Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Пример расчета циркуляционного насоса для частного дома: Расчет циркуляционного насоса для системы отопления: подбор по напору и расходу, формулы, примеры

Содержание

Калькулятор расчета напора циркуляционного насоса

Чтобы система отопления с принудительной циркуляцией работала с требуемой эффективностью, необходимо, чтобы насос не только обеспечивал перекачивание определенного объёма теплоносителя за единицу времени. Чрезвычайно важное значение имеет создаваемый циркуляционным насосом напор.

Калькулятор расчета напора циркуляционного насоса

Несоответствие этого параметра реальным условиям может привести к «запиранию» контуров, то есть неработоспособности отдельных участков или даже всей системы отопления в целом. Правильно определиться с нужной характеристикой прибора поможет калькулятор расчета напора циркуляционного насоса.

Ниже будут приведены и необходимые пояснения

Калькулятор расчета напора циркуляционного насоса

Перейти к расчётам

Пояснения к проведению расчетов

Циркуляционный насос имеет основную задачу — он должен обеспечивать перекачку теплоносителя в определенных объемах для доставки требуемого количества тепловой энергии на все приборы теплообмена. Провести расчет производительности — несложно: можно воспользоваться специальным калькулятором.

Но для того чтобы в полной мере справиться со своей функцией, насос должен обладать способностью преодолеть гидравлическое сопротивление контуров отопления. А оно может быть весьма немалым.

  • Во-первых, любая система отопления, даже самая простейшая – это определенная длина труб, которые обязательно обладают своим гидравлическим сопротивлением.
  • Во-вторых, серьезными препятствиями для свободного перемещения теплоносителя становятся элементы запорной и регулировочной арматуры. Особенно это актуально для систем отопления, оснащенных термостатическими приборами регулировки температуры в приборах теплообмена.

Формулы расчета суммарного гидравлического сопротивления системы – достаточно слоны и громоздки. Но в предлагаемом калькуляторе применен упрощенный алгоритм, который, однако, дает результат со вполне допустимой погрешностью, и имеющий определенный эксплуатационный резерв. Таким образом, приобретая насос с показателями, не ниже расчётных, можно быть уверенным в работоспособности системы по этому критерию.

Цены на циркуляционные насосы

циркуляционный насос

  • В калькуляторе будет запрошена длина труб в системе. Указывается полная, суммарная длина всех вертикальных и горизонтальных участков, и подачи и «обратки».
  • В поле особенностей применяемой запорно-регулировочной арматуры следует выбрать пункт, наиболее близко подходящий к условиям создаваемой системы отопления.

Что еще важно знать о циркуляционных насосах?

Подробная информация об устройстве этих приборов, об их основных характеристиках, критериях выбора, о правилах врезки в систему – в специальной статье, посвящённой циркуляционным насосам для отопления.

Выбор и расчет насоса для системы отопления частного дома.

Выбор насоса для системы отопления частного дома.

Отопительные системы, в которых вода движется по трубам за счет ее температуры и плотности – (самотеком) уходят в прошлое. Причин здесь много, но самая главная это появление современных композиционных материалов и труб на их основе. И вторая немаловажная деталь низкий КПД системы отопления с естественной циркуляцией.

Насос для системы отопления UPS во фланцевом исполнении

Увеличиваются в размерах наши частные домовладения, дачи и загородные дома. Системы отопления иначе  как многоконтурными построить просто невозможно. Естественно хорошо сбалансированную отопительную систему, работающую за счет естественной циркуляции рассчитать и построить тяжело. Но и стоит ли строить этакого монстра с довольно большими диаметрами труб, если достаточно установить в системе отопления циркуляционный насос.

При этом трубы подводящие тепло к отопительным приборам становятся небольшого диаметра и их легко спрятать в стене или за гипсокартоновой перегородкой. Чугунные радиаторы отопления всю жизнь портившие внешний вид наших квартир заменяются на элегантные биметаллические или алюминиевые. Объем воды в системе отопления уменьшается, значит такая система отопление быстрее прогревается, а при наличии в системе отопления циркуляционного насоса возрастает скорость движения воды, уменьшается разница температур между отопительными приборами и как следствие температура во всех комнатах будет одинаковой, что не вызывает дискомфорта.

И, наверное, самое главное за счет циркуляционного насоса повышается КПД

системы отопления в целом, а значит, сокращается расход топлива дорожающего год от года. А о таких устройствах, как полотенцесушители, термостаты, регуляторы температура в каждой из комнат, увлажнители и осушители воздуха при отсутствии в системе циркуляционного насоса даже нельзя мечтать.

Подбор насоса  для системы отопления дома.

К подбору циркуляционного насоса для котельной частного дома, котетжа или дачи необходимо отнестись очень ответственно. Лучше конечно поручит это профессионалам, хотя при наличии небольших базовых знаний и не слишком серьезных требованиях к системе отопления расчет можно сделать самому, основываясь на наших рекомендациях.

Циркуляционный насос подбирается по расходу воды в системе отопления в м3 в час и развиваемому напору в М, исходя из размеров дома и материалов использованных при строительстве дома. Опытный проектировщик подберет насос именно для системы отопления в вашем доме. Если же вы готовы взять ответственность при выборе на себя, то рекомендуем выбрать насос с автоматической регулировкой или хотя бы несколькими скоростями работы. Он конечно дороже, но зато позволит скорректировать ошибки монтажа системы отопления или выбора циркуляционного насоса. У насосов с так называемым мокрым ротором имеется регулировка скорости вращения, и поэтому можно в определенных пределах подрегулировать циркуляцию теплоносителя и исправить  ошибку с подбором насоса.

И так для подбора циркуляционного насоса для частного дома вам необходимо:

Насос UPS с резьбовым или муфтовым подключением

1. Знать высоту от точки установки насоса до верхней точки самого верхнего отопительного прибора.

2. Отапливаемую площадь помещения.

3. Определить ориентировочно  сопротивление вашей системы отопления. Для примера с нее и начнем.

Трубу так называемые в народе пластмассовые (Pilsa или PPR PN10, 20,25) специально не заостряю внимание на материале – свойства примерно одни и те же. Диаметр Ду40 с чугунными батареями сопротивление системы отопления 1м. Ду 32 с алюминиевыми радиаторами отопления — 1,2 – 1,5м. Ду25 с биметаллическими отопительными приборами – 2м.

Выбираем напор, развиваемый насосом. Например, высота от насоса до верхней точки самого верхнего отопительного прибора у нас 4 метра (в доме два этажа, трубы тонкие, отопительные приборы биметаллические) насос должен развивать напор 4+2 = 6 метров.

Теперь чтобы найти м3/час, отапливаемую мощность переводим в необходимое тепло 10 м отапливаемой площади это 1 кВт, если стены теплые и толстые берем 0,8 кВт тонкие и холодные 1,2 кВт.

Дом теплый площадью 200 м2, стены толстые. 200/10х0,8=16 кВт или 16х0,86=13,76 ккал

Теперь определитесь, какая разница по температуре в системе отопления вам нужна, мы рекомендуем 8-10 градусов, не более и не менее. Больше плохо для котла и комфорта, меньше вам придется приобрести более мощный и дорогой насос, к тому же потребляющий больше электроэнергии. Выбираем 10 градусов.

13,76/10=1,37 м3/час

Следовательно для теплого двухэтажного дома площадью 200 м2, с пластиковыми трубами спрятанными в стенах и биметаллическими радиаторами вам необходим циркуляционный насос с производительностью 1,4 м3/час при напоре 6 метров. Во избежание ошибки эти характеристики у циркуляционного насоса должны быть на второй скорости, а сам насос следует выбирать трехскоростным.

Данным условиям соответствует циркуляционный насос с мокрым ротором

UPS 25-70 фирмы GRUNDFOS. Цена фирменного насоса 140 Евро, китайского 70-80 Евро. Электроэнергии он потребляет 150 Вт в час.

Если бы мы использовали более толстые трубы и алюминиевые радиаторы, то подошел бы циркуляционный насос UPS 25-60 180, а он уже стоит 110 Евро. Этот насос потребляет электроэнергии меньше – 110 Вт в час.

Как видите проектирование системы отопления, и подбор циркуляционного насоса лучше делать до начала работ, так вы еще сможете сэкономить на материалах и эксплуатационных затратах.

О том, как правильно смонтировать циркуляционный насос для системы отопления читайте в следующей статье.

Парамонов Ю.О. ООО предприятие Энергостром, 2013 год.

Как Выполняется Расчет Насоса для Водоснабжения, Выбор

Чтобы схема водоснабжения работала бесперебойно главное правильно подобрать насос

Для подачи воды из скважины или колодца или создания ее рециркуляции используют насосы. Чтобы система работала качественно и бесперебойно, а также, для того чтобы не переплачивать за модель с чрезмерные характеристиками, их нужно подбирать. Рассмотрим, как производиться расчет насоса для водоснабжения и подбираются параметры этих агрегатов.

Водопровод

Кроме методики расчета обычным способом приведем и несколько примеров работы с онлайн-калькуляторами.

В начале рассмотрим системы подачи холодной воды, то есть обычный водопровод, затем затронем и горячее водоснабжение (сокращенно ГВС). Причем рассказывать будем не о выборе мощных насосов, которые устанавливаются на станциях водопроводной сети — наша статья о водоснабжении небольших домов и коттеджей.

Если дом подключен к центральному водопроводу, то в большинстве случаев нужное давление создается на станциях водоканала или водонапорными башнями. Поэтому насосы в этом случае, как правило, не нужны. Исключение — дома повышенной этажности, где нормальный напор от водопровода не позволяет подать воду на самые верхние этажи — там ставят повысительные насосы.

Интересный факт. Столбы воды высотой 10 метров создает давление в одну атмосферу (0,1МПа), поэтому разница напора на первом и третьем этажах примерно на эту величину. Если взять к примеру самое высокое здание мира «Бурж Халифа» высотой 828 метров то там для того чтобы вода хотя бы дошла на самый верхний этаж нужен напор около 84т атмосфер. Естественно никакие трубы его не выдержат, поэтому насосы установлены ступенчато через несколько этажей.

Для водоснабжения таких зданий напора создаваемого в водопроводе недостаточно, обязательно нужны повысительные насосы

При автономной системе водоснабжения без насосов не обойтись. Как правило, используют либо обычные (поверхностные) либо погружные (глубинные) насосы. Привод их за очень редким исключением электрический.

Выбор зависит от конкретной ситуации или от желания заказчика. Рассмотрим, чем они различаются и наиболее важные характеристики, которые нужны будут нам при проведении расчета.

Обычные насосы

Обычный (поверхностный) насос для водоснабжения

Для подачи воды почти исключительно используются центробежные насосы. В них жидкость захватывается лопастями в центре вращающегося рабочего колеса и отбрасывается за счет центробежной силы на его периметр, где находится напорный патрубок. В центре, где отбирается вода, естественно создается разряжение.

Внимание. При запуске такого мотора без воды (сухой ход), не встретив сопротивления жидкости, колесо, особенно у мощных насосов больших размеров, может раскрутиться очень быстро и сорваться с вала или повредиться другим образом. Поэтому такую ситуацию предупреждают правильным запуском, установкой на входе обратных клапанов (они не дают стечь воде из корпуса) и применением специальной автоматики.

Обычно используются две разновидности насосов — с сальниковым уплотнением приводного вала и более современные с плавающим ротором.

  • У первых вал привода крыльчатки проходит через корпус (улитку) в котором вращается рабочее колесо. Это место уплотняется сальниками или торцовыми уплотнениями. Вал может опираться на собственные подшипники, которые расположены в консоли и соединяться с электромотором через муфту.
  • Еще один вариант такого насоса – моноблок. В нем рабочее колесо насаживается непосредственно на крыльчатку. Первый тип более надежный и простой в обслуживании и ремонте. Второй более компактный.
  • У насосов с плавающим ротором уплотнений в месте прохода вала нет. В нем, как и понятно из названия, ротор электродвигателя находится в корпусе объемно связанным с улиткой. Электромагниты статора создают вращающий момент через стенку, вода охлаждает ротор и смазывает его подшипники.

Такие насосы компактны и надежны. Минусом является сложность ремонта — просто заменить мотор не получиться, нужно полностью разбирать насос.

К тому же стандартные электродвигатели в таком агрегате не применишь. Впрочем, они редко выходят из строя и не нуждаются в обслуживании на протяжении всего срока службы (многие производители это гарантируют).

Характеристики насосов

Теперь перейдем к самому важному.

Тип обычного насоса выбранного для вашей автономной системы водоснабжения влияет на следующее:

  • стоимость монтажа системы автономного водоснабжения;
  • затраты на ее эксплуатацию;
  • периодичность обслуживания;
  • сложность и стоимость монтажа;
  • размеры места установки насоса.

В остальном при расчете нужно ориентироваться на более важные характеристики:

  1. Глубина всасывания: он определяет отметку ниже насоса, с которой он может забрать воду. Определяется обычно в метрах.
  2. Напор: он выражается в давлении насоса на выходе.
  3. Производительность: то, сколько кубометров за час сможет перекачать насос.

Также нужно обращать внимание на такие цифры как энергопотребление (мощность) при равных характеристиках желательно отдавать предпочтение более экономным моделям. Однако цена на них, как правило, более высокая, поэтому желательно просчитывать за какое время более дорогая модель окупит себя (впрочем, это экономический расчет).

Если срок эксплуатации меньше срока окупаемости дорогого насоса, то, скорее всего, не стоит переплачивать, а взять более «прожорливый» к электричеству насос.

Глубинные насосы

Глубинные насосы

Они отличаются от обычных тем, что погружаются в воду, то есть в обсадную трубу скважины, колодец или даже обычный водоем. По конструкции они отличаются от обычных насосов, такими особенностями.

  1. Чаще всего в них не одно рабочее колесо, а несколько, вплоть до десятка, расположенные друг за другом. Всас одного соединяется с выходом следующего (лабиринтная система).
  2. Если обычные насосы чаще всего имеют горизонтальное расположение вала, то глубинные всегда вертикальной компоновки. Это связано с расположением их в ограниченных по диаметру обсадных трубах скважины, которые тоже вертикальны (установка в колодце или водоеме частный случай, на который проектировщики обращают мало внимания).
  3. Электродвигатели тоже особой конструкции. Они не имеют оребрения корпуса, так как охлаждаются водой.

Внимание. Нельзя запускать глубинный насос не погруженным, он не рассчитан на такой режим и может сразу сгореть.

Также моторы этих агрегатов имеют более вытянутые вдоль оси габариты с меньшим диаметром. Это тоже связано с установкой в скважинах.

Кроме центробежных, для небольших систем водоснабжения используют и вибрационные, погружные насосы. Это, к примеру, всем известный «Ручеек» (на фото ниже). По принципу работы он похож на древние поршневые насосы (в том числе и велосипедный), правда ход поршня меньше, частота колебаний больше (поэтом

Количество насосов в отопительной системе

В небольших частных домах можно встретить гидравлический разделитель, коллектор и несколько насосных групп. Но сколько должно быть насосов в системе отопления в зависимости от мощности котла и площади дома, узнаем в данной статье.

 

Для чего нужен насос в отопительной системе?

Насос необходим для циркуляции носителя тепла от котла отопления к приборам и обратно. Дополнительные насосы обычно нужны, если насос котла не справляется и не обеспечивает необходимую циркуляцию в отопительной системе. Такая проблема может быть из-за большой длины ветки.

Отдельно устанавливать насосно-смесительный узел, который обеспечивает подмес носителя тепла для снижения температуры, можно в системе «Теплый пол».

Но, так ли нужны дополнительные насосы в системе небольшого дома с 3 ветками радиаторов, где насос котла самостоятельно можно продавить систему.

Обычно устанавливают группы быстрого монтажа или насосы из-за непонимания гидравлики, а именно неумения произвести расчет расхода теплоносителя и напора. В таком случае думают только о своем заработке.

Отопительная система с одним насосом

К такой системе можно отнести частный дом площадью до 200 кв.м, с хорошим утеплением.

Настенные котлы обычно имеют циркуляционный насос и мощность до 30 кВт. Если учесть теплопотребление дома 100 Вт на 1 кв.м., то получаем 300 кв.м. Но необходимо учесть гидравлическое сопротивление отопительной системы из пластиковых труб, поэтому принимаем 200 кв.м.

Если котел настенного типа, то значит он электрический или газовый. Если второй вариант, то он имеет выпуски для подключения бойлера косвенного нагрева, а если электрический, то необходим 3-х ходовой кран для приоритета нагрева бойлера.

Как выбрать количество контуров отопления?

Есть установленные ограничения длины веток:

  1. Для петли Тихельмана до 50 м.
  2. Для тупиковой разводки до 25 м.

Для дома 200 кв.м. должна быть 1 попутка или 2 тупиковые ветки.

При помощи тройников производится распределение в котельной или на каждом этаже с устройством шаровых кранов. На обратке можно установить грязевик.

Если в доме установлена система теплого пола, то лучше устроить группу автономной циркуляции.

 

Где нужно установить гидрострелку и несколько насосов?

Если дом имеет большую площадь, а еще бассейн и другие помещения, которые требуют отопления, то в таком случае можно использовать несколько насосов. 1 насос не сможет обеспечить нормальную циркуляции носителя тепла для такого количества помещений.

 

В таких домах обычно используют котлы напольного типа, которые не оснащены циркуляционными насосами. Если он есть, то его функцией является отвод тепла от котла до гидравлического разделителя.

Как выбрать циркуляционный насос?

Главной функцией насоса является прокачка нужного количества воды через котел для ее нагрева, а также через радиаторы, чтобы они отапливали помещение. Если насос выбрать неправильно, то появятся проблемы в отоплении.

Большинство проблем системы отопления связаны с неправильным выбором диаметров труб, а не с насосом.

Если насос выбран слишком мощный, то появится шум из-за большой скорости теплоносителя. Если напор насоса недостаточен, то последние радиаторы не будут греться, а котел станет тактовать. Вода будет нагреваться, но не прокачиваться с нужной скоростью через радиаторы отопления.

Расчет циркуляционного насоса

Для того чтобы выбрать циркуляционный насос, необходимо знать следующие данные:

  1. Q- Вт, тепловая мощность отопительной системы. Определяется тепловым расчетом. На вскидку можно посчитать 100Вт/м2, но это не совсем верно.
  2. G- кг/час, расход теплоносителя в системе отопления, определяемый по формуле:

 

  1. H - напор циркуляционного насоса (м или Па).

 

Формула расчета напора циркуляционного насоса отопления, где:

 R - потери напора, вызванные трением в трубах (Па/м), можно принять 100-150 Па/м),

L – длина самой длинной ветки (подача+обратка от котла до самого дальнего радиатора), (м)

ZF – коэффициент местного сопротивления, для термостатического вентиля (1,7), арматуры/фасонных деталей(1,3),

10000 - коэффициент пересчета единиц (1 м = 10 000 Па).

Если дом 2 этажа 10х10 и Q=20 кВт, то расход воды будет следующим:

 

Для того чтобы найти напор насоса можно посчитать длину трубы до дальнего радиатора и от него до котла. Если отопительная система еще не установлена, то можно произвести примерный расчет:

  1. От котельной на 2 этаже по диагонали будет дальний радиатор.
  2. Необходимо измерить периметр дома и прибавить высоту до крыши. Примерно это длина стояка подачи-обратки по вертикали и длина подачи-обратки по горизонтали.
  3. 2 этажа 10х10 6 м, получаем 46 м. Из них 23 м – подача и 23 м – обратка.

 

Таким образом, можно посчитать напор насоса.

 

На графике нужно найти рабочую точку и ближайшие показатели будут вам подходить.

 

Читайте также:

расчет параметров и выбор оборудования

Начиная с древних времен человек стремился обеспечить комфортные условия в своем жилище. В каменный век — это просто костер, горевший в пещере, затем с развитием технологий строительства появились дома и печи в них. Развивалась наука, появлялись новые технологии, росли возможности техники. Достижения теплоэнергетики и ряда смежных наук позволили создать современные отопительные системы — тепловые насосы и котлы, использующие энергию газа, нефти и электричества. Отопительные системы частных домов являются автономными.

Автономные системы обогрева

Известно несколько разновидностей автономных систем обогрева. Это системы с котлами, использующими газ, твердое или жидкое топливо, и входящие в моду тепловые насосы. Самая простая из них — система с открытым расширительным баком, она энергонезависима и монтируется с учетом обеспечения естественной циркуляции воды. Труба горячей воды от котла поднимается вверх для создания напора внутри системы, а затем горячая вода распределяется по приборам отопления.

Реальная эксплуатация «открытых» систем показала, если применить нагнетательный насос для отопления, то ускоряется нагрев помещения, увеличивается эффективность и снижаются расходы. Насос устанавливается в «обратку» вблизи котла. Подходящий насос для отопления для дома купить можно в магазине или заказать в сети.

Антифриз в таких системах не используется из-за значительного испарения в открытом баке (расширительном). Теплоноситель — вода. Для уменьшения отложений на внутренних стенках трубопроводов лучше использовать смягченную воду с небольшим количеством растворенных минеральных веществ.

Если же система отопления предназначена для двух или трехэтажного дома, то в таком случае возникают дополнительные проблемы, которые требуют решения. В такие системы отопления входят значительное число батарей отопления, разветвлений, задвижек и других элементов, которые будут создавать значительное гидравлическое сопротивление.

Расчет параметров насоса

Для создания необходимого напора и преодоления гидродинамического сопротивления системы применяют насосы для отопления частных домов, которые обеспечат активную циркуляцию теплоносителя. Чтобы система отопления работала эффективно нужно выполнить расчет циркуляционного насоса. Он позволит осуществить оптимальный подбор насоса для отопления частного дома и обеспечить в нем комфортные условия.

Основные задачи нагнетательного насоса:

  1. создание такой величины давления в системе, которая преодолеет гидравлическое сопротивление;
  2. обеспечить достаточное количество теплоносителя.

Исходя из этих предпосылок, насосы на отопление в частном доме подбираются только после расчета необходимого количества тепла для дома и гидравлического сопротивления контура. На основании расчетов приобретаются циркуляционные насосы для отопления частных домов цена, и качество обычно соответствуют наилучшему соотношению.

Для расчета производительности применяется формула вида — Q=0,86R/TF-TR, где:

  • Q — необходимый расход куб. м/час;
  • R — выбранная тепловая потребность, кВт;
  • TF — TR = 20.

Величина (R) может иметь следующие величины:

  1. нормативы для частных домов — 100 Вт/м2;
  2. для многоэтажных домов — 70 Вт/м2;
  3. заводские помещения — 30-50 Вт/м2;
  4. помещения с очень хорошей теплоизоляцией — 30 Вт/м2.

Гидравлическое сопротивление системы

Расчет производительности и гидравлического сопротивления дают ответ на такой вопрос — как правильно подобрать насос для системы отопления и обеспечить ее эффективную работу в отопительный сезон.

Для расчета применяется формула такого вида — H=1,3*(R1L1+R2L2+Z1+….+ZN)/10000, в которой:

  • L1,L2 — общая длина линий трубопровода — м;
  • R1, R2 — падение давления на подаче и «обратке» — Па/метр;
  • Z1,…..ZN — сопротивление элементов системы — Па.

В технических паспортах узлов и элементов системы указывается гидравлическое сопротивление комплектующих. Для основных элементов оно составляет:

  1. котел — 1-2 кПа;
  2. тепломер — 1-15 кПа;
  3. вентиль — 5-10 кПа;
  4. смеситель — 1-15 кПа;
  5. фильтр (новый) — 15-20 кПа;
  6. водонагреватель — 2-10 кПа;
  7. обратный клапан — 5-10 кПа.

Выбор насоса

Нагнетательные насосы для отопления частных домов как выбрать подходящий? Ошибиться трудно, ведь современные насосы для отопления для дома цена, которых в высшей степени соответствует наилучшему соотношению цена/качество — трехскоростные.

Возможность изменения скорости вращения двигателя изменяет производительность насоса в широких пределах.

Скорости переключаются рычагом, но некоторые типы насосов можно подключить к датчикам температуры и обеспечить автоматическую регулировку производительности прибора.

Вышеописанный расчет только один из вариантов. Известны и другие методы расчета. Все методики рассчитывают работу контура при максимальной нагрузке, значит, в реальности нагрузка будет несколько ниже, поэтому можно приобретать насосы для отопления частных домов цена которых меньше, а характеристики несколько хуже расчетных. Более мощный насос тоже не следует покупать, ведь расходы увеличатся, а работа системы не станет лучше.

Полезные советы специалистов

Приобрести циркуляционный насос можно в магазинах или заказать в интернете. Перед покупкой желательно получить консультацию специалиста по системам отопления. Обычно менеджеры, которые реализуют насосы различных фирм, знают о них все. От вас они могут потребовать некоторые исходные данные, которые помогут сделать оптимальный выбор. Обычно спрашивают о том, какой котел будет установлен, величину общей площади жилища, наличие утепления дома, этажность и т. п.

Советы специалистов, которые помогут сделать выбор:

  • лучше справляются с нагрузкой насосы с «мокрым» ротором;
  • дольше работают модели с корпусами из бронзы, латуни или нержавеющей стали;
  • в случае появления шума в системе нужно проверить отсутствие воздуха в системе;
  • при запуске включить максимальные обороты двигателя насоса.

Альтернативное отопление

В постоянной борьбе с ростом цен был изобретен так называемый тепловой насос. Он энергию из воздуха, из грунта и из воды. Его принцип действия довольно прост. Тепловой насос работает как холодильник наоборот. Поэтому альтернативное отопление частного дома тепловой насос обеспечит полностью, если сделаны правильные расчеты на основании термодинамики. Расчеты сложные и их лучше поручить специалисту. При этом следует знать, что тепловой насос, извлекая тепло из внешней среды, передает его через компрессор в отопительную систему.

Отопительная система имеет все элементы обычной — батареи, краны, смесители, насос для отопления в частном доме и другие, а роль котла отопления взял на себя компрессор, который является источником тепла. Таким образом, и для альтернативной системы отопления, в виде теплового насоса, все атрибуты и элементы сохраняются, за исключением котла. Но отопительный котел можно легко присоединить к системе для резерва, на случай поломки теплового насоса. Но, подбор насоса для отопления дома нужно произвести для обеспечения циркуляции воды.

Виды тепловых насосов

Сама идея об извлечении и использовании тепла окружающей возникла давно, но ее активное претворение в жизнь тепловых насосов началось недавно. Их активному внедрению способствовали появившиеся надежные и производительные циркуляционные насосы для отопления частных домов, с успехом используются в тепловых насосах. Для хорошей работы теплового насоса нужно перекачивать большие объемы теплоносителя для извлечения тепла из грунта или водоема в тепловой насос.

Следовательно, насос для системы отопления частного дома цена и производительность которого выбраны оптимально, хорошо работают не только в газовых системах отопления, но успешно применяются в тепловых насосах.

Существующие тепловые насосы классифицируются по методу извлечения тепла.

Окончательный подбор насоса для системы отопления частного дома делается на основании довольно сложных расчетов. Различают три основных вида:

  1. воздушный — абсорбирует тепло из воздуха;
  2. геотермальный — отбирает тепло из грунта, наземных и подземных вод;
  3. вторичного тепла — отбор тепла с канализации или центрального отопления, применяется в промышленности.

Исходя из технических возможностей подбирается насос для отопления в частном доме, и его установка. Для создания автономной системы наиболее предпочтителен второй вариант — геотермальный тепловой насос. Тип насосов может быть замкнутым или открытым. Второй способ применяется при наличии больших объемов чистой воды, т. к. после отъема тепла вода выливается назад в водоем.

В настоящее время можно купить тепловой насос для отопления дома, геотермальный, один из трех типов:

  • насос геотермальный водный;
  • насос геотермальный с глубинным расположением коллектора;
  • насос геотермальный горизонтальный.

Прежде чем купить геотермальный насос для системы отопления частного дома нужно проконсультироваться у специалистов и сделать предварительные расчеты. Многие интернет-магазины предлагают выезд специалиста, бесплатный расчет за 24 часа и доставку. А если будет заказана установка насоса в систему отопления частного дома, фирма обеспечит гарантийное обслуживание и бонусы при покупке теплового насоса.

Окупить тепловой насос для отопления в частном доме цена которого значительно выше цены систем стандартного отопления, потребуется несколько лет. Но если учесть большой срок работы подобного оборудования и отсутствие платы за тепло, то экономическая выгода очевидна. Спрос на тепловые насосы для отопления дома увеличится, и они станут конкурировать с газовым отоплением при уменьшении цены покупки и установки. Благодаря неоспоримым преимуществам геотермального отопления — тепловой насос для системы отопления частного дома оправдан экономически.

Визуальный глоссарий по насосам

Присоединиться к форуму


Отзыв, не стесняйтесь

Абсолютное давление : давление измеряется в фунтах на квадратный дюйм (фунтах на квадратный дюйм) в британской системе мер и в кПа. (килопаскаль или бар) в метрической системе. Большинство измерений давления производятся относительно к местному атмосферному давлению. В этом случае мы добавляем букву «g» к измеренному давлению. единицы, такие как фунты на кв. дюйм или кПа изб. Значение местного атмосферного давления меняется с высотой. (см. это давление vs.диаграмму высот на этой странице). Это не то же самое, если вы находитесь на уровне моря (14,7 фунтов на квадратный дюйм) или Высота 4000 футов (12,7 фунт / кв. Дюйм). В некоторых случаях необходимо измерить значения давления. которые меньше местного атмосферного давления, и в этих случаях мы используем абсолютную единицу давления, psia или кПа абс.

p a (psia) = p r (psig) + p атм (psia), patm = 14,7 psia на уровне моря.

, где p a - абсолютное давление, p r - относительное давление и p атм абсолютное значение давления местного атмосферного давления.

и в метрической системе

p a (кПа абс.) = P r (кПа изб.) + P атм (кПа абс.), Patm = 100 кПа абс. На уровне моря.



Аккумулятор : используется в системах бытового водоснабжения для стабилизируйте давление в системе и избегайте циклического включения и выключения насоса при каждом нажатии где-то в доме открывается. Гибкий баллон находится под давлением воздуха под давлением желательно для достижения правильной скорости потока в самой дальней точке дома или системы.В виде вода вытягивается из резервуара, баллон расширяется, заполняя объем и поддерживая давление. Когда баллон больше не может расширяться, давление воды падает, реле давления насоса активируется при низком давлении, и насос запускается и заполняет водяной объем гидроаккумулятора. Мочевой пузырь предотвращает попадание воздуха в раствор с водой, что снижает частоту повторная герметизация аккумулятора.

Насосы часто продаются в комплекте с аккумулятором.


Законы сродства : законы сродства используются для прогнозирования изменения диаметра, необходимого для увеличения расхода или общего напора насоса. Они также могут прогнозировать изменение скорости, необходимое для достижения другого расхода и общего напора. Законы сродства могут применяться только в обстоятельствах, когда система имеет высокий напор трения по сравнению со статическим напором, и это потому, что законы сродства могут применяться только между точками производительности, которые имеют одинаковую эффективность.см. законы сходства.pdf

На следующем рисунке показана система, у которой напор трения (кривая A) выше статического напора, для которого применяются законы сродства, по сравнению с кривой B, система с высоким статическим напором по сравнению с напором трения, где сродство законы не применяются.

Область применения законов сродства для осевого насоса.

Законы сродства выражаются тремя следующими соотношениями, где Q - скорость потока, n - обороты насоса, H - общий напор, P - мощность.Вы можете предсказать рабочее состояние для точки 2, основываясь на знании условий в точке 1 и наоборот.

Процесс получения законов сродства предполагает, что две сравниваемые рабочие точки имеют одинаковую эффективность. Взаимосвязь между двумя рабочими точками, скажем, 1 и 2, зависит от формы кривой системы (см. Следующий рисунок). Все точки, лежащие на системной кривой A, будут иметь примерно одинаковую эффективность.В то время как точки, лежащие на системной кривой B, нет. Законы сродства не применяются к точкам, которые принадлежат кривой системы B. Кривая системы B описывает систему с относительно высоким статическим напором по сравнению с кривой системы A, которая имеет низкий статический напор.

Уменьшение диаметра Чтобы снизить затраты, корпуса насосов рассчитаны на установку нескольких различных рабочих колес. Кроме того, можно удовлетворить множество рабочих требований, изменив внешний диаметр заданного радиального рабочего колеса.Уравнение Эйлера показывает, что напор должен быть пропорционален (nD) 2 при условии, что треугольники выходных скоростей остаются неизменными до и после резки. Это обычное предположение, которое приводит к:

, которые применяются только к данному рабочему колесу с измененным D и постоянным КПД, но не геометрически подобная серия рабочих колес. Если это так, то сродство законы могут быть использованы для прогнозирования производительности насоса при различных диаметрах для одинаковая скорость или разная скорость для одного и того же диаметра.Поскольку на практике рабочие колеса разные диаметры геометрически не идентичны, автор раздела назвал Параметры производительности в Руководстве по насосу рекомендуют ограничить использование этой техники. до изменения диаметра рабочего колеса не более 10-20%. Чтобы избежать обрезки рабочего колеса рекомендуется выполнять поэтапную обрезку измерение результатов. На каждом этапе сравнивайте прогнозируемую производительность с измерить один и при необходимости отрегулировать.

Воздухововлечение (заглатывание) : воздух на всасывании насоса может значительно снизить производительность насоса. Следующая диаграмма от Goulds показывает, что даже 2% воздуха по объему в жидкости могут повлиять на производительность.

Снижение производительности из-за наличия воздуха в насосе

Есть много причин вовлечения воздуха, воздух может поступать во всасывающий бак из-за неправильного подключения трубопроводов

или из-за утечки во всасывающей линии насоса (при условии, что условия таковы, что во всасывающей линии создается низкое давление).

Утечка во всасывающей трубе под низким давлением приведет к попаданию воздуха в насос.

Центробежные насосы могут быть сконструированы для обработки большего количества воздуха, если это необходимо. Вязкостные насосы могут обрабатывать большие количества воздуха.


ДОПУСТИМОЕ НАПРЯЖЕНИЕ ТРУБЫ : допустимое или максимальное напряжение трубы может быть рассчитано с использованием кода ASME Power Piping Code B33.1. Допустимое напряжение трубы фиксируется кодом для данного материала, конструкции и температуры, исходя из чего можно рассчитать допустимое или максимальное давление, разрешенное правилами.


ANSI : Американский национальный институт стандартов. Термин, часто используемый в связи с классификацией фланцев, ANSI класс 150, 300 и т. Д. См. Этот отрывок из кода ASME B16.5 для определения номинального давления фланцев класса ANSI.


ANSI B73.1 : это стандарт, который применяется к конструкции насосов с односторонним всасыванием. Целью настоящего стандарта является то, что насосы всех источников питания должны быть взаимозаменяемыми по размерам в отношении монтажных размеров, размера и расположения всасывающих и нагнетательных патрубков, входных валов, опорных плит и фундаментных болтов.

На следующем изображении показаны размеры, которые были стандартизированы (источник: Руководство по насосам МакГроу-Хилла)

На следующем изображении показано поперечное сечение насоса с односторонним всасыванием, изготовленного в соответствии со стандартом B73.1 (источник: Руководство по насосам McGraw-Hill).

На веб-странице Института МакНалли даются комментарии по поводу стандартов насосов и рекомендуются различные изменения, которые следует применить к насосам перед заказом, а также модификации, которые увеличат срок службы после получения насоса.


Anti Vortex Plate : Антивихревая пластина предотвращает образование вихрей и и, следовательно, вовлечение воздуха в насос, заставляя возникающий вихрь обойти пластину а затем во всасывающую трубу. Вихревое движение не может поддерживаться, и вихрь рассеивается и не может образовывать если путь слишком длинный и искаженный. Источник: NFPA 22, Стандарт для резервуаров с водой для частной противопожарной защиты. Выпуск 2008 г. . Вы можете найти здесь весь код.


API 610 : American Petroleum Industry, стандарт насосов, принятый в нефтяной промышленности. Цель состоит в том, чтобы сделать насосы более прочными, герметичными и надежными.


ASME : Американское общество инженеров-механиков. Код B31.3 для нагнетательных трубопроводов котла - это код, который часто используется в связи с термином ASME, максимально допустимое давление можно рассчитать с помощью этого кода.

Файл справки этого апплета показывает некоторые выдержки из B31.3 Код ASME.


Атмосферное давление : обычно означает давление в окружающей среде насоса. Атмосферное давление изменяется с высотой, оно составляет 14,7 фунтов на квадратный дюйм на уровне моря и уменьшается с повышением над уровнем моря. Значение местного атмосферного давления необходимо для расчета NPSHA насоса и предотвращения кавитации.

Взгляните на это видео об интересном эксперименте с атмосферным давлением.

Изменение атмосферного давления с высотой.



Насос осевого потока : относится к конструкции центробежного насоса для высокого расхода и низкого напора. По форме крыльчатка похожа на пропеллер. Значение конкретного числа оборотов будет показывать, подходит ли конструкция насоса с осевым потоком для вашего применения. см. насосы с осевым потоком.

Они широко используются в штате Флорида для контроля уровня воды в каналах низинных сельскохозяйственных угодий. Вода перекачивается через низкие земляные стены, называемые бурмами, в основные водозаборные каналы Южного Флоридского округа по управлению водными ресурсами.



Задние лопатки : см. Односторонний насос.


Задняя стенка : см. Односторонний насос.


Барометрическое давление : такое же, как атмосферное давление, давление в окружающей среде. Атмосферное давление - это термин, используемый в метеорологии и часто выражаемый в дюймах ртутного столба.


Опорная плита : для всех насосов требуется какое-либо стальное основание, которое удерживает насос и двигатель и крепится к бетонному основанию.

, эти опорные плиты изготовлены в соответствии со стандартом ANSI B73.1 и поэтому подходят для любых насосов, построенных по тому же стандарту.


Точка наилучшего КПД (B.E.P.) : точка на кривой производительности насоса, которая соответствует наивысшему КПД. В этот момент на рабочее колесо действует минимальная радиальная сила, обеспечивающая плавную работу с низким уровнем вибрации и шума.

Рисунок 1 Важные точки характеристики насоса.

Зависимость радиальной силы, действующей на крыльчатку, от скорости потока (источник: Справочник по насосам МакГравилла).

При выборе центробежного насоса важно, чтобы расчетная рабочая точка находилась в пределах желаемой области выбора, показанной на следующем рисунке.

см. Статьи о максимальной эффективности на этой веб-странице: pumpworld.htm


пластик Бингема : жидкость, которая ведет себя ньютоновским образом (т.е. постоянная вязкость), но для его движения требуется определенный уровень напряжения.

Для получения дополнительной информации см. Неньютоновские жидкости.pdf


Манометр Бурдона : трубка Бурдона - это герметичная трубка, которая отклоняется в ответ на приложенное давление и является наиболее распространенным типом механизма измерения давления.


Чаша (вертикальный турбинный насос) : корпус одноступенчатого вертикального турбинного насоса.


байпасной линии: линия используется для подключения выпускной стороне насоса к зона низкого давления, часто всасывающая цистерна насоса, с целью регулирования потока в системе и / или привести рабочую точку насоса в благоприятную область кривой производительности насоса.

Чтобы узнать больше о системах управления, www.driedger.ca представляет собой превосходный обзор типов Системы управления центробежным насосом

.Благодаря Уолтеру Дридгеру из Colt Engineering a консалтинговая инжиниринговая фирма для нефтехимической промышленности в Альберте, Канада.

Программное обеспечение для расчетов : выполнение расчетов насосной системы и насоса выбор может быть длительным ручным процессом с возможностью для многих ошибок. Угощайтесь получать точные, последовательные и безошибочные результаты расчета общего напора с помощью программного обеспечения PIPE-FLO. Это программное обеспечение может разрешить сложные системы с несколькими ответвлениями, управлять регулирующими клапанами и другое оборудование и поможет вам сделать окончательный выбор насоса с помощью электронной кривые производительности насоса, предоставляющие настраиваемые функции поиска для получения оптимальный выбор.3 / ч (куб метр в час).


Корпус : Корпус насоса, в котором находится рабочее колесо, син. улитка.


Кавитация : схлопывание пузырьков, которые образуются в ушке рабочего колеса из-за низкого давления. Взрыв пузырьков на внутренней стороне лопаток вызывает точечную коррозию и эрозию, которая повреждает рабочее колесо. Конструкция насоса, давление и температура жидкости, поступающей на всасывание насоса, определяют, будет ли жидкость кавитационной.

Рис. 2 Профиль давления внутри центробежного насоса.

, когда жидкость проходит через насос, давление падает, если оно достаточно низкое, жидкость испаряется и образует маленькие пузырьки. Эти пузырьки будут быстро сжиматься давлением, создаваемым быстро движущейся лопаткой рабочего колеса. Сжатие создает характерный шум кавитации. Наряду с шумом удар лопнувших пузырьков на поверхности лопасти вызывает постепенную эрозию и точечную коррозию, которые повреждают крыльчатку.

Кавитационное повреждение рабочего колеса насоса Robot BW5000 (изображение предоставлено моим другом по насосу Бартом Дуйвелааром).

Вы можете присоединиться к дискуссионному форуму pumpfundamentals по центробежному насосу по адресу https://groups.yahoo.com/neo/groups/pumpfundamentals/info


Центробежная сила : сила, связанная с вращающимся телом. В случае насоса вращающееся рабочее колесо толкает жидкость к задней части лопасти рабочего колеса, обеспечивая круговое и радиальное движение.Тело, которое движется по круговой траектории, связано с центробежной силой.

Попробуйте этот эксперимент, найдите пластиковый стаканчик или другой контейнер, в дне которого можно проделать маленькую дырочку. Наполните его водой и прикрепите к нему шнурок, и теперь, когда вы угадали, начинайте его крутить.

Рис. 3 Эксперимент с центробежной силой.


Чем быстрее вы вращаете, тем больше воды выходит из маленького отверстия, вы нагнетали воду, содержащуюся в чашке, с помощью центробежной силы, как в насосе.


Характеристическая кривая : такая же, как кривая рабочих характеристик.


Обратный клапан : устройство для предотвращения потока в обратном направлении. Насос не должен вращаться в обратном направлении, так как это может привести к повреждению и утечке. Обратные клапаны не используются в некоторых приложениях, где жидкость содержит твердые частицы, такие как суспензии целлюлозы или суспензии, поскольку обратный клапан имеет тенденцию к заклиниванию. Обратный клапан с функцией быстрого закрытия также используется для предотвращения гидравлического удара.см. также коэффициент CV обратного клапана.

Различные обратные клапаны (источник: The Crane Technical Paper № 410)


Уравнение Колбрука : уравнение для расчета коэффициента трения f потока жидкости в трубе для ньютоновских жидкостей любой вязкости. также диаграмму Муди на рис.9. Затем этот коэффициент используется для расчета потерь на трение для прямой длины трубы.

Чтобы понять, как решить уравнение Коулбрука для коэффициента трения f с помощью итерационной техники Ньютона-Рафсона, загрузите этот файл в формате pdf.

Вот интересная статья об альтернативной явной и очень точной версии уравнения Коулбрука.


Насос измельчителя : насос с зубчатым краем рабочего колеса, который может разрезать крупные твердые частицы и предотвращать засорение.

Насос измельчителя

для получения дополнительной информации см. Specialty_pumps.pdf


Закрытое или открытое рабочее колесо : лопасти рабочего колеса зажаты в кожухе, который поддерживает постоянный контакт жидкости с лопастями рабочего колеса.Этот тип крыльчатки более эффективен, чем крыльчатка открытого типа. Недостатком является то, что каналы для жидкости более узкие и могут забиться, если жидкость содержит примеси или твердые частицы.

В случае открытого рабочего колеса лопатки рабочего колеса открыты, а края не сдерживается пеленой. Рабочее колесо этого типа менее эффективно, чем рабочее колесо закрытого типа. Недостаток - в основном потеря эффективности по сравнению с крыльчаткой закрытого типа. и преимуществом является увеличенный доступный зазор, который поможет устранить любые примеси или твердые частицы проходят через насос и предотвращают засорение.


также прочитал эту статью о закрытых и открытых рабочих колесах, написанную Джоном Козелом, президентом компании Sims Pump Valve Company, перепечатанную с его разрешения. Вы можете просмотреть компанию Sims.



Коэффициент CV : коэффициент, разработанный производителями регулирующих клапанов, который показывает, какой поток может выдержать клапан при падении давления в 1 фунт / кв. Дюйм. Например, регулирующий клапан с CV 500 сможет пропускать 500 галлонов в минуту при перепаде давления в 1 фунт / кв.Коэффициенты CV иногда используются для других устройств, таких как обратные клапаны.

CV-коэффициент для обратного клапана вафельного типа.


Cutwater: Узкое пространство между рабочим колесом и кожухом в зоне нагнетания кожуха.

- это область, в которой возникают пульсации давления, каждая лопасть, пересекающая водорезку, производит импульс. Чтобы уменьшить пульсации в критическом процессе, добавлено больше лопаток.


Уравнение Дарси-Вайсбаха : уравнение, используемое для расчета потери напора на трение для жидкостей в трубах, коэффициент трения f должен быть известен и может быть рассчитан с помощью уравнений Коулбрука, Свами-Джайна или диаграммы Муди.


Мертвый напор : ситуация, которая возникает, когда напор насоса закрыт либо из-за засорению линии или непреднамеренно закрытому клапану. В этот момент насос будет работать на максимум. Запорный головы, жидкость будет рециркуляцию внутри насоса, что приводит к перегреву и возможному повреждению.


Диффузор: расположен в области нагнетания насоса. Диффузор представляет собой набор неподвижных лопаток, часто являющихся неотъемлемой частью корпуса, что снижает турбулентность за счет более постепенного снижения скорости.


Мембранный насос : поршневой насос прямого вытеснения. Насосы с двойной диафрагмой обеспечивают плавный поток, надежную работу и способность перекачивать широкий спектр вязких, химически агрессивных, абразивных и нечистых жидкостей.Они используются во многих отраслях промышленности, таких как горнодобывающая, нефтехимическая, целлюлозно-бумажная и др.

Воздушный клапан направляет сжатый воздух в одну из камер, это толкает диафрагму через камеру, и жидкость с другой стороны диафрагмы вытесняется наружу. Диафрагма в противоположной камере подтягивается к центру шатуном. Это создает всасывание жидкости в камере, когда тарелка диафрагмы достигает центра насоса, она толкает шток пилотного клапана, направляя импульс воздуха в воздушный клапан.Он перемещается поперек и направляет воздух к противоположной стороне насоса, изменяя работу насоса. Он также открывает воздушную камеру для выпуска.

мембранный насос этого типа приводится в действие пневматическим воздухом, поэтому он может использоваться там, где электрические приводы не являются предпочтительными, является самовсасывающим и может работать всухую в течение коротких периодов времени, работать с опасными жидкостями практически любой вязкости, может перекачивать твердые частицы до определенных размеров .

Wilden - крупный производитель таких насосов https: // www.psgdover.com/en/wilden/


Дилатант : Свойство жидкости, вязкость которой увеличивается с деформацией или перемещением.

Для получения дополнительной информации см. Non-newtoninan fluids.pdf


разряда статического напора : Разница в высоте между уровнем жидкости в резервуаре, если выпускной конец трубы погружен в воду, и осевой линии насоса. Если конец выпускной трубы открыт в атмосферу, то это разница между отметкой конца трубы и высотой поверхности жидкости всасывающего резервуара.Эта головка также включает в себя любую дополнительную напорную головку, которая может присутствовать на поверхности жидкости разгрузочного резервуара, например, как в резервуаре под давлением.

Рисунок 4 Нагнетание, всасывание и общий статический напор.

См. Это руководство для получения дополнительной информации о разрядке статического напора.


Насос двойного всасывания : жидкость направляется внутри корпуса насоса к обеим сторонам рабочего колеса. Это обеспечивает очень стабильные гидравлические характеристики, поскольку гидравлические силы сбалансированы.Рабочее колесо находится посередине вала, который поддерживается с каждого конца подшипником. Также N.P.S.H.R. насоса этого типа будет меньше, чем у аналогичного насоса с односторонним всасыванием. Благодаря своей надежности они используются в самых разных отраслях промышленности. Еще одна важная особенность заключается в том, что доступ к валу рабочего колеса и подшипникам обеспечивается снятием верхней крышки, при этом все трубопроводы могут оставаться на месте. Этот тип насоса обычно имеет двойную спиральную камеру.

Следующее изображение предоставлено Flow Serve Corporation.

Этот эскиз поможет визуализировать поток внутри насоса.


Насос с двойной спиральной камерой : насос, в котором непосредственная спиральная часть рабочего колеса отделена перегородкой от основного корпуса корпуса. Такая конструкция снижает радиальную нагрузку на рабочее колесо, делая работу насоса более плавной и без вибрации.

Насос с двойной спиральной камерой (источник изображения - Руководство по насосам МакГроу-Хилла).

см. Дополнительную информацию в базе данных типов насосов

Для получения дополнительной информации см. Этот файл pdf от Cornell Pumps


поникнувших кривые : по аналогии с нормальным профилем за исключением конца низкого потока, где голова поднимается, то падает, как он попадет в запорном голове точку. см. centrifugal-pump-tips.htm


Эффективность: : КПД насоса можно определить путем измерения крутящего момента на валу насоса с крутящим моментом счетчик, а затем рассчитывает эффективность на основе скорости насоса, давления или общего напора и расход, создаваемый насосом.Стандартное уравнение крутящего момента и скорости дает мощность.

Мощность, потребляемая насосом, пропорциональна общему напору, расходу, удельному весу и эффективности.

для метрической версии этой формулы см. На этой странице.

Измеряется расход и общий напор, а затем определяется эффективность.

КПД рассчитывается для различных значений расхода и отображается на той же кривой, что и насос. производительность или характеристическая кривая. Когда построено несколько кривых производительности, одинаковая эффективность ценности связаны, чтобы обеспечить линии равной эффективности.Это полезный наглядный помощник, поскольку он указывает области различных кривых насоса с высоким КПД, которые будут предпочтительными областями или области, в которых должен работать выбранный насос. Наивысший КПД для данной характеристики насоса составляет известный как B.E.P. (точка максимальной эффективности), в этой области визуального глоссарий.

Центробежные насосы бывают разных конструкций, некоторые из них больше подходят для работы в условиях низкого расхода и высокого напора. и другие для высокого расхода с низким напором и некоторые промежуточные.Они созданы для достижения максимальной эффективность для конкретного приложения.

Конкретное число оборотов указывает, какой тип насоса больше подходит для вашего применения. Влияние конкретной скорости на конструкцию насоса и способы ее расчета: доступно в этой области визуального глоссария.

Эффективность можно спрогнозировать. Несколько лет назад был проведен обзор типовых промышленных насосов. Средняя эффективность была нанесена на график в зависимости от конкретной скорости, и она показывает, какова максимальная эффективность пределы указаны для насосов в различных условиях эксплуатации.Более подробная информация доступна на страница советов по центробежным насосам.

Удельная скорость всасывания - еще один параметр, который может повлиять на эффективность. Это число является мерой какой поток можно пропустить через насос, прежде чем он начнет дросселировать (достигнет верхнего предела потока) и кавитирует (давление на всасывании становится достаточно низким, чтобы жидкость испарялась). Больше информация доступна в визуальном глоссарии здесь.


Насос с односторонним всасыванием : типичный центробежный насос, рабочая лошадка в промышленности.Также известен как спиральный насос, стандартный насос, горизонтальный всасывающий насос. Конструкция с обратным извлечением является стандартной функцией и позволяет легко снимать рабочее колесо и вал вместе с приводом и подшипником в сборе, сохраняя при этом трубопровод и двигатель на месте.

Некоторые из его компонентов:

1. Корпус, улитка

2. Рабочее колесо, лопатки, наконечники лопаток, задняя пластина, передняя пластина (кожух), задние лопатки, каналы для выравнивания давления или балансировочные отверстия

3.Задняя крышка параллельно плоскости всасывания крыльчатки

4. Сальниковая коробка - корпус сальника / механического уплотнения или набивка / фонарное кольцо

5. Вал насоса

6. Корпус насоса

7. Корпус подшипника

8. Подшипники

9. Уплотнения подшипников

11. Вытяжка назад

12. Подшипники

13. Уплотнения подшипников

Балансировочные отверстия

Задние лопасти

Эквивалентная длина : метод, используемый для определения потерь на трение в фитингах (см. Следующий рисунок).Эквивалентную длину фитинга можно найти с помощью номограммы ниже. Эквивалентная длина затем добавляется к длине трубы, и с этой новой длиной трубы вычисляются общие потери на трение в трубе. Сегодня этот метод используется редко. Текущий метод расчета потерь напора на трение в фитингах см. На tutotial3.htm.


Градиент энергии : см. Гидравлический градиент.


Экспеллер : гидродинамическое уплотнение, которое обеспечивает уплотнение без добавления воды в сальник, особенно полезно для жидких шламов.


(источник изображения: статья Worthington Pumpworld, см. Ниже)

см. Статью о уплотнении экспеллера на этой веб-странице: pumpworld.htm


Внешний Шестеренчатый насос : поршневой насос прямого вытеснения. Две прямозубые шестерни размещены в одном корпусе с небольшим зазором. Жидкость попадает между полостями зубьев шестерен и корпусом, вращение шестерен перекачивает жидкость. Они также используются для промышленной перекачки под высоким давлением и измерения чистых отфильтрованных смазочных жидкостей.

Viking Pumps является основным поставщиком этих насосов


Плоская кривая : напор очень медленно уменьшается по мере увеличения потока, см. Centrifugal-pump-tips.htm


Разделитель потока : см. Разделитель потока на всасывании.


Приемный клапан : обратный клапан, который устанавливается на конце всасывающей трубы насоса, часто вместе со встроенным сетчатым фильтром.


Forum : pumpfundamentals forum - это место, где вы можете задать вопросы о центробежных насосах и других типы, а также поделиться своими знаниями с другими.Ценный ресурс. Присоединиться здесь.


Потери на трение (насос) : на следующей диаграмме показано распределение потерь на трение и их относительный размер в насосе.

Источник: Центробежные и осевые насосы A.J. Степанов, опубликованный John Wiley and Sons 1957.


Трение (труба) : Сила, возникающая как реакция на движение. Все жидкости при движении подвержены трению. Чем выше вязкость жидкости, тем выше сила трения при той же скорости потока.Трение возникает внутри, когда один слой жидкости движется относительно другого, а также на границе раздела жидкостной стенки. Шероховатые трубы также вызывают сильное трение.


Потери напора на трение (труба) : потеря напора на трение дается уравнением Дарси-Вайсбаха и во многих таблицах, например, в справочнике Cameron Hydraulic. Обычно он выражается в футах жидкости на 100 футов трубы.

Таблица коэффициентов потери напора для воды из справочника Cameron Hydraulic.

Для получения дополнительной информации о фрикционной головке.


Коэффициент трения f (труба) : коэффициент трения f требуется для расчета потери напора на трение. Он задается диаграммой Муди, уравнением Коулбрука или уравнением Свами-Джайна. Значение коэффициента трения будет зависеть от того, является ли поток жидкости ламинарным или турбулентным. Эти режимы течения можно определить по значению числа Рейнольдса.


Передняя крышка : см. Насос с односторонним всасыванием.


Передняя панель : см. Односторонний насос.


Сальник : см. Сальник.


Насосы с мокрым ротором : см. Насосы без уплотнения.


Уравнение Хазена-Вильямса : в настоящее время это уравнение используется редко, но широко использовалось в прошлое и дает хорошие результаты, хотя имеет много ограничений, одно из которых состоит в том, что он не учитывает вязкость. Поэтому его можно применять только к жидкостям с вязкостью, аналогичной вязкости воды при 60F.Он был заменен на Дарси-Вайсбах и уравнение Коулбрука. Интересно, что NFPA (Национальная ассоциация противопожарной защиты) требует чтобы уравнение Хазена-Вильямса использовалось, например, для расчета трения в спринклерных системах.

Использование коэффициентов C в приведенном выше уравнении Хазена-Вильямса приведено в таблице ниже.
Источником этого уравнения является книга Cameron Hydraulic Data book.

Коэффициенты уравнения Хазена-Вильямса C.


Напор: Высота, на которую насос может перемещать жидкость. Голова - это тоже форма энергии. В насосных системах существует 4 различных типа напора: вертикальный или статический, напор, скоростной напор и потеря напора на трение. Для получения дополнительной информации о голове см. Этот учебник.

Единица измерения напора, также известная как удельная энергия или энергия на единицу веса жидкости, выражается в футах или метрах. см. также tutorial2

Попробуйте это веб-приложение, чтобы измерить напор.


Гидравлический уклон: Все параметры энергии системы (например, скоростной напор и потери на трение в трубопроводах и фитингах) преобразуются в напор и отображаются на вертикальном чертеже установки. Это помогает визуализировать, где расположены все энергетические термины, и убедиться, что ничего не упущено.


Рабочее колесо: Вращающийся элемент насоса, который состоит из диска с изогнутыми лопатками. Рабочее колесо сообщает жидкости движение и давление.

См. Этот документ о рабочих колесах Института Макнелли

.

Рис. 5 Основные части насоса и терминология.

Рабочее колесо состоит из задней пластины, лопаток, а для закрытых рабочих колес - передней пластины или кожуха. Он может быть оборудован компенсационными кольцами, обратными лопатками и балансировочными отверстиями.

, подробнее о различных типах крыльчатки см. Impeller.htm.


Ушко рабочего колеса: та область центробежного насоса, которая направляет жидкость в область лопастей рабочего колеса.Диаметр проушины определяет, сколько жидкости может попасть в насос при заданной скорости потока, не вызывая чрезмерного падения давления и кавитации. Скорость внутри глаза будет контролировать NPSHR, см. Эту диаграмму.

см. Также centrifugal-pump-tips.htm

Для получения дополнительной информации о терминологии деталей насоса см. Эту веб-страницу.


Индуктор: Индуктор - это устройство, прикрепленное к проушине рабочего колеса, которое обычно имеет форму винта, которое помогает увеличить давление на входе в лопасть рабочего колеса и делает перекачиваемыми вязкие или жидкости с высоким содержанием твердых частиц.Его также можно использовать для уменьшения NPSHR.

(источник изображения: Teikoku).

см. Статьи о индукторах на этой странице: pumpworld.htm


Насос с внутренним зацеплением : поршневой насос.

Принцип насоса с внутренним зацеплением был изобретен Йенсом Нильсеном, одним из основателей компании Viking Pump. В нем используются две вращающиеся шестерни, которые не зацепляются со стороны всасывания насоса, чтобы создать пустоты, которые позволяют атмосферному давлению нагнетать жидкость в насос.Промежутки между зубьями шестерни транспортируют жидкость по обе стороны от серпа к стороне нагнетания, а затем шестерни повторно входят в зацепление для выпуска жидкости. Внутренняя шестерня Viking имеет внешнюю ведущую шестерню (ротор показан оранжевым цветом), которая вращает внутреннюю ведомую шестерню (холостой ход показан белым).

Viking Pumps является основным поставщиком этих насосов.


Струйный насос : струйный насос - это широко распространенный бытовой насос для водоснабжения.Он имеет интересную продуманную конструкцию, которая может поднимать воду из колодца (до 25 футов) и позволяет ему работать без обратного клапана на всасывании и, кроме того, не требует заливки. Сердцем конструкции является трубка Вентури (источник воды - со стороны нагнетания крыльчатки), которая создает низкое давление, создавая разрежение на всасывании и позволяя насосу поднимать жидкости.


Коэффициент K : коэффициент, который обеспечивает потерю напора для фитингов.Он используется со следующим уравнением

Коэффициент К для различных фитингов можно найти во многих публикациях. В качестве примера на рис. 6 показана взаимосвязь между коэффициентом К винтового колена 90 ° и диаметром (D). Тип фитинга определяет соотношение между потерями на трение и размером трубы.

Примечание: этот метод предполагает, что поток является полностью турбулентным (см. Демаркационную линию на диаграмме Муди на рисунке 9).

Рисунок 6 Коэффициент K vs.диаметр фитинга (источник: Инженерный журнал Гидравлического института)

Еще один хороший источник для подбора коэффициента K - это брошюра с техническими данными крана.

Рис. 7 Значения коэффициента K по отношению к коэффициенту трения для стандартного тройника.

Технический документ Crane дает значение K для фитинга в терминах f T , как в этом примере для стандартного тройника.


Как и в случае данных, показанных на рисунке 6, потери на трение для фитингов основаны на предположении, что поток очень турбулентный, фактически, он настолько турбулентен, что число Рейнольдса больше не является фактором, а шероховатость трубы основной параметр, влияющий на трение.Это можно увидеть на диаграмме Муди. На диаграмме есть линия, указывающая место, где начинается полная турбулентность.

Термин f T , используемый Крейном, является коэффициентом трения и совпадает с коэффициентом, определяемым уравнениями Коулбрука или Свами-Джайна.


Когда число Рейнольдса становится большим, значение f T (с использованием уравнения Свами-Джайна) становится:


, а также Технический документ по кранам №410

предполагает, что шероховатость материала будет соответствовать новой стали, значение которой составляет 0,00015 футов. Следовательно, предыдущее уравнение для f T принимает следующий вид:


Таким образом, значение коэффициента К легко рассчитывается на основе диаметра фитинга, коэффициента трения f T и коэффициента умножения для каждого типа фитинга.


Ламинар : отчетливый режим потока, возникающий при низком числе Рейнольдса (Re <2000).Он характеризуется слоями жидких частиц, движущихся друг мимо друга без перемешивания.


Рис. 8 Профиль скорости ламинарного потока.


Кулачковый насос : поршневой насос. В основном используются в пищевых продуктах, поскольку они обрабатывают твердые частицы, не повреждая их. Лепестки приводятся в движение внешними синхронизирующими шестернями, поэтому лопасти не контактируют. Жидкость перемещается по внутренней части корпуса в карманах между выступами и корпусом, зацепление выступов заставляет жидкость проходить через выпускное отверстие под давлением.Они также предлагают непрерывные и прерывистые обратимые потоки и могут работать без жидкости в течение коротких периодов времени. Типичное применение - в следующих отраслях: пищевая, фармацевтическая, целлюлозно-бумажная, безалкогольная, химическая и биотехнологическая.

Viking Pumps является основным поставщиком этих насосов https://www.vikingpump.com/.


Насос с низким NPSH : насос, предназначенный для работы с низким NPSH. в наличии, обычно есть индуктор.см. индуктор

для получения дополнительной информации см. Specialty_pumps.pdf


Торцевое уплотнение : название соединения, которое изолирует жидкость в насосе, предотвращая ее выход в стыке между корпусом и валом насоса. На следующем изображении (источник: Справочник по насосам от McGraw-Hill) показано типичное механическое уплотнение. Механическое уплотнение - это уплотнительное устройство, которое образует подвижное уплотнение между вращающимися и неподвижными частями. Они были разработаны, чтобы преодолеть недостатки компрессионного уплотнения.Утечка может быть снижена до уровня, соответствующего экологическим стандартам государственных регулирующих органов, а затраты на техническое обслуживание могут быть ниже.


Ртуть (Hg) : металл, который остается жидким при комнатной температуре. Это свойство делает его полезным при использовании в тонкой вертикальной стеклянной трубке, поскольку небольшие изменения давления можно измерить как изменения высоты столбика ртути. Дюйм ртутного столба часто используется в качестве единицы измерения уровня вакуума или давления ниже атмосферного.

Соотношение между единицами измерения давления в дюймах ртутного столба, фунтах на квадратный дюйм и фунтах на квадратный дюйм.


Минимальный расход

Большинство центробежных насосов не должны использоваться при расходе менее 50% от B.E.P. (точка максимальной эффективности) расход без рециркуляционной линии. (Что такое B.E.P.?) Если ваша система требует расхода 50% или меньше, используйте линию рециркуляции, чтобы увеличить поток через насос, сохраняя низкий расход в системе, или установите привод с регулируемой скоростью.

см. Также глоссарий по насосам BEP

Как устанавливается минимальный расход центробежного насоса (ответ Гидравлического института)

Факторы, определяющие минимально допустимую скорость потока, включают следующее:

* Повышение температуры жидкости - обычно устанавливается как 15 ° F и приводит к очень низкому пределу. Однако, если насос работает при отключении, он может сильно перегреться.

* Радиальная гидравлическая нагрузка на рабочие колеса - это наиболее серьезная проблема для насосов с одной спиральной камерой, и даже при расходе до 50% от BEP может вызвать сокращение срока службы подшипников, чрезмерный прогиб вала, выход из строя уплотнений, трение рабочего колеса и поломку вала.

* Рециркуляция потока в крыльчатке насоса - это также может происходить ниже 50% BEP, вызывая шум, вибрацию, кавитацию и механические повреждения.

* Характеристическая кривая общего напора - некоторые кривые насоса наклоняются в сторону отключения, а некоторые кривые VTP показывают наклон кривой. Следует избегать работы в таких регионах.

Не существует стандарта, который устанавливает точные пределы минимального расхода в насосах, но в документе «Центробежные и вертикальные насосы ANSI / HI 9.6.3-1997 - допустимая рабочая область» обсуждаются все задействованные факторы и даются рекомендации для «предпочтительного рабочего региона». .


Минимальный NPSHA : запас прочности или минимальный NPSHA, который должен быть доступен, частично зависит от количества энергии всасывания насоса. Уровень энергии всасывания насоса увеличивается на:

  • Диаметр всасывания корпуса
  • Скорость насоса
  • Удельная скорость всасывания
  • Удельный вес жидкости

Все, что увеличивает скорость проушины рабочего колеса насоса, скорость потока насоса или удельный вес жидкости. гравитация, увеличивает энергию всасывания насоса.

Гидравлический институт предложил эти рекомендации для минимального NPSHA в зависимости от уровня энергии всасывания.

Рекомендации по минимальному коэффициенту маржи NPSH NPSHA / NPSHR

Уровни энергии всасывания

Заявка Низкий Средний Высокая
Нефть 1.1-а 1,3-а
Химическая промышленность 1,1-а 1,3-а
Электроэнергия 1,1-а 1,5-а 2,0-а
Атомная энергетика 1,5-б 2.-а 2,5-а
Градирни 1,3-б 1,5-а 2.0-a
Вода / сточные воды 1,1-а 1,3-а 2,0-а
Общая промышленность 1,1-а 1,2-а
Целлюлоза и бумага 1,1-а 1,3-а
Строительные службы 1,1-а 1,3-а
Жидкий раствор 1.1-а
Трубопровод 1,3-а 1,7-а 2,0-а
Вода / еда 1,2-а 1,5-а 2,0-а

"a" - или 0,6 м (2 фута) в зависимости от того, что больше

"b" - или 0,9 м (3 фута) в зависимости от того, что больше

"a" - или 1,5 м (5 футов) в зависимости от того, что больше

см. Статьи о рекомендациях по NPSH на этой веб-странице: pumpworld.htm


Рама двигателя : NEMA (Национальная ассоциация производителей электрооборудования) устанавливает стандарты, в соответствии с которыми создаются электрические асинхронные двигатели. Каждый размер рамы (например, рама 254T) соответствует определенным размерам. Количество места, необходимого для сборки насоса, будет зависеть от размера и конструкции двигателя. Легко найти диаграмму, в которой указаны размеры двигателя в зависимости от размера корпуса (см. Следующую таблицу).

, но я смотрел долго и трудно найти схему, которая обеспечивает VS. размер кадраобороты и л.с., и вот она:


Диаграмма Муди : графическое представление уравнений ламинарного и турбулентного (Коулбрука) течения.

Рисунок 9 - диаграмма Муди, графическое представление уравнения ламинарного потока и уравнения Коулбрука для коэффициента трения f.


Имеется положительная высота всасывания, нетто (N.P.S.H.A.) : Доступна положительная высота всасывания. Напор или удельная энергия на всасывающем фланце насоса минус напор пара жидкости.см. NPSHA.PDF

См. Этот калькулятор веб-приложения для N.PS.H.A.

Также для тех, кому нужно знать о НПША, но ненавидит это скучное слово.


Требуется чистый положительный напор на всасывании (N.P.S.H.R.) : Требуется положительный чистый напор на всасывании. Производители оценивают необходимое значение NPSH для насоса при определенном расходе, общем напоре, скорости и диаметре рабочего колеса. Это определено моим измерением. см. также NPSHR.PDF

На следующем рисунке представлена ​​оценка NPSHR для центробежных насосов (источник: Centrifugal Pump Design & Application by Val.С.Лабанофф и Роберт Р. Росс, предоставленные другом по насосам Рави Санкаром.

Вы можете присоединиться к дискуссионному форуму центробежного насоса по адресу https://groups.yahoo.com/neo/groups/pumpfundamentals/info

Для увеличения изображения скачайте npshr-predic.pdf


Ньютоновская жидкость : жидкость, вязкость которой постоянна и не зависит от скорости сдвига (деформации). Для ньютоновских жидкостей существует линейная зависимость между скоростью сдвига и касательным напряжением между слоями.

Для получения дополнительной информации см. Non-newtoninan fluids.pdf

Рис. 10 Отношение сдвига / деформации для ньютоновской жидкости.

Если вы хотите понять, на что похожа неньютоновская жидкость, и что означает изменение вязкости со скоростью сдвига, попробуйте этот эксперимент.

В большой неглубокой миске приготовьте раствор из примерно 1 части воды и 2 частей кукурузного крахмала, попробуйте быстро перемещать эту жидкость пальцами.Когда пальцы двигаются медленно, раствор ведет себя так, как ожидалось, не оказывая сопротивления. Чем быстрее вы пытаетесь двигаться через жидкость, тем выше сопротивление. При такой скорости сдвига раствор почти ведет себя как твердое тело. Если вы двигаете пальцами достаточно быстро, они будут скользить по поверхности. Вот что подразумевается под вязкостью, зависящей от скорости сдвига. Сравните это поведение с поведением патоки; вы обнаружите, что даже несмотря на то, что меласса вязкая, ее вязкость очень мало изменяется со скоростью сдвига.Меласса течет легко, независимо от скорости движения.

Посмотрите видео-презентацию этого эксперимента.


Рабочая точка : точка (расход и общий напор), в которой работает насос. Он расположен на пересечении кривой системы и кривой производительности насоса. Он соответствует расходу и напору, необходимым для процесса.

Рис. 11 Рабочая точка на кривой производительности насоса.


Упаковка : см. Сальник.


Насос частичного выброса : см. Радиально-пластинчатый насос.


Периферийный (регенеративный) насос : также известен как регенеративный или регенеративный турбинный насос. Это насосы малой производительности (150 галлонов в минуту или 34 м3 / ч) с высоким напором (5400 футов или 1645 м). Рабочее колесо имеет короткие лопатки на периферии, которые проходят через кольцевой канал. Жидкость входит между двумя лопастями рабочего колеса и приводится в круговое движение, это добавляет энергии частицам жидкости, которые движутся по спиралевидному пути от входа к выходу.Каждый набор лопаток непрерывно добавляет энергию частицам жидкости.

Периферийные насосы более эффективны в условиях низкого расхода и высокого напора, чем центробежные насосы, они также требуют гораздо меньше NPSHA, чем эквивалентный центробежный насос. Они также могут обрабатывать жидкости с содержанием до 20% увлеченные газы. Их можно запускать в РЕВЕРСИИ, что иногда может быть интересной способностью в определенных случаях.

Они используются в широком диапазоне бытовых и промышленных применений.

Подробное описание принципа работы см. На этой странице веб-сайта Mepco.
, а также от Roth Pump Co.



Кривая производительности : График зависимости общего напора от расхода для конкретной модели насоса, диаметра рабочего колеса и скорости (синх. Характеристика, кривая производительности по воде). см. рисунок 1

Для получения дополнительной информации о производительности или характеристической кривой см. Этот учебник


Шероховатость трубы : Измерение средней высоты выступов, образующих шероховатость на внутренней поверхности труб.Шероховатость измеряется во многих местах и ​​затем усредняется, обычно она определяется в микродюймах RMS (среднеквадратичное значение). Скачать или просмотреть карту шероховатости трубы в формате pdf


Давление в трубопроводе (максимальное) : в некоторых случаях может потребоваться проверка максимального номинального значения ваших труб, чтобы избежать разрыва из-за чрезмерного давления. Код ASME для напорных трубопроводов B31.3 обеспечивает максимальное напряжение для труб из различных материалов. Также необходимо проверить рейтинг фланца трубы.

для получения дополнительной информации см. Max_piping_oper_press.pdf

Таблица допустимых напряжений трубопровода из кода ASME для трубопроводов высокого давления B31.3


Насос Пито : также известен как насос с вращающимся корпусом. Этот насос специализируется на расходах от низких до средних при высоком давлении. Он часто используется для подачи душа под высоким давлением на бумагоделательных машинах.

Насос Пито (роторно-струйный)

см. Дополнительную информацию в базе данных типов насосов


Давление : Приложение силы к телу, вызывающее большее или меньшее сжатие внутри жидкости.В статической жидкости давление меняется с высотой.

Вес жидкости является причиной гидростатического давления. Тонкий слой жидкости изолирован, чтобы можно было визуализировать окружающие его силы. Если сделать ломтик очень тонким, давление сверху и снизу будет одинаковым. Срез сжимается сверху и снизу векторами силы, противоположными друг другу. Жидкость в срезе также оказывает давление в горизонтальном направлении на стенки трубы. Эти силы уравновешиваются напряжением в стенке трубы.Давление внизу среза будет равно весу жидкости над ним, деленному на площадь.

Вес столба жидкости высотой (z) составляет:

Давление (p) равно весу жидкости (F), деленному на площадь поперечного сечения (A) в точке, где рассчитывается давление:

где F: сила от веса жидкости

В: объем

g: ускорение свободного падения (32.17 фут / с 2 )

: плотность жидкости в фунтах массы на единицу объема

: плотность жидкости или удельный вес в фунтах силы на единицу объема


Напор : выражение энергии, а именно энергия на единицу веса вытесненной жидкости. Более подробная информация о напорных.

Нам часто требуется рассчитать напор, соответствующий давлению. Давление может быть преобразовано в напор или высоту столба жидкости для любой жидкости.Однако не все жидкости имеют одинаковую плотность. Например, вода имеет плотность 62,34 фунта на кубический фут, тогда как плотность бензина составляет 46,75 фунта на кубический фут. Удельный вес - это отношение плотности жидкости к плотности воды при стандартных условиях. По определению вода имеет удельный вес (SG) 1. Чтобы преобразовать давление в напор, необходимо знать удельный вес SG жидкости. Удельный вес жидкости:


где - плотность жидкости, а - плотность воды при стандартных условиях.С

где - плотность жидкости в единицах веса. Постоянная gc требуется для обеспечения взаимосвязи между массой в фунтах-фунтах и ​​силой в фунтах-силах.

Количество (= 62,34 фунта / фут 3 для воды при 60 ° F) составляет:

После упрощения соотношение между высотой столба жидкости и давлением в нижней части столбца составляет:


Винтовой насос. : поршневой насос.Эти насосы идеально подходят для жидкостей, с которыми другие насосы не справятся. например - пасты, смазки, шламы и т. Д. Они состоят только из одного ведомого металлического ротора, вращающегося внутри статора с эластомерной футеровкой (эластичного).

Жидкость поступает во впускное отверстие всасывания под давлением или под действием силы тяжести и по мере того, как РОТОР 1 вращается внутри гибкого резинового СТАТОРА 2, образуя плотно закрытые полости 3, которые перемещают жидкость к выпускному отверстию. Перекачивание начинается в момент поворота РОТОРА.Жидкость действует как смазка между насосными элементами.


Псевдопластический : Свойство жидкости, вязкость которой медленно увеличивается со скоростью сдвига.

Для получения дополнительной информации см. Non-newtoninan fluids.pdf


Насосы в качестве турбин (PAT) : Насосы, используемые в качестве турбин.

Для получения дополнительной информации см. Насосы как турбины


Насос с радиальным потоком : относится к конструкции центробежного насоса для среднего напора и среднего расхода или высокого напора и низкого расхода.Значение конкретного числа оборотов будет показывать, подходит ли радиальная конструкция насоса для вашего применения. см. насосы с радиальным потоком.


Радиально-пластинчатый насос : также известен как насос частичного выброса или пластинчатый насос. Установленный на раме, торцевое всасывание, нагнетание по центральной линии, насос ANSI, разработанный специально для работы с агрессивными химическими веществами при малых расходах.

Пластинчатый насос

см. Дополнительную информацию в базе данных типов насосов


Насос с утопленным рабочим колесом : иногда называют вихревым насосом.Это смонтированный на раме, выдвижной насос с торцевым всасыванием, утопленным рабочим колесом и тангенциальным нагнетателем, разработанный специально для работы с определенными объемными или волокнистыми твердыми телами, жидкостями с воздухом или газом или жидкостями, чувствительными к сдвигу.

Насос с утопленным рабочим колесом

см. Дополнительную информацию в базе данных типов насосов

см. Также эту статью от компании Lawrence Pump.


Рециркуляция : при низком и высоком расходе по сравнению с расходом на B.E.P. жидкость начнет рециркулировать или двигаться в обратном направлении на всасывании и на выходе.

Точно установлено, что повреждения кавитационного типа, наблюдаемые на входных лопатках и не связанные с недостаточным NPSH, могут быть напрямую связаны с насосом, работающим в зоне рециркуляции всасывания. Подобные повреждения на концах нагнетательных лопаток также могут быть связаны с работой насоса в зоне рециркуляции нагнетания.

Рециркуляция всасывания и нагнетания может происходить в разных точках, как показано на характеристической кривой ниже.


Регенеративный насос : см. Периферийный насос, также известный как регенеративный турбинный насос.


Число Рейнольдса : число Рейнольдса пропорционально соотношению скорости и вязкости, чем выше число (более 4000 для турбулентного потока), тем более турбулентный поток и меньшая вязкость оказывает влияние. При высоких числах Рейнольдса (см. Линию перехода к полной турбулентности на диаграмме Муди) шероховатость трубы становится определяющим фактором потерь на трение.Чем ниже число Рейнольдса (менее 2000 для ламинарного потока), тем более актуальной является вязкость жидкости. Большинство применений находятся в режиме турбулентного потока, если только жидкость не очень вязкая (например, 300 сСт и выше), скорость должна быть очень низкой для создания режима ламинарного потока.


Rheopectic : Свойство жидкости, вязкость которой увеличивается со временем.

Для получения дополнительной информации см. Неньютоновские жидкости.pdf


Резиновая гильза насоса : см. Шламовый насос.


Винтовое рабочее колесо : Винтовое центробежное рабочее колесо имеет форму конического винта Архимеда. Первоначально разработанный для перекачивания живой рыбы, винтовой центробежный насос стал популярным для
многих приложений, связанных с перемещением твердых частиц.

для получения дополнительной информации см. Этот информационный бюллетень от Lawrence Pumps.
см. Также эту статью насосной компании Hayward Gordon.


Насос без уплотнения : дополнительную информацию, изображения и ссылки на насосы без уплотнения см. В таблице типов насосов.


Самовсасывающий насос : насос, не требующий заливки или первоначального заполнения жидкостью. В корпусе насоса находится запас воды, который помогает создать вакуум, который поднимет жидкость из низкого источника.

Самовсасывающий насос


для получения дополнительной информации см. Specialty_pumps.pdf


Кожух : см. Насос с односторонним всасыванием.


Запорный напор : Общий напор, соответствующий нулевому расходу на кривой производительности насоса.

Рис. 12 Запорный напор и другие точки на кривой производительности центробежного насоса.

Запорный напор - это общий напор, который насос может подавать при нулевом расходе (см. Следующий рисунок). Запорная головка важна по 2 причинам.

1. В некоторых системах (что, по общему признанию, необычно), нагнетательная линия насоса может проходить на гораздо большей высоте, чем конечная точка нагнетания.Сначала жидкость должна достичь более высокого уровня в системе. Если запорный напор меньше статического напора, соответствующего верхней точке, то поток в системе не установится.

2. Во время запуска и проверки насоса быстрый способ определить, обладает ли насос потенциальной мощностью для обеспечения необходимого напора и расхода, - это измерить запорный напор. Это значение можно сравнить с запорным напором, рассчитанным по кривой производительности насоса.


Насос с боковым каналом : это насос, обеспечивающий высокий напор при низкие потоки с дополнительным преимуществом, заключающимся в способности работать с газами.Принцип работы помпы хорошо объяснено на веб-сайте Sero Pump

Веб-сайт. Я включил веб-версию в формате pdf материалы сайта (как есть) на случай, если однажды веб-страница Sero изменится или исчезнет, я благодарен Серо за то, что сделал это доступным. Принцип бокового канала аналогичен к регенеративному (периферийному) насосу.

Вы найдете другие примеры и поставщиков насосов с боковым каналом в базе данных насосов. с использованием типа насоса: боковой канал.


Сифон : Система трубопроводов или трубок, в которой точка выхода ниже точки входа, а некоторая часть трубопровода находится над свободной поверхностью источника жидкости.

Рисунок 14 Сифон.

См. В этой статье описание того, как работает сифон.


Шламовый насос : некоторые виды шлама имеют тенденцию к очень сильному оседанию. быстро и их трудно удержать в подвешенном состоянии. Насосная компания Lawrence решила эту проблему. проблема, поставив мешалку перед всасывающим устройством насоса.

Шламовый насос

для получения дополнительной информации см. Specialty_pumps.pdf


Шламовый насос : прочный насос для тяжелых условий эксплуатации, предназначенный для агрессивных или абразивных шламов, которые обычно используются в горнодобывающей промышленности с частицами различных размеров. Это достигается за счет футеровки внутренней части корпуса насоса, а также рабочего колеса резиной.

Шламовый насос

см. Подробный чертеж для получения дополнительной информации

см. Специальные_насосы.pdf для получения дополнительной информации

, а также Руководство Warman Slurry Pumping Handbook


Удельный вес (SG) : отношение плотности жидкости к плотности воды при стандартных условиях. Если удельный вес равен 1, то плотность такая же, как у воды, если оно меньше 1, то жидкость менее плотна, чем вода, и тяжелее воды, если удельный вес больше 1. Удельный вес ртути равен 14, у бензина - удельный вес. SG 0,8. Полезность удельного веса заключается в том, что он не имеет единиц измерения, поскольку он является сравнительной мерой плотности или соотношением плотностей, поэтому удельный вес будет иметь одинаковое значение независимо от того, какую систему единиц измерения мы используем, имперскую или метрическую.

Для получения дополнительной информации см. Удельный вес.pdf

Посмотрите этот эксперимент на видео, показывающем, что общий напор не зависит от плотности или удельного веса.

приведенное выше изображение взято из сборника данных Cameron Hydraulic, который содержит большой объем информации о свойствах жидкости.


Удельная скорость : число, указывающее тип насоса (например, радиальный, смешанный поток или осевой) подходит для применения.Рисунок ниже известен как диаграмма Балье .

Удельная скорость рассчитывается по формуле:


Преобразование удельной скорости из метрических в британские N Sm приведено ниже:


см. Также удельную скорость всасывания

, статью по этой теме см. Specific-speed_primer.pdf

и вот калькулятор веб-приложения для конкретной скорости.


Стандартный моноблочный насос со спиральной частью : Спиральная часть - это корпус, имеющий спиральную форму.В Вал двигателя соединен с рабочим колесом без промежуточной муфты, что обеспечивает компактное расположение. Диапазон расхода обычно составляет менее 300 галлонов в минуту.

Изображение этого насоса любезно предоставлено Ace Pumps.


Стандартный насос со спиральной камерой, подсоединяемый отдельно : Спиральная часть - это корпус, имеющий спиральную форму. В Вал двигателя соединен с рабочим колесом промежуточным валом с двумя муфтами.

Изображение этого насоса любезно предоставлено Allweiler.


Деформация : отношение абсолютного смещения контрольной точки внутри тела к характерной длине тела. см. рисунок 10.


Напряжение : в данном случае относится к касательному напряжению или силе между слоями жидкости, деленной на площадь поверхности между ними.


Сальник : соединение, которое изолирует жидкость в насосе, предотвращая ее выход между корпусом и валом насоса.На следующем изображении (источник: Руководство по насосам от McGraw-Hill) показан типичный сальник с сальником. Функция набивки - контролировать утечку, а не устранять ее полностью. Набивка должна быть смазана, и для надлежащей смазки должен поддерживаться поток из сальника от 40 до 60 капель в минуту. Это делает этот тип уплотнения непригодным для ситуаций, когда утечка недопустима, но они очень распространены в крупных отраслях первичного сектора, таких как горнодобывающая и целлюлозно-бумажная промышленность.


Погружение или погружение : Под погружением здесь понимается высота между свободной поверхностью всасывающего бака и всасывающей трубой насоса.

Рис. 13 Минимальное погружение во избежание образования вихрей.

Попробуйте это веб-приложение для расчета минимальной высоты погружения.

Вот красивое изображение осевого насоса с проблемой погружения всасывающего патрубка.

смотрите это видео на погружении

Гидравлический институт издает руководство по конструкции всасывающего патрубка насоса, в котором даются подробные рекомендации.

Насосная компания Goulds бесплатно предоставляет аналогичные рекомендации по конструкции всасывающего патрубка.


Разделитель потока на всасывании : металлическое ребро на всасывании насоса, которое устанавливается на некоторых насосах. Его цель - удалить крупномасштабные вихри, чтобы линии потока были как можно более параллельны, когда жидкость входит в проушину рабочего колеса.


Всасывающий патрубок : устройство, которое помогает выпрямить поток перед насосом, имеющим изгиб на 90 градусов непосредственно перед ним.

Насколько мне известно, существует два типа присосок.

Другой тип всасывающей направляющей - лопаточная система Cheng

.

Пластина Cheng, см. Cheng Fluid Systems

Еще одним производителем стандартных компонентов всасывающей направляющей диаметром от 2 до 14 дюймов является компания Metraflex.Bell Gossett производит всасывающую направляющую, которую они называют всасывающим диффузором.

см. Брошюру Bell Gossett о всасывающих диффузорах


Всасывающая лопатка : см. Руководство по всасывающему патрубку.


Удельная скорость всасывания : число, указывающее, достаточны ли условия всасывания для предотвращения кавитации. По данным Гидравлического института, удельная скорость всасывания должна быть менее 8500. Другие эксперименты показали, что удельная скорость всасывания может достигать 11000.

Когда насос имеет высокое значение удельной скорости всасывания, это также будет означать, что входная площадь рабочего колеса должна быть большой, чтобы уменьшить скорость на входе, которая необходима для обеспечения низкого NPSHR. Однако, если вы продолжите увеличивать площадь входа рабочего колеса (для уменьшения NPSHR), вы достигнете точки, где площадь входа будет слишком большой, что приведет к рециркуляции всасывания (гидравлически нестабильно, вызывая вибрацию, кавитацию, эрозию и т. Д.). Рекомендуемое значение максимальной удельной скорости всасывания - избежать достижения этой точки.(абзац предоставлен Майком Таном из группы форума по насосам).

Сохранение удельной скорости всасывания ниже 8500 также является способом определения максимальной скорости насоса и предотвращения кавитации.

Для насоса двойного всасывания половина значения Q используется для расчета удельной скорости всасывания.

Удельная скорость всасывания рассчитывается по формуле:

см. Также удельную скорость

Преобразование удельной скорости всасывания из метрических в британские S м приведено ниже:

Термин N SS также используется для обозначения удельной скорости всасывания.

Согласно Институту гидравлики, эффективность насоса максимальна, когда удельная скорость всасывания находится между 2000 и 4000. Когда S выходит за пределы этого диапазона, эффективность должна быть снижена в соответствии со следующим рисунком.

Источник: журнал Pump & Systems, август 2005 г.

, статью по этой теме см. Specific-speed_primer.pdf

, а вот калькулятор в веб-приложении для расчета удельной скорости всасывания.

В следующей таблице приведены более точные рекомендации по желаемым рабочим диапазонам скорости всасывания.

Источник: Практика перерабатывающей промышленности RESP 001 Проектирование насосных систем, в которых используются центробежные насосы.


Статический напор на всасывании : разница в высоте между уровнем жидкости в источнике жидкости и осевой линией насоса (см. Рисунок 4). Эта головка также включает в себя любую дополнительную напорную головку, которая может присутствовать на поверхности жидкости всасывающего резервуара, например, как в случае всасывающего резервуара под давлением.


Статический подъемник на всасывании : то же определение, что и статический напор всасывания.Этот термин используется только тогда, когда осевая линия насоса находится выше поверхности жидкости всасывающего резервуара.


Система : как в насосной системе. Система включает в себя все трубопроводы, включая оборудование, начиная с точки входа (часто поверхность жидкости всасывающего резервуара) и заканчивая точкой выхода (часто поверхность жидкости резервуара слива).


Системная кривая : графическое представление зависимости общего напора насоса от расхода. Расчеты выполняются для общего напора при различных расходах, эти точки связаны и образуют кривую, называемую системной кривой.Его можно использовать для прогнозирования работы насоса при различных расходах. Общий напор включает статический напор, который является постоянным, а также напор трения и разницу скоростей напора, которые зависят от расхода (см. Рисунок 11). Пересечение системной кривой с характеристической кривой насоса определяет рабочую точку насоса.

Изменений в систему, такие как открытие или закрытие клапанов или делая выпускную трубу длиннее или короче изменят головку трения, который изменит форму кривой системы и, следовательно, рабочую точку.На следующем рисунке изображена система со статическим напором 100 футов и общим сопротивлением системы примерно 20 футов, показанной кривой A. На выходе насоса имеется клапан, который частично закрыт. Если напор трения увеличивается (т. Е. Клапан закрыт), рабочая точка сместится с A на точку B и поток упадет. Если напор трения уменьшается (т. Е. Открывается клапан), рабочая точка переходит в точку C, и расход увеличивается.


Системные требования : те элементы, которые определяют общий напор: трение и условия на входе и выходе системы (например, скорость, высота и давление).


Уравнение Свами-Джайна : уравнение, которое может использоваться вместо уравнения Коулбрука для расчета коэффициента трения f.


Тиксотропный : Свойство жидкости, вязкость которой уменьшается со временем.


Общий динамический напор : идентичен общему напору. Этот термин больше не используется и был заменен более коротким общим напором.


Общий напор : разница между напором на нагнетательном и всасывающем фланцах насоса (син. Общий динамический напор.напор насоса, напор системы). см. также tutorial3.htm


Общий статический напор : Разница между статическим напором нагнетания и всасывания, включая разницу между поверхностным давлением нагнетательного и всасывающего резервуаров, если резервуары находятся под давлением (см. Рисунок 4). См. Также tutorial3.htm


Турбулентный : Поведение жидких предметов в потоке, характеризующееся быстрым движением частиц во многих направлениях, а также общим направлением всего потока жидкости.


Вакуум : давление ниже атмосферного.


Лопатки (кол-во) : см. Impeller.htm.


Частота прохождения лопатки : при проведении анализа вибрации эта частота (количество лопаток, умноженное на скорость вала), и даже кратные ей, отображается как пик, который может указывать на повреждение или дисбаланс рабочего колеса.

Рис. 15 Спектры шумовых колебаний, показывающие частоту прохождения лопатки (источник: The Pump Handbook publ.по McGrawHill)

см. Статьи об источниках вибрации насоса на этой веб-странице: pumpworld.htm


Пластинчатый насос : см. Радиально-пластинчатый насос.


Пластинчатый насос (гидравлический) : поршневой насос прямого вытеснения. Пластинчатые насосы успешно используются в самых разных областях (см. Ниже). Благодаря прочности лопастей и отсутствию контакта металла с металлом, лопастные насосы идеально подходят для маловязких, несмазывающих жидкостей до 2200 сСт / 10 000 SSU.Такие жидкости включают СНГ, аммиак, растворители, спирт, жидкое топливо, бензин и хладагенты.

1. Ротор с прорезями или рабочее колесо эксцентрично поддерживается в циклоидальном кулачке. Ротор расположен близко к стенке кулачка, поэтому образуется полость в форме полумесяца. Ротор уплотняется в кулачке двумя боковыми пластинами. Лопатки или лопасти входят в прорези рабочего колеса. Когда рабочее колесо вращается (желтая стрелка) и жидкость входит в насос, центробежная сила, гидравлическое давление и / или толкатели толкают лопасти к стенкам корпуса.Плотное уплотнение между лопастями, ротором, кулачком и боковой пластиной является ключом к хорошим характеристикам всасывания, характерным для принципа лопастного насоса.

2. Корпус и кулачок нагнетают жидкость в насосную камеру через отверстия в кулачке (маленькая красная стрелка на дне насоса). Жидкость попадает в карманы, образованные лопатками, ротором, кулачком и боковой пластиной.

3. По мере того, как рабочее колесо продолжает вращаться, лопасти перемещают жидкость к противоположной стороне полумесяца, где она выдавливается через выпускные отверстия кулачка, когда лопасть приближается к точке серпа (маленькая красная стрелка на стороне насоса. ).Затем жидкость выходит из выпускного отверстия.

Rexroth - крупный производитель пластинчатых насосов https://www.boschrexroth.com/en/us/


Давление пара : давление, при котором жидкость закипает при определенной температуре.

Рис. 16 Граница между жидкой и паровой фазами жидкости. Жидкость можно испарить, увеличив температуру или уменьшив давление.

Рисунок 17 Зависимость давления пара оттемпература для различных жидкостей.


Вентури (закон Бернулли) : трубка Вентури имеет постепенное сужение это открывается в постепенное расширение. В зоне ограничения давление будет ниже, чем в зоне ограничения. увеличенная площадь перед ним. Если разница в диаметрах большая, вы можете даже создают очень высокий вакуум (-28 футов водяного столба). Я использую дешевую пластиковую трубку Вентури от Фишера или Коула Палмера. для эксперимента, который я провожу, чтобы продемонстрировать давление пара во время моих обучающих семинаров, и это очень легко создать очень высокий абсолютный вакуум.

В некоторых местах я не могу провести этот эксперимент, потому что в номерах отеля нет источника воды, жаль, потому что это всегда выигрыш, поэтому мне нужно вернуться к видео. Если вы хотите приобрести этот изящный пластик Вентури вы можете купить здесь, на сайте labsupplyoutlaws.com, это довольно недорого.

Непросто понять, почему низкое давление возникает в области малого диаметра трубки Вентури. Я придумал это объяснение, которое, кажется, помогает.

Понятно, что весь поток должен проходить от большего участка к меньшему. Или в другом Другими словами, расход останется неизменным в большой и малой частях трубки. Скорость потока то же самое, но скорость меняется. Скорость больше в небольшом участке трубки. Там есть связь между энергией давления и энергией скорости, если скорость увеличивает давление энергия должна уменьшиться. Это принцип сохранения энергии в действии, который также является законом Бернулли.Это похоже на велосипедиста на вершине холма. Вверху или в точке 1 (см. Рисунок 18 ниже) высота велосипедиста высокая, а скорость низкая. Внизу (точка 2) высота невысока и высокая скорость, энергия возвышения (потенциальная) преобразована в энергию скорости (кинетическую). Давление и энергии скорости ведут себя точно так же. В большей части трубы давление высокое, а скорость низкая, в небольшая часть, давление низкое, а скорость высокая.

Рис. 18 Эффект Вентури.

Закон Бернулли - это отношение между двумя точками в системе, которое гласит, что сумма энергии, соответствующие давлению, скорости и высоте, должны быть сохранены.

Общая форма закона (без учета трения):


где p 1 - давление, v 1 - скорость, а h 1 - высота. в точке 1 и те же параметры используются в точке 2.Гамма - это плотность жидкости, а г ускорение свободного падения.

В случае велосипедиста давление отсутствует, и могут изменяться только скорость и высота, так что Закон Бернулли становится:


по мере того, как велосипедист спускается с холма h 2 становится меньше, чем h 1 и до сбалансируйте уравнение, тогда v 2 должно быть больше, чем v 1 .

В случае трубки Вентури нет изменения высоты, и могут изменяться только скорость и давление, так что закон Бернулли становится:


Мы ясно видим, что если v2 больше v1, то p2 должно быть меньше v1, чтобы сбалансировать уравнение.

, статью по этой и смежным темам можно найти на странице unknown_aspects-pump-syst.pdf


Вязкость : свойство, по которому можно оценить сопротивление жидкости движению. Сопротивление вызывается трением между жидкостью и граничной стенкой, а внутри - слоями жидкости, движущимися с разными скоростями. Чем более вязкая жидкость, тем выше потери на трение в системе. На центробежные насосы влияет вязкость, и для жидкостей с вязкостью выше 10 сСт необходимо откорректировать производительность насоса.

На следующем рисунке, который вы можете найти в каталоге насосов Goulds в техническом разделе, показано влияние вязкости на производительность насоса.

На следующем рисунке представлена ​​таблица значений вязкости для различных жидкостей, которую вы можете найти в справочнике Cameron Hydraulic.

Базовая единица вязкости известна как Пуаз или сантипуаз (сП), названная в честь французского ученого Пуазейля, открывшего практический метод измерения вязкости.Греческая буква используется для обозначения вязкости. Существует два типа вязкости, первый из которых только что упоминается как абсолютная вязкость, а другой, для обозначения которого используется греческая буква ню, называется кинематической вязкостью. Единицей кинематической вязкости является сантисток (сСт), названный в честь английского ученого Стокса.

Связь между ними:

Данные о вязкости обычных жидкостей

также можно найти в каталоге насосов Goulds.

Коррекция вязкости : см. Вязкость.


Насос с вязкостным сопротивлением : насос, рабочее колесо которого не имеет лопастей, но работает за счет контакта жидкости с плоской вращающейся пластиной, вращающейся с высокой скоростью для перемещения жидкости.

Вязкостной насос

для получения дополнительной информации см. Specialty_pumps.pdf


Улитка : кожух синхронизатора.


Vortex : см. Погружение.


Вихревой насос : см. Насос с утопленным рабочим колесом.


Гидравлический удар (скачок давления) : Если в системах с длинными нагнетательными линиями (например, в промышленных и муниципальных системах водоснабжения, на нефтеперерабатывающих заводах и электростанциях) перекачиваемая жидкость ускоряется или замедляется, возникают колебания давления из-за изменений по скорости. Если эти изменения скорости происходят быстро, они вызывают скачок давления в системе трубопроводов, возникающий в точке возмущения; распространение происходит в обоих направлениях (прямые волны), и эти волны отражаются (непрямые волны) в точках разрыва, например.г. изменения площади поперечного сечения, ответвлений труб, регулирующих или запорных клапанов, насосов или резервуара. Граничные условия определяют, будут ли эти отражения вызывать отрицательные или положительные выбросы. Суммирование всех прямых и непрямых волн в данной точке в данный момент времени дает условия, существующие в этой точке.

Эти скачки давления, в дополнение к нормальному рабочему давлению, могут привести к чрезмерному давлению и напряжениям в компонентах установки. В тяжелых случаях такие скачки давления могут привести к выходу из строя трубопроводов, фитингов или корпусов насоса.Минимальный скачок давления может, особенно в самой высокой точке установки, достичь давления пара перекачиваемой жидкости и вызвать испарение, ведущее к отделению столба жидкости. Последующее повышение давления и столкновение разделенного столба жидкости может привести к значительному гидравлическому удару. Скачки давления, возникающие в этих условиях, также могут привести к выходу из строя или разрушению компонентов установки.

Для максимального колебания давления можно использовать формулу скачка давления JOUKOWSKY:

Δp = ρ.а. Δv

Где ρ = плотность перекачиваемой жидкости

a = скорость распространения волны

Δv = изменение скорости потока в трубе.

Полное колебание давления, соответствующее изменению скорости Δv, происходит только в том случае, если изменение скорости Δv происходит в течение периода.

t ≤ время отражения tr = 2.л / а

, где l = расстояние между ближайшей несплошностью (точкой отражения) и точкой возмущения.

Вклад Моше Шаяна с дискуссионного форума по насосам.

Эта статья под названием Val-Matic Valve, озаглавленная «Регулирование помпажа в насосной станции», появилась в журнале «Pumps & Systems» в марте 2007 г. это очень хорошее описание того, как возникает гидравлический удар и как его можно контролировать.


Вы можете присоединиться к дискуссионному форуму центробежного насоса по адресу https://groups.yahoo.com/neo/groups/pumpfundamentals/info

TOP

Авторские права 2019, PumpFundamentals.com

Циркуляционный насос Изображения, фотографии и векторные изображения

В настоящее время вы используете более старую версию браузера, и ваш опыт работы может быть не оптимальным. Пожалуйста, подумайте об обновлении. Учить больше. ImagesImages homeCurated collectionsPhotosVectorsOffset ImagesCategoriesAbstractAnimals / WildlifeThe ArtsBackgrounds / TexturesBeauty / FashionBuildings / LandmarksBusiness / FinanceCelebritiesEditorialEducationFood и DrinkHealthcare / MedicalHolidaysIllustrations / Clip-ArtIndustrialInteriorsMiscellaneousNatureObjectsParks / OutdoorPeopleReligionScienceSigns / SymbolsSports / RecreationTechnologyTransportationVectorsVintageAll categoriesFootageFootage homeCurated collectionsShutterstock SelectShutterstock ElementsCategoriesAnimals / WildlifeBuildings / LandmarksBackgrounds / TexturesBusiness / FinanceEducationFood и DrinkHealth CareHolidaysObjectsIndustrialArtNaturePeopleReligionScienceTechnologySigns / SymbolsSports / RecreationTransportationEditorialAll categoriesEditorialEditorial главнаяРазвлеченияНовостиРоялтиСпортМузыкаМузыка домойПремиумBeatИнструментыShutterstock EditorМобильные приложенияПлагиныИзменение размера изображенияКонвертер файловСоздатель коллажейЦветовые схемыБлог Главная страница блогаДизайнВидеоКонтроллерНовости
PremiumBeat blogEnterprisePric ing

Войти

Зарегистрироваться

Меню

ФильтрыОчистить всеВсе изображения
  • Все изображения
  • Фото
  • Векторы
  • Иллюстрации
  • Редакция
  • Музыка Видео


  • Помпа Поиск от

    Самые актуальные

    Свежие материалы

    Тип изображения

    Все изображения

    Фото

    Векторы

    Кредитный калькулятор

    Заем - это договор между заемщиком и кредитором, по которому заемщик получает денежную сумму (основную сумму), которую они обязаны выплатить в будущем.Большинство кредитов можно разделить на три категории:

    1. Амортизированный заем: Фиксированные платежи, выплачиваемые периодически до погашения кредита
    2. Заем с отсрочкой платежа: Единовременная выплата при наступлении срока погашения кредита
    3. Облигация: Заранее определенная единовременная сумма, выплачиваемая при наступлении срока погашения кредита (номинальная или номинальная стоимость облигации)

    Амортизированный заем: периодическая выплата фиксированной суммы

    Используйте этот калькулятор для базовых расчетов общих типов ссуд, таких как ипотека, автокредиты, студенческие ссуды или персональные ссуды, или щелкните ссылки для получения более подробной информации по каждому из них.

    Результаты:

    974
    Выплаты ежемесячно 1,110,21 долл. США
    Всего 120 платежей 133,224,60 долл. США

    24,60


    Заем с отсрочкой платежа: выплата единовременной суммы при наступлении срока погашения

    Результаты:

    Сумма к оплате при наступлении срока кредита 179 084 долл. США.77
    Итого проценты 79 084,77 долл. США


    Облигация: выплата заранее определенной суммы при наступлении срока погашения кредита

    Используйте этот калькулятор для вычисления начальной стоимости облигации / ссуды на основе заранее определенной номинальной стоимости, которая должна быть возвращена в конце срока погашения облигации / ссуды.

    Результаты:

    Сумма, полученная на момент начала действия ссуды: 55 839 долл. США.48
    Итого проценты 44 160,52 долл. США

    Калькулятор сопутствующей ипотеки | Калькулятор автокредитования | Калькулятор аренды

    Амортизированный заем: фиксированная сумма, выплачиваемая периодически

    Многие потребительские ссуды попадают в эту категорию ссуд с регулярными платежами, которые равномерно амортизируются в течение срока их действия. Регулярные выплаты по основной сумме и процентам производятся до наступления срока погашения (полного погашения) ссуды.Некоторые из наиболее известных амортизированных ссуд включают ипотечные ссуды, автокредиты, студенческие ссуды и личные ссуды. В повседневном разговоре слово «ссуда», вероятно, будет относиться к этому типу, а не к типу во втором или третьем расчете. Ниже приведены ссылки на калькуляторы, относящиеся к ссудам, подпадающим под эту категорию, которые могут предоставить дополнительную информацию или разрешить конкретные расчеты по каждому типу ссуд. Вместо использования этого калькулятора ссуд может быть более полезным использовать любое из следующего для каждой конкретной потребности:

    Заем с отсрочкой платежа: единовременная выплата при наступлении срока ссуды

    К этой категории относятся многие коммерческие ссуды или краткосрочные ссуды.В отличие от первого расчета, который амортизируется с выплатами, равномерно распределяемыми в течение срока их действия, эти ссуды имеют единую крупную единовременную выплату по истечении срока. Некоторые ссуды, такие как воздушные ссуды, также могут иметь меньшие регулярные платежи в течение срока их действия, но этот расчет работает только для ссуд с единовременной выплатой всей основной суммы и процентов, причитающихся в конце срока.

    Облигация: заранее определенная единовременная выплата при наступлении срока погашения займа

    Этот вид ссуд предоставляется редко, кроме как в форме облигаций.Технически облигации считаются формой ссуды, но действуют иначе, чем более традиционные ссуды, тем, что платеж по истечении срока ссуды предопределен. Номинальная стоимость облигации - это сумма, которая выплачивается при наступлении срока погашения облигации при условии, что заемщик не объявит дефолт. Термин «номинальная стоимость» используется потому, что, когда облигации были впервые выпущены в бумажной форме, сумма была напечатана на «лицевой стороне», то есть на лицевой стороне сертификата облигации. Хотя номинальная стоимость обычно важна только для обозначения суммы, полученной при погашении, она также может помочь при расчете выплат по купонным процентам.Обратите внимание, что этот калькулятор предназначен в основном для облигаций с нулевым купоном. После выпуска облигации ее стоимость будет колебаться в зависимости от процентных ставок, рыночных сил и многих других факторов. В связи с этим, поскольку номинальная стоимость облигации к погашению не меняется, рыночная цена облигации в течение срока ее действия может колебаться.

    Основы ссуды для заемщиков

    Процентная ставка

    Почти все ссудные структуры включают проценты, то есть прибыль, которую банки или кредиторы получают по ссудам. Процентная ставка - это процент ссуды, выплачиваемый заемщиками кредиторам.По большинству ссуд проценты выплачиваются в дополнение к погашению основной суммы долга. Проценты по ссуде обычно выражаются в годовых или годовых процентах, которые включают как проценты, так и комиссионные. Ставка, обычно публикуемая банками для сберегательных счетов, счетов денежного рынка и компакт-дисков, представляет собой годовую процентную доходность или APY. Важно понимать разницу между APR и APY. Заемщики, ищущие ссуды, могут рассчитать фактические проценты, выплачиваемые кредиторам, на основе их объявленных ставок, используя Калькулятор процентов.Для получения дополнительной информации или расчетов с использованием годовой процентной ставки посетите Калькулятор годовой процентной ставки.

    Частота добавления

    Сложные проценты - это проценты, которые начисляются не только на первоначальную основную сумму, но и на накопленные проценты за предыдущие периоды. Как правило, чем чаще происходит начисление сложных процентов, тем выше общая сумма кредита. В большинстве кредитов начисление сложных процентов происходит ежемесячно. Используйте Калькулятор сложных процентов, чтобы узнать больше о сложных процентах или выполнить их расчеты.

    Срок кредита

    Срок ссуды - это продолжительность ссуды при условии, что требуемые минимальные платежи производятся каждый месяц. Срок ссуды может во многом повлиять на структуру ссуды. Как правило, чем дольше срок, тем больше процентов будет начисляться с течением времени, что увеличивает общую стоимость ссуды для заемщиков, но сокращает периодические выплаты.

    Потребительские кредиты

    Существует два основных вида потребительских кредитов: обеспеченные и необеспеченные.

    Обеспеченные кредиты

    Обеспеченный заем означает, что заемщик предоставил некоторую форму актива в качестве залога перед тем, как получить заем.Кредитору предоставляется право удержания, которое представляет собой право владения имуществом, принадлежащим другому лицу, до тех пор, пока не будет выплачен долг. Другими словами, невыполнение обязательств по обеспеченной ссуде даст эмитенту ссуды юридическую возможность наложить арест на актив, который был выставлен в качестве обеспечения. Наиболее распространенными обеспеченными кредитами являются ипотека и автокредиты. В этих примерах кредитор владеет титулом или документом, который представляет собой право собственности, до тех пор, пока обеспеченный заем не будет полностью выплачен. Невыполнение обязательств по ипотеке обычно приводит к тому, что банк лишается права выкупа дома, в то время как невыплата кредита на покупку автомобиля означает, что кредитор может вернуть себе автомобиль.

    Кредиторы, как правило, не решаются давать большие суммы денег без гарантии. Обеспеченные кредиты снижают риск дефолта заемщика, поскольку они рискуют потерять любой актив, который они предоставили в качестве обеспечения. Если залог стоит меньше непогашенной задолженности, заемщик может нести ответственность за оставшуюся часть долга.

    Обеспеченные кредиты обычно имеют более высокий шанс одобрения по сравнению с необеспеченными кредитами и могут быть лучшим вариантом для тех, кто не имеет права на получение необеспеченного кредита,

    Беззалоговые займы

    Беззалоговая ссуда - это соглашение о выплате ссуды без обеспечения.Поскольку залог не используется, кредиторам нужен способ проверки финансовой безупречности своих заемщиков. Этого можно достичь с помощью пяти критериев кредитоспособности, которые являются общей методологией, используемой кредиторами для оценки кредитоспособности потенциальных заемщиков.

    • Знак - может включать кредитную историю и отчеты, чтобы продемонстрировать послужной список способности заемщика выполнять долговые обязательства в прошлом, его опыт работы и уровень дохода, а также любые нерешенные юридические соображения
    • Вместимость - измеряет способность заемщика выплатить ссуду, используя коэффициент для сравнения их долга и дохода
    • Капитал - относится к любым другим активам, которые заемщики могут иметь, помимо дохода, которые могут быть использованы для выполнения долговых обязательств, таких как первоначальный взнос, сбережения или инвестиции
    • Обеспечение — применяется только к обеспеченным кредитам.Залог - это что-то заложенное в качестве обеспечения выплаты ссуды в случае неисполнения заемщиком обязательств
    • Условия - текущее состояние кредитного климата, тенденции в отрасли и на что будет потрачен заем

    Необеспеченные ссуды обычно имеют более высокие процентные ставки, более низкие лимиты по займам и более короткие сроки погашения, чем обеспеченные ссуды, в основном потому, что они не требуют какого-либо обеспечения. Иногда кредиторы могут потребовать от соавтора (лица, которое соглашается выплатить долг заемщика в случае невыполнения обязательств) необеспеченных кредитов, если заемщик считается слишком рискованным.Примеры необеспеченных кредитов включают кредитные карты, личные ссуды и студенческие ссуды. Пожалуйста, посетите наш Калькулятор кредитной карты, Калькулятор личной ссуды или Калькулятор ссуды для студентов, чтобы получить дополнительную информацию или выполнить расчеты с участием каждого из них.

    Как рассчитать корреляцию

    1. Образование
    2. Математика
    3. Статистика
    4. Как рассчитать корреляцию

    Дебора Дж. Рамси

    Можно ли с помощью одной статистики измерить как силу, так и направление линейной связи между двумя переменные? Конечно! Статистики используют коэффициент корреляции для измерения силы и направления линейной связи между двумя числовыми переменными X и Y .Коэффициент корреляции для выборки данных обозначается r.

    Хотя определение улицы , корреляция применяется к любым двум взаимосвязанным элементам (таким как пол и политическая принадлежность), статистики используют этот термин только в контексте двух числовых переменных. Формальный термин для обозначения корреляции - коэффициент корреляции . Было создано множество различных мер корреляции; тот, который используется в этом случае, называется коэффициентом корреляции Пирсона .

    Формула корреляции ( r ):

    , где n - количество пар данных;

    - это выборочные средние для всех значений x и всех значений y соответственно; и s x и s y являются стандартными отклонениями выборки для всех значений x- и y- соответственно.

    Вы можете использовать следующие шаги для вычисления корреляции, r, из набора данных:

    1. Найдите среднее значение всех значений x

    2. Найдите стандартное отклонение всех значений x (назовите его s x ) и стандартное отклонение всех значений y (назовите его s y ).

      Например, чтобы найти s x , вы должны использовать следующее уравнение:

    3. Для каждой из пар n ( x , y ) в наборе данных возьмите

    4. Сложите n результатов из шага 3.

    5. Разделите сумму на с x с y .

    6. Разделите результат на n - 1, где n - количество пар ( x , y ). (Это то же самое, что умножение на 1 на n - 1.)

      Это дает вам корреляцию, р.

    Например, предположим, что у вас есть набор данных (3, 2), (3, 3) и (6, 4). Чтобы вычислить коэффициент корреляции r , выполните следующие действия. (Обратите внимание, что для этих данных значения x равны 3, 3, 6, а значения y - 2, 3, 4.)

    1. Рассчитав среднее значение x и y, вы получите

    2. Стандартные отклонения составляют с x = 1,73 и с y = 1,00.

    3. Умножение n = 3 разностей, найденных на шаге 2, составляет: (3-4) (2-3) = (- 1) (- 1) = +1; (3-4) (3-4) = (- 1) (0) = 0; (6-4) (4-3) = (2) (1) = +2.

    4. Добавляя n = 3 на шаге 3, вы получаете 1 + 0 + 2 = 3.

    5. Деление на с x с y дает 3 / (1,73 ∗ 1,00) = 3 / 1,73 = 1,73. (Это просто совпадение, что результат шага 5 тоже 1,73.)

    6. Теперь разделите результат шага 5 на 3 - 1 (то есть 2), и вы получите корреляцию r = 0,87.

    Об авторе книги

    Дебора Дж.Рамси, доктор философии, , профессор статистики и специалист по статистике в области образования в Университете штата Огайо. Она является автором статистической рабочей книги для чайников, статистики II для чайников, и вероятности для чайников .

    Закон Гесса и расчеты изменения энтальпии

    РАСЧЕТ ИЗМЕНЕНИЯ ЗАКОНА И ЭНТАЛЬПИИ HESS

     

    Эта страница объясняет закон Гесса и использует его для выполнения некоторых простых расчетов изменения энтальпии, включающих изменения энтальпии реакции, образования и горения.

     

    Закон Гесса

    Закон Гесса

    Закон Гесса - самый важный закон в этой части химии. Из него следует большинство расчетов. Это говорит. . .

    Изменение энтальпии, сопровождающее химическое изменение, не зависит от пути, по которому происходит химическое изменение.
     

    Объяснение закона Гесса

    Закон Гесса гласит, что если вы конвертируете реагенты A в продукты B, общее изменение энтальпии будет точно таким же, независимо от того, делаете ли вы это за один шаг, два шага или сколько угодно шагов.

    Если вы посмотрите на изменение на диаграмме энтальпии, это на самом деле довольно очевидно.

    Здесь показаны изменения энтальпии для экзотермической реакции с использованием двух разных способов перехода от реагентов A к продуктам B. В одном случае вы выполняете прямое преобразование; в другом - вы используете двухэтапный процесс с участием некоторых промежуточных продуктов.

    В любом случае общее изменение энтальпии должно быть одинаковым, поскольку оно определяется относительным положением реагентов и продуктов на диаграмме энтальпии.

    Если вы перейдете через промежуточные продукты, вам для начала придется вложить немного дополнительной тепловой энергии, но вы получите ее снова на втором этапе последовательности реакций.

    Сколько бы стадий ни протекала реакция, в конечном итоге общее изменение энтальпии будет таким же, потому что положения реагентов и продуктов на диаграмме энтальпии всегда будут одинаковыми.


    Примечание: Возможно, меня сбивает с толку то, что я переключаюсь между терминами энтальпия и энергия.Изменение энтальпии - это просто особая мера изменения энергии. Вы помните, что изменение энтальпии - это тепло, выделяющееся или поглощаемое во время реакции, происходящей при постоянном давлении.

    Я обозначил вертикальную шкалу на этой конкретной диаграмме как энтальпию, а не как энергию, потому что мы конкретно думаем об изменениях энтальпии. Я мог бы просто использовать более общий термин «энергия», но я предпочитаю быть точным.



    Вы можете выполнять вычисления, представляя их в виде диаграмм энтальпии, как указано выше, но есть гораздо более простой способ сделать это, практически не требующий размышлений.

    Вы можете представить приведенную выше диаграмму как:

    Закон Гесса гласит, что общее изменение энтальпии в этих двух маршрутах будет одинаковым. Это означает, что если вам уже известны два значения изменения энтальпии для трех отдельных реакций, показанных на этой диаграмме (три черные стрелки), вы можете легко вычислить третью - как вы увидите ниже.

    Большим преимуществом этого способа является то, что вам не нужно беспокоиться об относительном расположении всего на диаграмме энтальпии.Совершенно неважно, является ли конкретное изменение энтальпии положительным или отрицательным.

    Предупреждения!

    Хотя большинство вычислений, с которыми вы столкнетесь, впишутся в треугольную диаграмму, подобную приведенной выше, вы также можете столкнуться с другими немного более сложными случаями, требующими большего количества шагов. Это не усложняет задачу!

    Вам нужно внимательно выбрать два маршрута. Шаблон будет , а не , всегда будет выглядеть так, как показано выше.Вы увидите это в примерах ниже.

     

    Расчет изменения энтальпии с использованием циклов закона Гесса

    Я могу дать здесь только краткое введение, потому что это подробно описано в моей книге расчетов по химии.

     

    Расчет изменения энтальпии образования из изменений энтальпии горения

    Если вы читали предыдущую страницу в этом разделе, вы, возможно, помните, что я упоминал, что стандартное изменение энтальпии образования бензола невозможно измерить напрямую.Это потому, что углерод и водород не вступают в реакцию с образованием бензола.


    Важно: Если вы не знаете (не слишком много об этом задумываясь) точно, что подразумевается под стандартным изменением энтальпии образования или горения, вы, , должны разобраться с этим сейчас. Перечитайте страницу об определениях изменения энтальпии, прежде чем идти дальше - и выучите их !


    Стандартные изменения энтальпии сгорания, ΔH ° c , относительно легко измерить.Для бензола, углерода и водорода это:

    ΔH ° c (кДж моль -1 )
    C 6 H 6 (л) -3267
    C (s) -394
    H 2 (г) -286

    Сначала вы должны разработать свой цикл.

    • Запишите изменение энтальпии, которое вы хотите найти, в виде простого горизонтального уравнения и напишите ΔH над стрелкой.(В диаграммах такого типа мы часто пропускаем стандартный символ, чтобы не загромождать.)

    • Затем поместите остальную информацию, которая у вас есть, на ту же диаграмму, чтобы создать цикл закона Гесса, записывая известные изменения энтальпии поверх стрелок для каждого из других изменений.

    • Наконец, найдите на диаграмме два маршрута, всегда идущих в соответствии с потоком различных стрелок. Ни в коем случае нельзя, чтобы одна из стрелок маршрута двигалась в направлении, противоположном одной из стрелок уравнения под ней.

    В данном случае мы пытаемся найти стандартное изменение энтальпии образования бензола, так что уравнение идет горизонтально.

     

    Вы заметите, что я не потрудился включить кислород, в котором сжигаются различные предметы. Количество кислорода не критично, потому что вы все равно просто используете его избыток, и его включение действительно сбивает диаграмму.

    Почему я нарисовал рамкой углекислый газ и воду в нижней части цикла? Я делаю это, если не могу заставить все стрелки указывать именно на то, что нужно.В этом случае нет очевидного способа заставить стрелку от бензола указывать на и углекислый газ, и воду. Рисовать коробку не обязательно - я просто считаю, что это помогает мне легче увидеть, что происходит.

    Обратите внимание, что вам, возможно, придется умножить используемые вами числа. Например, стандартные изменения энтальпии сгорания начинаются с 1 моля вещества, которое вы сжигаете. В этом случае уравнения требуют, чтобы вы сожгли 6 моль углерода и 3 моля молекул водорода.Забыть об этом - вероятно, самая распространенная ошибка, которую вы, вероятно, делаете.

    Как были выбраны эти два маршрута? Помните, что вы должны плыть по течению стрел. Выберите начальную точку как угол, из которого выходят только стрелки. Выберите конечную точку как угол, в который прибывают только стрелки.

    Теперь произведем расчет:

    Закон Гесса гласит, что изменения энтальпии на двух маршрутах одинаковы. Это означает, что:

    ΔH - 3267 = 6 (-394) + 3 (-286)

    Перестановка и решение:

    ΔH = 3267 + 6 (-394) + 3 (-286)

    ΔH = +45 кДж моль -1


    Примечание: Если у вас хорошая память, вы, возможно, помните, что я дал цифру +49 кДж моль -1 для стандартного изменения энтальпии образования бензола на более ранней странице этого раздела.Так почему этот ответ отличается?

    Основная проблема здесь в том, что я принял значения энтальпий сгорания водорода и углерода до трех значащих цифр (обычно это делается в расчетах на этом уровне). Это вносит небольшие ошибки, если вы просто берете каждую цифру один раз. Однако здесь вы умножаете ошибку в значении углерода на 6, а ошибку в значении водорода на 3. Если вам интересно, вы можете переработать расчет, используя значение -393,5 для углерода и -285.8 для водорода. Это дает ответ +48,6.

    Так почему я вообще не использовал более точные значения? Потому что я хотел проиллюстрировать эту проблему! Ответы, которые вы получаете на подобные вопросы, часто немного нечеткие. Причина обычно кроется либо в ошибках округления (как в этом случае), либо в том, что данные могли быть получены из другого источника или источников. Попытка получить согласованные данные может быть немного кошмаром.



    Расчет изменения энтальпии реакции по изменениям энтальпии образования

    Это наиболее частое использование простых циклов закона Гесса, с которым вы, вероятно, столкнетесь.

    В этом случае мы собираемся вычислить изменение энтальпии для реакции между этеном и газами хлористого водорода, чтобы получить газообразный хлорэтан, исходя из стандартных значений энтальпии образования, указанных в таблице. Если вы никогда раньше не сталкивались с такой реакцией, это не имеет значения.

    ΔH ° f (кДж моль -1 )
    C 2 H 4 (г) +52,2
    HCl (г) -92.3
    C 2 H 5 Cl (г) -109

    Примечание: Я не очень доволен стоимостью хлорэтана! Источники данных, которые я обычно использую, дают широкий диапазон значений. Я выбрал среднее значение из электронной книги по химии NIST. Эта неопределенность никоим образом не влияет на то, как вы проводите вычисления, но ответ может быть не совсем правильным - не цитируйте его, как будто было правильным.


    В приведенном ниже цикле эта реакция написана горизонтально, и значения энтальпии образования добавлены для завершения цикла.

     

    Опять же, обратите внимание на рамку, нарисованную вокруг элементов внизу, потому что невозможно аккуратно соединить все отдельные элементы с соединениями, которые они образуют. Будьте осторожны, подсчитав все атомы, которые вам нужно использовать, и убедитесь, что они записаны так, как они встречаются в элементах в их стандартном состоянии.Например, нельзя записывать водород как 5H (г), потому что стандартное состояние водорода - H 2 .


    Примечание: По правде говоря, если я сам вычисляю такую ​​сумму энтальпии (никто не смотрит!), Я обычно пишу слово «элементы» в нижнем поле, чтобы не беспокоиться о том, сколько именно Все, что мне нужно. Однако я бы опасался делать это на экзамене.


    А теперь расчет.Просто запишите все изменения энтальпии, составляющие два маршрута, и приравняйте их.

    +52,2 - 92,3 + ΔH = -109

    Перестановка и решение:

    ΔH = -52,2 + 92,3 - 109

    ΔH = -68,9 кДж моль -1


    Примечание: Я боюсь, что это все, что я чувствую, я могу дать вам по этой теме, не рискуя продавать мою книгу или не нарушая контракта с моими издателями. К сожалению, вам недостаточно быть уверенным в том, что вы сможете каждый раз производить эти вычисления.Помимо всего прочего, вам понадобится много практики.

    Я рассказал об этом более мягко в книге с множеством примеров. Если бы вы решили проработать главу 5 книги, вы были бы уверены, что сможете выполнить любой расчет химической энергии, который вам дали.

    Очевидно, я предвзято, но я настоятельно рекомендую вам либо купить книгу, либо получить копию в вашей школе, колледже или местной библиотеке. Не верьте мне на слово - читайте отзывы на сайте Amazon.



     

    Вопросы для проверки вашего понимания

    Если это первый набор вопросов, которые вы задали, пожалуйста, прочтите вводную страницу перед тем, как начать. Вам нужно будет использовать КНОПКУ «НАЗАД» в браузере, чтобы потом вернуться сюда.

    вопроса о законе Гесса

    ответа

     

    Куда бы вы сейчас хотели отправиться?

    В меню химической энергетики.. .

    В меню «Физическая химия». . .

    В главное меню. . .

     

    © Джим Кларк, 2010 (изменено в мае 2013 г.)

    Вопросы и ответы на собеседовании по дисконтированному денежному потоку (базовый)

    Помимо знания основ построения DCF, вам также необходимо понимать такие концепции, как WACC, стоимость капитала и надлежащие ставки дисконтирования для использования в зависимости от сценария. . Интервьюеры также любят спрашивать о конечной ценности - как вы ее рассчитываете, преимуществах и недостатках различных методов и признаках того, что она «слишком высока».«

    1.Проведите меня через DCF.

    «DCF оценивает компанию на основе приведенной стоимости ее денежных потоков и приведенной стоимости ее конечной стоимости.

    Во-первых, вы прогнозируете финансовые показатели компании, используя допущения относительно роста доходов, расходов и оборотного капитала; затем вы переходите к свободному денежному потоку за каждый год, который затем суммируете и дисконтируете до чистой приведенной стоимости на основе вашей ставки дисконтирования - обычно это средневзвешенная стоимость капитала.

    Когда у вас есть приведенная стоимость денежных потоков, вы определяете конечную стоимость компании, используя либо метод кратных, либо метод роста Гордона, а затем также дисконтируете ее до чистой приведенной стоимости с помощью WACC.

    Наконец, вы складываете два вместе, чтобы определить ценность предприятия ».

    2. Расскажите, как вы переходите от дохода к свободному денежному потоку в прогнозах.

    Вычтите COGS и операционные расходы, чтобы получить операционную прибыль (EBIT). Затем умножьте на (1 - налоговая ставка), добавьте обратно амортизационные отчисления и другие неденежные расходы и вычтите капитальные затраты и изменение оборотного капитала.

    Примечание: Это приведет вас к безрычажному свободному денежному потоку, поскольку вы отказались от EBIT, а не EBT. Вы можете подтвердить, что интервьюер просит именно об этом.

    3.Каков альтернативный способ расчета свободного денежного потока, кроме вычета чистой прибыли, добавления амортизации и вычитания изменений операционных активов / обязательств и капитальных затрат?

    Возьмите денежный поток от операционной деятельности и вычтите капитальные затраты - и вы получите заемный денежный поток. Чтобы перейти к безрычажному денежному потоку, вам необходимо добавить обратно скорректированные с учетом налогов процентные расходы и вычесть скорректированный с учетом налогов процентный доход.

    4. Почему вы используете 5 или 10 лет для прогнозов DCF?

    Обычно это настолько далеко, насколько вы можете разумно предсказать будущее.Менее 5 лет было бы слишком мало, чтобы быть полезным, а более 10 лет слишком сложно предсказать для большинства компаний.

    5. Что вы обычно используете для расчета ставки дисконтирования?

    Обычно вы используете WACC (средневзвешенную стоимость капитала), хотя вы также можете использовать стоимость капитала в зависимости от того, как вы настроили DCF.

    6. Как рассчитать WACC?

    Формула: Стоимость капитала * (% капитала) + Стоимость долга * (% долга) * (1 - ставка налога) + Стоимость привилегированного капитала * (% привилегированного капитала).

    Во всех случаях проценты относятся к тому, какая часть структуры капитала компании занята каждым компонентом.

    Для оценки стоимости капитала вы можете использовать модель ценообразования капитальных активов (CAPM - см. Следующий вопрос), а для других вы обычно смотрите на сопоставимые компании / выпуски долговых обязательств, а также на процентные ставки и доходность, выпущенные аналогичными компаниями, чтобы получить оценки.

    7.Как вы рассчитываете стоимость капитала?

    Стоимость капитала = Безрисковая ставка + Бета * Премия за риск капитала

    Безрисковая ставка показывает, сколько должно приносить 10-летнее или 20-летнее казначейство США; Бета рассчитывается на основе «рискованности» сопоставимых компаний, а премия за риск капитала - это процент, на который ожидается, что акции превзойдут показатели «безрисковых» активов.

    Обычно вы получаете премию за риск капитала из публикации Ibbotson's.

    Примечание: Эта формула не раскрывает всей картины. В зависимости от банка и от того, насколько точными вы хотите быть, вы также можете добавить "размерную надбавку" и "отраслевую надбавку", чтобы учесть, насколько компания, как ожидается, превзойдет своих конкурентов в соответствии с ее рыночной капитализацией или отраслью. .

    Ожидается, что акции небольших компаний будут превосходить акции крупных компаний, и ожидается, что одни отрасли будут лучше других, и эти премии отражают эти ожидания.

    8. Как перейти к бета-версии при расчете стоимости капитала?

    Вы просматриваете бета-версию для каждой сопоставимой компании (обычно на Bloomberg), снимаете рычаг с каждой из них, берете медианное значение набора и затем регулируете его в зависимости от структуры капитала вашей компании. Затем вы используете эту бета-версию с кредитным плечом при расчете стоимости капитала.

    Для справки, формулы для снятия рычага и его изменения в бета-версии приведены ниже:

    Бета без рычагов = Бета с рычагами / (1 + ((1 - Налоговая ставка) x (Общий долг / капитал))) Бета с рычагами = Бета без рычагов x (1 + ((1 - Ставка налога) x (Всего Долг / Собственный капитал)))

    9.Зачем нужно отключать и снова переключать Бету?

    Опять же, помните о нашей теме «яблоки с яблоками». Когда вы просматриваете бета-версии на Bloomberg (или из любого другого источника, который вы используете), они будут отражать долг, уже взятый на себя каждой компанией.

    Но структура капитала каждой компании отличается, и мы хотим посмотреть, насколько «рискованной» является компания, независимо от того, какой процент долга или собственного капитала у нее составляет.

    Чтобы получить это, нам нужно каждый раз отключать бету.

    Но в конце расчета нам нужно повторно использовать его, потому что мы хотим, чтобы бета, используемая в расчете стоимости капитала, отражала истинный риск нашей компании, принимая во внимание структуру ее капитала на этот раз.

    10. Ожидаете ли вы, что производственная или технологическая компания будет иметь более высокую бета-версию?

    Технологическая компания, потому что технология считается «более рискованной» отраслью, чем производство.

    11. Предположим, что вы используете свободный денежный поток с рычагом, а не без рычага в своем DCF - каков будет эффект?

    Свободный денежный поток с рычагом дает вам стоимость капитала, а не стоимость предприятия, поскольку денежный поток доступен только инвесторам в акции (инвесторам в долговые обязательства уже «заплатили» проценты).

    12. Если вы используете левереджированный свободный денежный поток, какую ставку дисконтирования следует использовать?

    Вы бы использовали стоимость капитала, а не WACC, поскольку в данном случае нас не интересуют долги или привилегированные акции - мы рассчитываем стоимость капитала, а не стоимость предприятия.

    13. Как рассчитать конечную стоимость?

    Вы можете применить коэффициент выхода к EBITDA, EBIT или свободному денежному потоку компании за 5-й год (метод множественных), либо вы можете использовать метод роста Гордона, чтобы оценить его стоимость на основе темпа роста на неограниченный срок.

    Формула конечной стоимости с использованием роста Гордона: Конечная стоимость = свободный денежный поток за 5-й год * (1 + темп роста) / (ставка дисконтирования - скорость роста).

    14. Почему для расчета конечной стоимости вы бы использовали рост Гордона, а не метод кратных?

    В банковском деле вы почти всегда используете метод кратных для расчета конечной стоимости в DCF. Намного легче получить соответствующие данные для мультипликаторов выхода, поскольку они основаны на сопоставимых компаниях - выбор долгосрочного темпа роста, напротив, всегда является выстрелом в темноте.

    Однако вы можете использовать Gordon Growth, если у вас нет хороших сопоставимых компаний или если у вас есть основания полагать, что мультипликаторы существенно изменятся в отрасли через несколько лет.Например, если отрасль очень циклична, вам может быть лучше использовать долгосрочные темпы роста, чем мультипликаторы выхода.

    15. Какую скорость роста следует использовать при расчете конечной стоимости?

    Обычно вы используете долгосрочные темпы роста ВВП страны, уровень инфляции или что-то подобное консервативному.

    Для компаний в странах со зрелой экономикой долгосрочные темпы роста более 5% были бы довольно агрессивными, поскольку в большинстве развитых стран рост составляет менее 5% в год.

    16. Как выбрать подходящий коэффициент выхода при расчете конечной стоимости?

    Обычно вы смотрите на Сопоставимые компании и выбираете медианное значение из набора или что-то близкое к нему.

    Как и во всем остальном в финансовой сфере, вы всегда показываете диапазон кратных выходов и то, как выглядит конечная стоимость в этом диапазоне, а не выбираете одно конкретное число.

    Итак, если медианный мультипликатор EBITDA набора был равен 8x, вы могли бы показать диапазон значений с использованием мультипликаторов от 6x до 10x.

    17. Какой метод расчета конечной стоимости даст вам более высокую оценку?

    Трудно сделать обобщения, потому что и то, и другое сильно зависит от сделанных вами предположений. В целом, метод кратных будет более изменчивым, чем метод роста Гордона, поскольку мультипликаторы выхода имеют тенденцию охватывать более широкий диапазон, чем возможные долгосрочные темпы роста.

    18. В чем заключается недостаток базирования терминальных мультипликаторов на том, по какой цене торгуются сопоставимые акции публичных компаний?

    Медианные мультипликаторы могут сильно измениться в следующие 5-10 лет, поэтому к концу рассматриваемого периода они могут оказаться неточными. Вот почему вы обычно смотрите на широкий диапазон мультипликаторов и делаете чувствительность, чтобы увидеть, как оценка изменяется в этом диапазоне.

    Этот метод особенно проблематичен в циклических отраслях (например,г. полупроводники).

    19. Как узнать, слишком ли зависит ваш DCF от будущих предположений?

    «Стандартный» ответ: если значительно более 50% стоимости предприятия компании происходит от ее конечной стоимости, ваш DCF, вероятно, слишком зависит от будущих предположений.

    На самом деле, почти все DCF «слишком зависят от будущих предположений» - на самом деле довольно редко можно увидеть случай, когда конечная стоимость меньше 50% от стоимости предприятия.

    Но когда он оказывается в диапазоне 80-90%, вы знаете, что вам, возможно, придется пересмотреть свои предположения ...

    20. Должна ли стоимость капитала быть выше для компании с рыночной капитализацией 5 или 500 миллионов долларов?

    Он должен быть выше для компании с оборотом $ 500 млн, потому что при прочих равных ожидается, что более мелкие компании будут превосходить крупные компании на фондовом рынке (и, следовательно, будут «более рискованными»).Использование премии за размер в ваших расчетах также обеспечит более высокую стоимость капитала для компании за 500 миллионов долларов.

    21. А как насчет WACC - будет ли он выше для компании стоимостью 5 или 500 миллионов долларов?

    Это вопрос с подвохом, потому что он зависит от того, одинакова ли структура капитала для обеих компаний. Если структура капитала такая же с точки зрения процентов, процентных ставок и т. Д., То WACC должна быть выше для компании с оборотом 500 миллионов долларов по тем же причинам, которые указаны выше.

    Если структура капитала не та же, то она может быть любой, в зависимости от того, сколько долга / привилегированных акций у каждого из них и каковы процентные ставки.

    22. Какая связь между долгом и стоимостью капитала?

    Увеличение долга означает, что компания более рискованна, поэтому уровень левереджа компании будет выше - при прочих равных условиях дополнительный долг повысит стоимость капитала, а уменьшение долга снизит стоимость капитала.

    23.Стоимость собственного капитала говорит нам, какую прибыль может ожидать инвестор в акции от инвестиций в данную компанию - но как насчет дивидендов? Разве мы не должны учитывать дивидендную доходность в формуле?

    Вопрос с подвохом. Дивидендная доходность уже учтена в бете, потому что бета описывает доходность, превышающую рынок в целом, и эта доходность включает дивиденды.

    24.Как мы можем рассчитать стоимость капитала БЕЗ использования CAPM?

    Есть альтернативная формула:

    Стоимость капитала = (Дивиденды на акцию / Цена акции) + Скорость роста дивидендов

    Эта формула встречается реже, чем «стандартная» формула, но иногда вы используете ее для компаний, где дивиденды более важны или когда вам не хватает надлежащей информации о бета-версии и других переменных, которые используются при расчете стоимости капитала с помощью CAPM.

    25. Две компании абсолютно одинаковы, но у одной есть долги, а у другой нет - у какой из них будет более высокий WACC?

    Это сложно - тот, у кого нет долга, будет иметь более высокий WACC до определенного момента, потому что долг «дешевле», чем собственный капитал. Почему?

    • Проценты по долгу не подлежат налогообложению (отсюда умножение (1 - налоговая ставка) в формуле WACC).

    • Долг имеет приоритет по отношению к собственному капиталу в структуре капитала компании - держателям долга будут выплачены первые выплаты при ликвидации или банкротстве.

    • Интуитивно понятно, что процентные ставки по долгу обычно ниже, чем значения стоимости капитала, которые вы видите (обычно более 10%). В результате доля стоимости долга в WACC будет меньше вносить вклад в общую цифру, чем часть стоимости капитала.

    Однако вышесказанное верно лишь до определенного момента. Как только долг компании вырастет достаточно высоко, процентная ставка резко возрастет, чтобы отразить дополнительный риск, и поэтому стоимость долга начнет расти - если она станет достаточно высокой, она может стать выше, чем стоимость капитала, и дополнительный долг увеличится. WACC.

    Это «U-образная» кривая, на которой долг уменьшает WACC до точки, а затем начинает ее увеличивать.

    26. Что больше влияет на оценку DCF компании - изменение выручки на 10% или изменение ставки дисконтирования на 1%?

    Вы должны начать со слов «это зависит от обстоятельств», но в большинстве случаев разница в доходе в 10% будет иметь большее влияние.

    Это изменение выручки влияет не только на доход текущего года, но также на доход / EBITDA в далеком будущем и даже на конечную стоимость.

    27. Как насчет изменения выручки на 1% по сравнению с изменением ставки дисконтирования на 1%?

    В этом случае ставка дисконтирования, вероятно, будет иметь большее влияние на оценку, хотя правильный ответ должен начинаться со слов «Все может пойти в любом случае, но в большинстве случаев ...»

    28. Как рассчитать WACC для частной компании?

    Это проблематично, потому что у частных компаний нет рыночной капитализации или бета-тестирования.В этом случае вы, скорее всего, просто оцените WACC на основе работы, проделанной аудиторами или специалистами по оценке, или на основе того, что такое WACC для сопоставимых публичных компаний.

    29. Что делать, если вы не верите прогнозам руководства в отношении модели DCF?

    Вы можете использовать несколько разных подходов:

    • Вы можете создавать свои собственные прогнозы.

    • Вы можете изменить прогнозы руководства в сторону понижения, чтобы сделать их более консервативными.

    • Вы можете показать таблицу чувствительности, основанную на различных темпах роста и марже, и показать значения, исходя из прогнозов руководства и более консервативного набора чисел.

    В действительности вы, вероятно, сделали бы все это, если бы у вас были нереалистичные прогнозы.

    30. Почему бы вам не использовать DCF для банка или другого финансового учреждения?

    Банки используют заемные средства иначе, чем другие компании, и не реинвестируют их в бизнес - они вместо этого используют их для создания продуктов.Кроме того, проценты являются важной частью бизнес-моделей банков, а оборотный капитал занимает огромную часть их балансовых отчетов, поэтому DCF для финансового учреждения не имеет большого смысла.

    Для финансовых учреждений более распространено использование модели дисконтирования дивидендов для целей оценки.

    31. Какие типы анализа чувствительности мы будем рассматривать в DCF?

    Пример чувствительности:

    • Рост доходов vs.Терминал Multiple

    • Маржа EBITDA по сравнению с терминальным мультипликатором

    • Терминальные множественные против ставки дисконтирования

    • Долгосрочные темпы роста по сравнению со ставкой дисконтирования

    И любая их комбинация (кроме терминальной множественной и долгосрочной скорости роста, что не имеет смысла).

    32. Компания имеет высокую долговую нагрузку и ежегодно выплачивает значительную часть своей основной суммы долга.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *