Принцип работы ветряка: Ветрогенераторы: принцип действия, типы, применение, эффективность работы
Принцип работы ветрогенератора и его комплектующие
Содержание раздела:
- Компоненты ветроустановки
- Комплектация наших ветроустановок
- Подбор ветряка
- Примеры подбора компонентов установки
- Схемы работы ветрогенератора
1. Компоненты ветроустановки
К основным компонентам системы, без которых работа ветряка невозможна, относят следующие элементы:
- Генератор – необходим для заряда аккумуляторных батарей. От его мощности зависит как быстро будут заряжаться ваши аккумуляторы. Генератор необходим для выработки переменного тока. Сила тока и напряжение генератора зависит от скорости и стабильности ветра.
- Лопасти – приводят в движение вал генератора благодаря кинетической энергии ветра.
- Мачта – обычно, чем выше мачта, тем стабильнее и сильнее сила ветра. Отсюда следует – чем выше мачта, тем больше выработка генератора. Мачты бывают разных форм и высот.
Список дополнительных необходимых компонентов:
- Контроллер – управляет многими процессами ветроустановки, такими, как поворот лопастей, заряд аккумуляторов, защитные функции и др. Он преобразовывает переменный ток, который вырабатывается генератором в постоянный для заряда аккумуляторных батарей.
- Аккумуляторные батареи – накапливают электроэнергию для использования в безветренные часы. Также они выравнивают и стабилизируют выходящее напряжение из генератора. Благодаря им вы получаете стабильное напряжение без перебоев даже при порывистом ветре. Питание вашего объекта идёт от аккумуляторных батарей.
- Анемоскоп и датчик направления ветра – отвечают за сбор данных о скорости и направлении ветра в установках средней и большой мощности.
- АВР – автоматический переключатель источника питания. Производит автоматическое переключение между несколькими источниками электропитания за промежуток в 0,5 секунды при исчезновении основного источника.
Позволяет объединить ветроустановку, общественную электросеть, дизель-генератор и другие источники питания в единую автоматизированную систему. Внимание: АВР не позволяет работать сети одного объекта одновременно от двух разных источников питания!
- Инвертор – преобразовывает ток из постоянного, который накапливается в аккумуляторных батареях, в переменный, который потребляет большинство электроприборов. Инверторы бывают четырёх типов:
- Модифицированная синусоида – преобразовывает ток в переменный с напряжением 220В с модифицированной синусоидой (ещё одно название: квадратная синусоида). Пригоден только для оборудования, которое не чувствительно к качеству напряжения: освещение, обогрев, заряд устройств и т.п.
- Чистая синусоида — преобразовывает ток в переменный с напряжением 220В с чистой синусоидой. Пригоден для любого типа электроприборов: электродвигатели, медицинское оборудование и др.
- Трехфазный – преобразовывает ток в трехфазный с напряжением 380В. Можно использовать для трехфазного оборудования.
- Сетевой – в отличие от предыдущих типов позволяет системе работать без аккумуляторных батарей, но его можно использовать только для вывода электроэнергии в общественную электросеть. Их стоимость, обычно, в несколько раз превышает стоимость несетевых инверторов. Иногда они стоят дороже, чем все остальные компоненты ветроустановки вместе взятые.
2. Комплектация наших ветроустановок
В комплект наших ветроэнергетических установок входит:
- Турбина
- Мачта (не входит в комплект EuroWind 300L)
- Лопасти
- Крепления
- Тросы мачты
- Поворотный механизм (только с ветрогенераторами EuroWind 3 и старше)
- Контроллер
- Анемоскоп и датчик ветра (только с ветрогенераторами EuroWind 3 и старше)
- Хвост (только с ветрогенераторами EuroWind 2 и младше)
Аккумуляторы, инвертор и дополнительно оборудование подбираются индивидуально и в базовую комплектацию не входят.
Независимо от комплектации ветрогенератор всегда автоматически позиционируется по ветру.
Комплектующие ветрогенератора EuroWind 10
3. Подбор ветряка
Первый вопрос, на который вы должны дать ответ и который поможет вам ответить на остальные вопросы: Для чего вам нужен ветрогенератор и какие задачи он должен выполнять?
Ответив на главный вопрос, вы можете без проблем ответить на остальные вопросы и решить какой набор оборудования вам необходим и сколько это будет стоить.
Итак, три основные величины, которые определяют работу всего комплекса:
- Выходная мощность ветроустановки (кВт), определяется только мощностью преобразователя (инвертора) и не зависит от скорости ветра, емкости аккумуляторов. Ещё её называют «пиковой нагрузкой». Этот параметр определяет максимальное количество электроприборов, которые могут быть одновременно подключены к вашей системе. Вы не сможете одновременно потреблять больше электроэнергии, чем позволяет мощность вашего инвертора. Если вы потребляете электроэнергию редко, но в больших количествах, то обратите внимание на более мощные инверторы. Для увеличения выходной мощности возможно одновременное подключение нескольких инверторов.
- Время непрерывной работы при отсутствии ветра или при слабом ветре определяется емкостью аккумуляторных батарей (Ач или кВт) и зависит от мощности и длительности потребления. Если вы потребляете электроэнергию редко, но в больших количествах, обратите внимание на аккумуляторы с большой емкостью.
- Скорость заряда аккумуляторных батарей (кВт/час) зависит от мощности самого генератора. Также этот показатель прямо зависит от скорости ветра, а косвенно от высоты мачты и рельефа местности. Чем мощнее ваше генератор, тем быстрее будут заряжаться аккумуляторные батареи, а это значит, что вы сможете быстрее потреблять электроэнергию из батарей и в больших объемах.
Более мощный генератор следует брать в том случае, если ветра в месте установки слабые или вы потребляете электроэнергию постоянно, но в небольших количествах. Для увеличения скорости заряда аккумуляторов возможна установка нескольких генераторов одновременно и подключение их к одной аккумуляторной батарее.
Исходя из перечисленных выше факторов, для подбора ветрогенератора и сопровождающего оборудования вам необходимо ответить на три вопроса:
- Количество электроэнергии, необходимое вашему объекту ежемесячно (измеряется в киловаттах). Эти данные необходимы для подбора генератора. Их можно взять из коммунальных счетов на оплату электроэнергии или рассчитать самостоятельно, если объект находится в стадии строительства.
- Желаемое время автономной работы вашей энергосистемы в безветренные периоды или периоды, когда ваше потребление энергии из аккумуляторов будет превышать скорость зарядки аккумуляторных батарей генератором. Данный параметр определяет количество и емкость аккумуляторных батарей.
- Максимальная нагрузка на вашу сеть в пиковые моменты (измеряется в киловаттах). Необходимо для подбора инвертора переменного тока.
4. Примеры подбора компонентов установки
Рассмотрим несколько общих примеров подбора оборудования ветроустановки. Более точный расчёт может быть произведён нашими специалистами и включает в себя гораздо больше необходимых деталей.
Пример расчёта ветряка №1
Описание:
Частный дом в Киевской области находится в стадии строительства. По предварительным расчётам жильцы дома будут потреблять не больше 300 400 кВт электроэнергии ежемесячно. Затраты электроэнергии не очень высокие, т.к. хозяева будут использовать для отопления и нагрева воды твердотопливный котёл, а ветрогенератор необходим только для полного обеспечения бытовых приборов электроэнергией.
Хозяева проводят основную часть дня на работе, а пик потребления электроэнергии припадает на утренние и вечерние часы. В этот момент могут быть включены электроприборы суммарной мощностью до 4 киловатт.
Дом находится на возвышенности и есть открытое пространство вокруг будущего места установки ветрогенератора.
Общественной электросети нет.
Задача:
Полностью обеспечить 300-400 кВт электроэнергии ежемесячно с пиковыми нагрузками до 4 кВт.
Решение:
Генератор:Чтобы понять как быстро должны заражаться аккумуляторы при расходе электроэнергии 400 кВт в месяц, мы должны разделить 400 кВт/мес на 30 дней (получим ежедневное потребление), а затем полученное число разделить на 24 часа (400/30/24 = 0,56 кВт/час – среднее ежечасное потребление). Скорость заряда аккумуляторных батарей генератором должна составить как минимум 560 Ватт в час.
В Киевской области низкая среднегодовая скорость ветра, но открытое пространство и возвышение объекта позволит ветрогенератору работать как минимум на 30-40% от номинальной мощности. Для более точных показателей можно произвести замер скорости ветра в месте установки.
Для того, чтобы обеспечить заряд аккумуляторных батарей генератором при этих условиях со скоростью 560 Ватт в час, нужно взять генератор, номинальная мощность которого будет как минимум в три раза больше необходимой, т.к. генератор будет работать всего на 30-35% от номинальной мощности (560Вт/ч*3=1680Вт/ч). Для этих нужд нам подходит генератор EuroWind 2 с номинальной мощностью 2000 Ватт.
Аккумуляторы: Проводя 8-9 часов на работе в будние дни, хозяева отсутствуют, и энергопотребление их дома сведено к минимуму. В ночное время потребление также сведено к минимуму. Основное потребление происходит утром и вечером. Между этими основными пиками существует интервал в 8-9 часов.При среднем уровне заряда аккумуляторных батарей 560 Вт/ч за интервал 8-9 часов ветровой генератор сможет выработать около 5000 Ватт. В ветреные дни этот показатель может увеличиться как минимум в два раза, поэтому за тот же период времени может быть выработано 10000 Ватт электроэнергии.
Генератор EuroWind 2 имеет напряжение 120 Вольт, поэтому ему необходимо 10 аккумуляторов с напряжением 12 Вольт (12В*10=120В). Одна аккумуляторная батарея 12В 100Ач способна сохранить до 1,2 кВт электроэнергии. Десять таких батарей могут сохранить до 12 кВт (1200Вт*10=12000Вт). Для запаса 10000 Ватт электроэнергии нам отлично подойдут 10 аккумуляторных батарей 12В с емкостью 100Ач.
Для максимального потребления электроэнергии в пиковые моменты до 4 кВт, можно установить инвертор 5 кВА. Он сможет обеспечить постоянную нагрузку 4 кВт и пусковые токи до 6 кВт (150% нагрузка). Таблицу совместимости инверторов вы найдёте в разделе Инверторы.
Дополнительное оборудование:АВР в данном случае не нужен, т.к. нет основной сети, а коммутацию с дизельным генератором (или бензиновым) можно производить посредством перекидного рубильника.
А вот дизельный генератор на 5 кВт в нашем случае не помешает – его можно использовать как резервное питание при полном отсутствии ветра.
ИТОГО:
Для полного энергообеспечения объекта нам необходим генератор EuroWind 2, 10 аккумуляторных батарей 12В с емкостью 100Ач, инвертор 5 кВА, дизельная электростанция на 5 кВт.
Пример расчёта ветряка №2
Описание:
Небольшой отель на 8 номеров вместе с рестораном расположены на трассе в открытом поле. Среднегодовая скорость ветра в месте установки была замерена предварительно и составляет 6,8 м/с. Расходы электроэнергии на бытовые приборы и освещение составляют 60 кВт на один номер в месяц и около 2500 кВт в месяц на ресторан. Ресторан и отель обогреваются, кондиционируются и круглый год обеспечивают себя горячей водой с помощью трехфазного геотермального теплонасоса инверторного типа мощностью 14 кВт. Потребление электроэнергии данного теплонасоса составляет 3,5 кВт/час, а пусковые токи — всего 2,8 кВт.
В ресторане и отеле используются энергосберегающие лампы для освещения. Пиковая нагрузка при использовании электроприборов и освещения объекта составляет около 7,5 кВт (не считая 3,5 кВт теплонасоса).
Есть общественная электросеть, но она не может обеспечить потребности, т.к. выделена линия мощностью только 4 кВт. Большую мощность не может обеспечить местная подстанция.
Задача:
Полное обеспечение объекта независимой электроэнергией, отоплением и резервным питанием от основной сети.
Решение:
Генератор:Ежемесячный расход электроэнергии на содержание номеров составит 60 кВт * 8 номеров = 480 кВт в месяц. Общий расход электроэнергии на содержание отеля и ресторана без учёта отопления составит 2980 кВт в месяц (480 кВт + 2500 кВт = 2980 кВт). Отсюда следует, что среднее ежечасное потребление на все электроприборы и освещение без учёта обогрева составит 4,14 кВт/час (2980 кВт / 30 дней / 24 часа = 4,14 кВт/час). К этому числу необходимо прибавить 3,5 кВт/час, которые будет потреблять теплонасос. В итоге мы получаем, что генератор должен обеспечивать нас как минимум 7,64 киловаттами электроэнергии ежечасно (4,14 кВт/час + 3,5 кВт/час = 7,64 кВт/час).
Среднегодовая скорость ветра 6,8 м/с позволяет генератору работать как минимум на 40% от номинальной мощности. Отсюда следует, что номинальная мощность генератора должна составлять как минимум 19,1 кВт/час (7,64 кВт/час / 40% = 19,1 кВт/час)
Для этих целей отлично подошёл бы генератор EuroWind 20, но он рассчитан на более высокие средние скорости ветра, как и другие мощные генераторы (EuroWind 15, 20, 30, 50). Поэтому мы отдадим предпочтение двум генераторам EuroWind 10, которые будут работать в одной системе, вместо одного генератора EuroWind 20. Тем более, что свободное место для установки ветрогенератора в данном случае не критично – есть свободная площадь вокруг отеля и ресторана.
Аккумуляторы:В этом комплексе практически отсутствуют большие перерывы в использовании электроэнергии, а постоянные ветра поддерживают равномерный уровень заряда аккумуляторов.
В этом случае необходимы аккумуляторы, которые будут являться своеобразным «буфером» между генератором и инвертором. Их главная задача будет состоять в стабилизации и выпрямлении напряжения, а не накоплении электроэнергии.
Генератор EuroWind 10 имеет напряжение 240 Вольт, поэтому ему необходимо 20 аккумуляторов с напряжением 12 Вольт (12В*20=240В). Одна аккумуляторная батарея 12В 150Ач способна сохранить до 1,8 кВт электроэнергии. Двадцать таких батарей могут сохранить до 36 кВт (1800Вт*20=36000Вт). Запаса электроэнергии в 36 кВт должно хватить всему комплексу почти на 5 часов непрерывной работы при средней нагрузке при полном отсутствии ветра. Для этого нам подойдут 20 аккумуляторных батарей 12В с емкостью 150Ач.
Инвертор:Для максимального потребления электроэнергии в пиковые моменты до 7,5 кВт, можно установить инвертор 10 кВА. Он сможет обеспечить постоянную нагрузку 8 кВт и пусковые токи до 12 кВт (150% нагрузка).
А для обеспечения теплонасоса мощностью 3,5 кВт нам необходим трехфазный инвертор, т.к. этот теплонасос требует трехфазный ток с напряжением 380В. В этом случае возьмём ещё один инвертор – трехфазный 5 кВА, который обеспечит нас напряжением 380В и постоянной мощностью 4 кВт.
Дополнительное оборудование:Можно установить АВР, который будет автоматически переключать питание отеля и ресторана с ветрогенератора на общественную электросеть в случае полного безветрия и разряда аккумуляторных батарей. Среднее потребление отеля и ресторана (4,14 кВт) практически равно мощности общественной линии электропередач, которая была выделена объекту (4 кВт), поэтому резервное питание будет обеспечено.
Для резервного обеспечения теплового насоса можно установить трехфазную бензиновую или дизельную электростанцию мощностью 3,5 4 кВт, т.к. общественная электросеть не сможет обеспечить трехфазный ток для резервного питания теплонасоса.
ИТОГО:
Для полного энергообеспечения этого объекта нам необходимы два генератор EuroWind 10, 20 аккумуляторных батарей 12В с емкостью 150Ач, однофазный инвертор 10 кВА, трехфазный инвертор 5 кВА, АВР, бензиновая или дизельная электростанция на 3,5-4 кВт.
5. Схемы работы ветрогенератора
Приводим несколько популярных схем работы ветрогенераторных систем с потребителем. Это всего лишь некоторые примеры, поэтому возможны и другие схемы работы. В каждом случае составляется индивидуальный проект, который способен решить поставленную перед нами задачу.
Автономное обеспечение объекта (с аккумуляторами).
Объект питается только от ветроэнергетической установки.
Ветрогенератор (с аккумуляторами) и коммутация с сетью.
АВР позволяет переключить питание объекта при отсутствии ветра и полном разряде аккумуляторов на электросеть. Эта же схема может использоваться и наоборот – ветрогенератор, как резервный источник питания. В этом случае АВР переключает вас на аккумуляторные батареи ветрогенератора при потери питания от электросети.
Ветрогенератор (с аккумуляторами) и резервный дизель-(бензо-)генератор.
В случае отсутствия ветра и разряде аккумуляторных батарей происходит автоматический запуск резервного генератора.
Ветрогенератор (без аккумуляторов) и коммутация с сетью.
Общественная электросеть используется вместо аккумуляторных батарей – в неё уходит вся выработанная электроэнергия и из неё потребляется. Вы платите только за разницу между выработанной и потреблённой электроэнергией. Такая схема работы пока-что не разрешена в Украине и во многих других странах.
Гибридная автономная система – солнце-ветер
Возможно подключение солнечных фотомодулей к ветрогенераторной системе через гибридный контроллер или с помощью отдельного контроллера для солнечных систем.
Увеличение производительности системы.
Возможно установить два и более генератора, инвертора и комплекта аккумуляторов для увеличения мощности системы.
Также возможны другие схемы работы и коммутации ветрогенераторов.
принцип работы необычного ветряка будущего
Ветроэнергетика прочно заняла свою нишу среди других способов производства электроэнергии. Доля произведенного промышленными ветрогенераторами электротока от общего количества потребляемой энергии, например, в Дании, составляет 36%. Возможности этого метода еще не изучены полностью, а обилие новых разработок, постоянно появляющихся и демонстрируемых конструкторами, говорит о перспективности этого направления.
Слишком заманчиво производить энергию из ветра, который достается совершенно бесплатно и в неограниченном количестве. Энергия есть, ее много, надо только суметь получить.
Ветряки необычных конструкций
Согласно расчетным данным, максимально возможный КПД ветрогенератора составляет 59,3%. Причина этого кроется в особенностях конструкции ветряков и в большом количестве потерь на трение, передачу вращения и прочих тонких эффектах, в сумме отбирающих половину (а то и больше) эффективности устройств. Ограниченные возможности существующих ныне ветрогенераторов стали причиной активного поиска более удачных конструкций, работающих на иных принципах и способных к более интенсивному приему энергии ветра.
Наиболее привлекательна идея отказаться от привычных лопастей и пойти по пути использования более простых конструкций. Это позволит снизить расходы на производство и обслуживание, увеличит срок службы, снизит уровень шума и опасность для птиц и животных. Разработки, уже имеющиеся в этом направлении, сулят большие перспективы в случае их широкого распространения.
Ветрогенератор без лопастей
Безлопастные ветрогенераторы разрабатываются уже довольно давно, но дальше предложенных проектов пока дело не заходило. Наконец, испанская компания Vortex представила полноценную рабочую конструкцию ветротурбины, полностью лишенной лопастей.
Вариант, предложенный Vortex, вызвал немалый интерес среди представителей научных и деловых кругов. Учитывая скептицизм, который принято испытывать по отношению к различным «непонятным» конструкциям, подобное отношение наглядно демонстрирует наличие проблемы и существование серьезной заинтересованности в ее решении.
Существуют и другие безлопастные конструкции, например, парусные ветряки, не имеющие вращающихся частей, а использующие силу давления ветра на сплошное полотно. Поток, взаимодействующий с парусом, используется полностью, но велики потери при передаче энергии на систему поршней, от которых приводится во вращение генератор. Кроме того, сильный порыв ветра создает большую нагрузку на полотно, что создает угрозу разрушения или опрокидывания мачты с ветряком.
Все имеющиеся до сего времени варианты конструкции безлопастных ветрогенераторов имели общий недостаток — они использовали для производства энергии обычные тихоходные генераторы, нуждающиеся во вращении. Поэтому любая разработка имела один и тот же проблемный узел — участок преобразования полученной энергии во вращательное движение.
Специалисты Vortex, похоже, нащупали способ решения проблемы, отказавшись от традиционных генераторов.
Как устроены безлопастные ветряки?
Конструкция, которую вынесли на суд общественности инженеры Vortex, по их заверениям, имеет большую эффективность, экономичность, экологическую чистоту. Внешне устройство выглядит необычно и несколько футуристически — ветряк представляет собой вытянутый конус, установленный на вершину.
Определить на вид предназначение такого сооружения невозможно, если заранее не иметь о нем никакого представления. При работе никакого вращения нет, устройство лишь слегка раскачивается под действием ветра. Компания планирует начинать массовое производство с небольших моделей, имеющих вес 10 кг, высоту 3 м и развивающих мощность 100 Вт. Параллельно разработана более солидная установка на 4 кВт, имеющая 13 м высоты и вес 100 кг.
В ближайшее время предстоит тестовый запуск станции из 100 столбов, которые будут обеспечивать электроэнергией 300 частных домов в Шотландии. В планах компании проект создания мегаваттной установки, способной обеспечивать энергией серьезные количества потребителей в масштабе больших городов, крупных промышленных предприятий. Проект получил широкую поддержку экологических организаций и общественных движений.
Принцип работы
Действие генератора основано на образовании воздушных завихрений, которые создаются при обтекании потоками ветра цилиндрических препятствий. Конусообразная форма устройства способствует раскачиванию, чувствительность к нарушению равновесия является важным показателем работы ветряка.
Образующиеся вихри создают достаточно сильную вибрацию, приводящую в движение всю конструкцию столба, на изменение положения реагируют чувствительные магниты, создающие сильное поле. Эффект образования завихрений, создающих цепочки возмущений потока, известен уже более 100 лет. Он впервые описан и рассчитан Теодором фон Карманом в 1912 году, но на пользу его никто не пытался обратить.
Воздушные завихрения, использованные в основе конструкции, до сих пор считались вредными паразитными проявлениями. Их влияние способно к серьезным воздействиям на конструкцию, что наглядно продемонстрировал мост Такома-Нарроуз в Америке, который разрушился из-за таких колебаний. Подобных примеров, приведших к сильной раскачке мостовых конструкций, можно привести достаточно много. Ветрогенератор, предложенный компанией Vortex, является первой попыткой направить эти силы на пользу.
Испытания, проведенные специалистами, показали, что наилучшие показатели достигаются при использовании нескольких установок, расположенных неподалеку друг от друга. Колебания, инициированные первым столбом, улавливаются второй конструкцией, усиливаются и направляются дальше — нарастающей. Такая способность натолкнула конструкторов на мысль о необходимости использовать не отдельные устройства, а комплекты, дающие сильный эффект, производящие большее количество энергии.
Ветрогенераторы будущего
Усиленные исследования в области безлопастных конструкций дают основания предполагать рост производства подобных изделий. Существующие уже сегодня разработки сулят большие перспективы этому направлению, поскольку экономичность и эффективность таких моделей даже на стадии макетирования намного превышают показатели сегодняшних промышленных образцов.
Исследователи, конструкторы не хотят мириться с недоступностью дармовой, неисчерпаемой энергии ветра, использование которой позволяет отказаться от опасных или вредных для окружающей природы атомных или гидроэлектростанций.
Возможности ветрогенераторов пока не могут полностью решить проблему, но, по мере появления более успешных разработок, неминуемо начнут понемногу занимать место отработавших свой срок службы нынешних энергетических гигантов. Такой процесс будет плавным, резкого перехода не будет, поэтому каких-либо неудобств или потерь никто не почувствует.
Создание бесшумных, не имеющих вращающихся частей установок значительно снизит их себестоимость, что отразится на цене конечного продукта — электроэнергии, увеличит ее доступность, позволит всем без исключения пользоваться энергией ветра.
Рекомендуемые товары
особенности, цена, преимущества и недостатки.| UA Energy
К сожалению, ископаемое топливо не безгранично. С каждым годом запасов становится все меньше. Чтобы не наступил момент полного истощение ресурсов человечество дошло до альтернативной энергетики. Другими словами, теперь человек может получать электричество из энергии солнца, ветра, воды.
В этой статье мы рассмотрим что такое ветряная электростанция и как она работает, какие типы ВЭС существуют, разберем все их достоинства и недостатки. Кроме того мы приведем примеры известных мировых и украинских производителей ветряков, которые можно найти на рынке.
Принцип работы ветровой электростанции
Вне зависимости от типа электростанции, ее принцип работы заключается в одном: поток ветра определенной силы раскручивает лопасти ветрогенератора. Буквально происходит следующее — подвижная часть вращается, передавая это же вращение непосредственно на генератор. Благодаря этому в системе и образуется электропоток.
Далее он заряжает установленные аккумуляторы, которые подключены к инверторам. Они, в свою очередь преобразовывают полученный ток в обычное напряжение, которое необходимо для питания приборов, оборудования и техники. Для получения большего объема мощности отдельные ветрогенераторы соединяют в сеть, образуя при этом ветровую электростанцию.
Если же разделить ВЭС на два основных типа, то они бывают роторными и крыльчатыми. Первые оснащены вертикальной осью вращения, за счет чего более удобные в работе, малошумные и не привязаны к направлению ветра. Но, в свою очередь, роторные станции считаются менее эффективными и производительными и чаще всего устанавливаются на мелких, частных станциях.
Для выработки энергии в больших, промышленных масштабах, используют крыльчатые установки. Однако же в обслуживании и монтаже куда сложнее. Крыльчатые ветряки важно располагать в правильно направлении ветра для получения большей производительности.
Уcтpoйcтвo и виды вeтpoвых элeктpocтaнций
ВЭС вырабатывает электроток благодаря энергии ветра. Промышленные и крупные ветровые станции состоят из нескольких больших ветряков, которые соединены в одну сеть. Их мощности хватает для обеспечения электричеством сел, поселков и городов. Мелкие станции вырабатывают меньше мощности, но даже ее может хватить на удовлетворение энергопотребности небольшого массива.
По функциональности ветровые электростанции можно разделить на:
- стационарные;
- мобильные.
В зависимости от расположения ВЭС бывают:
- наземные;
- прибрежные;
- плавающие;
- офшорные.
Также станции можно разделить по типу конструкции:
- роторные;
- крыльчатые.
Преимущества и недостатки ВЭС
Самым основным достоинством ветровой станции является независимость от ископаемого топлива. Для работы и генерации электричества ВЭС использую полностью бесплатный источник — ветер. К тому же, ветропарк не наносит природе никакого урона, как, например, гидроэлектростанции. То есть, можно сказать, что ВЭС — экологически чистая и безвредная методика получения энергии.
Однако можно выделить и некоторые недостатки, среди которых основным можно выделить высокую стоимость оборудования. В результате это влияет и на цену конечного продукта — ветровой энергии. Говоря о финансовой стороне стоит упомянуть долгую и практически отсутствующую окупаемость оборудования. Кроме того для сбережения энергии также требуется большое количество аккумуляторов, поскольку ветер не всегда есть, что провоцирует перебои в генерации. Среди минусов можно также назвать высокий шум от работы ветряков и низкий уровень КПД, который практически невозможно увеличить.
Вeдyщиe мировые производители
Поскольку рынок альтернативной энергетики непрестанно растет и развивается, существует огромное количество компаний, специализирующихся на строительстве ветрогенераторов. Среди большого количества компаний мы выделили пятерку самый популярных и надежных.
Датская компания Vestas
Предприятие Vestas Wind Systems A/S одним из первых начало производство, установку и обслуживание ветрогенераторов еще в 1986 году. С тех пор она добилась колоссальных успехов в отрасли альтернативной энергетики. Vestas являются одним из самых крупных застройщиков ветроэлектростанций. На счету предприятия около 10 тысяч МВт мощности со всех произведенных единиц.
Немецкое производство Nordex
Компания была основана в 1985 году, еще до того как в первой половине 90-х годов увеличился спрос на ветряные турбины в мире. С самого начала Nordex сосредоточились на больших и мощных турбинах. Всего за два года, в 1995, компания установила самую большую в мире ветряную турбину N54 на 1000 кВт. С серийно выпускаемыми мульти-мегаваттными ветряными турбинами Generation Gamma, компания может предложить высокоэффективные ветряные турбины для наземного использования. С 2013 года Nordex выпускает Delta Generation для сильных, средних и слабых ветров.
Немцы Superwind
Компания Superwind GmbH была основана в 2004 году после четырех лет успешных исследований, проектирования и испытаний. Ветрогенераторы предприятия запатентованы в мире микротурбин. С тех пор тысячи коммерческих турбин Superwind 350 и Superwind 1250 обеспечивали бесшумную и надежную генерацию электричества от ветра как на суше, так и на воде. Superwind GmbH является частной компанией, управляемой основателями Клаусом Кригером и Мартином ван Эгереном. Компания не стремится продавать акции или искать инвесторов. |
Она просто разрабатывает, проектирует и производит свою продукцию наивысшего качества, чтобы удовлетворить потребности клиентов. Компания тесно сотрудничает с системными интеграторами и высококвалифицированными дистрибьюторами по всему миру.
Испанская компания Ecotecnia
Ecotècnia была производителем и установщиком ветряных турбин, основанным в 1981 году с главным офисом в Барселоне. Первым ветрогенератором компании была установка мощностью 30 кВт, разработанная в 1984 году при финансовой поддержке Министерства науки Испании. Со временем и активным развитием компания увеличила выходную мощность своей ветряной турбины до 1,67 МВт. А к 2007 году Ecotècnia установила ветряные электростанции с общей мощностью более 1 ГВт. Основным продуктом, которые завоевал весь мир, является морская ветряная турбина Haliade мощностью 6 МВт, одна из самых мощных турбин на Земле.
Французское предприятие Vergnet
Компания Vergnet, основанная в 1989 году, обладает более чем 25-летним опытом инженерного совершенства. Главный офис находится в Орлеане, Франция. В штате компании числится 166 сотрудников в 10 офисах по всему миру, работающих в более чем 40 странах. На сегодняшний день Vergnet установили более 900 ветровых турбин, выполнили более 45 МВт солнечных проектов и разработали ряд уникальных гибридных энергетических решений, включая первый в своем роде Hybrid Wizard™. Всемирная ветроэнергетическая ассоциация (WWEA) вручила Vergnet престижную премию World Wind Energy Award 2013, ежегодно присуждаемую отдельным лицам и организациям, которые внесли огромный вклад в использование энергии ветра во всем мире.
Украинские производители ветровых турбин
Украинское производство еще не настолько развито, чтобы конкурировать с иностранными компаниями. Однако одно из самых крупных производств ветряных мельниц не для промышленного использования принадлежит предприятию FLAMINGO AERO. Мощность из ветрогенераторов варьируется от 0,8 до 20 кВт.
Также стоит выделить фирму Winder, которая уже на протяжении 14 лет обеспечивает ветряными генераторами частные дома и небольшие предприятия.
Но несомненным лидером украинского рынка смело можно назвать «Фурлендер Виндтехнолоджи». Они первые и единственные на территории стран постсоветского пространства, кто производит ветрогенераторы мультимегаватного класса.
Самая большая электростанция
Самый крупный по габаритам и производимой мощности ветрогенератор в мире считается Энеркон Е-126 (Enercon E-126). Производитель гиганта — немецкая компания, специализирующаяся на проектировании, строительстве и монтаже ветровых электростанций. Первый такой ветряк был установлен еще в 2007 году в немецком городе Эмден. Тогда его мощность составляла 6 МВт. Позже, в 2009 году, провели модернизацию турбины, увеличив мощность до 7,58 МВт. Отметим, что какой бы ни был надежный ветрогенератор, его мощность все равно колеблется в зависимости от погодных условий.
Но что остается неизменным, так потрясающие размеры. Ветряк имеет высоту основной колонны в 135 метров, а диаметр подвижного ротора равен 127 метрам. То есть, если лопасть поднимается вверх, общая высота сооружения достигает 198 метров. А вес ветряка равен 6000 тоннам.
На фото ниже мы покажем размеры этого гиганта. На первой картинке может показаться, что лопасть ветряка просто огромна, однако это только ее половина.
На втором фото представлена целая лопасть Энеркона.
Также представлены фото, где ветряк можно сравнить с другими вещами, привычного нам размера.
Oбзop пoпyляpных моделей мировых производителей
Датская компания Vestas выпускает ветротурбину V112. Отличительной особенностью этой модели является то, что предприятие производит как морскую турбину, которую можно размещать на шельфовой зоне, так и береговую. Представляют собой турбины Vestas огромные промышленные ветряки, у которых диаметр ротора равен 112 метрам, а номинальная мощность — 3000 кВт. Ветряк функционирует на разной скорости ветра — от 4 до 23 м/с. Шесть таких ветряков были установлены в 2017 году во Львовской области, на ВЭС “Старый Самбор-2”.
Еще один промышленный ветряк, но уже украинского производства от компании “Фурлендер Виндтехнолоджи”. WTU-2.0 имеет номинальную мощность в 2 мВт, а диаметр ротора достигает 100 метров. Минимальная скорость ветра, при которой работает ветряк, 3 м/с, а максимальная — 25 м/с. 22 ветряка WTU-2.0 от “Фурлендер Виндтехнолоджи” были введены в эксплуатацию в Казахстане.
Немецкая компания Enercon выпускает три модели наземных ветряков E66 разной мощности: 1500 кВт, 1800 кВт и 2000 кВт. Диаметр их ротора неизменен, несмотря на разную производимую мощность, и равен 66 метрам. Трехлопастные ветряки работают при минимальной скорости ротора в 8 об/мин и максимальной в 22 оборота в минуту.
Также в Германии есть предприятие, выпускающее небольшие ветряки, схожие больше для частного использования. Как пример — Nordex N27, которые включают в себя турбины разной мощности: 150 кВт, 225 кВт и 250 кВт. Диаметр роторной подвижной части достигает 27 метров. Это старые модели, которые теперь сложно найти на рынке новыми и продаются они в основном в состоянии б/у. Средняя цена варьируется между 22 и 25 тысячами евро.
Невероятную производительность также имеет ветровой генератор Siemens SWT-7.0-154. Его мощность достигает 7 МВт, а диаметр движущейся части — 154 метра. Гигант работает при минимальной скорости ветра в 3 м/с и при максимальной в 25 м/с. Трехлопастный ветряк работает на прямом приводе и на одном генераторе. Стоимость формируется индивидуально для заказчика, исходя из объемов производства и количества ветряков.
принцип работы и получения энергии
Приводим несколько популярных схем работы ветрогенераторных систем с потребителем. Это всего лишь некоторые примеры, поэтому возможны и другие схемы работы. В каждом случае мы составляем индивидуальный проект, который способен решить поставленную перед нами задачу.
Автономное обеспечение объекта (с аккумуляторами)
Объект питается только от ветряной электростанции.
Ветрогенератор (с аккумуляторами) и коммутация с сетью
АВР позволяет переключить питание объекта при отсутствии ветра или в случае полной разрядки аккумуляторов на электросеть. Эта же схема может использоваться и наоборот – ветрогенератор, как резервный источник питания. В этом случае АВР переключает вас на аккумуляторные батареи ветрогенератора при потери питания от электросети.
Ветрогенератор (с аккумуляторами) и резервный дизель-(бензо-)генератор
В случае отсутствия ветра и разряде аккумуляторных батарей происходит автоматический запуск резервного генератора, работающего на бензине или солярке.
Ветрогенератор (без аккумуляторов) и коммутация с сетью
Общественная электросеть используется вместо аккумуляторных батарей – в неё уходит вся выработанная электроэнергия ветряком и из неё же потребляется. Вы платите только за разницу между выработанной и потреблённой электроэнергией из сети. Такая схема работы пока-что не разрешена в Украине и во многих других странах.
Гибридная автономная система – солнце-ветер
Возможно подключение солнечных фотомодулей к ветровой электростанции через гибридный контроллер или с помощью отдельного контроллера для солнечных систем.
Увеличение производительности системы
Возможно установить два и более генератора, инвертора и комплекта аккумуляторов для увеличения общей мощности системы.
Также возможны другие схемы работы и коммутации ветрогенераторов.
Принцип работы ветрогенератора с вертикальной осью вращения — ALTENEX.RU
Как работает вертикальный ветрогенератор
Лопасти ветряка присоединены прямо к центральной оси, соединенной с ротором генератора. Генератор располагается в нижней части установки, иногда даже на уровне земли.
Таким образом, при вращении лопастей винта ротор генератора также приходит в движение и, следовательно, появляется возможность выработки электроэнергии.
Видео: работа генератора с вертикальной осью вращения
youtube.com/embed/tXV42X2ZObU» frameborder=»0″ allowfullscreen=»»/>
Рассматриваемые ветряки не нуждаются в дополнительном оборудовании, которое определяет направление ветра и корректирует положение ветряка в соответствие с ним. На ветрогенераторах с горизонтальной осью вращения в качестве подобного устройства выступает специальная хвостовая лопасть.
Кроме того, эти турбины более устойчивы к турбулентности, чем стандартные горизонтальные.
Перечислим некоторые из доступных на сегодняшний день моделей таких генераторов: Giromill, ротор Дарье, ветряные мельницы с вращающимися парусами и турбины Савониуса.
Преимущества
- Основным достоинством является ортогональное расположение оси ротора, позволяющее размещать устройство вблизи поверхности земли. Соответственно, ветрогенератор и передаточный механизм расположены на этой же высоте и не требуют сооружения высоких конструкций для их установки.
- Кроме того, турбина не обязательно должна быть ориентирована по направлению ветра, что делает её очень простой в эксплуатации.
- Применение вертикальных ветрогенераторов даёт высокий эффект при их установке на верхней части холмов, столовых гор, по линии горных хребтов и в других местах, где вблизи поверхности земли присутствуют турбулентные потоки воздуха.
- В местах, где запрещено размещение высотных ветровых турбин, могут быть расположены вертикальные. При этом, вы сэкономите денежные средства и время, которые потребовались бы вам для получения соответствующих согласований для разработки и монтажа высоких башенных установок ветряков с горизонтальным расположением вала.
- Также, неоспоримым преимуществом устройств с вертикальным валом является их возможность поворота в любом направлении вместе с ветром.
Недостатки
- Одним из недостатков вертикальных турбин является их низкая эффективность в зоне постоянных ветров. Это происходит из-за высокой силы сопротивления, действующей с противоположной стороны, при попытке захватить движущийся поток воздуха.
Поэтому, на равнинах и других местах с преобладающими постоянными ветровыми потоками наилучшим вариантом являются горизонтальные ветроустановки. Они позволяют наиболее полно использовать энергию ветра в данных районах.
При наличии же турбулентных потоков у поверхности земли рекомендуется применять ортогональные ветроустановки.
- Другим минусом вертикальных ветроустановок является возможность разрушения лопастей винта. Это вызвано тем, что при вращении вокруг главной оси, на них постоянно воздействуют центробежные силы. То есть, со временем, лопасти сгибаются, трескаются и разрушаются. При их поломке вся машина выходит из строя.
- Если разместить ветряк рядом со зданием, то он не будет работать, так как находится в мертвом воздушном пространстве.
Вывод
Вертикальные ветроустановки существуют в течение тысяч лет, но из-за плохой надежности и эффективности они не пользуются популярностью. Однако, их продолжают выпускать и по сей день.
Производители утверждают, что данные устройства могут уловить ветер любого направления, что, по сути, также верно и для горизонтальных турбин.
По сравнению с горизонтальными установками, рассматриваемые модели обладают меньшим коэффициентом полезного действия.
Ветрогенератор паросного типа, его принцип работы, преимущества и недостатки
Первые ветряные мельницы придумали в Персии за 200 лет до н.э. Там с их помощью перемалывали зерно. А вот использовать ветрогенераторы как источник электрической энергии люди начали в XIX веке, когда один смекалистый фермер из Дании соединил два механизма: ветряную мельницу и электрогенератор. С тех пор ветряки используются не только в хозяйствах, но и в промышленности, а также в домашнем обиходе. Давайте разберемся в принципе работы такого источника энергии, его плюсах и минусах, а также рассмотрим способ сделать парусный ветряк своими руками.
Как работает парусный ветрогенератор
В качестве прототипа современных парусных ветрогенераторов выступал обычный ветряк-водокачка. Он преобразовывал ветряную энергию сначала во вращательное, а потом — в возвратно-поступательное движение. За счет этого двигалась помпа, которая подавала воду из скважины. Удивительно, но такие ветряки существуют и по сей день. Их популярность обусловлена надежностью и простотой конструкции.
Внешне старые и новые модели практически идентичны. Разница в материале, используемом для лопасти. У ветряков старого образца лопасти были cделаны из жестких материалов, а у современных — из мягких (брезент, парусина, нетканые слоистые материалы). По своему предназначению старые и новые ветряки тоже различаются: они выполняют разные функции. Водокачки использовались для подачи воды, а нынешние ветряки — для добычи электроэнергии.
Устройство и принцип работы современных парусников
Главная задача ветрогенератора парусного типа — превращать энергию ветра во вращение. Таким образом и получается электричество. На лопасти замкнутой или незамкнутой формы натягивается материал на манер лепестка. Сам парус представляет собой треугольник с вершиной у самого центра вращения. Одна из сторон этого треугольника должна примыкать к вершине и не присоединяться к раме.
Под силой давления ветра парус слегка прогибается, после чего начинает вращаться. В отличие от ветряков другого типа, парусник стартует даже при низких колебаниях ветра: генератор начинает работу со скорости ветра 3-4 м/сек. Даже при столь небольших скоростях генератор способен заряжать аккумуляторы!
Секрет эффективности парусников в форме лопастей. Они напоминают собой цветочные лепестки. Поэтому порыв ветра, попадая в такой раструб, «наращивает плотность» и действует на лопасти с максимальной силой. Вспомните детские игрушки-ветряки, способные вращаться при малейшем колебании ветра: парусник работает по тому же принципу.
Достоинства и недостатки
У парусного ветрогенератора множество плюсов:
- высокий КПД;
- экологичность;
- низкие показатели шума;
- легкость обслуживания и ремонта;
- простота изготовления своими руками;
- облегченная и компактная конструкция;
- эффективная работа при низкой скорости ветра.
Проанализируйте минусы парусников, чтобы понять, подойдет ли вам такой источник энергии:
- потеря мощности при сильном ветре;
- лопасти не выдерживают высокие нагрузки;
- медленный набор оборотов при смене направления ветра;
- остановка механизма при резкой смене направления ветра.
Если вы проживаете в регионе с постоянными сильными ветрами, которые часто меняют направления, тогда парусник — не ваш вариант. Также конструкцию не стоит возводить в местах, окруженных горами или высокими строениями. Подобные препятствия на пути ветра создают завихрения — парусник не сможет подстроиться под постоянную смену порывов, и в итоге выйдет из строя.
Парусный ветрогенератор своими руками
Сначала вам нужно изготовить мачту, на которую будет крепиться ветряк. Проще всего использовать схему ферменной мачты треугольной или четырехугольной формы. Под основание мачты выкопайте яму и сделайте закладки для крепежа мачты на бетон. После закладок и вставки мачты, залейте в яму бетон и дайте ему застыть. После такой основательной подготовки ваш ветрогенератор устоит даже при шквальном ветре.
Поворотную ось генератора можно изготовить из подручных материалов: например, из колесных дисков и разобранного моста. Чтобы не покупать генератор, используйте двигатель постоянного тока из старого механизма. Подойдут двигатели даже 60-х или 70-х годов выпуска. Достаточно будет, чтобы генератор выдавал напряжение около 50В. После этого соберите узлы привода от редуктора к генератору.
Чтобы поднять и установить детали на мачту, удобней всего воспользоваться лебедкой. Сначала поднимите поворотную конструкцию, а уже потом — генератор. Когда основные работы завершены, приступайте к конструированию колеса. Для него можно использовать любой поворотный механизм и нетяжелые рейки (в качестве спиц). Наденьте на каркас паруса, как показано на фотографии: в форме треугольных лепестков. Готовое колесо с парусами поднимите лебедкой на мачту и закрепите болтами. При первом порыве ветра ваш парусный ветряк придет в движение и начнет подавать энергию к аккумуляторам.
Как видите, сконструировать парусник легко. Если у вас нет под рукой материалов, описанных в статье, импровизируйте. Главные составляющие — мачту, двигатель и паруса — реально сделать из любых доступных запчастей и материалов, которые отыщутся в любом гараже или сарае. Соблюдайте правила безопасности и не забудьте протестировать ветряк перед вводом в эксплуатацию.
принцип работы необычного ветряка будущего
Ветроэнергетика прочно заняла свою нишу среди других способов производства электроэнергии. Доля произведенного промышленными ветрогенераторами электротока от общего количества потребляемой энергии, например, в Дании, составляет 36%. Возможности этого метода еще не изучены полностью, а обилие новых разработок, постоянно появляющихся и демонстрируемых конструкторами, говорит о перспективности этого направления.
Слишком заманчиво производить энергию из ветра, который достается совершенно бесплатно и в неограниченном количестве. Энергия есть, ее много, надо только суметь получить.
Исследования и разработки
Проблемы с энергообеспечением, особенно актуальные для стран с ровным рельефом и отсутствием возможности построить ГЭС, требуют иных способов решения.
Использование дизельных или бензиновых электростанций невыгодно из-за постоянного удорожания углеводородов и значительного ущерба, который наносится окружающей природе при использовании этого способа производства энергии. При этом, ветроэнергетика использует абсолютно бесплатную и неиссякаемую энергию, не нанося вреда окружающей среде и не изменяя рельеф поверхности, как это приходится делать при создании ГЭС.
Перемещение воздушных потоков имеет высокий энергетический потенциал и должно использоваться для производства электротока. В регионах, не имеющих возможностей для применения других способов, производятся интенсивные исследования и разработки в этой области, уже имеющие свои результаты в виде крупных ветроэнергетических станций (ВЭС). Они состоят из отдельных ветрогенераторов, обладающих большой мощностью и объединенных в единую энергосистему.
Размеры каждого агрегата впечатляют — они имеют более 100 м высоты и размах лопастей от 120 м. Мощность достигает 9 МВт, с каждым годом создаются все более крупные модели. Для прибрежных стран такой вариант является выгодным, а нередко — единственным.
Кроме того, широко ведутся разработки небольших ветрогенераторов, дающих возможность обеспечивать электроэнергией частный дом, усадьбу или отдельную группу потребителей. Использование такого комплекта позволяет самостоятельно обеспечивать свои потребности, не зависеть от поставщиков энергии, а зачастую еще и немного заработать на этом, поставляя излишки энергии в сеть.
Безлопастные ветрогенераторы
Немного поразмыслив, изобретатели пришли к выводу, что в принципе то, ветрогенератор может быть без лопастей! Идея абсурдная! Ну как может быть без лопастей ветряная мельница? А ведь именно она была прародительницей ветряков. Однако были придуманы, изготовлены и протестированы прототипы таких моделей. А некоторые из них даже готовы к коммерческому выпуску.
Наиболее удивительный из них – ионный ветрогенератор. Его далёким предком можно считать «Капельницу Кельвина», которую великий учёный изобрёл в 1867 году.
Эту систему решили поставить горизонтально, чтобы капли воды переносились ветром. Преимущество перед обычным ветрогенератором в том, что ионная модель:
- абсолютно бесшумна;
- в ней ничего не движется;
- она только собирает электростатический заряд с капелек воды.
Может быть побудительным мотивом именно голландских рационализаторов стало легальное посещение легендарных кафе-шопов в Амстердаме, ведь там тоже очень тихо, и ничего не движется. Однако они сделали несколько работающих прототипов ионных ветрогенераторов, которые установили в Роттердаме.
Один даже встроили в буквы О на крыше здания
КПД ионного ветрогенератора невелик, всего 7%. В перспективе его надеются увеличить до 27%, но там и ломаться нечему! Такая радужная перспектива способствовала созданию колоссального проекта. Это будет огромное здание в виде бублика, в котором будут отдыхать и бездельничать постояльцы. Там ничего не будет шевелиться, а ветер будет приносить заряженные частицы воды. В России бы такой проект называли «Кремль», а в Нидерландах это Windwheel.
После того как Испания пошла по голландскому пути в области либерализации человеческих пороков, их изобретатели стали шагать такими широкими шагами, что полёт фантазии за ними не поспевает.
Вот например та старушка на заднем фоне, явно думает что обнимает сувенир из секс-шопа, но это ошибка! Это инновационные ветрогенератор Vortex Tacoma.
Хотя более правильно было бы его назвать ветровибратор.
По задумке инженеров фирмы Vortex Bladeless SL, этот упругий стержень будет колебаться на ветру, и благодаря хитроумному устройству на неодимовых магнитах, сможет вырабатывать электричество.
Они построили несколько реальных прототипов, протестировали их в городских условиях и сельской местности, результаты оказались двоякими.
С одной стороны, модель Vortex Tacoma высотой 2,75 м, выдаёт мощность всего 100 Вт. Но там нечему ломаться, не нужна настройка и ориентация по ветру, работает это чудо бесшумно. В общем, стоит, дрожит на ветру, и генерирует, генерирует, генерирует…
Прототип прошёл испытания, и в 2021 году намечается старт коммерческих продаж. Наиболее эффективная модель Vortex Atlantis.
Высота этого ветро-виброгенератора 10-12 м, выдаваемая мощность 1 КВт.
У французов тоже есть подобный проект, в котором ничему вертеться, но работает он от ветра, а значит это ветрогенератор. Называется проект Saphonian.
Можно условно её сравнить с испанским проектом. Только в Saphonian ветер улавливается рабочей поверхностью в форме специально сконструированной тарелки.
Она непрерывно изменяет угол наклона, а генератор расположенный на тыльной стороне, преобразует эти колебательные движения в электроэнергию.
О мощности и времени выхода на рынок французы умалчивают, но они надеются с такой моделью уйти от ограничений закона Бетца, ведь в их проекте не предусмотрены лопасти.
Виды ветрогенераторов
Из ныне существующих конструкций ветрогенераторов принято выделять две основные группы:
- вертикальные
- горизонтальные
Соответственно, ось вращения установок первой группы расположена вертикально, а у второй группы она находится в горизонтальной плоскости. Этот принцип разделения отражает наиболее существенную разницу между типами ветряков, имеющими своеобразные признаки, особенности и условия эксплуатации.
По уровню эффективности однозначно лидируют горизонтальные устройства, так как они получают полную энергию потока, приходящуюся на площадь лопастей. Ограничение их количества — вынужденная мера, вызванная необходимостью снижать фронтальную нагрузку на мачту. При больших размерах ветряка давление на крыльчатку, оборудованную большим числом лопастей, превысит допустимые пределы и мачта попросту переломится. Поэтому на крупных промышленных турбинах устанавливают лишь по 3 лопасти.
Кроме того, для горизонтальных устройств является критичным параметром возможность наведения на ветер. Поскольку над земной поверхностью направление воздушных потоков отличается нестабильностью, то ось вращения должна иметь возможность постоянной быстрой корректировки. При этом, для больших устройств эта возможность сильно ограничена, так как они устанавливаются в местах с преобладанием одного направления ветра.
Вертикальные роторы не нуждаются в наведении, поскольку для них направление ветра не имеет значения. При этом, существуют конструкции, нуждающиеся в этой функции. У таких устройств имеется защитный кожух, отсекающий поток, воздействующий на обратные стороны лопастей и создающий противодействующее усилие. Наведение производится путем установки хвостового стабилизатора, представляющего собой вертикальную пластину, расположенную ребром к потоку. Изменение ветра тут же вызывает поворот хвоста, автоматически устанавливающий кожух в нужное положение.
Вертикальные конструкции обладают большим числом видов ротора. Они используются для относительно мелких ВЭУ, способных питать ограниченное количество потребителей.
Большинство самодельных ветрогенераторов имеют вертикальную конструкцию, так как они могут быть установлены на небольшом возвышении и допускают более удобное обслуживание и ремонт. Кроме того, расходы на создание таких устройств намного ниже.
Ветряная турбина — Energy Education
Рисунок 1. Ветряная турбина. [1]Ветряные турбины работают, преобразуя кинетическую энергию ветра в механическую энергию, которая используется для выработки электроэнергии путем вращения генератора. Эти турбины могут быть наземными или морскими ветряными. [2]
Детали турбины
Рис. 2. Иллюстрация компонентов ветряной турбины (щелкните, чтобы увеличить). [3]Современные ветряные турбины бывают разных размеров, но все типы обычно состоят из нескольких основных компонентов: [4]
- Лопасти ротора — Лопасти ротора ветряной турбины работают по тому же принципу, что и крылья самолета.Одна сторона лезвия изогнута, а другая плоская.
Ветер быстрее течет по изогнутому краю, создавая разницу в давлении с обеих сторон лезвия. Лопасти «толкаются» воздухом, чтобы уравновесить разницу давлений, в результате чего лопасти вращаются. [5]
- Гондола — Гондола содержит комплект шестерен и генератор. Поворотные лопасти связаны с генератором шестернями. Шестерни преобразуют относительно медленное вращение лопастей в скорость вращения генератора примерно 1500 об / мин. [5] Затем генератор преобразует энергию вращения лопастей в электрическую энергию.
- Башня — лопасти и гондола установлены на вершине башни. Башня сконструирована таким образом, чтобы удерживать лопасти ротора от земли и при идеальной скорости ветра. Башни обычно находятся на высоте 50-100 м над поверхностью земли или воды. Морские башни обычно крепятся к дну водоема, хотя исследования по разработке башни, плавающей на поверхности, продолжаются. [2]
Визуализация турбины
MidAmerican Energy Company имеет отличное видео о конструкции ветряной турбины , для просмотра щелкните здесь.
Видео ниже, созданное UVSAR, подробно показывает детали турбины.
Для дальнейшего чтения
Список литературы
Физика ветряных турбин | Основы энергетики
Более тысячи лет назад ветряные мельницы работали в Персии и Китае,
см. TelosNet и
Википедия.Почтовые мельницы появились в Европе в XII веке, а к концу XIII в.
башенная мельница, на которой вращалась только деревянная крышка
вместо всего корпуса мельницы. В США развитие
ветряная мельница, перекачивающая воду, была важным фактором, позволившим вести сельское хозяйство и разводить скотоводство на обширных территориях
в середине девятнадцатого века. Эти ветряные помпы
(иногда называемые западными мельницами) все еще распространены в Америке и Австралии. У них есть ротор с
около 30 лопастей (или лопастей) и способность медленно поворачиваться. Из 200 000 ветряных мельниц, существующих в
В Европе середины девятнадцатого века через столетие остался только один из десяти.
С тех пор старые ветряные мельницы были заменены паровыми двигателями и двигателями внутреннего сгорания. Однако поскольку
В конце прошлого века количество ветряных турбин неуклонно растет, и их начинают принимать
играет важную роль в производстве электроэнергии во многих странах.
Сначала мы покажем, что для всех ветряных турбин энергия ветра пропорциональна скорости ветра в кубе. Энергия ветра — это кинетическая энергия движущегося воздуха. Кинетическая энергия массы м с скорость v составляет
Массу воздуха m можно определить из плотности воздуха ρ и объема воздуха V согласно
.Затем,
Мощность — это энергия, разделенная на время. Рассмотрим малое время Δ t , за которое частицы воздуха пройти расстояние с = v Δ t для протекания.Умножаем расстояние на площадь ротора ветряной турбины A , в результате получается объем
, который приводит в движение ветряную турбину на короткое время. Тогда мощность ветра дается как
.Сила ветра увеличивается пропорционально скорости ветра. Другими словами: удвоение скорости ветра дает в восемь раз больше энергии ветра. Поэтому для ветряка очень важен выбор «ветреного» места.
Эффективная полезная энергия ветра меньше, чем указано в приведенном выше уравнении.Скорость ветра позади ветряк не может быть нулевым, так как за ним не может идти воздух. Следовательно, только часть кинетической энергии можно извлечь. Рассмотрим следующую картину:
Скорость ветра перед ветряной турбиной больше, чем после. Поскольку массовый расход должен быть непрерывным,
площадь A 2 после ветряной турбины больше площади A 1 перед. Эффективная мощность — это разница между двумя ветровыми мощностями:
Если разница обеих скоростей равна нулю, у нас нет чистой эффективности.Если разница слишком велика, поток воздуха через ротор слишком затруднен. Коэффициент мощности c p характеризует относительная мощность рисования:
Для вывода приведенного выше уравнения было принято следующее: A 1 v 1 = A 2 v 2 = A ( v 1+ v 2) / 2. Обозначим соотношение v 2/ v 1 справа. уравнения с размером x .Чтобы найти значение x , которое дает максимальное значение C P , мы берем производную по отношению к x и устанавливаем ее равной нулю. Это дает максимум, когда x = 1/3. Максимальная мощность рисования получается для v 2 = v 1 /3, а идеальный коэффициент мощности равен
Другая ветряная турбина, расположенная слишком близко сзади, будет приводиться в движение только более медленным воздухом. Таким образом, ветряные электростанции в Преобладающее направление ветра требует минимального расстояния в восемь раз больше диаметра ротора.Обычный диаметр ветряков составляет 50 м с установленной мощностью 1 МВт и 126 м с ветроэнергетической установкой мощностью 5 МВт. Последний в основном используется на шельфе.
Установленная мощность или номинальная мощность ветряной турбины соответствует выходной электрической мощности со скоростью между 12 и 16 м / с, при оптимальных ветровых условиях. По соображениям безопасности установка не производит большую мощность при сильном ветре. условий, чем те, для которых он предназначен. Во время грозы завод отключается.В течение года загруженность из 23% можно добраться вглубь страны. Это увеличивается до 28% на побережье и 43% на море.
Более подробную информацию можно найти на Интернет-страницах wind-works. org и в
страницы Американской ассоциации ветроэнергетики.
Установленная мощность ветроэнергетики в США составляла около 107,4 ГВт в апреле 2020 года. Эта мощность была превышена. только Китай (более 200 ГВт). Центр ветроэнергетики Альты в Калифорнии — крупнейшая ветряная электростанция в Соединенных Штатах с 2013 года мощностью 1.6 ГВт. Электроэнергия, произведенная с помощью энергии ветра в Соединенных Штатах, составила в 2019 году около 300 ТВт-ч (тераватт-часов), или 7,3% всей вырабатываемой электроэнергии. Подробную информацию о нынешнем состоянии в США можно найти в Википедия.
Ключевым моментом в ветроэнергетике является то, что время пикового спроса на электроэнергию и время оптимальных ветровых условий совпадают редко. Таким образом, другие производители электроэнергии с короткими сроками выполнения заказа и хорошо развитой системой распределения электроэнергии системы необходимы для дополнения выработки энергии ветра.
Почему современные ветряные турбины потеряли одну лопасть по сравнению со старыми четырехлопастными ветряными мельницами?
Мощность ротора P мех = 2π M n пропорциональна крутящему моменту M , действующему на
вал и частота вращения n . На последнее влияет передаточное число наконечника λ ,
который рассчитывается согласно λ = v u / v 1 из соотношения
окружная скорость (конечная скорость) v u ротора и скорость ветра v 1 .Крутящий момент M увеличивается с количеством лопастей. Поэтому он является самым большим для мельниц западного производства с множеством лопастей,
меньшего размера для ветряных мельниц с четырьмя лопастями и самого маленького на сегодняшний день ветряных турбин с 3 лопастями. Однако каждое лезвие,
по мере вращения снижает скорость ветра для следующих лопастей. Этот эффект «ветровой тени» увеличивается с увеличением количества лопастей. Оптимальное передаточное число концевых скоростей составляет около единицы для мельницы Western, чуть больше 2 для четырехлопастной мельницы и 7-8 для
трехлопастные роторы.Трехлопастные роторы при оптимальном передаточном числе угловых скоростей достигают значения c p .
48% и приближается к идеальному значению 59%, чем ветряные турбины с 4 лопастями.
Для ветряных турбин с двумя лопастями или уравновешенных по весу конфигураций ротора с одной лопастью выходная мощность меньше, несмотря на
более высокое передаточное число наконечников из-за меньшего крутящего момента M . Таким образом, у ветряных турбин сегодня три лопасти.
Наши журналы | ||||||
Как крупный международный издатель академических и исследовательских журналов Science Alert издает и разрабатывает названия в партнерстве с самыми престижные научные общества и издатели.Наша цель заключается в том, чтобы максимально широко использовать качественные исследования. аудитория. | ||||||
Для авторов | ||||||
Мы прилагаем все усилия, чтобы поддержать исследователей которые публикуют в наших журналах. Есть масса информации здесь, чтобы помочь вам публиковаться вместе с нами, а также ценные услуги для авторов, которые уже публиковались у нас. | ||||||
Подписчикам | ||||||
2021 цены уже доступны.![]() | ||||||
Для обществ | ||||||
Science Alert гордится своей тесные и прозрачные отношения с обществом. В качестве некоммерческий издатель, мы стремимся к самому широкому возможное распространение публикуемых нами материалов и на предоставление услуг высочайшего качества нашим издательские партнеры. | ||||||
Справочный центр | ||||||
Здесь вы найдете ответы на наиболее часто задаваемые вопросы (FAQ), которые мы получили по электронной почте или через контактную форму в Интернете. В зависимости от характера вопросов мы разделили часто задаваемые вопросы на разные категории. | ||||||
База данных ASCI | ||||||
Азиатский индекс научного цитирования (ASCI)
стремится предоставить авторитетный, надежный и
значимая информация по освещению наиболее важных
и влиятельные журналы для удовлетворения потребностей мировых
научное сообщество.![]() | ||||||
|
Разве ветряные турбины разваливаются и требуют замены? | Розмари Барнс
Самый простой способ сделать лезвие жестче — это либо изменить материал, либо добавить больше материала.Лопасти ветряных турбин в основном сделаны из стекловолокна. Таким образом, вы можете заменить часть стекловолокна на более жесткий материал, например углеродное волокно. Но это стоит намного дороже, поэтому увеличивает стоимость энергии ветра. Или вы можете добавить больше стекловолокна, чтобы сделать лезвие жестче. Это также немного увеличивает стоимость и, что еще более важно, утяжеляет лезвие. Поскольку вес лопастей приходится на другие компоненты турбины, все они должны быть усилены, чтобы они могли работать с более тяжелыми лопатками. Таким образом, вам понадобится более крупный фундамент, более прочная опора, и , вы усложнили работу с подшипниками шага, что может сократить срок службы , их … своего рода контрпродуктивно!
В сложной системе, такой как ветряная турбина, конструкция каждого компонента влияет на что-то еще.Итак, вы можете понять, почему делать лезвия как можно более жесткими — не лучшая инженерная идея. Вместо этого вы получите лучшую турбину в целом, если сконструируете лопасти точно такой же жесткости, какими они должны быть, — конечно, с запасом прочности.
Все компоненты ветряной турбины взаимосвязаны (Авторские изображения)Итак, это краткое изложение основных причин, по которым инженеры проектируют продукты с расчетным сроком службы, вместо того, чтобы пытаться спроектировать все, чтобы служить вечно. Есть еще пара других связанных моментов, о которых я хочу поговорить, которые, надеюсь, заставят вас задуматься.
Во-первых, технологии быстро развиваются. Инженеры, работающие над продуктами с десятилетиями эксплуатации, не знают, как будет выглядеть мир в конце срока службы продуктов. Срок службы угольных электростанций составляет около 40–50 лет. В США 74% угольных электростанций старше 30 лет, и в Австралии эта цифра аналогична. Их достаточно много задолго до того, как кто-то очень беспокоился об изменении климата или загрязнении твердыми частицами, и до того, как мы узнали, что возобновляемые источники энергии однажды будут поставлять более дешевую электроэнергию, чем угольные электростанции.