Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Стартер для светильника 4х18 – Как подобрать стартер для люминесцентных ламп

Содержание

Как выбрать стартер для люминесцентных ламп: как работает, устройство, маркировка

Стартер для люминесцентных ламп входит в комплектацию электромагнитного пускорегулятора (ЭМПРА) и предназначен для зажигания ртутной лампочки.

Каждая модель, выпущенная определенным разработчиком, обладает различными техническими характеристиками, однако используется для светотехники, питающейся исключительно от сети переменного тока, с предельной частотой, не превышающей 65 Гц.

Предлагаем разобраться, как устроен стартер для люминесцентных ламп, какова его роль в осветительном приборе. Кроме того, мы обозначим особенности разных пусковых приборов и расскажем, как выбрать нужный механизм.

Содержание статьи:

Как устроено приспособление?

Опционально стартер (пускатель) достаточно прост. Элемент представлен небольшой газоразрядной лампой, способной формировать при низком давлении газа и малом токе, тлеющий разряд.

Этот стеклянный малогабаритный баллон заполнен инертным газом – смесью гелия или неоном. В него впаяны подвижные и неподвижные электроды из металла.

Все электродные спирали лампочки оснащены двумя клеммными блоками. Одна из клемм каждого контакта задействована в цепи . Остальные — подключены к катодам пускателя.

Расстояние между электродами пускателя не существенно, поэтому посредством напряжения сети его легко можно пробить. При этом образуется ток и нагреваются элементы, входящие в электроцепь с определенной долей сопротивления. Именно стартер и входит в число этих элементов.

Конструкции стартеров для люминесцентных ламп имеют практически идентичное устройство: 1 – дроссель; 2 – стеклянная колба; 3 – пары ртути; 4 – клеммы; 5 – электроды; 6 – корпус; 7 – биметаллический контакт; 8 – инертная газовая субстанция; 9 – вольфрамовые нити накала ЛДС; 10 – капля ртути; 11 – разряд дуги в колбе (+)

Колба размещена внутри корпуса из пластмассы или металла, выполняющего роль защитного кожуха. В некоторых образцах сверху крышки дополнительно есть специальное смотровое отверстие.

Самым востребованным материалом для производства блока считается пластик. Постоянное воздействие высоких температурных режимов позволяет выдержать специальный состав пропитки — люминофор.

Приспособления выпускаются с парой ножек, выполняющих роль контактов. Они изготовлены из разных видов металла.

В зависимости от типа конструкции электроды могут быть симметричными подвижными или асимметричными с одним подвижным элементом. Их выводы проходят через патрон лампы.

Параллельно электродам колбы подключен конденсатор, емкостью 0,003-0,1 мкф. Это важный элемент, снижающий уровень радиопомех и также участвующий в процессе загорания лампы

Обязательной деталью в устройстве является конденсатор, способный сглаживать экстратоки и в тоже время размыкать электроды прибора, осуществляя гашение дуги, возникающей между токоведущими элементами.

Без этого механизма есть большая вероятность спайки контактов при возникновении дуги, что существенно снижает срок эксплуатации пускателя.

В быту наиболее популярны образцы балластов с симметричной системой контактов и электросхемой пуска. Такие образцы меньше подвергаются влиянию падения напряжения в электрической сети

Правильная работа стартера обусловлена напряжением питающей сети. При снижении номинальных величин до 70-80%, люминесцентная лампа может не зажечься, т.к. не будет производиться достаточный нагрев электродов.

В процессе подбора нужного пускателя, учитывая конкретную модель  (люминесцентной или ЛЛ), необходимо дополнительно проанализировать технические характеристики каждого вида, а также определиться с производителем.

Принцип работы аппарата

Подав сетевое питание на светотехнический прибор, напряжение проходит через витки и нить накала, выполненную из монокристаллов вольфрама.

Далее подводится к контактам стартера и образует между ними тлеющий разряд, при этом воспроизводится свечение газовой среды посредством ее нагрева.

Поскольку в устройстве есть еще один контакт – биметаллический, он также реагирует на изменения и начинает изгибаться, видоизменяя форму. Таким образом этот электрод замыкает электрическую цепь между контактами.

Величина тока, сформированного тлеющего разряда варьируется от 20 до 50 мА, чего вполне достаточно для разогрева биметаллического электрода, который отвечает за замыкание цепи (+)

Образовавшийся в электросхеме люминесцентного прибора замкнутый контур проводит через себя ток и нагревает вольфрамовые нити, которые, в свою очередь, начинают испускать электроны со своей нагретой поверхности.

Таким образом формируется термоэлектронная эмиссия. В это же время воспроизводится разогревание ртутных паров, находящихся в баллоне.

