Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Сила тока в трехфазной сети: Расчет мощности трехфазного двигателя — советы электрика

Содержание

О наболевшем — Или расчет силы тока трехфазных асинхронных двигателей на 380В: antno — LiveJournal

Идея этого поста родилась после многочисленных доставалок «сильно грамотных» инженеров на тему о том, что на двигатель мощностью, ну например 15 квт надо ставить автомат не ниже 50А, ибо номинал тока 40А + запас на пусковые токи, бла блаблаблабла…Это типичная ошибка тех, кто пытается считать мощность трехфазных асинхронников по стандартной формуле мощности I=P\U, при этом в расчет не берется ни то что двигатель трехфазный, ни то что у него еще есть непонятные почти никому Косинус Фи и КПД.

Кстати при установке новых двигателей ничего и считать не надо, как правило номинальный ток для обоих режимов (звезда 380 и треугольник 220) указан на шильдике, вместе со всеми остальными параметрами.

Так какже, правильно расчитать, грубо или поточнее мощность асинхронного двигателя в стандартной ситуации?
Для начала определимся с это самой «стандартной ситуацией» и с чем ее едят.
Стандартной я называю ситуацию, когда двигатель расчитанный на 380\220 звезда\треугольник, подключается на стандартные 380 звездой, на все три фазы. В промышленности это встречается наиболее часто, и также часто вызывает вопросы по поводу того, какого номинала автоматы ставить, ибо многие, знают стандартную формулу мощности I=P\U и почемуто, видимо от большой грамотности или большого ума, от которого горе по Грибоедову, начинают для трехфазной нагрузки применять ее.

А теперь раскрываю секрет, страааашный секрет….
Для расчета защиты маломощных двигателей на 380В, мощностью до 30 квт вполне достаточно умножить мощность ровно на 2, то есть P*2=~In , автомат все равно выбирается ближайший по номиналу в большую сторону, то есть 63А для 30 квт двигателя, имеющего на валу нагрузкой ну скажем турбину вентилятора типа Циклон. Это страаашный, нигде в учебниках не озвученный секретный экспресс-метод грубого расчета силы тока двигателей на 380В…Почему так? Очень просто при U=380В на один КВТ мощности приходится примерно сила тока в 2 Ампера. (Да меня щас побьют теоретики, которые помнят про КПД и Косинус ФИ…Помолчите Господа, пока помолчите, я же сказал, для МАЛОМОЩНЫХ двигателей до 30 квт, а для низких мощностей, зная модельный ряд наших автоматов, эти 2 значения можно и не учитывать, особенно если нагрузка на вал минимальная)

А теперь представим типовой двигатель* со следующими параметрами:
P=30 квт
U=380 В
сила тока на шильдике стерлась…
cos φ = 0,85
КПД=0,9

Как найти его силу тока? Если считать так, как советуют и сами считают упрямые «очень умные» горе-инженера, особенно любящие озадачивать этим вопросом на собеседованиях, то получаем цифру в 78,9А, после чего горе-инженера начинают лихорадочно вспоминать про пусковые токи, задумчиво хмурить брови и морщить лбы, а затем не стесняясь требуют поставить автомат минимум на 100А, так как ближайший по номиналу 80А будет выбивать при малейшей попытке запуска офигенными пусковыми токами…И переспорить их очень тяжело, так как все нижеследующее вызывает у умных дяденек бурю эмоций, недержание мочи и кала, разрыв шаблона, и погружение в глубокий транс с причитаниями и маханием корочками тех универов где они учились считать и жить..

если считать грубо, то 30*2=60А

Более полная формула, рекомендованная к применению выглядит несколько иначе.
Мощность в квт переводится в ватты, для чего 30*1000=30000 вт
Затем ватты делим на напряжение, затем делим на корень квадратный из 3(1,73), (у нас же ТРИ ФАЗЫ) и получаем примерную силу тока, которую нужно уточнить, поделив дополнительно на cos φ(коэффициент мощности, ибо всякая индуктивная нагрузка имеет и реактивную мощность Q) и затем, уточнить еще раз, поделив при желании на КПД, итак:

30000вт\380в\1,73=45,63 А\0,85=53,6А

Уточняем расчет: 53,6А\0,9 = 59,65А (Кстати программа электрик, считающая по похожей формуле, выдает более точные данные 59,584 А, то есть немного меньше чем мой проверенный временем расчет…то есть расчет довольно точен, а расхождения в десятые и сотые доли ампера в нашем случае никого особо не волнуют, почему — написано ниже)

59,65 Ампер, — почти полное совпадение с первым грубым расчетом, расхождение составляет всего лишь -0,35А, что для выбора автомата защиты не играет никакой роли в данном случае. Ну и какой же автомат выбрать??
При условии что нагрузка на валу не велика, скажем какая нибудь турбина вентилятора, можно смело ставить ВА 47-29 на 63А фирмы ИЭК, категории С..наиболее часто встречающиеся.
На вопли о пусковых токах могу смело ответить, что 63А пакетник категории В,С,D выдерживает по току превышение 1,13 раза дольше часа и 1,45 раза меньше часа, то есть если на автомате написано 63А, то это не значит, что при броске до 70А его сразу выбьет…Нифига подобного, нагрузку в 113% (сила тока равна 71,19А) он будет держать минимум час, особенно это касается дорогих автоматов фирм Легранд\АВВ, и даже при силе тока в 145% номинала = 91,35А он гарантированно продержит несколько минут, а для раскрута асинхронника и выхода на номинальный режим достаточно нескольких секунд, как правило от 5 до 20 секунд. За это время тепловой расцепитель автомата тупо не успеет разогрется и отключить нагрузку.
Конечно, умные дяди мне сейчас напомнят, что у автомата есть еще электромагнитный расцепитель, и уж он то, ну уж он то точно отрубит при превышении 63А несчастный двигатель…Хахаха, хрен вам и горе умное…

Буковки B,C,D, и некоторые другие в наименовании автомата как раз характеризуют кратность уставки электромагнитного расцепителя, и равна она

В — 3…5
С — 5…10
D — по ГОСТ Р — 10…50, большинство производителей заявляет диапазон 10…20.

Есть более редко встречающиеся
G — 6,4…9,6 (КЭАЗ ВМ40)
K — 8…14
L — 3,2…4,8 (КЭАЗ ВМ40)
Z — 2…3

То есть автомат категории С на 63А гарантированно отключится электромагнитным расцепителем только в диапазоне 315-630А и выше, чего при запуске исправного асинхронника на 30 квт никогда все равно не будет.
Второй законный вопрос- какой провод положить на наш двигатель. Ответ- кабель 4х16 миллиметров квадратных, с лихвой хватит, при длине до 50 метров, при большей длине лучше 25мм выбирать, ибо потери.

Все цифры проверены многократно, лично мной, и экспериментально. Проверены и по выбранным автоматам и по многократным замерам реальной силы тока токовыми клещами.

*-Единственное примечание и уточнение: У старых двигателей советского производства, вновь вводимых в эксплуатацию могут быть меньшие значения косинуса фи и КПД, тогда сила тока может быть чуть выше чем значение грубого расчета. Просто выбирается следующий по номиналу автомат на 80А. Не ошибётесь!

Второе примечание:
Для грубого расчета силы тока двигателя подключенного треугольником к сети 220 через конденсатор, можно взять мощность двигателя в Киловаттах, ну например теже 30 КВТ и умножить примерно на 3,9 и так: 30*3,9=117А
А для расчета конденсатора можно воспользоваться сайтом http://www.skrutka.ru/sk/tekst.php?id=13

и посмотреть что приведенный расчет тока не сильно грешит

Трёхфазная система электроснабжения — Википедия

Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).

Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем.

Описание

Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники — носители этих ЭДС. В трёхфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C

[1].

Распространённые обозначения фазных проводов:

Россия, EC (выше 1000 В) Россия, ЕС (ниже 1000 В) Германия Дания
А L1 L1 R
B L2 L2 S
C L3 L3 T
Анимированное изображение течения токов по симметричной трёхфазной цепи с соединением типа «звезда» Векторная диаграмма фазных токов. Симметричный режим. Графическое представление зависимости фазных токов от времени

Преимущества

Возможная схема разводки трёхфазной сети в многоквартирных жилых домах
  • Экономичность.
    • Экономичность передачи электроэнергии на значительные расстояния.
    • Меньшая материалоёмкость 3-фазных трансформаторов.
    • Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
  • Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок её службы.
  • Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
  • Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».
  • Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.

Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.

Схемы соединений трехфазных цепей

Звезда

Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток потребителя (M) также соединяют в общую точку.

Провода, соединяющие начала фаз генератора и потребителя, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным.

Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной.{b}=U_{F}[\cos(\omega t)-\cos(\omega t-2\pi /3)]=2U_{F}\sin(-\pi /3)\sin(\omega t-\pi /3)={\sqrt {3}}U_{F}\cos(\omega t+\pi -\pi /3-\pi /2)}

uL=3UFcos⁡(ωt+π/6){\displaystyle u_{L}={\sqrt {3}}U_{F}\cos(\omega t+\pi /6)}

Мощность трёхфазного тока

Для соединения обмоток звездой, при симметричной нагрузке, мощность трёхфазной сети равна:

P=3UFIFcosφ=3UL3ILcosφ=3ULILcosφ{\displaystyle P=3U_{F}I_{F}cos\varphi =3{\frac {U_{L}}{\sqrt {3}}}I_{L}cos\varphi ={\sqrt {3}}U_{L}I_{L}cos\varphi }

Последствия отгорания (обрыва) нулевого провода в трёхфазных сетях
Существующие виды защиты от линейного напряжения, которые можно найти в продаже в электротехнических магазинах Шины для раздачи нулевых проводов (синяя) и проводов заземления (зелёная)

При симметричной нагрузке в трёхфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода. Однако при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый перекос фаз, в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной выхода из строя бытовой электроники в квартирных домах, который может приводить к пожарам. Пониженное напряжение также может послужить причиной выхода из строя техники.

Проблема гармоник, кратных третьей

Современная техника всё чаще оснащается импульсными сетевыми источниками питания. Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пиков синусоиды питающего напряжения на интервалах зарядки конденсатора входного выпрямителя. Большое количество таких источников питания в сети создаёт повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники. Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания. Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ Р 54149-2010, ГОСТ 32144-2013 (с 1.07.2014), ОСТ 45.188-2001.


Треугольник


Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.

Соотношение между линейными и фазными токами и напряжениями

Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

IL=3×IF;UL=UF{\displaystyle I_{L}={\sqrt {3}}\times {I_{F}};\qquad U_{L}=U_{F}}

Мощность трёхфазного тока при соединении треугольником

Для соединения обмоток треугольником, при симметричной нагрузке, мощность трёхфазного тока равна:

P=3UFIFcosφ=3ULIL3cosφ=3ULILcosφ{\displaystyle P=3U_{F}I_{F}cos\varphi =3U_{L}{\frac {I_{L}}{\sqrt {3}}}cos\varphi ={\sqrt {3}}U_{L}I_{L}cos\varphi }

Распространённые стандарты напряжений

Страна Частота, Гц Напряжение (фазное/линейное), Вольт
Россия 50 230/400[2] (бытовые сети)
133/230, 230/400, 400/690, 690/1200 (промышленные сети)[источник не указан 48 дней]
Страны ЕС 50 230/400,
400/690 (промышленные сети)
Япония 50 (60) 120/208
США 60 120/208,
277/480
240 (только треугольник)

Маркировка

Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.

Трёхфазная двухцепная линия электропередачи

Цвета фаз

Каждая фаза в трёхфазной системе имеет свой цвет. Они меняют в зависимости от страны. Используются цвета международного стандарта IEC 60446 (IEC 60445).

Страна L1 L2 L3 Нейтраль / ноль Земля

/ защитное заземление

Россия, Белоруссия, Украина, Казахстан (до 2009), Китай Жёлтый Зелёный Красный Голубой Жёлто/зелёный (в полоску)
Европейский союз и все страны которые используют европейский стандарт CENELEC с апреля 2004 (IEC 60446), Гонконг с июля 2007, Сингапур с марта 2009, Украина, Казахстан с 2009, Аргентина Коричневый Чёрный Серый Голубой Жёлто/зелёный (в полоску)[3]
Европейский союз до апреля 2004[4] Красный Жёлтый Голубой Чёрный Жёлто/зелёный (в полоску)

(зелёный в установках до 1970)

Индия, Пакистан, Великобритания до апреля 2006, Гонконг до апреля 2009, ЮАР, Малайзия, Сингапур до февраля 2011 Красный Жёлтый Голубой Чёрный Жёлто/зелёный (в полоску)

(зелёный в установках до 1970)

Австралия и Новая Зеландия Красный (или коричневый)[5] Белый (или чёрный)

(ранее — жёлтый)

Тёмно синий (или серый) Чёрный (или голубой) Жёлто/зелёный (в полоску)

(зелёный в очень старых установках)

Канада (обязательный)[6] Красный Чёрный Голубой Белый или серый Зелёный или цвета меди
Канада (в изолированных трехфазных установках)[7] Оранжевый Коричневый Жёлтый Белый Зелёный
США (альтернативная практика)[8] Коричневый Оранжевый (в системе треугольник), или

фиолетовый (в системе звезда)

Жёлтый Серый или белый Зелёный
США (распространённая практика)[9] Чёрный Красный Голубой Белый или серый Зелёный, жёлто/зелёный (в полоску),[10] или провод цвета меди
Норвегия Чёрный Белый/серый Коричневый Голубой Жёлто/зелёный (в полоску), в более старых установках может встречаться только жёлтый или цвета меди

См. также

Примечания

  1. ↑ Действующий в РФ ГОСТ 2.709-89 предписывает обозначение цепей фазных проводников трёхфазного переменного тока: L1, L2, L3, и при этом допускает обозначения A, B, C.
  2. ↑ Согласно ГОСТ 29322-2014
  3. ↑ Жёлто-зелёная маркировка была принята как международный стандарт для защиты от поражения эл.током дальтоников. От 7 % до 10 % людей не могут точно распознать красный и зелёные цвета.
  4. ↑ В Европе ещё осталось много установок со старой цветовой схемой начала 1970-х. В новых установках используются жёлто/зелёные шины заземления в соответствии с IEC 60446. (Фаза/ноль+земля; Германия: чёрный/серый + красный; Франция зелёный/красный + белый; Россия: красный/серый + чёрный; Швейцария: красныйd/серый + жёлтый или жёлтый и красный; Дания: белый/чёрный + красный
  5. ↑ В Австралии и Новой Зеландии фазы могут быть люього цвета, но только не жёлто-зелёного, зелёного, жёлтого, чёрного или голубого цвета.
  6. ↑ Canadian Electrical Code Part I, 23rd Edition, (2002) ISBN 1-55324-690-X, rule 4-036 (3)
  7. Canadian Electrical Code (англ.)русск. 23-е издание 2002 года, правила 24-208(c)
  8. ↑ Начиная с 1975 в США National Electric Code (англ.)русск. не имел специальных обозначений фаз. По сложившейся практике для соединения звезда 120/208 фазы маркировались чёрным, красным и голубым цветом, а при соединении звезда или треугольник 277/480 фазы обозначались коричневым, оранжевым и жёлтым. В системе 120/240 треугольник с наибольшим напряжением 208 вольт (обычно фаза B) всегда обозначалась оранжевым, общая фаза A была чёрного цвета, а фаза C — красной или голубой.
  9. ↑ See Paul Cook: Harmonised colours and alphanumeric marking. IEE Wiring Matters, Spring 2006.
  10. ↑ В США провод жёлто-зелёного цвета (в полоску) может обозначать изолированную землю[неизвестный термин]. Сегодня в большинстве стран, жёлто-зелёные (в полоску) провода используются для защитного заземления и не могут быть отсоеденины и использованы для других целей.

Ссылки

Таблица : номинальный ток электродвигателя = электромотора при полной нагрузке однофазных и 3-х фазных моторов в зависимости от напряжения 110VAC, 220VAC, 240VAC, 380VAC, 415VAC, 550VAC; Мощность 0,07-150кВт. Сила тока в зависимости от мощности





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Оборудование / / Электродвигатели. Электромоторы.  / / Таблица : номинальный ток электродвигателя = электромотора при полной нагрузке однофазных и 3-х фазных моторов в зависимости от напряжения 110VAC, 220VAC, 240VAC, 380VAC, 415VAC, 550VAC; Мощность 0,07-150кВт. Сила тока в зависимости от мощности

Поделиться:   

Таблица : номинальный ток электродвигателя = электромотора при полной нагрузке однофазных и 3-х фазных моторов в зависимости от напряжения 110VAC, 220VAC, 240VAC, 380VAC, 415VAC, 550VAC; Мощность 0,07-150кВт. Сила тока в зависимости от мощности

Таблица составлена для моторов с частотой вращения 1450rpm с обычным коэффициентом мощности и КПД. Более быстрые моторы обычно имеют меньший ток, а более медленные — более высокий.

Однофазные электродвигатели = однофазные электромоторы

Мощность

Лошадиных сил = HP

Приблизительный номинальный ток при полной нагрузке в зависимости от напряжения

1x110VAC

1x220VAC

1x240VAC

0.07 kW

1/12

2.4

1.2

1.1

0.1 kW

1/8

3.3

1.6

1.5

0.12 kW

1/6

3.8

Трехфазная электрическая мощность — Three-phase electric power

Общий метод производства, передачи и распределения электроэнергии для переменного тока

Трехфазный трансформатор с четырехпроводным выходом для сети 208Y / 120 В: один провод для нейтрали, другие для фаз A, B и C

Трехфазная электроэнергия — это распространенный метод производства , передачи и распределения электроэнергии переменного тока . Это разновидность многофазной системы, которая является наиболее распространенным методом передачи энергии в электрических сетях во всем мире. Он также используется для питания больших двигателей и других тяжелых нагрузок.

Трехфазная схема трехпроводной, как правило , более экономичным , чем эквивалентный двухпроводной однофазной цепи в одной и той же линии заземления напряжения , поскольку он использует меньше материала проводника для передачи определенного количества электрической энергии. Полифазные энергосистемы были независимо изобретены Галилео Феррарисом , Михаилом Доливо-Добровольским , Йонасом Венстрёмом , Джоном Хопкинсоном и Николой Тесла в конце 1880-х годов.

Линейное и фазное напряжение

В проводники между источником напряжения и нагрузкой , называются линии, и напряжение между любыми двумя линиями, называется линейное напряжение . Напряжение, измеренное между любой линией и нейтралью, называется фазным напряжением . Например, для сети 208/120 вольт линейное напряжение составляет 208 вольт, а фазное напряжение — 120 вольт.

Принцип

Нормированные формы сигналов мгновенных напряжений в трехфазной системе за один цикл с увеличением времени вправо. Порядок фаз — 1‑2‑3. Этот цикл повторяется с частотой энергосистемы. В идеале напряжение , ток и мощность каждой фазы смещены относительно других на 120 °. Линии электропередачи трехфазные Трехфазный трансформатор (Бекешчаба, Венгрия): слева — первичные провода, а справа — вторичные провода.

В симметричной трехфазной системе электропитания по трем проводникам проходит переменный ток той же частоты и амплитуды напряжения относительно общего эталона, но с разностью фаз в одну треть цикла между ними. Общая ссылка обычно соединяется с землей и часто с токоведущим проводом, называемым нейтралью. Из-за разности фаз напряжение на любом проводе достигает своего пика на одной трети цикла после одного из других проводников и на одной трети цикла до оставшегося проводника. Эта фазовая задержка обеспечивает постоянную передачу мощности сбалансированной линейной нагрузке. Это также позволяет создавать вращающееся магнитное поле в электродвигателе и генерировать другие схемы фаз с использованием трансформаторов (например, двухфазную систему с использованием трансформатора Скотта-Т ). Амплитуда разности напряжений между двумя фазами в (1,732 …) раз больше амплитуды напряжения отдельных фаз. 3 {\ displaystyle {\ sqrt {3}}}

Симметричные трехфазные системы, описанные здесь, просто называются трехфазными системами, потому что, хотя можно спроектировать и реализовать асимметричные трехфазные системы питания (т. Е. С неравными напряжениями или фазовыми сдвигами), они не используются на практике. потому что им не хватает важнейших преимуществ симметричных систем.

В трехфазной системе, питающей сбалансированную и линейную нагрузку, сумма мгновенных токов трех проводников равна нулю. Другими словами, ток в каждом проводнике по величине равен сумме токов в двух других, но с противоположным знаком. Обратный путь для тока в любом фазном проводе — это два других фазовых проводника.

Преимущества

По сравнению с однофазным источником питания переменного тока, в котором используются два проводника (фаза и нейтраль ), трехфазный источник питания без нейтрали и с одинаковым межфазным напряжением и током на фазу может передавать в три раза больше мощности, используя всего в 1,5 раза больше проводов (т.е. три вместо двух). Таким образом, соотношение емкости к материалу проводника удваивается. Отношение емкости к материалу проводника увеличивается до 3: 1 в незаземленной трехфазной системе и однофазной системе с заземленным центром (или 2,25: 1, если в обеих системах заземления того же калибра, что и у проводов).

Постоянная передача мощности и компенсация фазных токов теоретически возможны при любом количестве (более одной) фаз, поддерживая соотношение емкости к материалу проводника, которое вдвое больше, чем у однофазной мощности. Однако двухфазное питание приводит к менее плавному (пульсирующему) крутящему моменту в генераторе или двигателе (что затрудняет плавную передачу мощности), а более трех фаз излишне усложняют инфраструктуру.

Трехфазные системы также могут иметь четвертый провод, особенно в распределительных сетях низкого напряжения. Это нейтральный провод. Нейтраль позволяет обеспечить три отдельных однофазных источника питания при постоянном напряжении и обычно используется для питания групп бытовых объектов, каждая из которых является однофазной нагрузкой. Подключения расположены таким образом, чтобы по возможности в каждой группе от каждой фазы потреблялась одинаковая мощность. Далее в системе распределения токи обычно хорошо сбалансированы. Трансформаторы могут быть подключены таким образом, чтобы они имели четырехпроводную вторичную обмотку, но трехпроводную первичную, при этом допускаются несбалансированные нагрузки и связанные с ними нейтральные токи вторичной стороны.

Трехфазные источники питания обладают свойствами, которые делают их очень востребованными в системах распределения электроэнергии:

  • Фазные токи имеют тенденцию нейтрализовать друг друга, суммируясь до нуля в случае линейной сбалансированной нагрузки. Это позволяет уменьшить размер нейтрального проводника, поскольку по нему проходит небольшой ток или нет. При сбалансированной нагрузке все фазные проводники проходят одинаковый ток и, следовательно, могут иметь одинаковый размер.
  • Передача мощности на линейную сбалансированную нагрузку является постоянной, что помогает снизить вибрации генератора и двигателя.
  • Трехфазные системы могут создавать вращающееся магнитное поле с заданным направлением и постоянной величиной, что упрощает конструкцию электродвигателей, так как не требуется пусковая цепь.

Большинство бытовых нагрузок однофазные. В домах в Северной Америке трехфазное электричество может питать многоквартирный дом, но бытовые нагрузки подключаются только как однофазные. В районах с более низкой плотностью для распределения можно использовать только одну фазу. Некоторые мощные бытовые приборы, такие как электрические плиты и сушилки для одежды, питаются от двухфазной системы с напряжением 240 вольт или от двух фаз трехфазной системы только с напряжением 208 вольт.

Последовательность фаз

Проводка для трех фаз обычно обозначается цветовым кодом, который зависит от страны. Подключение фаз в правильном порядке необходимо для обеспечения заданного направления вращения трехфазных двигателей. Например, насосы и вентиляторы могут не работать в обратном направлении. Сохранение идентичности фаз требуется, если существует возможность одновременного подключения двух источников; прямое соединение между двумя разными фазами — короткое замыкание.

Производство и распространение

Анимация трехфазного тока

Изображение слева: элементарный шестипроводный трехфазный генератор переменного тока, в котором каждая фаза использует отдельную пару проводов передачи. Изображение справа: элементарный трехпроводный трехфазный генератор переменного тока, показывающий, как фазы могут делить только три провода.

На электростанции , электрический генератор преобразует механическую энергию в набор из трех переменного электрического тока , по одному от каждой катушки (или обмотки) генератора. Обмотки расположены таким образом, что токи находятся на одной и той же частоте , но с пиками и впадинами их волновых форм смещения , чтобы обеспечить три дополнительных токов с фазовым разделением одной трети цикла ( 120 ° или / 3 радиан ). Частота генератора обычно составляет 50 или 60 Гц , в зависимости от страны.

На электростанции трансформаторы изменяют напряжение от генераторов до уровня, подходящего для передачи , чтобы минимизировать потери.

После дальнейших преобразований напряжения в сети передачи, напряжение окончательно преобразуется до стандартного использования до подачи электроэнергии потребителям.

Большинство автомобильных генераторов генерируют трехфазный переменный ток и преобразуют его в постоянный ток с помощью диодного моста .

Трансформаторные соединения

Обмотка трансформатора, соединенная «треугольником», включается между фазами трехфазной системы. Трансформатор типа «звезда» соединяет каждую обмотку фазного провода с общей нейтралью.

Можно использовать один трехфазный трансформатор или три однофазных трансформатора.

В системе «открытый треугольник» или «V» используются только два трансформатора. Замкнутый треугольник, состоящий из трех однофазных трансформаторов, может работать как открытый треугольник, если один из трансформаторов вышел из строя или его необходимо удалить. В разомкнутом треугольнике каждый трансформатор должен пропускать ток для своих соответствующих фаз, а также ток для третьей фазы, поэтому мощность снижается до 87%. С одним из трех трансформаторов недостающих , а остальные две эффективности на 87%, емкость составляет 58% ( 2 / 3 из 87%).

Если система с питанием по схеме треугольника должна быть заземлена для обнаружения паразитного тока на землю или защиты от перенапряжения, может быть подключен заземляющий трансформатор (обычно зигзагообразный трансформатор ), чтобы позволить токам замыкания на землю возвращаться из любой фазы на землю. Другой вариант — это система «треугольник с заземлением», которая представляет собой замкнутый треугольник, заземленный на одном из переходов трансформаторов.

Трехпроводные и четырехпроводные схемы

Схема звезды (Y) и треугольника (Δ)

Существует две основные трехфазные конфигурации: звезда (Y) и треугольник (Δ). Как показано на схеме, дельта-конфигурация требует только трех проводов для передачи, а конфигурация звезда (звезда) может иметь четвертый провод. Четвертый провод, если он есть, предоставляется как нейтраль и обычно заземляется. В трех- и четырехпроводном обозначении не учитывается заземляющий провод, расположенный над многими линиями передачи, который предназначен исключительно для защиты от неисправностей и не пропускает ток при нормальном использовании.

Четырехпроводная система с симметричными напряжениями между фазой и нейтралью получается, когда нейтраль соединяется с «общей точкой звезды» всех обмоток питания. В такой системе все три фазы будут иметь одинаковую величину напряжения относительно нейтрали. Были использованы другие несимметричные системы.

Четырехпроводная система «звезда» используется, когда необходимо обслуживать смесь однофазных и трехфазных нагрузок, например, смешанные нагрузки освещения и двигателя. Примером применения является местное распределение в Европе (и в других местах), где каждый покупатель может получать питание только от одной фазы и нейтрали (что является общим для трех фаз). Когда группа потребителей, совместно использующих нейтраль, потребляет неравные фазные токи, общий нейтральный провод переносит токи, возникающие в результате этих дисбалансов. Инженеры-электрики пытаются спроектировать трехфазную систему питания для любого места так, чтобы мощность, потребляемая от каждой из трех фаз, была одинаковой, насколько это возможно в этом месте. Инженеры-электрики также стараются организовать распределительную сеть таким образом, чтобы нагрузки были максимально сбалансированы, поскольку те же принципы, которые применяются к отдельным помещениям, также применимы к электроэнергии крупномасштабной системы распределения. Следовательно, органы снабжения прилагают все усилия для распределения мощности, потребляемой на каждой из трех фаз, по большому количеству помещений, так что в среднем в точке питания наблюдается как можно более сбалансированная нагрузка.

Конфигурация «треугольник-звезда» на сердечнике трансформатора (обратите внимание, что у практического трансформатора обычно разное количество витков на каждой стороне).

Для домашнего использования некоторые страны, такие как Великобритания, могут подавать одну фазу и нейтраль с высоким током (до 100  А ) на один объект, в то время как другие, такие как Германия, могут подавать 3 фазы и нейтраль каждому потребителю, но с предохранителем меньшей мощности. номинальный ток, обычно 40–63  А на фазу, и «вращается», чтобы избежать эффекта увеличения нагрузки на первую фазу.

Трансформатор для системы « треугольник с высокой ветвью », используемой для смешанных однофазных и трехфазных нагрузок в одной распределительной системе. Трехфазные нагрузки, такие как двигатели, подключаются к L1, L2 и L3. Однофазные нагрузки подключаются между L1 или L2 и нейтралью или между L1 и L2. Фаза L3 в 1,73 раза больше напряжения L1 или L2 относительно нейтрали, поэтому эта ветвь не используется для однофазных нагрузок.

На основе соединения звезда (Y) и треугольник (Δ). Как правило, существует четыре различных типа соединений обмоток трехфазного трансформатора для целей передачи и распределения.

  • звезда (Y) — звезда (Y) используется для малого тока и высокого напряжения.
  • Дельта (Δ) — Дельта (Δ) используются для больших токов и низких напряжений.
  • Дельта (Δ) — звезда (Y) используется для повышающих трансформаторов, т. Е. На генерирующих станциях.
  • звезда (Y) — Дельта (Δ) используется для понижающих трансформаторов, т. е. в конце передачи.

В Северной Америке иногда используется питание по схеме «треугольник» с высоким плечом, когда одна обмотка трансформатора, подключенного по схеме «треугольник», питающего нагрузку, имеет центральный отвод, а этот центральный отвод заземлен и подключен как нейтраль, как показано на второй схеме. Эта установка создает три различных напряжения: если напряжение между центральным ответвлением (нейтралью) и каждым из верхнего и нижнего ответвлений (фаза и противофаза) составляет 120  В (100%), напряжение между фазной и противофазной линиями составляет 240 В (200%), а напряжение между нейтралью и «верхней ветвью» составляет ≈ 208 В (173%).

Причина, по которой используется питание, подключенное по схеме треугольника, обычно для питания больших двигателей, требующих вращающегося поля. Однако в рассматриваемых помещениях также потребуются «нормальные» североамериканские источники питания 120 В, два из которых выведены (180 градусов «не в фазе») между «нейтралью» и любой из центральных фазовых точек с отводом.

Сбалансированные схемы

В идеально сбалансированном корпусе все три линии имеют одинаковые нагрузки. Изучая схемы, мы можем установить отношения между линейным напряжением и током, а также напряжением и током нагрузки для нагрузок, соединенных звездой и треугольником. { \ circ} — \ theta \ right), \ end {align}}}

где Z total — это сумма импедансов линии и нагрузки ( Z total = Z LN + Z Y ), а θ — фаза полного импеданса ( Z total ).

Разность фазового угла между напряжением и током каждой фазы не обязательно равна 0 и зависит от типа импеданса нагрузки Z y . Индуктивные и емкостные нагрузки приводят к тому, что ток либо отстает, либо опережает напряжение. Однако относительный фазовый угол между каждой парой линий (от 1 до 2, от 2 до 3 и от 3 до 1) по-прежнему будет составлять -120 °.

Векторная диаграмма для звездообразной конфигурации, в которой V ab представляет линейное напряжение, а V an — фазное напряжение. Напряжения сбалансированы как:
  • V ab = (1∠α — 1∠α + 120 °) √ 3  | V | ∠α + 30 °
  • V bc = √ 3  | V | ∠α — 90 °
  • V ca = √ 3  | V | ∠α + 150 °
(в данном случае α = 0.)

Применяя закон Кирхгофа (KCL) к нейтральному узлу, три фазных тока суммируются с полным током в нейтральной линии. В сбалансированном случае:

я 1 + я 2 + я 3 знак равно я N знак равно 0. {\ displaystyle I_ {1} + I_ {2} + I_ {3} = I _ {\ text {N}} = 0.}

Дельта (Δ)

Генератор трехфазного переменного тока, подключенный по схеме звезды к нагрузке, соединенной треугольником

В схеме треугольника нагрузки подключаются поперек линий, поэтому нагрузки видят линейные напряжения:

V 12 знак равно V 1 — V 2 знак равно ( V LN ∠ 0 ∘ ) — ( V LN ∠ — 120 ∘ ) знак равно 3 V LN ∠ 30 ∘ знак равно 3 V 1 ∠ ( ϕ V 1 + 30 ∘ ) , V 23 знак равно V 2 — V 3 знак равно ( V LN ∠ — 120 ∘ ) — ( V LN ∠ 120 ∘ ) знак равно 3 V LN ∠ — 90 ∘ знак равно 3 V 2 ∠ ( ϕ V 2 + 30 ∘ ) , V 31 год знак равно V 3 — V 1 знак равно ( V LN ∠ 120 ∘ ) — ( V LN ∠ 0 ∘ ) знак равно 3 V LN ∠ 150 ∘ знак равно 3 V 3 ∠ ( ϕ V 3 + 30 ∘ ) . {\ circ} — \ theta \ right), \ end {align}}}

где, опять же, θ — фаза дельта-импеданса ( Z Δ ).

Дельта-конфигурация и соответствующая векторная диаграмма его токов. Фазные напряжения равны линейным напряжениям, а токи рассчитываются как:
  • I a = I ab — I ca = √ 3  I ab ∠ − 30 °
  • I b = I bc — I ab
  • I c = I ca — I bc
Общая передаваемая мощность составляет:
  • S = 3V фаза I * фаза

Проверка векторной диаграммы или преобразование из векторной нотации в комплексную показывает, как разница между двумя линейными напряжениями приводит к линейному напряжению, которое больше в √ 3 раза . Поскольку в схеме «треугольник» нагрузка соединяется между фазами трансформатора, она обеспечивает разность фазных напряжений, которая в √ 3 раза превышает напряжение между фазами и нейтралью, подаваемое на нагрузку в конфигурации звездой. Поскольку передаваемая мощность составляет V 2 / Z, полное сопротивление в конфигурации треугольника должно быть в 3 раза больше, чем было бы в конфигурации звезды, чтобы та же мощность передавалась.

Однофазные нагрузки

За исключением системы треугольника с высокой ветвью , однофазные нагрузки могут быть подключены к любым двум фазам, или нагрузка может быть подключена от фазы к нейтрали. Распределение однофазных нагрузок между фазами трехфазной системы уравновешивает нагрузку и позволяет наиболее экономично использовать проводники и трансформаторы.

В симметричной трехфазной четырехпроводной системе звезда, три фазных провода имеют одинаковое напряжение относительно нейтрали системы. Напряжение между линейными проводниками в √ 3 раза больше напряжения между фазным проводом и нейтралью:

V LL знак равно 3 V LN . {\ displaystyle V _ {\ text {LL}} = {\ sqrt {3}} V _ {\ text {LN}}.}

Все токи, возвращающиеся от потребителей к трансформатору питания, делятся на нейтральный провод. Если нагрузки равномерно распределены по всем трем фазам, сумма возвратных токов в нулевом проводе будет приблизительно равна нулю. Любая несимметричная фазовая нагрузка на вторичной обмотке трансформатора неэффективно использует мощность трансформатора.

Если нейтраль питания разорвана, напряжение между фазой и нейтралью больше не поддерживается. Фазы с более высокой относительной нагрузкой будут испытывать пониженное напряжение, а фазы с более низкой относительной нагрузкой будут испытывать повышенное напряжение, вплоть до межфазного напряжения.

Высокой ноги дельта обеспечивает фаза-нейтраль отношения V LL = 2  V LN   , однако, Л.Н. нагрузка накладывается на одну фазу. На странице производителя трансформатора предполагается, что нагрузка LN не должна превышать 5% от мощности трансформатора.

Поскольку √ 3 ≈ 1,73, определение V LN как 100% дает V LL ≈ 100% × 1,73 = 173% . Если V LL был установлен на 100%, то V LN ≈ 57,7% .

Несбалансированные нагрузки

Когда токи на трех проводах под напряжением трехфазной системы не равны или не находятся под точным фазовым углом 120 °, потери мощности больше, чем в идеально сбалансированной системе. Для анализа неуравновешенных систем используется метод симметричных компонент .

Нелинейные нагрузки

При линейных нагрузках нейтраль пропускает ток только из-за дисбаланса между фазами. Газоразрядные лампы и устройства, использующие входной каскад выпрямителя и конденсатора, такие как импульсные источники питания , компьютеры, офисное оборудование и т. Д., Создают гармоники третьего порядка , которые синфазны на всех фазах питания. Следовательно, такие гармонические токи складываются в нейтрали в системе звезды (или в заземленном (зигзагообразном) трансформаторе в системе треугольника), что может привести к тому, что ток нейтрали превысит фазный ток.

Трехфазные нагрузки

Важным классом трехфазной нагрузки является электродвигатель . Трехфазный асинхронный двигатель имеет простую конструкцию, изначально высокий пусковой момент и высокую эффективность. Такие двигатели находят широкое применение в промышленности. Трехфазный двигатель компактнее и дешевле, чем однофазный двигатель того же класса напряжения и номинала, а однофазные двигатели переменного тока мощностью более 10   л.с. (7,5 кВт) встречаются редко. Трехфазные двигатели также меньше вибрируют и, следовательно, служат дольше, чем однофазные двигатели той же мощности, используемые в тех же условиях.

Нагрузки резистивного нагрева, такие как электрические котлы или отопление помещений, могут быть подключены к трехфазным системам. Аналогичным образом можно подключить электрическое освещение.

Мерцание на частоте линии в свете вредно для высокоскоростных камер, используемых при трансляции спортивных мероприятий для замедленного воспроизведения. Его можно уменьшить путем равномерного распределения источников света, работающих от линейной частоты, по трем фазам, чтобы освещенная область освещалась всеми тремя фазами. Этот прием успешно применялся на Олимпийских играх 2008 года в Пекине.

Выпрямители могут использовать трехфазный источник для создания шестиимпульсного выхода постоянного тока. Выход таких выпрямителей намного плавнее, чем однофазный выпрямитель, и, в отличие от однофазного, не опускается до нуля между импульсами. Такие выпрямители могут использоваться для зарядки аккумуляторов, процессов электролиза, таких как производство алюминия, или для работы двигателей постоянного тока. «Зигзагообразные» трансформаторы могут производить эквивалент шестифазного двухполупериодного выпрямления, двенадцать импульсов на цикл, и этот метод иногда используется для снижения стоимости фильтрующих компонентов при одновременном улучшении качества получаемого постоянного тока.

Трехфазная вилка, обычно используемая на электрических плитах в Германии.

Одним из примеров трехфазной нагрузки является электродуговая печь, используемая в сталеплавильном производстве и при переработке руд.

Во многих европейских странах электрические плиты обычно рассчитаны на трехфазное питание. Индивидуальные нагревательные элементы часто подключаются между фазой и нейтралью, чтобы обеспечить подключение к однофазной цепи, если трехфазная сеть недоступна. Другими обычными трехфазными потребителями в бытовой сфере являются безбаквальные системы водяного отопления и накопительные нагреватели . Дома в Европе и Великобритании стандартизированы на номинальное напряжение 230 В между любой фазой и землей. (Существующие источники питания по-прежнему составляют около 240 В в Великобритании и 220 В на большей части континента.) Большинство групп домов питаются от трехфазного уличного трансформатора, так что отдельные помещения с потреблением выше среднего могут получать питание от второго или подключение третьей фазы.

Фазовые преобразователи

Фазовые преобразователи используются, когда трехфазное оборудование необходимо эксплуатировать от однофазного источника питания. Они используются, когда трехфазное питание недоступно или стоимость неоправданна. Такие преобразователи также могут позволять изменять частоту, позволяя регулировать скорость. В некоторых железнодорожных локомотивах используется однофазный источник для привода трехфазных двигателей, питаемых от электронного привода.

Роторный фазовый преобразователь представляет собой трехфазный двигатель со специальными исходными механизмами и коэффициент мощности коррекцией , которая дает сбалансированные трехфазные напряжения. При правильной конструкции эти вращающиеся преобразователи могут обеспечить удовлетворительную работу трехфазного двигателя от однофазного источника. В таком устройстве накопление энергии осуществляется за счет инерции (эффект маховика) вращающихся компонентов. Внешний маховик иногда находится на одном или обоих концах вала.

Трехфазный генератор может приводиться в действие однофазным двигателем. Эта комбинация двигатель-генератор может обеспечивать функцию преобразователя частоты, а также преобразование фазы, но требует двух машин со всеми их затратами и потерями. Метод двигатель-генератор также может формировать источник бесперебойного питания при использовании в сочетании с большим маховиком и двигателем постоянного тока с батарейным питанием; такая комбинация будет обеспечивать почти постоянную мощность по сравнению с временным падением частоты, которое испытывает резервная генераторная установка, пока резервный генератор не сработает.

Конденсаторы и автотрансформаторы могут использоваться для аппроксимации трехфазной системы в статическом преобразователе фазы, но напряжение и фазовый угол дополнительной фазы могут быть полезны только для определенных нагрузок.

Частотно-регулируемые приводы и цифровые преобразователи фазы используют силовые электронные устройства для синтеза сбалансированного трехфазного источника питания из однофазной входной мощности.

Тестирование

Проверка чередования фаз в цепи имеет большое практическое значение. Два источника трехфазного питания нельзя подключать параллельно, если они не имеют одинаковой последовательности фаз, например, при подключении генератора к распределительной сети под напряжением или при параллельном подключении двух трансформаторов. В противном случае соединение будет вести себя как короткое замыкание, и будет течь избыточный ток. Направление вращения трехфазных двигателей можно изменить, поменяв местами любые две фазы; Может оказаться непрактичным или вредным испытание машины путем кратковременного включения двигателя для наблюдения за его вращением. Последовательность фаз двух источников можно проверить, измерив напряжение между парами клемм и наблюдая, что клеммы с очень низким напряжением между ними будут иметь одну и ту же фазу, тогда как пары, которые показывают более высокое напряжение, находятся на разных фазах.

Если абсолютная идентичность фаз не требуется, можно использовать приборы для проверки чередования фаз, чтобы определить последовательность чередования за одно наблюдение. Прибор для проверки чередования фаз может содержать миниатюрный трехфазный двигатель, направление вращения которого можно наблюдать непосредственно через корпус прибора. Другой шаблон использует пару ламп и внутреннюю фазосдвигающую схему для отображения чередования фаз. Другой тип прибора может быть подключен к обесточенному трехфазному двигателю и может обнаруживать небольшие напряжения, вызванные остаточным магнетизмом, когда вал двигателя вращается вручную. Лампа или другой индикатор загорается, чтобы показать последовательность напряжений на клеммах для данного направления вращения вала.

Альтернативы трехфазному

Двухфазная электроэнергия
Используется, когда трехфазное питание недоступно, и позволяет удвоить нормальное рабочее напряжение для мощных нагрузок.
Двухфазная электроэнергия
Использует два переменного напряжения с фазовым сдвигом на 90 градусов между ними. Двухфазные цепи могут быть соединены двумя парами проводов, или два провода могут быть объединены, при этом для схемы требуется только три провода. Токи в общем проводе в 1,4 раза превышают ток в отдельных фазах, поэтому общий провод должен быть больше. Двухфазные и трехфазные системы могут быть соединены между собой трансформатором Скотта-Т , изобретенным Чарльзом Ф. Скоттом . Очень ранние машины переменного тока, особенно первые генераторы на Ниагарском водопаде , использовали двухфазную систему, и некоторые оставшиеся двухфазные системы распределения все еще существуют, но трехфазные системы вытеснили двухфазную систему для современных установок.
Моноциклическая мощность
Асимметричная модифицированная двухфазная система питания, используемая General Electric примерно в 1897 году, отстаиваемая Чарльзом Протеем Штайнметцем и Элиху Томсоном . Эта система была разработана, чтобы избежать нарушения патентных прав. В этой системе генератор был намотан с однофазной обмоткой полного напряжения, предназначенной для освещения нагрузок, и с малой долей (обычно 1/4 линейного напряжения) обмоткой, которая вырабатывала напряжение в квадратуре с основными обмотками. Намерение состояло в том, чтобы использовать эту дополнительную обмотку «силового провода» для обеспечения пускового момента для асинхронных двигателей, при этом основная обмотка обеспечивает питание осветительных нагрузок. После истечения срока действия патентов Westinghouse на симметричные двухфазные и трехфазные системы распределения электроэнергии моноциклическая система вышла из употребления; его было трудно анализировать, и его хватило не на то, чтобы разработать удовлетворительный учет энергии.
Системы высокого фазового порядка
Были построены и испытаны для передачи энергии. Такие линии передачи обычно используют шесть или двенадцать фаз. Линии передачи высокого фазного порядка позволяют передавать чуть меньшую, чем пропорционально большую мощность, через заданный объем без затрат на преобразователь постоянного тока высокого напряжения (HVDC) на каждом конце линии. Однако для них соответственно требуется больше единиц оборудования.

Цветовые коды

Проводники трехфазной системы обычно обозначаются цветовым кодом, чтобы обеспечить сбалансированную нагрузку и обеспечить правильное чередование фаз для двигателей . Используемые цвета могут соответствовать международному стандарту IEC 60446 (позже IEC 60445 ), более старым стандартам или вообще не соответствовать стандарту и могут отличаться даже в пределах одной установки. Например, в США и Канаде для заземленных (заземленных) и незаземленных систем используются разные цветовые коды.

Страна Фазы Нейтраль,
N
Защитное заземление,
ПЭ
L1 L2 L3
Австралия и Новая Зеландия (AS / NZS   3000: 2007, рис.   3.2, или IEC   60446, утвержденный AS: 3000) Красный или коричневый Белый; пред. желтый Темно-синий или серый Черный или синий Зеленые / желто-полосатые; очень старые установки, зеленые
Канада Обязательный Красный Черный Синий Белый или серый Зеленый, возможно, с желтыми полосами, или без теплоизоляции
Изолированные системы апельсин Коричневый Желтый Белый или серый Зеленый возможно желто-полосатый
Европейский CENELEC ( Европейский Союз и другие; с апреля 2004 г., IEC 60446 , позже IEC   60445-2017), Великобритания (с 31   марта 2004 г.), Гонконг (с июля 2007 г.), Сингапур (с марта 2009 г.), Россия (с 2009 г. ; ГОСТ   Р   50462), Аргентина, Украина, Беларусь, Казахстан Коричневый Черный Серый Синий Зеленая / желто-полосатая
Более старый европейский (до IEC 60446 , зависит от страны)
Великобритания (до апреля 2006 г.), Гонконг (до апреля 2009 г.), ЮАР, Малайзия, Сингапур (до февраля 2011 г.) Красный Желтый Синий Черный Зеленые / желто-полосатые; перед c. 1970, зеленый
Индия Красный Желтый Синий Черный Зеленый возможно желто-полосатый
Чили — NCH 4/2003 Синий Черный Красный Белый Зеленый возможно желто-полосатый
Бывший СССР (Россия, Украина, Казахстан; до 2009 г.), Китайская Народная Республика (GB   50303-2002, раздел   15.2.2) Желтый Зеленый Красный Голубое небо Зеленая / желто-полосатая
Норвегия (до принятия CENELEC) Черный Белый / серый Коричневый Синий Желто-зелено-полосатая; пред. желтый или неизолированный
Соединенные Штаты Обычная практика Черный Красный Синий Белый или серый Зеленый, возможно, с желтыми полосами, или без теплоизоляции
Альтернативная практика Коричневый Апельсин (дельта) Желтый Серый или белый Зеленый
Фиолетовый (Уай)

Смотрите также

Ноты

Рекомендации

внешние ссылки

какая сила тока и напряжение; для чего используется розетка трехфазная и однофазная?

Розетка – это электротехническое оснащение, без которого невозможно сегодня представить ни жилое, ни рабочее помещение. Поскольку техника используется разная, характеристики электрофурнитуры для нее тоже будут отличаться. Ни для кого не секрет, что мощность современных бытовых приборов несколько выше, чем 2-3 десятилетия назад. Именно поэтому были изменены и ГОСТы. Так, для советских разъемов стандартным было ограничение нагрузки 6А в сетях с напряжением 220в, сегодня же она увеличена до 16А. Для больших нагрузок подводятся трехфазные сети с напряжением 380в. Розетка 3 х фазная отличается по конструкции и способна выдерживать нагрузки до 32А.

Какая сила тока в розетке 220в и 380в, и для каких бытовых приборов необходимо 16, 25 и 32 ампера?

Сегодня каждый человек знает, сколько вольт в розетке. Стандартное напряжение в отечественных бытовых электросетях 220 вольт. В некоторых странах принят иной стандарт и там оно может быть 127 или 250 вольт. Большинство современной техники рассчитано именно на такие показатели. Однако помимо напряжения при монтаже проводки необходимо учитывать предполагаемую мощность подключаемых потребителей. Так на сегодняшний день в продаже представлены розетки 220 вольт с ограничением нагрузки 16А и 25А. Они используются для разных целей. Поскольку сила тока в розетке 220в прямо пропорциональна потребляемой мощности подключенного к ней оборудования.

К примеру, несколько десятилетий назад бытовой электротехники было не много, и особой мощностью она не отличалась, ограничение нагрузки на одну точку было 6А.  В такой разъем можно подключить технику мощностью до 1,5кВт. Однако для современного дома этого уже слишком мало, так как даже стандартный электрочайник может потреблять до 2.5 кВт. Именно поэтому для современных разъемных соединений установлен стандарт ограничения нагрузки 16А, что позволяет безопасно подключать потребители мощностью до 3,5 кВт. В домах, где предполагается установка электроплит до 6кВт устанавливают так называемые силовые розетки 25А 220в. В целом это максимальные значения для бытовых электросетей.

Для более мощной техники используют трехфазные сети с напряжением 380в и соответствующие розетки 380 вольт (до 32А). Такие разъемы обычны для мастерских, объектов общественного питания, но могут быть установлены и в частном доме, если все нагревательные приборы (в том числе и отопительные) работают от электросети. Однако в таких случаях требуется не только установка специальной электрофурнитуры, но и усиленная проводка.

Как найти фазу в розетке, и зачем нужны трехфазные; как измерить напряжение и определить силу тока

Нередко при внесении каких-либо изменений в электропроводку возникает необходимость определить фазный провод. Независимо от того, какое напряжение в розетке, по современным нормам они должны иметь цветную маркировку. Так желто-зеленый провод – это заземление, а синий или голубой – ноль. Соответственно остальные (один или три) – фаза, обычно фазовые провода бывают:

  • по нормам до 2011г – желтый, зеленый, красный;
  • после 2011г – коричневый, черный, серый.

Однако в некоторых сетях, монтировавшихся до 2011г, черный провод использовался для заземления. Кроме этого в однофазной проводке принято фазу подключать справа.

Если какая либо маркировка отсутствует, то пригодится пробник с неоновой лампой. При прикосновении к фазе индикатор загорится. Если используется пробник со светодиодом, при проверке нельзя касаться рукой металлической площадки на торце ручки. Чтобы определить, какой ток в розетке, необходим вольтметр. Он же пригодится и при определении фаз трехфазного подключения. Так между каждой из фаз и нолем будет 220в при линейном напряжении 380в и 127в – при линейном 220в (но последний разъем сегодня практически не встречается и не используется). В бытовых сетях трехфазное подключение может использоваться для кухонных печей с электродуховкой большой мощности. Клеммные щитки в некоторых моделях позволяют, таким образом, равномерно распределить нагрузку.

Подробнее о выборе и монтаже розетки

[vc_row][vc_column width=”1/1″] [vc_toggle title=”Если необходимая сила тока в розетке — 1 ампер, сколько вольт в ней должно быть?” open=”true”]

Ампер и вольт — разные физические величины. Вольт (В) — это напряжение, которое необходимо для того, чтобы протолкнуть 1 Кл (кулон) электричества через сеть. Ампер (А) — сила электротока в проводнике, показывающая, сколько кулонов проходит через проводник за 1 секунду. Если сила тока в проводнике составляет 1 Ампер, это означает, что за 1 секунду он пропускает заряд электричества, равный 1 Кл.

Если силу тока умножить на напряжение сети, то в итоге мы получим показатель ее мощности. Например:

Напряжение обычной бытовой сети — 220 В

Ток — 1 А

Мощность электросети=220 В*1 А=220 Вт (Ватт)

Поэтому вопрос о том, сколько вольт в ампере, звучит не совсем корректно. Правильная формулировка: «Какую мощность (в ватах) развивает электроприбор, потребляющий ток 1А?»

Ответ на него будет звучать так: «Электрический прибор, потребляющий ток в 1А, при подключении к бытовой электросети с напряжением 220В, будет развивать мощность 220 Вт».

Формулы для вычисления значения тока и мощности электролинии представлены на рисунке ниже.

[/vc_toggle] [vc_toggle title=”Как выбрать розетку для дома?” open=”false”]

Розетка — устройство для подключения бытовых приборов к электросети. Состоит она из корпуса и колодки, к контактам и клеммам которой подсоединяются токоподводящие провода.

Различают розетки бытовые и промышленные. По нормам среднее напряжение — 220В в розетке бытового назначения. Допустимая сила тока для такой розетки — 10А-16А, что подходит для подключения прибора мощностью 3520 Вт. При установке техники большей мощности контакты сильно нагреваются, и возрастает возможность возгорания. Для электроплиты мощностью 8 кВт обычная розетка, выдерживающая силу тока в 16 А, не подойдет.

Как узнать, сколько ампер в 220-вольтной розетке? Если разделить 8 кВт (8000Вт) на напряжение в сети (220В), то получим, что сила тока при подключении такой плиты будет свыше 36А. Это значит, что в характеристиках розетки должно быть указано, что она рассчитана на ток до 40А. Аналогично можно подобрать розетки и для других бытовых приборов.

[/vc_toggle] [vc_toggle title=”Как самостоятельно измерить силу тока в розетке?” open=”false”]

Сила тока в розетке 220В не измеряется, поскольку ее там нет. Розетка может быть только рассчитана на определенную силу тока, которая необходима для работы того или иного прибора.

Проверяется сила тока в определенном участке цепи. Используется для этого прибор амперметр. Измеряется сила тока в такой последовательности:

    1. Необходимо создать последовательную цепь, состоящую из бытового прибора, силу тока которого нужно измерить, и амперметра.
    2. При подключении амперметра следует соблюдать полярность — “+” измерительного прибора подключается к “+” источника тока, а “-” — к “-” источника тока.

Амперметр на электрической схеме измерения постоянного тока обозначен символом:

Как известно, существует зависимость силы тока от напряжения в сети. Для ее измерения используется закон Ома: I (сила тока в участке цепи) =U (напряжение на этом участке)/R (постоянный показатель сопротивления участка).

[/vc_toggle] [vc_toggle title=”Как и чем измерить напряжение в розетке?” open=”false”]

Напряжение в домашней электросети должно находиться в пределе 220В ±10. Максимальное напряжение в сети должно составлять не более 220+10%= 242В. Если в квартире тускло, или слишком ярко горят лампочки, либо ни быстро перегорают, часто выходят из строя электроприборы, рекомендует проверить напряжение в розетке. Для этого используются специальные приборы:

      • вольтметр;
      • мультиметр;
      • тестер.

      Перед использованием прибора необходимо проверить его изоляцию.

      Как проверить напряжение в розетке? Для этого следует установить переключатель пределов измерения в необходимое положение (до 250 В — для измерения переменного напряжения).

      Щупы прибора вставляют в гнезда розетки, табло прибора покажет напряжение в розетке.

      Внимание:  не следует касаться руками проводов и контактов, находящихся под напряжением.  [/vc_toggle] [vc_toggle title=”Как правильно подключить трехфазную розетку?” open=”false”]

      При установке розетки на 380 вольт необходимо правильно подключить 4 или 5 проводов. Если перепутать местами ноль и фазу, это грозит не только поломкой электроприбора, но и возгоранием проводки.

      Силовая линия для электропитания устройства состоит из трехфазной розетки и соответствующей ей вилки. Розетка 380 вольт подключается в следующей последовательности:

          1. На счетчике отключается напряжение, его отсутствие проверяется отверткой с индикатором.
          2. К контактам L1, L2, и L3 подключают в любой последовательности фазы A, B и C.
          3. Нулевая фаза подключается к контакту N.
          4. На контакт РЕ, который может обозначаться значком , подключается защитный заземляющий проводник от заземляющего контура.
          5. После подключения рекомендуется проверить индикатором отсутствие фазы на корпусе розетки, замерить напряжение на клеммнике (между фазами оно должно составлять 380 Вольт).

      [/vc_toggle] [vc_toggle title=”В каком случае устанавливается трехфазная розетка?” open=”false”]

      Большинство электрических приборов, используемых в доме, рассчитано на стандартное напряжение в сети (220В). Но есть приборы, электроплиты, производственное оборудование, мощные насосы, которые рассчитаны на большее напряжение в 380 В. Для такого оборудования устанавливаются трехфазные розетки.

      Трехфазная розетка имеет четыре контакта — три из них (L1, L2 и L3) используются для подключения вилки, а четвертый (N) — нулевой, который применяется в качестве заземления.

      Для подключения розетки 380В от щитка прокладывается четырехжильный кабель (3 фазы + ноль). Минимальная площадь среза токопроводящей жилы составляет 2,5 мм.кв. Оптимальным вариантом для подключения мощных машин является медный провод 3х4+2,5 (состоящий из трех жил сечением 4 мм. кв. и одной жилы, сечением 2,5 мм. кв.).

      Трехфазная розетка должна иметь отдельный выключатель на электрощите, устанавливается она вблизи подключаемого прибора.

      [/vc_toggle] [/vc_column][/vc_row]

      Разница между однофазным и трехфазным двигателем со сравнительной таблицей

      Системы электроснабжения в основном подразделяются на два типа: однофазные и трехфазные. Однофазный используется там, где требуется меньшая мощность и для работы с небольшими нагрузками. Эти три фазы используются в крупных отраслях промышленности, на заводах и в производственных цехах, где требуется большое количество энергии.

      Одно из основных различий между однофазным и трехфазным состоит в том, что однофазное соединение состоит из одного проводника и одного нейтрального провода, тогда как трехфазное питание использует три проводника и один нулевой провод для замыкания цепи.Некоторые другие различия между ними объясняются ниже в сравнительной таблице.

      Сравнительная таблица: однофазный, V / S, трехфазный

      Основа для сравнения Однофазный Трехфазный
      Определение Питание по одному проводнику. Питание по трем проводам.
      Форма волны
      Кол-во жил. Требуется два провода для завершения цепи. Требуется четыре провода для замыкания цепи.
      Напряжение Перенос 230 В Перенос 415 В
      Название фазы Расщепленная фаза Без другого названия
      Возможность передачи энергии Минимум Максимум
      Сеть Простой Сложный
      Сбой питания Возникает Не возникает
      Убыток Максимум Минимум
      Подключение источника питания
      КПД Меньше Высокая
      Экономичный Меньше Больше
      Использует Для бытовой техники. В крупных отраслях промышленности и при высоких нагрузках.

      Определение однофазной

      Для однофазной схемы требуется два провода для завершения цепи, т. Е. Провод и нейтраль. По проводнику проходит ток, а нейтраль — это обратный путь тока. Однофазный питает напряжение до 230 вольт. В основном он используется для работы небольших приборов, таких как вентилятор, кулер, кофемолка, обогреватель и т. Д.

      Определение трех фаз

      Трехфазная система состоит из четырех проводов, трех проводов и одной нейтрали.Проводники не в фазе и на расстоянии 120 ° друг от друга. Трехфазная система также используется как однофазная система. При низкой нагрузке от трехфазного источника питания можно взять одну фазу и нейтраль.

      Трехфазное питание непрерывно и никогда полностью не падает до нуля. В трехфазной системе питание может потребляться по схеме звезды или треугольника. Соединение звездой используется для передачи на большие расстояния, потому что оно имеет нейтраль для тока короткого замыкания.

      Соединение в треугольник состоит из трех фазных проводов и без нейтрали.

      Ключевые различия между однофазными и трехфазными

      1. При однофазном питании мощность протекает по одному проводнику, тогда как трехфазное питание состоит из трех проводов для питания.
      2. Для однофазного источника питания требуется два провода (одна фаза и одна нейтраль) для замыкания цепи. Три фазы требуют трех фазных проводов и одного нулевого провода для завершения цепи.
      3. Однофазный источник питания обеспечивает напряжение до 230 В, а трехфазный — до 415 В.
      4. Максимальная мощность передается через три фазы по сравнению с однофазным питанием.
      5. Однофазная двухпроводная сеть, что делает сеть простой, тогда как трехфазная сеть сложна, так как состоит из четырех проводов.
      6. В однофазной системе только один фазный провод, и если в сети происходит неисправность, то полностью выходит из строя блок питания.Но в трехфазной системе сеть состоит из трех фаз, и если неисправность происходит на одной из фаз, две другие будут непрерывно подавать питание.
      7. КПД однофазного источника питания меньше по сравнению с трехфазным питанием. Потому что для трехфазного питания требуется меньше проводников по сравнению с однофазным питанием для эквивалентной схемы.
      8. Однофазный источник питания требует большего обслуживания и становится более дорогостоящим по сравнению с трехфазным питанием.
      9. Однофазный источник питания в основном используется в доме и для работы с небольшими нагрузками.Трехфазное питание используется в крупных отраслях промышленности и для работы с большими нагрузками.

      Соединение трех фаз звездой позволяет использовать два разных напряжения (т. Е. 230 В и 415 В). Питание 230 В осуществляется через однофазный и один нейтральный провод, а трехфазное питание подается между любыми двумя фазами.

      Объяснение трехфазного питания

      | Объяснение трехфазного питания

      В этом видео подробно рассматривается трехфазное питание и объясняется, как оно работает.Трехфазную мощность можно определить как общий метод выработки, передачи и распределения электроэнергии переменного тока. Это разновидность многофазной системы, которая является наиболее распространенным методом передачи электроэнергии в электрических сетях во всем мире.

      Дополнительные ресурсы Raritan


      Расшифровка стенограммы:
      Добро пожаловать в это анимированное видео, в котором быстро объясняется трехфазное питание. Я также объясню загадку того, почему 3 линии электропередачи разнесены на 120 градусов, потому что это важный момент для понимания трехфазного питания.

      Питание, которое поступает в центр обработки данных, обычно представляет собой трехфазное питание переменного тока, что означает трехфазное питание переменного тока.

      Давайте посмотрим на упрощенный пример того, как генерируется трехфазная мощность.

      Этот пример отличается от того, что я использовал бы для описания того, как трехфазный двигатель использует мощность. В видео с переменным током мы показали, как вращение магнита по одному проводу заставляет ток течь вперед и назад. Теперь мы собираемся вращать магнит через 3 провода и смотреть, как это влияет на ток в каждом проводе.

      В этом примере с тремя фазами северный положительный конец магнита направлен прямо вверх по линии один.

      Чтобы облегчить объяснение концепции, давайте воспользуемся циферблатом и скажем, что первая линия находится в позиции двенадцати часов. Электроны в строке 1 будут течь к северному полюсу магнита. Что происходит, когда магнит теперь поворачивается на 90 градусов?

      Как мы видели на видео с переменным током, поскольку магнит перпендикулярен линии 1, электроны в линии 1 перестанут двигаться.Затем, когда магнит поворачивается более чем на 90 градусов и южный полюс магнита приближается к линии один, электроны меняют направление, что означает, что направление тока изменится. Это было подробно описано в видео по переменному току. Если вы нажали на это видео, не понимая, что такое переменный ток, сначала просмотрите это видео.

      Глядя на график, вы можете понять, почему я выбрал аналоговый циферблат. Круг составляет 360 градусов, и часы делят круг на 12 частей, так что каждый час охватывает 30 градусов круга.Переход от 12 к 3 составляет 90 градусов, а от 12 к 4 — 120 градусов.

      При генерации трехфазного питания медные провода расположены на расстоянии 120 градусов друг от друга. Итак, когда вы находитесь в позиции четырех часов в нашем примере, это 120 градусов от линии один. А в положении «восемь часов» он находится на 120 градусах от обоих положений: «4 часа» и «12 часов». 3 линии равномерно расположены по кругу.

      Если северный полюс находится ближе к одному из 3 проводов, электроны движутся в этом направлении.Чем ближе южный полюс подходит к каждому проводу, тем больше электроны удаляются от южного полюса. В каждой из этих трех линий, поскольку электроны движутся вперед и назад, они не всегда движутся в том же направлении или с той же скоростью, что и две другие линии.

      Давайте еще раз посмотрим на пример. Когда магнит вращается, когда северный полюс находится в положении 1 часа, он становится перпендикулярным линии 2, поэтому, конечно, электроны перестают двигаться по линии 2. Но они все еще движутся по линии 1, привлеченные более близким северным полюсом, и они движущиеся по линии 3 отталкиваются от южного полюса.Когда северный полюс магнита смотрит на 2 часа, тогда на линии 1 и [линию] 2 воздействует северный полюс, но южный полюс находится прямо напротив линии 3, так что теперь он на пике тока. В 3 часа магнит перпендикулярен линии 1, поэтому электроны перестают двигаться, но на линию 2 влияет северный полюс, а на линию 3 — южный полюс, поэтому ток течет по линиям 2 и 3.

      Надеюсь, это Пример показывает, как в любое время ток всегда течет как минимум по 2 линиям. Он также показывает взаимосвязь между 3 линиями, когда магнит вращается по кругу.Когда магнит вращается вокруг циферблата, на каждую из трех линий будет воздействовать либо северный, либо южный полюс, за исключением случаев, когда магнит перпендикулярен линии.

      Давайте сосредоточимся на линии 1. Она находится на пике тока, когда северный полюс указывает на 12 и 6 часов. Это при нулевом токе, когда северный полюс указывает на 3 и 9 часов. Только 1 из 3 линий всегда находится на пике, но поскольку есть 3 линии, есть 3 положительных пика и 3 отрицательных пика для каждого цикла.В 6 различных положениях на циферблате одна из линий находится на пике. Позиции 12 и 6 — это чередующиеся пики линии 1, позиции 2 и 8 — чередующиеся пики линии 3, а 4 и 10 — чередующиеся пики линии 2.

      Теперь давайте объясним те запутанные формы сигналов, которые часто используются для изображения трех фаз. Если вы посмотрите на пример формы волны, вы увидите, что первая линия синего цвета, она начинается с нуля. Это означает, что магнит перпендикулярен этой линии. По мере движения магнита вы можете видеть, как ток достигает своего пика.Затем, когда положительный полюс проходит мимо этого провода, ток начинает ослабевать, пока магнит снова не станет перпендикулярным, что приводит к нулевому току. Когда отрицательный полюс начинает приближаться, ток меняет направление и движется в другом направлении к другому пику, прежде чем вернуться к нулевому току. Это завершает 1 полный цикл для этой линии.

      Для того, чтобы двумерная диаграмма показывала взаимосвязь между линиями, теперь на ней отображается зазор, обозначающий время, за которое магнит вращается на 120 градусов.Это когда красная линия имеет нулевой ток. По мере того как магнит продолжает вращаться, красная линия будет двигаться в сторону максимального положительного тока, затем вернется к нулю, после чего ток изменит направление. График также показывает, что третья линия начнется при нулевом токе через 120 градусов после второй строки. Итак, если вы посмотрите на эти 3 линии, вы увидите, что, когда одна линия находится на пике, другие 2 линии все еще генерируют ток, но они не на полную мощность, то есть они не на пике. Таким образом, когда электроны перетекают от положительного пика к отрицательному, ток отображается как текущий от положительных значений к отрицательным.Помните, что положительные и отрицательные стороны не отменяют друг друга. Положительный и отрицательный оттенки используются только для описания чередования тока.

      В трехфазной цепи вы обычно берете одну из трех токоведущих линий и подключаете ее к другой из трех токоведущих линий. Одно исключение из этого описано в видео «Дельта-звезда».

      В качестве примера возьмем трехфазную линию на 208 В. Каждая из 3 линий будет передавать 120 вольт. Если вы посмотрите на диаграмму, вы легко увидите выходную мощность любых двух линий.Если одна линия на пике, другая линия не на пике. Вот почему в трехфазной цепи неправильно умножать 120 вольт на 2, чтобы получить 240 вольт.

      Итак, если вам интересно, почему у вас дома есть 110/120 вольт для обычных розеток, но у вас также есть приборы на 220/240 вольт, что дает? Что ж, это не трехфазное питание. На самом деле это 2 однофазные линии.

      Так как же вычислить мощность объединения двух линий в трехфазную цепь? Формула рассчитывается как умножение вольт на квадратный корень из 3, который округляется до 1.732. Для 2 линий, каждая по 120 вольт, вычисление для этого составляет 120 вольт, умноженное на 1,732, и результат округляется до 208 вольт.

      Вот почему мы называем это трехфазной цепью на 208 вольт или трехфазной линией на 208 вольт. Трехфазная цепь на 400 вольт означает, что каждая из трех линий передает 230 вольт.

      Последняя тема, о которой я расскажу в этом видео: почему компании и центры обработки данных используют 3 фазы?

      А сейчас позвольте мне дать вам простой обзор. Для трехфазного подключения вы подключаете линию 1 к линии 2 и получаете 208 вольт.В то же время вы [можете] подключить линию 2 к линии 3 и получить 208 вольт. И вы [можете] подключить линию 3 к линии 1 и получить 208 вольт. Если провод может выдавать 30 ампер, то передаваемая мощность составляет 208 вольт, умноженное на 30 ампер, умноженное на 1,732, при общей доступной мощности 10,8 кВА.

      Для сравнения, для однофазной 30-амперной цепи с напряжением 208 В вы получите только 6,2 кВА. Обычно 3 фазы обеспечивают большую мощность.

      Существуют и другие факторы, почему гораздо лучше подавать трехфазное питание в стойку центра обработки данных, чем использовать однофазное питание, и эти факторы обсуждаются в видео в зависимости от напряжения и силы тока, а также в видео с напряжением 208 и 400 вольт.

      Еще раз о расчетах трехфазного переменного тока — Dataforth

      Преамбула

      Это примечание по применению является продолжением публикации Dataforth Указания по применению AN109, которые содержат систему переменного тока определения и основные правила расчетов с примерами. Читателю предлагается ознакомиться с AN109, Ссылки 3, 4 и 5 в качестве фона для данной инструкции по применению.

      Трехфазная система напряжения

      Системы трехфазного напряжения состоят из трех синусоидальные напряжения равной величины, равной частоты и разделены на 120 градусов.

      На рисунке 1 показаны функции косинуса в реальном времени и соответствующее обозначение вектора для трехфазного межфазного система напряжения с линейным напряжением V12 в качестве эталона.

      Обзор свойств системы трехфазного напряжения

      Трехфазные сети питания и нагрузки имеют два базовые комплектации; 4-проводная звезда и 3-проводная «Дельта». На рисунке 2 показан базовый трехфазный четырехпроводной звездой. настроенная система напряжения с V1N в качестве эталона и На рисунке 3 показана трехпроводная система напряжения, настроенная по схеме треугольника. с V12 как ссылка соответственно.

      Важные определения, соглашения и правила расчета как для 3-фазной 4-проводной звезды, так и для 3-проводной схемы треугольника сконфигурированные системы напряжения описаны в следующих список без «беспорядочной» векторной математики.

      Ориентация фазора:
      По определению, все синусоидальные векторы вращаются в против часовой стрелки с {1-2-3} или {3-2-1} последовательность и углы измеряются как положительные в против часовой стрелки.4-проводная 3-фазная система звезды показан на рисунке 2 с V1N, выбранным в качестве ссылки. В линейные напряжения составляют V12, V23 и V32 с линейно- нейтральные напряжения показаны как V1N, V2N и V3N. Рисунок 3 показаны правильные линейные векторные напряжения для трехфазного фаза 3-проводная конфигурация треугольника с выбранным вектором V12 как ссылки. Примечание: любой вектор может быть выбран как ссылка, выбор совершенно произвольный.

      Чередование фаз:
      Последовательность фаз определяет последовательную синхронизацию, по которой каждый вектор линейного напряжения отстает друг от друга линейное напряжение вектор против часовой стрелки. Рисунки 1, 2 и 3 показана последовательность фаз {1-2-3}. Последовательность {1-2-3} означает, что V12 опережает V23 на 120 градусов, а V23 опережает V31 на 120 градусов. Кроме того, V1N опережает V2N на 120 градусов, а V2N опережает V3N на 120 градусов.это необходимо установить последовательность фаз перед выполнением любые вычисления для того, чтобы вычисленный вектор вектора углы могут быть правильно расположены друг относительно друга.

      Есть только две допустимые последовательности фаз; {1-2-3} последовательность и последовательность {3-2-1}. Обе эти фазы последовательность определяется тем, как 3-фазный трансформатор линии питания (L1, L2, L3) подключены и промаркированы.Рисунок 4 иллюстрирует последовательность {3-2-1} относительно {1-2-3} последовательность. Примечание: последовательность фаз может быть можно изменить, просто поменяв местами соединения любых двух из трех (L1, L2, L3) линий питания; однако это следует делать только в соответствии со всеми надлежащими нормы, правила и одобрение инженерного оборудования завода сотрудники.

      Индексы:
      Соблюдение правильного порядка индекса для всех векторов количество — один из важнейших ключей к успеху 3-х фазные расчеты.На рисунке 4 показан правильный нижний индекс порядок для каждой из двух различных последовательностей фаз. За последовательность {1-2-3}, правильный порядок индексов [12], [23] и [31]; тогда как правильный порядок нижнего индекса для последовательность {3-2-1} — это [32], [21] и [13].

      Нижний индекс:
      После определения последовательности фаз и правильного индексы обозначены, расчеты по этим индексы вместе с условными обозначениями, принятыми для Версия закона Ома для переменного тока предотвратит угловые ошибки.

      По соглашению, V12 — это падение напряжения вектора плюс (1) к минус (2) в направлении тока, протекающего из точки (1) к точке (2) и равен этому току, умноженному импедансом переменного тока между точками (1) и (2). За пример в векторной записи;

      Сложение / вычитание фазора:
      Правильная запись в нижнем индексе устанавливает правильный метод для векторного сложения / вычитания векторов.На рисунке 2 фазоры линейного напряжения в этой трехфазной {1-2-3} Последовательная 4-проводная система «звезда» состоит из линейно-нейтральной векторные напряжения следующим образом;

      Если среднеквадратичные значения линейных напряжений равны (стандарт сбалансированной системы), то приведенные выше уравнения показывают, что все линейные напряжения питания фазора — фаза-нейтраль напряжения, умноженные на 3, и подводят фазу к нейтрали векторы напряжения на 30 градусов .Например, стандартный 4-проводная 3-фазная система со звездой с фазным напряжением 120 вольт и V1N, выбранных в качестве опорного фазора на ноль градусов имеет линейное напряжение;

      V12 = 208∠ 30 °; V23 = 208∠ -90 °; V31 = 208∠ 150 °.

      Важная концепция: Конфигурация трехфазного трехпроводного треугольника система уравновешивания напряжений фактически не имеет линейно- нейтральные напряжения, такие как звездочка.Тем не менее дельта-фазное напряжение, как показано на рисунке 3, все еще может быть построенный из теоретического набора сбалансированных 3-фазных линейные напряжения, как показано выше. В отношения с этими теоретическими напряжениями чрезвычайно полезно для определения углов дельта-фазора.

      Процедуры, инструкции и формулы расчетов

      Следующий список процедур, руководств и формул проиллюстрируйте схему расчета трехфазного фазора количества с использованием типовых данных паспортной таблички, взятых из отдельные единицы нагрузки.

      Расчеты производятся следующим образом;


      1. Идентифицируйте последовательность фаз; {1-2-3} или {3-2-1}
      2. Обозначить индексы; [12], [23], [31] или [32], [21], [13]
      3. Предположим, что линейные токи L1, L2, L3 текут к нагрузкам. и нейтральный (обратный) ток течет к источнику питания.
      4. Ток нагрузки и падения напряжения должны соответствовать подстрочные обозначения, как определено ранее.
      5. Используйте «Закон Ома для переменного тока» для расчета величин и углы каждой отдельной однофазной нагрузки текущий. Просмотрите AN109 компании Dataforth, ссылка 1.
      6. Важные понятия: линейные токи как для звезды, так и для 3-фазные нагрузки, сбалансированные по треугольнику, рассчитываются с использованием следующие отношения;
        1. Входная мощность переменного тока = 3 x (Vline) x (Iline) x PF
        2. PF — косинус угла, на который прямая токи опережают или отстают от линейного напряжения.Фактическое трехфазное напряжение между фазой и нейтралью существуют в конфигурациях звезды; тогда как они теоретически в дельта-конфигурациях. Например, принять любую сбалансированную 3-фазную нагрузку на 10 ампер линейного тока и коэффициент мощности запаздывания 0,866 (30 °). Если системная последовательность {1-2-3} и V12 является справочным, тогда I1 = 10∠ -60 °; I2 = 10∠ 180 °; I3 = 10∠ 60 °.
      7. Определите количество треугольников мощности; Вт «P» и VARs «Q» для каждой нагрузки. Ссылка на обзор 1.
      8. Сумма ранее рассчитанной индивидуальной нагрузки токи с использованием правильной записи индекса для определения каждая отдельная строка ток
      9. Наконец, просуммируйте все отдельные треугольники мощности нагрузки. количества (Вт «P» и VAR «Q») для определения количество треугольников мощности системы; P, Q и PF.Это этот последний шаг, который определяет, как загружается система население ведет себя.

      Примеры расчетов

      В следующих примерах предполагается типичное напряжение 208–120 вольт. трехфазная конфигурация 4 звезды с чередованием фаз из {1 2 3}, и V12 выбран в качестве ссылки. Это звезда система; однако нагрузки, подключенные между каждым из три отдельные линии питания (L1, L2, L3) составляют 208-вольтовый трехпроводной, треугольник.Три категории однофазные нагрузки предполагаются для следующих расчеты. Эти категории идентичны тем определено в Руководстве по применению AN109 (Ссылка 1) и перечисленные ниже с необходимыми данными паспортной таблички.

      • Выходные киловатты; КВт, КПД (опция), PF = 1
      • выходная мощность; HP, КПД, P
      • Входная кВА; КВА, ПФ, КПД 100%.

      В таблице 1 показаны расчетные значения для предполагаемого население этих нагрузок. Читатели должны проверить эти расчеты. Dataforth предлагает интерактивный Excel рабочая книга, аналогичная таблице 1, которая автоматически рассчитывает все параметры трехфазной системы. Видеть Ссылка 2 для загрузки загрузите этот файл Excel.

      Пример расчета нагрузок между фазой и нейтралью
      Трехфазные звездообразные системы с нейтралью могут иметь одинаковые или неравные отдельные однофазные нагрузки, подключенные между любой из линий питания (L1, L2, L3) и нейтраль.Системы сбалансированы, если все межфазные нагрузки идентичны.

      На рисунке 5 показаны три группы однофазных линейно-нейтральных нагрузки, подключенные по трехфазной системе звезды. Эта конфигурация однофазных нагрузок может быть рассматривается как составная несбалансированная звездообразная нагрузка

      На рисунке 6 показаны три группы однофазных межфазных нагрузки, подключенные по трехфазной системе звезды.Этот конфигурацию однофазных нагрузок можно рассматривать как композитная несбалансированная дельта-нагрузка

      На рисунке 7 показаны группа сбалансированных нагрузок звездой и группа сбалансированных дельта-нагрузок, обе из которых (могут быть) подключен по трехфазной системе звезды.

      Таблица 1 представляет собой составной набор расчетных результатов для конфигурации, показанные на рисунках 5, 6 и 7.Эти расчеты предполагают произвольную популяцию типа загружает ранее определенные и использует все правила, процедуры и определения, как показано выше. В Результаты системы из расчетов Таблицы 1 показаны ниже. в таблицах 2 и 3.

      Напряжение сети V12 (208 при нулевом градусе) является опорным для указанные выше текущие углы.

      Читателям предлагается проверить эти расчеты.

      Как упоминалось выше, Dataforth предоставляет интерактивный Файл Excel, предназначенный для увлеченного исследователя при расчете системных токов и соответствующей мощности уровни. Этот файл позволяет исследователю ввести паспортную табличку. данные по всем системным нагрузкам; после этого все линии тока векторов и мощности рассчитываются автоматически. «Интерактивная рабочая тетрадь по Excel для трех- Расчет фаз переменного тока »можно загрузить с Веб-сайт Dataforth, см. Ссылку 2.

      Рисунок 8 — иллюстрация изолированного истинного значения Dataforth. Модуль ввода RMS, SCM5B33. Эта функция также доступен в корпусе на DIN-рейку; DSCA33. Dataforth имеет набор модулей преобразования сигналов, разработанных специально для измерения переменного среднеквадратичного значения высокого напряжения параметры с использованием встроенного затухания. Читатель рекомендуется посетить ссылки 1, 6, 7 и 8.Ссылки на Dataforth Читателю предлагается посетить веб-сайт Dataforth и изучить их полную линейку изолированного преобразования сигнала модули и соответствующие примечания по применению, см. ссылки показано ниже.

      1. Dataforth Corp., http://www.dataforth.com
      2. Dataforth Corp., AN110 Excel Интерактивная работа Книга для расчетов трехфазного переменного тока
      3. Dataforth Corp., Примечание по применению AN109, Измерения однофазного переменного тока
      4. Dataforth Corp., AN109 Excel Интерактивная работа Книга для расчетов однофазного переменного тока
      5. Национальный электротехнический кодекс
      6. контролируется National Fire Агентство по охране, NFPA
      7. Dataforth Corp., Система аттенюатора напряжения SCMVAS,
      8. Dataforth Corp., серия модульных формирователей сигналов с истинным среднеквадратичным значением SCM5B33
      9. Dataforth Corp., серия DSCA33 формирователей сигналов True RMS для монтажа на DIN

      Что такое трехфазное питание? (с изображением)

      Трехфазное питание — это метод передачи электроэнергии, в котором используются три провода для подачи трех независимых переменных электрических токов.Ток в каждом проводе отличается от других на одну треть полного цикла, причем каждый ток представляет одну фазу. Это означает, что устройство, работающее от источника питания этого типа, получает более стабильный поток электроэнергии, чем от однофазной системы распределения. Некоторые трехфазные системы питания фактически имеют четыре провода; четвертый — нейтральный провод, который позволяет системе использовать более высокое напряжение.

      Счетчик электроэнергии.
      Назначение

      Три тока вместе создают сбалансированную нагрузку, что невозможно с однофазным переменным током.В переменном токе (AC) ток меняет направление, протекая взад и вперед по цепи; это означает, что напряжение также меняется, постоянно меняясь от максимального до минимального. Трехфазное питание объединяет три провода для смещения максимальных и минимальных колебаний, так что устройство, получающее этот тип питания, не испытывает таких больших колебаний напряжения. Это делает трехфазное питание очень эффективным способом распределения электроэнергии. Следовательно, трехфазный электродвигатель потребляет меньше электроэнергии и обычно служит дольше, чем однофазный электродвигатель того же напряжения и номинальной мощности.

      Истоки

      Трехфазный поток энергии начинается на электростанции, где генератор электроэнергии преобразует механическую энергию в переменные электрические токи.После многочисленных преобразований в распределительной и передающей сети мощность преобразуется в стандартное напряжение, подаваемое в дома и на предприятия, 230 вольт в Европе или 120 вольт в Северной Америке. Выход трансформатора обычно подключается к системе электропитания с помощью трех проводов под напряжением, связанных с одним заземленным возвратным током. Это называется звездой.

      Приложения

      Этот тип системы обычно не обеспечивает электроснабжение жилых домов, но когда это происходит, главный распределительный щит разделяет нагрузку.Большинство бытовых нагрузок используют однофазное питание из-за более низкой стоимости распределения. Трехфазное питание наиболее распространено в промышленных условиях или там, где требуется больше энергии для работы тяжелого оборудования, хотя бывают и исключения.

      Электродвигатели работают чаще всего от трехфазного питания.Трехфазный асинхронный двигатель сочетает в себе высокий КПД, простую конструкцию и высокий пусковой момент. Промышленные вентиляторы, воздуходувки, насосы, компрессоры и многие другие виды оборудования обычно используют этот тип электродвигателя. Другие системы, которые могут использовать трехфазное питание, включают оборудование для кондиционирования воздуха, электрические котлы и большие выпрямительные системы, используемые для преобразования переменного тока в постоянный.

      В то время как большинство двигателей, работающих от трехфазного питания, довольно большие, есть примеры очень маленьких двигателей, таких как те, которые приводят в действие компьютерные вентиляторы, которые работают на этом типе мощности.Инверторная схема внутри вентилятора преобразует постоянный ток (DC) в трехфазный переменный ток. Это помогает снизить шум, так как крутящий момент трехфазного двигателя очень плавный.

      Стандарты

      Провода, называемые проводниками, используемые в трехфазной энергосистеме, обычно имеют цветовую кодировку, хотя цвета сильно различаются в зависимости от местоположения, и в большинстве стран есть свои собственные коды.В Северной Америке для обозначения трех фаз традиционно используются черный, красный и синий, например, белый — нейтральный провод. В Европе, напротив, коричневый, черный и серый обозначают фазы, а нейтральный провод синий. Даже с этими национальными стандартами в повседневных приложениях обычно бывает много нарушений. Для тех, кто работает с трехфазным питанием, не рекомендуется делать предположения, не сверившись со схемой для конкретной установки или рассматриваемой системы.

      Особенности обеспечения электробезопасности в сетях с изолированным нейтральным напряжением до 1000 В на горных предприятиях

      1.Введение

      Внедрение современных технологических процессов на карьерах, напрямую связанных с ростом единичной мощности вскрышных и горных машин, предъявляет все более строгие требования к обеспечению безопасности и надежности работы электрической системы [1, 2] .

      Однако увеличение протяженности электрических сетей, питающих вскрышные и горные машины, увеличивает вероятность однофазного замыкания на землю, которое, как правило, является основной причиной прерывания электроснабжения.Действия релейной защиты и автоматики позволяют поддерживать непрерывность электроснабжения только при наличии возможности периодического контроля параметров изоляции фаз сети по отношению к земле.

      В круге вопросов, связанных с обеспечением безопасности электроснабжения электроэлектрифицированного горно-шахтного оборудования и безопасности его эксплуатации, особое место занимает разработка методики определения параметров изоляции, которая занимает особое место по результатам Используемый метод вытекает из основных положений организационных и технических мероприятий, способствующих формированию культуры обслуживания внутреннего электроснабжения горнодобывающих предприятий.Важность разработки метода определения величины изоляции определяется еще и тем, что он может быть использован в других отраслях промышленности, где есть трехфазная электрическая сеть с изолированной нейтралью с напряжением до и выше 1000 В.

      Для экспериментальных исследований состояния изоляции трехфазных электрических сетей с изолированной нейтралью на напряжение до и выше 1000 В был предложен ряд методов [1, 2, 3, 4, 5, 6, 7, 8, 9], принимая учитывать присущие ему специфические характеристики во внутреннем электроснабжении открытых горных работ.К методам измерения параметров изоляции предъявляется ряд требований, а именно:

      1. Измерения следует проводить без перебоев в подаче электроэнергии потребителям.

      2. Процесс измерения не должен приводить к повреждению изоляции электрических сетей и поражению электрическим током.

      3. Измерения должны проводиться с использованием небольшого количества электрического оборудования и приборов.

      4. Выполнение определения параметров изоляции должно быть безопасным как для исследователей, так и для персонала, обслуживающего электрические системы.

      5. Измерения исходных значений должны быть достаточно точными и, по возможности, иметь небольшую продолжительность работ по измерению.

      6. Точность метода не должна превышать 10%.

      На основании анализа существующих методик [1, 2] с учетом изложенных требований к экспериментальным исследованиям параметров изоляции трехфазных электрических сетей с изолированной нейтралью сделан вывод о том, что разработанные ранее методы не в полной мере соответствуют требованиям Основные требования.Поэтому в настоящее время на шахтах ранее предложенные методы не применялись в качестве основного средства предотвращения, обеспечивающего бесперебойное электроснабжение и безопасность эксплуатации электроустановок.

      В связи с этим возникают проблемы дальнейшего совершенствования средств контроля параметров изоляции электрических сетей в сочетании с проведением профилактических мероприятий и периодических измерений в различных условиях эксплуатации. Метод определения параметров изоляции фаз от земли электрических сетей не должен влиять на работу электросистемы, а расчет параметров изоляции должен содержать минимум вычислений.

      На практике эксплуатации электрических сетей с изолированной нейтралью напряжением до 1000 В и выше необходимо знать значения параметров изоляции, по которым разрабатываются организационные и технические меры по обеспечению безопасности и сохранности электроэнергии. снабжение горнодобывающих предприятий.

      Одной из важнейших проблем в горнодобывающей отрасли является проблема повышения надежности систем электроснабжения и снижения уровня электробезопасности электроустановок в шахтах.Это состояние связано с физическим устареванием большей части оборудования. Интенсивное повышение производительности майнинга приводит к усложнению конфигурации сети, что существенно влияет на состояние электрических сетей, снижая надежность их работы. В то же время увеличивается количество повреждений в электрических сетях, которые являются основными причинами износа и старения сетевой изоляции [9].

      При добыче угля машины и оборудование для открытых горных работ работают в тяжелых условиях, которые вызваны постоянным движением фронта горных работ, вибрацией, пылью и климато-метеорологическими условиями.Это приводит к тому, что в процессе эксплуатации электрическая изоляция подвергается изменению в электрической сети, изменяя свойства электроизоляционных материалов. Это влияет на снижение электрического сопротивления и электрической прочности [10].

      Основными факторами старения изоляции являются рабочее напряжение, кратковременное повышение напряжения при внешних и внутренних перенапряжениях, окислительные процессы, вызванные ионизацией воздуха и ведущие к развитию поверхностного разряда, механические воздействия, объемные и поверхностные. загрязнение, нагрев и увлажнение, влияющие на качество напряжения, вызванные использованием управляемых полупроводниковых преобразователей.Выход из строя узлов горных машин из-за изменения номинальных нагрузок; отказы информационного оборудования могут привести к простою производства [11].

      Вышеупомянутые факторы усиливают процесс снижения сопротивления изоляции фазы электрической сети относительно земли при добыче угля. Пониженное сопротивление изоляции фазы электрической сети относительно земли увеличивает вероятность возникновения аварийных режимов работы электроустановок, которые могут быть следствием поражения людей электрическим током.За исключением поражения электрическим током, необходимо обеспечить высокий уровень изоляции в сети с изолированной нейтралью напряжением до 1000 В посредством мероприятий, связанных с систематическим и эффективным контролем состояния изоляции. Это одно из основных направлений обеспечения электробезопасности в конкретных условиях разработки угольных месторождений открытым способом [12].

      Согласно «Правилам техники безопасности для электроустановок» требуется обязательное применение автоматического контроля изоляции с отключенным действием с периодическими измерениями сопротивления изоляции фазы электрической сети относительно земли в электроустановках до 1000 В [13, 14].

      При разработке угольных месторождений растет количество поражений электрическим током, в основном из-за слабой формулировки организационно-технических мероприятий по обследованию, ремонту, а также состояния изоляции электрических сетей и электрооборудования. Своевременное определение степени износа изоляции позволяет предотвратить выход оборудования из строя [15]. Следует отметить, что оперативный персонал полагается на защиту от утечки тока, которая при эксплуатации электрических сетей и электрооборудования может быть повреждена или искусственно выведена из строя.

      Большой вклад в определение критериев для ученых-электриков внесли Московская государственная горная академия, Калифорнийский университет, Университет штата Джорджия. Одним из критериев электробезопасности при аварийной эксплуатации является предельное значение тока, протекающего через тело человека Ih = 6,0 мА, при контактном напряжении Uc = 20,0 В при длительности протекания тока через тело человека т. > 1,0 с, при основной частоте f = 50 Гц, трехфазная сеть с напряжением изолированной нейтрали до 1000 В [16].

      В целом, анализ исследований состояния изоляции и однофазного тока замыкания на землю показал, что применяемые устройства защитного отключения (УЗО) при подземной добыче и добыче угля соответствуют критериям электробезопасности в нормальных и аварийных режимах работы в трех -фазная сеть с изолированной нейтралью напряжением до 1000 В.

      В горных выработках с использованием экскаваторов напряжение электрической сети до 1000 В не содержит линий длиной более 10 м, и поэтому сеть передачи данных аналогична сетям электрической дуги. печи, которые называют короткими.Исследования состояния изоляции при разработке угольных месторождений и горных карьеров в коротких сетях до 1000 В на экскаваторах производятся недостаточно. Установленные устройства защитного отключения в коротких сетях до 1000 В экскаваторов не исследовались по критериям электрических нормальных и аварийных режимов работы [17].

      Изучение технических параметров устройств защитного отключения на соответствие критериям электробезопасности нормального и аварийного режимов работы в трехфазной сети короткого замыкания с изолированной нейтралью напряжением до 1000 В необходимо для исследования состояния изоляции.

      Практика электрических сетей до 1000 В при разработке угольных месторождений на предприятии показывает отсутствие методик измерения сопротивления изоляции, и если это так, то измерение сопротивления изоляции производится, как правило, очень нерегулярно с большими ошибками. Наиболее широко используемый метод измерения — это применение сопротивления изоляции измерительного устройства Megger [1].

      Следует отметить, что результаты измерений Megger с указанием «правил электроустановки» (КЭИ) [18] и «правил технической эксплуатации электроустановок» не соответствуют реальным значениям сопротивления изоляции сети. , поскольку измерения производятся при отсутствии рабочего сетевого напряжения и отключенных потребителей электроэнергии [19].

      Использование измерителя Megger при низких значениях сопротивления изоляции в электрической сети и отключенных потребителях позволяет качественно установить повреждения. Отсюда следует, что использование Megger как средства для оценки условий электробезопасности электроустановок недостаточно, так как невозможно определить сопротивление, реактивное сопротивление и импеданс фазовой изоляции электрической сети относительно земли под рабочим напряжением. [1].

      Согласно EIC, показатель сопротивления изоляции должен быть не менее –0.Омическое сопротивление 5 МОм в отдельном элементе цепи и электроприборе. Оценить состояние изоляции в целом не представляется возможным. Следовательно, норма EIC относительно омического сопротивления −0,5 МВт не может быть принята в качестве критерия для условий эксплуатационного контроля изоляции и, следовательно, в качестве меры электробезопасности, поскольку с точки зрения безопасности производственные работы с электричеством затрудняют оценку изоляция и ее компоненты [18].

      На основании вышеизложенного основной задачей исследования состояния электроизоляции при разработке угольных месторождений открытым способом является определение основных параметров изоляции электрических сетей до 1000 В и выявление факторов. влияние на состояние изоляции в условиях одноковшовых и роторных экскаваторов и буровых установок.

      Горнодобывающие предприятия в настоящее время оснащены высокоэлектрифицированными горными машинами, которые обеспечивают высокую производительность. Эти компании являются крупными потребителями электроэнергии. Мощность электроустановок современных экскаваторов достигает 20 МВт и более и может сравниться с мощностью крупного промышленного предприятия. Действительно, в этих компаниях надежное и непрерывное электроснабжение электрического приемника во многом зависит от состояния работающего электрооборудования, а также от интенсивности электрического повреждения и электрических сетей [20].

      Частое перемещение гибких кабелей, питающих мобильные горные машины, приводит к механической деформации и повреждению. Таким образом, обслуживающий персонал рискует получить поражение электрическим током при работе с кабелем, электрическим оборудованием и металлическими конструкциями. Количество поражений электрическим током в электроустановке прямо пропорционально частоте повреждений электрооборудования. Таким образом, более 80% поражений электрическим током связаны с прямым контактом между человеком и токоведущими частями, а 3–10% связаны с контактом между корпусами электрооборудования во время существования однофазной сети. замыкание на землю [21].

      Согласно регламенту горных работ, на горных предприятиях обязательно аварийное отключение. Защитное отключение — это быстродействующая защита, которая автоматически отключает электрооборудование напряжением менее 1000 В при наличии риска поражения электрическим током [22]. Эта опасность может возникать в результате межфазного замыкания, уменьшения сопротивления изоляции между фазой и землей ниже определенного значения и прикосновения голой руки к линии под напряжением [23]. В таких случаях устройства защитного отключения обеспечивают быстрое отключение силовой части.Время срабатывания современных устройств защитного отключения (УЗО) не превышает времени отпускаемого тока [24].

      Во многом надежность электрооборудования и безопасность его обслуживания зависят от состояния изоляции токоведущих частей электрооборудования [25]. Повреждение изоляции является основным источником несчастных случаев и причиной многих поражений электрическим током разной степени тяжести, а также смертельных случаев. Контроль изоляции в электрических сетях с изолированной нейтралью до 1000 В на горнодобывающих предприятиях осуществляется с помощью устройств автоматического контроля изоляции, таких как AIMD-380, устройств защиты горных работ, таких как MPD, устройств защиты сетей от утечек с автоматической компенсацией емкостной составляющей ток утечки (например,g., PDAC-380), устройства контроля изоляции A-ISOMETER серии IRDH575 (Bender) и ряд других.

      Устройства автоматического контроля изоляции предназначены для защиты людей от поражения электрическим током, постоянного контроля сопротивления изоляции и отключения трехфазных электрических сетей с изолированной нейтралью переменного тока 50 Гц в случае уменьшения сопротивления между их фазами и землей до опасного уровня. уровень. Автоматическая компенсация емкостной составляющей тока утечки используется в устройствах защиты от тока утечки, таких как PDAC, в отличие от устройств автоматического контроля изоляции, таких как AIMD [26].

      На экскаваторах горных выработок предприятия используют устройства защитного отключения типа AIMD, которые предназначены для шахтных электрических сетей, то есть для глубоких разработок. Шахтные электрические сети до 1000 В содержат кабельные линии большой протяженности, где суммарная допускаемость мер изоляции во многом схожа с допуском пропускной способности сетевой изоляции, а активная допускаемость изоляции ниже суммарной, а допустимая допускаемая способность изоляции. Таким образом, в шахтных сетях ток при однофазном замыкании на землю превышает ток уставки УЗО.Это обеспечивает эффективную защиту людей от поражения электрическим током. Эффективность УЗО в шахтных электрических сетях до 1000 В показана в работе профессора Манойлова [27].

      В горнодобывающей промышленности люди нередко получают поражение электрическим током во время работ по техническому обслуживанию экскаваторов и бурильных колонн при добыче полезных ископаемых. Пока нет причинных выводов о неэффективности УЗО для защиты людей от поражения электрическим током при эксплуатации экскаваторов и буровых установок.Для повышения эффективности устройств защитного отключения необходимо провести исследования состояния изоляции в трехфазных электрических сетях с изолированной нейтралью до 1000 В на экскаваторе.

      2. Метод определения параметров изоляции в трехфазных электрических сетях с изолированной нейтралью с напряжением до и выше 1000 В

      2.1 Введение

      Одним из факторов поражения электрическим током является ухудшение состояния изоляции трех -фазная электрическая сеть с изолированной нейтралью напряжением до и выше 1000 В.Для повышения эффективности системы электроснабжения необходимо разработать методику определения параметров изоляции при рабочем напряжении. Под эффективностью мы принимаем обеспечение роста электробезопасности и надежности при эксплуатации электроустановок с напряжением до и выше 1000 В. Известный [1] метод определения параметров изоляции «Амперметр-вольтметр» является классическим методом. , так как обеспечивает удовлетворительную точность неизвестных величин, но не обеспечивает безопасности труда при производстве электроустановок и снижает надежность электроснабжения промышленных машин и оборудования.Снижение надежности работы электроустановок и уровня электробезопасности при эксплуатации трехфазных электрических сетей до и выше 1000 В определило, что с помощью метода «Амперметр-вольтметр» необходимо произвести металлическую цепь фазы сети. на землю и измерьте общий ток однофазного замыкания на землю. Так как во время замыкания металлической фазы любой фазы на землю напряжение двух других фаз сети по отношению к земле достигает линейных значений и, таким образом, может привести к короткому замыканию в многофазной сети, которая работает, что определяет надежность снижение мощности производственного оборудования.Снижение электробезопасности определяется тем, что в металлическом замыкании любой фазы электрической сети и заземления контактное напряжение и ступенчатое напряжение будут иметь максимальное значение, и тем самым обеспечить максимальное увеличение вероятности поражения людей электрическим током.

      2.2 Метод определения параметров изоляции в электрической сети с изолированной нейтралью

      Представленный в работе [6] метод определения параметров изоляции в трехфазной электрической сети с напряжением изолированной нейтрали выше 1000 В на основе измерения Значения модулей линейного напряжения, напряжения нулевой последовательности и фазного напряжения относительно земли при подключении известной активной дополнительной проводимости между электрической сетью измеряемой фазы и землей, имеют значительную погрешность.Существенная погрешность определяется тем, что при определении параметров изоляции используется значение модуля напряжения нулевой последовательности, а значит, необходимо использовать обмотки трансформатора напряжения, позволяющие выделить остаточное напряжение.

      На основе вышеизложенных методов определения параметров изоляции в трехфазной сети с напряжением изолированной нейтрали до и выше 1000 В, что обеспечивает удовлетворительную точность определения неизвестных величин за счет исключения измерения модуля остаточного напряжения , эксплуатационная безопасность электроустановок и надежность электросистемы, в связи с исключением измерений полного тока модуля при однофазном замыкании на землю между фазой сети относительно земли.

      Метод определения параметров изоляции в трехфазных симметричных сетях с напряжением до и выше 1000 В, основанный на измеренных значениях модулей линейного напряжения, фазных напряжений A и C относительно земли после подключения дополнительных активная проводимость между фазой А и заземлением сети.

      В результате измерения значений модулей линейного напряжения и фазных напряжений C и A относительно земли с учетом величины дополнительной активной проводимости по математическим формулам определяются:

      y = 1.73UlUАUC2 ‐ UA2go, E1

      g = 3Ul2Ul2−3UA2UC2 − UA22−10,5go, E2

      b = y2 − g20,5, E3

      где Ul — линейное напряжение; UА — напряжение фазы А относительно земли; UСis C — фазное напряжение относительно земли; и go — дополнительная активная проводимость.

      Разработанный в реализации метод не требует создания специального измерительного прибора, поскольку измерительные приборы, то есть вольтметры, доступны в сервисном руководстве. Сопротивление ПЭ-200 используется как активная дополнительная проводимость с R = 1000 Ом, где посредством параллельного и последовательного подключения обеспечивается требуемая рассеиваемая мощность.Для переключения в активный режим ожидания используется переключатель нагрузки ячейки большей проводимости.

      Разработанный метод обеспечивает удовлетворительную точность, прост и безопасен в реализации в трехфазных электрических сетях с напряжением изолированной нейтрали до и выше 1000 В.

      2.3 Анализ погрешности метода определения параметров изоляции в электрической сети с изолированной нейтралью

      Полученные математические зависимости для определения полной и активной проводимости изоляции электрической сети обеспечивают легкую и безопасную работу электроустановок с напряжением до и выше 1000 В.

      Анализ погрешностей разработанного метода определения параметров изоляции в симметричных трехфазных электрических сетях с изолированной нейтралью, основанный на измерении единичного линейного напряжения, фазных напряжений C и A относительно земли после активного подключения дополнительной проводимости между фазой А и электрической сетью и землей выполняется.

      Для повышения эффективности разработанного метода определения параметров изоляции в симметричной трехфазной сети с изолированной нейтралью на основе анализа погрешностей для каждой конкретной сети выбирается дополнительная активная проводимость, чтобы обеспечить удовлетворительную точность измерения необходимое количество.

      Случайная относительная погрешность определения общей проводимости изоляции и ее компонентов в трехфазных симметричных сетях с напряжением до и выше 1000, исходя из измеренных значений модулей линейного напряжения, фазного напряжения C и A по отношению к Земля после подключения активной дополнительной проводимости между фазой и электрической сетью и землей определяется в соответствии с (1), (2) и (3).

      Случайная относительная погрешность определения суммарной проводимости изоляции фаз сети относительно земли определяется по формуле (1):

      y = 1.73UlUАUC2 ‐ UA2go,

      где Ul, UА, UС и go — значения, определяющие общую проводимость сетевой изоляции и полученные прямым измерением. Относительная среднеквадратичная ошибка определения полной проводимости изоляции фаз сети относительно земли определяется из выражения [28, 29]:

      Δy = 1y∂y∂UAΔUA2 + ∂y∂UCΔUC2 + ∂y∂UlΔUl2 + ∂y∂goΔgo20 .5, E4

      где ∂y∂UА, ∂y∂UС, ∂y∂Ul и ∂y∂go — частные производные y = f (Ul, UА, UС, go).

      Здесь ΔUl, ΔUА, ΔUС, Δgo — абсолютные погрешности величин прямых измерений Ul, UА, UС и g, которые определяются следующими выражениями:

      ΔUl = Ul × ΔUl ∗; ΔUС = UС × ΔUС ∗; ΔUА = UА × ΔUА ∗; Δgo = go × Δgo ∗.E5

      Для определения погрешностей измерительных приборов примем, что ΔUl ∗ = ΔUА ∗ = ΔUС ∗ = ΔU ∗, где: ΔU ∗ — относительная погрешность цепей измерения напряжения, а Δgо ∗ = ΔR ∗ — относительная погрешность измерения прибор, который измеряет сопротивление между фазой А и землей. Определить функции частных производных y = f (Ul, UА, UС, go) по переменным Ul, UА, UС, go:

      ∂y∂Ul = 1.73UАUC2 − UA2go; ∂y∂UА = 1.73UlUC2 + UA2UC2− UA22go; ∂y∂UС = −3,46UlUАUСUC2 − UA22go; ∂y∂go = 1.73UlUАUC2 − UA2.E6

      Решение уравнения. (4), подставив значения частных производных уравнения. (6) и частные значения абсолютных ошибок (5), при этом, полагая ΔU ∗ = ΔR ∗ = Δ, получаем:

      εy = ΔyΔ = 1,73UlUАgoUC2 − UA22 + 4UC4 + UC2 + UA22UC2 − UA220, 5.E7

      Полученное уравнение. (7) делится на формулу. (1):

      εy = ΔyΔ =

      3 Технологии ввода / вывода: текущее состояние и потребности в исследованиях | Больше, чем на экране: к интерфейсам каждого гражданина с информационной инфраструктурой страны

      Стр.88

      , установленный конференциями по пониманию сообщений, спонсируемыми DARPA. (MUC).Для приложения «именованный объект», когда система должна найти все названные организации, места, лица, даты, время, денежные суммы и проценты, частота ошибок ниже 5 процент. Для приложения «шаблон сценария», где система извлекает сложные отношения в четко определенных областях (например, совместные предприятия) с открытым исходным кодом (например, Wall Street Журнал ), частота ошибок при нахождении правильных элементов шаблоны составляет около 45 процентов.

      В области машинного перевода наиболее значимой в Европе продолжают происходить успехи. Недавняя работа в США Государства, использующие тексты, написанные с расчетом на перевод, также показывают обещание (Карбонелл, 1992). Несколько речевых переводов системы в ограниченных областях, сочетающие понимание речи, машинное перевод и генерация речи.

      Все еще находятся в зачаточном состоянии системы, с которыми человек может вести слаженный диалог на службе сложного и расширенного задача.Ранние примеры включают систему TRAINS (используется в University of Rochester), что позволяет человеку управлять системой. который планирует транспортировку материалов и систему CommandTalk, который обеспечивает голосовой интерфейс для большого военного симулятора. Подход Садека и его сотрудников в France Telecom (Bretier и Садек, 1996; Bretier et al., 1995), предлагает убедительные доказательства что разговорные языковые системы могут иметь сложные модели диалог и может извлечь из них пользу.В будущих системах потребуется допускать различные речевые действия (например, запросы, утверждения, вопросы, отказы) и содержат модели диалога, которые позволяют установление корреляции между появлением фраз, используемых для относятся к одним и тем же объектам и событиям в дискурсе. Coreference разрешение было предметом многих исследований, и системы, использующие он оценивается в тестах MUC. Также есть неопровержимые доказательства того, что системы разговорного языка могут иметь сложные модели диалога и могут извлечь из них пользу.

      Распознавание жестов

      Ввод жестов может осуществляться в разных формах с различных устройств. (например, мышь, ручка, информационная перчатка). Его роль — передавать информацию (например, определить, сослаться, объяснить, сместить фокус) в манера похожа на другие более изученные формы языка. Жест заменяет щелчок мыши — единственное слово мыши — широким диапазон команд. Удаляет бесчисленные объекты на экране предназначен для того, чтобы позволить пользователю сообщить о своих желаниях.Скорее вместо того, чтобы найти слово, продублировать и щелкнуть по нему, пользователь может делать более простые движения, задействуя только руку. Например, в мастерской, видео Брюса Тоньяццини «Starfire» показало

      .

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован.