Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Скорость в воздуховоде: Расчет скорости воздуха в воздуховоде

Содержание

Расчет скорости воздуха в воздуховоде



Расчет скорости воздуха в воздуховоде - Завод вентиляции Вентпром

+7 (863) 206-16-72
г. Ростов-на-Дону
ул. 1-й Конной Армии, 1


Введите исходные данные:

Расход воздуха, L

Выделить значения:

Скорость воздуха в воздуховоде круглого сечения

⌀ мм ⌀ 100 ⌀ 125 ⌀ 160 ⌀ 200 ⌀ 250 ⌀ 280 ⌀ 315 ⌀ 355 ⌀ 400 ⌀ 450 ⌀ 500 ⌀ 560 ⌀ 630 ⌀ 710 ⌀ 800 ⌀ 900 ⌀ 1000 ⌀ 1120 ⌀ 1250 ⌀ 1400 ⌀ 1600
V, м/с

Скорость воздуха в воздуховоде прямоугольного сечения

AxB мм 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000

Скорость воздуха в воздуховоде (формула расчёта)

Для разработки будущей системы вентиляции немаловажно определиться с габаритами каналов, которые нужно проложить в тех или иных условиях. Во вновь строящемся здании это сделать проще, еще на стадии проектирования расположив все инженерные сети и технологическое оборудование в соответствии с нормативными документами. Другое дело, когда идет реконструкция или техническое перевооружение производства, тут требуется прокладка трасс воздуховодов с учетом существующих условий. Размеры каналов могут сыграть большую роль, а чтобы их правильно вычислить, необходимо принять оптимальную скорость движения воздуха.

Таблица скорость воздуха в воздуховоде.

Порядок выполнения расчета

Имеется еще один вариант устройства приточно-вытяжной вентиляции с механическим побуждением. Заключается он в том, чтобы использовать существующие воздухопроводы для новых вентиляционных установок. Тут также не обойтись без просчета скорости потока в этих старых трубопроводах на основании обследований и измерений.

Общая формула расчета величины скорости воздушных масс (V, м/с) происходит из формулы вычисления расхода приточного воздуха (L, м. куб/ч) в зависимости от размера площади сечения канала (F, м.кв.):

L = 3600 x F x V

Примечание: умножение на цифру 3600 необходимо для приведения в соответствие единиц времени (часы и секунды).

Процесс замера скорости воздуха.

Соответственно, формулу скорости потока можно представить в следующем виде:

V = L / 3600 x F

Рассчитать площадь сечения существующего канала не составляет труда, а если ее нужно вычислить? Тогда и приходит на помощь способ подбора размеров воздуховода по рекомендуемым скоростям воздушных потоков. Изначально из трех параметров, участвующих в расчетах, на данном этапе четко должен быть известен один – это количество воздушной смеси (L, м.куб/ч), необходимое для вентиляции того или иного помещения. Оно определяется в соответствии с нормативной базой в зависимости от назначения строения и его внутренних комнат. Выполняется расчет по числу людей в каждом помещении или по величине выделяющихся вредных веществ, излишков тепла или влаги.

После этого нужно принять предварительное значение скорости воздуха в воздуховодах, сделать это можно воспользовавшись таблицей рекомендуемых скоростей.

Тип воздухопровода Основная магистраль Разводящие каналы Распределение по помещению Раздающие приточные устройства Вытяжные панели, зонты, решетки
Рекомендуемая скорость 6 – 8 м/с 4 – 5 м/с 1,5 – 2 м/с 1 – 3 м/с 1,5 – 3 м/с

Вернуться к оглавлению

Подбор габаритов канала

Выбрав вид воздухопровода и приняв расчетную скорость, можно определить сечение будущего канала по формулам, приведенным выше. Если планируется его изготовить круглой формы, то диаметр посчитать просто:

Расчет воздуховодов для равномерной раздачи воздуха.

D = √ F / 4 π, где:

  • D – диаметр круглого канала в метрах;
  • F – площадь его поперечного сечения в м.
    кв.;
  • π = 3.14

Далее необходимо обратиться к нормативным документам, которые определяют стандартные размеры воздуховодов круглой формы, и выбрать среди них ближайший к расчетному диаметр. Это делается для того, чтобы унифицировать производство элементов вентиляционных систем, номенклатура изделий которых и так достаточно велика. Понятно, что принятый по СНиП новый диаметр будет иметь и другое сечение, поэтому потребуется пересчитать его в обратной последовательности и выйти на значение действительной скорости потока воздушных масс в стандартном канале. При этом величина расхода L по-прежнему должна участвовать в вычислениях как константа. Таким методом просчитывается каждый отдельно взятый участок вентиляционной системы, а разбивка на участки производится по одному неизменному признаку – количеству воздуха (расходу).

Если предполагается выполнить прокладку каналов прямоугольной конфигурации, то нужно подобрать размеры сторон такими, чтобы их произведение дало площадь сечения, которая была вычислена ранее. Нормативное ограничение к таким каналам одно:

А / В ≤ 6,3

Здесь параметры А и В – размеры сторон в метрах. Простыми словами, нормами запрещается выполнять прямоугольные трубопроводы слишком узкими при большой высоте или чересчур низкими и широкими. На таких участках сопротивление потоку будет слишком большим и вызовет экономически необоснованные энергозатраты. Остальной просчет действительной скорости воздуха в воздуховоде производится так, как было описано выше.

Вернуться к оглавлению

Рекомендации по подбору в стесненных условиях

При разработке вентиляционных схем нужно руководствоваться одним правилом, которое просматривается и в таблице: скорость воздуха на каждом участке системы должна возрастать по мере приближения к вентиляционной установке. Если результаты вычислений дают показатели скоростей на каких-нибудь участках, не соответствующие данному правилу, то такая схема работать не будет или же в реальных условиях величины скорости потоков будут далеки от расчетных. Решить вопрос можно изменением размеров воздухопроводов на проблемных участках в сторону уменьшения или увеличения.

Формула определения воздухообмена по кратности.

При выполнении строительных работ по реконструкции или техническому перевооружению производственных зданий часто возникает ситуация, когда для устройства вентиляционных каналов просто не остается свободного места, поскольку насыщенность технологическим оборудованием и трубопроводами в помещении слишком велика. Тогда приходится прокладывать трассы в самых труднодоступных местах либо пересекать перекрытия и стены несколько раз. Все эти факторы могут значительно увеличить сопротивление таких участков. Получается замкнутый круг: чтобы пройти узкие места, нужно уменьшить размер и увеличить скорость, что резко повысит сопротивление участка. Уменьшить скорость воздуха нельзя, потому что тогда увеличатся габариты канала и он не пройдет где нужно. Выход из ситуации заключается в уменьшении габаритов и наращивании мощности вентилятора либо разветвлении воздухопровода на несколько параллельных рукавов.

Если возникает необходимость просчета существующей системы приточных или вытяжных каналов для использования их с другими параметрами производительности по воздуху, то вначале потребуется снять натурные замеры каждого участка воздуховода с разными габаритами. Затем, используя новые значения расходов воздуха, определить действительную скорость потока и сравнить полученные значения с таблицей. На практике допускается превышение рекомендованных скоростей на 3-5 м/с в магистральных, разводящих каналах и ответвлениях. В приточных и вытяжных устройствах увеличение скорости приводит к повышению уровня шума, поэтому недопустимо. Если эти условия соблюдаются, старые воздухопроводы пригодны к использованию после соответствующего их обслуживания.

Правильность всех выполненных расчетов вентиляционной системы покажут пусконаладочные работы, в процессе которых производятся замеры скорости воздуха в каналах через специальные лючки.

Также с помощью измерительных приборов – анемометров – измеряется скорость потока на входе или выходе вентиляционных решеток. Если показатели не соответствуют расчетным, выполняется регулировка всей системы с помощью устанавливаемых дополнительно дроссельных заслонок или диафрагм.

Расчет вентиляции онлайн

condei-chehov

Расчет вентиляции с помощью онлайн калькулятора

CONDEI-CHEHOV.RU

2019-11-10 17:57:09

2019-11-10 17:57:09

Рейтинг ↑ не забываем

При помощи данных калькуляторов, Вы сможете подобрать: вентилятор на вытяжной зонт пристенного типа; островного; потери даления в воздуховоде; кратность воздухообмена для помещений и.т. д. 

По какой формуле происходит расчёт  L (m³/ч) = S (m²) × V (m/c) × 3600

Для определения производительности вентилятора (м³/ч), необходимо ввести значения в  графы сторона А - В и скорость потока на срезе зонта

Формула для круглого вытяжного зонта L (m³/ч) = πR² × V (m/c) × 3600

Для определения производительности вентилятора (м³/ч), необходимо ввести значения в  графы диаметр и скорость потока на срезе зонта

Формула для расчёта Pтр = ((0,15*l/d) * (v*v*1,2)/2)*9,8

Формула для расчёта Pтр = ((0,15*l/(2*a*b/(a+b))) * (v*v*1,2)/2)*9,8

Формула расчёта вентиляции по кратности  L = n*V 

Расчёт кратности воздухообмена в помещений любых типов 

Выберите из выпадающегося меню Ваш вариант и введите объём помещения и получите нужный результат 

Диаметр воздуховода для круглого сечения

Данный калькулятор позволяет расчитать необходимый диаметр воздуховода при известном значении требуемого воздухообмена м3 

Формула по которой происходит расчёт

D = 2000*√(L/(3600*3,14*V))
D - диаметр (мм)
L - воздухообмен помещения (м³/ч)
V - скорость воздуха (м/с)

Диаметр воздуховода для квадратного  сечения 

Формула по которой происходит расчёт

Данный калькулятор позволяет расчитать необходимый диаметр воздуховода при известном значении требуемого воздухообмена м3 

А=В=1000*√(L/3600*V))

A - сторона а (мм) В - сторона b (мм) L - воздухообмен помещения (м³/ч)

V - скорость воздуха (м/с)

 

 

 

 

 

 

 

правильный расчет допустимого объёма воздушных масс, санитарные нормы

Режим микроклимата в любом помещении влияет на работоспособность и самочувствие людей в целом. Для того чтобы определить, каким должен быть состав воздуха, необходимо обратиться к утверждённым законодательным нормам, которые и регулируют этот вопрос. Скорость воздуха в воздуховоде при этом играет ключевую роль для обеспечения такого микроклимата.

Необходимость качественной вентиляции

Сначала необходимо определить, почему важно обеспечить попадание воздуха в помещение через вентиляционные каналы.

Согласно строительным и гигиеническим нормам, каждый промышленный или частный объект должен иметь качественную систему вентиляции. Главной задачей такой системы является обеспечение оптимального микроклимата, температуры воздуха и уровня влажности, чтобы человек при работе или отдыхе мог себя чувствовать комфортно. Это возможно только тогда, когда воздух не является слишком тёплым, переполненным различными загрязнителями и имеет довольно высокий уровень влаги.

Некачественная вентиляция способствует появлению инфекционных заболеваний и патологий дыхательных путей. Кроме этого, быстрее портятся продукты питания. Если воздух имеет очень большой процент влаги, то на стенах может образоваться грибок, который может в последующем перейти на мебель.

Свежий воздух может попасть в помещение разными способами, но основным его источником всё же является качественно вмонтированная система вентиляции. При этом в каждом отдельном помещении она должна просчитываться под его конструктивные особенности, состав воздуха и объём.

Стоит отметить, что для частного дома или квартиры небольших размеров будет достаточно установить шахты с естественной циркуляцией воздуха. Для больших коттеджей или производственных цехов нужно монтировать дополнительное оборудование, вентиляторы для принудительной циркуляции воздушных масс.

При планировке здания любого предприятия, цехов или общественных учреждений больших размеров необходимо следовать таким правилам:

  • в каждой комнате или помещении необходима качественная система вентиляции;
  • состав воздуха должен отвечать всем установленным нормам;
  • на предприятиях следует устанавливать дополнительное оборудование, с помощью которого можно регулировать скорость обмена воздуха, а в целях частного использования — менее мощные вентиляторы, если естественная вентиляция не справляется;
  • в разных помещениях (кухня, санузел, спальня) требуется монтировать разные типы систем вентиляции.

Для того чтобы вентиляция соответствовала таким требованиям, нужно сделать необходимые расчёты. Кроме этого, важно правильно подобрать оборудование — устройства для подачи и отвода воздуха.

Также следует проектировать систему таким образом, чтобы воздух был чистым в том месте, где он будет забираться. В противном случае в вентиляционные шахты и затем в комнаты может попадать загрязнённый воздух.

Во время составления проекта вентиляции, после того как необходимый объём воздуха рассчитан, проделываются отметки, где должны находиться вентиляционные шахты, кондиционеры, воздуховоды и прочие комплектующие. Это относится как к частным коттеджам, так и к многоэтажным домам.

От размеров шахт будет зависеть эффективность работы вентиляции в целом. Необходимые к соблюдению правила по требуемому объёму указаны в санитарной документации и нормах СНиП. Скорость воздуха в воздуховоде в них также предоставлена.

Санитарные нормы

Санитарные нормы

Скорость движения воздуха в воздуховодах непосредственно зависит от таких не менее важных показателей, как уровень шума и вибрации. Воздух, который проходит по каналам, с увеличением количества различных изгибов шахты и поворотов пропорционально увеличивает количество издаваемого шума и вибрации от движения.

По мере уменьшения сопротивления будет снижаться давление в вентиляционной системе и, конечно же, скорость движения кислорода. Для того чтобы понять общие правила выбора оборудования и его правильного расчёта, нужно узнать нормы основных факторов, которые влияют на выбор.

Уровень шума

Нормы, которые можно найти в СНиПах по этому вопросу, касаются всех видов жилых помещений: многоквартирных и частных домов, производственных и общественных зданий.

Согласно таким нормам, необходимо не превышать максимально допустимый уровень шума в следующих помещениях:

  • палаты, больницы, санатории — днём до 50 Дб, а ночью до 40 Дб;
  • учебные кабинеты — до 55 Дб;
  • жилые квартиры — до 55 Дб днём и до 45 Дб ночью;
  • в зданиях, которые прилегают к больницам и санаториям — днём до 60 Дб, ночью до 50 Дб;
  • территории, которые прилегают к жилым зданиям — днём до 70 Дб, а ночью до 60 Дб;
  • непосредственно возле здания школы — до 70 Дб.

Одной из причин увеличения уровня шумов в доме и, соответственно, превышения допустимых норм является неправильно сформированная сеть воздуховодов.

Показатель вибрации

Так же, как и уровень шума, вибрация напрямую влияет на скорость движения кислорода в шахтах. При этом такой показатель зависит от множества факторов. К ним можно отнести качество прокладок (их функция заключается в снижении уровня вибрации), размер воздуховода, скорость кислорода (который движется по каналам), материал для изготовления шахт и прочие нюансы.

Что касается цифр, то уровень вибрации должен быть в пределах 109—115 Дб. Если при проверке эти показатели будут превышены, то необходимо исправлять технические недочёты, допущенные при проектировании, или заменить вентилятор, который работает очень громко.

Скорость потока воздуха в вентиляции по нормам СНиП не должна влиять на увеличение таких показателей, как излишний шум или вибрация.

Кратность воздухообмена

Очищение воздуха в помещении происходит благодаря системе вентиляции. Этот процесс может быть как естественным, так и принудительным. В первом варианте вентиляция происходит в первую очередь через оборудованную систему шахт без вмонтированного дополнительного оборудования. К этому можно отнести постоянное открывание и закрывание дверей, окон, форточек и просто все щели в помещении.

Нужно понимать, что за определённое количество времени воздух в комнате должен несколько раз меняться, чтобы оставаться постоянно очищенным в пределах норм. Число смен воздуха за день — это кратность. Этот показатель также очень важный для определения скорости воздуха в воздуховодах.

Кратность можно вычислить по такой формуле: N=V/W.

Значения в формуле можно подставлять следующие:

  • N — кратность воздуха за 1 час.
  • V — объём кислорода, попадающего с улицы в комнату за 1 час.
  • W — объём помещения.

Если нормы не будут соблюдены, это чревато последствиями — будет увеличиваться уровень шума, вибрации и т. п. Кроме этого, в помещении не будет достаточно свежего воздуха.

Также это может привести к следующей ситуации:

  1. Показатель завышен. Такой вариант возникает, когда скорость воздуха в шахтах превышает норму. Последствия — неправильный температурный режим в помещении. Оно просто не будет успевать прогреваться. Если воздух очень сухой, то это будет провоцировать различные болезни дыхательных путей, кожи и т. п.
  2. Показатель занижен. При возникновении такой ситуации свежий воздух не поступает в помещение в достаточном количестве, поэтому уровень загрязнения довольно высок. В кислороде присутствует большая концентрация вредных веществ, бактерий, болезнетворных организмов, опасных газов. Количество кислорода уменьшается, а углекислого газа — увеличивается. Кроме этого, может наблюдаться повышенный уровень влажности, что чревато появлением плесени.

Для того чтобы такой показатель, как кратность, отвечал всем санитарным нормам, необходимо проверить его. Если он не соответствует общим требованиям, то требуется заменить отвечающее за это оборудование — вентиляторы или другие нагнетающие приборы для механического удаления неприятных запахов. При необходимости меняется и система шахт полностью.

Рекомендованная скорость

Определив максимальную скорость воздуха в воздуховоде, можно получить качественный результат. При составлении проекта необходимо для каждого помещения высчитывать нормы вентиляции отдельно. К примеру, на производстве — это цеха, в жилых многоэтажках — квартиры, а в частных коттеджах — поэтажные блоки.

Перед тем как устанавливать систему вентиляции, следует определиться с ключевыми элементами и зафиксировать их местонахождение. Нужно знать, какие маршруты будут проложены, систему магистралей и её размеры, форму вентиляционных шахт и их габариты.

Движение воздушных потоков внутри жилых и производственных зданий является очень сложным, поэтому ими занимаются только специалисты с соответствующим опытом работы.

Согласно общепринятым нормам, внутри помещения скорость воздуха не должна превышать показателя 0,3 метра за секунду. В качестве исключения из правила могут выступать ремонтные или другие строительные работы, при которых максимальный показатель может увеличиваться максимум на 30%.

Стоит отметить, что в больших производственных цехах должна работать система вентиляции, состоящая из двух шахт, а не одной, как это допустимо в квартирах или частных домах. В связи с этим скорость каждого из воздуховодов должна составлять 50% от необходимого максимума для каждой шахты.

Бывают форс-мажорные обстоятельства, кода необходимо полностью закрыть вентиляционные шахты или уменьшить количество вытекаемого воздуха за единицу времени. При этом сделать это нужно оперативно. К примеру, в случае возникновения пожара вентиляцию требуется перекрыть до минимального уровня в целях предотвращения распространения огня по другим помещениям здания. Для этого дополнительно в систему монтируются клапаны и отсекатели.

Правильный выбор

Правильный выбор

Кроме расчёта скорости в воздуховоде, необходимо правильно выбрать сам материал для монтажа шахт. Если все расчёты сделаны, следует выбрать диаметр круглых труб или сечение квадратных для создания системы вентиляции. Кроме этого, не помешает приобрести и металлические решётки во избежание попадания твёрдых частей в каналы.

Также можно предварительно купить вентилятор для нагнетания воздуха и определить, какую скорость и давление он создаёт. Зная такие показатели, как скорость воздуха и необходимое количество для определённой комнаты, можно определить, какого сечения должны быть вентиляционные шахты. Для этих целей используется формула S = L/3600*V.

Определив такой результат, можно подсчитать и диаметр труб по формуле D = 1000*√(4*S/π), где

  • D — диаметр воздуховода.
  • S — внутренний объём шахт.
  • n — число «пи» равно 3.14.

  • D — диаметр воздуховода.
  • S — внутренний объём шахт.
  • n — число «пи» равно 3.14.

Полученные результаты сопоставляют с нормами СНиП и по этим параметрам выбирают сечения труб, самые близкие к полученному результату.

Стоит отметить, что для таких расчётов необязательно пользоваться формулами или таблицами СНиП. Сегодня существует достаточно много онлайн-калькуляторов, с помощью которых очень просто просчитать расход приточного кислорода, скорости, давления и других показателей, просто введя исходные данные.

Таким образом, скорость в вентиляционных шахтах играет важную роль для обеспечения поступления воздуха в помещение, а также дымоудаления и выкачки из комнаты других вредных веществ.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Расчёт системы вентиляции

Этот материал любезно предоставлен моим другом — Spirit’ом.

Согласно санитарным нормам, система вентиляции должна обеспечивать замену воздуха в помещении за один час, это значит что за час в помещение должен поступить и удалиться из него объём воздуха, равный объёму помещения. Поэтому первым шагом мы считаем этот объём, перемножив площадь помещения на высоту потолков. Если у вас допустим помещение площадью 40 м2 с высотой потолков 2.5м, то его объём будет 40*2.5=100 м3. Значит производительность приточной и вытяжной систем должны быть по 100 м3/ч. Это минимальный расход, я рекомендую вдвое больше. Ищете вентилятор с такой производительностью, а лучше ещё больше, потому что производительность указывается при условии отсутствия противодавления, а когда вы поставите в приточную систему фильтр, противодавление появится и уменьшит производительность. Если у вас производительность 200 м3/ч, то в трубе 125мм примерная скорость потока будет 4.5 м/с, в трубе 100 мм  — 6.5 м/с, а в трубе 160мм – чуть меньше 3 м/с. Считается, что комфортная скорость воздуха для человека – до 2 м/с. Если у вас есть анемометр, то зная эти цифры вы можете проверить производительность системы вентиляции.

Далее, допустим вы хотите поставить в приточный канал нагреватель. С помощью четвёртой таблицы вы можете определить его мощность. Допустим на улице -10°С, а вам хочется чтобы в помещении было +20°С, значит разница температур 30°С. Находим строчку 200 м3/ч, смотрим пересечение столбца 30°С, получаем мощность 2010 Вт. Понятно, что это при отсутствии других источников тепла, так что в реале потребуется существенно меньше.

Следующий момент – расчёт влажности. В тёплом воздухе помещается больше воды, чем в холодном. Поэтому при нагревании его влажность уменьшается, а при охлаждении увеличивается. Допустим у нас за бортом -10°С при 80% влажности, а в помещении воздух нагревается до +20°С. Содержание воды в одном кубометре 2.1*0.8=1.68 г/м3, а влажность нагретого воздуха получится 1.68/17.3=0.097 то есть примерно 10%. Сколько же надо испарить воды, чтобы получить влажность, допустим, 50% при расходе 200 м3/ч?

Ответ: 200*(17.3*0.5-1.68)=1394 г/ч=1.4 кг/ч

Сечения и расходы

Диаметр круга, см

Площадь, м2

Относительно круга 10см

Габариты, см

Площадь, м2

Относительно круга 10см

10

0.00785

1

12х6

0. 0072

0.92

12.5

0.0123

1.57

20х6

0.012

1.53

15

0.0177

2.26

30×20

0.06

7.64

16

0.020096

2.56

40×20

0.08

10.19

20

0. 0314

4

50×25

0.125

15.92

25

0.0491

6.26

50×30

0.15

19.1

30

0.0707

9

60×30

0.18

22.93

40

0.126

16

50

0. 196

24.97

 

Расход воздуха, м3 в час (без учёта турбулентностей)

 

Диаметр круглого сечения,см

Скорость потока

0.5

1

1.5

2

2.5

3

4

5

6

8

10

10

14. 1 28.3 42.4 56.6 70.7 84.8 113 141 170 226 283

12.5

22.1 44.2 66.3 88.4 110 132 177 221 265 353 442

15

31.8 63.6 95.4 127 159 191 254 318 382 509 636

16

36. 2 72.3 108.5 144.7 180.9 217 289 362 434 579 724

20

56.6 113 170 226 283 339 452 565 678 904 1130

25

88.4 177 265 353 442 530 707 883 1060 1413 1770

30

127 255 382 509 635 763 1017 1272 1526 2035 2550

40

226 452 679 905 1130 1357 1809 2261 2713 3617 4520

50

353 707 1060 1414 1766 2120 2826 3533 4239 5652 7070

В 1 часе 60*60=3600 секунд.

Площадь круга S=pr2=pd2/4

S=0.0000785*r2 m  W:=3600*S*V;

V=S*v*3600=0.000314*r2*3600=0.263*r2*v

 

Габариты воздуховода,см

Скорость потока

0.5

1

1.5

2

2.5

3

4

5

6

8

10

12х6

13 26 39 52 65 78 104 130 156 207 260

20х6

21. 6 43.2 64.8 86.4 108 130 173 216 259 346 432

30×20

108 216 324 432 540 648 864 1080 1296 1728 2160

40×20

144 288 432 576 720 864 1152 1440 1728 2304 2880

50×25

50×30

60×30

Тепловая мощность, затрачиваемая на подогрев приточного воздуха, Вт

 

Объем,

м3

Разница температур

1

5

10

15

20

30

40

10 3. 35 16.8 33.5 50.3 67 101
20 6.7 33.5 67 101 134 201
30 10.1 50.3 101 151 201 302
40 13.4 67 134 201 268 402
50 16.8 83.8 168 252 335 503
100 33. 5 168 335 503 670 1005
150 50.3 251 503 754 1005 1508
200 67 335 670 1005 1340 2010
300 101 503 1005 1508 2010 3015

 

Зависимость количества воды в воздухе от температуры

(атмосферное давление, 100% влажность)

t(°С)

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

f max (г/м³)

0. 29

0.81

2.1

4.8

9.4

17.3

30.4

51.1

83.0

130

198

293

423

598


Поделиться новостью в соцсетях