Сечение провода по току: Расчет сечения провода по току и мощности для однофазной бытовой электропроводки || AxiomPlus
Выбор сечения кабеля по току
23.02.2019 0 bogdann.tech Кабели и провода Электропроводка
Используя таблицу ПУЭ можно правильно выбрать сечение кабеля по току. Так, например если кабель будет меньшего сечения, то это может привести к преждевременному выходу из строя всей системы проводки или порче включённого оборудования. Так же неправильный выбор толщины кабеля может стать причиной пожара, который произойдёт из-за плавления изоляции провода при его перегреве из-за высокой мощности.
При обратном процессе, когда толщина кабеля будет взята со значительным запасом по мощности, может произойти лишняя трата денег для приобретения более дорогостоящего провода.
Как показывает практика, в большинстве случаев выбирать сечение кабеля по току следует исходя из показателя его плотности.
Таблицы ПУЭ и ГОСТ
Плотность тока
При проведении выбора сечения провода необходимо знать некоторые показатели. Так, например величина плотности тока в таком материале как медь составляет от 6 до 10 А/мм2. Такой показатель является результатом многолетних наработок специалистов и принимается исходя из основных правил регламентирующих устройство электрических установок.
В первом случае при плотности в шесть единиц предусмотрена работа электрической сети в длительном рабочем режиме. Если же показатель составляет десять единиц, то следует понимать, что работа сети возможна не длительное время во время периодических коротких включений.
Поэтому производить выбор толщины необходимо именно по данному допустимому показателю.
Приведенные выше данные соответствуют медному кабелю. Во многих электрических сетях до сих пор применяются и алюминиевые провода. При этом медный кабель в сравнении с последним типом провода имеет свои неоспоримые преимущества.
К таковым можно отнести следующее:
- Медный кабель обладает намного большей мягкостью и в тоже время показатель его прочности выше.
- Изделия, изготовленные из меди более длительное время не подвержены процессам окисления.
- Пожалуй, самым главным показателем медного кабеля есть его более высокая степень проводимости, а значит и лучший показатель по плотности тока и мощности.
К самому главному недостатку такого кабеля можно отнести более высокую цену на него.
Показатель плотности тока для алюминиевого провода находится в диапазоне от четырёх до шести А/мм2. Поэтому его можно применять в менее ответственных сооружениях. Так же данный тип проводки активно применялся в прошлом веке при строительстве жилых домов.
Проведение расчетов сечения по току
При расчете рабочего показателя толщины кабеля, необходимо знать какой ток будет протекать по сети данного помещения. Например, в самой обычной квартире необходимо суммировать мощность всех электрических приборов, которые подключаются к сети.
В качестве примера для расчета можно привести стандартную таблицу потребляемой мощности основными бытовыми приборами, использующимися в обычной квартире.
Исходя и суммарной мощности, производится расчет тока, который будет течь по кабелям сети.
I=(P*K1)/U
В этой формуле Р означает общую мощность, измеряемую в Ваттах, К1 – коэффициент, который определяет одновременную работу всех бытовых приборов (его величина обычно равняется 0,75) и U – напряжение в домашней сети равное обычно 220 Вольтам.
Данный показатель расчета тока поможет сделать оценку нужного сечения для общей сети. При этом необходимо так же учитывать и рабочую плотность тока.
Такой расчет можно принимать как приблизительный выбор. При этом более точные показатели могут быть получены с использованием выбора из специальной таблицы ПУЭ. Такая таблица ПУЭ является элементом специальных правил устройства электрических установок.
Ниже приведен пример таблицы ПУЭ, по которой возможно производить выбор сечения.
Как видно такая таблица ПУЭ кроме зависимости сечений от показателя по току ещё предусматривает и учёт материала, из которого изготавливаются провода, а так же и его расположение. Кроме этого в таблице регламентируется количество жил и величина напряжения, которая может быть как 220, так и 380 Вольт.
Расчет по току с применением дополнительных параметров
При расчете сечения на основе тока с использованием таблицы ПУЭ можно пользоваться и дополнительными параметрами.
Например, есть возможность учитывать диаметр жилы. Поэтому при определении сечения жилы применяют специальное оборудование под названием микрометр. На основе его данных определяется толщина каждой жилы. Потом с использованием значений ранее полученных токов и специальной таблицы производится окончательный выбор величины сечения жилы провода.
Если же кабель состоит из нескольких жил, то следует произвести замер одной из них и посчитать её сечение. После этого для нахождения окончательного значения толщины, показатель, полученный для одной жилы, умножается на их количество в проводе.
Полученное таким образом с использованием расчетов и таблицы ПУЭ значение сечения кабеля позволит создать в доме или квартире проводку, которая будет служить хозяевам на протяжении довольно долгого периода времени без возникновения аварийных или внештатных ситуаций.
bogdann.tech
Администратор сайта Electricvdele.Ru
- Next Обзор всех видов напольных кабель каналов от металлических и алюминиевых до пластиковых
- Previous Обзор плинтусов с кабель каналом: разновидности, размеры, способы монтажа
Выбор сечения кабеля по допустимому длительному току
- Главная org/ListItem»> Статьи
- Выбор сечения кабеля по допустимому длительному току
Чтобы выбрать сечение кабеля, провода или шнура по допустимому длительному току обратимся к ПУЭ (правила устройства электроустановок). Глава 1.3 ПУЭ посвящена выбору проводников по нагреву, экономической плотности тока и по условиям короны. Полный текст главы приводить не будем, а приведем таблицы допустимых длительных токов для проводов, шнуров и кабелей с резиновой или пластмассовой изоляцией (наиболее широко распространенные марки, такие как ПВС, ВВП, ВПП, ППВ, АППВ, ВВГ, АВВГ и др.). Напомним, что при упрощенных расчетах (прокладка кабеля дома) ток нагрузки Iн = суммарная мощность приборов (кВт) / 220 В (например, при суммарной мощности подключаемых приборов в 2,2 кВт, Iн = 2,2 кВт / 220 В = 10 А).
Примечание. Данная статья не является прямым руководством по выбору кабелей, проводов или шнуров, а лишь приводит справочные данные для упрощенных предварительных расчетов. Для выбора кабелей, проводов или шнуров рекомендуем проконсультироваться с техническим специалистом.
Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами
Сечение токопроводящей жилы, мм² | Ток, А, для проводов, проложенных | |||||
открыто | в одной трубе | |||||
двух одножильных | трех одножильных | четырех одножильных | одного двухжильного | одного трехжильного | ||
0,5 | 11 | — | — | — | — | — |
0,75 | 15 | — | — | — | — | — |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1,2 | 20 | 18 | 16 | 15 | 16 | 14,5 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2 | 26 | 24 | 22 | 20 | 23 | 19 |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 |
3 | 34 | 32 | 28 | 26 | 28 | 24 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
5 | 46 | 42 | 39 | 34 | 37 | 31 |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
8 | 62 | 54 | 51 | 46 | 48 | 43 |
10 | 80 | 70 | 60 | 50 | 55 | 50 |
16 | 100 | 85 | 80 | 75 | 80 | 70 |
25 | 140 | 115 | 100 | 90 | 100 | 85 |
35 | 170 | 135 | 125 | 115 | 125 | 100 |
50 | 215 | 185 | 170 | 150 | 160 | 135 |
70 | 270 | 225 | 210 | 185 | 195 | 175 |
95 | 330 | 275 | 255 | 225 | 245 | 215 |
120 | 385 | 315 | 290 | 260 | 295 | 250 |
150 | 440 | 360 | 330 | — | — | — |
185 | 510 | — | — | — | — | — |
240 | 605 | — | — | — | — | — |
300 | 695 | — | — | — | — | — |
400 | 830 | — | — | — | — | — |
Таблица 1. 3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами
Сечение токопроводящей жилы, мм² | Ток, А, для проводов, проложенных | |||||
открыто | в одной трубе | |||||
двух одножильных | трех одножильных | четырех одножильных | одного двухжильного | одного трехжильного | ||
2 | 21 | 19 | 18 | 15 | 17 | 14 |
2,5 | 24 | 20 | 19 | 19 | 19 | 16 |
3 | 27 | 24 | 22 | 21 | 22 | 18 |
4 | 32 | 28 | 28 | 23 | 25 | 21 |
5 | 36 | 32 | 30 | 27 | 28 | 24 |
6 | 39 | 36 | 32 | 30 | 31 | 26 |
8 | 46 | 43 | 40 | 37 | 38 | 32 |
10 | 60 | 50 | 47 | 39 | 42 | 38 |
16 | 75 | 60 | 60 | 55 | 60 | 55 |
25 | 105 | 85 | 80 | 70 | 75 | 65 |
35 | 130 | 100 | 95 | 85 | 95 | 75 |
50 | 165 | 140 | 130 | 120 | 125 | 105 |
70 | 210 | 175 | 165 | 140 | 150 | 135 |
95 | 255 | 215 | 200 | 175 | 190 | 165 |
120 | 295 | 245 | 220 | 200 | 230 | 190 |
150 | 340 | 275 | 255 | — | — | — |
185 | 390 | — | — | — | — | — |
240 | 465 | — | — | — | — | — |
300 | 535 | — | — | — | — | — |
400 | 645 | — | — | — | — | — |
Таблица 1. 3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных
Сечение токопроводящей жилы, мм² | Ток*, А, для проводов и кабелей | |||||
одножильных | двухжильных | трехжильных | ||||
при прокладке | ||||||
в воздухе | в воздухе | в земле | в воздухе | в земле | ||
1,5 | 23 | 19 | 33 | 19 | 27 | |
2,5 | 30 | 27 | 44 | 25 | 38 | |
4 | 41 | 38 | 55 | 35 | 49 | |
6 | 50 | 50 | 70 | 42 | 60 | |
10 | 80 | 70 | 105 | 55 | 90 | |
16 | 100 | 90 | 135 | 75 | 115 | |
25 | 140 | 115 | 175 | 95 | 150 | |
35 | 170 | 140 | 210 | 120 | 180 | |
50 | 215 | 175 | 265 | 145 | 225 | |
70 | 270 | 215 | 320 | 180 | 275 | |
95 | 325 | 260 | 385 | 220 | 330 | |
120 | 385 | 300 | 445 | 260 | 385 | |
150 | 440 | 350 | 505 | 305 | 435 | |
185 | 510 | 405 | 570 | 350 | 500 | |
240 | 605 | — | — | — | — | |
* Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее.![]() |
Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных
Сечение токопроводящей жилы, мм² | Ток, А, для кабелей | ||||
одножильных | двухжильных | трехжильных | |||
при прокладке | |||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |
2,5 | 23 | 21 | 34 | 19 | 29 |
4 | 31 | 29 | 42 | 27 | 38 |
6 | 38 | 38 | 55 | 32 | 46 |
10 | 60 | 55 | 80 | 42 | 70 |
16 | 75 | 70 | 105 | 60 | 90 |
25 | 105 | 90 | 135 | 75 | 115 |
35 | 130 | 105 | 160 | 90 | 140 |
50 | 165 | 135 | 205 | 110 | 175 |
70 | 210 | 165 | 245 | 140 | 210 |
95 | 250 | 200 | 295 | 170 | 255 |
120 | 295 | 230 | 340 | 200 | 295 |
150 | 340 | 270 | 390 | 235 | 335 |
185 | 390 | 310 | 440 | 270 | 385 |
240 | 465 | — | — | — | — |
Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по табл. 1.3.7, как для трехжильных кабелей, но с коэффициентом 0,92.
В следующей статье мы рассмотрим поправочные коэффициенты, которые необходимо учитывать при выборе сечения кабеля и провода.
Таблица допустимой нагрузки по току | Расчет поперечного сечения кабеля
Допустимая нагрузка по току: таблицы
(Выдержка из таблиц VDE 0298-4 06/13: 11, 17, 18, 21, 26 и 27)
Допустимая нагрузка по току, кабели С номинальным напряжением до 1000 В и теплостойкими кабелями VDE 0298-4 06/13 Таблица 11, столбец 2 и 5 | |||
---|---|---|---|
Колонка 2 | Колонка 5 | ||
Путь Laying Laying | 0018 | in air | on or at surfaces |
mono conductors — rubber insulated | Multi conductor cables (except for house or handheld units) — rubber insulated — с ПВХ изоляцией — термостойкая | ||
Количество заряженных жил | 1 | 2 или 3 | Capacity (Ampere) |
0,75 mm 2 | 15A | 12A | |
1,00 mm 2 | 19A | 15A | |
1,50 mm 2 | 24A | 18A | |
2,50 mm 2 | 32A | 26A | |
4,00 mm 2 | 42A | 34A | |
6,00 mm 2 | 54A | 44A | |
10,00 mm 2 | 73A | 61A | |
16,00 mm 2 | 98A | 82A | |
25,00 mm 2 | 129A | 108A | |
35,00 mm 2 | 158A | 135A | |
50,00 mm 2 | 198A | 168A | |
70,00 mm 2 | 245A | 207A | |
95,00 mm 2 | 292A | 250A | |
120,00 mm 2 | 344A | 292A | |
150,00 mm 2 | 391A | 335A | |
185,00 mm 2 | 448A | 382A | |
240,00 mm 2 | 528A | 453A | |
300,00 мм 2 | 608a | 523a |
. Обработка тока. 1 )
1) для кабелей с рабочей температурой макс. 70°С у жилы
Допустимая токовая нагрузка кабелей для многожильных кабелей номинальным сечением до 10 мм 2 VDE 0298-4 06/13 таблица 26. ![]() | |
---|---|
Количество загруженных ядер | Фактор |
5 | 0,75 |
7 | 0,65 | 7 | 0,65 | 7 | 0,65 | 7 | 0,65 | 0008 | 10 | 0,55 |
14 | 0,50 |
19 | 0,45 |
24 | 0,40 |
40 | 0,35 |
61 | 0,30 |
Current-carrying capacity of cables for diviating ambient temperatures for heat resistant cables VDE 0298-4 06/13 table 18, column 3-6 | ||||
---|---|---|---|---|
column 3 | column 4 | column 5 | column 6 | |
zulässige Betriebstemperatur | ||||
90°C | 110°C | 135°C | 180°C | |
температура окружающей среды | коэффициенты пересчета, применяемые к емкости термостойких кабелей в таблице 11, столбцы 2 и 5 | |||
до 50 °C | 1,00 | 1,00 | 1,00 | 1,00 |
55 °C | 0,94 | 1,00 | 1,00 | 1,00 |
60 °C | 0,87 | 1,00 | 1,00 | 1,00 |
65 °C | 0,79 | 1,00 | 1,00 | 1,00 |
70 °С | 0,71 | 1,00 | 1,00 | 1,00 |
75 °С | 0,61 | 1,00 | 1,00 | 1,00 |
80 °C | 0,50 | 1,00 | 1,00 | 1,00 |
85 °C | 0,35 | 0,91 | 1,00 | 1,00 |
90 °C | —— | 0,82 | 1,00 | 1,00 |
95 °C | —— | 0,71 | 1,00 | 1,00 |
100 °C | —— | 0,58 | 0,94 | 1,00 |
105 °C | —— | 0,41 | 0 , 87 | 1,00 |
110 ° C | —— | —— | 0,79 | 1,00 |
115 ° C | — ——— | 0,71 | 1,00 | |
120 °C | —— | —— | 0,61 | 1,00 |
125 °C | —— | —— | 0,50 | 1,00 |
130 °C | — —- | —— | 0,35 | 1,00 |
135 °C | —— | —— | —— | 1,00 |
140 °C | —— | —— | —— | 1,00 |
0 40209 —— | —— | —— | 1,00 | |
150 °С | —— | —— | — — | 1,00 |
155 ° C | —— | —— | —— | 0,91 |
160 ° C | ||||
160 ° C | ||||
160 ° C | ||||
160 ° C | ||||
16018 —— | —— | —— | 0,82 | |
165 °C | —— | —— | — — | 0,71 |
170 °С | —— | —— | —— | 0,58 |
170 °С 9 01 -9 9018-90 —- | —— | 0,41 |
Допустимая нагрузка по току кабелей для прокладки на стенах, в трубах и каналах, на полу и потолке VDE 0298-4 06/13 таблица 21 | |
---|---|
Количество многожильных кабелей | Factor |
1 | 1,00 |
2 | 0,80 |
3 | 0,70 |
4 | 0,65 |
5 | 0,60 |
6 | 0,57 |
7 | 0,54 |
8 | 0,52 |
9 | 0,50 |
10 | 0,48 |
12 | 0,45 |
14 | 0,43 | 16918 | 0,43 | 16918 | 0,43 | 16918 | 0,43 | 16 | 0,39 |
20 | 0,38 |
Максимальная допустимая нагрузка по току согл. VDE 0891, часть 1, пункт 7, необходимо учитывать при применении изолированных кабелей в телекоммуникационных системах и устройствах обработки данных.
Current-carrying capacity of cables for wound up cables VDE 0298-4 06/13 table 27 | ||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |||||||||||||||||||||||||||||||||||||||||||||
№ of layers on one drum | 1 | 2 | 3 | 4 | 5 | |||||||||||||||||||||||||||||||||||||||||||||
conversion factors | 0,80 | 0,61 | 0,49 | 0,42 | 0,38 | |||||||||||||||||||||||||||||||||||||||||||||
Примечание : для обмотки спиральной обмотки коэффициент преобразования составляет 0,80. Монтажный провод при температуре окружающей среды до 30°C Поправочные коэффициенты при температуре окружающей среды выше 30°C Для температур выше 30°C умножьте допустимую нагрузку по току в таблицах на поправочный коэффициент (f), чтобы получить допустимый ток. |