Образованный поток электронов способствует снижению напряжения, приложенного от сети к контактам пускателя, примерно вдвое. Степень тлеющего разряда начинает падать вместе с температурой накала.

Пластина из биметалла уменьшает свою степень деформации тем самым размыкая цепочку между анодом и катодом. Течение тока через этот участок прекращается.

Изменение его показателей провоцирует внутри дроссельной катушки, в проводящем контуре, возникновение электродвижущей силы индукции.

Биметаллический контакт моментально реагирует произведением краткосрочного разряда в подсоединенной к нему схеме: между вольфрамовыми нитями ЛЛ.

Его значение доходит нескольких киловольт, чего вполне достаточно для пробивания инертной среды газов с нагретыми ртутными парами. Между концами лампы образуется электродуга, продуцирующая ультрафиолетовое излучение.

Поскольку такой спектр света не видимый для человека, в конструкции лампы есть люминофор, поглощающий ультрафиолет. В итоге визуализируется стандартный световой поток.

При изменении тока в контуре или его полного прекращения пропорционально происходят изменения магнитного потока через поверхность пластины, что ограничивает этот контур и приводит к возбуждению в этой схеме ЭДС самоиндукции

Однако напряжения на пускателе, подсоединенного параллельно лампе, недостаточно для формирования тлеющего разряда, соответственно, электроды остаются в разомкнутой позиции в период свечения лампы дневного света. Далее стартер не используется в рабочей схеме.

Поскольку после продуцирования свечения показатели тока нужно лимитировать, в схему вводится электромагнитный балласт. За счет своего индуктивного сопротивления он выполняет роль ограничивающего устройства, предотвращающего поломки лампы.

Виды стартеров для люминесцентных приборов

В зависимости от алгоритма работы, пусковые устройства делят на три основных вида: электронные, тепловые и с тлеющим разрядом. Несмотря на то, что механизмы имеют различия в элементах конструкции и в принципах работы, они выполняют идентичные опции.

Пускатель электронного типа

Процессы, воспроизводимые в системе контактов стартеров, не являются управляемыми. Помимо этого, значительное воздействие на их функционирование оказывает температурный режим окружения.

Например, при температуре ниже 0°C скорость нагревания электродов замедляется, соответственно, прибор будет затрачивать больше времени на зажигание света.

Также при нагреве контакты могут спаиваться друг с другом, что приводит к перегреванию и разрушению спиралей лампы, т.е. ее порче.

Большинство моделей электронных балластов для ЛДС выпущены на базе микросхемы UBA 2000T. Такой тип устройства позволяет устранить перегрев электродов, за счет чего существенно увеличивается эксплуатационный срок контактов лампы, соответственно, и период ее работы

Даже корректно функционирующие устройства с течением времени имеют свойство изнашиваться. Они дольше сохраняют накал контактов лампы, тем самым уменьшая ее производственный ресурс.

Именно для устранения такого рода недостатков в полупроводниковой микроэлектронике стартеров были задействованы сложные конструкции с микросхемами. Они дают возможность лимитировать количество циклов процесса имитации замыкания электродов пускателя.

В большинстве представленных на рынках образцах, схемотехническое устройство электронного стартера составлено из двух функциональных узлов:

  • управленческой схемы;
  • высоковольтного узла коммутации.

В качестве примера можно привести микросхему электронного зажигателя UBA2000T фирмы PHILIPS и высоковольтный тиристор TN22 производства STMicroelectronics.

Принцип работы электронного стартера основан на размыкании цепи посредством нагревания. Некоторые образцы обладают существенным преимуществом – опцией ждущего режима зажигания.

Таким образом размыкание электродов производится в необходимой фазности напряжения и при условии оптимальных температурных показателей нагрева контактов.

Полупроводниковые элементы электронного балласта должны подходить по ключевым рабочим характеристикам, а именно, соотношению значения мощности и напряжения сети подсоединенного светотехнического прибора

Важно, что при поломках лампы и неудачных попытках ее запуска такого типа механизм выключается, если их число (попыток) достигнет 7. Поэтому о досрочном выходе из строя электронного стартера и не может быть и речи.

Как только произойдет замена лампочки на исправную, приспособление сможет возобновить процесс запуска ЛЛ. Единственный минус этой модификации – высокая цена.

В схеме со стартером в качестве дополнительного метода снижения радиопомех могут использоваться симметрированные дросселя с обмоткой, разделенной на идентичные участки, с равным количеством витков, накрученных на общее устройство – сердечник.

На сегодняшний день, выпускаемые балласты имеют сборно-стержневую конструкцию. Вырубка магнитного провода осуществляется из стальных листов. Как правило, такие дроссели имеют две симметричные обмотки

Все области катушки соединены в последовательном порядке с одним из контактов лампы. При включении оба его электрода будут работать в одинаковых техусловиях, таким образом снижая степень помех.

Тепловой вид пускателя

Ключевой отличительной характеристикой тепловых зажигателей является длительный период пуска ЛЛ. Такой механизм в процессе функционирования использует много электричества, что негативно сказывается на его энергозатратных характеристиках.

Тепловой стартер также называют термобиметаллическим. Разогрев контактов происходит с замедлением, что эффективно сказывается на работе светотехнического прибора в низкотемпературной среде

Как правило, этот вид применяется в условиях низкого температурного режима. Алгоритм работы существенно разнится с аналогами других видов.

В случае отключения питания электроды устройства находятся в замкнутом состоянии, при подаче – образуется импульс с высоким напряжением.

Механизм тлеющего разряда

Пусковые механизмы, основанные на принципе тлеющего разряда, имеют в своей конструкции биметаллические электроды.

Они выполнены из металлических сплавов с различными коэффициентами линейного расширения при нагреве пластины.

Минусом зажигателя тлеющего разряда является низкий уровень импульса напряжения, из-за чего нет достаточной надежности загорания ЛЛ

Возможность розжига лампы определяется длительностью предшествующего нагрева катодов и показателей тока, протекающего через светотехнический прибор в момент размыкания цепи контактов стартера.

Если при первом рывке пускатель не зажигает лампу, он будет автоматически воспроизводить попытки до того момента, пока лампа не засветится.

Поэтому такие устройства не используются при низких температурных режимах или неблагоприятном климате, например, при повышенной влажности.

Если не будет обеспечиваться оптимальный уровень нагрева контактной системы лампа будет затрачивать много времени на розжиг или же будет выведена из строя. Согласно стандартам ГОСТа, потраченное стартером время на зажигание не должно превышать 10 секунд.

Пусковые приборы, выполняющие свои функции посредством теплового принципа или тлеющего разряда, в обязательном порядке оборудуются дополнительным устройством – конденсатором.

Роль конденсатора в схеме

Как уже было отмечено ранее, конденсатор располагается в кожухе приспособления параллельно его катодам.

Этот элемент решает две ключевые задачи:

  1. Понижает степень электромагнитных помех, создаваемых в диапазоне радиоволн. Они возникают в результате контакта системы электродов пускателя и образуемых лампой.
  2. Влияет на процесс зажигания люминесцентной лампы.

Такой дополнительный механизм снижает величину импульсного напряжения, сформированного при размыкании катодов стартера, и наращивает его продолжительность.

Конденсатор снижает вероятность слипания контактов. Если в устройстве не предусмотрен конденсатор, напряжение на лампе довольно быстро увеличивается и может доходить до нескольких тысяч вольт. Такие условия снижают степень надежности розжига ламп

Поскольку использование подавляющего устройства не позволяет достичь полного нивелирования электромагнитных помех, на входе схемы вводят два конденсатора, общая емкость которых составляет не менее 0,016 мкф. Они соединяются в последовательном порядке с заземлением средней точки.

Основные недостатки пускателей

Главным минусом стартеров является ненадежность конструкции. Отказ запускающего механизма провоцирует фальстарт – визуализируются несколько вспышек света до начала полноценного светового потока. Такие неполадки снижают ресурс вольфрамовых нитей лампы.

Пусковые аппараты образуют внушительные потери энергии и понижают КПД устройства лампы. К недостаткам также относится зависимость от напряжения и значительный разброс времени срабатывания электродов

У люминесцентных ламп со временем наблюдается повышение рабочего напряжения, тогда как у стартера, наоборот, чем выше срок службы, тем ниже напряжение зажигания тлеющего разряда. Таким образом выходит, что включенная лампа может провоцировать его срабатывание, из-за чего свет погаснет.

Разомкнувшиеся контакты пускателя вновь зажигают свет. Все эти процессы осуществляется в доли секунды и пользователь может наблюдать только мерцание.

Пульсирующий эффект вызывает раздражение сетчатки глаза, а также приводит к перегреванию дросселя, снижению его ресурса и выходу из строя лампы.

Такие же негативные последствия ожидают и от значительного разброса времени контактной системы. Его зачастую недостаточно для полноценного предварительного разогрева катодов лампы.

В итоге прибор загорается после воспроизведения ряда попыток, что сопровождаются увеличенной длительностью процессов перехода.

Если стартер подключен в цепь одноламповой схемы, в этом случае нет возможности снизить световую пульсацию.

С целью снижения негативного эффекта рекомендуется использовать такого рода схемы только в помещениях, где применены группы ламп (по 2-3 образца), включать которые необходимо в разные фазы трехфазной цепи.

Расшифровка маркировочных значений

Общепринятой аббревиатуры для моделей стартеров отечественного и зарубежного производства не существует. Поэтому рассмотрим основы обозначений по отдельности.

Декодировка значения 90С-220 выглядит так: стартер, функционирующий с люминесцентными образцами, сила которых составляет 90 Вт, а номинальное напряжение 220 В (+)

Согласно ГОСТу, расшифровка буквенно-цифровых значений [ХХ][С]-[ХХХ], нанесенных на корпус прибора, выглядит следующим образом:

  • [ХХ] – цифры, указывающие на мощность световоспроизводящего механизма: 60 Вт, 90 Вт или 120 Вт;
  • [С] – стартер;
  • [ХХХ] – напряжение, применяемое для работы: 127 В или 220 В.

Для реализации зажигания ламп иностранные разработчики выпускают приспособления с различными обозначениями.

Электронный форм-фактор выпускается многими фирмами.

Наиболее известная на отечественном рынке — Philips, производящая стартеры таких типов:

  • S2 рассчитаны на мощность 4-22 Вт;
  • S10 — 4-65 Вт.

Фирма OSRAM ориентирована на выпуск стартеров как для одиночного подключения осветительных приборов, так и для последовательного. В первом случае это маркировка S11 с ограничением по мощности 4-80 Вт, ST111 — 4-65 Вт. А во втором, например, ST151 — 4-22 Вт.

Выпускаемые модели стартеров представлены в широком ассортименте. Ключевые параметры, учитывающиеся при подборе — соразмерные значения характеристикам ламп люминесцентного типа.

На что смотреть при выборе?

В процессе выбора пускового механизма недостаточно основываться на имени разработчика и ценовом диапазоне, хотя и эти факторы должны быть учтены, т.к. указывают на качество прибора.

В этом случае выигрывают надежные аппараты, положительно зарекомендовавшие себя на практике. Стоит обратить внимание на такие фирмы: Philips, Sylvania и OSRAM.

Стартер FS-11 бренда Sylvania. Подбирается к лампам дневного света, мощностью 4-65 Вт. Может использоваться в сети переменного тока. Работает по принципу тлеющего разряда

Самыми основными эксплуатационными параметрами пускателя считаются такие технические особенности:

  1. Ток зажигания. Этот показатель должен быть выше рабочего напряжения лампы, но не ниже сети питания.
  2. Базисное напряжение. При подключении в одноламповую схему применяется аппарат на 220 В, двухламповую – на 127 В.
  3. Уровень мощности.
  4. Качество корпуса и его огнеустойчивость.
  5. Эксплуатационный срок. При стандартных условиях применения, стартер должен выдерживать не менее 6000 включений.
  6. Длительность разогрева катодов.
  7. Тип применяемого конденсатора.

Также необходимо учитывать индуктивное противодействие катушки и коэффициент выпрямления, отвечающий за соотношение обратного сопротивления к прямому при постоянном напряжении.

Дополнительная информация об устройстве, работе и подключении пускорегулирующего механизма люминесцентных ламп представлена в .

Выводы и полезное видео по теме

Помощь в подборе необходимо балласта для лампы дневного света:

Пускатель для люминесцентных приборов: основы маркировки и конструктивное устройство аппарата:

Теоретически, время работы пускателя эквивалентно сроку службы лампы, которую он зажигает. Тем не менее стоит учесть, что с течением времени, интенсивность напряжения тлеющего разряда падает, что отражается на работе люминесцентного прибора.

Однако производители рекомендуют одновременно менять и стартер, и лампу. Для приобретения нужной модификации изначально стоит изучить основные показатели приборов.

Поделитесь с читателями вашим опытом выбора стартера для люминесцентных ламп. Пожалуйста, оставляйте комментарии, задавайте вопросы по теме статьи и участвуйте в обсуждениях – форма для отзывов расположена ниже.

sovet-ingenera.com

Стартер для люминесцентных ламп в Казахстане

Показать сначала:

По рейтингу

8300 KZT

8 300 Тг.

Стартер для люминесцентных ламп Philips S2 4-22W, 220-240 В (комплект из 25 шт.) 147 KZT

147 Тг.

Стартер ST 151 4-22W OSRAM 60.2 KZT

60,20 Тг.

Стартер ST 111 4-65W SU OSRAM 135.8 KZT

135,80 Тг.

Стартер ST 111 4-65W OSRAM 100 KZT

от 100 Тг.

Стартер ST 151 4-22W OSRAM для люминесцентных ламп 95 KZT

от 95 Тг.

Стартер ST 111 4-65W OSRAM для люминесцентных ламп 145 KZT

145 Тг.

Стартер для люминисцентных ламп ST 151 4-22W OSRAM 125 KZT

125 Тг.

Стартер PH S- 2 4-22W 220-240V 150 KZT

150 Тг.

Стартер 80С-220-2 4-80 Вт 68 KZT

68 Тг.

Стартер для люминисцентных ламп ST 111 4-65W SU OSRAM 125 KZT

125 Тг.

Стартер PH S-10 4-65W 220-240V 23900 KZT

23 900 Тг.

Светильник Circo 07.21 22Вт G10q люминесцентный потолочный opal стартёр IP40 (Eurolight Италия) 7443 KZT

7 443 Тг.

Дроссель EL1х54ngn5 электронный для люминесцентной лампы 54Вт T5 (Helvar Финляндия) 137 KZT

137 Тг.

Стартер для люминисцентных ламп ST 111 4-65W OSRAM 10 KZT

10 Тг.

Стартер PELSAN 4*65w 3120-101

satu.kz

Светильник ЛВО 4х18 — технические характеристики

Особую популярность в оформлении потолочных конструкций получил светильник ЛВО 4х18. Давайте разбираться, в чем же особенности данной модели. Маркировка ЛВО 4х18 обозначает: люминесцентная лампа с встраиваемой установкой в общественных зданиях с 4 лампами мощностью 18 Вт.

Основные достоинства

  • Высокая светоотдача.
  • Низкий расход электроэнергии.
  • Долгий срок эксплуатации.
  • Равномерно распределяют свет.
  • Бесшумные.
  • Не мерцают.

Светильник под армстронг ЛВО13-4х18

Люминесцентные светильники изготавливаются в различных формах: круглые, квадратные, прямоугольные. Форма подбирается в зависимости от типа используемых ламп.

  • Компактные отличаются простотой использования, экономичностью, устанавливаются во внутренних помещениях и на лестничных клетках.
  • Трубчатые – экономичные лампы, предназначенные для помещений, где не предъявляется высоких требований к цвету освещения, обладают холодным белым светом.
  • Кольцевые представляют собой классические люминесцентные лампы, закрученные в кольцо. Благодаря необычной форме могут обеспечивать более качественное освещение.

Люминесцентные лампы не могут подключаться напрямую к сети, им необходим специальный проводник, стабилизирующий напряжение и сглаживающий напряжение тока.

Раньше для решения этой проблемы использовался механизм с пускорегулирующей аппаратурой (ПРА), состоящий из:

  • стартера – устройства для запуска лампы;
  • дросселя, служащего для снижения токов определенного диапазона частот;
  • конденсатора – устройства для накопления энергии электрического поля и стабилизации напряжения.

Схема подключения люминесцентных ламп к сети

Но такой механизм вызывал перегрев приборов, сильно шумел и выводил из строя люминесцентные лампы. Это негативно сказывалось на сроке эксплуатации, простоте обслуживания, использовании и экономичности. Для устранения этих недостатков была разработана специальная электронная пускорегулирующая аппаратура (ЭПРА), состоящая из нескольких блоков:

  1. фильтр электромагнитных помех;
  2. выпрямитель;
  3. схема коррекции коэффициента мощности;
  4. сглаживающий фильтр;
  5. инвертор;
  6. балласт (дроссель).

Устройство светильника ЛВО 4х18

Работа ЭПРА состоит из трех фаз

  • предварительный разогрев электродов лампы – запуск лампы становится более плавным и быстрым, что продлевает срок службы и эксплуатации, дает возможность пуска при низких температурах окружающей среды;
  • поджиг – ЭПРА создает импульс высокого напряжения, вызывающий всплеск газа в колбе;
  • горение – на электродах поддерживается определенное напряжение для постоянного горения.

Теперь не нужно мучиться и использовать светильник со стартером, просто рассмотрите вариант с ЭПРА, который сэкономит время обслуживания и позволит более эффективно использовать ресурсы.

Светильники ЛВО 4х18 встраиваются в потолки Армстронг при помощи металлических пружин. Отлично подойдут для освещения огромных помещений, где невозможна установка люстр и других световых приборов. Монтаж осуществляется довольно просто и не требует большого набора оборудования и демонтирования потолочной конструкции. Перед установкой необходимо ознакомиться с инструкцией производителя или обратиться к квалифицированным специалистам, которые выполнят установку в соответствии с ГОСТами и стандартами.

cdelct.ru

Как подбирать стартер для люминесцентных ламп

4-22 W диапазон срабатывания. Для 18 Вт подойдёт.

забей на 4! 22 ватта-вот это тебе надо! этими стартёрами 18-ти ваттные лампы (коротыши) хорошо запускать. единственное НО- в потолочных светильниках на 4 лампы- эти стартёры должны быть на 127 вольт. там схема включения такая..

Для зажигания ламп в светильниках по двухламповой схеме, для ламп мощностью от 4 до 22 ватт. Это стартеры S2. Для более мощных ламп существуют стартеры S10, 4-65 ватт для светильников по одноламповой схеме.

См ответ выше. для ламп18 вт используй S2 (4…22W) , для 36 (40) вт — S10 (4…65W). Если неправильно подобрать стартер (на 36вт поставить S2, например) — то лампа зажигаться не будет, или будет моргать

Этот стартёр ращитан на лампы от 4 до 18 Вт. На 36 Вт надо брать сороковник.

Так вот он как раз и не запускает эти лампы. Предыдущий товарищ сказал, что на запуск счетверенных ламп нужен стартер на 127 вольт. Наверное это так. Я купил стартеры на 4-65 вт, но 220-240 воль. Может действительно по этой причине не запуска.? Надо завтра попробовать.

touch.otvet.mail.ru

устройство, принцип работы и схемы подключения ламп дневного света

Люминесцентные лампы от сети напряжением 220 вольт напрямую не включаются. Для них нужен специальный блок, который называется пускорегулирующая аппаратура, укорочено ПРА. Этот блок состоит из трех элементов: дроссель, конденсатор и стартёр. Нас в этой статье будет интересовать стартер для ламп дневного света (ЛДС), что он собой представляет, какие функции на него возложены.

По сути, стартёр – это стеклянная колба, заполненная газом (обычно используется или неон, или смесь гелий с водородом). То есть, это газоразрядная лампа миниатюрного типа, внутри которой тлеет разряд. Здесь же расположены электроды, поддерживающие данный разряд. Существует стартеры двух типов: симметричные и несимметричные. В первом все электроды являются подвижными, во втором – один стационарный. Электроды изготавливаются из биметалла. Чаще всего в люминесцентных светильниках используются конструкции симметричные.

Газоразрядная лампа помещается в металлический или пластмассовый корпус. Крепится она на специальной панели диэлектрического типа, где установлены два контакта. Здесь же устанавливается и конденсатор, который подсоединен к газоразрядной лампе параллельно.

Как работает

Когда в схему, где установлен стартер, подается напряжение, оно попадает на его электроды, между которыми появляется тлеющий разряд. Сила тока разряда незначительная, в пределах от 20 до 50 мА. Именно этот разряд начинает нагревать электроды, которые под действием тепла изгибаются и через какое-то время соприкасаются друг с другом. То есть, электрическая цепочка замыкается, и ток подается далее на дроссель, конденсатор и на лампы дневного света. При этом тлеющий разряд прекращается.

Обратите внимание, что напряжение включение стартера должно быть чуть меньше номинального сети, то есть, 220 вольт, но при этом оно должно быть больше, чем напряжения включения самих ламп дневного света.

Итак, электроды соприкоснулись между собой, что дальше? Так как между ними нет тлеющего разряда, соответственно нет температуры, которая их нагревает. Происходит их остывание, что в конечном итоге приведет к размыканию электродов и цепочки. Именно в этот момент появляется так называемое импульсное напряжение высокой величины внутри дросселя. От него и происходит зажигание люминесцентного осветительного устройства. В процессе работы самой лампы дневного света в цепочке ток имеет значение, равное силе тока источника света. Падение же напряжения, а соответственно и силы тока, делится между самой осветительным прибором и дросселем на равные части.

Зажигание

Как происходит зажигание стартера для лампы? Необходимо отметить, что на эффективность зажигания влияют две позиции:

  • величина силы тока на катодах лампы в момент размыкания электродов;
  • продолжительность нагрева катодов.

Электромагнитная сила внутри дросселя зависит от силы тока в нем. Понятно, что недостаточность силы тока не приведет к зажиганию люминесцентного устройства. А сила тока напрямую зависит от напряжения в цепи. И если последний показатель ниже номинального, то есть большая вероятность, что лампа сразу не зажжется. Поэтому стартер будет в автоматическом режиме пытаться снова и снова проделать ту же операцию, пока она не загорится. Периодичность попыток стандартная – 10 секунд.

Если в питающей сети напряжение падает ниже 80% от номинального, то этого недостаточно, чтобы электроды нагрелись до необходимой температуры. То есть, при таком падении осветительное устройство просто не зажигается.

Конденсатор

Конденсатор в системе ПРА устанавливается параллельно стартеру. Эти два прибора взаимосвязаны. Основное назначение конденсатора:

  • снижение помех в процессе замыкания и размыкание электродов стартера;
  • увеличения длительности действия импульса при размыкании электродов;
  • предотвращение спаивания электродов за счет высокого импульсного напряжения.

Чаще всего в ПРА используются конденсаторы емкостью 0,003-0,1 мкФ.

Как долго работает

Со временем эксплуатации стартера напряжение, создающее тлеющий разряд, снижается. Это может привести к обратному эффекту, когда при работающем люминесцентном светильнике электроды стартера вдруг начнут самопроизвольно замыкаться, что приведет к гашению самой лампы. Тут же будет происходить размыкание электродов, а соответственно и зажигание светильника. Оба процесса моментальные, что приводит к миганию светильника. Это не только влияет на эффективность его работы, но и снижает срок эксплуатации дросселя, потому что при такой работе он будет просто перегреваться.

Поэтому совет – периодически проверять стартер, и при необходимости менять его на новый. Как только увидели, что светильник замигал, не откладывайте замену в долгий ящик.

Схема подключения люминесцентного светильника

Схема подключения лампы дневного света – это несколько вариантов, зависящих от количества ламп дневного света в светильнике. Вот самая простейшая из них на рисунке ниже:

Здесь четко видно, что две спирали лампы дневного света подключаются: одна через дроссель, вторая через стартер. Такое соединение чаще всего применяется, когда необходимо подключить один источник света. Если, к примеру, есть необходимость подключить светильник с двумя лампами дневного света, то приходится устанавливать два стартера на каждую, как это хорошо видно на рисунке схемы ниже (вариант номер два):

При этом необходимо учитывать, что мощность дросселя не должна быть меньше мощности двух источников света. К примеру, если у него мощность 40 Вт (этот показатель наносится на корпус элемента), то две лампы в сумме должны иметь мощность не больше 40 Вт (к примеру, по 20 Вт).

Одной из ярких представителей этой категории осветительных приборов является марка ЛВО 4х18. То есть, это металлический прибор с четырьмя лампами, мощностью каждой по 18 Вт. ЛВО 4х18 чаще всего используются в качестве встраиваемых осветительных устройств. Их обычно монтируют в потолках Армстронг, в гипсокартонных потолочных конструкциях и в других видах потолков. Причины популярности марки ЛВО 4х18 – это невысокая цена от отечественного производителя, простота установки, эффективное свечение и простая схема подключения.


onlineelektrik.ru

Стартер для люминесцентных ламп. Как проверить стартер люминесцентной лампы

С каждым днем популярность ламп дневного света в качестве источника освещения только растет. Это обусловлено их высокой продолжительностью работы и качественным свечением.

Люминесцентные лампы работают не напрямую от сети с напряжением 220 Вольт. Для их функционирования требуется специальный блок, называющийся пускорегулирующей аппаратурой (ПРА). Конструкция блока включает в себя три основных элемента, в которые входят: дроссель (катушка индуктивности с сердечником), сглаживающего конденсатора и стартера. Вот как рас о последнем устройстве мы сегодня и поговорим.

Приветствую всех друзья на сайте «Электрик в доме», недавно мне пришлось искать причину неисправности светильников с люминесцентными лампами, которая заключалась в неисправности элемента ПРА, поэтому очередной выпуск будет посвящен именно о стартере люминесцентной лампы. Мы разберем его назначение, устройство и выполняемые функции.

Устройство стартера люминесцентных ламп

Конструкция этого элемента достаточно проста. Каждая модель, выпущенная определенным производителем, имеет свои технические характеристики. Это следует учитывать при выборе ламп. Стартер – это стеклянный баллон, внутри которого находится инертный газ. Это может быть смесь гелия с водородом или неон. В баллон впаяны неподвижные металлические электроды. Их выводы проходят через цоколи.

Баллон расположен внутри пластмассового или металлического корпуса, имеющего сверху отверстие. Самым популярным материалом для изготовления корпуса является пластик. Справляться с высокой температурой такому корпусу позволяет специальная пропитка. Любой стартер для люминесцентных ламп имеет только две ножки (контакта).

Если вынуть конструкцию из корпуса видно саму колбу. Также видно, что параллельно электродам колбы подключен какой-то элемент – это конденсатор. Его емкостью составляет порядка 0,003-0,1 мкф. Конденсатор призван выполнять сразу две функции:

  • — борется с радиопомехами, которые возникают из-за контакта электродов, посредством снижения их уровня.
  • — участвует в процессе зажигания лампы.

Конденсатор снижает импульс напряжения, который формируется при размыкании электродов, и повышает его продолжительность.

За счет параллельного включения с электродами конденсатор снижает вероятность их сваривания (залипания). Подобное явление может произойти в процессе размыкания электродов вследствие формирования электрической дуги. Конденсатор в кратчайшие сроки гасит дугу.

Для чего нужен стартер в люминесцентных лампах

Этот элемент является основным в конструкции люминесцентных ламп. Без него электромагнитная пускорегулирующая аппаратура не сможет функционировать. Главное назначение стартера – запускать механизма и разжигание инертного газа, находящегося в газоразрядной колбе. Стартер работает как выключатель — размыкает и замыкает электрическую цепь.

Установка стартера продиктована необходимость выполнения двух важных функций:

  1. — замыкания цепи. Позволяет нагреть электроды лампы, облегчая тем самым процесс зажигания;
  2. — разрыв цепи. Происходит сразу же после нагрева электродов. В результате размыкания образуется импульс повышенного напряжения, являющийся причиной пробоя газового промежутка колбы.

Дроссель играет роль стабилизатора и трансформатора. Он поддерживает необходимый ток нитей лампы, создает импульс напряжения, необходимый для пробоя лампы и стабилизирует процесс горения дуги.

Как работает люминесцентный светильник

В момент подключения схемы к электрической цепи все напряжение подается на стартер для люминесцентных ламп. В нормальном положении электроды находятся в разомкнутом положении. На электродах стартера начинает возникать тлеющий разряд. По цепи проходит ток небольшой величины (30-50 мА).

Этого тока достаточно для нагрева электродов. При достижении определенной температуры они начинают изгибаться и замыкают цепь. После того как контакты замкнуться тлеющий разряд прекращается.

Давайте по ходу рассмотрим из каких основных деталей состоит сам светильник.

При замыкании цепи (через электроды стартера) по ней начинает проходить ток, величина которого в 1,5 раза больше от номинального тока лампы. Величина тока ограничивается сопротивлением дросселя. Электроды лампы и стартера не могут выполнять эту функцию, так как первые имеют недостаточное сопротивление, а вторые находятся в замкнутом положении.

Нагрев электродов до 800С происходит в течение 1-2 секунд. В результате повышения температуры происходит увеличение электронной эмиссии, что способствует упрощению процесса пробоя газового промежутка. Разряд в электродах стартера отсутствует и они постепенно остывают.

После остывания стартера электроды размыкаются, принимая исходное положение, и разрывают цепь. Разрыв цепи сопровождается появлением в дросселе ЭДС самоиндукции. Ее величина прямо пропорциональна индуктивности дросселя и скорости изменения величины тока при разрыве цепи.

Возникновение ЭДС самоиндукции является причиной создания повышенного напряжение величиной 800-1000 В, которое в виде импульса подается на лампу. Ее электроды предварительно разогреты и она готова к зажиганию. В этот момент происходит пробой и начинается свечение.

На стартер который подключен параллельно лампе теперь прикладывается напряжение, величина которого в два раза ниже напряжения сети. Оно не способно пробить неоновую лампочку, следовательно, ее зажигание больше не осуществляется. Весь цикл зажигания длится не более 10 секунд.

Как проверить стартер люминесцентной лампы

Данный вопрос очень часто возникает перед специалистами в процессе ремонта люминесцентных светильников. Хоть деталь и мелкая, но способна вызвать серьезные проблемы.

Выявить поломку стартера можно заменой его на исправный, если таковой имеется под рукой. А вот что делать в случаях, когда по близости больше нет светильников, а до ближайшего специализированного магазина не один километр пути? Как проверить стартер люминесцентной лампы в домашних условиях? Проверить работоспособность данного устройства можно по стандартной схеме.

Последовательно со стартером в сеть подключается обыкновенная лампа с нитью накаливания. Желательно, чтобы ее мощность не превышала 40 Вт.

Собрать такую схему не составит труда. Если стартер находится в исправном состоянии, то лампа будет гореть и периодически на мгновение гаснуть. Этот процесс будет сопровождаться характерными щелчками, которые свидетельствуют о работе контактов. Если лампочка не горит или светится постоянно (без моргания), то можно констатировать поломку стартера.

Таким вот нехитрым способом можно проверить стартер для люминесцентных ламп. Хотя, по правде сказать, я еще не видел, чтобы на производстве их где либо проверяли. Это наверное связано с их незначительной стоимостью. Обычно бывает как, если лампа не работает или начинает мигать просто меняют стартер на новый, получилось устранить причину хорошо, нет значить проблема в другом.

Почему мигает люминесцентная лампа

Дорогие друзья Вы наверное замечали что светильники с люминесцентными лампами со временем начинают мигать. И связано это не с использованием выключателей с подсветкой которые являются причиной мигания энергосберегающих лампах.

В процессе эксплуатации светильников рабочее напряжение зажигания тлеющего разряда в стартере падает. Это является причиной того, что стартер будет срабатывать даже при горящей лампе. После размыкания электродов свечение восстанавливается. Человеческий глаз воспринимает это как процесс мигания. Подобное явление является причиной порчи лампы и выхода из строя дросселя в результате его перегрева.

Поэтому если вы замечаете постоянное мигание лампы необходимо заменить стартер на новый. В 90 % случаев именно он является причиной такого феномена.

При возникновении мигания необходимо как можно раньше произвести замену стартера, так как в таком режиме работы ресурс составляющих светильника уменьшатся и из строя могут выйти уже колба или дроссель.

Похожие материалы на сайте:

Понравилась статья — сохрани на стену!

electricvdome.ru

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *