Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Расчет количества тепла на нагрев воздуха: Расчет воздушного отопления: разбор специфики на примере

Содержание

Расчет калорифера

Калориферы - приборы, применяемые для нагревания воздуха в приточных системах вентиляции, системах кондиционирования воздуха, воздушного отопления, а также в сушильных камерах.

Подбор калорифера осуществляется на холодный период.

  1. Определяем расход тепла на нагревание приточного воздуха (Богословский, стр. 202, ф-ла XII.1):

где - массовое количество нагреваемого воздуха, кг/ч;

- начальная и конечная температура воздуха, т.е. до калорифера и после него соответственно;

- удельная теплоемкость воздуха ().

  1. Задаваясь массовой скорость 4,6 кг/с·м2 находим необходимую площадь живого сечения калориферной установки (Богословский, стр. 203, ф-ла XII.4):

Калорифер с данной площадью живого сечения существует, следовательно, необходимо установить только 1 калорифер.

  1. Определяемся с установкой калориферов. Теплоноситель принимаем – воду. Она должна пройти через площадь сечения трубок каждого калорифера (принимаем по табл. 2.23 спр. Староверова, стр. 424):

  1. Параметры теплоносителя:

- температура горячей воды

- температуры оборотной воды

  1. Определяем скорость движения теплоносителя в трубках калорифера (Богословский, стр. 203, ф-ла XII.8):

где - плотность воды

- теплоемкость воды

- площадь живого сечения по теплоносителю

  1. Находим коэффициент теплопередачи (Староверов, стр. 423, табл. II.22):

по таблице:

по формуле:

  1. Площадь поверхности нагрева:

  1. Находим необходимую площадь поверхности нагрева калорифера:

где - средняя температура теплоносителя

- средняя температура нагрева воздуха, проходящего через калорифер

  1. Определяем запас площади нагрева калорифера:

  1. Определяем сопротивление калорифера проходу воздуха:

где - число последовательно расположенных калориферов;

- сопротивление одного калорифера.

  1. Проверяем значение сопротивления калорифера проходу воздуха:

  1. Подбор и расчет воздухораспределителей

Так как в цехе имеются пылевыделения, то приток воздуха необходимо делать в верхнюю зону помещения. В помещениях большой высоты возможна подача притока свободными струями.

Для дальнейших расчетов выберем приколонные четырехструйные воздухораспределители серии НРВ.

Для того, чтобы начать расчет, необходимо определить возможное количество воздухораспределителей

где – объем приточного воздуха на холодный период года, 24361 кг/ч;

- производительность одного воздухораспределителя, принимаемая (Староверов, стр. 195, табл. 8.9.)

24361/5 = 4872,2 м3/ч – расход воздуха на участке.

Выбираем 5 воздухораспределителей с номинальной пропускной способностью 5000 м3/ч. Площадь выпускного патрубка

м2.

Расчет по Староверову:

Воздухораспределители следует рассчитывать по схеме 3, пользуясь нижеприведенными формулами (Староверов, табл. 8.1, стр. 178). Принять в этих формулах Кв = 1, , ξ =3 (Староверов, стр. 195)

Расчет проводим по методичке:

  1. Место входа оси плоской струи в рабочую зону примем в плоскости оси прохода. Оно представляет собой прямую, расположенную на плоскости, ограничивающей сверху рабочую зону и отстоящую на расстоянии 2 м от пола.

  2. Ось воздухоприточной струи помещаем на высоте 8 метров или 0,6 от высоты помещения. Это условие обеспечивает свободное развитие струи и не налипание ее на потолок или пол.

  3. Исходя из расположения оси струи и места расположения линии пересечения оси плоской струи с верхней границей рабочей зоны, принимаем координату x=2,5 м, а координату y=1,0 м.

Расчетная длина оси струи:

Для щели коэффициенты затухания: m=4,5 n=3,2 (Староверов, стр. 180, табл. 8.1.)

  1. Задаемся температурой притока, с учетом подогрева в вентиляторе – 11. Избыточная температура составит 20-11=9.

  2. Параметры воздуха на входе струи в рабочую зону определяем в соответствии с обязательным приложением 6:

  • Максимальная скорость на оси струи 1,8*0,2 = 0,36 м/с

  • Избыточная температура

  1. Задаемся шириной щели 0,05 м, тогда скорость приточного воздуха на выходе из щели, обеспечивающая вход струи в точку с указанными координатами, равна:

  1. Длина щели принимается равной 0,8*47,2 = 37,76. Тогда ширина щели, рассчитанная по величине притока:

Ширина щели = 0,2 м.

  1. Определяем скорость на входе струи в рабочую зону. В нашем случае , так как 8,5<6*37,76, поэтому вычисляем скорость на входе струи в рабочую зону как:

Более точно скорость на входе в рабочую зону определится после введения поправки на стеснение, принимаемой по данным таблицы. Величина

С учетом поправки

  1. Максимальная скорость в обратном потоке

  1. Определяем избыточную температуру на входе в рабочую зону:

  1. Относительная площадь струи, поступающая в помещение:

Равномерность распределения параметров в рабочей зоне помещения удовлетворяют требованиям норм (0,5 ≥ ≥ 0,2)

  1. Проверка правильности геометрических соотношений

Расчет выполнен правильно.

Количество теплоты и тепловая мощность. Расчет в Excel.

Опубликовано 13 Окт 2013
Рубрика: Теплотехника | 104 комментария

Человечеству известно немного видов энергии – механическая энергия (кинетическая и потенциальная), внутренняя энергия (тепловая), энергия полей (гравитационная, электромагнитная и ядерная), химическая. Отдельно стоит выделить энергию взрыва,...

...энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности.

Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.

Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия, которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.

Если вы не инженер-теплотехник, и ежедневно не занимаетесь теплотехническими вопросами, то вам, столкнувшись с ними, иногда без опыта бывает очень трудно быстро в них разобраться. Трудно без наличия опыта представить даже размерность искомых значений количества теплоты и тепловой мощности. Сколько Джоулей энергии необходимо чтобы нагреть 1000 метров кубических воздуха от температуры -37˚С до +18˚С?.. Какая нужна мощность источника тепла, чтобы сделать это за 1 час?.. На эти не самые сложные вопросы способны сегодня ответить «сходу» далеко не все инженеры. Иногда специалисты даже помнят формулы, но применить их на практике могут лишь единицы!

Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов.  Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!

Количество теплоты при различных физических процессах.

Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях. Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.

Рассмотрим график, представленный на рисунке. На нем изображена зависимость температуры вещества Т от количества теплоты

Q, подведенного к некой закрытой системе, содержащей определенную массу какого-то конкретного вещества.

1. Твердое тело, имеющее температуру T1, нагреваем до температуры Tпл, затрачивая на этот процесс количество теплоты равное Q1.

2. Далее начинается процесс плавления, который происходит при постоянной температуре Тпл (температуре плавления). Для расплавления всей массы твердого тела необходимо затратить тепловой энергии в количестве Q2— Q1.

3. Далее жидкость, получившаяся в результате плавления твердого тела, нагреваем до температуры кипения (газообразования) Ткп, затрачивая на это количество теплоты равное Q3-Q2.

4. Теперь при неизменной температуре кипения Ткп жидкость кипит и испаряется, превращаясь в газ. Для перехода всей массы жидкости в газ необходимо затратить тепловую энергию в количестве

Q4-Q3.

5. На последнем этапе происходит нагрев газа от температуры Ткп до некоторой температуры Т2. При этом затраты количества теплоты составят Q5-Q4. (Если нагреем газ до температуры ионизации, то газ превратится в плазму.)

Таким образом, нагревая исходное твердое тело от температуры Т1 до температуры Т2 мы затратили тепловую энергию в количестве Q5, переводя вещество через три агрегатных состояния.

Двигаясь в обратном направлении, мы отведем от вещества то же количество тепла Q5, пройдя этапы конденсации, кристаллизации и остывания от температуры Т2 до  температуры Т1. Разумеется, мы рассматриваем замкнутую систему без потерь энергии во внешнюю среду.

Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой, а обратный ему процесс – десублимацией.

Итак, уяснили, что процессы переходов между агрегатными состояниями вещества характеризуются потреблением энергии при неизменной температуре. При нагреве вещества, находящегося в одном неизменном агрегатном состоянии, повышается температура и также расходуется тепловая энергия.

Главные формулы теплопередачи.

Формулы очень просты.

Количество теплоты Q в Дж рассчитывается по формулам:

1. Со стороны потребления тепла, то есть со стороны нагрузки:

1.1. При нагревании (охлаждении):

Q=m*c*(Т2-Т1)

Здесь и далее:

mмасса вещества в кг

с – удельная теплоемкость вещества в Дж/(кг*К)

1.2. При плавлении (замерзании):

Q=m*λ

λудельная теплота плавления и кристаллизации вещества в Дж/кг

1. 2

tвремя в с

Iдействующее значение тока в А

Uдействующее значение напряжения в В

Rсопротивление нагрузки в Ом

Делаем вывод – количество теплоты прямо пропорционально массе вещества при всех фазовых превращениях и при нагреве дополнительно прямо пропорционально разности температур. Коэффициенты пропорциональности (c, λ, r, q) для каждого вещества имеют свои значения и определены опытным путем (берутся из справочников).

Тепловая мощность N в Вт – это количество теплоты переданное системе за определенное время:

N=Q/t

Чем быстрее мы хотим нагреть тело до определенной температуры, тем большей мощности должен быть источник тепловой энергии – все логично.

Расчет в Excel прикладной задачи.

В жизни бывает часто необходимо сделать быстрый оценочный расчет, чтобы понять – имеет ли смысл продолжать изучение темы, делая проект и развернутые точные трудоемкие расчеты. Сделав за несколько минут расчет даже с точностью ±30%, можно принять важное управленческое решение, которое будет в 100 раз более дешевым и в 1000 раз более оперативным и в итоге в 100000 раз более эффективным, чем выполнение точного расчета в течение недели, а то и месяца, группой дорогостоящих специалистов…

Условия задачи:

В помещение цеха подготовки металлопроката размерами 24м х 15м х 7м завозим со склада на улице металлопрокат в количестве 3т. На металлопрокате есть лед общей массой 20кг. На улице -37˚С. Какое количество теплоты необходимо, чтобы нагреть металл до +18˚С; нагреть лед, растопить его и нагреть воду до +18˚С; нагреть весь объем воздуха в помещении, если предположить, что до этого отопление было полностью отключено? Какую мощность должна иметь система отопления, если все вышесказанное необходимо выполнить за 1час? (Очень жесткие и почти не реальные условия – особенно касающиеся воздуха!)

Расчет выполним в программе MS Excel или в программе OOo Calc.

С цветовым форматированием ячеек и шрифтов ознакомьтесь на странице «О блоге». 

Исходные данные:

1. Названия веществ пишем:

в ячейку D3: Сталь

в ячейку E3: Лед

в ячейку F3: Лед/вода

в ячейку G3: Вода

в ячейку G3: Воздух

2. Названия процессов заносим:

в ячейки D4, E4, G4, G4: нагрев

в ячейку F4: таяние

3. Удельную теплоемкость веществ c в Дж/(кг*К) пишем  для стали, льда, воды и воздуха соответственно

в ячейку D5: 460

в ячейку E5: 2110

в ячейку G5: 4190

в ячейку H5: 1005

4. Удельную теплоту плавления  льда λ в Дж/кг вписываем

в ячейку F6: 330000

5.  Массу веществ m в кг вписываем соответственно для стали и льда

в ячейку D7: 3000

в ячейку E7: 20

Так как при превращении льда в воду масса не изменяется, то

в ячейках F7 и G7: =E7=20

Массу воздуха находим произведением объема помещения на удельный вес

в ячейке H7: =24*15*7*1,23=3100

6. Время процессов t в мин пишем только один раз для стали

в ячейку D8: 60

Значения времени для нагрева льда, его плавления и нагрева получившейся воды рассчитываются из условия, что все эти три процесса должны уложиться в сумме за такое же время, какое отведено на нагрев металла. Считываем соответственно

в ячейке E8: =E12/(($E$12+$F$12+$G$12)/D8)=9,7

в ячейке F8: =F12/(($E$12+$F$12+$G$12)/D8)=41,0

в ячейке G8: =G12/(($E$12+$F$12+$G$12)/D8)=9,4

Воздух также должен прогреться за это же самое отведенное время, читаем

в ячейке H8: =D8=60,0

7.  Начальную температуру всех веществ T1 в ˚C заносим

в ячейку D9: -37

в ячейку E9: -37

в ячейку F9: 0

в ячейку G9: 0

в ячейку H9: -37

8. Конечную температуру всех веществ T2 в ˚C заносим

в ячейку D10: 18

в ячейку E10: 0

в ячейку F10: 0

в ячейку G10: 18

в ячейку h20: 18

Думаю, вопросов по п.7 и п.8 быть недолжно.

Результаты расчетов:

9. Количество теплоты Q в КДж, необходимое для каждого из процессов рассчитываем

для нагрева стали в ячейке D12: =D7*D5*(D10-D9)/1000=75900

для нагрева льда в ячейке E12: =E7*E5*(E10-E9)/1000= 1561

для плавления льда в ячейке F12: =F7*F6/1000= 6600

для нагрева воды в ячейке G12: =G7*G5*(G10-G9)/1000= 1508

для нагрева воздуха в ячейке h22: =H7*H5*(h20-H9)/1000= 171330

Общее количество необходимой для всех процессов тепловой энергии считываем

в объединенной ячейке D13E13F13G13h23: =СУММ(D12:h22) = 256900

В ячейках D14, E14, F14, G14, h24,  и объединенной ячейке D15E15F15G15h25 количество теплоты приведено в дугой единице измерения – в ГКал (в гигакалориях).

10. Тепловая мощность N в КВт, необходимая для каждого из процессов рассчитывается

для нагрева стали в ячейке D16: =D12/(D8*60)=21,083

для нагрева льда в ячейке E16: =E12/(E8*60)= 2,686

для плавления льда в ячейке F16: =F12/(F8*60)= 2,686

для нагрева воды в ячейке G16: =G12/(G8*60)= 2,686

для нагрева воздуха в ячейке h26: =h22/(H8*60)= 47,592

Суммарная тепловая мощность необходимая для выполнения всех процессов за время t рассчитывается

в объединенной ячейке D17E17F17G17h27: =D13/(D8*60) = 71,361

В ячейках D18, E18, F18, G18, h28,  и объединенной ячейке D19E19F19G19h29 тепловая мощность приведена в дугой единице измерения – в Гкал/час.

На этом расчет в Excel завершен.

Выводы:

Обратите внимание, что для нагрева воздуха необходимо более чем в два раза больше затратить энергии, чем для нагрева такой же массы стали.

При нагреве воды затраты энергии в два раза больше, чем при нагреве льда. Процесс плавления многократно больше потребляет энергии, чем процесс нагрева (при небольшой разности температур).

Нагрев воды в десять раз затрачивает больше тепловой энергии, чем нагрев стали и в четыре раза больше, чем нагрев воздуха.

Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.

После ввода адреса своей электронной почты и нажатия на кнопку «Получать анонсы статей» НЕ ЗАБУДЬТЕ ПОДТВЕРДИТЬ ПОДПИСКУ кликом по ссылке в письме, которое тут же придет к вам на указанную почту (иногда — в папку «Спам»)!

Мы вспомнили понятия «количество теплоты» и «тепловая мощность», рассмотрели фундаментальные формулы теплопередачи, разобрали практический пример. Надеюсь, что мой язык был прост, понятен и интересен.

Жду вопросы и комментарии на статью!

Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.

Ссылка на скачивание файла: raschet-teplovoy-moshchnosti (xls 19,5KB).

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы

Норматив теплопотребления. Сколько тепла нам нужно, сколько тепла мы оплачиваем?

Самая дорогая коммунальная услуга – это отопление.

Не смотря на требование законодательства об установке общедомовых счетчиков теплопотребления, по разным причинам все еще большое количество собственников жилья оплачивает тепло по нормативам, установленным местными органами власти.

Я живу именно в таком доме. Т.е. в нашем доме общедомовой счетчик на системе отопления не установлен. Поэтому я решил рассчитать - сколько же тепла мне нужно для отопления моей квартиры или нашего МКД и сравнить мой расчет с нормативом потребления, установленным для нашего дома (моей квартиры) в квитанции.

Ниже я привожу свой расчет, который может проделать каждый из вас. Расчет не очень сложный, но требующий умения обращаться с калькулятором, знания физики в объеме восьми классов и немного времени.

Поэтому, тех из вас кого этот вопрос интересует, а именно - сколько нужно тепла для отопления вашей квартиры, прошу взять в руки калькулятор и повторить мой расчет для своей квартиры. Потом взять свою квитанцию на оплату ЖКУ и сравнить результат вашего расчета с нормативом, по которому вам начисляют плату за отопление.

После этого буду признателен, если вы поучаствуете в предлагаемом мной ниже опросе.

И так расчет необходимого теплопотребления:

1. Все наши дома и квартиры складываются из кубометров воздуха, который нам нужно нагревать, когда температура на улице становиться ниже необходимой для комфортного проживания. Таким образом, именно на нагрев воздуха и тратится тепло системы теплоснабжения, потребляемое нами. Сколько же нужно тепла для нагрева одного кубического метра воздуха на один градус? Если вы забыли школьный курс физики, спросите у школьников. Они вам помогут с расчетом. Я пробовал. Это работает. Берем теплоемкость воздуха – 0,24 Ккал/кг*град и умножаем на плотность воздуха – 1,3 кг/м3. Получаем, что для нагрева 1м3 воздуха на один градус нам необходимо 0,312 Ккал/м3*град или 0,00000031 Гкал/м3*град.

2. Зная сколько мне нужно тепловой энергии для нагрева одного кубического метра воздуха на один градус, я могу подсчитать, сколько мне понадобится энергии, чтобы нагреть всю квартиру или даже целый дом и не на один, а на любое количество градусов. Для этого необходимо просто умножить полученные выше в п.1 значение на объем помещения и количество градусов нагрева. Следует оговориться, что мы в данном случае делаем расчет за весь отопительный сезон, так как норматив устанавливается на весь сезон и не зависит от температуры внешнего воздуха, т. е. предполагает некую усредненную величину теплопотребления в месяц. Конечно, в холодные месяцы для отопления нам нужно больше тепла, а в теплые соответственно меньше. Но эти колебания теплопотребления усредняются за весь отопительный период, если в расчете использовать среднюю за сезон температуру внешнего воздуха. Поэтому в нашем расчете мы вычисляем некое усредненное значение теплопотребления, полагая, что нагревать воздух в помещении нам необходимо от средней за отопительный сезон температуры наружного воздуха до требуемой комнатной. Берем требуемую комнатную температуру – плюс 20 градусов. В моем случае средняя температура наружного воздуха за отопительный сезон - минус 2 градуса. У вас может быть другая средняя температура. Узнать ее вы легко сможете в интернете. Следовательно, мне необходимо нагревать квартиру на 22 градуса, от средней наружной температуры - минус 2 градуса, до требуемой комнатной – плюс 20 градусов. Площадь моей квартиры 68,6 м2. Считая высоту потолка с учетом межэтажных перекрытий 3,5 м, я получаю нагреваемый объем квартиры – 240 м3. Умножим объем квартиры 240 м3 на 22 градуса требуемого нагрева и необходимый удельный расход энергии на нагревание 1м3 воздуха. Получаем – 0,0016368 Гкал/на квартиру*час. Нагревание – это не мгновенный процесс. Он требует времени. Для простоты и определенности принимаем, что необходимый нагрев в данном случае осуществляется в течение часа.

3. Однако потребление тепловой энергии на отопление квартиры или дома это не только нагревание воздуха внутри помещения. Тепло необходимо где-то выработать и доставить до обогреваемого помещения. Естественно при этом будут происходить потери. По действующим СНИПам потери в системе теплоснабжения дома должны составлять в среднем около 13 %. Так как мой дом старый, не смотря на капитальный ремонт системы теплоснабжения дома в 2012 году, я принимаю в моих расчетах потери для нашего дома 20%. Для вашего первого расчета тоже рекомендую эту цифру. Далее при необходимости вы сможете ее уточнить. Получается, что для нагревания моей квартиры, с учетом потерь тепла в системе теплоснабжения 20%, мне необходимо потребить у ресурсоснабжающей организации 0,00196418 Гкал/на квартиру*час.

4. Однако кроме потерь, которые неизбежно существуют в системе теплоснабжения при выработке и транспорте тепла, в жилых помещениях существуют и так называемые бытовые тепловыделения. Это, к примеру, тепло выделяемое включенными электроприборами, тепло выдыхаемого нами воздуха, тепло, выделяемое при приготовлении пищи и т.п. Не вдаваясь в детали расчетов (эти данные можно найти в публикациях на соответствующую тему) предлагаю принять в нашем случае, что бытовые тепловыделения составляют 20% от необходимого на нагревание помещения тепла. Это достаточно точная усредненная оценка. При необходимости вы ее уточните или проверите. Тогда получаем, что необходимое теплопотребление моей квартиры составит те же 0,0016368 Гкал/на квартиру*час.

5. Так как после нагревания помещения сразу начинается обратный процесс, т.е. остывание, и отопление нам необходимо все время в течение отопительного сезона, для того чтобы компенсировать именно это остывание, то в наших расчетах нам необходимо учесть на сколько остывает помещение через ограждающие конструкции (стены, окна, двери, крышу и т.д.) и систему вентиляции за ту же единицу времени (для определенности в час), за которую мы помещение нагрели до требуемой нам температуры. Здесь следует задать себе вопрос, а может ли помещение, у которого есть стены, окна, двери, т.е. преграды для остывания, остыть на 100%, т.е. потерять всю потраченную на нагрев тепловую энергию, за тоже время, за которое мы его нагрели, ну например за час. Ответ очевиден. Нет не может. Т.е. остывание (потери энергии потраченной на нагрев помещения) может быть только меньше 100% энергии, потраченной на нагревание, иначе зачем нам стены, окна, двери, т.е. ограждающие конструкции. В нашем расчете для определенности возьмем остывание в 90%. Это означает, что из потраченной на нагревание квартиры тепловой энергии через ограждающие конструкции дома каждый час я теряю 90% затраченной на отопление энергии, 10% при этом остается в помещении и в следующий час для нагревания мне необходимо на 10% тепла меньше. Тогда получается, что каждый час для нагревания моей квартиры в течение отопительного сезона мне необходимо 0,0016368*90%=0,00147312 Гкал/на квартиру*час.

6. Соответственно для расчета необходимого теплопотребления квартиры в месяц необходимо умножить часовое теплопотребление квартиры на количество часов в месяце отопительного сезона. В моем случае отопительный сезон составляет 220 суток или семь полных месяцев. Тогда среднемесячное теплопотребление моей квартиры на отопление и вентиляцию составит 24*220/7*0,00147312=1,111153 Гкал/на квартиру*месяц.

7. Теперь берем норматив моего теплопотребления из квитанции. В моем случае это 1,68756 Гкал/мес на квартиру. Сравниваю мой расчет - 1,111153 Гкал/на квартиру*месяц и норматив - 1,68756 Гкал/на квартиру*месяц. Норматив превышает среднее за сезон необходимое моей квартире теплопотребление на 51,87%. Т.е. оплачивая теплопотребление по нормативу за весь отопительный период я переплачу за потребление лишних ненужных мне и начисляемых сверх необходимого 52% Гкал тепла. Возьмите свои квитанции и сравните величину норматива по квитанции с тем, что получилось у вас при расчете. Очень интересно сравнить результаты.

8. Теперь пожалуйста поделитесь своим результатом и поучаствуйте в опросе:  

Расчет тепловой мощности для обогрева помещения

Прежде чем выбирать обогреватель, необходимо рассчитать минимальную тепловую мощность, необходимую для вашего конкретного помещения.

Обычно для приблизительного расчета достаточно объем помещения в кубических метрах разделить на 30. Таким способом обычно и пользуются менеджеры, консультируя покупателей по телефону. Такой расчет позволяет быстро приблизительно прикинуть какая совокупная тепловая мощность может понадобиться для прогрева помещения.

Например, для выбора тепловой пушки в комнату (или офис) площадью 50 м? и высотой потолков 3 м (150 м?) потребуется 5.0 кВт тепловой мощности. Наш расчет выглядит так: 150 / 30 = 5.0

Такой вариант расчетов в основном используется для расчетов дополнительного обогрева в те помещения, где уже есть какое-то отопление и необходимо просто догреть воздух до комфортной температуры.

Однако, такой способ расчета не подойдет для неотапливаемых помещений, а также если необходимо помимо объема помещения учесть разницу температур внутри-снаружи, и конструктивные особенности самого здания (стены, изоляцию и т. п.)

Точный расчет тепловой мощности обогревателя.

Для расчета тепловой мощности, учитывающего дополнительные условия помещения и температурные режимы, используется следующая формула:

V *T * K = ккал/час, или

V *T *K / 860 = кВт, где

V — Объем обогреваемого помещения в кубических метрах;

T — Разница между температурами воздуха внутри и снаружи. Например, если температура воздуха снаружи -5 °C, а необходимая температура внутри помещения +18 °C, то разница температур составляет 23 градуса;

K — Коэффициент теплоизоляции помещения. Он зависит от типа конструкции и изоляции помещения.

K=3.0–4.0 — Упрощенная деревянная конструкция или конструкция из гофрированного металлического листа. Без теплоизоляции.

K=2.0–2.9 — Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши. Небольшая теплоизоляция.

K=1.0–1.9 — Стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей. Средняя теплоизоляция.

K=0.6–0.9 — Улучшенная конструкция здания, кирпичные стены с двойной изоляцией, небольшое число окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала. Высокая теплоизоляция.

При выборе значения коэффициента теплоизоляции обязательно нужно учитывать старое это здание или новое, т. к. старые здания требуют большего количества тепла для прогрева (соответственно, значение коэффициента должно быть выше).

Для нашего примера, если учесть разницу температур (например, 23 °C) и уточнить коэффициент теплоизоляции (например, у нас старое здание с двойной кирпичной кладкой, возьмем значение 1.9), то расчет необходимой тепловой мощности обогревателя будет выглядеть так:

150 *23 *1.9 / 860 = 7.62

Т. е., как видите, уточненный расчет показал, что для прогрева данного конкретного помещения понадобится большая тепловая мощность обогрева, чем была рассчитана по упрощенной формуле.

Подобный способ расчета применим к любым видам теплового оборудования, за исключением, возможно, инфракрасных обогревателей, т. к. там используется принцип ощущаемого тепла. Для любых других видов обогревателей — водяных, электрических, газовых и жидкотопливных, он подходит.

После вычисления необходимой тепловой мощности можно приступать к выбору типа и модели обогревателя. Компания Будпрокат предоставляет в аренду широкий ассортимент нагревателей: газовых, электрических, дизельных.

Тепло, работа и энергия

Тепло (энергия)

Единица измерения тепла (или энергии) в системе СИ составляет джоуль (Дж) .

С разницей температур

Другими единицами измерения тепла являются британская тепловая единица - Btu (количество тепла, необходимое для подъема 1 фунта воды на 1 o F ) и Калорийность (количество тепла, чтобы поднять 1 грамм воды на 1 o C ( или 1 K )).

калорий определяется как количество тепла, необходимое для изменения температуры одного грамма жидкой воды на один градус Цельсия (или один градус Кельвина).

1 кал = 4,184 Дж

1 Дж = 1 Втс

= (1 Втс) (1/3600 ч / с)

= 2,78 10 -4 Втч

= 2,78 10 -7 кВтч

Тепловой поток (мощность)

Теплопередача только в результате разницы температур называется тепловым потоком . Единицы СИ для теплового потока: Дж / с или ватт (Вт) - то же, что и мощность. Один ватт определяется как 1 Дж / с .

Удельная энтальпия

Удельная энтальпия - это мера полной энергии в единице массы. Обычно используются единицы СИ: Дж / кг или кДж / кг .

Термин относится к общей энергии, обусловленной давлением и температурой текучей среды (например, воды или пара) в любой момент времени и при любых условиях.В частности, энтальпия - это сумма внутренней энергии и работы, совершаемой под действием приложенного давления.

Тепловая мощность

Тепловая мощность системы составляет

  • количество тепла, необходимое для изменения температуры всей системы на один градус .

Удельная теплоемкость

Удельная теплоемкость (= удельная теплоемкость) - это количество тепла, необходимое для изменения температуры на одну единица массы вещества на на один градус .

Удельная теплоемкость может быть измерена в Дж / г K, Дж / кг K , кДж / кг K, кал / гK или БТЕ / фунт o F и более .

Никогда не используйте табличные значения теплоемкости, не проверив единицы фактических значений!

Удельную теплоемкость для обычных продуктов и материалов можно найти в разделе «Свойства материала».

Удельная теплоемкость - постоянное давление

Энтальпия - или внутренняя энергия - вещества зависит от его температуры и давления.

Изменение внутренней энергии относительно изменения температуры при фиксированном давлении - это удельная теплоемкость при постоянном давлении - c p .

Удельная теплоемкость - постоянный объем

Изменение внутренней энергии относительно изменения температуры при фиксированном объеме - это удельная теплоемкость при постоянном объеме - c v .

Если давление не очень высокое, работой, выполняемой приложением давления к твердым телам и жидкостям, можно пренебречь, а энтальпия может быть представлена ​​только компонентом внутренней энергии.Можно сказать, что теплота с постоянным объемом и постоянным давлением равна.

Для твердых и жидких веществ

c p = c v (1)

Удельная теплоемкость представляет собой количество энергии, необходимое для подъема 1 кг вещества на 1 o C (или 1 K) , и ее можно рассматривать как способность поглощать тепло. Единицы измерения удельной теплоемкости в системе СИ: Дж / кг · К (кДж / кг, o C) .Вода имеет большую удельную теплоемкость 4,19 кДж / кг o C по сравнению со многими другими жидкостями и материалами.

  • Вода - хороший теплоноситель!

Количество тепла, необходимое для повышения температуры

Количество тепла, необходимое для нагрева объекта с одного температурного уровня на другой, можно выразить как:

Q = c p m dT ( 2)

, где

Q = количество тепла (кДж)

c p = удельная теплоемкость (кДж / кг · К)

м = масса (кг )

dT = разница температур между горячей и холодной стороной (K)

Пример воды для отопления

Учитывайте энергию, необходимую для нагрева 1.0 кг воды от 0 o C до 100 o C при удельной теплоемкости воды 4,19 кДж / кг o C :

Q = (4,19 кДж / кг o C ) (1,0 кг) ((100 o C) - (0 o C))

= 419 (кДж)

Работа

Работа и энергия с технической точки зрения - одно и то же, но работа - это результат, когда направленная сила (вектор) перемещает объект в одном направлении.

Объем выполненной механической работы можно определить с помощью уравнения, полученного из ньютоновской механики.

Работа = Приложенная сила x Расстояние, перемещенное в направлении силы

или

W = F l (3)

, где

W = работа (Нм, Дж)

F = приложенная сила (Н)

l = длина или пройденное расстояние (м)

Рабочий стол также может быть описано как произведение приложенного давления и вытесненного объема:

Работа = Приложенное давление x Вытесненный объем

или

W = p A l (3b)

, где

p = приложенное давление (Н / м 2 , Па)

A = под давлением площадь (м 2 )

l = длина или расстояние, на которое зона давления перемещается под действием приложенной силы (м)

Пример - Работа, выполняемая силой

Работа, выполняемая силой 100 Н перемещение тела 50 м можно рассчитать как

W = (100 Н) (50 м)

= 5000 (Нм, Дж)

Единица измерения - джоуль, J, который определяется как количество работы, выполненной, когда сила 1 ньютон действует на расстоянии 1 м в направлении силы.

1 Дж = 1 Нм

Пример - Работа под действием силы тяжести

Работа, выполненная при подъеме массы 100 кг на высоте 10 м может быть рассчитана как

W = F г ч

= mgh

= (100 кг) (9,81 м / с 2 ) (10 м)

= 9810 (Нм, Дж)

, где

F г = сила тяжести - или вес (Н)

г = ускорение свободного падения 9.81 (м / с 2 )

h = высота (м)

В британских единицах измерения единичная работа выполняется при весе 1 фунт f (фунт-сила) является поднял вертикально против силы тяжести на расстояние 1 фут . Единица называется фунт-фут .

Поднят объект массой 10 снарядов 10 футов . Проделанная работа может быть рассчитана как

W = F г h

= m g h

= (10 пробок) (32.17405 фут / с 2 ) (10 футов)

= 3217 фунтов f футов

Пример - Работа, вызванная изменением скорости

Работа, выполненная при массе 100 кг ускоряется от от скорости 10 м / с до скорости 20 м / с можно рассчитать как

W = (v 2 2 - v 1 2 ) м / 2

= ((20 м / с) 2 - (10 м / с) 2 ) (100 кг) / 2

= 15000 (Нм, Дж)

где

v 2 = конечная скорость (м / с)

v 1 = начальная скорость (м / с)

Energy

Energy - это способность делать работа (перевод с греческого - «работа внутри»).Единицей измерения работы и энергии в системе СИ является джоуль, определяемый как 1 Нм .

Движущиеся объекты могут выполнять работу, потому что обладают кинетической энергией. («кинетический» означает «движение» по-гречески).

Количество кинетической энергии, которой обладает объект, можно рассчитать как

E k = 1/2 мВ 2 (4)

, где

м = масса объекта (кг)

v = скорость (м / с)

Энергия положения уровня (запасенная энергия) называется потенциальной энергией.Это энергия, связанная с силами притяжения и отталкивания между объектами (гравитация).

Полная энергия системы складывается из внутренней, потенциальной и кинетической энергии. Температура вещества напрямую связана с его внутренней энергией. Внутренняя энергия связана с движением, взаимодействием и связыванием молекул внутри вещества. Внешняя энергия вещества связана с его скоростью и местоположением и является суммой его потенциальной и кинетической энергии.

Теплоемкость и вода

• Школа наук о воде ГЛАВНАЯ • Темы о свойствах воды •

Теплоемкость воды частично отвечает за мягкий климат вдоль юго-западного побережья Англии. Есть пляжи, как на пляже Порткресса в Силли, где растут тропические растения.

Кредит: Викимедиа

Удельная теплоемкость определяется количеством тепла, которое необходимо для повышения температуры 1 грамма вещества на 1 градус Цельсия (° C).Вода имеет высокую удельную теплоемкость, которую мы будем называть просто «теплоемкостью», что означает, что для повышения температуры воды требуется больше энергии по сравнению с другими веществами. Вот почему вода важна для промышленности и в радиаторе вашего автомобиля в качестве охлаждающей жидкости. Высокая теплоемкость воды также помогает регулировать скорость изменения температуры воздуха, поэтому изменение температуры между сезонами происходит постепенно, а не внезапно, особенно вблизи океанов.

Эта же концепция может быть расширена до мирового масштаба.Океаны и озера помогают регулировать диапазоны температур, с которыми сталкиваются миллиарды людей в своих городах. Вода, окружающая город или около него, нагревается и остывает дольше, чем суша, поэтому в городах около океанов будет меньше изменений и менее экстремальных температур, чем в городах внутри страны. Это свойство воды - одна из причин, почему штаты на побережье и в центре Соединенных Штатов могут так сильно различаться в температурных режимах. В штате Среднего Запада, таком как Небраска, будут более холодные зимы и более жаркое лето, чем в Орегоне, который находится на более высоких широтах, но расположен рядом с Тихим океаном.

Если вы оставите ведро с водой на улице летом, оно наверняка станет теплым, но недостаточно горячим, чтобы сварить яйцо. Но если вы пройдете босиком по черному асфальту улицы в южной части США в августе, вы обожжете себе ноги. Если в августовский день уронить яйцо на металл капота моей машины, получится яичница. Металлы имеют гораздо меньшую удельную теплоемкость, чем вода. Если вы когда-либо держались за иглу и вставляли другой конец в огонь, вы знаете, как быстро игла нагревается и как быстро тепло передается по длине иглы к вашему пальцу.Но не с водой.

Почему важна теплоемкость

Кредит: LENA15 | pixabay.com

Высокая теплоемкость воды во многом помогает регулировать экстремальные условия окружающей среды. Например, рыбки в этом пруду действительно счастливы, потому что теплоемкость воды в пруду означает, что температура воды будет оставаться относительно одинаковой днем ​​и ночью. Им не нужно беспокоиться ни о включении кондиционера, ни о том, чтобы надеть шерстяные перчатки.(Кроме того, для счастливых рыбок посетите нашу страницу Растворенный кислород .)

К счастью для меня, тебя и рыб в пруду справа, вода действительно обладает очень высокой теплоемкостью. Одним из наиболее важных свойств воды является то, что ей требуется много тепла, чтобы она стала горячей. Точнее, вода должна поглотить 4 184 джоулей тепла (1 калория), чтобы температура одного килограмма воды повысилась на 1 ° C. Для сравнения: чтобы поднять 1 килограмм меди на 1 ° C, требуется всего 385 Джоулей тепла.

Если вы хотите узнать больше о теплоемкости даже на молекулярном уровне, посмотрите это видео об удельной теплоемкости воды от Khan Academy.

как улучшить качество воздуха?

  • О компании
  • Solutions
  • Advocacy
  • Присоединяйтесь к нам
  • Зарегистрироваться
  • Войти

Темы, на которых мы фокусируемся

01.

Чистый
авиация

02.

Чистый
ИКТ

03.

Воздух
Загрязнение

04.

Климат
Изменение

05.

Циркуляр
Экономика

06.

Smart
Города

07.

Устойчивое развитие
Сельское хозяйство

08.

Зеленый
Дом

09.

Пластик
Загрязнение

10.

Вода
Загрязнение

11.

Глобальное
Потепление

12.

Земля
Загрязнение

Расчет тепла. Удельная теплоемкость Количество тепловой энергии, необходимое для повышения температуры 1 мл вещества на 1 ° C Для воды удельная теплоемкость составляет 4,19 Дж / г ° C,

Презентация на тему: «Расчет тепла.Удельная теплоемкость Количество тепловой энергии, необходимое для повышения температуры 1 мл вещества на 1 ° C. Для воды удельная теплоемкость составляет 4,19 Дж / г ° C », - стенограмма презентации:

1 Расчет тепла

2 Удельная теплоемкость Количество тепловой энергии, необходимое для повышения температуры 1 мл вещества на 1 ° C. Для воды удельная теплоемкость равна 4.19 Дж / г ° C, но оно разное для разных веществ. Требуется 4,19 Дж, чтобы поднять температуру 1 г воды на 1 ° C. Каждое вещество имеет разную удельную теплоемкость.

3 Таблица удельной теплоемкости

4 Расчет тепла при наличии вещества в одной фазе Тепло, выделяемое или поглощаемое, можно рассчитать путем умножения трех факторов Тепло = удельная теплоемкость x масса x изменение температуры q = c x m x Δt

5 Практика Удельная теплоемкость воды 4.19 Дж / г C. Сколько тепла необходимо, чтобы нагреть 350 г воды с 25  C до 75  C? Если для повышения температуры куска металлической меди весом 20 г с 25  C до 48  C требуется 178 Дж тепла, какова удельная теплоемкость меди?

6 Тепло и фазовое изменение (испарение) Теплота испарения ( H vao) энергия, необходимая для превращения одного грамма вещества из жидкости в газ. Для воды 2260 Дж / г Q =  H vao m


7 Практика Теплота испарения воды составляет 2260 Дж / г.Сколько тепла нужно подвести, чтобы испарилось 50 г воды? Сколько тепла требуется для испарения 150 г вещества при его температуре кипения, если у него  H vap = 987 Дж / г?

8 Энергия и изменение фазы Теплота плавления ( H fus) энергия, необходимая для превращения одного грамма вещества из твердого в жидкое. Для воды 340 Дж / г Q =  H фус м

9 Примеры Теплота плавления льда при 0 ° C составляет 340 Дж / г.Сколько тепла нужно, чтобы превратить 75 г льда при 0 ° C в жидкость при той же температуре? Теплота плавления воды при 0 ° C составляет 340 Дж / г. Сколько тепла выделяется, когда 250 г воды превращаются в лед при 0 ° C?

11 Практика Сколько тепла необходимо, чтобы превратить 100 г воды при 50  C в пар при 120 C? Удельная теплоемкость воды составляет 4,19 Дж / г C, удельная теплота пара 1,7 Дж / г C, а теплота испарения воды составляет 2260 Дж / г.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *