Солнечные коллекторы принцип работы: Описание принципов работы солнечных коллекторов, вакуумных и плоских коллекторов
Описание принципов работы солнечных коллекторов, вакуумных и плоских коллекторов
Для превращения солнечной энергии в тепловую используют гелиосистемы.
Солнечный водонагреватель (солнечный коллектор) — это устройство, предназначенное для поглощения солнечной энергии, которая переносится видимым и ближним инфракрасным излучением для последующего её преобразования в тепловую энергию, пригодную для использования.
В гелиосистемах наиболее распространены два типа коллекторов: вакуумные и плоские.
Основной частью вакуумного коллектора является тепловая трубка. Такие коллекторы представляют собой ряд стеклянных трубок специальной конструкции. Трубка гелиоколлектора – это на самом деле две трубки (одна вложенная в другую), между которыми находится вакуум для наилучшей термоизоляции теплоносителя от внешней среды.
Способ передачи тепла от неё теплопроводу вакуумного солнечного коллектора: медная труба внутри пустая и содержит неорганическую и нетоксичную жидкость. При нагревании эта жидкость испаряется, а поскольку в трубке создан вакуум, то это происходит даже при температуре минус 30°С. Пар поднимается к наконечнику тепловой трубки, где отдаёт тепло теплоносителю (антифризу), который течёт по теплопроводу гелиоколлектора. Потом он конденсируется и стекает вниз, и процесс повторяется снова. Солнечный водонагреватель с вакуумными трубами показывает отличные результаты даже в пасмурные дни, потому что вакуумные трубы способны поглощать энергию инфракрасных лучей, которые проходят через тучи. Благодаря изоляционным свойствам вакуума, влияние ветра и низких температур на работу гелиосистемы также незначительно по сравнению с влиянием на плоский солнечный коллектор. Система с вакуумным солнечным коллектором успешно работает до -35°С.
Трубы установлены в солнечном водонагревателе параллельно, угол их наклона зависит от географической широты места установки системы отопления. Ориентированные с севера на юг, на протяжении дня, трубки вакуумного солнечного коллектора пассивно двигаются за солнцем.
Для поддержания вакуума солнечный водонагреватель использует газопоглотитель, который в производственных условиях подвергался влиянию высоких температур, в результате чего нижний конец вакуумной трубы покрыт слоем чистого бария. Он поглощает СО, СО2, N2, O2, H2O и H2, которые выделяются из трубы в процессе хранения и эксплуатации, и является чётким визуальным индикатором состояния вакуума в трубке солнечного коллектора. Когда вакуум исчезает, бариевый слой из серебристого становится белым. Это дает возможность легко определить, целая ли труба вакуумного солнечного водонагревателя.
Вакуумные солнечные коллекторы полностью пригодны для ремонта: в случае необходимости трубку можно заменить без остановки солнечного водонагревателя. За необходимостью вакуумные трубки можно добавлять (при недостатке тепла) или частично снимать (если есть его избыток), уменьшая площадь гелиоколлектора. Обслуживание солнечного водонагревателя сводится практически к нулю. Вакуумные солнечные коллекторы отлично справляются с заданием обеспечения дома горячей водой, отоплением квартиры, подогревом бассейнов, теплиц, работают в системах вентиляции, кондиционирования и отопления зданий. Благодаря всему этому работа гелиосистемы проста, как с точки зрения эксплуатации, так и обслуживания.
Плоские гелиоколлекторы имеют иную конструкцию. Главным элементом в них является абсорбер, поглощающий солнечное излучение, сверху он имеет прозрачное покрытие. Для повышения эффективности коллектора, используют специальное оптическое покрытие из закалённого стекла с пониженным содержанием металлов. Абсорбер соединён с теплопроводящей системой.
Конструкция плоских солнечных коллекторов является довольно простой. Внешне они представляют собой простую панель, имеющую прямоугольную форму. Эта установка обладает алюминиевым корпусом, несколькими патрубками, использующимися с целью отвода и подвода жидкого теплоносителя.
Принцип работы плоского солнечного коллектора основывается на парниковом эффекте — солнечные лучи поступают на поверхность этого устройства и проникают сквозь стекло. Теплопоглощающее покрытие, используемое в нижней части коллектора, характеризуется коэффициентом поглощения, составляющим 91%. В конечном итоге чрезмерный нагрев приводит к тому, что покрытие начинает излучать тепловую энергию. Мощность её расположена в инфракрасном диапазоне, другими словами, имеется возможность достичь аккумулирования энергии солнца в коллекторе. Процесс отвода тепла происходит при непосредственном участии теплоносителя.
Преимущества и недостатки плоских и вакуумных коллекторов
Вакуумные трубчатые
Плоские высокоселективные
Низкие теплопотери
Способность очищаться от снега и инея
Работоспособность в холодное время года до -30С
Высокая производительность летом
Способность генерировать высокие температуры
Отличное соотношение цена/производительность для южных широт и тёплого климата
Длительный период работы в течение суток
Возможность установки под любым углом
Удобство монтажа
Меньшая начальная стоимость
Низкая парусность
Отличное соотношение цена/производительность для умеренных широт и холодного климата
минусы
минусы
Неспособность к самоочистке от снега
Высокие тепло потери
Относительно высокая начальная стоимость проекта
Низкая работоспособность в холодное время года
Рабочий угол наклона не менее 20°
Сложность монтажа, связанная с необходимостью доставки на крышу собранного коллектора
Высокая парусность
Если у Вас появились вопросы по выбору оборудования или необходимо подобрать солнечную или резервную станцию, вы можете обратиться за помощью к нашим специалистам.
Проконсультируйтесь у специалистов
Вакуумный солнечный коллектор. Принцип работы и оценка эффективности.
Вакуумный солнечный коллектор — оборудование, предназначенное для нагрева воды с помощью солнечной энергии.
Основным нагревательным элементом солнечного коллектора является вакуумная трубка с селективным покрытием. В простых термосифонных коллекторах процесс нагрева воды происходит непосредственно в самой трубке. За счет явления конвекции, нагретая вода перемещается вверх, холодная вниз.
Нулевая теплопроводность вакуума между внутренней и внешней трубкой обеспечивает сохранность тепла. Эффективность такой системы в теплое время года наиболее высокая. Так за один солнечный августовский день термосифонный водонагреватель нагревает 200 литров воды до 84°С.
Безупречная эффективность термосифонного водонагревателя в теплое время года оборачивается проблемой в холода: несмотря на 50мм теплоизоляцию бака-накопителя теплопотери в холодную ночь могут достигать 20-25°С.
Если же морозы продержатся несколько дней, а солнце не сумеет пробиться через плотный слой облаков, вода в трубках превратится в лед, а это может привести к разрыву внутренней трубки и выходу из строя всего коллектора.
Кроме того, замена даже одной трубки, требует слива всей воды в баке, что очень трудозатратно.
Для решения проблемы «сезонности», широко применяется в нашем климате вакуумная трубка Heat Pipe или так называемая «сухая трубка».
В стеклянную трубку вставлена медная трубка в алюминиевом рефлекторе, который выполняет роль мостика тепла. Процесс конвекции протекает уже внутри медной трубки HP.
Температура на конце трубки может достигать 250-280ºС. Существует два основных способа передачи этого тепла к потребителю:
1. Греем воду непосредственно в баке (система под давлением). Эта система проста и компактна, но за счет того, что бак расположен на улице, в зимнее время эффективность такой системы тоже имеет ряд ограничений.
2. Передаем тепло теплоносителю и греем воду в баке косвенного нагрева, расположенному в помещении. Поговорим более подробно о солнечном вакуумном коллекторе:
Такая система универсальна. Она может быть интегрирована в систему отопления и существенно сократить расходы на топливо.
Но не стоит рассматривать солнечный коллектор как единственный источник тепла в Вашем доме. Законы физики неумолимы! Когда светит солнце — коллектор работает. Когда солнца нет — не работает!
Рассчитать эффективность солнечного вакуумного коллектора для горячего водоснабжения в первом приближении поможет следующая методика:
- Шаг 1. Определить, на сколько градусов должна повыситься температура воды и ее объем. Семья — 4 человека (2 взрослых и 2 ребенка). В среднем на одного человека расходуется в день 50 литров воды. Соответственно 50*4=200 л. Средняя температура водопроводной воды = 15°С. Она должна быть нагрета до 50°С. 50-15=35°С.
- Шаг 2. Определить количество энергии необходимой для нагревания этого объема воды. Для нагрева одного литра воды на один градус надо затратить энергию равную 1 ккал. 200 л x 35°C = 7000 ккал. Для перевода данной энергии в кВт*ч воспользуемся следующей формулой 7000 / 859,8 = 8,14 кВт*ч (1 кВт*ч = 859,8 ккал)
- Шаг 3. Определить количество энергии, которая может быть преобразована в тепло солнечным коллектором. Рассмотрим вариант расположения солнечной установки в Краснодаре. Значение солнечной радиации на поверхность, наклоненную к горизонту на 45° с ориентацией на юг, по данным за последние 22 года наблюдений: в июле на 1 м² составляет 5,44 кВт*ч/день, а в декабре 1,74 кВт*ч/день. Эффективность вакуумного солнечного коллектора традиционно принимают за 80%. Это не совсем верно, так как на КПД влияют многие факторы, мы поговорим о них ниже. Но для предварительного расчета примем эту цифру.
Значение передачи поглощенной энергии вакуумными трубками равно 5,44 x 0,8 = 4,35 кВт*ч/день площади поглощения коллектора для июля. Значение передачи поглощенной энергии вакуумными трубками равно 1,74 x 0,8 = 1,39 кВт*ч/день площади поглощения коллектора для декабря. Площадь абсорбции вакуумной трубки диаметром 58 и длиной 1800 мм составляет 0,0937 м². Несложно подсчитать, что одна трубка способна получать и передавать солнечное тепло в размере 0,4075 кВт*ч и 0,13 кВт*ч соответственно в июле и декабре.
- Шаг 4. Определить необходимое число трубок. Используя значение, вычисленное выше, определяем количество трубок, которое надо установить. Энергия, которую необходимо затратить на нагрев нужного количества воды, составляет 8,14 кВт*ч. Энергия, которую может передать одна вакуумная трубка, в зависимости от месяца составляет 0,4075 кВт*ч и 0,130 кВт*ч.
Июль – 8,14 / 0,4075 = 20 трубок. Декабрь – 8,14 / 0,130= 63 трубки.
Оптимальным выбором будет два 20-ти трубочных коллектора и бак на 220 литров с одним теплообменником.
Для наглядности приведем таблицу эффективности коллекторного поля из 40 трубок ориентированного на юг.
Угол наклона трубок к горизонту 45º, выраженную в кВт*ч в день тепловой энергии, опираясь на данные Национального Управления по Воздухоплаванию и Исследованию Космического Пространства (NASA), получаем следующий график:
Чтобы эти цифры обрели прикладное значение, давайте попробуем рассчитать, на какую температуру в баке накопителе мы можем рассчитывать?
Возьмем для примера рекомендованный из расчета бак на 220 литров.
Температура воды в баке на начало дня равна температуре в бойлерной, где он располагается и равна, предположим, 20ºС.
Сначала переводим кВт*ч в килокалории:
Теперь, определим, на сколько градусов нагреет воду в баке наш коллектор за один СРЕДНИЙ декабрьский день:
- Pккал (мощность коллектора в ккал)
- Vбака (Объем воды в баке): 220л
- Δt искомая величина (значение температуры, на которое нагреется вода в баке за день).
Δt = Pккал/Vбака
Несмотря на хорошую теплоизоляцию теплопровода, мы потеряем часть тепла по пути до бака. Сам бак тоже обладает не 100% теплоизоляцией.
Так же процесс теплообмена между концом трубки Heat Pipe и теплоносителем и теплообмен в змеевике бойлера снижает общую эффективность системы. Так что можно смело списывать еще 10% для зимы, 5% для ноября и марта, 2% для апреля с октябрем. Летом можно принять этот вид потерь за ноль.
Δt= Pккал/Vбака*0,9
Δt дек=4486/220*0,9=18ºС
Казалось бы все ясно и понятно. НО! Мы опираемся на данные среднемесячных наблюдений. А это значит, что В СРЕДНЕМ по декабрю мы получим такую величину Δt. Давайте попытаемся понять, что значит это самое СРЕДНЕЕ: По данным портала: russia.pogoda360.ru солнечных дней в Краснодаре в декабре 31%, облачных 34%, пасмурных: 34%
В пасмурную погоду эффективность солнечного коллектора близка к нулю. Нет солнца — нет тепла.
Конечно какую-то энергию рассеянного солнечного излучения вакуумные трубки соберут, но при передаче ее воде бака естественные потери в теплотрассе и самом баке ее обнулят. Да и циркуляционный насос качающий теплоноситель не включится, если разность температур в коллекторе и баке не превысит хотя бы 10ºС.
Таким образом все те крохи тепла, что соберет коллектор просто развеятся. В такие дни поддержкой температуры в баке занимается электрический ТЭН, который предусмотрен во всех буферных емкостях. Если ТЭНа нет или он отключен, теплопотери бака ничем не компенсируются. Температура воды в баке сравняется с температурой воздуха в бойлерной.
Скорость с которой остынет вода, зависит от теплоизоляции бака и температуры внутри помещения. По эмпирическим данным потеря тепла составляет порядка 5-8ºС за 12 часов (ночь) при разнице температур в баке и помещении около 25ºС .
Если за сутки плотные тучи так и не рассеялись, наш бак остынет на 10-16 градусов. А за два дня потеряет все накопленное тепло.
В облачную погоду мы уже можем на что-то рассчитывать. Но опять же. Насколько она «облачна»? Сколько конкретно кВт*ч солнечного излучения приходит на нашу солнечную установку? В лучшем случае нам удастся компенсировать естественное остывание бака…
Рассчитать точное значение мощности солнечного коллектора в каждый день можно, но для этого нужно иметь данные инсоляции по каждому дню. Знать истинные цифры теплопотерь на конкретном объекте. Температуру воздуха и пр. Это имеет скорее научное, чем прикладное значение. Нам же надо понять принцип работы и возможности, которые предоставляет нам использование этого оборудования.
Итак, мы имеем среднее значение Δt=18ºС. Это значит, что в СРЕДНЕМ в декабре мы получим 38ºС в баке за один день. За ночь наш бак остынет, и если нам повезет и день снова будет СРЕДНИМ ( 🙂 ), к вечеру мы можем рассчитывать на 38-5+15=51ºС. Не учитывая потерь бака, о которых мы говорили выше. Но достаточно двух подряд пасмурных дней, чтобы вода в баке остыла до температуры окружающей среды. При этом, за два солнечных дня мы увидим 60-70 градусов на термометре бака, если не будет водоразбора. Где же этому предел? И почему мы так редко наблюдаем кипящую воду в баке зимой? Все дело снова в потерях! Чем выше разница между температурой в баке и воздухом в бойлерной, тем интенсивней идет теплообмен.
Так все-таки работает ли солнечный коллектор зимой или нет!?
Ответ: ДА работает! Но мы не можем рассматривать коллектор как единственный источник тепла. Лишь, как помощь основному источнику.
В среднем использование солнечного коллектора может экономить:
- В зимний период от 20 до 40% энергии на отопление и ГВС.
- В период с апреля по октябрь наши потребности в отоплении значительно ниже, а солнца больше. Здесь мы говорим о 60-70% на отопление и до 90% на ГВС.
- С мая по сентябрь солнца много, потребности в отоплении нет совсем и мы закрываем 100%+ потребности в ГВС!
Вернемся снова к нашему расчету. Копнув чуть глубже мы выяснили, что не все так прямолинейно. И если расчет для ИЮЛЯ остается практически неизменным, то для февраля мы должны учесть потери как минимум 10%. Тогда наша формула будет выглядеть так:
Июль – 8,14 / 0,4075 = 20 трубок. Декабрь – 8,14 / (0,130*0,9)= 70 трубок.
Поэтому, нашей рекомендацией будет установка коллектора на 20 и 30 трубок, соединенных в группу на 50 трубок. И установка электроТЭНа на 2 кВт в бак накопитель.
Куда же девать излишки тепла летом? Решение зависит от конкретного объекта. Если есть бассейн — греем бассейн. Если нет — ставим тепловентилятор, который работает по принципу печки в автомобиле. Сбросом тепла управляет контроллер гелеосистемы. Все автоматизировано и не требует участия человека.
ИБП для гелиоустановки: Контроллер управления, циркуляционные насосы гелеосистемы и тепловентилятора работают от сети 220в 50Гц. В случае отключения электропитания в солнечный летний день, и остановки циркуляции теплоносителя ,температура в коллекторе достигнет предельных значений за считанные секунды.
Это может привести к аварии и дорогому ремонту оборудования. Поэтому, верным решением будет обеспечить их работу источником бесперебойного питания, состоящего из небольшого инвертора с зарядным устройством и аккумуляторной гелевой батареи.
Специалисты нашей компании имеют богатый практический опыт в проектировании и установке солнечного оборудования. А прямые поставки с заводов изготовителей, гарантируют лучшие цены на рынке.
Мы предлагаем нашим клиентам не просто оборудование, а комплексное решение задач отопления и горячего водоснабжения.
Принцип работы вакуумного солнечного коллектора
Вакуумный солнечный коллектор служит для переработки энергии прямых солнечных лучей в тепловые ресурсы. Данное устройство при любой температуре природных воздушных потоков, независимо от погодных условий работает на накопление энергетических солнечных ресурсов. Чаще всего такое оборудование устанавливают на кровельных покрытиях жилых и производственных конструкций и ориентируют на южное направление.
Стоит отметить что существует несколько типов коллекторов работающих от солнечного света. Основными типами являются плоский тип устройства и вакуумная модификация. В плоском устройстве вода нагревается за счет падающих солнечных лучей проодящих через специальное стекло, с нанесенным на него спецраствором черного цвета для сохранения тепла. Такая плоская панель делается воздухонепроницаемой, и имеет способность нагревать воду до температуры 200 градусов по Цельсию.
Вакуумный тип коллекторов имеет важное конструктивное отличие от плоских моделей устройства. Он имеет вид нескольких стеклянных трубок закрепленных на базовой панели. Эти стеклянные трубки имееют на внутренней поверхности стекла специальное покрытие собирающее солнечное тепло. Кроме того внутри такой трубки располагается еще одна трубка меньшего сечения, причем между внешней и внутренней трубками имеется полость из которой откачан воздух. Эта вакуумная прослойка нужна для большей сохранности тепла, и способна повысить эффективность коллектора на 30 процентов, по сравнению с плоскими модификациями. С помощью такого коллектора вода способна нагреться до 300 градусов по Цельсию.
Еще одним технологическим отличием вакуумного типа солнечного коллектора является наличие специальной жидкости внизу трубки, которая вледствие нагрева превращается в пар, и, поднимаясь вверх, равномерно нагревает воду. В регионах с малой продолжительностью светового дня и в условиях минусовой температуры такая схема работы дает значительный выигрыш в количестве тепловой энергии. Что касается цены, то, конечно, более конструктивно сложный вакуумный коллектор имеет более высокую цену, но при этом его характеристики имеют преимущества.
Вакуумные накопители энергетических ресурсов с прямой тепловой подачей
В устройствах с непосредственной подачей тепла вакуумные приспособления из стекла и накопительный бак, прикреплены на одном рамовом каркасе, с наклоном от сорока до шестидесяти градусов. Вакуумные механизмы соединены с баком накопителем, при помощи уплотнительного соединительного кольца из резины.
Когда нагревается жидкость, помещенная в стеклянные емкости с вакуумом, то водные слои, с более высокой температурой, посредством циркуляции поднимаются в накопительный отсек, далее нагретые водные массы из накопителя, используются для удовлетворения производственных и бытовых нужд. Вакуумный коллектор, для получения солнечной энергии, данного типа действует без дополнительной подачи давления.
Посредством запорного клапана устройство подключается к водопроводным линиям. Специальный фиксирующий клапан контролирует состояние уровней водной массы в накопительной емкости. Так, как в роли носителя тепловой энергии в вакуумном коллекторе, для получения солнечной энергии, выступает вода, то и данные устройства, получили название — сезонных обменников тепловой энергии.
Вакуумный коллектор, для получения солнечной энергии, с косвенной тепловой подачей
Принцип функционирования оборудования, имеющего свойства косвенной передачи тепловых ресурсов, похож на рабочий процесс системных линий централизованного отопления. Данные соединения работают благодаря давлению от водопроводных путей.
Функционал и основные преимущества системы вакуумного коллектора
Для работы системы используют вакуумные изолированные приспособления. Данный вид тепловых соединений не прекращает функционировать даже при пониженной температуре (- 40 градусов) и выдерживает усиленное давление водопроводных каналов. Само оборудование с накопительным баком монтируется по отдельности, соединяясь посредством специальных изделий металлопроката.
Стандартный вакуумный коллектор, для получения солнечной энергии, располагают на домовой крыше, а накопительную емкость во внутренней части помещения. Данные установки получили название — сплит-системами. Так же они получили название всесезонные (раздельные). Функционирование косвенных устройств автоматизировано при помощи контроллера. Бесперебойную циркуляцию носителя тепловой энергии в системах выполняет насос.
Основные положительные стороны использования коллекторов солнечного тепла вакуумного типа это:
- Высокая эффективность даже при минусовой температуре
- Легкость монтажа конструкции
- Устойчивость коллектора при ветровых нагрузках
- Продолжительное время работы
Из отрицательных моментов использования можно отметить только завышенную стоимость оборудования, которая в долгосрочном периоде в процессе использования окупается.
Принцип работы вакуумного солнечного коллектора
Теплоносителем в вакуумном солнечном коллекторе выступает незамерзающая жидкость, которая, протекая через верхнюю зону устройства, поглощает тепловую энергию со специальных наконечников из медных сплавов. При перекачке осуществляет нагревание водной масс в накопителе, с помощью змеевого механизма. Цикл передачи тепла зависит от продолжительности дня и происходит до того момента, пока температура жидкости на выходе из устройства превышает температурные показатели водных потоков в накопительной емкости.
Приёмник – медный с изоляцией полиуретанового типа, защищён анодированным алюминиевым покрытием. Подача тепловой энергии осуществляется сквозь гильзу приёмника. Процесс смены комплектующих деталей не сложный. Он не требует сливания незамерзающей жидкой массы из теплообменника.
На выходе из вакуумного коллектора, для получения солнечной энергии, в накопительной емкости, а также на обратной стороне контуре устройства отопления расположены температурные датчики. Основываясь на показания температурных приборов, солнечный контроллер включает, либо выключает циркуляционный насос. При перегреве теплоносителя в системе может возникнуть избыточное давление, для этого предусмотрен расширительный бак.
Такой коллектор служит прекрасной альтернативой электричеству и газовому отоплению, так как является экологичным устройством, благодаря использованию солнечной энергии. Кроме того, такие устройства очень выгодны с экономической точки зрения.
Применение солнечных коллекторов
В настоящее время солнечные коллекторы, как вакуумного, так и плоского типа, широко распространены в странах с высокой солнечной активностью. Их с успехом применяют как для бытовых нужд и обогрева жилых домов, так и на производственных предприятиях, и на фермерских плантациях для выращивания овощей. Такой вид получения энергии довольно популярен в европейских государствах, где экономия всегда стоит во главе угла, особенно в таких странах как Испания, Кипр, Австрия и Германия. В остальном мире солнечные коллекторы распространены также в США, Китае, Монголии. Во всем мире переход на солнечную энергию означает существенный прорыв современных технологий, которые дают большие возможности для обеспечения населения планеты неисчерпаемым источником энергии.
В России солнечные коллекторы пока не получили должной популярности, хотя во многих регионах страны достаточное наличие солнечного света могло бы существенно снизить затраты на обогрев помещений. Такие регионы как Забайкалье, южная часть Сибири, а также южная часть европейской части страны имеют необходимое количество солнечной радиации для выработки более дешевого тепла, чем дают традиционные источники.
Такой способ получения энергии в долгосрочной перспективе дает большую экономии природных ресурсов, и благотворно влияет на экологическую обстановку на нашей планете.
youtube.com/embed/Bm-hgBhgwL0″ frameborder=»0″ allowfullscreen=»»/>
виды, принцип работы, устройство системы
Тепловые насосы черпают энергию из грунта, воды или воздуха, согретых солнцем. Котлы используют тепло, высвобождающееся при сгорании топлива, которое в конечном итоге тоже является продуктом преобразования солнечной энергии в ходе длительной эволюции Земли. Гелиоколлекторы в некотором смысле уникальны: они получают энергию непосредственно от солнца.
Чтобы завтра иметь возможность абсолютно бесплатно нагревать воду для ГВС или отапливать свой дом, сегодня придется все-таки потратиться на приобретение солнечных коллекторов. С учетом немалой стоимости подобного оборудования очень важно не допустить ошибку при выборе. А значит, следует заранее получить хотя бы общие представления о специфике гелиоколлекторов и нюансах их работы.
Специфика использования солнечных коллекторов
Главной особенностью гелиоколлекторов, отличающей их от теплогенераторов других типов, является цикличность их работы. Нет солнца – нет и тепловой энергии. Как следствие, в ночное время подобные установки пассивны.
Среднесуточная выработка тепла напрямую зависит от продолжительности светового дня. Последняя же определяется, во-первых, географической широтой местности, и во-вторых, временем года. В летний период, на который в северном полушарии приходится пик инсоляции, коллектор будет работать с максимальной отдачей. Зимою же его продуктивность падает, достигая минимума в декабре-январе.
В зимний период эффективность гелиоколлекторов снижается не только из-за уменьшения продолжительности светового дня, но и из-за изменения угла падения солнечных лучей. Колебания производительности солнечного коллектора в течение года следует учитывать при расчетах его вклада в систему теплоснабжения.
Еще один фактор, который может повлиять на продуктивность солнечного коллектора, – климатические особенности региона. На территории нашей страны есть немало мест, где 200 и более дней в году солнце скрыто за толстым слоем туч или за пеленой тумана. В пасмурную погоду производительность гелиоколлектора не падает до нуля, поскольку он способен улавливать рассеянные солнечные лучи, но существенно снижается.
Принцип работы и виды солнечных коллекторов
Настала пора сказать несколько слов об устройстве и принципе работы солнечного коллектора. Основным элементом его конструкции является адсорбер, представляющий собой медную пластину с приваренной к ней трубой. Поглощая тепло падающих на нее солнечных лучей, пластина (а вместе с ней и труба) быстро нагревается. Это тепло передается циркулирующему по трубе жидкому теплоносителю, а тот в свою очередь транспортирует его далее по системе.
Способность физического тела поглощать или отражать солнечные лучи зависит, прежде всего, от характера его поверхности. Например, зеркальная поверхность отлично отражает свет и тепло, а вот черная, напротив, поглощает. Именно поэтому на медную пластину адсорбера наносится черное покрытие (простейший вариант – черная краска).
Принцип работы солнечного коллектора
1. Солнечный коллектор.
2. Буферный бак.
3. Горячая вода.
4. Холодная вода.
5. Котроллер.
6. Теплообменник.
7. Помпа.
8. Горячий поток.
9. Холодный поток.
Увеличить количество получаемого от солнца тепла можно и путем правильного подбора стекла, прикрывающего адсорбер. Обычное стекло недостаточно прозрачно. Кроме того, оно бликует, отражая часть падающего на него солнечного света. В гелиоколлекторах, как правило, стараются использовать специальное стекло с пониженным содержанием железа, что повышает его прозрачность. Для снижения доли отраженного поверхностью света на стекло наносят антибликовое покрытие. А чтобы внутрь коллектора не попадали пыль и влага, которые тоже снижают пропускную способность стекла, корпус делают герметичным, а иногда даже заполняют инертным газом.
Несмотря на все эти ухищрения, КПД солнечных коллекторов все же далек от 100%, что связано с несовершенством их конструкции. Часть полученного тепла нагретая пластина адсорбера излучает в окружающую среду, нагревая контактирующий с ней воздух. Чтобы свести к минимуму теплопотери, адсорбер необходимо изолировать. Поиск эффективного способа теплоизоляции адсорбера привел инженеров к созданию нескольких разновидностей солнечных коллекторов, самыми распространенными из которых являются плоские и трубчатые вакуумные.
Плоские солнечные коллекторы
Плоские солнечные коллекторы.
Конструкция плоского солнечного коллектора предельно проста: это металлический короб, покрытый сверху стеклом. Для теплоизоляции дна и стенок корпуса, как правило, используется минеральная вата. Вариант этот далеко не идеален, поскольку не исключен перенос тепла от адсорбера к стеклу посредством воздуха, находящегося внутри короба. При большой разнице температур внутри коллектора и снаружи потери тепла бывают довольно существенными. В результате плоский гелиоколлектор, прекрасно функционирующий весной и летом, зимой становится крайне неэффективным.
Устройство плоского солнечного коллектора
1. Впускной патрубок.
2. Защитное стекло.
3. Абсорбционный слой.
4. Алюминиевая рама.
5. Медные трубки.
6. Теплоизолятор.
7. Выпускной патрубок.
Трубчатые вакуумные солнечные коллекторы
Трубчатые вакуумные солнечные коллекторы.
Вакуумный солнечный коллектор представляет собой панель, состоящую из большого количества сравнительно тонких стеклянных трубок. Внутри каждой из них расположен адсорбер. Чтобы исключить перенос тепла газом (воздухом), трубки вакуумированы. Именно благодаря отсутствию газа вблизи адсорберов, вакуумные коллекторы отличаются низкими теплопотерями даже в морозную погоду.
Устройство вакуумного коллектора
1. Теплоизоляция.
2. Корпус теплообменника.
3. Теплообменник (коллектор)
4. Герметичная пробка.
5. Вакуумная трубка.
6. Конденсатор.
7. Поглощающая пластина.
8. Тепловая трубка с рабочей жидкостью.
Области применения солнечных коллекторов
Главное назначение солнечных коллекторов, как и любых других теплогенераторов, – отопление зданий и подготовка воды для системы горячего водоснабжения. Осталось выяснить, какой именно тип гелиоколлекторов лучше подходит для выполнения той или иной функции.
Плоские солнечные коллекторы, как мы выяснили, отличаются хорошей производительностью в весенне-летний период, но малоэффективны зимой. Из этого следует, что использовать их для отопления, потребность в котором появляется именно с наступлением холодов, нецелесообразно. Это, однако, не означает, что для данного оборудования вовсе не найдется дела.
У плоских коллекторов есть одно неоспоримое преимущество – они существенно дешевле вакуумных моделей, поэтому в тех случаях, когда планируется использовать солнечную энергию исключительно летом, имеет смысл приобретать именно их. Плоские гелиоколлекторы прекрасно справляются с задачей подготовки воды для ГВС в летний период. Еще чаще их используют для подогрева до комфортной температуры воды в открытых бассейнах.
Трубчатые вакуумные коллекторы более универсальны. С приходом зимних холодов их производительность снижается не столь существенно, как в случае плоских моделей, а значит, они могут использоваться круглогодично. Это дает возможность задействовать подобные гелиоколлекторы не только для горячего водоснабжения, но и в системе отопления.
Сравнение плоских и вакуумных солнечных коллекторов.
Расположение солнечных коллекторов
Эффективность гелиоколлектора напрямую зависит от количества солнечного света, попадающего на адсорбер. Из этого следует, что коллектор должен располагаться на открытом пространстве, куда никогда (или, по крайней мере, максимально долго) не падает тень от соседних зданий, деревьев, расположенных вблизи гор и т. д.
Большое значение имеет не только расположение коллектора, но и его ориентация. Самой «солнечной» стороной в нашем северном полушарии является южная, а значит, в идеале «зеркала» коллектора должны быть развернуты строго на юг. Если технически сделать этого невозможно, то следует выбрать направление, максимально приближенное к южному, – юго-запад или юго-восток.
Не следует выпускать из внимания и такой параметр, как угол наклона гелиоколлектора. Величина угла зависит от отклонения положения Солнца от зенита, которое в свою очередь определяется географической широтой той местности, в которой будет эксплуатироваться оборудование. Если угол наклона будет выставлен неправильно, то существенно возрастут оптические потери энергии, поскольку значительная часть солнечного света будет отражаться от стекла коллектора и, следовательно, не достигнет абсорбера.
Как подобрать солнечный коллектор нужной мощности
Если вы хотите, чтобы отопительная система вашего дома справлялась с задачей поддержания в помещениях комфортной температуры, а из кранов текла горячая, а не еле теплая вода, и при этом планируете использовать в качестве генератора тепла солнечный коллектор, нужно заранее вычислить необходимую мощность оборудования.
При этом потребуется учесть довольно большое количество параметров, в том числе назначение коллектора (ГВС, отопление или их комбинация), потребности объекта в тепле (суммарная площадь обогреваемых помещений или средний суточный расход горячей воды), климатические особенности региона, особенности установки коллектора.
В принципе, произвести подобные расчеты не так уж и сложно. Производительность каждой модели известна, а значит, вы без труда оцените количество коллекторов, необходимое для обеспечения дома теплом. Компании, занимающиеся выпуском солнечных коллекторов, обладают информацией (и могут предоставить ее потребителю) об изменении мощности оборудования в зависимости от географической широты местности, угла наклона «зеркал», отклонения их ориентации от южного направления и т. д., что позволяет внести необходимые поправки при расчете производительности коллектора.
При подборе необходимой мощности коллектора очень важно достичь баланса между нехваткой и избытком генерируемого тепла. Специалисты рекомендуют ориентироваться на максимально возможную мощность коллектора, т. е. использовать в расчетах показатель для самого продуктивного летнего сезона. Это идет в разрез с желанием среднестатистического пользователя взять оборудование с запасом (т. е. посчитать по мощности самого холодного месяца), чтобы тепла от коллектора хватала и в менее солнечные осенние и зимние дни.
Однако если вы пойдете по пути выбора солнечного коллектора повышенной мощности, то на пике его производительности, т. е. в теплую солнечную погоду, вы столкнетесь с серьезной проблемой: тепла будет производиться больше, чем потребляться, а это грозит перегревом контура и прочими малоприятными последствиями. Существует два варианта решения этой задачи: либо устанавливать маломощный солнечный коллектор и в зимний период параллельно подключать резервные источники тепла, либо приобрести модель с большим запасом по мощности и предусмотреть при этом пути сброса избыточного тепла в весенне-летний сезон.
Стагнация системы
Поговорим чуть подробнее о проблемах, связанных с переизбытком генерируемого тепла. Итак, предположим, что вы установили достаточно мощный гелиоколлектор, способный полностью обеспечить теплом отопительную систему вашего дома. Но наступило лето, и потребность в отоплении отпала. Если у электрического котла можно отключить электропитание, у газового – перекрыть подачу топлива, то над солнцем мы не властны – «выключить» его, когда стало слишком жарко, нам не под силу.
Стагнация системы – одна из главных потенциальных проблем солнечных коллекторов. Если из контура коллектора забирается недостаточно тепла, происходит перегрев теплоносителя. В определенный момент последний может закипеть, что приведет к прекращению его циркуляции по контуру. Когда теплоноситель остынет и конденсируется, работа системы возобновится. Однако далеко не все виды теплоносителей спокойно переносят переход из жидкого состояния в газообразное и обратно. Некоторые в результате перегрева приобретают желеобразную консистенцию, что делает невозможной дальнейшую эксплуатацию контура.
Избежать стагнации поможет лишь стабильный отвод производимого коллектором тепла. Если расчет мощности оборудования сделан правильно, вероятность возникновения проблем практически нулевая.
Однако даже в этом случае не исключено возникновение форс-мажорных обстоятельств, поэтому следует заранее предусмотреть способы защиты от перегрева:
1. Установка резервной емкости для накопления горячей воды. Если вода в основном баке системы горячего водоснабжения достигла установленного максимума, а гелиоколлектор продолжает поставлять тепло, автоматически произойдет переключение, и вода начнет греться уже в резервной емкости. Созданный запас теплой воды можно будет использовать для бытовых нужд позже, в пасмурную погоду.
2. Подогрев воды в бассейне. У владельцев домов с бассейном (не важно, крытым или размещенным под открытым небом) имеется прекрасная возможность отводить излишки тепловой энергии. Объем бассейна несравнимо больше объема любого бытового накопителя, из чего следует, что вода в нем не нагреется так сильно, что уже не сможет поглощать тепло.
3. Слив горячей воды. При отсутствии возможности тратить избыток тепла с пользой можно попросту сливать небольшими порциями нагретую воду из накопительного резервуара для ГВС в канализацию. Поступающая при этом в емкость холодная вода будет понижать температуру всего объема, что позволит продолжать отводить тепло от контура.
4. Внешний теплообменник с вентилятором. Если гелиоколлектор обладает большой производительностью, избыток тепла может быть тоже очень велик. В этом случае система оборудуется дополнительным контуром, заполненным хладагентом. Этот дополнительный контур сопряжен с системой посредством теплообменника, оснащенного вентилятором и монтируемого за пределами здания. При возникновении риска перегрева избыточное тепло поступает в дополнительный контур и через теплообменник «выбрасывается» в воздух.
5. Сброс тепла в грунт. Если помимо солнечного коллектора в доме имеется грунтовый тепловой насос, избыток тепла можно направить в скважину. При этом вы решаете сразу две задачи: с одной стороны, защищаете контур коллектора от перегрева, с другой – восстанавливаете истощенный за зиму запас тепла в грунте.
6. Изоляция гелиоколлектора от прямых солнечных лучей. Этот способ с технической точки зрения один из самых простых. Конечно, забираться на крышу и занавешивать коллектор вручную не стоит – это тяжело и небезопасно. Гораздо рациональнее установить дистанционно управляемый заслон, наподобие рольставень. Можно даже подключить блок управления заслоном к контроллеру – при опасном повышении температуры в контуре коллектор будет закрываться автоматически.
7. Слив теплоносителя. Этот способ можно считать кардинальным, но в то же время он довольно прост. При возникновении риска перегрева теплоноситель посредством насоса сливается в специальную емкость, интегрированную в контур системы. Когда условия вновь станут благоприятными, насос вернет теплоноситель в контур, и работа коллектора будет восстановлена.
Другие компоненты системы
Недостаточно просто собрать излучаемое солнцем тепло. Нужно его еще транспортировать, накопить, передать потребителям, нужно контролировать все эти процессы и т. д. А это означает, что помимо расположенных на крыше коллеторов система содержит множество других компонентов, может быть менее заметных, но при этом не менее важных. Остановим ваше внимание лишь на некоторых из них.
Теплоноситель
Функцию теплоносителя в контуре коллектора может выполнять либо вода, либо незамерзающая жидкость.
Вода имеет ряд недостатков, накладывающих определенные ограничения на использование ее в качестве теплоносителя в гелиоколлекторах:
- Во-первых, при отрицательных температурах она застывает. Чтобы замерзший теплоноситель не разорвал трубы контура, с приближением холодов его придется сливать, а значит, зимой вы не получите от коллектора даже небольших количеств тепловой энергии.
- Во-вторых, не слишком высокая температура кипения воды может стать причиной частых стагнаций в летний период.
Незамерзающая жидкость в отличие от воды обладает значительно более низкой температурой замерзания и несравнимо более высокой температурой кипения, что повышает удобство использования ее в качестве теплоносителя. Однако при высоких температурах «незамерзайка» может претерпеть необратимые изменения, поэтому ее следует оберегать от чрезмерного перегрева.
Насос адаптированный для гелиосистем
Для обеспечения принудительной циркуляции теплоносителя по контуру коллектора необходим насос, адаптированный для гелиосистем.
Теплообменник для ГВС
Перенос тепла от контура гелиоколлектора к воде, используемой в ГВС, или к теплоносителю системы отопления осуществляется посредством теплообменника. Как правило, для накопления горячей воды используют резервуар большого объема с уже встроенным теплообменником. Рационально использовать баки с двумя и более теплообменниками: это позволит забирать тепло не только у солнечного коллектора, но и у других источников (газовый или электрический котел, тепловой насос и т. д.).
Автоматика
Такой сложной системе не обойтись без автоматики, осуществляющий контроль и управление процессом. Контроллер позволяет автоматизировать работу коллектора: он осуществляет анализ температуры в контуре и накопительном резервуаре, управляет насосом и клапанами, ответственными за движение теплоносителя по контуру. При перегреве теплоносителя в контуре и воды в баке контроллер отдаст команду на сброс тепла в альтернативный теплоприемник – дополнительный резервуар с водой или уличный воздушный теплообменник.
Если в конце светового дня температура воды в накопительной емкости превысит температуру теплоносителя в контуре коллектора, автоматика остановит циркуляцию теплоносителя по контуру, чтобы накопленное тепло не выбрасывалось в атмосферу через сам коллектор. Современные контроллеры дают возможность удаленно следить за работой системы и при необходимости вносить корректировки.
Сегодня не составит труда найти на рынке гелиоколлектор и любой из компонентов, необходимых для его работы. Вполне реально собрать систему из купленных по отдельности элементов. Однако производители предлагают уже готовые комплекты, которые включают в себя коллектор, насосы, накопительные резервуары, управляющую автоматику и т. д. Приобретение такого комплекта – это не только экономия вашего времени, но и гарантия работоспособности системы.
Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Принцип работы солнечного коллектора (в зависимости от его типа)
Принцип работы солнечных коллекторов основан на трансформации лучистой энергии солнца в тепловую энергию. Происходит это путем нагревания циркулирующего в коллекторе теплоносителя (чаще всего воды, иногда – антифриза) и последующей передачи накопленного тепла. Иными словами, солнечный коллектор работает как своего рода водонагреватель, что и определило его сферу применения (ГВС частных домов, отопление).
Общий принцип водонагрева
Существуют различные виды гелиоколлекторов, однако в водонагревательных установках все они работают по одной схеме. Солнечные лучи нагревают теплоноситель, который по тонким трубкам поступает в заполненный водой бак. Трубки с теплоносителем проходят через весь внутренний объем бака и нагревают находящуюся в нем воду. В дальнейшем эта вода расходуется на бытовые нужды (отопление, ГВС и т.д.). Температура воды в баке контролируется специальными датчиками, при ее охлаждении ниже заданного минимума автоматически включается резервный подогрев (обычно – газовый или электрокотел).
Такова общая схема работы всех солнечных водонагревательных установок. Что же касается работы плоских и вакуумных коллекторов, то, несмотря на единый принцип действия (нагрев теплоносителя от солнца и последующую отдачу тепла), в их работе много различий.
Плоские коллекторы
Плоский солнечный коллектор нагревает теплоноситель при помощи пластинчатого абсорбера. Устроен он довольно просто. По сути, это пластина теплоемкого металла, выкрашенная сверху в черный цвет специальной краской. К нижней поверхности пластины плотно прилегает (приваривается) змеевидная трубка, по которой и циркулирует жидкость.
Черная селективная краска обеспечивает максимальное поглощение солнечных лучей, причем их отражение практически равно нулю. Поглощенные лучи прогревают теплоноситель под абсорбером, он, в свою очередь, подается далее в систему. Для минимизации теплопотерь применяются теплоизоляция абсорбера от корпуса коллектора и закаленное стекло, почти не содержащее окислов железа. Оно устанавливается над абсорбером и выполняет функцию верхней крышки корпуса. Кроме того, использование подобного стекла позволяет создать своеобразный «эффект парника», что еще больше увеличивает прогрев абсорбера, а значит, и температуру теплоносителя.
Вакуумные коллекторы
Принцип работы вакуумных коллекторов иной. Объясняется это прежде всего разницей в конструкции. Главным рабочим элементом в вакуумных моделях является не пластина абсорбера, а система вакуумированных трубок и теплосборник. Причем вариантов конструкций таких трубок несколько.
Тем не менее, несмотря на конструктивные различия, общая схема действия таких трубок фактически одинакова. Стеклянная поверхность поглощает максимум солнечных лучей благодаря специальному высокоселективному покрытию. Энергия солнца нагревает внутренний теплоноситель, а вакуумная прослойка ликвидирует теплопотери, так как вакуум – лучший изолятор. Через теплосборник аккумулированное тепло поступает далее в систему и используется для нагрева воды в баке-накопителе.
В целом коллектор этого типа обеспечивает более высокую производительность по сравнению с плоским аналогом.
Вакуумные трубки
Устройство классической вакуумированной трубки довольно просто. Она представляет собой двухстенную стеклянную колбу, между стенками которой создан вакуум. Внутри расположен медный сердечник (тепловой канал). Такая трубка называется «коаксиальной». Еще один вид — так называемые «перьевые трубки», одностенные колбы с вакуумом в самом тепловом канале.
Принцип работы вакуумной трубки зависит от особенностей строения ее теплового канала и от типа самой колбы. Каналы же, как и колбы, бывают двух видов, прямоточные и типа heat pipe.
Действие прямоточных каналов основано на непосредственном протекании теплоносителя через U-образную медную трубку. Охлажденная жидкость попадает в трубку из теплосборника, проходит через нее, нагревается и возвращается в теплосборник. Там она отдает накопленное тепло основному теплоносителю и возвращается в трубку.
Трубка heat pipe работает несколько иначе. Принцип ее работы основан на переносе тепла посредством легко испаряющейся жидкости, заключенной в тепловом канале. Сам канал (трубка) выполняется из теплоемкого металла (алюминий, медь). Солнечный свет нагревает жидкость, она испаряется из нижнего конца трубки и конденсируется в теплосборнике. Конденсат стекает вниз, где его вновь разогревает солнечный свет. Основной теплоноситель забирает тепло из теплосборника и передает его через коллектор дальше в систему.
Теплосборник
Помимо трубок, вакуумный солнечный коллектор оснащен теплосборником, которые необходим для передачи тепла от трубок к теплоносителю. Размещается теплосборник в верхней части агрегата. Принцип его работы следующий. Медный сердечник передает накопленную энергию основному теплоносителю, циркулирующему в замкнутом круге «теплообменник бака – коллектор». Циркуляцию обеспечивает специальный небольшой насос. Причем если температура теплоносителя упадет ниже определенного минимума (например, ночью), то управляющая автоматика водонагревательной системы отключит насос. Таким образом предотвращается обратный прогрев, при котором теплоноситель будет забирать тепло горячей воды в накопительном баке.
Воздушные коллекторы
Солнечный коллектор воздушного типа гораздо менее распространен. Применяется он не для подогрева воды, а для нагрева и кондиционирования воздуха. Роль теплоносителя в нем играет собственно воздух, нагреваемый солнечными лучами. По сути, данный коллектор представляет собой ребристую металлическую панель, выкрашенную в черный цвет. Принцип работы его основан на естественной или принудительной подаче в помещения воздуха, который прогревается под панелью под действием солнечных лучей.
Вакуумный солнечный коллектор
Солнце ежедневно и бесплатно поставляет для нас неограниченное количество энергии. Солнечный свет можно назвать практически неисчерпаемым источником энергии. Поэтому для человечества главный вопрос – это с помощью каких механизмов извлекать эту энергию. Постоянно идёт работа над изобретением новых устройств для преобразования солнечного света в другие типы энергии и совершенствование уже имеющихся. Перед инженерами стоит непростая задача – задействовать по максимуму энергию солнца. Для этого нужно увеличить КПД всех солнечных установок. Сегодня речь пойдёт о таком типе солнечных коллекторов, как вакуумные. На сегодняшний день этот вид солнечных коллекторов является наиболее эффективным. Он без проблем может использоваться для нагрева воды даже зимой. Нагретая вода может использоваться как для горячего водоснабжения, так и для отопления.
Содержание статьи
Конструкция и принцип работы вакуумного солнечного коллектора
Главная действующая частью любого солнечного коллектора – это теплоноситель, циркулирующий в нём. Теплоноситель нагревается, проходя по коллектору, а затем отдаёт тепло в каком-нибудь теплообменнике (бойлер), аккумулирующем его для горячего водоснабжения или отопления. В роли теплоносителя может выступать вода, масло, антифриз. Есть коллекторы, где теплоносителем является воздух, но они гораздо менее эффективны, чем жидкостные.
Солнечный вакуумный коллектор
Основная конструктивная особенность вакуумного коллектора – это стеклянные трубки. На их поверхность нанесено специальное вещество, притягивающее солнечные лучи. Внутри стеклянной трубки расположена ещё одна трубка, а между ними вакуум. Благодаря тому, что из стеклянной трубки откачан вакуум, внутренняя трубка и теплоноситель в ней хорошо сохраняют тепло. В результате КПД солнечного вакуумного коллектора на 30 процентов выше, чем у обычных плоских коллекторов. Вода в таких устройствах может нагреваться до 200─300 градусов.
Ещё одной важной особенностью вакуумного коллектора является то, что во внутренних трубках находится специальная жидкость (антифриз, масло). При нагреве она переходит в парообразное состояние и поднимается вверх. Там она охлаждается, отдавая тепло второму контуру, где циркулирует теплоноситель. После охлаждения, в соответствии с законами физики, жидкость становится тяжелее и стекает вниз. И так она циркулирует по кругу.
Принцип работы солнечного вакуумного коллектора
Стоит также отметить, что вакуумные коллекторы показывают хорошую эффективность именно в тех районах, где холодная погода и небольшой световой день.

Принцип работы любого коллектора подобного типа заключается в накоплении тепла от солнечного излучения и передачу её теплоносителю. Вакуумные устройства в этом смысле не отличаются, но имеют ряд особенностей. Давайте, сначала разберёмся, что входит в состав вакуумного коллектора. Это, собственно, сам коллектор, контур для циркуляции теплообменника, тепловой накопитель, датчики, приёмник. В роли накопителя используется бак с водой.
Теперь подробнее о составляющих вакуумного коллектора. Конструктивно устройство выполнено из трубчатых профилей, которые установлены в обойму параллельно. Часто применяют схему трубок стекло-стекло. Стекло выбирается боросиликатное. Внутренняя трубка покрывается селективным слоем. Его назначение – это абсорбция энергии солнца и устранение потерь тепла. Благодаря этому трубки успешно работают в пасмурную погоду. Вакуумный коллектор работает в условия отрицательной температуры за бортом и от рассеянного солнечного света.
Тепло образуется от инфракрасного спектра излучение солнечного света. Вакуумные трубки представляют собой термос. Между ними создаётся вакуум, благодаря чему отлично сохраняется тепло. Ведь у вакуума практически нулевая теплопроводность.
Работа солнечного коллектора в составе гелиосистемы
В системе также используются вакуумные трубки из меди, которые заполнены жидкостью, имеющую низкую температуру кипения. Когда происходит нагрев, жидкость испаряется. Она вбирает в себя тепло, передаваемое от медной трубки. После этого пар поднимается вверх, где в специальном наконечнике отдаёт тепло носителю, циркулирующему в основном контуре. В результате охлаждения образуется конденсат, который стекает вниз по стенкам трубки.
Приёмник в большинстве случаев сделан из меди. В качестве дополнительной защиты используется изоляция из полиуретана. Сам приёмник защищён с помощью покрытия из нержавейки. У приёмника есть специальная медная гильза, через которую выполняется передача тепла. Внешний отопительный контур разделён с блоком стеклянных трубок. Благодаря этому при повреждении одной или нескольких трубок работа всей системы не останавливается. А заменить повреждённые трубки можно прямо во время работы коллектора, не сливая теплоноситель. Это несомненный плюс системы.
Теплообменник выступает в роли бойлера. Он используется, как аккумулятор тепловой энергии. Внутри теплообменник имеет 1 или 2 спирали, посредством которых организован теплообмен. А также в систему входит насос для циркуляции теплоносителя, клапаны для регулировки давления и количества воды, манометр, соединительные трубки, фитинг. Для подключения системы отопления к накопителю используется специальный набор для безопасного соединения. Часто накопитель ещё оснащается возможностью нагрева с помощью электричества.
Если нужно организовать подачу отопления и горячее водоснабжение, то делается перераспределение тепловой энергии. При достижении заданного значение температуры воды, тепло направляется на отопительный контур. Распределение тепла пользователь может менять в зависимости от погодных условий у него за окном. Кроме того, к отопительной системе с вакуумным коллектором можно подключить различные дополнительные приборы для отопления.
Вакуумный солнечный коллектор
Контроллер применяется для регулирования температуры в коллекторе и теплообменнике. С его помощью выполняется регулировка режима функционирования вакуумного коллектора. Контроллер ведёт мониторинг индикация температуры в накопителе, коллекторе и обратном потоке теплоносителя. И также он выводит эти данные на дисплей. С его помощью можно задать значение температуры, при достижении которой включается циркуляция теплоносителя. Есть таймер, с помощью которого можно останавливать и запускать систему в определённое время.

Вернуться к содержанию
Виды вакуумных солнечных коллекторов
С прямой тепловой подачей
Вакуумные коллекторы с прямой подачей тепла имеют внутренние трубки с теплоносителем, которые присоединены к накопительному баку. То есть, здесь теплоноситель в трубках и общем контуре один и тот же. Схему можно посмотреть ниже.
Вакуумный солнечный коллектор с прямой тепловой подачей
Используя запорный клапан коллектор можно подключить к водопроводной системе. С помощью фиксирующего клапана можно выполнять контроль за уровнем воды в накопителе. Обычно в таких системах теплоносителем является вода, а значит, этот тип коллекторов является сезонным.
Вернуться к содержанию
С косвенной тепловой подачей
Принцип работы здесь аналогичный, но теплоноситель не соприкасается с жидкостью внутри вакуумных трубок. Схему можно посмотреть на изображении ниже.
Вакуумный солнечный коллектор с косвенной тепловой подачей
Такой тип коллекторов может без проблем использоваться в зимнее время.
Вернуться к содержанию
Особенности вакуумных коллекторов
Эффективная работа таких устройств возможна только в случае соблюдения рекомендаций производителя. Для начала нужно смонтировать систему под углом, рекомендуемым изготовителем. Не стоит забывать и о безопасности. Летом нагрев теплоносителя может достигать 300 градусов по Цельсию. Поэтому обязательно нужно сделать теплоизоляцию контура, где он циркулирует. Кроме того, для таких трубопроводов нужно использовать только медь или нержавеющую сталь.
Угол наклона вакуумного солнечного коллектора при креплении на крыше должен быть равен географической широте вашего региона. Устанавливать коллектор следует максимально близко к строениям, которые будут потреблять тепло. Вокруг не должно быть никаких объектов, которые бы отбрасывали тень коллектор.
Максимальная эффективность системы достигается, когда трубки находятся под углом 90 градусов к солнечным лучам. Это, конечно, идеальные условия, которых добиться довольно сложно.
Решением проблемы может быть специальная подставка, которая меняет наклон в зависимости от положения солнца. Однако цена подобных конструкций высокая и они делают вакуумный коллектор, и без того дорогой, ещё дороже.
Направление установки солнечного коллектора всегда южное. В северных широтах он устанавливается почти вертикально. Их эффективность в зимний сезон ещё возрастает за счёт поглощения света, отражённого от снега. Установка может выполнять как на крыше, стенах и фасаде, так и отдельно рядом с домом.
Установка электрического или иного типа нагревателя выполняется после вакуумного коллектора. Тогда они будут функционировать в экономичном режиме, доводя температуру жидкости до необходимой уже после подогрева её в коллекторе. Их подключение параллельно будет неправильным.
Вернуться к содержанию
Преимущества коллекторов вакуумного типа
Основным преимуществом вакуумных коллекторов является их работа круглый год. Они могут функционировать при отрицательных температурах (даже в мороз до минус 40 по Цельсию). Сама установка монтируется отдельно, а к накопительному баку ведут трубы. Поэтому можно дополнительно подключать обогрев от электрических и газовых котлов. Вакуумные солнечные коллекторы могут быть установлены на крыше дома, фасаде, а также на участке рядом.
Функционирование установки может быть полностью автоматизировано за счёт использования контроллера, циркуляционного насоса и датчиков.
Среди основных плюсов таких коллекторов можно назвать:
- Высокий КПД;
- Достаточно простой монтаж;
- Длительное время эксплуатации;
- Работа практически в любом климате.
Среди минусов следует отметить высокую стоимость, и, как следствие, длительную окупаемость.

Вернуться к содержанию
Опрос
Примите участие в опросе!
Загрузка …Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Это поможет развитию сайта. Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения к статье оставляйте в комментариях.
Вернуться к содержанию
Какой принцип работы солнечных коллекторов для нагрева воды, что в них входит и из чего состоят?
Как следует из названия, солнечные коллекторы используют солнечную энергию. Работу солнечного коллектора можно изобразить следующим образом:
Солнечный коллектор для нагрева воды состоит из двух основных частей:
1 сам солнечный коллектор
2 теплообменный аккумулятор
Между двумя этими элементами циркулирует теплоноситель, в роли которого, как правило, выступает вода, иногда — воздух.
Солнечный коллектор состоит из таких элементов как: кофр, в который заключены все детали устройства, абсорбер (элемент, поглощающий солнечные излучения), термоизолирующий слой.
Основным элементом системы является абсорбер. Весь секрет заключается в специальном покрытии (селективное покрытие, придающее абсорберу слегка радужный синеватый цвет), которым покрывают абсорбер, именно благодаря ему абсорбер может поглощать солнечный свет.
Стоит отметить отдельно, что мало абсорбер покрасить темным цветом (черным), такое устройство, конечно, будет нагревать воду, но в разы менее эффективно, нежели то, которое имеет абсорбер, выкрашенный, а точнее, покрытый, специальным селективным покрытием.
Я предлагаю посмотреть очень интересное и поучительное видео, в нем Вы найдете ответы на все оставшиеся вопросы:
Существуют различные конструкции солнечных коллекторов:
- водяные плоские,
- водяные вакуумные
Из низ, самым простым и дешевым является воздушный солнечный коллектор, а наиболее дорогостоящим — вакуумный. Многие люди, видя перспективность такой установки пытаются самостоятельно изготовить солнечный коллектор, даже в интернете можно найти разнообразные идеи и попытки реализации подобного устройства. Конечно, заводские коллекторы куда эффективнее, но стоит учитывать также и тот факт, что народные умельцы делают свои поделки из подручных материалов, соответственно, стоимость их невелика.
Солнечные коллекторы
Как работает солнечный коллектор работает?
Солнечный коллектор представляет собой плоскую коробку, состоящую из из трех основных частей, прозрачной крышки, трубок с охлаждающей жидкостью и утепленная задняя пластина. Солнечный коллектор работает на парниковом эффекте принцип; солнечное излучение падает на прозрачную поверхность солнечного коллектор проходит через эту поверхность. Внутри солнечной коллектор обычно откачивается, энергия, содержащаяся в солнечном коллекторе в основном задерживается и, таким образом, нагревает хладагент, содержащийся в трубках.В трубки обычно делаются из меди, а задняя панель окрашена в черный цвет, чтобы облегчить поглощают солнечное излучение. Солнечный коллектор обычно изолирован, чтобы избежать перегрева. убытки.
Активный солнечный водонагревательОсновные компоненты активной солнечной системы водяного отопления
- Солнечная коллектор для улавливания солнечной энергии и передачи ее теплоносителю средний
- А система циркуляции, которая перемещает жидкость между солнечным коллектором и накопительный бак
- Хранилище бак
- Назад система отопления
- Контроль система регулирования работы системы
Два основных типа солнечных водонагревательных систем:
система с замкнутым контуром и система с открытым контуром.В системе с открытым контуром вода использовалась в качестве
теплоноситель, вода циркулирует между солнечным коллектором и накопителем
бак.
Существует два основных типа систем без обратной связи: система слива и система рециркуляции, основной принцип, лежащий в основе обоих системы — это активация циркуляции от коллектора к накопительному резервуару когда температура внутри солнечного коллектора достигает определенного значения.
В дренажной системе используется клапан, позволяющий коллектор заполнять водой, когда коллектор достигает определенной температуры.
В рециркуляционной системе вода перекачивается через коллектор, когда температура в накопительном баке достигает определенного критического ценить.
В приложениях, где вероятно повышение температуры
ниже нуля градусов, тогда необходимо использовать замкнутую систему. В
Основное отличие системы разомкнутого контура заключается в том, что вода заменяется на
хладагент, который не замерзает в диапазоне температур солнечного коллектора.
может быть предметом.В качестве охлаждающей жидкости обычно используется хладагент, масло или дистиллированная жидкость.
вода. Системы с замкнутым контуром, как правило, дороже, чем их разомкнутые.
встречные части и следует проявлять большую осторожность, чтобы избежать загрязнения воды
с хладагентом. Энергия, захваченная охладителем, затем передается
горячая вода через теплообменник. В
Система обратного слива охлаждающей жидкостью может быть дистиллированная вода. Система работает на
принцип, что в коллекторе только вода, когда насос
операционная. Это имеет то преимущество, что охлаждающая жидкость, используемая в системе, не будет
иметь возможность остыть ночью, когда температура может упасть до
уровень, который может привести к увеличению плотности охлаждающей жидкости и, следовательно, вызвать
не будет таким свободным, как следовало бы.Единственная необходимая функция на
Система обратного слива заключается в том, что солнечный коллектор приподнят от тепла
теплообменник или дренажный бак, чтобы охлаждающая жидкость вытекала из
коллектор. Эта система снова работает по принципу циркуляции воды.
между коллектором и сливным баком, когда заданная температура
достигнута между солнечным коллектором и горячей водой.
Активно солнечное отопление
Компоненты системы для обогрева помещений: то же самое для водяного отопления с добавлением радиаторов для отопления помещений или под змеевики напольного отопления или даже системы с принудительной подачей воздуха.
Радиаторная система обычно работает в очень симметричном Что касается применения горячей воды, основным отличием является включение бойлер, нагретая вода из коллектора пропускается через теплообменник или сливной резервуар, а затем передается в бойер, используется для пополнения требования к звуку воды перед тем, как попасть в радиаторы, которые будут использоваться для космическое отопление.
Системы распределения воздуха.
В поместье снова работает система распределения воздуха. аналогично системе горячего водоснабжения, основное отличие — включение воздуходувка и воздуховод.В системе используется дополнительный элемент управления, который позволить воздуху течь по змеевику при высокой температуре в накопительном баке достаточно, чтобы воздух, проходящий через змеевики в обратном канале аппарата, позволяют системе вносить положительный вклад в обогрев помещения потребность.
При проектировании систем крупных коммерческих или промышленных приложений
немного отличается от жилых помещений. Стоит отметить, что
рост температуры коллектора довольно постоянен, чтобы использовать пример, если
температура подачи в коллектор составляет около 60F, а
температура возврата составляет около 73 ° C, или температура возврата составляет 173 ° F, а
подача 160C, это
в основном означает, что нельзя использовать высокотемпературные и низкотемпературные приложения.
серия внутри петли.Низкотемпературное приложение в основном потянет вниз
применение при более высоких температурах. Вакуумные коллекторы — отличные исполнители
в высокотемпературных приложениях коллекторный контур должен быть выделен
применение при более высокой температуре до тех пор, пока нагрузка не будет удовлетворена. В приложениях
например, для больниц, гостиниц или коммерческих офисных зданий может потребоваться
для установки двух и более резервуаров, соединенных последовательно.
1. резервуар для хранения 2. резервуар для предварительного нагрева 3.холодная подача 4. смесительный клапан 5. подача и возврат в коллектор 6. отвод горячей воды
Работа системы: Горячая вода из коллектора проходит через змеевик в первом резервуаре ( 1 ), Затем, в зависимости от температуры, он отводится трехходовым клапаном (4) . к любому: змеевик в резервуаре (2) , если он выше установленного температура (имеется в виду бак (1) горячий) или коллектор, если он ниже установленной температуры смесительного клапана.
Соображения по поводу коммерческого и промышленного дизайна: Система могут быть расширены за счет включения более одного резервуара предварительного нагрева, теплообменных змеевиков соединены трехходовыми клапанами, и вода, которая должна быть нагрета, течет в серия через резервуары в обратном направлении. Трехходовой клапан может либо с терморегулятором, либо с электрическим управлением. Не более 100 пробирок должны быть подключены последовательно. Необходимо соблюдать осторожность при проектировании трубопроводов в каждая секция, чтобы гарантировать, что каждая секция получает равный поток.
Солнечный коллектор — Energy Education
Рисунок 1. Солнечный коллектор. [1] Солнечный коллектор — это устройство, которое собирает и / или концентрирует солнечное излучение от Солнца. Эти устройства в основном используются для активного солнечного нагрева и позволяют нагревать воду для личного пользования. [2] Эти коллекторы обычно устанавливаются на крыше и должны быть очень прочными, поскольку они подвергаются воздействию различных погодных условий. [2]
Использование этих солнечных коллекторов представляет собой альтернативу традиционному нагреву воды для бытовых нужд с использованием водонагревателя, потенциально снижая затраты на электроэнергию со временем. Как и в домашних условиях, большое количество этих коллекторов можно объединить в массив и использовать для выработки электроэнергии на солнечных тепловых электростанциях.
Типы солнечных коллекторов
Существует много разных типов солнечных коллекторов, но все они сконструированы с учетом одной и той же основной предпосылки.В общем, есть материал, который используется для сбора и фокусировки энергии Солнца и использования ее для нагрева воды. В простейшем из этих устройств используется черный материал, окружающий трубы, по которым течет вода. Черный материал очень хорошо поглощает солнечное излучение и, поскольку материал нагревает воду, он окружает. Это очень простой дизайн, но коллекционеры могут стать очень сложными. Если нет необходимости в повышении температуры, можно использовать абсорбирующие пластины, но обычно устройства, в которых используются отражающие материалы для фокусировки солнечного света, приводят к большему повышению температуры.
Плоские коллекторы
Рисунок 2. Схема плоского солнечного коллектора. [3] Эти коллекторы представляют собой просто металлические коробки с каким-то прозрачным стеклом в качестве крышки поверх темной поглощающей пластины. Боковые стороны и дно коллектора обычно покрываются изоляцией, чтобы минимизировать тепловые потери в другие части коллектора. Солнечное излучение проходит через прозрачное остекление и попадает на пластину поглотителя. [4] Эта пластина нагревается, передавая тепло воде или воздуху, находящимся между стеклом и пластиной-поглотителем.Иногда эти абсорбирующие пластины окрашиваются специальными покрытиями, которые лучше поглощают и удерживают тепло, чем традиционная черная краска. Эти пластины обычно делают из металла, который является хорошим проводником — обычно из меди или алюминия. [4]
Коллекторы вакуумные
Рисунок 3. Схема вакуумного трубчатого солнечного коллектора. [5]В этом типе солнечных коллекторов используется серия откачанных труб для нагрева воды. [2] В этих трубках используется вакуум, или откачанное пространство, для улавливания солнечной энергии и минимизации потерь тепла в окружающую среду.У них есть внутренняя металлическая трубка, которая действует как пластина поглотителя, которая соединена с тепловой трубкой, чтобы переносить тепло, собираемое от Солнца, к воде. Эта тепловая труба, по сути, представляет собой трубу, в которой жидкое содержимое находится под очень определенным давлением. [6] При таком давлении на «горячем» конце трубы находится кипящая жидкость, а на «холодном» конце — конденсирующийся пар. Это позволяет тепловой энергии более эффективно перемещаться от одного конца трубы к другому. Когда тепло от Солнца переходит от горячего конца тепловой трубы к конденсирующему концу, тепловая энергия переносится в воду, которая нагревается для использования. [2]
Коллекторы Line Focus
Рисунок 4. Схема солнечного коллектора с линейным фокусом. [7] В этих коллекторах, иногда называемых параболическими желобами, используются материалы с высокой отражающей способностью для сбора и концентрации тепловой энергии солнечного излучения. [8] Эти коллекторы состоят из отражающих секций параболической формы, соединенных в длинный желоб. [2] Труба, по которой течет вода, помещается в центре этого желоба, так что солнечный свет, собираемый отражающим материалом, фокусируется на трубе, нагревая ее содержимое.Это коллекторы очень высокой мощности, поэтому они обычно используются для выработки пара для солнечных тепловых электростанций и не используются в жилых помещениях. Эти желоба могут быть чрезвычайно эффективными для выработки тепла от Солнца, особенно те, которые могут поворачиваться, отслеживая Солнце в небе для обеспечения максимального сбора солнечного света. [2]
Коллекторы точечного фокуса
Рисунок 5. Точечный солнечный коллектор. [9]Эти коллекторы представляют собой большие параболические тарелки, состоящие из некоторого отражающего материала, которые фокусируют энергию Солнца в одной точке.Тепло от этих коллекторов обычно используется для привода двигателей Стирлинга. [2] Хотя они очень эффективны для сбора солнечного света, они должны активно отслеживать Солнце по небу, чтобы иметь какую-либо ценность. Эти тарелки могут работать по отдельности или быть объединены в группу, чтобы собрать еще больше энергии от Солнца. [10]
Коллекторы точечной фокусировки и аналогичные устройства также могут использоваться для концентрирования солнечной энергии для использования с концентрированной фотоэлектрической системой. В этом случае вместо производства тепла энергия Солнца преобразуется непосредственно в электричество с помощью высокоэффективных фотоэлектрических элементов, специально разработанных для использования концентрированной солнечной энергии.
Для дальнейшего чтения
Для получения дополнительной информации см. Соответствующие страницы ниже:
Список литературы
- ↑ Wikimedia Commons [Online], доступно: https://commons.wikimedia.org/wiki/File:Flatplate.png
- ↑ 2,0 2,1 2,2 2,3 2,4 2,5 2,6 Г. Бойл. Возобновляемая энергия: энергия для устойчивого будущего , 2-е изд. Оксфорд, Великобритания: Издательство Оксфордского университета, 2004.
- ↑ Wikimedia Commons. (10 августа 2015 г.). Плоский застекленный коллектор [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/4/40/Flat_plate_glazed_collector.gif
- ↑ 4,0 4,1 Флазолар. (10 августа 2015 г.). Плоские солнечные коллекторы [Онлайн]. Доступно: http://www.flasolar.com/active_dhw_flat_plate.
htm
- ↑ Wikimedia Commons. (10 августа 2015 г.). Коллектор откачанных труб [Онлайн]. Доступно: https: // upload.wikimedia.org/wikipedia/commons/4/47/Evacuated_tube_collector.gif
- ↑ RedSun. (10 августа 2015 г.). Коллектор откачанных труб [Онлайн]. Доступно: http://www.redsunin.com/products/evacuated-tube-collector-solar-water-heaters/
- ↑> Wikimedia Commons. (10 августа 2015 г.). Коллектор линейного фокуса [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Solarpipe-scheme.svg/2000px-Solarpipe-scheme.svg.png
- ↑ Министерство энергетики США.(10 августа 2015 г.). Солнечный коллектор Line Focus [Онлайн]. Доступно: https://www.eeremultimedia.energy.gov/solar/photographs/line_focus_solar_collector
- ↑ Wikimedia Commons. (10 августа 2015 г.). Солнечный двигатель Стирлинга [Интернет]. Доступно: https://upload.wikimedia.org/wikipedia/commons/5/59/SolarStirlingEngine.jpg
- ↑ JC Solar Homes. (10 августа 2015 г.). Концентраторы и плоские коллекторы [Online]. Доступно: http: //www.jc-solarhomes.ru / КОЛЛЕКТОРЫ / концентраторы_vs_flat_plates.htm
3.1 Обзор плоских коллекторов
Плоские солнечные коллекторы, вероятно, являются наиболее фундаментальной и наиболее изученной технологией для систем горячего водоснабжения на солнечной энергии. Общая идея этой технологии довольно проста. Солнце нагревает темные плоские поверхности, которые собирают как можно больше энергии, а затем энергия передается воде, воздуху или другой жидкости для дальнейшего использования.
Это основные компоненты типичного плоского солнечного коллектора:
- Черная поверхность — поглотитель падающей солнечной энергии
- Стеклянное покрытие — прозрачный слой, который пропускает излучение к поглотителю, но предотвращает радиационные и конвективные потери тепла с поверхности
- Трубки с теплоносителем для передачи тепла от коллектора
- Опорная конструкция для защиты компонентов и удержания их на месте
- Изоляция, закрывающая боковые стороны и дно коллектора для снижения тепловых потерь
Рисунок 3. 1: Схема плоского солнечного коллектора с жидкой транспортной средой. Солнечное излучение поглощается черной пластиной и передает тепло жидкости в трубках. Теплоизоляция предотвращает потерю тепла при передаче жидкости; экраны уменьшают тепловые потери из-за конвекции и излучения в атмосферу
Кредит: Марк Федкин (с изменениями по Даффи и Бекман, 2013 г.)
Плоские системы обычно работают и достигают максимальной эффективности в диапазоне температур от 30 до 80 o ° C (Kalogirou, 2009), однако некоторые новые типы коллекторов, в которых используется вакуумная изоляция, могут достигать более высоких температур (до 100 ° C). o C).Благодаря применению селективных покрытий, температура застойной жидкости в плоских коллекторах достигает 200 o C.
Пробный вопрос
— Какие типичные материалы используются для изготовления пластин-поглотителей и крышек остекления?
Мы частично обсудили выбор материалов и их свойства в Уроке 2. Тем не менее, мы рекомендуем вам взглянуть шире и ознакомиться с текущими нововведениями в конструкциях с плоскими пластинами. Для обсуждения в этом уроке вас попросят поделиться тем, что вы нашли во время поиска, и описать современные материалы, которые помогают повысить производительность коллекционеров.
Некоторые преимущества плоских коллекторов заключаются в том, что они:
- Простота изготовления
- Низкая стоимость
- Улавливать как пучковое, так и рассеянное излучение
- На постоянной основе (не требуется сложное оборудование для позиционирования или слежения)
- Незначительное обслуживание
Плоские коллекторы устанавливаются лицом к экватору (т. Е. На юг в северном полушарии и на север в южном полушарии).Оптимальный наклон коллекторной пластины близок к широте места (+/- 15 o ). Если применяется солнечное охлаждение, оптимальный угол установки — широта — 10 o , чтобы солнечный луч был перпендикулярен коллектору в летнее время. Если используется солнечное отопление, оптимальный угол установки: широта + 10 o . Однако было обнаружено, что для круглогодичного применения горячей воды оптимальный угол составляет Latitude + 5 o , что обеспечивает несколько лучшую производительность зимой, когда горячая вода более необходима (Kalogirou, 2009)
Опции транспортной жидкости
Плоские пластинчатые коллекторы могут использовать перенос тепла жидкостью или воздухом.
Вода — один из распространенных вариантов жидкой жидкости из-за ее доступности и хороших тепловых свойств:
- Обладает относительно высокой объемной теплоемкостью
- Несжимаемая (или почти несжимаемая)
- Имеет высокую массовую плотность (что позволяет использовать для транспортировки небольшие трубы и трубки).
Одним из недостатков воды является то, что она замерзает зимой, что может повредить коллектор или систему трубопроводов. Этого можно избежать, опустив воду из коллектора при низких потребностях солнечной энергии (ниже критического порога инсоляции).Датчики слива часто используются для контроля системы и обеспечения полного слива, поскольку замерзание воды в кармане может вызвать повреждение. Наполнение системы водой на следующее утро тоже не идеально. Возможные воздушные карманы в коллекторе могут быть проблемой, блокируя поток воды и снижая эффективность системы (Vanek and Albright, 2008).
Смеси антифризов можно использовать вместо чистой воды для решения вышеупомянутых проблем. Обычными компонентами антифриза являются этиленгликоль или пропиленгликоль.Эти химические вещества, смешанные с водой, требуют систем замкнутого цикла и надлежащей утилизации из-за токсичности. Номинальный срок службы антифриза вроде составляет около 5 лет, после чего его необходимо заменить.
Воздух может использоваться в качестве транспортной жидкости в некоторых конструкциях плоских коллекторов. Этот вариант лучше подходит для обогрева помещений или сушки сельскохозяйственных культур. Вентилятор обычно требуется для облегчения потока воздуха в системе и эффективного отвода тепла. Некоторые конструкции могут обеспечивать пассивное (без вентилятора) движение воздуха за счет тепловой плавучести.
Жидкости с фазовым переходом также можно использовать с плоскими коллекторами. Некоторые хладагенты входят в эту группу жидкостей. Они не замерзают, что устраняет проблемы, описанные выше для воды, и из-за их низкой точки кипения могут переходить от жидкости к газу при повышении температуры. Эти жидкости могут быть полезны в условиях, когда требуется быстрое реагирование на быстрые колебания температуры.
Коллекторное строительство
Ключевыми соображениями при проектировании плоского коллектора являются максимальное поглощение, минимизация потерь на отражение и излучение, а также эффективная теплопередача от пластины коллектора к жидкостям.Одним из важных вопросов является получение хорошей тепловой связи между пластиной абсорбера и заменами (трубами или каналами, содержащими теплоносители). Различные конструкции конструкции (показанные ниже) пытаются решить эту проблему.
Рисунок 3.2: Различные конструкции плоского коллектора в сборе. Цветовые коды: голубой — стеклянная крышка, синий — каналы для жидкости, черный — материал абсорбера, серый — изоляция. Некоторые конструкции (b, c) включают в себя каналы для жидкости в структуре пластины поглотителя, чтобы максимизировать теплопроводность между компонентами.Другие модификации (а, г) включают трубки и каналы, припаянные или приклеенные к пластине.
Кредит: Марк Федкин (с изменениями по Калогиру, 2009 г.)
В сборке пластина-канал могут использоваться различные методы крепления компонентов — термоцемент, припой, зажимы, зажимы, пайка, механические аппликаторы давления. Одним из факторов, влияющих на выбор метода сборки, является стоимость рабочей силы и материалов.
Далее мы рассмотрим передачу и баланс энергии внутри плоского коллектора.
Ссылки:
- Kalogirou, S.A., Solar Energy Engineering , Elsevier, 2009
- Ванек, Ф.М., и Олбрайт, Л.Д., Energy Systems Engineering , McGraw Hill, 2008.
Что такое плоский солнечный коллектор и как он работает?
Плоский солнечный коллектор — это тип солнечной тепловой панели, целью которой является преобразование солнечного излучения в тепловую энергию. Этот тип солнечного коллектора имеет хорошее соотношение цены и эффективности в умеренном климате и правильно адаптируется к большому количеству применений солнечной тепловой энергии (нагрев воды для бытовых нужд, нагрев плавательных бассейнов, поддержка отопления, предварительный нагрев промышленных жидкостей и т. Д.).
В зависимости от конфигурации поглотителя мы можем выделить два основных типа плоских пластинчатых солнечных коллекторов: «решетчатый» параллельный, в вертикальном и горизонтальном вариантах и серия «змеевидный». По сути, разница между ними составляет:
- Параллельная конфигурация способствует тому, что температура солнечного коллектора с большим объемом циркуляции воды может быть расслоена по ветвям внутренней части коллектора и получить термодинамический скачок примерно на 10 ° C. с хорошей производительностью.
- Последовательная конфигурация состоит из одного непрерывного контура с небольшим объемом циркулирующей воды и верхним тепловым скачком с хорошей производительностью.
Другой способ классификации плоских солнечных коллекторов состоит в том, являются ли они застекленными или неглазурованными:
Плоские застекленные солнечные коллекторы обычно используются в бытовых системах водяного отопления или в установках. Рабочая температура обычно составляет от 30 ° C до 60 ° C. Он состоит из изолированной коробки, покрытой стеклом.Внутри находится абсорбент, в котором циркулирует теплоноситель. Остекление блокирует инфракрасное излучение и изолирует воздушное пространство над поглотителем для сохранения тепла.
Плоский неглазурованный солнечный коллектор намного дешевле, но менее распространен. В зависимости от наружной температуры он обычно используется в системах обогрева бассейнов, но иногда может использоваться как система водяного отопления в теплых странах. В зонах с умеренным климатом рабочая температура обычно ниже 30 градусов по Цельсию.Он состоит только из абсорбента, в котором циркулирует хладагент.
Производительность плоского солнечного коллектора
Работа солнечного теплового коллектора для использования солнечной тепловой энергии очень проста. Фактически, любое тело, подвергающееся солнечному излучению, получает поток энергии, который нагревает его и, следовательно, повышает температуру. Это повышение температуры означает увеличение внутренней энергии.
Тело при заданной температуре излучает энергию вокруг себя благодаря своим термодинамическим свойствам в виде излучения, которое напрямую зависит от разницы температур между температурой тела и температурой окружающей среды.
Если мы охлаждаем солнечный коллектор, пропуская через него жидкость, это тепло используется, что означает, что часть захваченной энергии передается этой жидкости в качестве полезной энергии. Остальная энергия по-прежнему теряется в виде излучения солнечного теплового коллектора во внешнюю среду. В этом случае рабочая температура всегда ниже равновесной.
Если мы хотим получить хорошую производительность, мы должны работать с коллекторами при минимально возможной температуре, если она достаточна для предполагаемого использования.
Используемая возобновляемая энергия удаляется из солнечного коллектора с помощью теплоносителя, обычно состоящего из смеси воды с антифризом и ингибиторами коррозии.
Физические принципы работы плоского солнечного коллектора
Плоский солнечный коллектор работает на основе следующих физических принципов:
Черное тело (поглотитель)
Падающее солнечное излучение частично поглощается телами. Остальное отражается или проходит через них.
Взаимосвязь между этими эффектами зависит от:
- природы тела
- состояния поверхности.
- Толщина корпуса.
- Вид излучения. Длина волны
- Угол падения солнечных лучей.
Темные и матовые тела лучше улавливают солнечное излучение, чем любой другой цвет; поэтому поглотитель солнечного коллектора обычно бывает темного цвета, чтобы максимально использовать солнечное излучение.
Парниковый эффект
Парниковый эффект возникает в некоторых прозрачных телах, через которые обычно проходит только излучение с длиной волны от 0,3 до 3 микрон. Поскольку большая часть солнечного излучения составляет от 0,3 до 2,4 микрон, солнечный свет может проходить через стекло. После прохождения излучение находит поглотитель, который нагревается солнечным излучением и излучает излучение размером от 4,5 до 7,2 микрон, для которого стекло непрозрачно.
Это солнечное излучение, которое не может уйти, снова отражается внутрь.Часть этой энергии нагревает стекло, и кристалл направляет его внутрь и наружу.
Некоторые пластмассы (например, поликарбонат) имеют поведение, подобное стеклу (они пропускают коротковолновое излучение Солнца и останавливают длинноволновое излучение, исходящее от пластины поглотителя).
Изоляция
Третьим физическим принципом работы солнечных коллекторов является изоляция сборки снаружи, обычно образуемая внутренней облицовкой контейнерной коробки.Хорошая изоляция улучшает использование солнечной тепловой энергии.
Компоненты плоского солнечного коллектора
Плоский солнечный коллектор может быть застекленным или неглазурованным. Коллектор с застекленной крышкой чаще всего используется для хозяйственно-питьевого водоснабжения. Эта команда состоит из следующих элементов:
Поглотитель
Поглотитель — это элемент, который улавливает солнечное излучение внутри коллектора и отвечает за преобразование солнечной энергии в тепловую.
Поглотитель обычно состоит из металлической фольги, обычно из меди (хорошая теплопроводность), которая в основном темнеет от:
1. Тонкая пленка черной термокраски, выдерживающая рабочие температуры выше 100 градусов Цельсия.
2. Селективная обработка на основе электрохимического осаждения или красок с оксидами металлов, которые имеют высокое поглощение солнечного излучения (короткие волны) и низкий коэффициент теплового излучения (длинные волны).
Абсорбер включает в себя решетку труб, по которым будет циркулировать теплоноситель.
Прозрачная крышка
Прозрачная крышка имеет функцию изоляции солнечного коллектора от внешних условий окружающей среды, хотя и пропускает солнечное излучение, вызывающее парниковый эффект. Обычно он состоит из одного листа закаленного стекла (стойкого) с низким содержанием железа (очень прозрачного) толщиной примерно 4 мм.
Изоляция
Изоляция — это элемент, который, как и в остальных случаях, выполняет функцию предотвращения потерь тепла изнутри коллектора, в частности поглотителя, наружу и обычно состоит из пластин. синтетических пен (полиуретан, цианид, стекловолокно и др.)), расположенные по бокам и на задней части солнечной панели.
Корпус
Корпус плоского солнечного коллектора предназначен для размещения остальных компонентов. Эта крышка обычно состоит из анодированного алюминиевого профиля, который гарантирует прочность сборки даже в экстремальных условиях работы. Точно так же в нижней части корпуса будут отверстия для слива конденсата.
Плоские солнечные коллекторы без крышки
Как следует из названия, солнечные коллекторы без крышки в основном состоят из абсорбирующего элемента, обычно образованного набором трубок из пластика, EPDM, резины или полипропилена.
Этот тип солнечных коллекторов очень экономичен и прост в установке, поскольку они обычно имеют гибкую конфигурацию, позволяющую размещать их на любой поверхности. Они также устойчивы к коррозии и допускают прямой нагрев, например, в случае подогрева бассейна.
Напротив, коллекторы без покрытия с синтетическим поглотителем, как правило, имеют очень крутые рабочие характеристики, потому что без стекла имеют очень хорошие оптические характеристики, но вместо этого быстро теряют свои характеристики, когда температура окружающей среды ниже рабочей температуры или с высокой температурой. скорость ветра.
По этой причине плоские коллекторы без крыши рекомендуются только в низкотемпературных приложениях, где рабочая температура близка к температуре окружающей среды, например, для продления купального сезона в открытых бассейнах. Отличительной особенностью этого типа коллекторов без крышки являются коллекторы со встроенной и смещенной металлической пластиной, разработанные специально для применения в замкнутой цепи.
Этот вариант обеспечивает лучшие тепловые характеристики солнечного коллектора и позволяет использовать его для производства горячей воды для бытовых нужд или других низкотемпературных применений.Другой пример этого типа коллектора, доступного на нашем рынке, состоит из многофункциональной крышки, которая сочетает в себе качества не требующей обслуживания крышки из нержавеющей стали с эффективностью селективного поверхностного солнечного коллектора.
Как работают солнечные коллекторы с вакуумной трубкой?
Введение в вакуумный трубчатый коллектор
Вакуумный или вакуумный трубчатый коллектор состоит из ряда рядов параллельных прозрачных стеклянных трубок, подключенных к коллекторной трубе, где теплоноситель (обычно 50% пропиленгликоля) циркулирует и поглощает выделяемое тепло трубками.Эти стеклянные трубки имеют цилиндрическую форму. Следовательно, угол падения солнечного света всегда перпендикулярен теплопоглощающим трубкам, что позволяет этим коллекторам работать хорошо даже при слабом солнечном свете, например, когда он ранним утром или поздно днем, или когда он затенен облаками.
Вакуумные трубчатые коллекторы особенно полезны в регионах с холодной пасмурной и зимней погодой (большая часть Канады и северная часть США).
Итак, как работают солнечные вакуумные трубчатые коллекторы?
Вакуумные трубчатые коллекторы состоят из одного или нескольких рядов параллельных прозрачных стеклянных трубок, поддерживаемых на раме.Каждая отдельная трубка имеет диаметр от 1 дюйма (25 мм) до 3 дюймов (75 мм) и от 5 футов (1500 мм) до 8 футов (2400 мм) в длину в зависимости от производителя. Каждая трубка состоит из толстой стеклянной внешней трубки и более тонкой внутренней стеклянной трубки (называемой «двойной стеклянной трубкой») или «трубки термоса», которая покрыта специальным покрытием, поглощающим солнечную энергию, но препятствующим потерям тепла. Трубки изготовлены из боросиликатного или натриево-кальциевого стекла, которое является прочным, устойчивым к высоким температурам и имеет высокий коэффициент пропускания солнечного излучения.
Внутри каждой стеклянной трубки плоское или изогнутое алюминиевое или медное ребро прикреплено к металлической тепловой трубке, проходящей через внутреннюю трубку. Ребро покрыто селективным покрытием, которое передает тепло жидкости, циркулирующей по трубе. Это запечатаны меди тепловой труба передает солнечное тепло посредством конвекции его внутренней теплопередающей текучей среды в «горячую лампочку», что косвенно нагревает медный коллектор внутри бачка.
Все эти медные трубы подключены к общему коллектору, который затем подключается к резервуару для хранения, таким образом нагревая горячую воду в течение дня.Затем горячую воду можно использовать ночью или на следующий день благодаря изоляционным свойствам бака.
Изоляционные свойства вакуума настолько хороши, что, хотя температура внутренней трубки может достигать 150 ° C, внешняя трубка холоднее на ощупь. Это означает, что водонагреватели с вакуумными трубками могут работать хорошо и могут нагревать воду до довольно высоких температур даже в холодную погоду, когда плоские пластинчатые коллекторы работают плохо из-за потерь тепла.
Однако недостатком является то, что они могут быть намного дороже по сравнению со стандартными коллекторами с плоскими пластинами.Солнечные коллекторы с вакуумными трубками хорошо подходят для коммерческого и промышленного нагрева горячей воды и могут быть эффективной альтернативой плоским пластинчатым коллекторам для отопления жилых помещений, особенно в районах, где часто бывает облачно.
Вакуумные трубчатые коллекторы в целом более современные и более эффективные по сравнению со стандартными плоскими коллекторами, поскольку они могут извлекать тепло из воздуха во влажные пасмурные дни и не нуждаются в прямом солнечном свете для работы. Из-за вакуума внутри стеклянной трубки общая эффективность во всех областях выше, и производительность выше, даже когда солнце находится под неоптимальным углом.Для этих типов солнечных панелей для горячей воды действительно важна конфигурация вакуумной трубки. Существует несколько различных конфигураций вакуумных трубок, одностенных, двустенных, прямоточных или тепловых трубок, и эти различия могут определять, как жидкость циркулирует вокруг солнечной панели для горячего водоснабжения.
(PDF) Эксергетический анализ вакуумной трубчатой солнечной системы коллектора с непрямым принципом действия
[2]. ASHRAE, Справочник по приложениям HVAC, 30 (1995).Атланта
[3]. He, ZN, Ge, HC, Jiang, FL, Li, W., Сравнение оптических характеристик между
вакуумных коллекторных трубок с плоскими и полуцилиндрическими поглотителями, Solar Energy, 60 (1997), pp 109-
117
[4]. Ким, Дж. Т., Ан, Х. Т., Хан, Х., Ким, Х. Т., Чун, В., Моделирование характеристик всего стекла
Вакуумные трубкис коаксиальным трубопроводом для жидкости, Международные коммуникации в области тепла и массы
Передача, 34 (2007 г. ), 5, с.587-597
[5]. Шах, Л.Дж., Фурбо, С., Вертикальные вакуумные трубчатые коллекторы, использующие солнечное излучение со всех направлений
, Applied Energy, 78 (2004), стр. 371-395
[6]. Моррисон, Г.Л., Будихардджо, И., Бехниа, М., Измерение и моделирование расхода в солнечном водонагревателе с вакуумной трубкой
«Вода в стекле», Солнечная энергия, 78 (2005), стр. [7]. Ким, Ю., Сео, Т., Сравнение тепловых характеристик солнечных коллекторов со стеклянной вакуумной трубкой
с формами абсорбирующей трубки, Возобновляемая энергия, 32 (2007), 5, стр.772-795
[8]. Хан, Х., Ким, Дж. Т., Ан, Х. Т., Трехмерный анализ характеристик стеклянных вакуумных трубок
с коаксиальным жидкостным трубопроводом, Международные коммуникации в области тепло- и массообмена, 35
(2008), стр. 589 -596
[9]. Ма, Л., Лу З., Чжан Дж., Лян Р., Анализ тепловых характеристик стеклянной вакуумной трубки
Солнечный коллектор с U-образной трубкой, Строительство и окружающая среда, 45 (2010), стр. 1959-1967
[10]. Лян, Р., Ма, Л., Чжан, Дж., Чжао, Д., Теоретическое и экспериментальное исследование солнечного коллектора с вакуумной трубкой типа
с U-образной трубкой, Солнечная энергия, 85 (2011), стр. 1735-1744
[11]. Хепбашлы А., Необходимость и применение эксергетического анализа в системах с солнечной энергией,
Труды, Палата инженеров-механиков, Симпозиум и выставка солнечной энергии
Системы, Мерсин, Турция, 2003 г., Том 1, стр. 80-87.
[12]. Сяоу В., Бен Х., Эксергетический анализ бытовых солнечных водонагревателей, возобновляемых источников энергии и
Обзоры устойчивой энергетики, 9 (2005), стр. 638-645
[13]. Саидур Р., Боруманджази Г., Мехлиф С., Джамиль М., Exergy Analysis of Solar Energy
Applications, Renewable and Sustainable Energy Reviews, 16 (2012), pp. 350-356
[14] . Сяоу В. Бен Х., Эксергетический анализ бытовых солнечных водонагревателей, возобновляемых источников энергии и
Обзоры устойчивой энергетики, 9 (2005), стр. 638-645
Вакуумные трубчатые солнечные коллекторы, солнечный коллектор
Вакуумные трубчатые солнечные коллекторы Apricus ETC преобразуют солнечную энергию в полезное тепло в системе солнечного нагрева воды. Эту энергию можно использовать для нагрева воды для бытовых и коммерческих нужд, обогрева бассейна, обогрева помещений или даже для кондиционирования воздуха.
Обзор продукта
Вакуумные трубчатые солнечные коллекторы Apricus ETC доступны с 10, 20, 22 и 30 размерами трубок (некоторые модели могут быть недоступны на вашем местном рынке).
Загрузите обзорный документ ETC: Международная версия, версия для Северной Америки
В Северной Америке доступен ETC-30C, который отвечает требованиям для проектов Buy American, финансируемых государством.
Строительство
Солнечный коллектор ETC состоит из четырех основных частей:
Вакуумная трубка (ET)
Поглощает солнечную энергию и преобразует ее в полезное тепло.Вакуум между двумя слоями стекла защищает от потери тепла.
Ребро теплопередачи помогает передавать тепло тепловой трубке.
Тепловая трубка (л.с.)
Медная вакуумная трубка, которая передает тепло изнутри ET к коллектору.
Коллектор
Изолированная коробка с медной коллекторной трубой. Коллектор представляет собой пару контурных медных труб с разъемами для сухого соединения, в которые вставляются тепловые трубки.
Монтажная рама
Прочный и простой в установке, с различными вариантами крепления.
Работа коллектора
Шаг 1: Вакуумный трубчатый солнечный коллектор Apricus преобразует солнечный свет в тепло. Циркуляционный насос перемещает жидкость через коллектор, возвращая тепло в резервуар для хранения солнечной энергии.
Шаг 2: Постепенно в течение дня вода в солнечном накопителе нагревается либо напрямую, либо через теплообменник (как показано).
Шаг 3: Когда используется горячая вода, вода, предварительно нагретая солнечными батареями, подается в традиционный водонагреватель, который повышает температуру, если она еще не достаточно горячая.
Перейдя по этим ссылкам, вы можете получить дополнительную информацию о: конструкции солнечной системы, вакуумных трубках, тепловых трубках.
Крепление коллектора
Солнечные коллекторы Apricus ETC могут быть установлены на крыше, стене, земле или построенной по индивидуальному заказу конструкции, как показано ниже на крыше ресторана в Южной Корее.Для получения информации о том, где можно установить солнечный коллектор, щелкните здесь. Примеры фото инсталляций в жилых помещениях можно посмотреть здесь, фотографии коммерческих примеров — здесь.
Преимущества дизайна
Вакуумная трубка и тепловая трубка
Вакуумная трубка и тепловая трубка Apricus собраны в запатентованном формате, который отличается от любого другого продукта на рынке. Вместо расположенной в центре тепловой трубки с теплообменными ребрами, выходящими на стеклянную стену, тепловая трубка расположена прямо напротив стеклянной стены, куда падает солнце.Алюминиевое ребро теплопередачи плотно прижимается к верхней внутренней стенке откачиваемой трубки и тепловой трубки с помощью набора пружинных зажимов. Это важная особенность конструкции, так как со временем под воздействием высокой температуры алюминий размягчается. Пружинные зажимы обеспечивают длительный плотный контакт со стеклянной стенкой и тепловой трубкой, что необходимо для оптимальной производительности.
Пассивное слежение
Круглая абсорбирующая поверхность вакуумированных трубок пассивно отслеживает солнце в течение дня, поэтому никаких механических устройств отслеживания не требуется. Это обеспечивает оптимальное воздействие на площадь поверхности с 7 утра до 5 вечера, которая покрывает большую часть солнечной радиации каждый день. Вакуумные трубки Apricus получают на> 20% больше солнечного излучения по сравнению с плоским поглотителем, что позволяет больше преобразовывать солнечную энергию в тепло каждый день.
Функция пассивного отслеживания также позволяет устанавливать коллектор в направлениях к востоку или западу от экватора (север или юг) без значительного снижения производительности.Сравнение, проведенное для системы Apricus ETC-30, установленной в Сиднее, Австралия, показало годовое снижение производительности всего на 5% для северо-восточного или северо-западного направления и 16% для восточного или западного направления (процентное снижение может отличаться в других регионах). Это обеспечивает большую гибкость при выборе подходящего места для коллектора в здании.
Для более подробного объяснения пассивного отслеживания и модификаторов угла падения (IAM) щелкните здесь.
Дизайн заголовка
Коллектор в вакуумных солнечных коллекторах серии AP рассчитан на надежность.Значительные колебания рабочих температур от дня к ночи вызывают тепловое расширение и сжатие металла, что в сочетании с высокими рабочими давлениями создает огромную нагрузку на паяные точки соединения.
В отличие от большинства других конструкций коллектора, которые имеют 2 точки пайки на тепловую трубу (60 на 30 трубных коллекторов), в конструкции Apricus используется конструкция коллекторной трубы с двумя контурами, которая позволяет создавать «сухие» соединительные порты, которые не проникают в трубу коллектора. Это означает, что у насадки всего 4 точки пайки.Результатом является чрезвычайно надежная конструкция, способная выдерживать суровые ежедневные термоциклы.
Корпус коллектора
Корпус коллектора изготовлен из прочного, но легкого алюминиевого сплава, который складывается, образуя прочный защитный кожух. Корпус покрыт матовым черным PVDF покрытием, устойчивым к ультрафиолетовому излучению для долговременной стойкости цвета.
Изоляция из стекловаты «запекается как торт», образуя законченную структурную оболочку вокруг коллекторной трубы.Такая конструкция сводит к минимуму количество металла, используемого в кожухе, уменьшая содержание CO 2 и делая его очень легким. Легкость распределительной коробки — это особенность, которую ценят монтажники при переноске на крышу. Самый большой размер коллектора, ETC-30, имеет длину 2196 мм / 86,45 дюйма, но всего 9,2 кг / 20,24 фунта.
Атмосферостойкость
Работа на открытом воздухе означает, что все компоненты коллектора должны быть способны противостоять всему, что дает Мать-природа, от условий холода до экстремальной жары и ультрафиолетового излучения в пустынных местах.
Коллекционеры Apricus разрабатывают с учетом этого. Хорошим примером является использование силиконового каучука вместо пластика для крышек трубок, резиновых уплотнений коллектора и крышек коллектора. Силиконовый каучук чрезвычайно прочен и сохраняет гибкость в широком диапазоне температур. Он способен выдерживать более 200 o C / 392 o F и чрезвычайно устойчив к повреждениям от ультрафиолетового излучения.
Улучшения дизайна
Конструкция ETC включает ряд дополнительных улучшений по сравнению с предыдущей моделью AP.Эти изменения основаны на внутренних исследованиях и разработках и на отзывах клиентов.
Вакуумные пробирки: Повышенная абсорбционная эффективность, долговечность покрытия и постоянство цвета. Среднегодовое увеличение производительности коллектора примерно на 5%.
Корпус коллектора: Более современная закругленная конструкция корпуса вместе с высококачественным PVDF покрытием для превосходной коррозионной стойкости и стойкости окраски.