Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Расчет м2 воздуховодов: Расчет площади воздуховодов и фасонных изделий

Содержание

Расчет площади воздуховодов и фасонных изделий

Изготовление воздуховодов по вашим чертежам на оборудовании «SPIRO» (Швейцария) и «RAS» (Германия) или продажа готовых; наши воздуховоды соответствуют ГОСТу и СНиПу. Звоните!

При проектировании системы вентиляции необходимо провести точный расчет площади, т.к. от этого зависят показатели эффективности системы: количество и скорость транспортируемого воздуха, уровень шума и потребляемая электроэнергия.

Обратите внимание! Расчет площади сечения и иных показателей системы вентиляции – достаточно сложная операция, требующая знаний и опыта, поэтому мы настоятельно рекомендуем доверить ее специалистам!

raschet ploshhadi sechenija
Raschet ploshhadi vozduhovodov i fasonnyh izdelij
Raschet ploshhadi vozduhovodov

Расчет площади труб

Может производиться согласно требованиям СанПиН, а также в зависимости от площади помещения и количества пользующихся им людей.

  • Расчет для изделий прямоугольного сечения
    Применяется простая формула: A × B = S, где A – ширина короба в метрах, B – его высота в метрах, а S – площадь, в квадратных метрах.
  • Расчет для изделий круглого сечения
    Применяется формула π × D2/4 = S, где π =  3,14, D – диаметр в метрах, а S – площадь, в квадратных метрах.

Пластинчатые, трубчатые, плоские, из оцинкованной и нержавеющей стали. Соединение ниппельное, фланцевое и на шине (№20 и 30). В наличии и на заказ.

Расчет площади фасонных деталей

Расчет площади фасонных деталей по формулам без соответствующего образования и опыта практически невозможен. Для вычислений, как правило, используются специализированные программы, в которые вводятся первичные данные.

Расчет площади сечения

Данный параметр является ключевым, так как определяет скорость движения воздушного потока. При уменьшении площади сечения скорость возрастает, что может привести к появлению постороннего шума, уменьшение площади и снижение скорости – к застойным явлениям, отсутствию циркуляции воздуха и появлению неприятных запахов, плесени.

Формула: L × k/w = S, где Д – расход воздуха в час, в кубометрах; k – скорость движения воздушного потока, w – коэффициент со значением 2,778, S – искомая площадь сечения в м2.

Расчет скорости воздушного потока в системе вентиляции

При расчете необходимо учитывать кратность воздухообмена. Можно воспользоваться таблицей, но отметим, что значения в ней округляются, поэтому, если необходим точный расчет, лучше произвести его по формуле: V/W = N, где V – объем воздуха, поступающий в помещение за 1 час, в м3, W – объем комнаты, в м

3, N – искомая величина (кратность).

Формула для количества используемого воздуха: W × N = L, где W – объем помещения, в м3, N- кратность воздухообмена, L – количество потребляемого воздуха в час.

Скорость рассчитывается по формуле: L / 3600 × S = V, где L – количество потребляемого воздуха в час, в м3, S – площадь сечения, в м3, V – искомая скорость, м/с.

Онлайн расчёт воздуховодов

1. Расчёт ПРЯМЫХ УЧАСТКОВ прямоугольных воздуховодов

Высота, А (мм)

Ширина, В (мм)

Длина участка, L (м)

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеШинаРейкаНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

2. Расчёт ПРЯМЫХ УЧАСТКОВ круглых воздуховодов

Диаметр воздуховода, D (мм)

Длина участка, L (м)

Толщина металла, t (мм)0,40,50,550,6

0,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеФланецНиппельНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

3. Расчёт ОТВОДА для прямоугольных воздуховодов

Высота, А (мм)

Ширина, B (мм)

Угол поворота, α (°)904530

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеШинаРейкаНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

4. Расчёт ОТВОДА для круглого воздуховода

Диаметр воздуховода, D (мм)

Угол поворота, α (°)904530

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеФланецНиппельНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

5. Расчёт ПЕРЕХОДА СЕЧЕНИЯ для прямоугольного воздуховода

Высота начальная, А (мм)

Ширина начальная, B (мм)

Высота конечная, a (мм)

Ширина конечная, b (мм)

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеШинаРейкаНет

Вес элемента, кг

Площадь поверхности, м. кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

6. Расчёт ПЕРЕХОДА СЕЧЕНИЯ для круглого воздуховода

Диаметр начальный, D (мм)

Диаметр конечный, d (мм)

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеФланецНиппельНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

7. Расчёт ПЕРЕХОДА с круглого на прямоугольное сечение

Высота начальная, А (мм)

Ширина начальная, B (мм)

Диаметр конечный, D (мм)

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеШина-ФланецРейка-НиппельНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

8.

Расчёт ТРОЙНИКА для прямоугольного воздуховода

Высота главного воздуховода, А (мм)

Ширина главного воздуховода, B (мм)

Высота врезки, a (мм)

Ширина врезки, b (мм)

Угол врезки, α (°)9045

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеШинаРейкаНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

9. Расчёт ТРОЙНИКА для круглого воздуховода

Диаметр главного воздуховода, D (мм)

Диаметр врезки, d (мм)

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеФланецНиппельНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

Расчет площади изделий вентиляционных систем от ВСК в Ростове-на-Дону с доставкой от компании ВСК

круглый воздуховод

квадратный воздуховод

отвод круглого сечения

отвод квадратного сечения

переход круглого сечения

переход с прямоугольного на круглое сечения

переход с прямоугольного на прямоугольное сечения

тройник круглого сечения

тройник круглого сечения с прямоугольным отводом

тройник прямоугольного сечения с круглым отводом

тройник прямоугольного сечения с прямоугольным отводом

заглушка круглая

заглушка квадратная>

утка со смещением в 1-ой плоскости

утка со смещением в 2-х плоскостях

зонт островного типа

зонт пристенного типа

Круглый зонт

Квадратный зонт

Прямоугольный зонт

Дефлектор

Калькулятор эквивалентного диаметра | ВЕНТА

Эквивалентный диаметр — диаметр круглого воздуховода, в котором потеря давления на трение при одинаковой длине равна его потере в прямоугольном воздуховоде.

Эквивалентный диаметр прямоугольного воздуховода

Эквивалентный диаметр прямоугольного воздуховода можно вычислить по формуле

de = 1.30 x ((a x b)0.625) / (a + b)0.25(1)

где

de = эквивалентный диаметр (мм)

a = длина стороны A (мм)

b = длина стороны B (мм)

Эквивалентный диаметр — de (мм)
Сторона воздуховода
A
мм.
Сторона воздуховода — B (мм.)
100 150 200 250 300
400
500 600 800 1000 1200 1400 1600 1800 2000
100 109 133 152 168 183 207 227
150 133 164 189 210 229 261 287 310
200 152 189 219 244 266 305 337 365
250 168 210 246 273 299 343 381 414 470
300 183 229 266 299 328 378 420 457 520 574
400 207 260 305 343 378 437 488 531 609 674 731
500 227 287 337 381 420 488 547 598 687 762 827 886
600 310 365 414 457 531 598 656 755 840 914 980 1041
800 414 470 520 609 687 755 875 976 1066 1146 1219 1286
1000 517 574 674 762 840 976 1093 1196 1289 1373 1451 1523
1200 620 731 827 914 1066 1196 1312 1416 1511 1598 1680
1400 781 886 980 1146 1289 1416 1530 1635 1732 1822
1600 939 1041 1219 1373 1511 1635 1749 1854 1952
1800 1096 1286 1451 1598 1732 1854 1968 2073
2000 1523 1680 1822 1952 2073 2186

 

Эквивалентный диаметр овального воздуховода

Эквивалентный диаметр овального воздуховода можно вычислить по формуле

de = 1. 55 A0.625/P0.2 (2)

где

A = площадь поперечного сечения овального воздуховода (м2)

P = периметр овального воздуховода (м)

Площадь поперечного сечения овального воздуховода можно вычислить по формуле

A = (π b2/4) + b(a — b) (2a)

где

a = большая сторона овального воздуховода (м)

b = меньшая сторона овального воздуховода (м)

Периметр овального воздуховода можно вычислить по формуле

P = π b + 2(a — b)  (2b)

Врезка круглая в воздуховод.

Врезки круглого сечения изготавливаются из оцинкованной или нержавеющей стали.

Возможны любые размеры (d, L) с учетом технологических ограничений.

Врезка в прямоугольный воздуховод (В прям.)

Узнать стоимость и размеры прямой врезки, Вы можете в программе VentZakaz, в разделе: Врезки -> Круг. прямая.

Врезка в круглый воздуховод (В круг.)

Узнать стоимость и размеры врезки в круглый воздуховод, Вы можете в программе VentZakaz, в разделе: Врезки -> Круг. в диаметр.

Примечание:
Площадь в таблице для врезки в круглый воздуховод, рассчитана с учетом того, что ее диаметр равен диаметру воздуховода.
При разных диаметрах площадь может не совпадать со значениями в таблице.

Таблица стандартных размеров врезок.
d, ммВ прям.В круг.
L, ммS, м2L, ммS, м2
1001000,038800,046
1251000,047800,059
1601000,060900,080
2001000,075900,107
2501000,094900,143
3151000,1191000,197
3551000,1341000,233
4001000,1511100,276
4501000,1701100,329
5001000,1881100,385
5601000,2111200,457
6301000,2371200,549
7101200,2681200,663
8001200,3011200,804
9001200,3391300,975
10001200,3771301,162
12501200,4711301,698

Выполняем токарные работы любой сложности. Подробнее.

Онлайн калькулятор


Онлайн-калькулятор расчета производительности вентиляции

Расчет вентиляции, как правило, начинается с подбора оборудования, подходящего по таким параметрам, как производительность по прокачиваемому объему воздуха и измеряемому в кубометрах в час. Важным показателем в системе является кратность воздухообмена. Кратность воздухообмена показывает, сколько раз происходит полная замена воздуха в помещении в течение часа. Кратность воздухообмена определяется СНиП и зависит от:

  • назначения помещения
  • количества оборудования
  • выделяющего тепло,
  • количества людей в помещении.

В сумме все значения по кратности воздухообмена для всех помещений составляют производительность по воздуху.

Расчет производительности по кратности воздухообмена


Методика расчета вентиляции по кратности:

L = n * S * Н, где:

L — необходимая производительность м3/ч;
n — кратность воздухообмена;
S — площадь помещения;
Н — высота помещения, м.

Расчет производительности вентиляции по количеству людей

Методика расчета производительности вентиляции по количеству людей:

L = N * Lнорм, где:

L — производительность м3/ч;
N — число людей в помещении;
Lн — нормативный показатель потребления воздуха на одного человека составляющий:
при отдыхе — 20 м3/ч;
при офисной работе — 40 м3/ч;
при активной работе — 60 м3/ч.

Онлайн-калькулятор расчета системы вентиляции

Следующий этап в расчете вентиляции — проектирование воздухораспределительной сети, состоящей из следующих компонентов: воздуховоды, распределители воздуха, фасонные изделия (переходники, повороты, разветвители.)

Сначала разрабатывается схема воздуховодов вентиляции, по которой производится расчет уровня шума, напора по сети и скорости потока воздуха. Напор по сети напрямую зависит от того, какова мощность используемого вентилятора и рассчитывается с учетом диаметров воздуховодов, количества переходов с одного диаметра на другой, и количества поворотов. Напор по сети должен возрастать с увеличением длины воздуховодов и количества поворотов и переходов.

Расчет количества диффузоров


Методика расчета количества диффузоров

N = L / ( 2820 * V * d * d ), где

N — количество диффузоров, шт;
L — расход воздуха, м3/час;
V — скорость движения воздуха, м/сек;
d — диаметр диффузора, м.

Расчет количества решеток

Методика расчета количества решеток

N = L / ( 3600 * V * S ), где

N— количество решеток;
L — расход воздуха, м3/час;
V — скорость движения воздуха, м/сек;
S — площадь живого сечения решетки, м2.

Проектируя системы вентиляции, необходимо находить оптимальное соотношение между мощностью вентилятора, уровнем шума и диаметром воздуховодов. Расчет мощности калорифера производится с учетом необходимой температуры в помещении и нижним уровнем температуры воздуха снаружи.

Расчет мощности калорифера


Методика расчета мощности калорифера

Р = T * L * Сv / 1000, где:

Р — мощность прибора, кВт;
T — разница температур на выходе и входе системы, °С;
L — производительность м?/ч.
Cv — объемная теплоемкость воздуха = 0,336 Вт·ч/м?/°С.
Напряжение питания может быть однофазным 220 В или трехфазным 380 В. При мощности более 5 кВт желательно использование трехфазного подключения.

Также при выборе оборудования для системы вентиляции необходимо рассчитать следующие параметры:

  • Производительность по воздуху;
  • Мощность калорифера;
  • Рабочее давление, создаваемое вентилятором;
  • Скорость потока воздуха и площадь сечения воздуховодов;
  • Допустимый уровень шума.

Методика. Площадь воздуховодов MagiCAD. Andrey Shirshov, PDF Free Download

Все прототипы В года

1. Прототип задания B9 ( 245359) Все прототипы В5 2013 года Найдите квадрат расстояния между вершинами и прямоугольного параллелепипеда, для которого,,. 2. Прототип задания B9 ( 245360) Найдите расстояние

Подробнее

ИВЕНТ ПРАЙС-ЛИСТ 2018

ИВЕНТ ПРАЙС-ЛИСТ 2018 ОГЛАВЛЕНИЕ ВОЗДУХОВОД КРУГЛОГО СЕЧЕНИЯ СПИРАЛЬНОНАВИВНОЙ ИЗ ОЦИНКОВАННОЙ СТАЛИ… 2 ВОЗДУХОВОД КРУГЛОГО СЕЧЕНИЯ ПРЯМОШОВНЫЙ ИЗ ОЦИНКОВАННОЙ СТАЛИ… 3 ОТВОДЫ КРУГЛОГО СЕЧЕНИЯ ИЗ ОЦИНКОВАННОЙ

Подробнее

Воздуховоды Общие сведения

Воздуховоды Общие сведения Воздуховоды (прямые и фасонные части) прямоугольного и круглого сечения изготавливаются по видам и размерному ряду принятому в : — ВСН 353 86 «Проектирование и применение воздуховодов

Подробнее

Все прототипы задания В9 (2013)

Все прототипы задания В9 (2013) ( 245359) Найдите квадрат расстояния между вершинами и прямоугольного параллелепипеда, для которого,,. ( 245360) Найдите расстояние между вершинами и прямоугольного параллелепипеда,

Подробнее

Воздуховоды круглого сечения

Воздуховоды Воздуховоды (прямые и фасонные части) прямоугольного и круглого сечения изготавливаются по видам и размерному ряду принятому в : — ВСН 353-86 «Проектирование и применение воздуховодов из унифицированных

Подробнее

7. Задачи по стереометрии

РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ 7 Задачи по стереометрии методические указания для абитуриентов физического факультета Ростов-на-Дону 00 Печатается по решению учебнофакультета РГУ методической комиссии

Подробнее

Воздуховод круглый -2- Без фланцев. На фланцах. «Бабочка» Площадь живого сечения, Площадь поверхности 1 п.м., Вес 1 п.м. Толщина стали s, Цена,

Воздуховод круглый Диаметр Толщина стали s, Площадь поверхности 1 п. м., Площадь живого сечения, Вес 1 п.м. d, мм мм м 2 м 2 кг / м.п. 100 0,5 0,32 0,008 1,2 156 125 0,5 0,4 0,012 1,4 195 160 0,5 0,51 0,02

Подробнее

Runicom tel.:+7(495) Page 1 of 20

ВОЗДУХОВОДЫ ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ ИЗ ОЦИНКОВАННОЙ СТАЛИ Толщина металла, Прямой участок длиной L = 1250 Длина прямого участка, Прямой участок длиной свыше 1250 в руб/м 2 Прямой участок длиной менее 1250

Подробнее

3 ОСНОВНЫЕ ФОРМУЛЫ ДЛЯ СПРАВОК

Глава ОСНОВНЫЕ ФОРМУЛЫ ДЛЯ СПРАВОК.. Геометрия Треугольники. Два треугольника равны, если =, b = b, γ = γ ; c = c, α = α, β = β ; =, b = b, c = c.. Два треугольника подобны, если α = α, β = β ; b =, b

Подробнее

Тригонометрические уравнения

Тригонометрические уравнения С б) Укажите корни, принадлежащие отрезку. а) Решите уравнение б) Укажите корни уравнения, принадлежащие отрезку а) Решbте уравнение. б) Укажите корни этого уравнения, принадлежащие

Подробнее

Прямоугольный параллелепипед

ЗАДАНИЕ 10 Стереометрия Куб 1.Площадь поверхности куба равна 18. Найдите его диагональ. 2. Диагональ грани куба равна 2 6. Найдите диагональ куба. 3. Диагональ грани куба равна 6. Найдите диагональ куба.

Подробнее

ПРЯМОЙ И НАКЛОННЫЙ КОНУС

ПРЯМОЙ ЦИЛИНДР Пусть в пространстве заданы две параллельные плоскости и. F круг в одной из этих плоскостей, например. Рассмотрим ортогональное проектирование на плоскость. Проекцией круга F будет круг

Подробнее

Многогранники. Призма

Справка В9 Многогранники Многогранник это такое тело, поверхность которого состоит из конечного числа плоских многоугольников. Призма Призмой называется многогранник, который состоит из двух плоских многоугольников,

Подробнее

Задачи по с т е р е о м е т р и и

Задачи по с т е р е о м е т р и и Ермак Елена Анатольевна, доктор педагогических наук, профессор кафедры математического анализа и методики обучения математике Псковского государственного университета

Подробнее

СХЕМА ИССЛЕДОВАНИЯ ФУНКЦИИ

СХЕМА ИССЛЕДОВАНИЯ ФУНКЦИИ 1. Найти область определения функции.. Исследовать четность и периодичность функции. 3. Исследовать точки разрыва, найти вертикальные асимптоты. 4. Найти наклонные асимптоты

Подробнее

Прайс-лист на ВЕНТИЛЯЦИЮ

Прайс-лист на ВЕНТИЛЯЦИЮ Содержание 1. Прямые участки 2. 3. Сэндвич нержавеющая сталь 4. Отвод 5. Переход 6. Тройник 7. Врезка, Заглушка, Нипель 8. Гибкая вставка, Дефлектор, Обратный клапан 9. Дросель-клапан,

Подробнее

Все прототипы заданий В года

1. Прототип задания B13 ( 27054) выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины. Все прототипы заданий В13

Подробнее

Задание 8, 14. Стереометрия

Задание 8, 4. Стереометрия Основные определения Аксиомы стереометрии Теорема. Через любые три точки, не лежащих на одной прямой, проходит плоскость, и притом только одна. Теорема. Если две точки прямой

Подробнее

Все прототипы заданий года

1. Прототип задания 12 ( 27064) Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы. Все прототипы заданий 12

Подробнее

СОДЕРЖАНИЕ:

1 СОДЕРЖАНИЕ: ВОЗДУХОВОДЫ…….. 2 — Воздуховоды и фасонные детали круглого сечения…….. 3 — Зонты круглые……. 11 — Дефлектора круглые…. 12 — Насадки с водоотводящим кольцом…….. 13 — Вставки

Подробнее

Календарно — тематический план

Календарно — тематический план ГЕОМЕТРИЯ Класс 11 Годовое количество часов 68 Количество часов в неделю — 2 Учебный год — 2013 2014 Учитель Беликова Галина Ивановна МКОУ «Борятинская СОШ» Согласовано зам.

Подробнее

Воздуховоды прямоугольного сечения

Воздуховоды прямоугольного сечения Из оцинкованной стали Цена в руб/м 2 Толщина металла, мм Прямой участок 0,55 без фланцев 306 0,55 на фланцах (шина No20) 379 0,7 без фланцев 336 0,7 на фланцах (шина

Подробнее

Прайс-лист на ВЕНТИЛЯЦИЮ

Прайс-лист на ВЕНТИЛЯЦИЮ Содержание 1. Прямые участки 2. 3. Сэндвич нержавеющая сталь 4. Отвод 5. Переход 6. Тройник 7. Врезка, Заглушка, Нипель 8. Гибкая вставка, Дефлектор, Обратный клапан 9. Дросель-клапан,

Подробнее

Тест 250. Отрезок. Длина

Тест 250. Отрезок. Длина Длина отрезка равна 1, если он является: 1. высотой равностороннего треугольника со стороной 2; 2. третьей стороной треугольника, в котором две другие стороны равны 1 и 2, а угол

Подробнее

Воздуховоды и фасонные изделия

28. 12.2018 Воздуховоды и фасонные изделия ООО «СПН-Полимер» Воздуховоды круглого и прямоугольного сечения из полипропилена (ПП-С, ПП-Г) полиэтилена (ПНД) поливинилхлорида (ПВХ) Компания ООО «СПН — Полимер»

Подробнее

Все прототипы заданий В года

1. Прототип задания B13 ( 27064) Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы. Все прототипы заданий

Подробнее

Воздуховоды и фасонные изделия

Воздуховоды и фасонные изделия Оцинкованные прямоугольные воздуховоды на фланце из шинорейки Прямоугольные воздуховоды из углеродистой стали Толщина стали,мм /Шина Размер изделия / Цена A,B 150, L>1250

Подробнее

Все прототипы задания В11 (2013)

Все прототипы задания В11 (2013) ( 25541) Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). ( 25561) Найдите площадь поверхности многогранника, изображенного

Подробнее

Технический комментарий

СОДЕРЖАНИЕ Технический комментарий Ниппельное соединение воздуховодов Заказ воздуховодов Прямой участок Отвод 900 Отвод 600 Отвод 450 Отвод 300 Отвод 150 Переходы Тройник Ниппель Муфта Врезка круглая Заглушка

Подробнее

Программы испытаний по математике

Программы испытаний по математике 1. Основные математические понятия и факты Арифметика, алгебра и начала анализа Натуральные числа (N). Простые и составные числа. Делитель, кратное. Наибольший общий делитель,

Подробнее

Тест по теме «Задачи стереометрии»

Тест по теме «Задачи стереометрии» Тест составлен на основе учебника «Геометрия, 10-11 класс (базового и профильного уровней ) / Л.С. Атанасян и др. — М.: «Просвещение», 2010. Аннотация: Задачи теста соответствуют

Подробнее

Основные определения, теоремы и формулы планиметрии.

Основные определения, теоремы и формулы планиметрии. Обозначения: AВС треугольник с вершинами А, B, С. а = BC, b = AС, с = АB его стороны, соответственно, медиана, биссектриса, высота, проведенные к стороне

Подробнее

Стереометрия: комбинации тел.

А.С. Крутицких и Н.С. Крутицких. Подготовка к ЕГЭ по математике. http://matematikalegko.ru Открытый банк заданий ЕГЭ по математике http://mathege.ru Стереометрия: комбинации тел. 27041. Прямоугольный параллелепипед

Подробнее

Воздуховоды — диаметр и площадь поперечного сечения

Круглые вентиляционные каналы и площади поперечного сечения — британские единицы

Диаметр воздуховода Площадь
(дюйм) (мм) (футы 2 ) 2 )
8 203 0,3491 0,032
10 254 0. 5454 0,051
12 305 0,7854 0,073
14 356 1.069 0,099
16 406 1,396 0,130 18 457 1,767 0,164
20 508 2,182 0,203
22 559 2.640 0,245
24 609 3,142 0,292
26 660 3,687 0,342
28 711 4,276 0,397 30 762 4,900 0,455
32 813 5,585 0,519
34 864 6.305 0,586
36 914 7,069 0,657

Круглые вентиляционные каналы и площади поперечного сечения — метрические единицы

мм)
Диаметр воздуховода Площадь
2 ) (мм 2 ) (дюйм 2 )
63 0. 003 3019 4,7
80 0,005 4902 7,6
100 0,008 7698 11,9
125 0,012 12076
160 0,020 19856 30,8
200 0,031 31103 48,2
250 0.049 48695 75,5
315 0,077 77437 120
400 0,125 125036 194
500 0,196 19553
630 0,311 310736 482
800 0,501 501399 777
1000 0.784 783828 1215
1250 1,225 1225222 1899

Загрузите и распечатайте диаграмму поперечного сечения воздуховодов круглого сечения.

Размеры, расчет и проектирование воздуховодов для обеспечения эффективности

Как спроектировать систему воздуховодов ws

Как спроектировать систему воздуховодов. В этой статье мы узнаем, как рассчитать и спроектировать систему воздуховодов для повышения эффективности. Мы включим полностью проработанный пример, а также моделирование CFD для оптимизации производительности и эффективности с помощью SimScale. Прокрутите вниз, чтобы просмотреть БЕСПЛАТНЫЙ видеоурок на YouTube!

🏆🏆🏆 Создайте бесплатную учетную запись SimScale для тестирования облачной платформы моделирования CFD здесь: https://www.simscale.com/ Имея более 100 000 пользователей по всему миру, SimScale — это революционная облачная платформа CAE, которая мгновенно доступ к технологиям моделирования CFD и FEA для быстрого и простого виртуального тестирования, сравнения и оптимизации конструкций в нескольких отраслях, включая HVAC , AEC и электроника .

Методы проектирования воздуховодов

Существует множество различных методов, используемых для проектирования вентиляционных систем, наиболее распространенными из которых являются:

  • Метод снижения скорости: (жилые или небольшие коммерческие установки)
  • Метод равного трения: (от среднего до большого размера коммерческие установки)
  • Восстановление статического электричества: очень большие установки (концертные залы, аэропорты и промышленные объекты)

Мы собираемся сосредоточиться на методе равного трения в этом примере, поскольку это наиболее распространенный метод, используемый для коммерческих систем HVAC и его достаточно просто следовать.

Пример проектирования

План здания

Итак, сразу перейдем к проектированию системы. Мы возьмем небольшое инженерное бюро в качестве примера, и мы хотим сделать чертеж-компоновку здания, который мы будем использовать для проектирования и расчетов. Это действительно простое здание, в нем всего 4 офиса, коридор и механическое помещение, в котором будут размещаться вентилятор, фильтры и воздухонагреватель или охладитель.

Нагрузка на отопление и охлаждение в здании

Первое, что нам нужно сделать, это рассчитать нагрузку на отопление и охлаждение для каждой комнаты.Я не буду рассказывать, как это сделать, в этой статье, нам придется рассказать об этом в отдельном руководстве, так как это отдельная предметная область.

Когда они у вас есть, просто сложите их вместе, чтобы найти самую большую нагрузку, поскольку нам нужно определить размер системы, чтобы она могла работать при пиковом спросе. Охлаждающая нагрузка обычно самая высокая, как в данном случае.

Теперь нам нужно преобразовать охлаждающую нагрузку в объемный расход, но для этого нам сначала нужно преобразовать это в массовый расход, поэтому мы используем формулу:

mdot = Q / (cp x Δt)

Рассчитать массовый расход воздуха скорость от охлаждающей нагрузки

Где mdot означает массовый расход (кг / с), Q — охлаждающая нагрузка помещения (кВт), cp — удельная теплоемкость воздуха (кДж / кг.K), а Δt — разница температур между расчетной температурой воздуха и расчетной температурой обратки. Просто отметим, что мы будем использовать стандартную скорость 1,026 кДж / кг.k., а дельта T должна быть меньше 10 * C, поэтому мы будем использовать 8 * c.

Нам известны все значения этого параметра, поэтому мы можем рассчитать массовый расход (сколько килограммов в секунду воздуха необходимо для поступления в комнату). Если мы посмотрим на расчет для помещения 1, то увидим, что он требует 0,26 кг / с. Поэтому мы просто повторяем этот расчет для остальной части комнаты, чтобы найти все значения массового расхода.

Расчет массового расхода воздуха для каждой комнаты

Теперь мы можем преобразовать их в объемный расход. Для этого нам нужен определенный объем или плотность воздуха. Мы укажем 21 * c и примем атмосферное давление 101,325 кПа. Мы можем найти это в наших таблицах свойств воздуха, но я предпочитаю использовать онлайн-калькулятор http://bit.ly/2tyT8yp, поскольку он работает быстрее. Мы просто добавляем эти числа и получаем плотность воздуха 1,2 кг / м3.

Вы видите, что плотность измеряется в кг / м3, но нам нужен удельный объем, который составляет м3 / кг, поэтому для преобразования мы просто возьмем обратное, что означает вычисление 1. -1), чтобы получить ответ 0,83 м3 / кг.
Теперь, когда у нас есть возможность рассчитать объемный расход по формуле:

vdot = mdot, умноженное на v.

Рассчитайте объемный расход воздуха, исходя из массового расхода

, где vdot равно объемному расходу, mdot равно массовому расходу скорость комнаты и v равна удельному объему, который мы только что рассчитали.
Таким образом, если мы опустим эти значения для комнаты 1, мы получим объемный расход 0,2158 м3 / с, то есть сколько воздуха необходимо для входа в комнату, чтобы удовлетворить охлаждающую нагрузку.Так что просто повторите этот расчет для всех комнат.

Объемный расход воздуха в здании — размер воздуховода

Теперь мы нарисуем наш маршрут воздуховода на плане этажа, чтобы мы могли начать его размер.

Схема воздуховодов

Прежде чем мы продолжим, нам нужно рассмотреть некоторые вещи, которые будут играть большую роль в общей эффективности системы.

Соображения по конструкции

Первым из них является форма воздуховода. Воздуховоды бывают круглой, прямоугольной и плоскоовальной формы.Круглый воздуховод, безусловно, является наиболее энергоэффективным типом, и это то, что мы будем использовать в нашем рабочем примере позже. Если мы сравним круглый воздуховод с прямоугольным, мы увидим, что:

Сравнение круглого воздуховода и прямоугольного воздуховода

Круглый воздуховод с площадью поперечного сечения 0,6 м2 имеет периметр 2,75 м
Прямоугольный воздуховод с равной площадью поперечного сечения имеет периметр 3,87 м
Следовательно, прямоугольный воздуховод требует больше металла для своей конструкции, что увеличивает вес и стоимость конструкции.Более крупный периметр также означает, что больше воздуха будет контактировать с материалом, и это увеличивает трение в системе. Трение в системе означает, что вентилятор должен работать интенсивнее, а это приводит к более высоким эксплуатационным расходам. По возможности всегда используйте круглый воздуховод, хотя во многих случаях необходимо использовать прямоугольный воздуховод, поскольку пространство ограничено.

Падение давления в воздуховодах

Второе, что следует учитывать, — это материал, из которого изготовлены воздуховоды, и шероховатость этого материала, поскольку он вызывает трение. Например, если у нас есть два воздуховода с одинаковыми размерами, объемным расходом и скоростью, единственная разница заключается в материале.Один изготовлен из стандартной оцинкованной стали, другой — из стекловолокна, перепад давления на расстоянии 10 м для этого примера составляет около 11 Па для оцинкованной стали и 16 Па для стекловолокна.

Энергоэффективная арматура для воздуховодов

Третье, что мы должны учитывать, — это динамические потери, вызванные арматурой. Мы хотим использовать максимально гладкую фурнитуру для повышения энергоэффективности. Например, используйте изгибы с большим радиусом, а не под прямым углом, поскольку резкое изменение направления тратит огромное количество энергии.

Моделирование воздуховодов CFD

Мы можем быстро и легко сравнить характеристики воздуховодов различных конструкций с помощью CFD или вычислительной гидродинамики. Эти симуляции были произведены с использованием революционной облачной инженерной платформы CFD и FEA компанией SimScale, которая любезно спонсировала эту статью.
Вы можете получить бесплатный доступ к этому программному обеспечению, щелкнув здесь, и они предлагают несколько различных типов учетных записей в зависимости от ваших потребностей моделирования.

SimScale не ограничивается только проектированием воздуховодов, он также используется для центров обработки данных, приложений AEC, проектирования электроники, а также теплового и структурного анализа.

Просто взгляните на их сайт, и вы можете найти тысячи симуляторов для всего, от зданий, систем отопления, вентиляции и кондиционирования, теплообменников, насосов и клапанов до гоночных автомобилей и самолетов, которые можно скопировать и использовать в качестве шаблонов для вашего собственного дизайна. анализ.

Они также предлагают бесплатные вебинары, курсы и учебные пособия, которые помогут вам настроить и запустить собственное моделирование. Если, как и я, у вас есть некоторый опыт создания симуляций CFD, то вы знаете, что этот тип программного обеспечения обычно очень дорогое, и вам также понадобится мощный компьютер для его запуска.

Однако с SimScale все можно сделать из веб-браузера. Поскольку платформа основана на облаке, всю работу выполняют их серверы, и мы можем получить доступ к нашим проектным симуляциям из любого места, что значительно облегчает нашу жизнь как инженеров.

Итак, если вы инженер, дизайнер, архитектор или просто кто-то, кто заинтересован в испытании технологии моделирования, я настоятельно рекомендую вам проверить это программное обеспечение, получить бесплатную учетную запись, перейдя по этой ссылке.

CFD конструкция воздуховодов стандартная и оптимизированная

Теперь, если мы посмотрим на сравнение двух конструкций, мы увидим стандартную конструкцию слева и более эффективную конструкцию справа, оптимизированную с помощью simscale.В обеих конструкциях используется скорость воздуха 5 м / с, цвета представляют скорость: синий означает низкую скорость, а красный — области высокой скорости.

Стандартная конструкция воздуховодов

Из цветовой шкалы скорости и линий тока видно, что в схеме слева входящий воздух напрямую ударяет в резкие повороты, присутствующие в системе, что вызывает увеличение статического давления. Резкие повороты вызывают появление большого количества рециркуляционных зон внутри воздуховодов, что препятствует плавному движению воздуха.

Тройник на дальнем конце главного воздуховода заставляет воздух внезапно делиться и менять направление. Здесь наблюдается большой обратный поток, который снова увеличивает статическое давление и уменьшает количество подаваемого воздуха.

Высокая скорость в основном воздуховоде, вызванная резкими поворотами и резкими изгибами, снижает поток в 3 ответвления на оставили.

Оптимизированная конструкция воздуховодов с энергоэффективностью

Если теперь мы сосредоточимся на оптимизированной конструкции справа, мы увидим, что используемые фитинги имеют гораздо более гладкий профиль без внезапных препятствий, рециркуляции или обратного потока, что значительно улучшает скорость воздушного потока в системе. В дальнем конце основного воздуховода воздух делится на две ветви через пологую изогнутую тройниковую секцию. Это позволяет воздуху плавно менять направление и, таким образом, не происходит резкого увеличения статического давления, а скорость потока воздуха в комнаты резко увеличивается.

Три ответвления в главном воздуховоде теперь получают равный воздушный поток, что значительно улучшает конструкцию. Это связано с тем, что дополнительная ветвь теперь питает три меньшие ветви, позволяя некоторой части воздуха плавно отделяться от основного потока и поступать в эти меньшие ветви.

С учетом этих соображений мы можем вернуться к конструкции воздуховода.

Этикетки для воздуховодов и фитингов

Теперь нам нужно пометить каждую секцию воздуховодов, а также фитинги буквой. Обратите внимание, что мы разрабатываем здесь только очень простую систему, поэтому я включил только воздуховоды и базовую арматуру, я не включил такие вещи, как решетки, впускные отверстия, гибкие соединения, противопожарные клапаны и т. Д.

Теперь мы хотим сделать стол с строки, помеченные как в примере. Для каждого воздуховода и фитинга нужен отдельный ряд. Если воздушный поток разделяется, например, в тройнике, тогда нам нужно добавить линию для каждого направления, мы увидим это позже в статье.

Просто добавьте буквы в отдельные строки и укажите, какой тип фитинга или воздуховода соответствует.

Диаграмма расхода воздуха в воздуховодах

Мы можем начать вводить некоторые данные, сначала мы можем включить объемный расход для каждого из ответвлений, это просто, поскольку это просто объемный расход для помещения, которое оно обслуживает. Вы можете видеть на диаграмме, которую я заполнил.

Схема воздуховодов Расходы в основных воздуховодах

Затем мы можем приступить к определению размеров главных воздуховодов. Для этого убедитесь, что вы начинаете с самого дальнего главного воздуховода.Затем мы просто складываем объемные расходы для всех ответвлений после этого. Для главного воздуховода G мы просто суммируем ветви L и I. Для D это просто сумма L I и F, а для воздуховода A — это сумма L, I, F и C. Просто введите их в таблицу.

Из чернового чертежа мы измеряем длину каждой секции воздуховода и заносим ее в таблицу.

Размеры воздуховодов — Как определить размеры воздуховодов

Для определения размеров воздуховодов вам понадобится таблица размеров воздуховодов. Вы можете получить их у производителей воздуховодов или в отраслевых организациях, таких как CIBSE и ASHRAE.Если у вас его нет, вы можете найти их по следующим ссылкам. Ссылка 1 и Ссылка 2

Эти диаграммы содержат много информации. Мы можем использовать их, чтобы найти падение давления на метр, скорость воздуха, объемный расход, а также размер воздуховода. Схема диаграммы может немного отличаться в зависимости от производителя, но в этом примере вертикальные линии показывают падение давления на метр воздуховода. Горизонтальные линии показывают объемный расход. Нисходящие диагональные линии соответствуют скорости, восходящие диагональные линии — диаметру воздуховода.

Мы начинаем подбирать размеры с первого главного воздуховода, который является участком А. Чтобы ограничить шум в этом разделе, мы укажем, что он может иметь максимальную скорость только 5 м / с. Мы знаем, что для этого воздуховода также требуется объемный расход 0,79 м3 / с, поэтому мы можем использовать скорость и объемный расход, чтобы найти недостающие данные.

Пример размера воздуховода

Возьмем диаграмму и прокрутим ее снизу слева, пока не достигнем объемного расхода 0,79 м3 / с. Затем мы определяем точку, где линия скорости составляет 5 м / с, и проводим линию поперек, пока не достигнем ее.Затем, чтобы найти перепад давления, мы проводим вертикальную линию вниз от этого пересечения. В данном случае мы видим, что он составляет 0,65 Па на метр. Так что добавьте эту цифру в диаграмму. Поскольку мы используем метод равного падения давления, мы можем использовать это падение давления для всех длин воздуховодов, поэтому заполните и их. Затем мы снова прокручиваем вверх и выравниваем наше пересечение с направленными вверх диагональными линиями, чтобы увидеть, что для этого требуется воздуховод диаметром 0,45 м, поэтому мы также добавляем его в таблицу.

Нам известны объемный расход и падение давления, поэтому теперь мы можем рассчитать значения для секции C, а затем для остальных воздуховодов.

Для остальных воздуховодов мы используем тот же метод.

Подбор размеров воздуховода, метод равного давления

На диаграмме мы начинаем с рисования линии от 0,65 Па / м на всем протяжении вверх, а затем проводим линию поперек нашего требуемого объемного расхода, в данном случае для секции C нам нужно 0,21 м3 / с . На этом пересечении мы проводим линию, чтобы найти скорость, и мы видим, что она попадает в пределы линий 3 и 4 м / с, поэтому нам нужно оценить значение, в этом случае оно составляет около 3,6 м / с, поэтому мы добавляем что к диаграмме.Затем мы рисуем еще одну линию на другой диагональной сетке, чтобы найти диаметр нашего воздуховода, который в данном случае составляет около 0,27 м, и мы тоже добавим его в таблицу.

Повторяйте этот последний процесс для всех оставшихся воздуховодов и ответвлений, пока таблица не будет заполнена.

Теперь найдите общие потери в воздуховоде для каждого воздуховода и ответвления. Это очень легко сделать, просто умножив длину воздуховода на падение давления на метр. В нашем примере мы обнаружили, что оно составляет 0,65 Па / м. Проделайте то же самое со всеми воздуховодами и ответвлениями на столе.

Подбор размеров фитингов для воздуховодов

Первый фитинг, который мы рассмотрим, это изгиб 90 * между воздуховодами J и L

Для этого мы ищем наш коэффициент потерь для изгиба от производителя или промышленного органа, вы можете найти, что нажав на эту ссылку.

Коэффициент потери давления в фитинге колена воздуховода

В этом примере мы видим, что коэффициент равен 0,11

Затем нам нужно рассчитать динамические потери, вызванные изгибом, изменяющим направление потока. Для этого мы используем формулу Co, умноженную на rho, умноженную на v в квадрате, деленную на 2, где co — наш коэффициент, rho — плотность воздуха, а v — скорость.

Формула потери давления на изгибе воздуховода

Мы уже знаем все эти значения, поэтому, если мы опустим цифры, мы получим ответ 0,718 паскаля. Так что просто добавьте это в таблицу. (Посмотрите видео внизу страницы, чтобы узнать, как это вычислить).

Падение давления на тройнике в воздуховоде

Следующий фитинг, который мы рассмотрим, это тройник, который соединяет основной воздуховод с ответвлениями. Мы будем использовать пример тройника с буквой H между G и J в системе. Теперь для этого нам нужно учесть, что воздух движется в двух направлениях, прямо насквозь, а также сворачивает в ответвление, поэтому нам нужно выполнить расчет для обоих направлений.

Если мы посмотрим на воздух, движущийся по прямой, то сначала мы найдем отношение скоростей, используя формулу скорости out, деленной на скорость на входе. В этом примере выход воздуха составляет 3,3 м / с, а входящий воздух — 4 м / с, что дает us 0,83

Затем мы выполняем еще один расчет, чтобы найти отношение площадей, для этого используется формула: диаметр вне квадрата, деленный на диаметр в квадрате. В этом примере выходной диаметр составляет 0,24 м, а внутренний диаметр — 0,33 м, поэтому, если мы возведем их в квадрат, а затем разделим, мы получим 0. 53

Теперь мы ищем фитинги, которые мы используем, от производителя или отраслевого органа, снова ссылка здесь для этого.

Размер тройника для воздуховода

В руководствах мы находим две таблицы, одна из которых зависит от направления потока. Мы используем прямое направление, поэтому определяем ее местоположение и затем просматриваем каждое соотношение, чтобы найти коэффициент потерь. Здесь вы можете увидеть, что оба рассчитанных нами значения попадают между значениями, указанными в таблице, поэтому нам необходимо выполнить билинейную интерполяцию. Чтобы сэкономить время, мы просто воспользуемся онлайн-калькулятором, чтобы найти это, ссылка здесь (посмотрите видео, чтобы узнать, как выполнить билинейную интерполяцию).

Мы заполняем наши значения и находим ответ 0,143

Расчет потерь давления в тройнике

Теперь мы рассчитываем динамические потери для прямого пути через тройник, используя формулу co, умноженную на rho, умноженную на v в квадрате, деленную на 2. Если мы опускаем наши значения и получаем ответ в 0,934 паскаля, так что добавьте это в таблицу.

Затем мы можем рассчитать динамические потери для воздуха, который превращается в изгиб. Для этого мы используем те же формулы, что и раньше. Выходная скорость рассчитывается путем вычисления нашего отношения скоростей.Затем мы находим соотношение площадей, используя формулу: диаметр вне квадрата, деленный на диаметр в квадрате. Мы берем наши значения из нашей таблицы и используем 3,5 м / с, разделенные на 4 м / с, чтобы получить 0,875 для отношения скоростей, и мы используем 0,26 м в квадрате, деленные на 0,33 м в квадрате, чтобы получить 0,62 для отношения площадей.

Изгиб фитинга тройника с потерями

Затем мы используем таблицу изгиба для тройника, опять же между значениями, указанными в таблице, поэтому нам нужно найти числа, используя билинейную интерполяцию. Мы опускаем значения, чтобы получить ответ 0.3645 паскалей. Так что просто добавьте это в таблицу.

Теперь повторите этот расчет для других тройников и фитингов, пока таблица не заполнится.

Поиск индексного участка — размер воздуховода

Затем нам нужно найти индексный участок, который является участком с наибольшим падением давления. Обычно это самый длинный пробег, но он также может быть пробегом с наибольшим количеством приспособлений.

Это легко найти, сложив все потери давления от начала до выхода каждой ветви.

Например, чтобы добраться от A до C, мы теряем 5.04 Па
A (1,3 Па) + B (1,79 Па) + C (1,95 Па)

От A до F мы теряем 8,8 Па
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E ( 2,55 Па) + F (1,95)

От A до I мы теряем 10,56
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (1,34 Па) + G (2,6 Па) + H ( 0,36 Па) + I (1,95 Па)

От A до L мы теряем 12,5 Па
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (1,34 Па) + G (2,6 Па) + H (0,93 Па) + J (0,65 Па) + K (0,72 Па) + L (1,95 Па)

Следовательно, вентилятор, который мы используем, должен преодолевать пробег с наибольшими потерями, а именно A — L с 12.5pa, это индексный прогон.

Заслонки воздуховода — балансировка системы

Чтобы сбалансировать систему, нам необходимо добавить заслонки к каждой из ветвей, чтобы обеспечить равный перепад давления во всех помещениях, чтобы достичь проектных расходов в каждой комнате.

Мы можем рассчитать, какой перепад давления должен обеспечивать каждый демпфер, просто вычитая потери в ходе прогона из индексного прогона.

От A до C составляет 12,5 Па — 5,04 Па = 7,46 Па

От A до F составляет 12,5 Па — 8,8 Па = 3,7 Па

От A до I составляет 12.5 Па — 10,56 Па = 1,94 Па

И это наша система воздуховодов. Мы сделаем еще один урок, посвященный дополнительным способам повышения эффективности системы воздуховодов.

Сколько вентиляции мне нужно?

Сколько мне нужно вентиляции?

Рекомендации HVI по вентиляции.

Вентиляционные изделия имеют разную производительность по перемещению воздуха, поэтому важно убедиться, что выбранный продукт обладает достаточной производительностью для конкретного применения. Рейтинг сертифицированного воздушного потока HVI указан на продукте или на этикетке HVI, отображаемой на каждом устройстве, в документации производителя с описанием вентилятора и в Справочнике сертифицированных продуктов HVI.

Следующие рекомендации помогут вам определить мощность вентилятора, необходимую для вашего приложения.

Санузлы — прерывистая вентиляция

HVI рекомендует следующую интенсивность периодической вентиляции для ванных комнат:

Размер ванной Формула расчета Требуемая скорость вентиляции
Менее 100 квадратных футов 1 куб. Фут / мин на квадратный фут площади Минимум 50 куб. Футов в минуту
Более 100 квадратных футов Добавить требование CFM для каждого приспособления Туалет 50 куб. Футов в минуту
Душ 50 CFM
Ванна 50 CFM
Гидромассажная ванна 100 CFM
  • Закрытый туалет должен иметь собственный вытяжной вентилятор.
  • Вентиляторы, одобренные для установки во влажных помещениях, по возможности должны располагаться над душем или ванной.
  • Двери ванных комнат должны иметь зазор не менее 3/4 дюйма до готового пола, чтобы обеспечить поступление свежего воздуха.
  • Таймер или другой регулятор, который обеспечивает продолжение вентиляции в течение минимум 20 минут после каждого посещения ванной комнаты, следует установить в каждой ванной комнате.
  • Для парных HVI рекомендует отдельный вентилятор, расположенный в парилке, который можно включать после использования, чтобы удалить тепло и влажность.

Санузлы — приточная вентиляция

Непрерывная вентиляция с минимальной скоростью 20 кубических футов в минуту может использоваться вместо прерывистого вытяжного вентилятора мощностью 50 кубических футов в минуту.

Вытяжки кухонные

Рекомендуемая интенсивность вентиляции кухонной вытяжки сильно различается в зависимости от типа готовки и расположения кухонной плиты. Вытяжки, установленные над кухонной плитой, улавливают загрязнения своей формой козырька и эффективно отводят их при относительно небольшом объеме воздуха.Кухонные вытяжные устройства с нисходящим потоком требуют большего объема и скорости воздуха для адекватного улавливания загрязняющих веществ. Они являются альтернативой, когда вытяжки с балдахином нежелательны из-за расположения варочной поверхности и эстетики кухни; однако по своим характеристикам они не могут сравниться с вытяжками, улавливающими поднимающийся столб воздуха над варочной поверхностью. При выборе кухонного вытяжного вентилятора с нисходящим потоком обратитесь к рекомендациям производителя.

Кухонные вытяжки, оснащенные несколькими настройками скорости, обеспечивают тихую низкоуровневую вентиляцию для легкой готовки с возможностью повышения скорости при необходимости.

Расположение диапазона HVI-рекомендованная интенсивность вентиляции на погонный фут диапазона Минимальная скорость вентиляции на погонный фут диапазона
У стены 100 куб. Футов в минуту 40 куб. Футов в минуту
На острове 150 куб. Футов в минуту 50 куб. Футов в минуту
Ширина вытяжки у стены 2.5 футов (30 дюймов) 3 фута (36 дюймов) 4 фута (48 дюймов)
HVI-рекомендованная скорость 250 куб. Футов в минуту 300 куб. Футов в минуту 400 куб. Футов в минуту
Минимум 100 куб. Футов в минуту 120 куб. Футов в минуту 160 куб. Футов в минуту
  • Для вытяжек, расположенных над островами, умножьте коэффициент на 1. 5.
  • Для варочных панелей «профессионального типа» HVI рекомендует следовать рекомендациям производителя варочных панелей для определения требований к вентиляции.
  • Завышенные характеристики производительности являются обычным явлением для вытяжек, не имеющих сертификата HVI. Выбор вытяжек с сертифицированными характеристиками HVI гарантирует соответствие требованиям к вентиляции и строительным нормам.

Примечание. Кухонные вытяжки с рециркуляцией и рециркуляцией не обеспечивают фактической вентиляции.Для достижения оптимального качества воздуха на кухне всегда используйте вытяжные шкафы, кухонные вентиляторы или вытяжные вытяжные устройства с вытяжкой, которые выходят прямо из дома.

Вентиляторы с рекуперацией тепла и энергии

Для непрерывной вентиляции с хорошим качеством воздуха в помещении вентилятор с рекуперацией тепла или энергии (HRV или ERV) должен обеспечивать 0,35 воздухообмена в час. Этот расчет должен учитывать полный занимаемый объем дома.

Эту норму легче рассчитать, если разрешить 5 кубических футов в минуту на 100 квадратных футов площади пола.

Общая площадь дома (квадратных футов) Скорость непрерывной вентиляции
1000 квадратных футов 50 куб. Футов в минуту
2000 квадратных футов 100 куб. Футов в минуту
3000 квадратных футов 150 куб. Футов в минуту

В дополнение к этой минимальной продолжительной скорости вентиляции, HRV и ERV часто имеют дополнительную мощность для обеспечения более высокой скорости вентиляции для удовлетворения потребностей пассажиров.Такие потребности могут возникнуть в результате большого скопления людей; курение; хобби или деятельность с использованием красок, клея или других загрязнителей воздуха; или по любой другой причине, требующей дополнительной вентиляции для улучшения качества воздуха в помещении.

Согласно местным нормам и правилам может требоваться различная интенсивность непрерывной вентиляции — всегда уточняйте у сотрудников службы управления зданием конкретные требования для вашего района.

Комфортный вентилятор для всего дома

HVI рекомендует, чтобы вентилятор для комфортной вентиляции всего дома имел минимальную мощность, обеспечивающую примерно одну полную замену воздуха каждые две минуты в пределах обслуживаемого помещения.Этой скорости потока будет достаточно, чтобы создать ощутимый «бриз» по дому. Требуемый расход можно рассчитать, умножив общую площадь всего дома (включая незанятые помещения, такие как туалеты) на 3. Не забудьте включить площадь «верхних этажей» многоуровневых домов. Эта формула предполагает потолок высотой восемь футов и учитывает типичные незанятые площади.

Площадь дома Емкость, куб. Фут / мин
1000 квадратных футов 3000 куб. Футов в минуту
2000 квадратных футов 6000 куб. Футов в минуту
3000 квадратных футов 9000 куб. Футов в минуту

Вентилятор меньшего размера может эффективно охлаждать массу дома, полагаясь на другие вентиляторы, такие как «лопастные вентиляторы», которые создают легкий ветерок, необходимый для охлаждения людей.Этот более низкий расход можно определить, умножив площадь в квадратных футах на 0,4.

2000 квадратных футов 800 куб. Футов в минуту
3000 квадратных футов 1,200 куб. Футов в минуту

Для надлежащего охлаждения и эффективной работы любому вентилятору для комфортной вентиляции всего дома требуются соответствующие, беспрепятственные выпускные отверстия на чердаке через вентиляционные отверстия под потолком, решетки или жалюзи.

Чтобы рассчитать необходимое количество вытяжной площади на чердаке, разделите мощность вентилятора в кубических футах в минуту на 750.

Мощность вентилятора Требуемая площадь выхлопа
1000 куб. Футов в минуту 1,33 квадратных футов
4,800 куб. Футов в минуту 6.4 квадратных футов

ПРИМЕЧАНИЕ. Большие вентиляторы могут создать в доме значительное отрицательное давление.Перед включением вентилятора должно быть открыто хотя бы одно окно.

Вентиляторы чердачные с приводом — ПАВ

Чердачные вентиляторы с электроприводом должны обеспечивать не менее 10 воздухообменов в час. Умножение общей площади мансарды на 0,7 даст требуемую норму. Для особенно темных или крутых крыш мы рекомендуем чуть более высокий рейтинг.

Площадь чердака в квадратных футах Требуется куб. Фут / мин + 15% для темных / крутых крыш
1000 квадратных футов 700 куб. Футов в минуту 805 куб. Футов в минуту
2000 квадратных футов 1,400 куб. Футов в минуту 1,610 куб. Футов в минуту
3000 квадратных футов 2100 куб. Футов в минуту 2,415 куб. Фут / мин

Вытяжной воздух должен быть заменен наружным воздухом, всасываемым через вентиляционные отверстия под карнизом в потолке.Чтобы рассчитать общую минимальную площадь воздухозаборника потолочного вентиляционного отверстия в квадратных дюймах, разделите CFM PAV на 300 и умножьте результат на 144.

CFM PAV Вентиляционный люк в чистом квадрате, дюймы
805 куб. Футов в минуту 386 квадратных дюймов нетто
1,610 куб. Фут / мин 773 чистых квадратных дюйма
2415 куб. Фут / мин 1,160 квадратных дюймов нетто

Для правильной работы вентилятора требуется минимум один квадратный фут входной площади на каждые 300 кубических футов в минуту сертифицированной HVI мощности вентилятора.

  • В качестве воздухозаборников для вентиляции чердака используйте только вентиляционные отверстия на потолке.
  • Не используйте форточки, потому что на чердак может попасть дождь и снег.

Статическая вентиляция чердака

В любое время года на чердаке теплее, чем на улице. Это приводит к постоянному движению воздуха вверх из-за плавучести более теплого воздуха. Эта характеристика воздуха может быть использована для создания потока воздуха, вентилирующего чердак.Размещение вытяжных вентиляционных отверстий на крыше, фронтонах или на коньке крыши и обеспечение соответствующих воздухозаборных отверстий в потолках лучше всего подходит для этого. HVI рекомендует выбирать и размещать вентиляционные отверстия таким образом, чтобы 60 процентов свободной площади вентиляционной сетки приходилось на воздухозаборники, расположенные в области под карнизом, а 40 процентов свободной площади вентиляционной сетки приходилось на вытяжные вентиляционные отверстия на крыше, на коньке или высоко в двускатной зоне.

Чтобы определить свободную площадь статической вентиляционной сетки (NFA), необходимую для вашего чердака, определите площадь чердака в квадратных футах.Разделите эту площадь на 150, чтобы определить площадь необходимой вентиляции чердака в квадратных футах. Поскольку производители статической вентиляции оценивают свою продукцию в квадратных дюймах NFA, необходимо умножить это значение на 144, чтобы определить требуемые квадратные дюймы.

Площадь чердака в квадратных футах Площадь вентиляции в квадратных футах Чистая свободная площадь в квадратных дюймах
1000 квадратных футов 6.67 квадратных футов 960 квадратных дюймов
2000 квадратных футов 13,3 квадратных футов 1920 квадратных дюймов
3000 квадратных футов 20,0 квадратных футов 2880 квадратных дюймов

Потребность в статической вентиляции может быть уменьшена, если у вас установлена ​​непрерывная пароизоляция потолка с рейтингом 0. 1 химическая завивка или меньше. Чтобы рассчитать необходимую вентиляцию с такой пароизоляцией, разделите квадратные метры чердака на 300 вместо 150.

Площадь чердака в квадратных футах Площадь вентиляции в квадратных футах Чистая свободная площадь в квадратных дюймах
1000 квадратных футов 3,33 квадратных футов 480 квадратных дюймов
2000 квадратных футов 6.67 квадратных футов 960 квадратных дюймов
3000 квадратных футов 10,0 квадратных футов 1,440 квадратных дюймов

Используйте эти числа для выбора, пропорции и размещения статических вентиляционных устройств.

Как рассчитать размер канального кондиционера

05 мая 2013 г.

Как рассчитать размер (емкость) канального кондиционера для вашего дома

Если вы устанавливаете канальный кондиционер в своем доме, это абсолютно важно правильно подобрать размер и мощность кондиционера с первого раза.

В конце концов, это очень дорого (не говоря уже о сложном и трудоемком!) Замене системы воздуховодов после того, как она уже установлена.

Чтобы помочь вам принять наилучшее решение, наши специалисты разработали этот простой в использовании калькулятор размеров канального кондиционера, который поможет вам определить лучшую мощность в киловаттах (кВт) для вашего нового канального кондиционера. Следуйте нашим инструкциям по расчету размера кондиционера для дома (персонализированного в соответствии с размерами вашего дома), чтобы предотвратить угрызения совести будущего покупателя.

Почему так важно выбрать кондиционер правильного размера?

Все сводится к энергоэффективности. Кондиционеры работают лучше всего, когда они предназначены для эффективного заполнения пространства. Энергоэффективный кондиционер будет постепенно охлаждать ваш дом экологически безопасным способом, в то время как кондиционер небольшого размера будет подвергаться стрессу, придется работать намного усерднее, может иметь короткий цикл и, безусловно, потребуется больше ремонта.

Если у вас слишком большой кондиционер, вы можете ожидать, что он будет:

  • Быстро охладить дом, а затем резко выключить его при повторении
  • Израсходовать много ненужной энергии
  • Вы потратите значительно больше электроэнергии

Установка кондиционирования воздуха меньшего размера будет:

  • Потребуется гораздо больше работать, чтобы достичь заданной температуры в очень жаркие или очень прохладные дни
  • Постоянно работать с перегрузкой, в результате чего детали вашего кондиционера изнашиваются быстрее
  • Приводит к неэффективному охлаждению и более высокий счет за электричество

через GIPHY

Какой типоразмерный кондиционер мне нужен?

Может быть сложно определить, какой размер вам нужен для вашего канального кондиционера. Размеры воздуховодов сильно различаются, но важный вопрос, который стоит задать себе: «Сколько кВт (киловатт) мне нужно?»

Современные кондиционеры почти всегда измеряются в киловаттах (кВт). Этот рейтинг в кВт измеряет мощность кондиционера. Функции охлаждения и обогрева вашего кондиционера измеряются в кВт. =

Несколько технических моментов, на которые следует обратить внимание: Отношение выходной мощности кВт к входной электрической мощности называется COP (коэффициент полезного действия), также известный как EER (коэффициент энергоэффективности).Это показатель эффективности вашего кондиционера. Чем выше COP, тем эффективнее будет ваш кондиционер.

Вот простой пример. Допустим, стандартный инвертор Daikin мощностью 12,5 кВт имеет холодопроизводительность 12,5 кВт и тепловую мощность 15 кВт. Это означает, что у вас КПД охлаждения 2,99 и КПД нагрева 3,35 соответственно. В этом случае вы знаете, что цикл нагрева вашего кондиционера более эффективен, чем цикл охлаждения.

via GIPHY

Калькулятор размера кондиционера

Наш калькулятор кондиционирования воздуха помогает определить правильный размер кондиционера в два простых шага.

Как рассчитать размер кондиционера для дома

Чтобы рассчитать идеальный размер воздуховода для вашего дома, выполните следующие простые шаги:

1. Рассчитайте общую площадь ваших дневных жилых помещений. учитывать размер комнаты для определения общей площади пола. Дневные жилые зоны включают кухни, семейные комнаты, гостиные, медиа, кабинеты, коридоры, лестницы — любую часть вашего дома, которая будет использоваться в дневное время, за исключением подсобных помещений.

Почему это полезно? Расчет этой площади поможет вам определить необходимую мощность для вашего кондиционера. Это основано на предположении, что ваши спальни не используются в течение дня. Ночью прямая радиация, которую ваш дом получает от солнца, уменьшается, и тепловая нагрузка уходит от дома.

2.
Умножьте дневную жилую площадь на высоту потолка

Практическое правило расчета — умножьте общую дневную жилую площадь на высоту потолка. Естественно, вы обнаружите, что для дома с более высокими потолками требуется кондиционер большей мощности, потому что кондиционирование воздуха — это объем воздуха, который необходимо охладить или нагреть.

Для дома с высотой потолка 2,4 метра — Умножьте общую дневную жилую площадь (м²) на 150 (Вт)
Для дома с высотой потолка 2,7 метра — Умножьте общую дневную жилую площадь (м²) на 160 (ватт)
Для дома с высотой потолка — Умножьте общую дневную жилую площадь (м²) на 175 (ватт)

Эти расчеты дадут вам необходимое количество ватт. Получив это число, вы можете переместить десятичную запятую на три точки влево, чтобы преобразовать его в киловатты.

В качестве примера давайте рассчитаем систему кондиционирования воздуха для дома с 4 спальнями. Среднего размера дом с 4 спальнями в Брисбене имеет дневную жилую площадь около 85 квадратных метров с потолками высотой 2,7 метра. В данном случае 85 x 160 Вт = 13,6 кВт. Поэтому в доме нужен кондиционер мощностью около 13,6 кВт.

Когда мне нужен канальный кондиционер большей мощности?

Вы можете подумать о кондиционере большей мощности, чем предлагает этот калькулятор размеров кондиционера, если:

  • У вас большие площади с одинарными стеклянными окнами (особенно с окнами, выходящими на запад)
  • Большинство ваших спален и жилых помещений используются во время the day
  • У вас есть неизолированное пространство на крыше

Когда мне нужен канальный кондиционер меньшей мощности?

Возможно, вы захотите рассмотреть кондиционер меньшей мощности, чем предлагает этот калькулятор размера кондиционера, если:

  • У вас есть большое количество высококачественной теплоизоляции в вашем пространстве под крышей и стенах
  • У вас есть возможность перекрыть и не используйте дневные жилые помещения в очень жаркие или холодные дни
  • У вас есть много вентиляции пространства на крыше, например, карнизов и вертолетов
  • У вас есть высококачественная изоляция воздуховодов, например ультра-воздуховод

Самый точный способ принять решение Вместимость вашего кондиционера

Есть еще много факторов, помимо этого, при выборе кондиционера для вашего дома. Лучший способ узнать наверняка — это найти специалиста по кондиционированию воздуха, который посетит ваш дом и оценит все соответствующие факторы. Это даст вам более точную оценку наилучшего KW для ваших нужд. Получение точной оценки поможет вашему кондиционеру работать более эффективно и сэкономит ваши деньги на счетах за электроэнергию.

Чтобы задать нам вопрос о размерах систем кондиционирования воздуха или запросить посещение, свяжитесь с Crown Power сегодня по телефону 0427 175 654 (Брисбен и Саншайн-Кост) или 0421 376 620 (Голд-Кост).У нас есть многолетний опыт, чтобы помочь вам выбрать лучший кондиционер для вашего помещения.

% PDF-1.6 % 2787 0 объект > endobj xref 2787 94 0000000016 00000 н. 0000003597 00000 н. 0000003821 00000 н. 0000003951 00000 н. 0000004418 00000 н. 0000004533 00000 н. 0000005213 00000 н. 0000005594 00000 н. 0000005707 00000 н. 0000006104 00000 п. 0000006500 00000 н. 0000006959 00000 н. 0000007124 00000 н. 0000007241 00000 н. 0000007359 00000 н. 0000008407 00000 н. 0000008729 00000 н. 0000009076 00000 н. 0000010415 00000 п. 0000010751 00000 п. 0000011136 00000 п. 0000011226 00000 п. 0000012840 00000 п. 0000013193 00000 п. 0000013589 00000 п. 0000015712 00000 п. 0000016073 00000 п. 0000016470 00000 п. 0000016549 00000 п. 0000125516 00000 н. 0000125915 00000 н. 0000125994 00000 н. 0000126073 00000 н. 0000126103 00000 н. 0000126179 00000 н. 0000126278 00000 н. 0000126427 00000 н. 0000126755 00000 н. 0000126812 00000 н. 0000126930 00000 н. 0000127009 00000 н. 0000127123 00000 н. 0000162301 00000 н. 0000162342 00000 н. 0000162431 00000 н. 0000162530 00000 н. 0000162679 00000 н. 0000176075 00000 н. 0000176357 00000 н. 0000176436 00000 н. 0000208657 00000 н. 0000208698 00000 н. 0000208895 00000 н. 0000209123 00000 н. 0000209320 00000 н. 0000209469 00000 н. 0000209618 00000 н. 0000209843 00000 н. 0000210045 00000 н. 0000210169 00000 п. 0000210318 00000 п. 0000210442 00000 п. 0000210591 00000 п. 0000210819 00000 п. 0000210918 00000 п. 0000211067 00000 н. 0000312955 00000 н. 0000313018 00000 н. 0000313093 00000 н. 0000313206 00000 н. 0000313263 00000 н. 0000313354 00000 н. 0000313436 00000 н. 0000313494 00000 н. 0000313598 00000 н. 0000313656 00000 н. 0000313764 00000 н. 0000313822 00000 н. 0000313931 00000 н. 0000313989 00000 н. 0000314132 00000 н. 0000314190 00000 н. 0000314271 00000 н. 0000314352 00000 н. 0000314449 00000 н. 0000314506 00000 н. 0000314651 00000 п. 0000314708 00000 н. 0000314785 00000 н. 0000314842 00000 н. 0000314900 00000 н. 0000314958 00000 н. 0000003369 00000 н. 0000002224 00000 н. трейлер ] / Назад 2106458 / XRefStm 3369 >> startxref 0 %% EOF 2880 0 объект > поток h ޔ T] L [e ~ ӟS: Z ~ FEE͒- [g [OǀMimu ~ 0L @ L @ ُ Pt & xal / HBM / kl1eYiO / 9}} |

Практические правила выбора размеров кондиционеров

В Energy Vanguard мы проектируем множество систем отопления и кондиционирования воздуха.Александр Белл, которого зовут Энди, — наш мастер дизайна, и в последнее время я снова принимаю участие в этом процессе. Когда я разговариваю с потенциальными клиентами, многие из них говорят мне, что их подрядчик хочет определить размер своего кондиционера на основе практического правила. Правило обычно примерно такое: установите одну тонну кондиционера на каждые 500 (или 600) квадратных футов кондиционируемой площади пола. Как далеко они? Давайте взглянем.

В Energy Vanguard мы проектируем множество систем отопления и кондиционирования воздуха.Когда я разговариваю с потенциальными клиентами, многие из них говорят мне, что их подрядчик хочет определить размер своего кондиционера на основе практического правила. Правило обычно примерно такое: установите одну тонну кондиционера на каждые 500 (или 600) квадратных футов кондиционируемой площади пола. Как далеко они? Давайте взглянем.

Как я уже сказал, мы выполнили множество проектов HVAC, которые всегда начинаются с расчета нагрузки. Итак, мы можем посмотреть данные. На приведенном ниже графике показаны данные лишь по нескольким объектам, которые мы сделали за последнее время.Если быть точным, их сорок.

На горизонтальной оси я нанес условную площадь пола в квадратных футах. На вертикальной оси я отложил охлаждающую нагрузку, разделенную на площадь пола, или квадратные футы на тонну. Помните, когда подрядчики HVAC используют эмпирические правила для определения размеров кондиционеров, они обычно выбирают число от 400 до 600 квадратных футов на тонну.

Вот что показывают наши данные.

Обратите внимание, что ни один из наших расчетов нагрузки не был таким низким, как верхний предел их диапазона.Нижнее значение на этом графике — 624 квадратных фута на тонну. Большинство показанных здесь охлаждающих нагрузок превышают 1000 стандартных кубических футов на тонну. Только восемь из них ниже 1000 квадратных футов на тонну.

Если вам интересно, я исключил данные по охлаждающим нагрузкам в холодном климате, когда построил этот график. У нас был один в штате Мэн, который стоил около 4 000 кубических футов на тонну. Большинство домов в выборке находились на юго-востоке США, включая Техас, но у нас была пара в Калифорнии и еще несколько на Среднем Западе.

Среднее значение из 40 показанных выше составляет 1431 квадратный фут на тонну.Да, это примерно на тысячу кубических футов на тонну больше, чем обычно применяемое практическое правило.

«Но подождите, — скажете вы, — охлаждающая нагрузка не такая, как размер кондиционера. Разве вы не говорили нам, что вам нужно отрегулировать размер кондиционера, когда вы используете Manual S? » Почему да. Да. В большинстве случаев размер кондиционера будет больше, чем охлаждающая нагрузка.

Но мы обычно говорим о 10%. Таким образом, вместо 1431 кубических футов на тонну в зависимости от нагрузки, фактический размер переменного тока может дать нам 1300 кубических футов на тонну.

Это все еще сильно отличается от эмпирического правила 500 фунтов на тонну. Да, и эта разница в 10% обычно компенсируется завышением размера, присущим Руководству J.

.

Эмпирические правила должны умереть. Начните с расчета реальной нагрузки.

См. Часть 2 этой статьи: Подробнее о правилах выбора размера кондиционера

Статьи по теме

Почему мощность кондиционера измеряется в тоннах?

3 причины, по которым ваш 3-тонный кондиционер на самом деле не 3 тонны

Кондиционер My Big Fat Oversized

ПРИМЕЧАНИЕ: Комментарии модерируются.Ваш комментарий не появится ниже, пока не будет одобрен.

Как оценить стоимость системы HVAC для новых строительных проектов

Блог Джо Хуллебуша, 5 марта 2019 г.

Коммерческий проект HVAC — крупное предприятие.

Он включает в себя широкий спектр вводов, включая воздуховоды, вентиляционные установки (AHU), фильтраты, диффузоры воздуха, тепловые насосы и многое другое. Процесс установки также занимает много времени, но это еще не все.

«Даже после завершения системы HVAC требуют тестирования, длительного обслуживания и обслуживания для обеспечения оптимальной эффективности и качества воздуха в помещении» — Ferro

Системы HVAC влекут за собой высокие начальные затраты.

Конечно, установка правильных систем может привести к хорошей окупаемости инвестиций в долгосрочной перспективе, но это в конечном итоге.

Сегодня, , у вас есть определенный бюджет и сроки для поставки вашей системы HVAC.


Для получения дополнительной информации о проектировании и реализации HVAC:


Вы можете ожидать, что следующие факторы увеличат ваши предварительные затраты на HVAC:

(Примечание: для систем HVAC также потребуется водопровод, но мы не включили это в это оценка, поскольку это отдельная существенная система для здания).

  1. ТЭЦ
    Для правильного построения ТЭЦ необходимо определить необходимую мощность котла, а также схему и размеры насосов. Вам понадобится установка для очистки воды. Кроме того, вам могут потребоваться расширительные бачки, рабочие клапаны, манометры и другие детали.
  2. Холодильная установка
    Чтобы построить охлаждающую установку, вы должны определить требуемый тип чиллера и его мощность. Как и в случае с отопительной установкой, также потребуется подобрать схему и размеры откачки.Кроме того, вам понадобится система очистки воды и, в зависимости от требований, ряд специальных деталей.
  3. Вентиляционная установка
    Вы должны определить требования к вентиляции здания в тоннах / кубических футов в минуту. После того, как вы определили мощность, вы должны выбрать различные компоненты для создания системы AHU .
  4. Трубопроводы сети
    Помимо конкретной марки / марки трубопровода, размер здания и желаемые точки доступа к распределению воздуха повлияют на вашу окончательную стоимость.
  5. Ответвления трубопроводов
    Стоимость будет зависеть от типа и размера ваших змеевиков (например, для больших змеевиков требуется более одного соединения).
  6. Листовой металл
    Для некоторых ключевых компонентов вашей системы HVAC потребуется листовой металл, включая воздуховоды, коробки для воздушных диффузоров, вытяжные вентиляторы, решетки, регистры и другие.
    Как вы можете себе представить, окончательная стоимость зависит от того, сколько из этих деталей используется в вашей конкретной системе HVAC, а также от источника листового металла.
  7. Изоляция
    Вы также должны изолировать водопровод и воздуховоды, чтобы система отопления, вентиляции и кондиционирования воздуха работала при низких температурах. Вы можете оценить это, исходя из процентного содержания ваших трубопроводов и воздуховодов.
    Одна типичная оценка — это от 6% до 12% от общего количества трубопроводов и воздуховодов, хотя это зависит от окружающей среды в месте расположения здания и конкретных потребностей в тепле.
  8. Контроль температуры
    Для систем отопления, вентиляции и кондиционирования воздуха потребуется множество таких средств контроля — от средств управления жильцами вплоть до средств контроля, управляющих реальными системами отопления, вентиляции и кондиционирования воздуха (напримерг., AHU).
  9. Другое
    Некоторые задачи, такие как проверка системы HVAC для получения сертификата LEED, также увеличивают окончательную стоимость вашей системы HVAC.

Обеспечение надежной системы отопления, вентиляции и кондиционирования воздуха не означает
означает риск задержки


Типичная стоимость системы отопления, вентиляции и кондиционирования воздуха при новых строительных работах

Фактическая стоимость будет зависеть от конкретных требований вашего проекта, но вы можете получить приблизительную оценка из различных отраслевых источников.

По данным Ассоциации строителей, общие затраты можно разбить следующим образом:

Здания для отдыха
Для зданий для отдыха системы HVAC могут стоить от 17 до 22 долларов за квадратный фут.

Офисные здания
Офисные здания, использующие двухтрубные системы отопления, вентиляции и кондиционирования воздуха, будут стоить от 15 до 23 долларов за квадратный фут, в то время как большие офисные здания, основанные на конфигурации с четырьмя трубами, будут стоить от 23 до 28 долларов за квадратный фут.

Жилые здания
Стоимость установки систем отопления, вентиляции и кондиционирования воздуха для двухтрубных систем составляет от 15 до 18 долларов за квадратный фут, в то время как четырехтрубная система может стоить от 18 до 21 долларов за квадратный фут.

Хотя стоимость варьируется, приведенные выше цифры демонстрируют, что системы HVAC — это значительные долгосрочные инвестиции. Более того, перед инженерами стоит незавидная задача — выполнить эти проекты
вовремя и в рамках бюджета, что далеко не так просто, учитывая масштабы того, что в них входит.

Однако работа со специалистом по проектированию, интеграции и установке систем отопления, вентиляции и кондиционирования воздуха с подтвержденным опытом поможет снизить сложность вашего проекта.

Компания AirFixture, успешно установившая более 80 миллионов квадратных футов систем отопления, вентиляции и кондиционирования воздуха, в более чем 25 странах, является надежным партнером в поставке современных систем отопления, вентиляции и кондиционирования воздуха в срок и в рамках бюджета.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *