Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Припой медь сталь: Припой П-81 (медь+сталь): продажа, цена в Армавире. флюсы, припой от «Специализированный магазин «ТОРГОВОЕ ОБОРУДОВАНИЕ»»

Содержание

Как проводится пайка меди твердым и мягким припоем

Изделия из меди встречается повсеместно в разных сферах жизни. Например, из нее создают прочные и долговечные системы отопления и водоснабжения. Но для соединения двух элементов, специалисты прибегают к особой технологии – пайки труб из меди. Для осуществления процедуры необходимы подходящие инструменты и материалы, а также знания. Так как она обладает определенными особенностями, о которых новичок может не знать.

Чтобы паять медь, мастеру нужно иметь при себе такой состав, как припой. Это термопластичное вещество герметизирует поверхность изделий и под воздействием высокой температуры расплавляется, растекаясь по всему месту соединения. Но как только он остывает, то твердеет и надежно скрепляет изделия.

В результате создается один предмет, который отличается долгим сроком службы, выдерживает высокую нагрузку, перепады давления и температуры, а также не боится ультрафиолетового излучения.

Какие инструменты и материалы нужны

Пайка проводится не только на промышленных объектах, но и в домашних условиях.

Для этого требуется подготовить следующие инструменты и материалы:

  • электропаяльник или газовую горелку;
  • труборез;
  • припой;
  • флюс;
  • кисть и стальную щетку.

Чем именно соединять изделия, зависит от удобства и предпочтения мастера. Но по мощности аппарат выбирают в соответствии с температурой плавления припоя. Флюс бывает жидким и твердым, у каждого вида имеются индивидуальные отличия, которые следует учитывать. Если используется материал в виде загустевшей смеси, то его наносят на место стыка, как до соединения, так и после. Флюс нужен для того, чтобы предохранить поверхность от окисления, способствовать растеканию припоя и улучшить сцепление.

Виды флюсов и припоев, особенности работы с ними

Мастерам известно множество твердых и мягких веществ, обеспечивающих качественную пайку изделий из металла. В 95% используется олово, которое относится к низкотемпературному составу, обладающим несколько худшими техническими параметрами. Но его ценят за то, что работы могут проводиться при любой температуре без уменьшения прочности соединяемых изделий.

К соединительным элементам также относится серебро, обладающее отличными технологическими свойствами. Мастера нередко применяют трехкомпонентные составы из серебра, олова и меди. Часто в состав материалов, используемых при низкотемпературной пайке, входит хлорид цинка.

Преимущество мягких припоев заключается в том, что они охватывают большую площадь при попадании на поверхность детали. Они обеспечивают высокую прочность и надежность.

Мягкие припои

Мягкий припой используется при монтаже водопроводных и отопительных сетей, где диаметр труб достигает 10 см, а температура воды не превышает 130 градусов. К таким видам относят:

  • свинцово оловянный тип;
  • с малым содержанием олова;
  • специальные и легкоплавкие.

В качестве припоя чаще всего выбирается бессвинцовый флюс. Оловянно-медный тип является самым распространенным, благодаря доступной цене. Но его преимущество заключается в другом. Все смеси, содержащие олово в составе, отличаются экономичным расходом.

Достаточно нанести на половину обрабатываемой поверхности немного припоя, как он распространится по всей площади. Это свойство объясняется тем, что олово легко проникает внутрь и распространяется по любой структуре.

Твердые припои

Когда приходится учитывать условия среды, в которой выполняется пайка, то лучше использовать твердые припои. Применение таких веществ обеспечивает высокую прочность шва. Самым распространенными соединениями являются следующие составы:

  • медь и цинк;
  • фосфор и медь;
  • чистая медь;
  • безотмывный флюс.

Твердые соединения классифицируются как тугоплавкие и легкоплавкие. Каждый вид характеризуется определенными свойствами. Например, медно-фосфорный заменяет дорогой серебряный флюс. Он отличается умеренной стоимостью, но обладает одним минусом – использовать при низких температурах не получится.

Самыми крепкими из твердых соединений считаются медно-цинковый и многокомпонентные. Они обходятся дорого, но цена оправдана надежностью соединения. Когда выполняется пайка самой медью, то необходимо применять и флюс. В таком случае удастся крепко-накрепко соединить две детали.

Зачем нужна паяльная паста

Паяльная паста – это пастообразная масса, состоящая из маленьких частиц припоя, флюса и специальных добавок. Флюс-паста применяется в промышленности при пайке элементов на печатных платах. Пасту выбирают согласно определенным условиям:

  • после нанесения должны оставаться легкоудаляемые частицы;
  • вещество должно сохранять вязкость и клейкость;
  • не оказывать отрицательного воздействия на обрабатываемую поверхность;
  • не просочиться на одежду во время плавления.

Как работают с пастой, зависит от вида и размера припоя, содержащегося в ее составе. Материал различается также по типу флюса (канифольные, водосмываемые, безотмывные). Она необходима для удержания маленьких деталей на месте и облегчения процесса соединения.

Технология пайки

Процесс довольно простой, поэтому, когда необходимо соединить что-то дома, то хозяин выполняет пайку своими руками и без привлечения специалистов. Но все же без подготовительного этапа не обойтись.

Именно от него зависит, насколько качественным и надежным получится соединение. Прежде всего следует обратить внимание на срез детали, который должен быть строго вертикальным, без заусениц, с ровными и гладкими краями. При обнаружении малейших дефектов следует взять наждачную бумагу и провести ею по поверхности, пока дефекты не исчезнут.

Если соединяют две медные трубы, то, доведя срез до идеального состояния, необходимо вставить ее в фитинг, а после вынуть. Ту часть, которая соприкасалась с фитингом, необходимо очистить от окислений. Следующий этап – нанесение флюса. В этом нет ничего сложного, нужно только провести кисточкой по всей детали, уделяя особое внимание месту стыковки.

Затем элементы соединяют друг с другом и крепко фиксируют. Дальнейшие действия зависят от того, чем выполняется пайка – газовой горелкой или паяльником. Учитывая, что детали должны находиться в неподвижном состоянии, потребуется помощник. Он-то и будет держать их, но, если такового не нашлось, нужно ухитриться и сделать это самому.

Когда что-то нужно припаять в домашних условиях, то чаще всего используется твердый состав. Но мастер может приобрести специальные пасты. При правильном выборе составов удается максимально аккуратно и прочно соединить два трубопровода или радиодетали.

Пайка выполняется либо при высокой, либо низкой температуре. В первом случае процесс отличается высокой прочностью шва, а также соединенный участок получает термостойкость. Что очень важно, если он в дальнейшем послужит частью различных коммуникаций. Но высокотемпературную пайку не допускается применять на резьбовых соединениях. Чаще всего этот процесс выполняется горелкой, наполненной пропаном.

Когда же используется низкотемпературная пайка, то применяется мягкий состав, паста или гель. Она наиболее подходит для начинающего мастера, потому что отличается простотой и легкостью. В этом типе процесса температура не повышается больше 425 градусов, так что возможно даже использовать паяльник, который найдется практически в каждом доме.

Работа с паяльником

Каждый человек хоть раз в жизни видел паяльник, а многие постоянно работают с ним. Поэтому не увидят в пайке медных изделий этим инструментом ничего сложного. Вся сущность процесса заключается в том, что припой, расположенный между двумя деталями, нагревается с помощью паяльника, пока не начинает плавиться.

Когда он затвердеет, то две части надежно скрепятся в одну. Чтобы припаять качественно, необходимо распределить вещество равномерно по всей поверхности, заполнить каждый зазор. При этом важно подобрать именно тот материал, который хорошо выдерживает высокую температуру паяльника.

Работа с горелкой

Инструмент включают, когда две части уже соединены друг с другом. Не стоит слишком долго удерживать его возле места стыка, поскольку температура горения составляет несколько тысяч градусов. В то время как нагреть определенное место нужно всего лишь до 250-300 градусов.

Это займет секунд 20-30. Как только флюс сменит цвет на темный, то вводят соединяемый состав. Важно! Горелку или фен нужно располагать посередине, чтобы охватить всю зону соединения.

Можно ли паять медь оловом

Многих начинающих мастеров интересует, можно ли спаять медь оловом. На самом деле не просто можно, а нужно. Поскольку такой состав обеспечивает хорошее скрепление. Чаще всего олово используется, когда скрепляют предметы пищевого назначения.

Следует помнить лишь об одном – для этого металла нужна более высокая температура, чем для других припоев. В качестве инструмента лучше использовать мощный электрический паяльник.

Пайка серебряным припоем

Когда требуется спаивать детали в домашних условиях, то часто используют серебряный припой. Он выгоден, потому что его можно создать своими руками. Но следует применять его не в одиночку, в сочетании с цинком, медью.

Обработанный таким припоем, шов получится очень прочным и аккуратным. Процентное содержание компонентов контролирует ГОСТ 19746 74. Но точно узнать, какие виды веществ использовать, можно из инструкций опытных мастеров или прилагаемых к соединяемым изделиям.

Как спаять медь и нержавейку

Если требуется припаять медь к другому металлу, например, стали, то придется потрудиться. Процесс этот не из легких, но вполне осуществимый. Объясняется это тем, что нержавеющая сталь плохо взаимодействует с другими металлами, с трудом поддается температурной обработке.

Когда соединяются два разных изделия, то нужно найти средний состав, который подходит одновременно к обоим. В таких случаях приходится поступиться качеством и даже необязательно использовать флюс. Но важно провести подготовку, лужение и другие этапы спайки.

Надобность в соединении часто возникает в домашних условиях. Для соединения нержавейки и меди требуется мало времени и достаточно обычной газовой горелки. Поэтому, определившись с инструментом и припоем, следует очистить поверхность обоих стыков, подготовить флюс. Затем выполнить лужение места скрепления и нанести флюс. После чего две части соединяют, а получившийся шов обмазывается припоем.

Следующий этап – его равномерный разогрев горелкой. Как только припой растечется, изделие оставляют остывать естественным путем.

Как припаять медь к железу

Припаять медные изделия к железным или наоборот также распространенная задача, для решения которой правильно подбирается соединительный состав. Инструкция в этом вопросе окажется существенную помощь.

Полезную информацию можно найти в тематическом видео, где весь процесс пайки детально показан. При соблюдении всех условия удается получить ровный и прочный шов.

Основные ошибки при пайке своими руками

Чаще всего именно спешка приводит к тому, что соединение двух элементов получается неудачным. Потому что забывают осмотреть поверхность соединяемых деталей. Первое действие, направленное на исправление ошибки, — проверка отсутствия дефектов. Они могли появиться при нарезке деталей.

Насколько надежным окажется шов, зависит от чистоты поверхности. Поэтому смахнуть даже невидимые пылинки все же стоит. При нанесении флюса допускается одна из самых основных ошибок. Мастер может забыть обработать небольшой участок изделия. И он станет причиной того, что должного соединения не получится.

Важно также следить за температурой горелки или паяльника, поскольку перегрев обрабатываемого элемента приводит к сгоранию флюса. Но недостаточная температура плавления также вредна. В этом случае соединительные составы не размягчаются и не прилипают.

Техника безопасности

Пайка медных изделий довольно опасный процесс, поэтому соблюдать все стандарты и предписания ради безопасности, очень важно. Во время процесса используется открытое пламя и опасные вещества, поэтому домашнему мастеру и профессионалу необходимо носить защитные средства. Речь идет о рукавицах, очках и специальной одежде.

Прежде чем браться за инструмент, необходимо внимательно изучить правила технологии.

Пайка твёрдыми припоями. Часть 2. Оборудование и материалы.

Пайка твёрдыми припоями. Часть 1. О пайке.

Пайка твёрдыми припоями. Часть 3. Практика.

Оборудование для пайки

Инструментарий для пайки создан, чтобы решать главную задачу процесса – нагревание спаиваемых элементов до требуемой температуры плавления. Работа оборудования для пайки должна обеспечивать нагрев контактных площадок паяного шва, вне зависимости от физических принципов, положенных в основу работы этого оборудования, такой, чтобы обеспечивался диапазон температур в границах от 450 до 1200°C. Медно-цинковые припои или припои, содержащие серебро, обозначаются термином «среднеплавкие», и ими можно работать, если нагревательный элемент выдаёт температуру от 700 до 800°C. Категория же тугоплавких материалов припоя, к каковой относятся технически чистая медь и латунь, потребуют от оборудования нагрева свыше 1000°C.

Чаще всего для различных работ, связанных с высокотемпературной пайкой, применяют такой инструмент, как газовая горелка – вряд ли кто-то не в курсе, что это такое. К горелкам добавляются и другие более профессиональные виды оборудования: индукторы, печи и т.п.

Припои и их виды

Медь – вот краеугольный камень припоев, используемых для высокотемпературной пайки. Лидерство 29-му элементу таблицы Менделеева принадлежит потому, что он является составной частью, а зачастую и основой, большинства промышленных марок твёрдоприпойных сплавов.

Добавление же в основной состав различных металлов кардинально меняет физико-химические характеристики припоев, и, в свою очередь, даёт медьсодержащим сплавам технологические преимущества.   Самое очевидное из них – это понижение температуры плавления, показатели которой у меди в чистом виде составляют 1083C. Комбинированные же припои, такие как Cu-Sn (медь|олово), Сu-Zn (медь|цинк), Сu-Ag (медь|серебро), Cu-Si (медь|кремний), плавятся и текут в гораздо более низком диапазоне температур.

Об упомянутой технически чистой (без примесей) меди стоит сказать отдельно. При использовании в качестве припоя, она обладает уникальными свойствами, например способностью образовывать плотные швы без пористостей в силу специфики кристаллизации чистого металла. Она хорошо растекается и легко заполняет капиллярные зазоры, образуя соединение, более прочное, чем то, которым обладает сама. Этот факт кажется неочевидным, но он подтверждается измерениями – прочность на разрыв места пайки чистой медью минимум на 10% выше такого же показателя у самой меди.

Рассмотрим далее некоторые конкретные виды припоев, предназначенных для высокотемпературной пайки.

Для спаивания деталей из бронзы, меди, стали используют медно-цинковые припои. Каждый из стандартизированных их видов имеет прозрачную аббревиатурную маркировку: ПМЦ-35, ПМЦ-39, ПМЦ-50, ПМЦ-54, ПМЦ-57 и далее, где цифра обозначает содержание в сплаве меди в процентах. Платой за снижение температуры плавления до 900C становятся недостатки, проявляющиеся в слабом сопротивлении соединений при воздействии нагрузок изгиба, а также ударных и вибрационных. Улучшает положение дел с нагрузками введение в состав легирующих добавок (олова, кремния), доводящих свойства соединений до пригодности к пайке твёрдосплавных резцов. У этого инструмента припаянная к его телу твёрдосплавная режущая пластина испытывает все виды перечисленных нагрузок в весьма серьёзных значениях.

Далее назовём припои медно-фосфорные, маркируемые в промышленности, как, например, ПMФ-7, ПMФ-9, ПMФOЦp-6-4-0,03. Из букв в обозначении ясно, что перед нами припой - соединение Cu (меди) и P (фосфора). Цифра, продолжающая обозначение в маркировке сразу после букв, сообщает нам процентное содержание P, а в последней аббревиатуре мы видим «O» - олово в количестве 4%, и «Цp» - цирконий, 0,03%.

Фосфорсодержащие припои на основе меди уже классифицируются как среднеплавкие, они переходят в жидкое состояние в диапазоне температур 690-850C, хорошо растекаются, весьма коррозионностойки и нейтральны к агрессивным средам. К отличительным особенностям медно-фосфорных припоев относят их способность к самофлюсуемости. Т.е., при пайке с их помощью медных изделий, использование флюса становится необязательным.

Недостатки соединений, связанных припоями, имеющими в своём составе фтор, обуславливаются появлением на границе шва плёнки из фосфитов, солей фосфористой кислоты. Это критически повышает хрупкость места пайки, приводит к слабой переносимости изгибов, ударов и вибраций. Таким образом, из области применения этих припоев исключается соединение стальных и чугунных деталей, часто подверженных силовым нагрузкам. Сферой использования припоев с фосфором безраздельно остаются пайка меди, медьсодержащих сплавов (мельхиор, бронза, латунь) починка ювелирных украшений.

Медь, сталь и чугун рекомендуют паять припоями, изготовляемыми на основе сплавов меди и цинка, они широко распространены, и называются латунями. Обычно упоминают такие марки, как Л-62 и ЛOK-62-06-04, читаемые так: «Л» - латунь, «O» - олово, «K» - кремний. «62», «06», «04» - содержание соответствующих металлов в сплаве в процентах. Добавление олова обеспечивает припою дополнительную текучесть, снижая порог температуры плавления. Кремний выступает предохранителем от мгновенных окислительных процессов и затрудняет испарение.

Особого упоминания достойны серебряные припои, в реальности представляющие собой конечно же сплав, где кроме серебра присутствуют медь и цинк. Технологические свойства серебросодержащих припоев великолепны, они вне конкуренции по антикоррозионной стойкости, способности к смачиванию и растеканию, они прочны и универсальны, ими можно паять серебро, медь, сплавы меди, нержавеющую сталь. Одно «но» - припои эти чрезвычайно дороги и их применение требует экономического обоснования. Качество соединений, обусловленное превосходными физическими свойствами серебряных припоев, делает их лидерами при проведении ответственных и штучных работ, где оправдана дороговизна применяемого материала. Пример маркировки серебряного припоя – ПCp-45, т.е. припой серебряный, в котором 45% серебра.

Читайте продолжение в третьей части статьи.

как проводят лужение, паяют нержавейку и подбирают флюс для надежного соединения металлов

Пайка, как технология создания неразъёмных соединений металлических изделий имеет древнюю историю. И сегодня, несмотря на лидирующую позицию сварочных процессов, пайка стали, алюминия, меди, и многих других металлов и сплавов продолжает успешно применяться в различных отраслях техники.

Процесс пайки разных по составу металлических сплавов имеет свои особенности. Это связано с различной температурой плавления и химическим составом сплавов. К некоторым маркам стали пайка не применяется.

Сущность паяльной технологии

Пайкой называют соединение металлических деталей с помощью припоя, являющегося более легкоплавким металлом, который, будучи расплавленным, смачивает соединяемые поверхности.

Таким образом, процесс паяния связан с нагреванием и протекает при температуре, превышающей точку плавления припоя, но не достигающей температуры плавления соединяемого металла.

В процессе пайки соединяемые детали основного металла не изменяют форму, поскольку сами не подвергаются плавлению.

Прочность создаваемого соединения определяется механическими свойствами, которыми обладает припой для пайки. Когда стальные детали припаивают друг к другу, соединение всегда уступает по прочности основному материалу.

Главным препятствием для создания паяных соединений является окисел, образующийся на поверхности любого металла. Слой окисла не позволяет расплавленному припою равномерно смочить поверхность детали, поэтому металл должен предварительно зачищаться.

Для защиты поверхностей от окисления в процессе спаивания, применяются специальные вещества – флюсы. Для соединения разных материалов используются различные флюсы. Например, для того, чтобы спаять нержавейку, применяют буру. Флюсами для стали могут служить канифоль, паяльная кислота.

Основным процессом, сопровождающим создание паяного соединения, является нагрев заготовок. В зависимости от массы спаиваемых деталей и вида применяемого припоя, нагрев может осуществляться следующими способами:

  • паяльником;
  • газовой горелкой;
  • высокочастотным индуктором;
  • в специальных печах.

Например, проволоку небольшого диаметра можно легко прогреть обычным паяльником, при пайке стальных труб понадобится газовая горелка, а массивную заготовку придётся помещать в печь.

Низколегированной

Низколегированная углеродистая сталь относится к сплавам железа, наиболее легко подвергаемым процессу пайки.

Это объясняется тем, что на поверхности сталей данного типа образуется сравнительно непрочная плёнка окислов, легко устраняемая применением обычных флюсов.

Процесс пайки чёрных металлов может проходить при относительно низкой температуре, не превышающей 450 ℃ в случае применения мягких и легкоплавких свинцово-оловянных припоев.

Для получения паяного соединения, обладающего большей твёрдостью и механической прочностью, следует применять более твёрдые тугоплавкие припои, например на основе меди. Такая пайка осуществляется при температуре до 750 ℃.

Конструктивной

Этот вид сталей характеризуется наличием хрома, применяемого в качестве легирующей добавки. Благодаря хрому сталь приобретает необходимые механические характеристики.

Однако наличие этого легирующего компонента существенно затрудняет процесс пайки, так как на поверхности конструкционных сталей образуется довольно прочная и с трудом разрушаемая плёнка окисла.

Припаять сталь с добавкой хрома можно, применяя активный флюс, содержащий кислоты. Кроме этого, для получения качественного результата, используются специальные приспособления, создающие защитную атмосферу в зоне осуществления пайки.

Кроме этого, стальную поверхность, подготовленную для пайки, покрывают слоем порошка, содержащего металлические компоненты. Этот защитный слой предотвращает окисление стальной поверхности и выгорание легирующих элементов в процессе нагревания.

Паяное соединение легированных сталей производится с применением твёрдых припоев, содержащих медь, серебро или никель.

Инструментальной

Инструментальная сталь отличается очень высокой твёрдостью. Однако виды инструментальной стали, не имеющие в своём составе вольфрама, изменяют свои механические свойства при нагревании до 200 ℃ и более, значительно теряя при этом прочность.

Такие виды стали не подлежат пайке. Для устранения этого недостатка инструментальные стали, подлежащие нагреву в процессе эксплуатации, производятся с вольфрамовыми добавками. Такая сталь может подвергаться нагреву до 600 ℃, не утрачивая при этом ценных механических свойств.

Спаять инструментальную сталь можно припоем на основе никеля или ферросплавов. Нагревание заготовок обычно производят индукционным способом. При этом применяются флюсы, содержащие бор и фтор.

Последовательность операций

Процесс пайки стальных деталей начинается с тщательной очистки заготовок от грязи, ржавчины и следов масел. Для этого пользуются шлифовальной шкуркой, напильником, стальной щёткой. Ржавые детали можно обработать преобразователем ржавчины на основе ортофосфорной кислоты. Жировые загрязнения удаляются растворителем или щелочным раствором.

После очистки и обезжиривания, на поверхность деталей наносится слой флюса. Если в качестве припоя служит олово, детали предварительно лудят. Лужение представляет собой равномерное смачивание поверхности расплавленным оловом.

После этого, детали собирают и надёжно фиксируют в том положении, в котором они должны находиться после соединения.

Далее, детали нагреваются подходящим способом. Нагрев производится до температуры, несколько превышающей температуру плавления применяемого припоя, который должен быть помещён в область соединения.

При расплавлении он затекает в зазор между деталями, образуя соединение. После остывания и кристаллизации припоя, шов зачищают, следы флюса удаляют.

Припои марки А ПОС-30ф 8мм, П -14 ф 2,8мм ТУ 48-1728138/ОПП-006-2000 ООО Дон-энергокомплект г. Ростов-на-Дону

 

Применение: Электро и радиоаппаратура, печатные схемы, точные приборы без перегрева.

Температура плавления: 183-190°C

Химический состав: Олово 61% Свинец 39%

Пайка металлов: Бронза, Латунь, Медь, Нержавейка, Олово, Свинец, Сталь

Харакетристики:

Припой ПОС-61 в классификации припоев занимает особенное место. Это обусловлено тем, что в этом сплаве отмечается содержание канифоли, поэтому его можно с успехом использовать для лужения и пайки самых разных контрольно-измерительных приборов.

Припой ПОС 61 - это по-своему универсальный материал, который идеально подойдет для любой разновидности проводов. Также отмечается, что он неплохо себя показывается при пайке микросхем. Кроме того, если нельзя во время работы допустить перегрев места пайки, то припой ПОС-61 справится с задачей куда эффективнее, чем многие другие сплавы. Производитель отмечает, что основной сферой использования припоя ПОС61 является пайка жил к полупроводниковым устройствам, выводам разъемов, медных проводов. Стоит отметить, что это оптимальный выбор для соединения следующих металлов: сталь, латунь, бронза, медь. Припой ПОС 61, если сравнивать с другими оловянно-свинцовыми припоями, представленными на рынке, имеет более высокий уровень чистоты и рассчитан на пайку электромонтажа. За счет повышенного содержания меди в припое снижается интенсивность растворения проводов из меди, а также во много раз увеличивается степень износостойкости медных стержней электрических паяльников. Температура плавления припоя ПОС 61 составляет 183 0С, в то время как полностью он расплавляется при 190 градусах. Пайка с помощью этого припоя может быть выполнена при помощи традиционного паяльного инструмента.

Состав припоя ПОС 61: свинец (39-50%), олово (50-61%). Одновременно с этим, по ГОСТу 21930-76 главным фактором, который определяет характеристики припоя, является химический состав. Помимо свинца и олова в припое ПОС 61 содержатся следующие примеси: Sb, Cu, As, Bi, Ni, S, Zn, Al, Fe.

Применение: Электроаппаратура, детали из оцинкованного железа с герметичными швами.

Температура плавления: 183-238°C

Химический состав: Олово 40% Свинец 60%

Пайка металлов: Бронза, Латунь, Медь, Сталь

Харакетристики:

Припой ПОС-40 является оловянно-свинцовым припоем, поэтому его область использования довольно-таки широка. С помощью припоя этой марки осуществляется пайка железа, латуни медных проводов, элементов из оцинкованного железа с полностью герметичными швами. Именно поэтому припой активно используется в сфере электрооборудования, при ремонте медных и латунных трубопроводов, ремонте радиаторов.

Припой ПОС-40 может быть использован с любым видом паяльного оборудования, поэтому, в большинстве случаев, именно он выбирается для проведения пайки и лужения различных элементов не только в локальном ремонте, но и в заводских масштабах.

Припой ПОС 40 великолепно подходит для формирования прочного (если требуется, и полностью герметичного) шва, а также для получения электроконтакта с небольшим переходным сопротивлением. За счет того, что имеет температуру плавления намного меньшую, чем соединяемые металлы, то он плавится, оставляя при этом основной металл абсолютно твердым. Компоненты будут диффундировать в основной металл, который будет растворяться в припое, за счет чего начнет формироваться промежуточная прослойка, соединяющая все элементы в одно целое после застывания.

Производители выпускает припой ПОС 40 в виде проволоки (без канифоли) и трубок (с сосновой канифолью).

Осуществлять пайку этим припоем можно простым паяльным инструментом, не опасаясь при этом перегрева элементов, потому что припой полностью расплавляется уже при температуре в 238 градусов. Если требуется припой, который будет плавиться при более низких температурах, то рекомендуется выбирать модель ПОС 61 и другие соответствующие виды.

 

 

 

Применение: Пайка изделий машиностроения.

Температура плавления: 183-238°C

Химический состав: Олово 30% Свинец 70%

Пайка металлов: Бронза, Латунь, Медь, Сталь

Харакетристики:

Припой ПОС-30 - оловянно-свинцовый припой, используемый для пайки и лужения радио- и электроаппаратуры приборов с герметичными швами, печатных схем, внутренних швов и медицинских устройств, деталей с герметическими швами из оцинкованного железа. Припой ПОС 30 не имеет достойных зарубежных аналогов и относится к категории мягких припоев, потому что температура его плавления не превышает 300 0С. Сплав является бессурьмянистым.

Отлично подходит для пайки меди, латуни и железа. В промышленных масштабах применяется в энергетической сфере. Во время пайки ПОС 30 с поверхностью детали формируют высококачественную зону промежуточного сплава. Любители и профессионалы используют припой ПОС-30 для пайки электроприборов и радиоаппаратуры. 
Пруток припоя ПОС 30 диаметром 8 мм будет легко гнуться руками, потому что в нем отмечается высокое содержание свинца. В отличие от свинца олово будет придавать припою повышенную степень жесткости и прочности. В состав ПОС 30 входит олово (29-31%) и свинец (69-71%). Температура плавления припоя составляет 256 оС (начало плавления отмечается на 183 градусах). Для большинства радиоэлектронных элементов подобная температура считается предкритической, что обязательно нужно учитывать перед проведением паяльных работ. Именно поэтому, если есть определенный риск повреждения аппаратуры или каких-либо элементов, то лучше воспользоваться припоями с более низкой температурой плавления. Также в состав припоя также входят различные примеси: сурьма, медь, мышьяк, никель, железо, алюминий цинк, сера, висмут.  

Применение: Электро и радиоаппаратура, печатные схемы, точные приборы без перегрева.

Температура плавления: 183-190°C

Химический состав: Олово 61% Свинец 39%

Пайка металлов: Бронза, Латунь, Медь, Нержавейка, Олово, Свинец, Сталь

Харакетристики:

Припой ПОС-61 в классификации припоев занимает особенное место. Это обусловлено тем, что в этом сплаве отмечается содержание канифоли, поэтому его можно с успехом использовать для лужения и пайки самых разных контрольно-измерительных приборов.

Припой ПОС 61 - это по-своему универсальный материал, который идеально подойдет для любой разновидности проводов. Также отмечается, что он неплохо себя показывается при пайке микросхем. Кроме того, если нельзя во время работы допустить перегрев места пайки, то припой ПОС-61 справится с задачей куда эффективнее, чем многие другие сплавы. Производитель отмечает, что основной сферой использования припоя ПОС61 является пайка жил к полупроводниковым устройствам, выводам разъемов, медных проводов. Стоит отметить, что это оптимальный выбор для соединения следующих металлов: сталь, латунь, бронза, медь. Припой ПОС 61, если сравнивать с другими оловянно-свинцовыми припоями, представленными на рынке, имеет более высокий уровень чистоты и рассчитан на пайку электромонтажа. За счет повышенного содержания меди в припое снижается интенсивность растворения проводов из меди, а также во много раз увеличивается степень износостойкости медных стержней электрических паяльников. Температура плавления припоя ПОС 61 составляет 183 0С, в то время как полностью он расплавляется при 190 градусах. Пайка с помощью этого припоя может быть выполнена при помощи традиционного паяльного инструмента.

Состав припоя ПОС 61: свинец (39-50%), олово (50-61%). Одновременно с этим, по ГОСТу 21930-76 главным фактором, который определяет характеристики припоя, является химический состав. Помимо свинца и олова в припое ПОС 61 содержатся следующие примеси: Sb, Cu, As, Bi, Ni, S, Zn, Al, Fe.

Применение: Электроаппаратура, детали из оцинкованного железа с герметичными швами.

Температура плавления: 183-238°C

Химический состав: Олово 40% Свинец 60%

Пайка металлов: Бронза, Латунь, Медь, Сталь

Харакетристики:

Припой ПОС-40 является оловянно-свинцовым припоем, поэтому его область использования довольно-таки широка. С помощью припоя этой марки осуществляется пайка железа, латуни медных проводов, элементов из оцинкованного железа с полностью герметичными швами. Именно поэтому припой активно используется в сфере электрооборудования, при ремонте медных и латунных трубопроводов, ремонте радиаторов.

Припой ПОС-40 может быть использован с любым видом паяльного оборудования, поэтому, в большинстве случаев, именно он выбирается для проведения пайки и лужения различных элементов не только в локальном ремонте, но и в заводских масштабах.

Припой ПОС 40 великолепно подходит для формирования прочного (если требуется, и полностью герметичного) шва, а также для получения электроконтакта с небольшим переходным сопротивлением. За счет того, что имеет температуру плавления намного меньшую, чем соединяемые металлы, то он плавится, оставляя при этом основной металл абсолютно твердым. Компоненты будут диффундировать в основной металл, который будет растворяться в припое, за счет чего начнет формироваться промежуточная прослойка, соединяющая все элементы в одно целое после застывания.

Производители выпускает припой ПОС 40 в виде проволоки (без канифоли) и трубок (с сосновой канифолью).

Осуществлять пайку этим припоем можно простым паяльным инструментом, не опасаясь при этом перегрева элементов, потому что припой полностью расплавляется уже при температуре в 238 градусов. Если требуется припой, который будет плавиться при более низких температурах, то рекомендуется выбирать модель ПОС 61 и другие соответствующие виды.

 

Припой ПМФОЦр 6-4-0,03                купить     Припой ПМФОЦр 6-4-0,03 ТУ 48-17228138

Применение: Пайка кондиционеров, холодильников, теплообменников, волноводов.

Температура плавления: 640-680°C

Химический состав: Медь 89% Фосфор 6% Олово 4% Цирконий 0,03%

Пайка металлов: Бронза, Латунь, Медь, Серебро

Харакетристики:

Припой ПМФОЦр 6-4-0.03 относится к категории медно-фосфорных. В припое этой марки отмечается высокое содержание фосфора и меди, а также значительное количество циркония и олова. 
Это среднеплавкий припой, который имеет повышенную текучесть, отличную устойчивость к коррозийным процессам и агрессивной среде. Основная сфера использования сплава - пайка меди и ее различных сплавов (мельхиора, латуни, бронзы).

Одновременно с этим, ПМФОЦр зачастую применяется как заменитель серебряных припоев в процессе ремонта ювелирных изделий. Запрещено осуществление пайки чугуна и стали припоями с содержанием фосфора, потому что соединение получается хрупким и не способно выдержать нагрузки вибрационного, ударного и изгибающего типа. Это обусловлено тем, что по границе шва фосфоритов образуется видимая пленка. Особенностью припоя ПМФОЦр можно назвать то, что он является самофлюсующимся. Именно поэтому, если им осуществляется пайка изделий из меди, то в этом случае нет никакой необходимости использовать флюс. Как правило, припой этой марки применяется в ремонте бытовых смесителей, кондиционеров, при изготовлении климатического оборудования, электромашин высокой мощности.  В классификации припоев ПМФОЦр относится к категории среднеплавких самофлюсующихся припоев, что допускает осуществление пайки без использования флюса. Пайка с помощью этого припоя может выполняться горелкой любого типа (ацетиленовой, пропановой горелкой, паяльной лампой), с помощью аргонодуговой сварки. Основное условие в этом случае - спаиваемые детали должны нагреться до темно-красного свечения (вишневый оттенок). Затем необходимо нагревать припой до того момента, пока он не начнет растекаться должным образом.

Применение: Пайка холодильников, термодатчики, теплообменники, часы.

Температура плавления: 630-660°C

Химический состав: Медь 53% Фосфор 7% Никель 7% Цинк 33%

Пайка металлов: Медь, Никель, Серебро, Сталь

Харакетристики:

Припой П-81 рассчитан на пайку при изготовлении климатического оборудования, теплообменников, калориферов, термодатчиков, производстве часов и т.п. Пайка с помощью этого припоя может осуществляться только с применением флюса. Допускается изготовление закладных элементов различной формы и колец для осуществления автоматической пайки (подобные работы должны проводиться только в заводских условиях на походящем для этого оборудовании).

П-81 в своем составе содержит несколько основных элементов: цинк (32-36%), медь (52-54%), никель и фосфор (по 6-7%). При помощи припоя П-81 допускается соединение следующих материалов: никель и никелевые сплавы (в том числе и латунь), медь, чугун, серебро, сталь (в том числе нержавейка), твердые сплавы и их всевозможные комбинации. С помощью припоя П-81 разрешается пайка с использованием флюса. П-81 может похвастать особенными свойствами и некоторыми конкурентными преимуществами. Среди них необходимо выделить высокий уровень надежности и долговечности фреоновых элементов, повышенный предел прочности на срез, высокое качество в процессе ремонта твердосплавных инструментов, высокая степень герметичности паяных конструкций в условиях повышенного давления. Нельзя не отметить и то, что П-81 производитель считает столь же эффективным, как и некоторые высокосеребряные припои. При работе с припоем этой марки рекомендуется использовать флюсы, которые соответствуют следующим припоям: ФК-250 (235), ПВ-209.
Температура плавления припоя составляет 630-660 оС, в том время как рекомендованная температура пайки варьируется от 680 до 700 оС. Предел прочности сплава находится в пределах 170 Мпа. 
Припой П-81 показывает себя особенно эффективным, если его использовать взамен высокосеребряных припоев марок ПСр40, ПСр29.5, ПСр25, ПСр45.

 

Применение: Пайка холодильников, кондиционеров, теплообменников, волноводов, бытовых смесителей.

Температура плавления: 640-680°C

Химический состав: Медь 90% Фосфор 6% Олово 4%

Харакетристики:

Припой П-14 представляет собой соединение, в котором присутствует значительное количество меди (основа), олова (от 3,5 до 4,5%) и фосфора (от 5,3 до 6,3%). Все это делает его уместным для использования в процессе пайки калориферов, теплообменников, холодильников, кондиционеров, электрических машин высокой мощности, волноводов и бытовых смесителей. Идеально он способен соединять такие материалы, как серебро, медь и медные сплавы. Отметим, что пайка меди при помощи припоя марки П-14, осуществляется даже без добавления флюса. 
Изготавливают припой этого типа в виде проволоки с различным диаметром, прутка с различным диаметром, ленты с различной толщиной и шириной. Если припой выполнен в виде проволоки, то в ней может присутствовать продольный паз с флюсом марки ФК-320 и марки ФК-235. Поэтому осуществляя пайку той или иной детали можно легко подбирать оптимальный для каждого случая вариант.
В процессе пайки следует придерживаться определенной температуры. Если пайка проводится в газовом пламени, то она должна быть не выше 740 и не ниже 720 градусов, а если пайка в печи - то не менее 800 и не более 820 градусов. Ударная вязкость разрушения составляет порядка 1,5-3 кДж.м/см2, а прочность паяных соединений равна 290-320 МПа.

Применение: Лужение алюминиевых оболочек и пайка алюминиевых жил.

Температура плавления: 300-320°C

Химический состав: Олово 42-45% Цинк 54% Медь 1,2-1,5%

Пайка металлов: Алюминий

Харакетристики:

Припой марки А представляет собой одну из востребованных разновидностей оловянно-медно-цинковых припоев. Именно эти три главных компонента составляют его основу и предопределяют и главные свойства, и сферы, в которых его использование будет отличаться максимальной эффективностью.
Идеально подходит припой марки А для использования в процессе проведения пайки алюминиевых жил и выполнения лужения алюминиевых оболочек. Этому благоволит и то, что он вполне стоек к негативному воздействию коррозии и обладает превосходными технологическими свойствами. Важна и температура плавления этого соединения. Она варьируется в диапазоне от 400 до 400 градусов Цельсия. В то время, как плотность припоя этого типа составляет 7,2 г/см3. Все это следует учитывать при проведении пайки и лужения изделий. 
В составе припоя преобладает содержание цинка, его количество варьируется от 56% до 59%, олова в соединении не более 42,1% и не менее 38,6%. Меди в разы меньше - не более 2%, в некоторых случаях ее присутствие может не превышать показателя в 1,5%. И это предопределяет большую часть свойств припоя, уместность его использования в определенных сферах, а также ряд других важных показателей.

 

Применение: Пайка генераторов, шинопроводов, электродвигателей большой мощности, трансформаторов

Температура плавления: 714-850°C

Химический состав: Медь 93% Фосфор 7%

Пайка металлов: Латунь, Медь, Серебро

Характеристики:

Припой МФ-7 входит в категорию медно-фосфорных припоев и предполагает наличие в своем составе порядка 7% фосфора, о чем и свидетельствует маркировка изделия. Он превосходно показывает себя при пайке латуней и бронз, нейзильбера и медно-никелевых сплавов. Хотя, основной сферой использования в данном случае принято считать пайку меди и разнообразных медных сплавов без применения флюсов. Необходимость во флюсах отсутствует, поскольку припой этой марки относится к самофлюсующим припоям. 
Применять припой, изготовленный под маркой МФ-7, для пайки сталей и чугуна не рекомендуется. В этих сферах он зарекомендовал себя не самым лучшим образом. В этих случаях возникает образование хрупких фосфидов железа непосредственно в паяном шве и как следствие - утрачивается пластичность.
Идеально подходит данный вид припоя для пайки кондиционеров и холодильников. В обоих случаях необходимо применять газопламенный нагрев и придерживаться температуры пайки в диапазоне от 732 до 816 градусов Цельсия. Припою характерна высокая жидкотекучесть и низкая температура плавления, что приравнивает его по свойствам к серебряным и медно-цинковым припоям, востребованным при пайке медных сплавов и самой меди.

 

Температура плавления: 700-900°C

Пайка металлов: Медь, Серебро, Сталь

Харакетристики:

Флюс Бура в промышленной сфере используется достаточно часто. Также сферой его применения считается пайка ювелирных изделий, где необходимо точно рассчитать состав используемых материалов и тип инструментов для пайки. Универсальным решением в этом случае является именно флюс, созданный на основе борной кислоты или буры.

Бура - важнейшая добавка при плавке, которая позволяет обеспечить формирование тигля глазури на стенках, растворение окислов металлов и предохранить расплав от проникновения кислорода. Бура - это соль тетраборной кислоты, которая существует в виде декагидрата в свободной форме. Изготовление флюса такого типа ведется с помощью борной кислоты и буры, которые в соотношении 1:1 по массе растворяются в воде. Чтобы приготовить 1 л флюса бура, необходимо смешать 100 г борной кислоты и 100 г буры, добавив их в 1 л воды, после чего довести до кипения. После естественного остывания массы ее следует отфильтровать. Соотношение борной кислоты и буры в составе флюса необходимо варьировать в зависимости от того, с каким именно металлом предполагается работать. Если это золото, то основу флюса должна составлять борная кислота, а не бура. Обратная ситуация с серебром. 
Флюс бура считается нейтральным флюсом. Он также может быть использован для высокотемпературной пайки меди, стали, чугуна, твердых сплавов с серебряными и медными паяльными сплавами.
 

Флюс ЛТИ-120                                                         купить Флюс ЛТИ-120 500 мл.

Применение: Лужение сплавов меди, стали, никеля, свинца, цинка, серебра, олова, кадмия, палладия.

Температура плавления: 200-300°C

Пайка металлов: Медь, Никель, Олово, Свинец, Серебро, Сталь, Цинк

Харакетристики: Флюс ЛТИ-120 на отечественном рынке представлен достаточно давно. Он относится к категории активированных флюсов, в которой ЛТИ-120 считается уже давно одним из лучших. В состав этого флюса входят уникальные добавки, которые позволяют в разы увеличить его эффективность. Кроме того, предусмотрено наличие полностью пасивирующих добавок. Взаимодействие флюса в полной мере будет зависеть от температуры, при которой проводятся работы. При обычной температуре флюс не проявляет никакой активности и не способен проводить ток даже на повышенных частотах. По завершению паяльных работ остатки флюса можно не убирать, потому что они будут представлены в виде твердого вещества, не подверженного каким-либо внешним факторам. Зачастую остатки флюса выступают в качестве защитного покрытия паяльных соединений. По уровню активности флюс марки ЛТИ-210 схож с современными паяльными кислотами. В состав флюса входят следующие вещества: этиловый спирт, канифоль, диэтиламин солянокислый, триэтаноламин. Именно поэтому допускается его использование при пайке железа, нержавейки, бронзы, меди, стали, никеля, серебра и ряда других веществ. После того, как работы будут завершены, вентилировать помещение необязательно. Если необходимо смыть остатки, то это можно сделать при помощи ацетона или спирта.

 

Флюс ПВ-209                                                                       купить   Флюс ПВ-209

Применение: Пайка меди, твердых сплавов, нержавеющих и конструкционных сталей.

Температура плавления: 600-900°C

Пайка металлов: Медь, Нержавейка, Серебро, Сталь

Харакетристики: Флюс ПВ-209 рассчитан на высокотемпературную пайку серебряными и медными припоями никеля, меди, серебра и сплавов, а также особо твердых и жаропрочных сплавов. Флюс позволяет полностью удалить окисные пленки, а также предотвратить их формирование при нагреве. Флюс также способствует уменьшению поверхностного натяжения жидкого припоя, защите поверхностей, подготовленных к пайке, от негативных внешних воздействий.

Производство флюса ПВ-209 ведется по оригинальной технологии. Нанесение флюса на поверхности, подготовленные к пайке, удобнее всего производить в виде пасты. Ее можно получить с помощью замешивания флюса в воде (пропорция 1:1 в соответствии с массой). Текучесть пасты регулируется добавлением воды. 
Если флюс используется в виде порошка и осуществляется пайка нелегированной стали, то разрешен нагрев до побежалости с дальнейшим нанесением флюса. В процессе пайки нержавеющей стали флюс рекомендуется наносить пастой и контролировать целостность поверхности. При пайке твердосплавных поверхностей их требуется нагревать равномерно и полностью. Остатки флюса после пайки могут быть удалены с помощью кипячения в воде или 10%-ным раствором лимонной кислоты.

 

Паяльная кислота                                       Флюс и реактивы для пайки

Характеристики:

Паяльная кислота - это хлорид цинка, что является химическим соединением цинка и хлора (формула - ZnCl2). Паяльная кислота активно используется для пайки меди, углеродистых сталей, никеля и сплавов с помощью легкоплавких припоев в диапазоне температур от 150 до 320 оС. Также в состав паяльной кислоты (помимо хлорида цинка) входят: соляная кислота, хлорид аммония, специальная смачивающая присадка. Кроме того, паяльную кислоту часто называют активным флюсом в жидком агрегатном состоянии.

Паяльная кислота может быть получена с помощью растворения цинка (либо его окиси) в растворе соляной кислоты с дальнейшим выпариванием раствором. Кроме того, вещество получается по средствам нагревания жидкого цинка в токе хлора. 
Физические и химические свойства паяльной кислоты:
• Температура кипения - 730 оС;
• Температура плавления - 315-320 оС;
• Молекулярная масса - 136,2954;
• Растворимость в воде - 79. 8% при 0 оС;
• Концентрированные составы обладают кислой средой, потому при диссоциации в воде наблюдается образование соляной кислоты.

Паяльная кислота также используется для лужения проводов и пайка радиодеталей микросхем. Срок годности паяльной кислоты не превышает 12 месяцев с условием соблюдения стандартов хранения. Хранение вещества нужно производить в плотной закрытой таре, не допуская воздействия прямых солнечных лучей и тепла. Если в помещении проводились работы с использованием паяльной кислоты, его нужно хорошенько проветрить по их завершению.
 

Флюс паяльный ФКСп                                               купить    Флюс ФКСп 500 мл.

СПИРТОКАНИФОЛЬНЫЙ ФЛЮС (он же КЭ, СКФ, и ФКЭт -на этилацетате, жидкая канифоль).

Применение: Для пайка элементов радиомонтажа и печатных плат легкоплавкими припоями при температурах 250-280ºC.
Состав: канифоль сосновая не менее 30%, АИПС-70%. 
Пайка металлов: медь; серебряное, оловянное, оловянно-свинцовое, оловянно-висмутовое, оловянно-никелевое, кадмиевое, золотое покрытия.  

Характеристики : ручная и механизированная пайка и лужение электромонтажных элементов печатных плат и элементов радио электроники в изделиях радио и бытовой электронной аппаратуры. Консервация изделий радио и бытовой электронной аппаратуры для сохранения паяемости в условиях складского хранения и хранения в условиях сборочного цеха в течение одного года. Остатки флюса при ручной пайке изделий бытовой радио аппаратуры (пайке подстроечных элементов, подпайке, исправлении дефектов) допускается не удалять. Остатки флюса при групповой пайке изделий бытовой радио аппаратуры («волной» припоя, погружением, протягиванием) следует удалять. 
 

 

1 припои и флюсы припой ПМ ФОЦр 6-4-0 03 Флюс ФК-250 П-47 81 14 235 ПВ-209 МФ-7 ФЦ-16 Олово Ан НФ КФ ФИМС ФК АНФ

Технические характеристики

Дополнительно

Олово 01 ПЧ

исполнение - чушка, пруток

Баббит - Б-83, Б-16

исполнение - чушка

ФЦ-16 А

Аналог флюса ФЦ-16 с более низким содержанием серы и фосфора во флюсе

ФЦ-11

Механизированная дуговая сварка конструкций из углеродистых, легированных, теплоустойчивых сталей перлитного класса, работающих при низких температурах

ФЦ-17

Механизированная дуговая сварка и наплавка конструкций из высоколегированных сталей

ФЦ-18

Механизированная 2-х ленточная наплавка антикоррозийного покрытия на изделиях из перлитно-ферритных сталей сварочной лентой (проволокой)

ФЦ-19

Механизированная дугов. сварка и наплавка конструкций высокохромистых сталей св.проволокой

ФЦ-21

Электрошлаковая сварка изделий из теплоустойчивых сталей перлитного класса сварочной проволокой марок св.- 10ГН2МФА, св. - 16Х2НМФТА

ФЦ-22

Механизированная дуговая сварка конструкций из низко и среднелегированной сталей перлитного класса сварочной проволокой марок св.-08ГС, св.-10Г2 и др

ФВТ-1

Механизированная дуговая сварка с повышенной скоростью (до 120 м/час) конструкций из углеродистых и легированных сталей сварочной проволокой марок св.-08Г2С. св.-08НМА, св.-09ХМФА

АН-348 А, АМ

(дуговая сварка и наплавка изделий из углеродистых сталей

АН-348В, ВМ

дуговая сварка и наплавка изделий из углеродистых сталей

АН-17

дуговая сварка и наплавка изделий из углеродистых низколегированных сталей

ОСЦ-45

дуговая сварка и наплавка изделий из углеродистых низколегированных сталей

АНЦ-1А,1Б

дуговая сварка и наплавка изделий из углеродистых сталей

АН-348 Ф

дуговая сварка и наплавка изделий из углеродистых сталей

АН-20 С

Механизированная дуговая сварка и наплавка конструкций из высоколегированных хромоникелевых сталей, дуговая сварка конструкций из легированных высоколегированных сталей, меди и ее сплавов

АН-26 С

Механизированная дуговая сварка коррозионных и жаропрочных хромоникелевых сталей

АН-26 П

аналог АН-26 С

АН-42

Механизированная дуговая сварка конструкций из углеродистых, легированных, теплоустойчивых сталей перлитного класса

АН-43

Механизированная дуговая сварка конструкций из углеродистых, низколегированных термоупрочняемых сталей сварочной проволокой

АН-8

Электрошлаковая сварка изделий из углеродистых и низколегированных сталей

НФ-18 М

Механизированная дуговая сварка конструкций из углеродистых, легированных, теплоустойчивых сталей перлитного класса

КФ-30

Механизированная дуговая сварка и наплавка изделий из легированных теплоустойчивых сталей перлитного класса

ФИМС-10П

Механизированная дуговая сварка конструкций из среднелегированных термоупрочняемых сталей специального назначения

18 ОФ-6

Механизировання дуговая сварка конструкций из стали аустенитного класса, а также электрошлаковая сварка сварочной проволокой с пластинчатыми электродами

18 ОФ-10

Механизированная наплавка высоколегированной сварочной лентой, а также высоколегированной сварочной проволокой аналогичных марок на стали перлитного класса

АН-47

Дуговая сварка низколегированных мелкозернистых сталей повышенной прочности.

ФК-250

Для высокотемпературной пайки меди, никеля, серебра и их сплавов, жаропрочных и твердых сплавов, конструкционных и нержавеющих сталей

АН-60

-

АНФ - 6-1

-

Нержавеющая сталь пайка - Справочник химика 21

    Серебряные припои образуют швы наибольшей пластичности и коррозийной стойкости. Используются главным образом для ответственных соединений деталей аппаратов и трубопроводов, выполненных из различных металлов, например меди и латуни, меди и нержавеющей стали. Пайкой серебряными припоями можно заменять соединения, выполняемые обычно аргоно-дуговой сваркой. Лучшие по механическим свойствам швы образует припой ПСр-45 [c.238]
    Для пайки нержавеющих сталей и жаропрочных сплавов припоями на основе меди, серебра и никеля [c.390]

    Иэ железо-никелевых сталей отметим нержавеющую сталь (18/о Сг и а/о Ni), инвар (36% Ni, 0,5% Мп и 0,5% С), практически не расширяющийся при нагревании платинит (0,15% С и 46% Ni), имеющий коэффициент термического расширения, как у стекла, и применяемый как заменитель платины для пайки со стеклом, и пр.[c.609]

    Для пайки фильтрующих элементов из нержавеющей стали применяется серебряный припой. [c.223]

    Для пайки конструкционных и нержавеющих сталей, медных и жаропрочных сплавов серебряными припоями [c.390]

    Как и методы твердой пайки нержавеющей стали, пайка алюминия разработана в основном в лаборатории академии 1йм. Н. Е. Жуковского. [c.124]

    Для пайки нержавеющей стали применяется насыщенный раствор хлористого цинка в соляной кислоте. [c.718]

    ПСр 37,5 Пайка меди и медных сплавов с жаропрочными сплавами и нержавеющими сталями. [c.362]

    СЕРЕБРО ИЗ ЛОМА НЕРЖАВЕЮЩЕЙ СТАЛИ С СЕРЕБРЯНОЙ ПАЙКОЙ [c.322]

    Незамерзающие смеси 150 Нейтрализующие растворы 35 Нержавеющей стали пайка 99 Никелирование 57, 64 Никеля очистка 10 [c.154]

    На рис. 6 показан сердечник противоточного теплообменника нз нержавеющей стали, используемый как газотурбинный рекуператор 11), Конструкция сердечника существенно отличается от конструкции ранее описанного алюминиевого, В рекуператоре применяется сочетание методов крепления элементов путем пайки и роликовой сварки, тогда как в алюминиевых сердечниках сварка не применяется.[c.304]

    Лом нержавеющей стали с серебряной пайкой 322 - [c.406]

    ПСр 40 Пайка меди и латуни с коваром, никелем, с нержавеющими сталями и жаропрочными сплавами, пайка свин-цово-оловянистых бронз. [c.362]

    Хлористый цинк 25% Соляная кислота (концентрированная) 25% Вода 50% — Для пайки нержавеющей стали с медью и ее сплавами [c.389]

    Ниже приводится конкретный пример осуществления процесса. Элерон свер звукового военного самолета, выполненный из нержавеющей стали с серебрян( пайкой, разрезают с получением кусков максимального размера 30 см, которь затем снова подвергают резке до получения кусков с максимальным размером 4 С] Полученный материал просеивают на сите размером 30 меш и куски, оставшие иа сите, загружают в сеточный контейнер, являющийся анодом в процессе электр литической рафинации. [c.322]


    Водород обладает такими физико-химическими свойствами, которые делают его весьма эффективным рабочим телом для использования в качестве охлаждающей и защитной среды. Термическую обработку некоторых металлов и изделий из них в ряде случаев необходимо проводить в условиях, исключающих их окисление, что и достигается в защитной атмосфере водорода. Водородную атмосферу применяют при светлом отжиге изделий из вольфрама и молибдена, малоуглеродистой стали, высококремнистой стали, медно-никелевых сплавов. Эта атмосфера пригодна при пайке медью нержавеющей стали. [c.560]

    Самыми универсальным и простым по составу флюсом является водный раствор хлорида цинка (40 масс. %). Многочисленные вариации этого состава сводятся к частичной замене хлорида цинка хлоридами аммония, натрия, калия, меди или соляной кислотой (от долей процента до 80 % хлорида цинка) для снижения температуры плавления и повышения активности флюса. Безводные составы применяются в виде паст на основе вазелина, канифоли, парафина, глицерина и др. Основное назначение этих флюсов — пайка и лужение железа. Остатки флюсов после пайки должны тщательно удаляться в силу их высокой коррозионной активности. Для пайки нержавеющей стали применяется концентрированная ортофосфорная кислота, насыщенный раствор хлорида цинка и его смесь с соляной кислотой (25 масс. % кислоты). [c.794]

    Водород В качестве защитной атмосферы применяется при отжиге изделий из вольфрама и молибдена. Кроме того, защитная атмосфера из водорода находит применение при отжиге малоуглеродистой стали, высококремнистой стали, медно-никелевых сплавов, при пайке медью нержавеющей стали, в процессах порошковой металлургии, связанных с получением малоуглеродистых черных металлов, вольфрама, молибдена и некоторых марок нержавеющей стали. [c.36]

    Кроме того отдельные нержавеющие стали обладают способностью принимать воздушную закалку. Это обстоятельство следует принимать во внимание при технологических операциях, связанных с высоким нагревом, включая в это число пайку [c.174]

    Несколько необычный, но удобный способ мягкой пайки алюминия, нержавеющей стали, а также стекла и керамики основан на нанесении припоя с помощью абразивного камня (бормащиной). Вначале пропитывают абразив, прижимая камень к палочке припоя. Теплота, выделяющаяся за счет трения, плавит металл, и последний ровным слоем растекается по абразиву. Луженый камень приводят в контакт с обрабатываемыми деталями. От трения припой вновь плавится и приходит в тесный контакт с поверхностью материала (там, где внешний слой удаляется за счет шлифовки). [c.184]

    Ультразвуковой пайке подвергается большинство алюминиевых сплавов, а также бериллий и магний. Хорошо лудится нержавеющая сталь 1190]. Тугоплавкие сплавы и титан ультразвуковому лужению п пайке но поддаются. [c.218]

    Пайка стали со сталью. С точки зрения как смачиваемости, так и текучести припоев по поверхности стали, для пайки последней вполне пригодны припои на основе меди. Их высокая текучесть объясняется тем, что при плавлении меди в ней растворяется небольшое количество (2,8%) железа, что повышает температуру ликвидуса только на 11 °С. Соединения из нержавеющей стали могут успешно паяться сплавом золото — ни [c. 58]

    На одной из сторон образец имел хвостик длиной 40— 50 мм, к которому припаивался многожильный экранированный провод. При пайке нержавеющих сталей использовался флюс следующего состава ортофосфорная кислота 4 г, этиловый спирт 2 г, канифоль 1 г. Хвостовая часть образца с припаянным проводом вставлялась в стеклянную трубку диаметром 4—5 мм. Концы стеклянной трубки- с обеих сторон замазывались диабазовой кислотоупорной замазкой на жидком стекле. [c.95]

    Пайка твердым припоем нержавеющих сталей или других подобных сплавов обычно производится при температурах в пределах от 1090° до 1200° С с применением одного из при-1юев, содержащих никель, железо, хром, кремний и бор в среде сухого водорода. Этот припой, диффундируя в основной металл, дает прочность соединения, равную по существу прочности основного металла. Как видно из рис. 2.6, пайка твердым припоем позволяет получить высококачественное соединение, но сами припои отличаются хрупкостью. В местах соединений твердым припоем недопустимы никакие сварные операции, так как возникающие при сварке напряжения могут привести к образованию трещин в твердом припое.[c.28]

    Все аппараты изготовлены в основном из меди отдельные детали, находящиеся под значительным напряжением, сделаны из нержавеющей стали и сплава медь — кремнистая бронза. Все соединения трубопроводов по возможности сварены или запаяны твердой или мягкой пайками. [c.96]

    Высота спирально навитых ребер ограничена пределом растяжения металла на вершине ребра в процессе его навивки. Этот предел может быть увеличен посредством шлицевания вершины винтовых ребер (см. рис. 2.1, ж) или с помощью складок у основания ребер (рис. 2.7, з). В зависимости от назначения навитая спиралью лента может быть припаяна мягким или твердым припоем или приварена роликовым швом к трубе, впрессована в прорезанную канавку или завальцована. Стенки канавки можно плотно осадить при заваль-цовке для жесткого сцепления с ребрами. Достоинство предлагаемых конструктивных исполнений с использованием механических, сварных или паяных соединений заключается в том, что ребра могут изготавливаться из материала, обладающего высокой теплопроводностью, например меди или алюминия, в то время как трубы — из более дешевых, прочных и коррозионностойких сплавов (углеродистых и нержавеющих сталей). На рис. 2.7, з представлены оребренные трубы с круглыми или квадратными выштампованными ребрами с дистанциопирующими распорками у основания. Для создания механически прочного соединения эти ребра могут быть напрессованы на трубы или припаяны мягким или твердым припоем. Напрессовывание ребер на трубу является дешевой операцией, применяемой для теплообменников, работающих при низких температурах, когда коррозия невелика пайка мягким или твер-. ым припоем, будучи более дорогой операцией, рекомендуется в тех случаях, когда высокая температура или коррозия ослабляют прессовую посадку и термическую связь между трубами и ребрами [61. Пальцевидные ребра, показанные на рис. 2.7, и, находят широкое применение в конструкциях многих тппот( котлов. Их преимуществом перед плоскими ребрами являются большая механическая прочность и устойчивость по отношению к коррозии и эрозии. [c.29]

    ПСрМО 68-27-5 ПСр 70 ПСр 50 Пайка титана и титановых сплавов с нержавеющей сталью. [c. 362]

    ЛМ-1 Фторофосфорная кислота (плотность 1,6—1,7) 100 мл Этиленгликоль или спирт метиловый 400 мл Каии( юль 30 г 240—250 Для пайки хромоникелевых нержавеющих сталей припоями, содержащими более 30% олова [c.388]

    Образец с припоем помещали в специальную установку, обеспечивающую нагрев, освещение и горизонтальное положение образца. Образец размером 40 X 40 X 3 из меди М1 был фрезерован по краям и правлен на прессе. В центре образца по стороне 40 X 40 снизу сверлили глухое отверстие для горячего спая термопары. Поверхность образца обрабатывали наждачным полотном (№ 280 перпендикулярно к направлению съемки), травлением (в 10%-ном водном растворе персульфата аммония) и полировкой. Перед загрузкой в печь поверхность образца обезжиривали и на нее помещали припой в виде компактного куска, объемом 64 и 300—400 мм флюса. При загрузке в печь образец укладывали на подложку из нержавеющей стали, расположенную на уровне съемки и нагретую до температуры пайки. Температуру образца замеряли хромель — алюмелевой термопарой. При температуре несколько ниже температуры начала плавления припоя включали кинокамеру и на секундомере фиксировали начало съемки. Контактный угол смачивания и линейный размер капли в процессе растекания определяли при проектировании кинопленки на экран (X 6). По времени, фиксированном на секундомере, и записи температуры определяли температуру в контакте медной пластины и припоя в различные моменты его растекания. Для исследования были выбраны три припоя РЬ (С-000), практически не взаимодействующий с медью и цинком, вытесняемым из реактивных флюсов 8п (ОВЧ-000)— способное к химическому взаимодействию с медью и контактно-реактивному плавлению с цинком припой П0С61 эвтектического состава (61% 8п, РЬ — остальное, Гпл = 183° С), слабее взаимодействующий с медью, чем олово. [c.81]

    См. Серебро из лома нержавеющей стали с серебряной пайкой . 12 Ситтиг М. [c.345]

    При газопламенной пайке нержавеющих сталей высокотемпературными припоями из-за недостаточной флюсующей способности. в частности буры и борной кислоты,в состав флюса вводят фтористыг калий (флюсы 284, 209, 18В) шш фтористый кальций (флюсы 200, [c.32]

    Основное назначение порошков нержавеющих сталей— изготовление металлофильтров в виде лент (листов) методом прокатки порошков. Возможность сварки и пайки, высокая механическая прочность позволяют (в отличие от фильтровальных тканей и керамики) осуществлять надежное их крепление в фильтрующих рамках, каркасах и других конструкциях. Например, лента из стали Х18Н15-К толщиной 0,15 мм с пористостью 42% имеет фильтрующую способность 1000 см 1(см -сек) при прочности 3,5—4,5 кПмм . [c.237]

    Когда устаревшие военные самолеты направляют на слом, детали из нержав ющей стали с серебряной пайкой отделяют от остальной части самолета и напрЭ ляют на выделение содержащихся в них металлов. В деталях из нержавеющей стал с серебряной пайкой содержится 5—30 % А и 2—15 % Си остаток составляет н( ржавеющая сталь. [c. 322]

    Процесс для извлечения серебра был разработан Б. В. Даннингом, мл., Д. X. Чемберсом (патент США 4 090935, 23 мая 1978 г. Министерство внутре, них дел США). Способ предназначен для электролитического выделения серебр меди и нержавеющей стали из деталей военных самолетов, выполненных из нерж веющей стали с серебряной пайкой. Указанные детали содержат 5—30 % Ag, 2-15% Си, остальное — нержавеющая сталь. Схема данного процесса представле на рис. 144. [c.322]

    Контактная коррозия развивается в растворах электролитов при контакте металлов, обладающих различными электрохимическими свойствами, например, системы углеродистая сталь/нержавеющая сталь, углеродистая сталь/алюминий (или его сплавы) и др. Контактная коррозия может возникать также в случаях, если различие элек-трохимичес1сих свойств обусловлено применением пайки или сварки при изготовлении конструкции из одного и того же металла или при контакте деталей, изготовленных из металла одной и той же марки, но существенно различающегося по своим свойствам в ее пределах. Механические напряжения, приводящие к изменению электрохимических характеристик металла, также могут вызвать возникновение контактной коррозии при соединении деталей из одного и того же металла, но по-разному механически обработанных. Таким образом, плохо продуманные с точки зрения конструкционного оформления сложные металлические объекты могут досрочно выходить из строя вследствие контактной коррозии. [c.134]

    Диаметр проходного отверстия в этом затворе был увеличен, а корпус затвора из нержавеющей стали покрывался слоем никеля (толщиной 0,05 мм) для облегчения условий пайки в водО(родиой печи. В качестве смазки в затворе применялся дисульфид молибдена. Был предложен сильфонный затвор с полированным сферическим плунжером из нержавеющей стали, в котором закрытие происходит при вдавливании плунжера в седло из мягкой меди. [c.387]

    Флюса № 3 30—40%-ный водный раствор хлористого цинка 2 об. Соляная кислота 1 об. 180-330 Для пайки нержавеющих сталей, в частности стали Х18НЮТ [c. 389]


пайка холодильных трубок, пайка холодильников, пайка медных труб

Пайка труб медных осуществляется двумя методами:
Высокотемпературный — используется для трубопроводов с большой нагрузкой или при высоких температурах. Плавление припоя происходит при температуре 600-900 градусов.

Низкотемпературный, применяемый для трубопроводов с низкой нагрузкой, в холодильниках это швы  испарителя медь-алюминий, обратного трубопровода низкого давления.
В зависимости от используемого припоя, температура достигает 450 градусов для мягкого, и более 450 градусов для твердого

Согласно современным представлениям процесс образования паяных соединений протекает в две стадии: возникновение и развитие физического контакта и образование химической связи между атомами контактирующих поверхностей вследствие квантомеханического взаимодействия их электронных оболочек.

При пайке возникновение физического контакта и возбуждение химической связи между атомами на поверхностях достигается на стадии смачивания жидким припоем поверхности паяемого металла. Прочность соединения зависит от типа действующих на контактной поверхности межатомных сил. При слабом взаимодействии, например при физической адсорбции, смачивание приводит к получению относительно малопрочных соединений. Если твердый и жидкий металлы способны к химическому взаимодействию, то смачивание обеспечивает образование прочной связи.

Газопламенная пайка

Применяются горелки, работающие на ацетилене, пропане и бытовом газе, установки для механизированной газопламенной пайки.

Границы применения. Размеры: детали любой формы толщиной 1—10 мм.

Материал: углеродистые и низколегированные стали, серый чугун, медь, никель, медно-никелевые сплавы, алюминий, серебро, золото и др. металлы.

Область использования: мелкосерийное и массовое производство; изготовление трубопроводов, теплообменников холодильная техника,, деталей автомобилей, электротехнических и ювелирных изделий, устранение дефектов чугунного и алюминиевого литья.

Параметры пайки: температура пайки выбирается на 30—50 °С выше температуры применяемого припоя, избыточное давление пропана 100—400 кПа, ацетилена 60—80 кПа, бытового газа 30 кПа. Продолжительность пайки 0,5—3 мин.

Припои: оловянно-свинцовые, оловянно-цинковые, алюминиевые, медные, серебряные, золотые и др.

Флюсы: выбираются в зависимости от температуры пайки и припоя; при массовом производстве используют газообразные флюсы.

Техника пайки. Перед пайкой необходима предварительная подготовка поверхности деталей. Пайку выполняют с применением флюсов за исключением соединений из меди, паяных серебряно-медно-фосфористыми и медно-фосфористыми самофлюсующими припоями. При нагреве изделий горелками используют факел пламени на расстоянии ~ 10 мм от конца ядра. При пайке массивных деталей применяют многосопловые горелки, обеспечивающие мягкий и равномерный нагрев. Пайка медно-цинковыми припоями качественно получается при нагреве окислительным пламенем за счет уменьшения испарения цинка. При нагреве нержавеющих сталей рекомендуется нормальное пламя с целью исключения образования карбидов хрома, способствующих развитию межкристаллитной коррозии. При пайке разнородных и разнотолщинных материалов пламя направляют на деталь, имеющую большую теплопроводность и массу.

Дефекты паяных соединений

Качество паяных изделий определяется их прочностью, степенью работоспособности, надежностью, коррозионной стойкостью, способностью выполнять специальные функции (теплопроводность, электропроводность, коммутационные характеристики и т.п.). Обеспечение этих характеристик достигается оптимальными решениями в процессе производства паяного изделия. Дефекты, возникающие при изготовлении паяных изделий, можно разделить на дефекты заготовки и сборки, дефекты паяных соединений и паяных изделий.

К наиболее типичным дефектам паяных соединений относятся поры, раковины, шлаковые и флюсовые включения, непропаи, трещины. Эти дефекты классифицируют на две группы: связанные с заполнением расплавом припоя зазора между соединенными пайкой деталями и возникающие в процессе охлаждения изделия с температуры пайки. Дефекты первой группы связаны главным образом с особенностями заполнения капиллярных зазоров в процессе пайки. Дефекты второй группы обусловлены уменьшением растворимости газов в металлах при переходе их из жидкого состояния в твердое и усадочными явлениями. К ним также относится пористость кристаллизационного и диффузионного происхождения. Кроме пор к дефектам сплошности относятся трещины, которые могут возникать в металле шва, в зоне спаев или в паяемом металле. Большую группу дефектов составляют шлаковые и флюсовые включения.

Причиной образования непропаев, которые берут начало у границы раздела с паяемым металлом, может явиться неправильное конструирование паяного соединения (наличие «глухих», не имеющих выхода полостей), блокирование жидким припоем газа при наличии неравномерного нагрева или неравномерного зазора, местное отсутствие смачивания жидким припоем поверхности паяемого металла. Причиной появления блокированных остатков газа в швах может быть неравномерность движения фронта жидкости при затекании припоя в зазор. Фронт дробится на участки ускоренного и замедленного продвижения, в результате чего могут отсекаться малые объемы газа. Таким же образом может происходить захват флюса и шлаков в шве.

В процессе охлаждения соединения из-за уменьшения растворимости газов происходит их выделение и образование рассеянной газовой пористости. Опыт высокотемпературной пайки алюминиевых сплавов с предварительной дегазацией припоев и флюсов показывает, что пористость металла шва при этом резко уменьшается.

Другой весьма распространенной причиной образования рассеянной пористости является возникновение так называемой усадочной пористости. Это явление характерно для случая затвердевания сплава с широким интервалом кристаллизации. При малых зазорах усадочные междендритные пустоты, как правило, тянутся в виде цепочки в центральной части шва. При больших зазорах усадочные поры располагаются в шве более равномерно в междендритных пространствах.

Причиной образования пор в паяных швах может быть эффект сфероидизации.

В этом случае пористость в зоне шва возникает в результате нескомпенсированной диффузии атомов припоя и паяемого металла. Такого рода пористость возникает в системах припой - паяемый металл, у которых имеется заметное различие в коэффициентах диффузии.

Трещины в паяных швах могут возникать под действием напряжений и деформаций металла изделия в процессе охлаждения. Принято различать холодные и горячие трещины. Холодные трещины образуются при температурах до 200 °С. Горячими называются трещины, образующиеся при температуре выше 200 °С. Эти трещины обычно имеют кристаллизационное или полигонизационное происхождение. Если в процессе кристаллизации скорость охлаждения высока и возникающие напряжения велики, а деформационная способность металла шва мала, то появляются кристаллизационные трещины. Полигонизационные трещины возникают уже при температурах ниже температуры солидуса после затвердевания сплава по так называемым полигонизационным границам, образующимся при выстраивании дислокации в металле в ряды и образовании сетки дислокаций под действием внутренних напряжений. Холодные трещины возникают чаще всего в зоне спаев, особенно в случае образования прослойки хрупких интерметаллидов. Трещины в паяемом металле могут появиться и в результате воздействия жидких припоев, вызывающих адсорбционное понижение прочности.

Неметаллические включения типа флюсовых или шлаковых возникают при недостаточно тщательной подготовке поверхности изделия к пайке или при нарушении ее режима. При слишком длительном нагреве под пайку флюс реагирует с паяемым металлом с образованием твердых остатков, которые плохо вытесняются из зазора припоем. Шлаковые включения могут образоваться также из-за взаимодействия припоев и флюсов с кислородом воздуха или пламенем горелки.

Правильное конструирование паяного соединения (отсутствие замкнутых полостей, равномерность зазора), точность сборки под пайку, дозированное количество припоя и флюсующих сред, равномерность нагрева - условия бездефектности паяного соединения. 

ПРИПОЙ ДЛЯ ПАЙКИ АЛЮМИНИЯ    
Жидкоплавкий припой в виде прутков на основе цинк – алюминий с низкой рабочей температурой, высокой прочностью и относительным удлинением. Хорошие смачивающие свойства. Для мягкой пайки чистого алюминия и алюминиевых сплавов с макс. 3% легирующего компонента  
     
СВАРОЧНЫЙ ПОСТ    
Переносной газосварочный пост - переносное устройство, состоящее из платформы, баллона с кислородом,  баллона с  MAРР- газом, газопламенной горелки, газовые рукава,регулятор давления баллонный кислородный одноступенчатый (редуктор).   



1  2  3  4  5  6  7  8  9  10

Наконечники для пайки, пайки и сварки

Паять пропановой горелкой - самый простой способ соединения меди и латуни. Вы даже можете использовать припой для соединения меди или латуни с нержавеющей сталью, вам просто понадобится подходящий флюс. Но есть пара советов, которые нужно иметь в виду, чтобы заставить его работать правильно с первого раза:

  1. Используйте жидкий флюс вместо пастообразного флюса. Пастообразный флюс имеет тенденцию оставлять липкие остатки, которые трудно удалить. Если вам необходимо использовать пастообразный флюс, используйте его экономно.
  2. Используйте только водопроводный (серебряный) припой. Не используйте электрический или ювелирный припой, потому что он часто содержит свинец или кадмий. Это токсичные металлы.
  3. Нанесите припой на каждую деталь отдельно перед их соединением. Эта практика известна как «лужение» и облегчает соединение деталей.
  4. Нагревайте детали, а не припой. Поиграйте с пламенем вокруг стыка, чтобы он стал хорошим и горячим, прежде чем наносить припой. Это позволяет припою равномерно стекать по стыку.

Пайка похожа на пайку, но выполняется при более высоких температурах и применима к большему количеству металлов.Он легко соединяет нержавеющую сталь с собой и является альтернативой сварке. Для пивоварения рекомендуется использовать наполнитель AWS типа BAg-5 с диапазоном температур 1370-1550 ° F (743-843 ° C). Хотя пайка может обеспечить более прочное соединение, высокие температуры пайки могут плохо сказаться на нержавеющей стали. При таких температурах углерод в нержавеющей стали может образовывать карбиды хрома, которые выводят хром из раствора, что делает сталь не нержавеющей вблизи стыка. После эксплуатации эта область подвержена ржавчине и растрескиванию.Проблема не может быть решена повторной пассивацией, поэтому лучше избегать чрезмерного нагрева деталей во время пайки и поддерживать общее время при температуре не более четырех минут. Пропановые горелки обычно не подходят для пайки. Вам нужно будет использовать газ MAPP или ацетилен.

Сварка - лучший способ соединения нержавеющей стали, но для хорошего соединения требуется умение. Есть два процесса сварки, которые будут работать - MIG (тип с автоматической подачей проволоки) и TIG (тип вольфрамового электрода). Сварка TIG позволяет лучше контролировать эти небольшие стыки.Лучше всего поискать в «Желтых страницах» телефонной книги сварщика нержавеющей стали, который сделает эту работу за вас. 3 / час)

Скорость сварки
(дюйм./ мин.)

Подача проволоки
(дюйм / мин)

MIG

.063

85 DCEP

21

ER316L

900

15

19

184

TIG

.045-.090

37-70 DCEN

12-14

L

12

2-4

В соответствии с требованиями

В идеале обратная сторона сварного шва должна быть промыта газообразным аргоном для предотвращения сильного окисления.Но большинство сварщиков не беспокоятся об этом, поэтому обратную сторону сварного шва следует затем отшлифовать / отшлифовать, чтобы обнажить чистый металл. Не используйте металлическую вату! Чтобы счистить черные / голубоватые оксиды, которые могут вызвать коррозию в зоне термического влияния вокруг сварных швов или паяных соединений на нержавеющей стали, используйте очистители на основе щавелевой кислоты и процедуры, упомянутые выше в разделе пассивирования.

Как спаять металл вместе | Паяльный металл

Пайка - это процесс соединения двух независимых металлических частей для образования одного прочного несущего соединения.

  • Пайка аналогична пайке, но при более высоких температурах.
  • Используйте пруток, подходящий для металла, используемого в вашем проекте.
  • Пруток для припоя должен расплавляться за счет тепла соединяемых металлических деталей, а не за счет прямого контакта с пламенем горелки.
  • Используйте горелку, излучающую пламя высокой интенсивности.
Рекомендуемые стержни по типу металла

Медь, латунь, бронза:
Медно-фосфорные прутки для пайки и сварки

Сталь, нержавеющая сталь, никелевые сплавы, медные сплавы, чугун, карбид вольфрама:
Прутки для пайки и сварки нейзильбера

Чугун, оцинкованный, никель, сталь, ковкий чугун:
Бронзовые прутки для пайки и сварки

Алюминий:
Bernzomatic AL3 Алюминиевые прутки для пайки и сварки

Указания

  1. С помощью металлической щетки или наждачной бумаги потрите поверхность металла. Затем очистите поверхности мыльной водой или обезжиривающим средством.
  2. Расположите металл по желанию. В большинстве случаев соединение внахлест прочнее и легче спаивается, чем соединение с зазором. При необходимости используйте зажимы, чтобы закрепить детали на месте.
  3. Нагрейте стык в месте встречи двух металлических частей, пока стык не станет светиться.
  4. Приложите пруток к стыку, продолжая нагревать металлические поверхности. Для больших площадей нагрейте участки стыка до температуры, а затем переходите к следующему прилегающему участку.
  5. После пайки используйте металлическую щетку для очистки паяной поверхности от окисления или остатков.

Советы

  • Прочтите наши Общие меры безопасности перед тем, как начать свой проект.
  • Прочтите инструкции, прилагаемые к горелке и пайке, прежде чем приступить к проекту.
  • После завершения проекта всегда снимайте горелку с топливного цилиндра и храните топливо в вертикальном положении.

Как паять латунь и медь

// Как паять латунь и медь

Получайте ежемесячные обновления от IMS! Войдите в систему или воспользуйтесь формой ниже, чтобы получать обновления.

Если вам интересно, как паять латунные или медные трубки, вы попали в нужное место. Мы расскажем вам, какие инструменты использовать, как применять эти инструменты и как добиться бесшовного соединения. Давайте начнем.

Что такое пайка?

Пайка состоит из сплавления сплавов с низкой температурой плавления вместе в месте соединения.Припой обычно изготавливают из свинца или олова и чаще всего сплавляют с латунью или медью из-за ее низкой температуры плавления.

Что вам нужно

Убедитесь, что у вас под рукой есть подходящие инструменты, чтобы начать процесс пайки. Вам понадобится:

  • Паяльная лампа или паяльник - содержит железную насадку и нагревает медные или латунные трубки

  • Припой - Прокладка или проводка из легкоплавкого сплава, обычно свинца или олова, или их комбинации

  • Флюс - паста, наносимая на стык и металлическую коронку, которая помогает припою правильно плавиться с металлом

  • Латунная трубка - 0.Толщиной 8 мм и 2,0 мм, или

  • Медный пруток, пластина, труба или проволока

  • Проволочная щетка, чистящая губка или стальная мочалка - Очищает трубки, удаляет любые загрязнения и способствует адгезии

  • Паяльная площадка - лежит на плоской поверхности для поддержки вашего паяльного проекта и защиты поверхности под

Как паять медь и латунь: шаг за шагом

Когда у вас есть все принадлежности, можно приступать к пайке. Следуйте инструкциям ниже.

  1. Создайте макет предполагаемого готового продукта с помощью стержня или трубки.

  2. Используйте проволочную щетку, чистящую губку или стальную вату для очистки всей поверхности меди или латуни, подлежащей пайке. Используйте его также для чистки металлической коронки.

  3. Вырежьте металлические детали по точной модели. Обязательно удалите заусенцы. Стержни будут достаточно легкими, чтобы временно закрепить каждый стык малярной лентой.

  4. Включите паяльник и дайте ему нагреться в течение нескольких минут.

  5. Нанесите кистью или окуните кончик латунной трубки и металлической насадки во флюс. В результате припой будет лучше прилипать, но не позволяйте оставаться каплям флюса, иначе они могут вызвать точечную коррозию трубы.

  6. Прикоснитесь кончиком паяльника к латунному стыку, где соединяются две латунные трубки. Постарайтесь коснуться обеих металлических частей. Держите утюг, пока не заметите, что флюс начинает дымиться.

  7. Возьмитесь за припой другой рукой и аккуратно выровняйте проволоку для пайки вдоль стыка. Проволока должна почти сразу раствориться в латуни.

  8. Очистите готовый проект влажной тряпкой, теплой проточной водой или зубной щеткой. Чтобы удалить остатки флюса, вы можете нанести пасту из пищевой соды или стереть ее изопропиловым спиртом.Вы также можете использовать чистящую салфетку, чтобы высушить ее.

Имейте в виду, что пайка лучше всего подходит для металлов с низкой температурой плавления, таких как латунь и медь. Кроме того, ограничьте пайку трубками шириной не более 2,0 мм.

Найдите нужную латунную трубку в компании Industrial Metal Supply Co. Ознакомьтесь с нашим выбором и узнайте, какие из наших услуг соответствуют вашим потребностям.

Сантехника: TechCorner - Объяснение пайки и пайки

На протяжении многих лет двумя наиболее распространенными методами соединения медных труб и фитингов были пайка и пайка. Эти проверенные временем методы во многом схожи, но есть также несколько отличий, которые их отличают. В этой статье объясняются сходства и подчеркиваются различия между двумя процессами соединения, чтобы помочь определить, какой метод соединения наиболее желателен.

Обзор

Самый распространенный метод соединения медных труб - это использование фитингов из меди или медного сплава, в которые вставляются секции трубки и закрепляются с помощью присадочного металла с использованием процесса пайки или пайки.Этот тип соединения известен как капиллярное соединение или соединение внахлест, поскольку гнездо фитинга перекрывает конец трубки, и между трубкой и фитингом образуется пространство. Это пространство называется капиллярным. Поверхности фитинга и трубки, которые перекрываются для образования соединения, известны как стыковые поверхности. Затем трубка и фитинг прочно соединяются с помощью присадочного металла, который плавится в капиллярном пространстве и прилипает к этим поверхностям.

Рисунок 1. Нахлесточное соединение - Трубчатые детали

Наполнитель - это металлический сплав, температура плавления которого ниже температуры плавления трубки или фитинга.Температура плавления медного (Cu) сплава UNS C12200 составляет 1 981 ° F / 1082 ° C. Таким образом, присадочные металлы для пайки и пайки труб и фитингов из меди и медных сплавов должны иметь температуру плавления ниже этой температуры.

Основное различие между пайкой и пайкой - это температура, необходимая для плавления присадочного металла. Американское сварочное общество (AWS) определило эту температуру как 842ºF / 450ºC, но часто округляется до 840ºF. Если присадочный металл плавится ниже 840 ° F, выполняется пайка.Выше этой температуры идет пайка.

Припой для присадочного металла

Основным элементом, используемым в припоях, является олово (Sn), потому что олово имеет сродство с медью и стремится прилипать к трубке и фитингу из медного сплава. Однако использование чистого олова (Sn) приведет к очень слабому соединению, и, как и с любым чистым металлом, будет очень трудно работать. Поэтому в сплав с оловом добавляют другие элементы, чтобы обеспечить прочность и облегчить использование присадочного металла.До 1986 г. наиболее распространенным присадочным металлом, используемым для соединения труб и фитингов из медного сплава, был припой 50/50, который на 50% состоял из олова (Sn) и 50% из свинца (Pb). В связи с национальными требованиями, изложенными в Законе о безопасной питьевой воде, свинцовые припои были запрещены для использования в системах питьевой воды. С запретом на использование припоя 50/50 (Sn / Pb) было разработано много новых и более прочных бессвинцовых сплавов, которые сегодня широко используются во всех областях пайки. Они состоят из сплавов, которые по-прежнему состоят в основном из олова с добавлением различных комбинаций других элементов, таких как никель, висмут, сурьма, серебро и даже медь.

Присадочные металлы: припои

Паяные соединения обычно используются для повышения прочности соединений или сопротивления усталости. Для этого необходимо использовать более прочные присадочные металлы, чем те, которые в основном состоят из олова. Однако такая повышенная прочность обычно достигается за счет присадочных металлов, изготовленных из материалов, плавящихся при более высоких температурах. Температура пайки большинства припоев, используемых для соединения систем медных трубопроводов (сплавы BCuP и BAg, см. Ниже), составляет примерно от 1150 ° F / 621 ° C до 1550 ° F / 843 ° C.

Наиболее часто используемые типы присадочного металла для пайки, используемые для соединения медных труб и фитингов, делятся на две отдельные категории:

  • Сплав BCuP (произносится как b-чашка) - где B означает пайку, Cu - химический символ меди, а P - химический символ фосфора. Следовательно, припой BCuP - это в первую очередь медно-фосфорный припой, который может содержать от 0% до 30% серебра (Ag).
  • BAg Alloy (произносится как мешок) - где B означает пайку, а Ag - химический символ серебра.В то время как в сплавах BAg присутствуют и другие элементы, помимо серебра, большинство сплавов BAg могут содержать от 24% до 93% серебра.

Совместные требования и сильные стороны

Независимо от того, является ли используемый процесс соединения пайкой или пайкой, есть определенные основные шаги, которые необходимо соблюдать для стабильного получения прочных соединений. Эти основные шаги описаны в стандарте по установке (ASTM B828). Этот стандарт и его процедуры касаются подготовки концов, очистки и правильного применения нагрева и присадочного металла.Более подробно они описаны в Руководстве CDA по медным трубам.

Независимо от того, используется ли процесс соединения пайки или пайки, трубка должна быть полностью вставлена ​​в фитинг до задней части чашки фитинга.

Рисунок 2. Деталь Трубное соединение

Глубина нахлеста или глубина гнезда в фитингах внахлест или капиллярных соединениях указана в производственных стандартах ASME / ANSI B16.18 и B16.22 для фитингов под давлением. Это важный параметр, потому что в идеале присадочный металл должен быть расплавлен в капиллярном пространстве, чтобы он полностью стекал к задней части чашки фитинга и полностью перекрывал (заполнял) пространство между трубкой и фитингом. Хотя требуется 100% -ное проникновение и заполнение фитинга капиллярного пространства, заполнение 70% паяного соединения (или не более 30% пустот) считается удовлетворительным для получения соединений, которые могут выдерживать максимальные рекомендуемые давления для паяных медных трубок и фитингов. системы.

Основное различие между паяными и паяными соединениями заключается в количестве стыков внахлест или заполнении, необходимом для развития полной прочности соединения. В паяном соединении все еще настоятельно рекомендуется полностью вставить трубку в заднюю часть чашки фитинга; однако полное заполнение этой соединительной щели по всей длине не обязательно для достижения полной прочности соединения.Согласно Американскому сварочному обществу (AWS), предполагается, что припой проникает в капиллярное пространство, по крайней мере, в три раза больше толщины самого тонкого соединяемого компонента, которым обычно является труба. Это известно в отрасли как правило AWS 3-T.

Из-за повышенной прочности припоев, даже такое небольшое проникновение наполнителя приведет к тому, что правильно изготовленное паяное соединение будет прочнее, чем сама трубка или фитинг. Однако, в отличие от паяного соединения, где колпачок или галтель обеспечивает минимальную дополнительную прочность, паяное соединение должно быть выполнено таким образом, чтобы между трубкой и фитингом на торце фитинга был обеспечен хорошо развитый галтель или «колпачок» из присадочного металла. .Это галтели, или колпачок, как его часто называют в торговле, позволяет распределять напряжения, возникающие внутри соединения (в результате теплового расширения, давления или других циклических реакций, таких как вибрация или термическая усталость), по поверхности галтеля. В паяном соединении, изготовленном без хорошо развитой вогнутой кромки, все напряжения будут сосредоточены в острой точке контакта между трубкой, припоем (присадочным металлом) и фитингом, что может привести к развитию трещины под напряжением в трубке. в таком случае.Создание галтели при изготовлении паяного соединения значительно снижает эту возможность.

Рисунок 3. Объяснение правила AWS 3-T

Помимо прочности присадочного металла в соединении, при выборе использования паяных или паяных соединений необходимо также учитывать общую прочность соединения или узла (трубы, фитинга и соединения) после операции соединения. Как уже говорилось, по определению температура, определяющая разницу между пайкой и пайкой меди, составляет приблизительно 840 ° F / 449 ° C.Эта температура намного важнее, чем просто произвольный порог определения. Это важно, потому что 700 ° F / 371 ° C - это температура, при которой медь начинает отжигаться или переходить с твердого состояния (жесткое) на состояние после отжига (мягкое). С этим изменением характера происходит внутренняя потеря прочности - медь в твердом состоянии прочнее, чем медь в отожженном состоянии. Общий объем происходящего отжига и, следовательно, потеря прочности определяется температурой и временем, в течение которого материал находится при этой температуре.Чем выше температура, тем меньше времени требуется для перехода от жесткого к мягкому.

Поскольку температура пайки должна превышать температуру плавления припоев, от 1150 ° F / 621 ° C до 1550 ° F / 843 ° C, процесс создания паяного соединения вызывает отжиг или размягчение основных металлов, что приводит к снижение общей прочности сборки. Хотя паяное соединение явно прочнее, чем паяное соединение, номинальное внутреннее рабочее давление, то есть допустимое рабочее давление системы в режиме 24/7, ниже для отожженной трубы (см. Справочник по медным трубам, таблицы с 3a по 3e).

Следовательно, это необходимо учитывать при принятии решения о пайке или пайке. Хотя паяные соединения прочнее и в целом более устойчивы к усталости (вибрации, тепловому перемещению и т. Д.), Рабочее давление в системе должно соответствовать допустимым пределам для отожженной трубы.

Дополнительные ссылки

  1. Американское общество сварки: Руководство по пайке - 3-е издание
  2. Американское общество сварки: Руководство по пайке - 4-е издание
  3. AWS A5.8 / AWS A5.8M: Спецификация присадочных металлов для пайки и сварки припоем
  4. ASTM B32-04: Стандартные спецификации для металлического припоя

Методы пайки алюминия | Superior Flux & Mfg. Co.

На этот раз это статья, опубликованная в выпуске журнала Welding Journal за май 2018 года и озаглавленная «Методы пайки алюминия». Спасибо Уильяму «Биллу» Эйвери, эксперту по соединению металлов в Superior Flux, и доктору Иегуде Баскину, президенту Superior Flux, за еще одну хорошо написанную и информативную статью.

Мы даже не можем сосчитать, сколько раз люди говорили нам: «Я не знал, что вы можете паять алюминий!» Если это похоже на вас, или если у вас есть вопросы по пайке алюминия, сделайте себе одолжение и прочтите статью «Методы пайки алюминия». Вы узнаете, что можно припаять к алюминию . Конечно, это будет не так просто, как паять, скажем, медь или даже сталь. Но, если вы ознакомитесь с ключевыми моментами пайки алюминия, изложенными в статье, то вы узнаете, как эффективно паять алюминий.

И нет лучшего времени, чем сейчас, чтобы научиться паять алюминий. Все больше и больше компаний исследуют пайку алюминия в самых разных областях: от автомобилей, электроники, радиаторов, систем отопления, вентиляции и кондиционирования воздуха и т. Д. Алюминий легче и дешевле, чем медь, и во многих случаях он достаточно теплопроводен, как термически, так и электрически, чтобы позволить медь работать за свои деньги. А пайка алюминия с его высокими температурами не так проста, как пайка алюминия.

Самое лучшее во всем этом то, что мы видим только начало восходящей звезды пайки алюминия.

Итак, вот что говорится в статье «Методы пайки алюминия» как некоторые из ключей к пайке алюминия.

The Right Flux: Вам нужен алюминиевый паяльный флюс - флюс, специально разработанный для пайки алюминия. Тот факт, что флюс достаточно прочен для пайки сплава, такого как нержавеющая сталь, не означает, что он будет работать с алюминием. Superior Flux предлагает самый широкий спектр флюсов для пайки алюминия на рынке, включая флюсы в форме геля, пасты, жидкости и паяльной пасты.

Правильный припой: Ваша цель при пайке - создать интерметаллическое соединение с алюминием. Определенные комбинации присадочных сплавов, такие как олово-цинк, олово-серебро, SN100C ™ и ALUSAC-35 ™, лучше подходят для создания этой специальной связи. Без интерметаллической связи вы можете получить что-то похожее на сустав, но без каких-либо «зубов». В ходе нового захватывающего исследования мы определили, что ALUSAC-35 ™ компании Nihon Superior, возможно, является единственным припоем на рынке, который может эффективно паять алюминий и затем проходить испытания солевым распылением.И имейте в виду, что припой бывает разных форм: проволока, фольга, преформы и смешанный со специально разработанными флюсами в виде алюминиевой паяльной пасты. Наша порошковая проволока с алюминиевым флюсом (AFCW) - пионер в этой области, эффективная порошковая проволока с алюминиевым флюсом, которая бывает разных типов сплавов и диаметров. Наша линейка алюминиевых паяльных паст и паст для лужения является самой широкой на рынке. Наши химики постоянно работают над улучшением рецептур и работают с заказчиками в области пайки алюминия.Мы мыслим творчески, выбирая лучший вариант для конкретного приложения.

Тип или «серия» алюминия : Алюминиевые сплавы подразделяются на серии в зависимости от состава сплава и добавок. Некоторые алюминиевые серии легче паять, чем другие; а некоторые паять невозможно (пока!). Например, серии 1000 и 3000 (1XXX и 3XXX) легче паять, чем серии 6000. Алюминий 5000-й серии попал под удар. Когда его можно припаять, это можно сделать только путем предварительного лужения поверхности алюминия.Также имейте в виду, что пайка алюминия с алюминием всегда является наиболее сложной задачей. Но при пайке алюминия к более удобному для пайки металлу, например, к меди, у вас есть преимущество.

Think HEAT! Алюминий требует тепла, чтобы принять припой, обычно до температуры 300 ° C или более. И вы хотите измерять температуру алюминия, а не вашего источника тепла. Алюминий является отличным теплоотводом, поэтому источник тепла должен быть еще выше, чтобы алюминий нагрелся до нужной температуры.Пайка алюминия не похожа на пайку меди; недостаточно просто нагреть и расплавить припой. Даже при правильной комбинации флюса и припоя вы не добьетесь пайки, если алюминий недостаточно горячий, чтобы принять припой. В дополнение к этому, он должен достичь этой температуры в течение определенного периода времени (обычно менее 8 минут), иначе поток будет израсходован, не выполнив свою работу. К счастью, существует множество способов нагрева, таких как печи, индукционные печи, горелки, электрические плиты и т. Д.чтобы помочь вам достичь нужной температуры в допустимом диапазоне.

Не пугайтесь своего проекта по пайке алюминия!

Прочтите статью, ознакомьтесь с другими нашими алюминиевыми флюсами или свяжитесь с нами по вопросам, связанным с пайкой алюминия.

Наши исследования в области практической пайки алюминия, пожалуй, самые передовые на рынке сегодня, и мы только начинаем. Ожидайте новых статей о пайке алюминия, а также о других новаторских областях пайки, пайки и сварки.

Как ПРАВИЛЬНО паять (СЕРЕБРЯНЫЙ ПАЙ) медную трубу: 5 шагов (с изображениями)

Инструменты и типы присадочных материалов варьируются от паяного до паяного, поэтому давайте рассмотрим их оба вместе.

При пайке трубопроводов питьевой воды вы будете использовать этот тип припоя, который называется 95/5. Этот тип припоя нельзя использовать при пайке, поэтому вам понадобится присадочный материал. На рынке представлено множество типов наполнителей, и вам нужно будет выбрать подходящий в зависимости от того, какую работу вы выполняете.В случае каких-либо сомнений, продукция Harris предоставляет очень четкую диаграмму того, какой тип прутка для пайки использовать для различных типов соединяемых материалов. Для этой демонстрации я буду использовать Stay-silv 15, который содержит 80% меди, 15% серебра и 5% фосфора. Вам понадобится стержень, который содержит фосфор, поскольку они самофлюсуются, что избавляет от необходимости наносить флюс на трубу.

Если серебряный припой плавится при гораздо более высокой температуре, вам потребуется больше тепла, чем для обычного паяного соединения.

Пайка труб меньшего размера возможна с помощью небольшой пропановой горелки, но для труб большего размера, например, от 1 дюйма и выше, требуется больше тепла, поэтому рекомендуется использовать кислородно-ацетиленовую систему с соответствующей горелкой, так как серебряный припой плавится при более высокой температуре, чем обычный припой. Кислородно-ацетилен горит намного сильнее, при температуре 3500 * C или 6330 * F, по сравнению с пропаном, который горит примерно при 1995 * C или 3620 * F.

И, наконец, фонарик. При пайке используется такая горелка, так как нужен только один газ.Кроме того, пропановые горелки не выделяют столько тепла, как кислородно-ацетиленовые горелки.

Я использую этот кислородно-ацетиленовый комплект для подключения резака от Harris, электротехнической компании Lincoln, который отлично подходит для таких легких задач пайки, как эта. Он поставляется в сумке для переноски и имеет 2 бака, 1 для кислорода и 1 для ацетилена, также есть 2 регулятора для каждого газа и собственно горелка. Вы также заметите наконечники для фонарей, которые идут в комплекте, но мы поговорим об этом позже в видео.Вы можете использовать такую ​​простую установку воздух / ацетилен, как эта, но она значительно длиннее и не дает вам чистого стыка, как это делает комплект кислород / ацетилен. Однако они более экономичны и их легче носить с собой в ограниченном пространстве, поэтому используйте то, что лучше для вас.

Еще кое-что, о чем вы могли бы подумать, - это убедиться, что в вашем фонаре есть пламегасители со стороны кислорода и ацетилена. Большинство новых горелок поставляются со встроенными резаками. Раньше они были отдельными, и их нужно было устанавливать на самом шланге.Так что просто убедитесь, что они есть в вашем комплекте, так как они не дадут пламени попасть в ваш резервуар, чего вам на самом деле не нужно.

Еще кое-что, о чем я расскажу в видео, - это проволочные щетки, контрольное зеркало и огнетушитель.

Хорошо, давайте начнем

Пайка серебром из нержавеющей стали | Капп Сплав

KappTec ™ Кадмий-серебряный припой - это высокотемпературный, высокопрочный припой общего назначения для всех паяемых металлов, кроме алюминия.Настоятельно рекомендуется для пайки нержавеющей стали с нержавеющей сталью и нержавеющей стали с медью. Этот сплав отлично работает в условиях высокой вибрации и высоких нагрузок. Его высокая электропроводность по сравнению с другими припоями делает его отличным выбором для электрических применений.

Приложения

  • Настоятельно рекомендуется для пайки нержавеющей стали и меди
  • Превосходно работает в условиях высокой вибрации и высоких нагрузок
  • Высокая электропроводность по сравнению с другими припоями делает его отличным выбором для электрических применений
  • Особенно полезен для больших деталей, требующих большего нагрева
  • Характеристики в применении аналогичны более дорогим серебряным припоям
  • Этот сплав НЕ рекомендуется для пищевых продуктов или питьевой воды. Для получения информации о безопасных пищевых продуктах и ​​питьевой воде, соответствующих требованиям NSF, см. KappFree ™ и / или KappZapp ™.

KappTec ™ используется в приложениях, где требуются сплавы с более высокой температурой плавления, чем мягкие припои, но не требуются стоимость и прочность серебряных припоев. При температуре выше 640 ° F (338 ° C) этот припой очень жидкий и проникает в самые близкие стыки. KappTec ™ широко используется в лампах, осветительной арматуре и других электронных устройствах с высокой вибрацией и высокими нагрузками.

Наилучшее использование и функции

  • Повышение прочности и однородности склеивания достигается за счет предварительного лужения деталей с помощью KappTec ™ перед закреплением в конечных положениях
  • Предварительное лужение помогает избежать перегрева флюса в процессе окончательного соединения, что обеспечивает лучшую текучесть и более прочное соединение
  • Соединения имеют хорошую коррозионную стойкость, высокие электрические свойства, высокий сдвиг и высокую прочность на разрыв.
  • В паре с Kapp CopperBond ™ Flux

Недвижимость

В следующей таблице представлены физические свойства припоев KappTec ™ .Многие факторы, такие как материалы, температура и способ нанесения, определяют прочность и характеристики паяного соединения. Позвоните в Kapp Alloy, чтобы обсудить ваши конкретные потребности. Мы рекомендуем протестировать соответствующие сплавы в вашем конкретном приложении, чтобы убедиться в их пригодности. Образцы сплавов Каппа всегда доступны по запросу.

Состав

Cd (кадмий):

95%

Ag (Серебро):

5%

Технические характеристики

Диапазон плавления:

640-740 ° F (338-393 ° C)

Плотность:

4. 65 фунтов / куб. дюйм

Электропроводность:

22 (% IACS)

Удельное электрическое сопротивление:

7,9%

Прочность на сдвиг (медь):

11000 фунтов на кв. Дюйм при 72 ° F (22 ° C)

Прочность на сдвиг (сталь 1020):

12000 фунтов на кв. Дюйм при 72 ° F (22 ° C)

Прочность на разрыв:

До 25000 фунтов на кв. Дюйм

Удельный вес:

8.82

* Прочность на сдвиг для соединений внахлест

Варианты продукта

KappTec ™ доступен в стандартных формах:

  • 1/32 дюйма (0,031 дюйма) (0,8 мм)
  • 1/16 дюйма (0,063 дюйма) (1,6 мм)
  • 1/8 дюйма (0,125 дюйма) (3,2 мм)

Сплавы и формы на заказ - наша специальность.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *