценный аппарат для электролиза воды в домашних условиях, решил все проверить на модели.

 

Общая схема электролизера выглядит так.

Эта модель не подходит для полноценной ежедневной эксплуатации. Но проверить идею удалось.

Итак для электродов я решил применить графит. Прекрасный источник графита для электродов это токосъемник троллейбуса. Их полно валяется на конечных остановках. Нужно помнить, что один из электродов будет разрушаться.

Пилим и дорабатываем напильником. Интенсивность электролиза зависит от силы тока и площади электродов.

К электродам прикрепляются провода. Провода должны быть тщательно изолированы.

Для корпуса модели электролизера вполне подойдут пластиковые бутылки. В крышке делаются дырки для трубок и проводов.

Все тщательно промазывается герметиком.

Для соединения двух ёмкостей подойдут отрезанные горлышки бутылок.

Их необходимо соединить вместе и оплавить шов.

Гайки делаются из бутылочных крышек.

В двух бутылках в нижней части делаются отверстия. Все соединяется и тщательно заливается герметиком.

В качестве источника напряжения будем использовать бытовую сеть 220в. Хочу предупредить, что это довольно опасная игрушка. Так что, если нет достаточных навыков или есть сомнения, то лучше не повторять. В бытовой сети у нас ток переменный, для электролиза его необходимо выпрямить. Для этого прекрасно подойдет диодный мост. Тот что на фотографии оказался не достаточно мощным и быстро перегорел. Наилучшим вариантом стал китайский диодный мост MB156 в алюминиевом корпусе.

Диодный мост сильно нагревается. Понадобится активное охлаждение. Кулер для компьютерного процессора подойдет как нельзя лучше. Для корпуса можно использовать подходящую по размеру распаячную коробку. Продается в электротоварах.

Под диодный мост необходимо подложить несколько слоев картона.

В крышке распаячной коробки делаются необходимые отверстия.

Так выглядит установка в сборе. Электролизер запитывается от сети, вентилятор от универсального источника питания. В качестве электролита применяется раствор пищевой соды. Тут нужно помнить, что чем выше концентрация раствора, тем выше скорость реакции. Но при этом выше и нагрев. Причем свой вклад в нагрев будет вносить реакция разложения натрия у катода. Эта реакция экзотермическая. В результате неё будет образовываться водород и гидроксид натрия.

Тот аппарат, что на фото выше, очень сильно нагревался. Его приходилось периодически отключать и ждать пока остынет. Проблему с нагревом удалось частично решить путем охлаждения электролита. Для этого я использовал помпу для настольного фонтана. Длинная трубка проходит из одной бутылки в другую через помпу и ведро с холодной водой.

Место подсоединения трубки к шарику хорошо снабдить краником. Продаются в зоомагазинах в отделе для аквариумов.

Процесс изготовления на видео.

Взрыв шарика с водородом

Узнайте, как NREL развивает и продвигает ряд путей к возобновляемому водороду производство. Текстовая версия

Биологическое расщепление воды

Некоторые фотосинтетические микробы используют световую энергию для производства водорода из воды в виде часть их метаболических процессов.Поскольку кислород образуется вместе с водородом, фотобиологическая технология производства водорода должна преодолевать присущую ему чувствительность к кислороду ферментативных систем, выделяющих водород. Исследователи NREL решают эту проблему с помощью скрининг на естественные организмы, которые более устойчивы к кислороду и создание новых генетических форм организмов, способных поддерживать производство водорода в наличие кислорода.Исследователи также разрабатывают новую систему, в которой используется метаболический переключение (лишение серы) на цикл клеток водорослей между фотосинтетическим ростом фаза и фаза производства водорода.

Контактное лицо: Мария Гирарди

Ферментация

Ученые NREL разрабатывают технологии предварительной обработки для преобразования лигноцеллюлозного биомасса в сырье, богатое сахаром, которое может быть непосредственно ферментировано для получения водорода, этанол и ценные химикаты.Исследователи также работают над определением консорциума. Clostridium, которые могут напрямую сбраживать гемицеллюлозу до водорода. Другое исследование области включают биоразведку эффективных целлюлолитических микробов, таких как Clostridium thermocellum, который может сбраживать кристаллическую целлюлозу непосредственно до водорода, чтобы снизить затраты на сырье. После идентификации модельной целлюлолитической бактерии ее потенциал для генетических манипуляций, включая чувствительность к антибиотикам и простоту генетического трансформация, будет определена.Будущие проекты ферментации NREL будут сосредоточены на по разработке стратегий для создания мутантов, которые селективно блокируются от производства отработанные кислоты и растворители для максимального увеличения выхода водорода.

Контактное лицо: Пин-Чинг Манесс

Конверсия биомассы и отходов

Водород можно производить путем пиролиза или газификации ресурсов биомассы, таких как сельскохозяйственные остатки, такие как скорлупа арахиса; бытовые отходы, включая пластмассы и отходы смазка; или биомасса, специально выращенная для использования в энергии.Пиролиз биомассы производит жидкий продукт (био-масло), содержащий широкий спектр компонентов, которые могут быть разделены на ценные химические вещества и топливо, включая водород. Исследователи NREL в настоящее время сосредоточены на производстве водорода путем каталитического риформинга пиролиза биомассы продукты. Конкретные области исследований включают реформирование потоков пиролиза и разработку и испытание псевдоожижаемых катализаторов.

Контактное лицо: Ричард Френч

Фотоэлектрохимическое расщепление воды

Самый чистый способ производства водорода — использование солнечного света для прямого разделения воды. в водород и кислород.Технология многопереходных ячеек, разработанная фотоэлектрическими промышленность используется для фотоэлектрохимических (PEC) систем сбора света, которые генерируют достаточное напряжение для разделения воды и стабильны в среде вода / электролит. Разработанная NREL система PEC производит водород из солнечного света без дополнительных затрат. и усложнение электролизеров, при КПД преобразования солнечной энергии в водород На 12,4% ниже теплотворная способность при использовании отраженного света.Ведутся исследования, чтобы выявить больше эффективные, недорогие материалы и системы, долговечные и устойчивые к коррозии в водной среде.

Контактное лицо: Джон Тернер или Тодд Дойч

Солнечная система термоделирования воды

Исследователи NREL используют реактор High-Flux Solar Furnace, чтобы концентрировать солнечную энергию и генерировать температуры от 1000 до 2000. градусов Цельсия.Для термохимической реакции требуются сверхвысокие температуры. циклы для производства водорода. Такой высокотемпературный, высокопоточный, термохимический процессы предлагают новый подход к экологически безопасному производству водорода. Очень высокие скорости реакции при таких повышенных температурах вызывают очень быструю реакцию. скорости, которые значительно увеличивают производительность и более чем компенсируют прерывистый характер солнечного ресурса.

Контактное лицо: Джуди Неттер

Возобновляемый электролиз

Возобновляемые источники энергии, такие как фотоэлектрическая энергия, ветер, биомасса, гидро- и геотермальная энергия. может обеспечить нашу страну чистой и устойчивой электроэнергией. Однако возобновляемая энергия источники естественным образом изменчивы, требуют накопления энергии или гибридной системы для размещения суточные и сезонные изменения.Одно из решений — производить водород путем электролиза — расщепления с помощью электрического тока — воды и использовать этот водород в топливном элементе для производства электричество в периоды низкого производства электроэнергии или пикового спроса, или для использования водорода в транспортных средствах на топливных элементах.

Исследователи из Центра интеграции энергетических систем NREL и Центра испытаний и исследований водородной инфраструктуры изучают вопросы, связанные с использованием возобновляемых источников энергии для производства водород путем электролиза воды.NREL тестирует интегрированные системы электролиза и исследует варианты дизайна для снижения капитальных затрат и повышения производительности.

Узнайте больше об исследованиях электролиза возобновляемых источников энергии NREL.

Контактное лицо: Кевин Харрисон

Надежность шланга дозатора водорода

С акцентом на снижение затрат и повышение надежности и безопасности NREL выполняет ускоренные испытания и циклическое использование шлангов для подачи водорода на 700 бар на предприятии по интеграции энергетических систем с использованием автоматизированной робототехники для моделирования полевых условий.Посмотрите видео с роботом, который имитирует повторяющееся напряжение человека, сгибающегося и скручивающегося. шланг для подачи водорода в бортовой накопительный бак транспортного средства на топливных элементах. Исследователи проводить механические, термические испытания и испытания под давлением для новых и бывших в употреблении систем подачи водорода шланги. Материал шланга анализируется для выявления проникновения водорода, охрупчивания, и зарождение / распространение трещины.

Контактное лицо: Кевин Харрисон

Анализ путей производства и доставки водорода

NREL выполняет анализ на системном уровне в различных областях устойчивого производства водорода. и пути доставки.Эти усилия сосредоточены на определении улучшений статуса, в результате от технологических достижений, стоимости как функции объема производства и потенциала для снижения затрат. Результаты помогают выявить препятствия на пути к успеху этих путей. основные факторы затрат и остающиеся проблемы НИОКР. Разработанные NREL тематические исследования по анализу водорода обеспечивают прозрачные прогнозы текущих и будущих затрат на производство водорода. Узнайте больше о работе NREL по системному анализу.

Контактное лицо: Женевьева Заур

Сеть энергетических материалов HydroGEN

NREL служит ведущей лабораторией консорциума HydroGEN Energy Materials Network (EMN).

Последние публикации

Прямое преобразование солнечной энергии в водород с помощью инвертированного метаморфического многопереходного полупроводника Архитектура, Энергия природы (2017)

Замечательная стабильность немодифицированных фотокатодов GaAs при выделении водорода в Кислотный электролит, Журнал химии материалов A (2016)

Эффективность преобразования солнечной энергии в водород: яркий свет на производительность фотоэлектрохимических устройств, Энергетика и экология (2016)

Обратимая пассивация поверхности GaInP2 за счет адсорбции воды: модельная система для зависимости от окружающей среды Фотолюминесценция, Журнал физической химии C (2016)

CO2-фиксирующий метаболизм одного углерода в разрушающей целлюлозу бактерии Clostridium thermocellum, Proceedings of the National Academy of Sciences (2016)

Путь фосфокетолазы способствует метаболизму углерода у цианобактерий, Nature Plants (2016)

Контакт

Huyen Dinh

Электронная почта
303-275-3605

исследователей используют мембраны, удаляющие соль из воды, чтобы помочь «расщепить» морскую воду на топливо — ScienceDaily

Сила солнца, ветра и моря вскоре может объединиться для производства экологически чистого водородного топлива, по мнению команды Penn State. исследователи.Команда интегрировала технологию очистки воды в новый экспериментальный проект электролизера морской воды, который использует электрический ток для разделения водорода и кислорода в молекулах воды.

По словам Брюса Логана, профессора экологической инженерии в Каппе и профессора Университета Эвана Пью, этот новый метод «расщепления морской воды» может облегчить превращение энергии ветра и солнца в пригодное для хранения и портативное топливо.

«Водород — отличное топливо, но его нужно производить», — сказал Логан.«Единственный устойчивый способ сделать это — использовать возобновляемую энергию и производить ее из воды. Вам также необходимо использовать воду, которую люди не хотят использовать для других целей, и это будет морская вода. Итак, Святой Грааль производства водород должен был объединить морскую воду, энергию ветра и солнца, найденную в прибрежных и морских средах ».

Несмотря на обилие морской воды, он обычно не используется для разделения воды. Если вода не опресняется перед подачей в электролизер — дорогостоящий дополнительный этап — ионы хлора в морской воде превращаются в токсичный газообразный хлор, который разрушает оборудование и просачивается в окружающую среду.

Чтобы предотвратить это, исследователи вставили тонкую полупроницаемую мембрану, первоначально разработанную для очистки воды в процессе обработки обратным осмосом (RO). Мембрана обратного осмоса заменила ионообменную мембрану, обычно используемую в электролизерах.

«Идея обратного осмоса заключается в том, что вы оказываете действительно высокое давление на воду, проталкиваете ее через мембрану и удерживаете ионы хлора позади», — сказал Логан.

В электролизере морская вода больше не проталкивается через мембрану обратного осмоса, а сдерживается ею.Мембрана используется, чтобы помочь разделить реакции, которые происходят возле двух погруженных электродов — положительно заряженного анода и отрицательно заряженного катода, подключенных к внешнему источнику питания. При включении питания молекулы воды начинают расщепляться на аноде, высвобождая крошечные ионы водорода, называемые протонами, и образуя газообразный кислород. Затем протоны проходят через мембрану и объединяются с электронами на катоде с образованием газообразного водорода.

При вставленной мембране обратного осмоса морская вода остается на катодной стороне, а ионы хлора слишком велики, чтобы проходить через мембрану и достигать анода, предотвращая образование газообразного хлора.

Но при расщеплении воды, как заметил Логан, другие соли намеренно растворяются в воде, чтобы сделать ее проводящей. Ионообменная мембрана, которая фильтрует ионы по электрическому заряду, позволяет ионам соли проходить через нее. Мембрана обратного осмоса этого не делает.

«Мембраны обратного осмоса препятствуют движению соли, но генерировать ток в цепи можно только потому, что заряженные ионы в воде перемещаются между двумя электродами», — сказал Логан.

Поскольку движение более крупных ионов ограничено мембраной обратного осмоса, исследователям необходимо было проверить, достаточно ли крошечных протонов, движущихся через поры, чтобы поддерживать высокий электрический ток.

«По сути, мы должны были показать, что то, что выглядело как грунтовая дорога, могло быть межгосударственным», — сказал Логан. «Нам пришлось доказать, что мы можем пропускать большой ток через два электрода, когда между ними была мембрана, которая не позволяла ионам соли перемещаться вперед и назад».

В ходе серии экспериментов, недавно опубликованных в Energy & Environmental Science , исследователи протестировали две коммерчески доступные мембраны обратного осмоса и две катионообменные мембраны, тип ионообменной мембраны, которая позволяет перемещать все положительно заряженные ионы в системе. .

Каждый из них был протестирован на сопротивление мембраны движению ионов, количество энергии, необходимое для завершения реакций, образование газообразного водорода и кислорода, взаимодействие с ионами хлора и повреждение мембраны.

Логан объяснил, что, хотя одна мембрана обратного осмоса оказалась «грунтовой дорогой», другая показала хорошие результаты по сравнению с катионообменными мембранами. Исследователи все еще выясняют, почему между двумя мембранами обратного осмоса была такая разница.

«Идея может сработать», — сказал он.«Мы не знаем точно, почему эти две мембраны функционируют так по-разному, но это то, что мы собираемся выяснить».

Недавно исследователи получили грант в размере 300 000 долларов от Национального научного фонда (NSF) на продолжение исследований электролиза морской воды. Логан надеется, что их исследования сыграют решающую роль в сокращении выбросов углекислого газа во всем мире.

«Мир ищет возобновляемый водород», — сказал он. «Например, Саудовская Аравия планировала построить водородный завод стоимостью 5 миллиардов долларов, который будет использовать морскую воду.Прямо сейчас воду надо опреснять. Может быть, они могут использовать этот метод вместо этого ».

История Источник:

Материалы предоставлены Penn State . Оригинал написан Тимом Шли. Примечание. Содержимое можно редактировать по стилю и длине.

Лучший способ получить водород из воды

Экспериментальный подход к расщеплению воды может привести к относительно дешевому и чистому методу крупномасштабного производства водорода, не требующему ископаемого топлива.В процессе вода расщепляется на водород и кислород с использованием тепла и катализаторов из недорогих материалов.

Марк Э. Дэвис

Разделение воды с использованием тепла является альтернативой электролизу, который является дорогостоящим и требует большого количества электроэнергии. Новый подход, разработанный профессором химического машиностроения Калифорнийского технологического института Марком Дэвисом, позволяет избежать основных проблем, связанных с предыдущими методами расщепления воды с использованием тепла. Он работает при относительно низких температурах и не производит никаких токсичных или коррозионных промежуточных продуктов.

Почти весь водород, используемый в настоящее время в промышленных процессах, таких как производство бензина, поступает в результате риформинга природного газа. Если автопроизводители начнут продавать большое количество автомобилей на водородных топливных элементах, как они заявили, что планируют это сделать в конечном итоге, водород для них также, вероятно, будет поступать из природного газа, если процессы, подобные тем, которые производятся в Калифорнийском технологическом институте, не будут коммерциализированы.

Основной подход к высокотемпературному разделению воды заключается в нагревании окисленного металла для удаления кислорода с последующим добавлением воды.В случае Дэвиса исходным материалом является оксид марганца, и реакции облегчаются за счет перемещения ионов натрия внутрь и наружу. «Без натрия температура поднялась бы намного выше 1000 ° C», — говорит Дэвис. С ним реакции протекают при температуре 850 ° C и ниже.

Технология, наверное, далека от коммерциализации. Он по-прежнему требует довольно высоких температур — например, на пару сотен градусов выше, чем те, которые используются для привода паровых турбин на угольных и атомных электростанциях.Для получения таких температур без использования ископаемого топлива, вероятно, потребуется одна из двух технологий, ни одна из которых в настоящее время не используется в коммерческих целях: высокотемпературные ядерные реакторы или солнечные тепловые установки с высокой концентрацией, которые используют кольца зеркал для более интенсивной концентрации солнечного света, чем это происходит сегодня в России. солнечные тепловые электростанции.

Подход Caltech также необходимо протестировать, чтобы убедиться, что цикл разделения воды может выполняться многократно. На данный момент исследователи показали, что одни и те же материалы можно использовать повторно пять раз, но «если вы хотите, чтобы одна из этих вещей работала по-настоящему, вам пришлось бы запускать ее тысячи циклов», — говорит Дэвис.Он говорит, что такое тестирование выходит за рамки его лаборатории. «Мы хорошо понимаем, что в этом цикле может быть много циклов, но пока вы этого не сделаете, вы не будете знать», — говорит он. «Все, что мы здесь сделали, это доказали, что химия может работать».

Скорость производства водорода также должна быть увеличена — например, путем перехода на материалы с большей площадью поверхности. И Дэвис надеется еще больше снизить необходимую температуру. Цель состоит в том, чтобы использовать этот или аналогичный процесс для использования отходящего тепла на сталелитейных заводах и электростанциях.«Это хорошее начало, но чем ниже мы спускаемся, тем лучше», — говорит он.

Новая технология разделения воды для получения чистого водорода

Фотографии исследователей, на которых изображены (слева направо): доктор Хен Дотан, Авигейл Ландман, профессор Авнер Ротшильд, профессор Гидеон Грейдер. Предоставлено: Чен Галили, пресс-секретарь Техниона.

Производство электролитического водорода влечет за собой производство водорода из воды с использованием электроэнергии, которая в идеале должна поступать из возобновляемых источников энергии, таких как солнечный свет и ветер.Хотя этот метод производства водорода может быть очень многообещающим решением для повышения устойчивости, исследователям придется преодолеть несколько ключевых проблем, чтобы он получил широкое распространение.

В недавнем исследовании, опубликованном в Nature Energy , группа исследователей из Израильского технологического института Техниона рассмотрела некоторые из этих проблем, представив новую технику расщепления воды, которая может улучшить существующие методы электролитического производства водорода.Их исследование черпает вдохновение из одного из их предыдущих исследований фотоэлектрохимического (PEC) расщепления воды, в котором они пытались объединить солнечную энергию и электролиз воды (фото) для получения водорода из солнечного света и воды.

Одной из самых серьезных проблем, описанных в этой предыдущей работе, был сбор газообразного водорода из миллионов ячеек PEC, распределенных в солнечной области. В своем исследовании исследователи из Техниона попытались разработать метод, который мог бы эффективно решить эту проблему.

«Взяв фотоэлектрические (PV) солнечные электростанции в качестве базового сценария, солнечная ферма состоит из миллионов отдельных фотоэлементов, где ток (и напряжение) собираются от каждого из них в металлическую сеть», — сказал Авнер Ротшильд. , один из исследователей, проводивших исследование, сообщил TechXplore. «Это легко с электричеством, но не с водородом».

В идеальной солнечной электростанции PEC будущего фотоэлементы будут заменены на элементы PEC, которые могут производить водород в компоненте, известном как катодный отсек, и кислород в отдельной камере, называемой анодным отсеком.Эти два отсека должны быть разделены, по крайней мере, мембраной, чтобы гарантировать, что водород и кислород не смешиваются, поскольку это может вызвать взрыв. Кроме того, газообразный водород необходимо собирать из каждой отдельной ячейки.

Создание этой установки до сих пор оказалось технически сложным и дорогостоящим, так как для этого требовался очень дорогостоящий трубопроводный коллектор. В конечном итоге это сделало нереальной реализацию решений для крупномасштабного производства водорода путем разделения воды PEC.

«Мы искали выход из этой проблемы и пришли к идее разделения кислородного и водородного отсеков в ячейке PEC на две отдельные ячейки, чтобы кислород генерировался в солнечном поле и выбрасывался в атмосферу. в то время как водород генерируется в центральном реакторе на углу поля », — сказал Ротшильд. «Разделение на две ячейки стало возможным благодаря установке еще одного набора из двух электродов, называемых вспомогательными электродами, которые заряжаются и разряжаются одновременно ионами OH , участвующими в реакции расщепления воды, тем самым опосредуя ионный обмен между двумя ячеек (что необходимо для замыкания электрической цепи).«

В своей предыдущей статье, опубликованной в Nature Materials , Ротшильд и его коллеги представили революционный новый подход к архитектуре электролиза воды (электролизеры) и фотоэлектролиза (PEC). Этот многообещающий подход, однако, создал еще одну проблему — регенерацию вспомогательных электродов, когда они насыщаются в конце производственного цикла. Исследователи предположили, что электроды можно менять местами в конце каждого цикла, но это было бы довольно громоздко, поэтому они продолжили поиск альтернативных решений.

«Затем мы обнаружили, что при нагревании вспомогательного электрода в водородной ячейке после того, как он был заряжен (чтобы стать NiOOH), он самопроизвольно выделяет пузырьки газообразного кислорода и восстанавливается до своего исходного состояния (Ni (OH) 2 )», — сказал Ротшильд. «Это открытие привело к развитию процесса расщепления воды E-TAC, который представлен в настоящей работе».

E-TAC, новая технология разделения воды, предложенная Ротшильдом и его коллегами, имеет высокую энергоэффективность 98.7 процентов, следовательно, он значительно превосходит обычные электролизеры, которые обычно имеют энергоэффективность от ~ 70 до 80 процентов для современных устройств. Еще одним преимуществом E-TAC является то, что он производит водород и кислород последовательно, тогда как в большинстве других электролизеров они производятся одновременно. Это в конечном итоге устраняет необходимость в мембране, разделяющей газы водорода и кислорода, что значительно упрощает конструкцию и сборку ячеек, а также их эксплуатацию и техническое обслуживание.

«Потенциально это может привести к значительной экономии капитальных и эксплуатационных затрат, что приведет к разработке рентабельной технологии разделения воды, которая может конкурировать с SMR (паровой риформинг метана), предлагая дешевый водород без выбросов CO 2 , при условии, что электроэнергия поступает из возобновляемых источников, таких как гидроэнергия, солнечная или ветровая энергия », — сказал Ротшильд.

При обычном электролизе воды водород и кислород всегда производятся одновременно в катодном и анодном отсеках соответственно.Отделения расположены как можно ближе друг к другу, чтобы минимизировать электрические омические потери, и они разделены мембраной, чтобы избежать образования взрывоопасной смеси H 2 / O 2 .

«Катод восстанавливает воду, генерируя водород (H 2 молекул) и гидроксид-ионы (OH ) посредством реакции, известной как HER (реакция выделения водорода)», — сказал Ротшильд. «Ионы OH мигрируют к аноду через электролит и мембрану, где они окисляются посредством OER (реакция выделения кислорода).Вместе эти две реакции (HER и OER) завершают реакцию расщепления воды: 2H 2 O 2H 2 + O 2 . «

.

В обычном электролизе воды две электрохимические реакции, описанные Ротшильдом, связаны как во времени, так и в пространстве, поскольку они происходят одновременно, в одной и той же ячейке и в непосредственной близости. Более того, эти характеристики одинаковы независимо от того, применяется ли процесс к щелочным электролизерам или электролизерам с ПЭМ.

Изображение, показывающее разницу между традиционным подходом к расщеплению воды (щелочной электролиз) и техникой расщепления воды E-TAC, предложенной исследователями.Предоставлено: Дотан и др.

В отличие от этого традиционного подхода к электролизу воды, процесс расщепления воды, разработанный исследователями, разделяет реакции HER и OER, которые вместо этого происходят в разное время и потенциально в разных частях устройства. Поэтому E-TAC может быть описан не как непрерывный процесс, а как «периодический процесс» с двумя циклами, первый из которых генерирует водород электрохимически, а второй кислород — посредством спонтанной химической реакции.

«Мы помещаем катод (тот же катод, который используется в щелочном электролизе) и анод (который отличается от анода при обычном электролизе) в электролитической ячейке и пропускаем ток между ними», — сказал Ротшильд.«Катод генерирует водород посредством реакции HER, точно так же, как это происходит в случае обычного электролиза воды, но анод делает совершенно другую вещь. Анод по существу заряжается, поглощая ионы OH , которые генерируются на катоде, и постепенно превращаются из Ni (OH) 2 (гидроксид никеля) в NiOOH (оксигидроксид никеля) ».

Интересно, что реакция, производимая на аноде, аналогична реакции, которая происходит на катоде щелочных батарей (например.грамм. Ni-MH аккумуляторы) во время зарядки. Это говорит о том, что он может хорошо работать в течение многих циклов, как и в щелочных батареях.

Однако иногда заряд анода в процессе E-TAC необходимо прервать, потому что, если он будет перезаряжен, он может начать генерировать кислород. Поэтому, когда заряд превышает определенный уровень, исследователям необходимо ограничить напряжение, прикладываемое к ячейкам, чтобы избежать возможных взрывов, возникающих в результате совместного производства кислорода и водорода.

«Чтобы продолжить процесс E-TAC, нам необходимо регенерировать заряженный анод (NiOOH) обратно в его исходное состояние (Ni (OH) 2 )», — пояснил Ротшильд. «Мы делаем это, повышая его температуру, тем самым ускоряя скорость спонтанной химической реакции между заряженным анодом и водой, которая высвобождает кислород и восстанавливает анод обратно в исходное состояние».

Технология, разработанная Ротшильдом и его коллегами, таким образом, предполагает использование тепла для управления химической реакцией, в результате которой образуется кислород, поскольку скорость реакции замедляется при низких температурах и ускоряется при высоких температурах.Генерация водорода происходит при низкой температуре или температуре окружающей среды, а образование кислорода — при высоких температурах около 95 градусов Цельсия. Вот почему исследователи решили назвать это процессом E-TAC, что означает электрохимически-термически активированный химический процесс.

«В лабораторных испытаниях, представленных в нашей статье, мы вручную переместили анод из холодной ячейки (т. Е. Стеклянного стакана, наполненного щелочным водным раствором при температуре окружающей среды) в горячую ячейку (т.е.е. стакан того же типа, но нагретый до 95 градусов Цельсия), поэтому разделение между производством водорода и кислорода происходило не только по времени, но и по месту », — пояснил Ротшильд.« Однако в реальной промышленной системе мы предвидим другой сценарий, в котором два электрода (анод и катод) и неподвижны (неподвижны), тогда как ячейка, в которой они находятся, последовательно заполняется холодными или горячими растворами электролита ».

Разделение производства водорода и кислорода, которое устраняет необходимость в мембране, разделяющей две разные камеры внутри электролитических ячеек, приводит к значительной экономии по сравнению с традиционными подходами к электролизу.Фактически, герметизация мембраны обычно является дорогостоящей, а также усложняет весь производственный процесс. Мембрана в обычных системах требует воды высокой чистоты и постоянного обслуживания, и все это не требуется в E-TAC.

Кроме того, методика, разработанная Ротшильдом и его коллегами, полностью исключает риск летучих столкновений между кислородом и водородом, а также связанных с этим взрывов. С другой стороны, в традиционных системах этот риск все еще присутствует, поскольку мембрана может порваться или ее уплотнение может сломаться.

«В настоящее время использование мембран также ограничивает давление при производстве водорода», — сказал Ротшильд. «E-TAC делает мембрану ненужной, тем самым облегчая производство водорода при гораздо более высоком давлении и устраняя некоторые из высоких затрат на последующее сжатие водорода. Более того, в новом процессе, который мы предложили, кислород образуется посредством спонтанной химической реакции между заряженными анод и вода, без использования электрического тока.Эта реакция устраняет необходимость в электричестве во время производства кислорода и увеличивает энергетический КПД с ~ 70 до 80 процентов при использовании обычных методов до беспрецедентного уровня 98.7 процентов ».

Метод, разработанный Ротшильдом и его коллегами, может снизить эксплуатационные расходы на устойчивое производство водорода и стоимость оборудования. Исследователи подсчитали, что производственные затраты на оборудование на основе E-TAC будут примерно вдвое меньше, чем на существующие технологии.

«Процесс, который мы изобрели, представляет собой концептуальный прорыв в разделении воды, и, учитывая преимущества, которые он предлагает, он может изменить правила игры и привести к новой технологии производства водорода из воды без выбросов CO 2 , что может конкурировать с SMR в производстве чистого водорода и обеспечить переход от ископаемого топлива к чистому водородному топливу », — сказал Ротшильд.

После того, как они закончили писать свою статью, исследователи из Техниона запатентовали свое изобретение и основали стартап под названием H 2 Pro с миссией разработки и распространения новой технологии разделения воды на основе техники E-TAC. Они надеются вскоре коммерциализировать эту технологию за счет увеличения размеров электродов и ячеек, используемых в их исследовании, создания и тестирования генераторов водорода на основе процесса разделения воды E-TAC, оптимизации своей схемы работы и изучения производства водорода под высоким давлением.

«Мы также планируем проводить дальнейшие академические исследования для изучения новых электродных материалов и применять передовые аналитические методы, чтобы понять корреляцию между электродным составом и микроструктурой и его функциональными свойствами, чтобы разработать следующее поколение Ni (OH) 2 — электроды для нашего процесса водоразделения E-TAC », — сказал Ротшильд. «Наша цель — повысить их производительность (чтобы мы могли запускать более длительные процессы) за счет быстрой зарядки и регенерации, чтобы обеспечить высокую производительность производства водорода.»


Исследователи совершили прорыв в производстве водородного топлива.
Дополнительная информация: Разделение выделения водорода и кислорода с помощью двухступенчатого электрохимико-химического цикла для эффективного общего расщепления воды. Nature Energy , DOI: 10.1038 / s41560-019-0462-7

Avigail Landman et al. Фотоэлектрохимическое расщепление воды в отдельных ячейках с кислородом и водородом, Nature Materials (2017). DOI: 10.1038 / nmat4876

© 2019 Сеть Science X

Цитата : Новая технология расщепления воды для получения чистого водорода (2 октября 2019 г.) получено 14 мая 2021 г. из https: // techxplore.ru / news / 2019-09-water-splitting-Technologie-Hydrogen.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *