Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Светодиодные лампы без драйвера: Светодиодная лампа без драйвера

Содержание

Светодиодная лампа без драйвера

Ради любопытства купил вот такое чудо-юдо.

Это светодиодная лампа формата G9, в которой вообще нет никаких видимых электронных компонентов - только сами светодиоды.


Разумеется, стопроцентная пульсация света у такой лампы неизбежна (в ней нет сглаживающего конденсатора) и использовать такую лампу я никому не посоветую. Вот так выглядит её свет на замедленной съёмке (снято со скоростью 1200 кадров в секунду).

В стеклянной колбе пластина, на которой расположено множество светодиодов, залитых общим люминофором.

Светодиоды и люминофор с двух сторон пластины.

Ножки контактов припаяны к металлическим полоскам, а с другой стороны к полоскам припаяны контакты, соединяющие их с платой. Возможно, эти полоски являются токоограничивающими резисторами.

Интересно, как китайцы ухитрились заставить светодиоды работать прямо от сети. Форма потребления у этой лампы выглядит так.

Либо прямо под люминофором расположен диодный мост, либо там две, включённые параллельно, цепочки светодиодов - одна работает от одного полупериода, вторая от другого.

Пульсация лампы.

Выпустил это "чудо техники" Navigator.

Производитель - Xiamen Neex.

Обещают 5 Вт и 500 лм. На самом деле 3.6 Вт и 390 лм.

На мой взгляд выпускать и продавать такие лампы недопустимо и я очень сочувствую тем, кто их купит и будет жить с пульсирующим светом, но с технологической точки зрения лампочка очень интересная и, пользуясь такой технологией, наверняка можно выпускать простые, хорошие и дешёвые лампы для работы на постоянном напряжении.

© 2018, Алексей Надёжин


Основная тема моего блога - техника в жизни человека. Я пишу обзоры, делюсь опытом, рассказываю о всяких интересных штуках. А ещё я делаю репортажи из интересных мест и рассказываю об интересных событиях.
Добавьте меня в друзья здесь. Запомните короткие адреса моего блога: Блог1.рф и Blog1rf.ru.

Второй мой проект - lamptest.ru. Я тестирую светодиодные лампы и помогаю разобраться, какие из них хорошие, а какие не очень.

когда простота не обманчива / Статьи и обзоры / Элек.

ру

В бюджетных светильниках довольно часто используются светодиодные модули, не имеющие драйвера, и при этом работающие напрямую от переменного тока. В прошлом они представляли собой решение для светильников малой мощности, устанавливаемых в подсобных помещениях. Но недавно появились без-драйверные модули нового поколения, которые все чаще используются в осветительном оборудовании средней ценовой категории. А теперь речь уже идет об их применении в дорогостоящих дизайнерских светильниках.

Для согласования параметров светодиодов и сети электропитания в светильниках обычно используют специальные устройства, именуемые драйверами. Они выпрямляют переменный ток, понижают напряжение и, что самое главное, стабилизируют силу тока, протекающего через светодиоды. Дело в том, что для каждого типа светодиода существует свое оптимальное значение тока, при котором достигается наибольший КПД в сочетании с высокой долговечностью. Драйвер обеспечивает поддержание этого значения постоянным вне зависимости от колебаний напряжения в питающей сети, температуры окружающей среды и других факторов.

Приблизить значение напряжения питания источника света к напряжению в сети можно, соединяя светодиоды в последовательные цепочки. Чем длиннее цепочка, тем выше напряжение питания и, соответственно, тем проще конструкция драйвера. Но при этом снижается надежность конструкции, так как выход из строя одного светодиода ведет к отключению или изменению режима работы всей цепочки. Правда, с этим частично научились бороться, подключая параллельно светодиодам стабилитроны (в зарубежной литературе они называются «диоды Зенера») — полупроводниковые приборы, автоматически выставляющие «перемычки» вместо светодиодов, если они в результате выхода из строя дают разрыв в цепи. Тем не менее, даже в этом случае выход из строя хотя бы одного светодиода все равно неизбежно влечет за собой некоторое изменение режима всей цепочки. Оптимальным считается количество последовательно включенных светодиодов около 10, тогда и надежность высокая, и драйвер имеет не очень сложную конструкцию.

В то же время, когда требуется обеспечить наименьшую стоимость светильника, применяется простейшая схема, состоящая из мостового выпрямителя на четырех диодах, токоограничительного резистора и нескольких десятков светодиодов, включенных последовательно.

Главным недостатком такой схемы, помимо уже отмечавшейся низкой надежности, является высокий уровень пульсаций (об остальных недостатках речь пойдет чуть позже). Причина в том, что светодиоды питаются не постоянным, а пульсирующим током. Частота пульсаций равна удвоенной частоте переменного тока в осветительной сети, т.е. 120 Гц в США и 100 Гц в России и других европейских странах. Согласно ГОСТ Р 54945-2012, при проектировании систем освещения предполагается, что человеческий глаз воспринимает пульсации светового потока с частотой вплоть до 300 Гц.

Простейший светодиодный светильник с питанием от сети переменного тока

В России коэффициент пульсаций светового потока выражается в процентах и определяется согласно своду правил СП52.13330.2011 по формуле:

К п= 100% (Емакс — Емин

)/(2ЕСр),

где Е макс — максимальная освещенность, Емин — минимальная освещенность, Еср — средняя освещенность за период колебания освещенности.

Светильники, построенные по данной схеме и аналогичные им, имеют коэффициент пульсаций до 99%. Для сравнения, люминесцентные лампы с электромагнитным ПРА — решение, признанное морально устаревшим, — имеет К п около 35%. Согласно СП52.13330.2011, такие светильники могут использоваться только в подсобных помещениях, а также там, где от освещения требуется лишь обеспечение общей ориентации в пространстве. В то же время, рынок светильников и для таких помещений (лестничные клетки, коридоры, туалеты и т.п.) огромен и его не следует высокомерно игнорировать. Это, собственно, и есть категория продукции, именуемая «светильники ЖКХ».

Компактные даунлайты, построенные по бездрайверной схеме

Также бездрайверные светильники могут использоваться и в наружном освещении, где К п не нормируется. К тому же, простота конструкции дает помимо низкой стоимости и ряд других преимуществ. Поэтому так называемые бездрайверные светильники и модули (другие названия — «светодиодные AC-модули», АС LED Modules) активно продвигаются сейчас на рынок.

Даунлайты, построенные по бездрайверной схеме, используются для освещения вспомогательных помещений, где не ведется напряженная зрительная работа.

Понятие «бездрайверный светильник» часто используется в маркетинговых целях, тем не менее, его можно ввести в четкие рамки. Автор статьи предлагает следующее определение: бездрайверным называется такой осветительный прибор на основе светодиодов (или светодиодный модуль), где источник света к линии электропитания подключается напрямую или через токоограничительный резистор, также возможно подключение через коммутирующее устройство. Такое определение логически вытекает из определения светодиодного драйвера, основной функцией которого является управление током, протекающего через светодиод. Конструкция светильника, где применен блок питания со стабилизацией выходного напряжения и токоограничительный резистор, не является бездрайверной, так как стабилизация напряжения на цепочке из светодиода и токоограничительного резистора с хорошей точностью стабилизирует силу тока через светодиод.

Другой вариант названия таких осветительных приборов и модулей, распространенный в зарубежной литературе — AC LED Modules или «светодиодные AC-модули». В данном случае АС означает Altenating Current, т.е. «переменный ток», в широком смысле, «питание от осветительной сети». Связано это с тем, что в бездрайверных модулях не происходит выпрямление тока, светодиоды питаются пульсирующим током сложной формы.

Следует отметить, что, как правило, понятия «бездрайверный светильник» или «бездрайверный модуль» не применяются к оборудованию, основной задачей при проектирования которых было обеспечение минимальной стоимости. Тут уж что получилось за такие деньги... В том случае, если отсутствие драйвера дает не только снижение цены, но и некоторые полезные качества светильника, тогда слова «бездрайверный светильник» активно употребляются как в документации на изделие, так и в рекламных материалах. А преимущества у бездрайверных решений действительно есть.

Без сглаживающих конденсаторов

В светодиодном драйвере переменный ток сначала преобразуется в пульсирующий, затем из пульсирующего уже преобразуется в постоянный, для чего требуется сглаживающий конденсатор. При массовом производстве драйверов практически единственным доступным вариантом сглаживающего конденсатора сейчас является электролитический конденсатор.

Срок службы бездрайверных светильников и диапазон рабочих температур ограничены только соответствующими параметрами светодиодов, которые уже давно выше, чем у электролитических конденсаторов.

Их недостатками являются относительно малый срок службы, а также сильная зависимость параметров от температуры. Но самая неприятная особенность электролитического конденсатора — его старение без эксплуатации. Полежал светильник какое-то время на складе — конденсатор уже состарился. Прошло 10 лет с момента выпуска светильника — электролитические конденсаторы неработоспособны вне зависимости от того, сколько времени прибор реально давал свет. Срок службы бездрайверных светильников и диапазон рабочих температур ограничены только соответствующими параметрами светодиодов, которые уже давно выше, чем у электролитических конденсаторов.

Собственно, светодиод по своему физическому принципу, в отличие от тех же разрядных источников света, пусковых токов не имеет. Тем не менее, светодиодные светильники на основе драйверов имеют значительные пусковые токи, и это связано с зарядкой сглаживающих конденсаторов сразу после включения. Например, у светодиодного драйвера FDL-65-1550 производства компании Meanwell пусковой ток на протяжении 270 мкс от момента включения составляет 50 А при потребляемом токе в установившемся режиме 0,48 А. То есть пусковой ток примерно в 100 раз больше потребляемого тока в случае номинальной нагрузки. И это у «топовой» модели от одного из ведущих производителей драйверов! Применяемые во многих светильниках noname драйвера характеризуются еще большим соотношением между пусковым и потребляемым токами в установившемся режиме. Данное соотношение нередко оказывается даже больше, чем у светильников на основе разрядных источников света, например, на люминесцентных лампах. В результате — замена устаревших светильников на более современные и, казалось бы, более экономичные светодиодные, приводит к срабатыванию защитного автоматического выключателя из-за перегрузки по току.

Приходится мириться с необходимостью использовать столь же толстые провода, как и для старых светильников (при уменьшении потребляемой мощности в несколько раз), а также обращаться к помощи квалифицированных специалистов для выбора определенного типа защитного автоматического выключателя и даже топологии подключения светильников. Когда внедрение светодиодного освещения было на уровне отдельных проектов, с этим можно было мириться. Но при их массовости нужны решения, доступные для установки специалистами не самой высокой квалификации. Бездрайверные же светодиодные светильники не имеют никаких пусковых токов по принципу своей работы.

Диммирование

Оптимальное решение для светодиодных светильников — использование диммируемого драйвера. Но это потребует установки дополнительного органа управления светильником и, возможно, прокладки дополнительного провода. В реальности приходится иметь дело с десятками миллионов диммеров типа TRIAC, установленных по всему миру. Светодиодный драйвер, совместимый с TRIAC, имеет более сложную конструкцию, чем обычный, и стоит дорого.

Несомненным преимуществом бездрайверных светильников является то, что они, как правило, без проблем совместимы с TRIAC-диммерами.

Важное преимущество бездрайверных светильников — совместимость с диммерами, изначально разрабатывавшимися для ламп накаливания

В ряде случаев бездрайверные светильники совместимы с современными ШИМ-диммерами, работающими на частотах выше 300 Гц. При такой «связке» бездрайверные светильники полностью лишаются такого недостатка, как высокий коэффициент пульсаций.

Внимание! Не все бездрайверные светильники совместимы с определенными моделями диммеров. О совместимости конкретных моделей светильников и диммеров следует предварительно получить информацию у производителей/поставщиков обоих соединяемых устройств.

Вопросы надежности

В электронной аппаратуре обычно соединения между элементами отказывают чаще, чем сами элементы. Повысить надежность цепочки последовательно соединенных светодиодов до уровня, близкого к надежности единичного светодиода, можно, если всех их выполнить в едином кристалле. Именно так рассуждали в компании Seoul Semiconductor, выпустившей еще в 2006 году светодиод Arciche. Его можно было подключать к осветительной сети переменного тока даже без выпрямительного «мостика», достаточно последовательно включенного токоограничительного резистора. Это достигалось благодаря наличию на кристалле двух групп светодиодов, светившихся для положительной и отрицательной полуволн питающего напряжения соответственно. Позже для повышения энергоэффективности оставили только одну цепочку и подключение выпрямительного моста к светодиоду стало обязательным. Светодиоды, питающиеся от напряжения осветительной сети без драйвера, Seoul Semiconductor производит и поныне, но уже под названием Acrich MJT.

Наиболее широкое применение светодиоды Acrich MJT нашли при создании светодиодных ламп с цоколем GU10, а также маломощных ламп с цоколем Е14 для декоративной подсветки. Выпускаются на основе Acrich MJT и миниатюрные даунлайты, устанавливаемые на стеллажи в магазинах для подсветки товара. Поскольку покупатели и сотрудники рассматривают товар на полках эпизодически, такие светильники, при наличии общего освещения с низким уровнем пульсаций, не нарушают действующих норм. На основе Arcich MJT выпускаются и светильники для промышленных холодильников. Почти полное отсутствие дополнительной электроники и межсоединений между светодиодами в последовательной цепочке позволяют светильнику выдерживать очень низкие температуры. При этом сотрудники внутри морозильной камеры работают также эпизодически.

В модулях для уличного освещения Acrich3.5 применена дополнительная защита от бросков напряжения

Бездрайверные светильники чувствительны к броскам напряжения в сети. Если для кратковременных бросков напряжения порядка нескольких киловольт (например, связанных с молнией) можно установить защиту, то при небольшом, но длительном по времени превышении питающего напряжения светодиоды перегреваются. Проблема решается за счет внесения дополнительных запасов при проектировании светильника, а также применения специальных защитных устройств. Также настоятельно рекомендуется не разрывать выключателем «ноль» питания и обязательно заземлять металлический корпус светильника.

Коэффициент мощности и энергоэффективность

В бездрайверном светильнике, собранном по схеме рис. 1 или подобной, значительная часть потребляемой мощности (около 25%) рассеивается на токоограничительном резисторе. Кроме этого, значительную часть периода колебаний в сети, когда мгновенное значение напряжения на каждом светодиоде меньше 1,5 В, цепочка светодиодов полностью закрыта и ток через светильник практически не течет. Помимо нерационального использования электроэнергии, такая особенность приводит к снижению коэффициента мощности PF до значений ниже минимально допустимого предела 0,6. При потребляемой мощности до 5 Вт с этим еще можно как-то мириться, но при большей потребляемой светильником или светодиодной лампой-ретрофитом мощности нарушаются действующие нормы и может произойти преждевременный износ оборудования электросетей.

Простейшая схема включения чипа Acrich IC 3. 0

Решение проблемы заключается в том, чтобы «наращивать» цепочку последовательно соединенных светодиодов по мере роста мгновенного значения напряжения питания. Находимся на пике синусоиды — включены все светодиоды. Находимся вблизи нуля — светится минимальное количество светодиодов, которые можно скоммутировать. При этом светодиоды открыты, и ток в нагрузке продолжает течь. Именно такое решение предлагает компания Seoul Semiconductor в своих бездрайверных светодиодных модулях Acrich4, производящихся с 2014 года. «Сердцем» такого модуля является чип Acrich IC 3.0, коммутирующий четыре группы последовательно включенных светодиодов.

Пример светодиодного модуля типа Acrich4

В итоге появляется возможность увеличить PF до 0,97, что находится на уровне лучших светильников с драйверами. Можно сказать, что такой светильник не создает практически никаких проблем для электросети, к которой он подключен. КПД чипа Acrich IC 3.0 достигает 90%.

Для уличного освещения Seoul Semiconductor предлагает модули Acrich3. 5 на основе предыдущей версии платформы Acrich3, работающей аналогичным образом (коммутация четырех цепочек светодиодов).

Помимо Seoul Semiconductor технологию АС-модулей с повышенным PF развивает и такая известная компания как Edison Opto. Fla рынке представлена серия модулей EdiLex от этой компании. К сожалению, Edison Opto не публикует в открытых источниках данные о конструкции своих бездрайверных светодиодных модулей, тем не менее, по косвенным данным можно предположить, что и здесь используется принцип коммутации групп светодиодов в зависимости от конкретного участка синусоиды. PF модулей EdiLex достигает 0,95. Главная «фишка» данных модулей, выгодно отличающая их от конкурентов — наличие встроенной функции трехступенчатого диммирования.

Борьба с пульсациями

Для борьбы с пульсациями в бездрайверных светильниках предлагались схемы с умножением частоты пульсаций. Речь идет о том, чтобы частота пульсаций относительно частоты сети не удваивалась, а учетверялась. Увеличение частоты пульсаций до 200 Гц не позволяет выполнить требования ГОСТ Р 54945-2012 и СП52.13330.2011 для помещений, в которых ведется напряженная зрительная работа, хотя субъективно зрительная нагрузка по сравнению с частотой пульсаций 100 Гц заметно снижается. Но несовместимость с существующими диммерами и сложность конструкции привели к тому, что серийный выпуск бездрайверных светильников с учетверением частоты пульсаций так и не был начат.

Один из вариантов бездрайверного светодиодного модуля производства Zega LED

Компания Zega LED с 2014 года развивает технологию REAC, представляющую собой принципиально новый способ борьбы с пульсациями. Ее суть заключается в том, что светодиод, поверх слоя обычного люминофора, покрывается еще слоем особого люминофора REAC, обладающего увеличенным временем послесвечения. По идее разработчиков, это позволяет сглаживать пульсации до приемлемого уровня.

По состоянию на январь 2017 года, на сайте Zega LED нет данных об уровне пульсаций выпускаемых компанией модулей с технологией REAC. Нет пока на авторитетных светотехнических сайтах и результатов независимых тестирований на уровень пульсаций. Тем не менее, модули нашли свое применение не только в техническом освещении, но и в дорогих престижных дизайнерских люстрах. Причина заключается в компактности модулей Zega LED при том, что для их работы не требуется наличия дополнительного оборудования. В результате фантазия дизайнера практически ничем не ограничена. Но, по состоянию на 2016 год, все такие люстры предлагались исключительно для рынка США, где частота сети составляет 60 Гц. При использовании технологии REAC в странах с частотой сети 50 Гц уровень пульсаций будет выше из-за более низкой частоты пульсаций. Возможно, для продажи люстр в таких странах придется доработать технологию REAC, дополнительно увеличив время послесвечения люминофора.

Аграрное будущее

Большую выгоду бездрайверные светильники могут принести для освещения теплиц, если там есть и естественное освещение, а персонал продолжительное время работает в дневное время. Естественно, светильники должны соответствовать и действующим нормам по коэффициенту мощности.

Полное отсутствие пусковых токов является важным преимуществом для сельской местности. Низкая стоимость бездрайверных светодиодных светильников, простота установки и обслуживания позволяют сделать проект внедрения светодиодного освещения экономически выгодным.

Положительный опыт использования светильников с лампами ДНаТ, у которых К п доходит до 95%, позволяет утверждать, что наличие пульсаций у бездрайверных светодиодных светильников не окажет негативного влияния на рост сельскохозяйственных культур. Но в птицеводстве применять бездрайверные светильники нельзя, поскольку мерцания угнетают развитие — у птиц зрение более быстродействующее, чем у людей. Возможность применения бездрайверных светодиодных светильников в животноводстве требует дополнительных исследований.

Полное отсутствие пусковых токов является важным преимуществом для сельской местности, где электросети зачастую находятся не в лучшем состоянии. Низкая стоимость бездрайверных светодиодных светильников, простота установки и обслуживания, когда не надо вызывать в далекую деревню дорогостоящих специалистов, позволяют сделать проект внедрения светодиодного освещения экономически выгодным.

Алексей ВАСИЛЬЕВ

Источник: Материал размещен в журнале «Электротехнический рынок», №1 (73) Январь-Февраль 2017

Схемы подключения светодиодов к 220В и 12В

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

Содержание

  • 1. Типы схем
  • 2. Обозначение на схеме
  • 3. Подключение светодиода к сети 220в, схема
  • 4. Подключение к постоянному напряжению
  • 5. Самый простой низковольтный драйвер
  • 6. Драйвера с питанием от 5В до 30В
  • 7. Включение 1 диода
  • 8. Параллельное подключение
  • 9. Последовательное подключение
  • 10. Подключение RGB LED
  • 11. Включение COB диодов
  • 12. Подключение SMD5050 на 3 кристалла
  • 13. Светодиодная лента 12В SMD5630
  • 14. Светодиодная лента RGB 12В SMD5050

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

  1. светодиодный драйвер со стабилизированным током;
  2. блок питания со стабилизированным напряжением.

В первом варианте применяется специализированный  источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения  необходимо использовать токоограничивающий резистор.
Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Разница кристаллов

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и  затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены.  Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а  в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была  не с питанием.

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную  мощность.

Подключение к постоянному напряжению

..

Далее будут рассмотрены  схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный  полярным напряжением на выходе. Несколько примеров:

  1. 3,7В – аккумуляторы от телефонов;
  2. 5В – зарядные устройства с USB;
  3. 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  4. 19В – блоки от ноутбуков, нетбуков, моноблоков.

Самый простой низковольтный драйвер

Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.

Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие.  Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении  желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа  рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт.   В длинной цепочке из 60-70 LED на каждом  падает 3В, что и позволяет подсоединять напрямую  к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление.  Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов  белого света, поэтому имеет 6 ножек.  То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

 

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

Драйвер и импульсный блок питания.

Отличия, принцип работы. Что лучше выбрать?

Многие довольно часто путают блоки питания и драйвера, подключая светодиоды и светодиодные ленты не от тех источников что нужно.

В итоге через небольшой промежуток времени они выходят из строя, а вы и не подозреваете в чем была причина и начинаете ошибочно грешить на «некачественного» производителя.

Рассмотрим подробнее в чем их отличия и когда нужно применять тот или иной источник питания. Но для начала кратко разберемся в типах блоков питания.

Трансформаторный блок

Сегодня уже довольно редко можно встретить применение трансформаторного БП. Схема их сборки и работы довольно проста и понятна.

Самый главный элемент здесь, безусловно трансформатор. В домашних условиях он преобразует напряжение 220В в напряжение 12 или 24В. То есть, идет прямое преобразование одного напряжения в другое.

Частота сети при этом, привычные нам всем 50 Герц.

Далее за ним стоит выпрямитель. Он выпрямляет синусоиду переменного напряжения и на выходе выдает «постоянку». То есть 12В, подаваемые к потребителю, это уже постоянное напряжение 12V, а не переменное.

У такой схемы 3 главных достоинства:

  • незамысловатость конструкции
  • относительная надежность

Однако есть здесь и недостатки, которые заставили разработчиков задуматься и придумать что-то более современное.

  • во-первых это большой вес и приличные габариты
  • как следствие первого недостатка - большой расход металла на сборку всей конструкции
  • ну и ухудшает все дело низкий косинус фи и низкий КПД

Именно поэтому и были изобретены импульсные источники питания. Здесь уже несколько иной принцип работы.

Импульсные блоки питания

Во-первых, выпрямление напряжения происходит сразу же. То есть, подается на вход переменно 220В и тут же на входе преобразуется в постоянное 220V.

Далее стоит генератор импульсов. Главная его задача - создать искусственно переменное напряжение с очень большой частотой. В несколько десятков или даже сотен килогерц (от 30 до 150кГц). Сравните это с привычными нам 50 Гц в домашних розетках.

Кстати за счет такой огромной частоты, мы практически не слышим гул импульсных трансформаторов. Объясняется это тем, что человеческое ухо способно различать звук до 20кГц, не более.

Третий элемент в схеме - импульсный трансформатор. Он по форме и конструкции напоминает обычный. Однако главное его отличие - это маленькие габаритные размеры.

Это как раз таки и достигается за счет высокой частоты.

Из этих трех элементов самым главным является генератор импульсов. Без него, не было бы такого относительно маленького блока питания.

Преимущества импульсных блоков:

  • маленькая цена, если конечно сравнивать по мощности его, и такой же блок собранный на обычном трансформаторе
  • напряжение питания можно подавать в большом разбросе
  • при качественном производителе блока питания, у импульсных ИБП более высокий косинус фи

Есть и недостатки:

  • усложненность сборочной схемы
  • сложная конструкция
  • если вам попался не качественный импульсный блок, то он будет выдавать в сеть кучу высокочастотных помех, которые будут влиять на работу остального оборудования
Проще говоря, блок питания что обычный, что импульсный - это устройство у которого на выходе строго одно напряжение. Его конечно можно "подкрутить", но в не больших диапазонах.

Для светодиодных же светильников такие блоки не подойдут. Поэтому для их питания используются драйверы.

В чем отличия драйвера от блока питания

Почему же для светодиодов нельзя применять простой БП, и для чего нужен именно драйвер?

Драйвер - это устройство похожее на блок питания.

Однако, как только в него подключаешь нагрузку, он заставляет стабилизироваться на одном уровне не напряжение, а ток!

Светодиоды "питаются" электрическим током. Также у них есть такая характеристика, как падение напряжения.

Если вы видите на светодиоде надпись 10мА и 2,7В, то это означает, что максимально допустимый ток для него 10мА, не более.

При протекании тока такой величины, на светодиоде потеряется 2,7 Вольт. Именно потеряется, а не требуется для работы. Добьетесь стабилизации тока и светодиод будет работать долго и ярко.

Более того, светодиод - это полупроводник. И сопротивление этого полупроводника зависит от напряжения, которое на него подано. Изменяется сопротивление по графику - вольтамперной характеристике.

Если на нее посмотреть, то становится видно, даже если вы не намного увеличите или уменьшите напряжение, это резко, в разы изменит величину тока.

Причем зависимость не прямо пропорциональная. 

Казалось бы, один раз выставь точное напряжение и можно получить номинальный ток, который необходим для светодиода. При этом, он не будет превышать предельные величины. Вроде бы и обычный блок с этим должен справиться.

Однако у всех светодиодов уникальные параметры и характеристики. При одном и том же напряжении они могут "кушать" разный ток.

Мало того, эти параметры еще способны меняться при изменении окружающей температуры.

А температурный диапазон работы светодиодных светильников очень большой.
Например, зимой на улице может быть -30 градусов, а летом уже все +40. И это в одном и том же месте.

Поэтому, если вы такие светильники подключите от обычного импульсного блока питания, а не от драйвера, то режим их работы будет абсолютно не предсказуем.

Работать они конечно будут, но в каком режиме светоотдачи и насколько долго неизвестно. Заканчивается такая работа всегда одинаково - выгоранием светодиода.

Кстати, при превышении температуры световой поток у светодиодных светильников всегда падает, даже у тех, которые подключены через драйвер. У некачественных экземпляров световой поток падает очень сильно, стоит им поработать около часа и нагреться.

У качественных изделий световой поток с нагревом уменьшается слабо, но все же уменьшается.

Поэтому каждому светильнику после запуска, нужно дать время, чтобы он вышел на свой рабочий режим и световой поток стабилизировался. Его изменение должно быть не более 10% от начального.

Многие недобросовестные производители хитрят и измеряют эти параметры сразу после включения, когда поток еще максимальный.

Если вам нужно соединить несколько светодиодов, то подключаются они последовательно. Это необходимо, чтобы через все элементы, несмотря на их разные ВАХ (вольт-амперные характеристики), протекал один и тот же ток.

А уже эту последовательную цепочку подключают к драйверу. Данные цепочки можно комбинировать различными способами. Создавать последовательно-параллельные или гибридные схемы.

Недостатки драйверов

Безусловно и у драйверов есть свои неоспоримые недостатки:

  • во-первых они рассчитаны только на определенный ток и мощность 

А это значит, что для каждого драйвера каждый раз придется подбирать определенное количество светодиодов. Если один из них случайно выйдет из строя в процессе работы, то драйвер весь ток запустит на оставшиеся.

Что приведет к их перегреву и последующему выгоранию. То есть потеря одного светодиода влечет за собой поломку всей цепочки.

Бывают и универсальные модели драйверов, для них не важно количество светодиодов, главное чтобы их общая мощность не превышала допустимую. Но они гораздо дороже.

  • узкоспециализированность на светодиодах 

Простые блоки питания можно использовать для разных нужд, везде где необходимы 12В и более, например для систем видеонаблюдения.

Основное же предназначение драйверов - это светодиоды.

А есть бездрайверные заводские светильники? Есть. Не так давно на рынке появилось немало таких Led светильников и прожекторов.

Однако энергоэффективность у них не очень высокая, на уровне обычных люминесцентных ламп. И как он поведет себя при возможных перепадах параметров в наших сетях, большой вопрос.

Светодиодные ленты — подключение от блока питания или драйвера?

Отдельный вопрос это светодиодные ленты. Для них вовсе не нужны драйвера, и как известно они подключаются от привычных нам блоков питания 12-36 Вольт.

Казалось бы в чем подвох? Там же тоже стоят светодиоды.

А дело в том, что драйвер уже автоматически присутствует в самой ленте.

Все вы видели на светодиодных лентах впаянные сопротивления (резисторы).

Они как раз таки и отвечают за ограничение тока до номинальной величины. Одно сопротивление устанавливается на три последовательно подключенных светодиода.

Такие участки ленты, рассчитанные на напряжение 12 Вольт называют кластерами. Эти отдельные кластеры на всем протяжении ленты подключены между собой в параллель.

И именно благодаря такому параллельному соединению, на все светодиоды подается одинаковое напряжение 12В. Благодаря кластеризации при монтаже низковольтной ленты, ее спокойно можно отрезать на мелкие кусочки, состоящие минимум из 3-х светодиодов.

Казалось бы, решение найдено и где здесь недостаток? А главный недостаток такого устройства - эти резисторы не проделывают никакой полезной работы.

Они лишь дополнительно нагревают окружающее пространство и сам светодиод возле него. Именно поэтому светодиодные ленты не светят так ярко, как нам хотелось бы. Вследствие чего, их используют лишь как дополнительный свет интерьера.

Сравните 60-70 люмен/ватт у светодиодных лент, против 120-140 лм/вт у светильников и решений на основе драйверов.

Возникает вопрос, а можно ли найти ленту без сопротивлений и подключить к ней драйвер отдельно? Да, такие устройства например применяют в светодиодных панелях.

Их часто монтируют в подвесном потолке и не только. Применяются они без сопротивлений. Еще их называют токовыми светодиодными линейками.

Именно токовыми. Здесь все отдельные участки линеек подключаются последовательно на один драйвер. И все прекрасно работает.

Самостоятельно ремонтируем светодиодные лампы - ToolBoom

Светодиодная лампа – современный и практичный источник освещения. Светодиодные лампы безопасны, не содержат ртуть и другие токсичные вещества, не представляют опасности при выходе из строя или разбитии. Но первое, что побуждает к покупке и установке такой лампы, это возможность экономить средства благодаря малому использованию электроэнергии. Светодиодные (или LED) приборы являются достаточно надежными и обычно полностью вырабатывают свой ресурс. Преимущества такого освещения очевидны: оно дает яркий свет и служит долго.

Если обычные лампы накаливания не подлежат ремонту, то в светодиодной можно отремонтировать практически все. Остается найти неисправность, произвести несложный ремонт и тем самым продлить срок эксплуатации лампы. Необходимые инструменты найдутся у каждого домашнего мастера, остается только найти время на ремонтные работы.

Работа светодиодной лампы построена на свойствах некоторых материалов излучать свет при определенных условиях. Рабочий элемент лампы, светодиод – это полупроводниковое устройство, которое излучает некогерентный свет при пропускании через него электрического тока. Светодиоды светятся только при условии прохождения постоянного тока.

Как работает светодиод?

Рассмотрим его работу на примере широко распространенного SMD-светодиода в корпусе 5730.

Его характеристики представлены в таблице:

Пиковый прямой ток (IFPM) 260 мА
Прямой ток (IFM) 180 мА
Обратное напряжение (VR) 5 В
Рассеиваемая мощность (PD) 0,63 Вт
Угол рассеивания света 120°
Тип линзы светодиода Прозрачный
Рабочая температура (TOPR) -40°С – +85°С
Температура хранения (TSTG) -40°С – +100°С
Температура пайки (TSOL) 260°С

Если в двух словах описать его работу, можно сказать так: светодиод преобразует электрический ток в световое излучение. Светодиод состоит из полупроводникового кристалла на токонепроводящей основе, корпуса с контактными выводами и оптической системы. Для повышения устойчивости светодиода, пространство между кристаллом и пластиковой линзой заполнено прозрачным силиконом. Алюминиевая основа предназначена для отвода избыточного тепла. Собственно, при нормальных условиях выделяется совсем небольшое количество тепла.

Чем больший ток проходит через светодиод, тем ярче он светит. Однако, из-за внутреннего сопротивления полупроводника и p-n-перехода, диод нагревается и при большом токе может сгореть – расплавятся соединительные проводники или будет прожжен сам полупроводник. Следовательно, для обеспечения требуемого значения тока, в лампе должен быть блок питания – драйвер, а также система отвода избыточного тепла – радиатор. Рассмотрим устройство LED-лампы подробнее.

Основные составляющие части LED-лампы

  1. Рассеиватель. Рассеиватель устраняет неравномерности светового потока и слишком высокую яркость отдельных излучающих элементов. Он обеспечивает освещение под определенным углом (для бытовых ламп - угол рассеивания должен быть как можно больше).
  2. Плата со светодиодами. Плата на алюминиевой основе, на которой размещены светодиоды. При этом, количество светодиодов очень важно для теплообмена, следовательно, должно соответствовать конструкции лампы. Между платой и радиатором находится термопаста, которая способствует передаче тепла.
  3. Радиатор. Качественный радиатор предназначен для того, чтобы эффективно отводить тепло от компонентов лампы и не давать светодиодам возможности перегреваться. Конструкция радиатора с ребрами позволяет эффективнее отводить и рассеивать избыток тепла.
  4. Цоколь. Вкручивается в патрон светильника и обеспечивает с ним надежный контакт. Изготовлен, как правило, из латуни с никелевым покрытием. Для защиты от пробивания электрическим током цоколь большинства LED-ламп имеет полимерную основу.
  5. Драйвер. Это электронная схема, которая предназначена для преобразования переменного тока электросети в постоянный ток такого номинала, который необходим для работы светодиодов. Слишком большой ток приводит к деградации светодиодов, которые в итоге перегорают. Качественный драйвер обеспечивает стабильную работу лампы при прыжках сетевого напряжения, обеспечивает работу светодиодов без пульсаций. Схем драйверов LED-ламп довольно много. Ниже приведены лишь некоторые из них: Драйверы бывают как простые, где фактически напряжение ограничивается за счет резистора или конденсатора, так и более совершенные с использованием микросхем. Такой драйвер не только ограничивает напряжение, но и обеспечивает оптимальное энергопотребление, а также различные функции ограничения и защиты. Конечно, драйверы на микросхемах более современные и прогрессивные, но при этом более сложные в изготовлении, а это напрямую влияет на стоимость лампы.

Работа лампы и поиск неисправности

Принцип работы светодиодной лампы достаточно прост: от электросети через контакты на драйвер подается переменный ток, там он выпрямляется и направляется на светодиоды, которые «превращают» его в свет. Избыток тепла отводится с помощью платы, на которой размещены светодиоды и радиатор.

Хотя на первый взгляд LED-лампы разные, они имеют одинаковую конструкцию и сделаны по одним принципам схемотехники. Поэтому, если разобраться в их работе и отремонтировать одну лампу, каждый последующий ремонт будет легче.

В большинстве современных ламп - источником света являются SMD-светодиоды, которые соединены последовательно. Схема соединения показана на рисунке.

Поэтому, выход из строя одного из них приводит к тому, что и другие тоже работать не будут. Наиболее распространенная неисправность ламп - именно перегорание светодиодов. Чаще всего - одного из них. Крайне редко случаются ситуации, когда из строя выходят сразу несколько светодиодов.

Перегореть светодиоды могут по разным причинам. Это может быть использование компонентов низкого качества, отсутствие стабилизации по току, перегрева светодиодов, скачки напряжения в электросети. При этом некоторые производители сразу перегружают светодиоды, чтобы заинтересовать покупателя высокой яркостью лампы небольшого размера.

Но какой бы ни была причина поломки, в большинстве случаев восстановить работу светодиодной лампы возможно. Более того, такой ремонт под силу выполнить даже начинающим радиолюбителям. А расходы будут значительно меньше, чем стоимость новой лампы.

Для выяснения причины необходимо разобрать лампу – снять рассеиватель и добраться середины лампы. Рассеиватель может быть приклеен к корпусу, поэтому нужно аккуратно (например, тонкой отверткой) отсоединить его от корпуса. Исключением являются лампы со стеклянным рассеивателем. Такие лампы зачастую не подлежат ремонту.

В рассеивателе размещена плата со светодиодами. В качественных лампах на ней установлены только светодиоды. Плата, на которой размещены еще и другие компоненты, будет быстрее перегреваться, а компоненты будут выходить из строя.

Следующий шаг – это визуальный осмотр платы. Определить светодиод, который перегорел, в большинстве случаев можно визуально – на нем четко видно черную точку, или следы от выгорания.

Но в некоторых случаях светодиод может выглядеть неповрежденным. Провести проверку и выявить неисправность светодиода можно с помощью мультиметра. Большинство современных мультиметров имеют функцию тестирования диодов. Порядок проверки следующий: замыкаем красный щуп на анод светодиода, а черный на катод. Хороший светодиод загорается. При изменении полярности щупов - на дисплее мультиметра будет только цифра «1», диод светиться не будет. Нерабочий светодиод при проверке также не светится.

Замена светодиода

Теперь, когда определён неисправный светодиод, нужно его заменить. Светодиод припаян к плате. В то же время, перегревание является критическим в его работе. В технической спецификации светодиодов указаны рекомендации по пайке. Например, для SMD-светодиода 5730, который широко используется благодаря хорошему соотношению размеров, мощности и светового потока - температура пайки 260°С (в течение не более двух секунд).

Если конструкция лампы позволяет, плату надо снять с радиатора, отпаять контакты драйвера, и уже после этого приступать к замене светодиода. Плату удобно закрепить на держателе (так мы освобождаем обе руки) и, опять же, если конструкция лампы позволяет, прогреть термофеном снизу. Температуру при этом задать не очень высокую, в пределах 100 ÷ 150°С, чтобы не повредить «живые» светодиоды.

Снимать с платы старый светодиод удобнее термопинцетом, который одновременно прогревает оба вывода. Или можно делать это изготовленным собственноручно его упрощённым аналогом – скрученным медным проводником, который разогревается от жала паяльника.

На место неисправного нужно установить новый светодиод такого же типа. Маркировка светодиодов, как правило, обозначена на плате лампы. При установке нужно соблюдать полярность.

Существует и другой, на первый взгляд более простой способ ремонта – на место неисправного светодиода запаять перемычку, то есть, замкнуть контактные площадки, к которым был подсоединён старый светодиод. Выглядеть это будет так:

Если на плате много светодиодов и все они включены последовательно, отсутствие одного не будет существенно влиять на работу других. Однако напряжение на рабочих диодах увеличится и вероятность того, что они будут выходить из строя, достаточно высока. Это не касается качественных ламп, драйвер которых задает необходимый ток и будет уменьшать напряжение до уровня, безопасного для работы светодиодов.

Другие неисправности

Если же при проверке все светодиоды оказались рабочими, надо проверить драйвер лампы и поискать другие «незначительные» поломки, внимательно осмотреть и проверить всю конструкцию лампы, особенно, соединительные проводники и контакты на предмет обрыва или «холодной» пайки.

Драйвер в хороших лампах выполнен в виде отдельной платы и находится в цокольной части. Поскольку каждый производитель имеет свою схему драйвера, не существует четкой и стандартной рекомендации по его ремонту. Здесь надо применять индивидуальный подход.

Следует мультиметром проверить основные детали, а именно, проверить на короткое замыкание выводы диодов и транзисторов, сравнить номиналы резисторов, заменить конденсаторы, которые имеют неудовлетворительное состояние или емкость которых не соответствует номиналу. Если в схеме драйвера присутствует интегральная микросхема, надо проверить напряжение на ее выводах согласно технической спецификации и сделать выводы относительно ее работоспособности. Заменить неисправные компоненты.

Остается проверить работу разобранной лампы и собрать ее. При необходимости, нанести термопасту, закрутить шурупы, зафиксировать рассеиватель.

Тенденция «модульного» ремонта не обошла и область светодиодных устройств. В интернет-магазине инструментов «Masteram» вы можете приобрести как комплекты для самостоятельной сборки LED-ламп, так и отдельные составляющие: драйверы, платы с установленными светодиодами, радиаторы ламп и т.д. Достаточно разобрать лампу, отпаять «старую» отработанную деталь, а на ее место установить новую. Замена производится в считанные минуты.

Конечно, здесь мы рассмотрели лишь самые простые варианты возобновления работы светодиодной лампы, без углубления в схемные и конструкционные решения. Но очевидно, что дело это перспективное. Стоимость замены светодиода или драйвера лампы будет значительно ниже, чем приобретение новой лампы. Из общих рекомендаций можно только добавить, что при замене следует использовать качественные компоненты с хорошими техническими характеристиками. Это будет залогом длительной безотказной работы светодиодной лампы.

Простой драйвер светодиода от сети 220В

Для питания светодиоду требуется источник постоянного напряжения и устройство стабилизации тока – драйвер. А если требуется (или очень хочется) подключить светодиод к сети 220В? И светодиод, при этом, мощный? Простым резистором и диодом здесь не обойтись. Самый правильный, вернее, единственно правильный способ – использовать специализированный драйвер. Его можно даже самому собрать (читайте в статье «Схема драйвера для светодиодов от сети 220В»).

Впрочем, есть и менее правильные, но, в целом, рабочие варианты. Один из них – собрать стабилизатор тока для светодиода из обычной энергосберегающей лампы.

Прежде чем начнем, помните: все, что вы делаете, вы делаете на свой страх и риск! Мы не даем никакой гарантии, что получившийся прибор заработает у вас правильно. И не несем никакой ответственности за возможный ущерб или повреждения, которые, теоретически, могут случиться, если что-то пойдет не так, как задумано.

Предстоит работать с опасным для жизни напряжением в 220В и, скорее всего, без точной технической документации на конкретную переделываемую лампу. Если вы не знаете правил предосторожностей при работе с высоким напряжением, не сильно уверенно держите в руках паяльник, то лучше откажитесь от этой затеи – в конце концов, готовый драйвер от сети 220В стоит не так уж дорого.

Но, если интересно, то вперед!

Обычная энергосберегайка, она же компактная люминесцентная лампа или КЛЛ, содержит в себе электронное устройство, обеспечивающее поджег и горение газоразрядных ламп. КЛЛ имеют очень приличный срок службы – до 10 000 часов, но с течением времени яркость их свечения снижается, они начинаю сильнее греться, начинают мерцать или вообще перестают светить. При этом, чаще всего, из строя выходит именно «стеклянная часть» лампы, а ее электроника остается в полном порядке. Поэтому, для экспериментов вполне подойдет старая лампа, которая перестала работать, а вы ее почему-то не выбросили. Если есть выбор, то лучше взять лампу помощнее. У меня для опытов оказался пациент, изображенный на картинке в начале статьи.

Запыленная и пожелтевшая лампа Maxus 26W верой и правдой отслужила несколько лет и была заменена, поскольку светить стала чуть ли не вдвое тусклее, чем нужно.

Аккуратно, по пояску открываем лампу.

Аккуратно открытая энергосберегающая лампа

Видим балласт, от которого два провода уходят к цоколю и четыре к стеклянным колбам. Откусываем их все и извлекаем электронную часть. Только внимательно – один из цокольных проводов к плате может идти через висящий резистор. Он тоже нужен, откусывайте за ним.

Получилась вот такая штучка.

Извлеченный балласт люминесцентной лампы - до переделки

Теперь от разрушения ламп переключимся к изучению их принципиальных схем. Импульсный преобразователь (электронный балласт) компактных люминесцентных ламп может различаться деталями для конкретных ламп, но принципиально его схема выглядит так:

Принципиальная схема балласта компактной люминесцентной лампы

Желтым цветом выделено то, что может значительно отличаться от лампы к лампе в зависимости от производителя и ее мощности. В любом случае, оставляем эту часть безо всяких изменений. То, что отмечено синим, останется бесхозным после удаления ламп (стеклянных колб) и может быть безболезненно удалено с платы, дабы не мешало.

Получится примерно так:

Импульсный преобразователь после удаления "лишних" деталей

После удаления «синей» части схемы, останется два проводника, повисших в воздухе. Их нужно соединить друг с другом – закоротить. Найдем что с чем соединять на конкретной плате.

Обратная сторона платы импульсного преобразователя

Как видно, нужно закоротить выход дросселя (он же вход в колбы) с выходом из колб по кратчайшему пути. Электроника вашей лампы, скорее всего, внешне будет отличаться от того, что вы видите на картинке. Важно понять сам принцип.

Следующий шаг – сделать из дросселя трансформатор, выпрямить получившийся ток и запитать им светодиоды.

Дело в том, что люминесцентные лампы питаются напряжением высокой частоты (до 50КГц). Соответственно, намотав на дроссель вторичную обмотку, можно получить на ней нужное напряжение.

Аккуратно выпаиваем дроссель. Дальше очень творческая задача – его разобрать. Дроссель состоит из катушки с проводом, в которую сверху и снизу вставляются две половинки Е-образного феррита. Разобрать дроссель – это значит разъединить спаявшиеся за года половинки тонкого и хрупкого феррита (которые еще иногда заливают лаком), снять их и получить свободный доступ к катушке с проводом. Удалите ленту, которая расположена по периметру феррита, после чего нежно и не прикладывая больших усилий, попробуйте его разъединить. Помогает нагревание – например, аккуратно паяльником по всему периметру феррита. У меня получилось, правда, далеко не сразу.

Побежденный и разобранный дроссель

На открывшуюся катушку поверх наматываем вторичную обмотку. По моим наблюдениям один оборот вторичной обмотки дает в ней около 0.8В напряжения. В моих планах было запитать две линейки одноваттных светодиодов по 10шт. Для этого мне нужно около 30В напряжения. Итоговый ток требуется небольшой – до 200-250мА, поскольку светодиоды ну очень китайские.

В моем случае получилось 40 витков эмальпровода диаметром 0.25мм. Наматывайте аккуратно, поскольку дроссель потом нужно будет собрать обратно, т.е. вернуть ферриты на место. Не забудьте в конце узкой полоской изоленты или скотча скрепить между собой половинки феррита. Впаиваем дроссель обратно. Получится как-то так.

Результат работы - готовый "драйвер" из балласта энергосберегайки

Подключаем входное сетевое напряжение. Взрывов, фейерверков нет? Чудесно! Теперь аккуратно меряем переменное напряжение на выходах вторичной обмотки. Получилось то, что нужно? Здорово! Если нет, отключаемся от сети и отматываем (чтобы уменьшить) или добавляем (чтобы увеличить) несколько витков в обмотке. Разбирать дроссель для этого не нужно – просто аккуратно продевайте провод между катушкой и ферритом.

У меня две линейки светодиодов. Подключить их можно двумя способами – параллельно – для этого нужно предварительно выпрямить ток. Или встречно – для этого выпрямлять ток не нужно. На схеме это выглядит так.

Параллельное подключение двух линеек светодиодов

Параллельное подключение. Зеленая область – вторичная обмотка, диодный мост и светодиоды. Синяя линия – перемычка. Диодный мост собирается из быстрых диодов. Я взял 4 диода HER307.

Встречное подключение выглядит так:

Встречное подключение двух линеек светодиодов

Оба варианта имеют право на жизнь, я выбрал параллельное подключение с выпрямлением.

После сбора схемы подключите светодиоды через амперметр. Подключите питание. Если сила тока такая, как необходимо – отлично, если нет, то убирая/добавляя витки вторичной обмотки дросселя уменьшите или увеличьте ток.

Результат работы - светодиоды подключены и ярко светят.

У меня получилось около 200мА на две линейки по 10 светодиодов. Маловато, но для настольного светильника хватит.

Очень непривычно видеть подключение светодиодов напрямую от источника тока. Но здесь стабилизация тока достигается за счет точной стабилизации напряжения. И, в данном случае, если что-то произойдет с одной из параллельных линеек светодиодов, ток в оставшихся линейках не изменится, в отличие от обычного подключения через драйвер.

Правильно собранная схема должна иметь серьезный запас по мощности – у меня рабочая мощность 6 из 26 Вт. Ничего (кроме светодиодов) не должно существенно нагреваться в процессе работы (только проверяйте после отключения от сети).

В итоге получился компактный и практически бесплатный «драйвер», который позволил мне подключить светодиоды к сети 220В. Осталось соорудить корпус и смонтировать настольный светодиодный светильник. Но это уже другая история и о ней читайте в статье «Светодиодный светильник своими руками».

Также, имеются готовые модели драйверов для светодиодов, без которых никак не обойтись, если будет нужно получить мощный и яркий свет.

Выбираем драйверы ЭПРА для светодиодных светильников подробности в статье на сайте

Драйвер, или ЭПРА (электронный пускорегулирующий аппарат) является компонентом LED-светильника, необходимым для регуляции напряжения и создания постоянного тока.

Как работает ЭПРА?

Драйвер – важный элемент светодиодной лампы. Его задача – преобразовывать переменный ток, поступающий в блок питания светильника от электросети, в постоянный. Затем постоянный ток подаётся к LED-элементу и обеспечивает бесперебойную работу и ровный свет от лампы.

Яркость лампы зависит от мощности светодиода, она может быть постоянной или меняться вручную при помощи регулятора. Драйвер защищает светильник от короткого замыкания и экономит электроэнергию. Он значительно продлевает срок жизни светодиода, а в большинстве LED-светильников работа светодиода без стабилизатора напряжения невозможна. Корпус устройства изготавливается из негорючего пластика, он устойчив к нагреванию и механическому воздействию.

Как выбрать драйвер для LED-лампы?

Стабилизаторы напряжения для светодиодных светильников продаются в комплекте с самим прибором и производятся для конкретной модели, но при необходимости их можно приобрести отдельно. ЭПРА постоянно испытывает на себе перепады электроэнергии, поэтому он обычно изнашивается раньше, чем LED-элемент лампы, и рано или поздно требуется его замена. Наиболее часто используемыми являются стабилизаторы для ламп 36w и 40w с силой тока 350 или 700А.

Выполняя свою работу (преобразование переменного тока в постоянный), ЭПРА потребляет некоторое количество электроэнергии – примерно 20% от мощности лампы. Поэтому, выбирая устройство, необходимо умножать мощность светильника на коэффициент 1,2 – это будет оптимальная мощность драйвера для данной модели. При несоответствии мощности и светодиода их работа будет некорректной, ЭПРА может перегреваться и быстро выйдет из строя, или испортится светодиод.

Стабилизатор напряжения может размещаться как внутри светильника (в специально отведённом для него месте корпуса), так и отдельно. При размещении внутри корпуса важно подобрать драйвер нужного размера.


Возврат к списку

Светодиодные фонари без водителя: основы, работа и преимущества

Великий американский бизнесмен и изобретатель лампочки - Томас Альва Эдисон однажды сказал, что «мы сделаем электричество настолько дешевым, что только богатые будут зажигать свечи», что, безусловно, стало реальностью. сегодня. От небольших домов до мощеных дорог и крупных предприятий мы можем заметить огни переменного тока, освещающие окружающую среду после захода солнца. Раньше в системах освещения использовались различные типы ламп, такие как лампы накаливания, компактные люминесцентные лампы (CFL) и т. Д., Но сегодня, благодаря достижениям в технологии светодиодного освещения, эти лампы накаливания и CFL быстро заменяются светодиодными.На мировом рынке светодиодного освещения наблюдается продолжительный рост, и в 2018 году его размер составил 45,57 млрд долларов США.

Хотя известно, что светодиодные лампы почти на 90% эффективнее ламп накаливания и имеют лучший срок службы, чем другие лампы переменного тока, они все же страдают от одного недостатка. То есть, светодиодных фонарей работают от постоянного напряжения , но все наши источники питания от сети переменного тока. Это подтолкнуло разработчиков к использованию дополнительного компонента под названием LED driver , который представляет собой не что иное, как преобразователь переменного тока в постоянный.Этот драйвер преобразует питание переменного тока из сети в подходящее напряжение постоянного тока для питания светодиодной лампы. Но затем были представлены светодиодные лампы переменного тока без драйверов , которые можно напрямую подключать к сети переменного тока без каких-либо внешних модулей драйверов. В этой статье мы узнаем больше о светодиодных системах без драйверов и о ее развитии с течением времени.

Почему светодиодные системы без драйверов?

Основной проблемой традиционных высокомощных драйверов , переключающих переменный ток на постоянный ток , является связанная с этим потеря мощности.Эти традиционные драйверы светодиодов переменного тока используют топологию переключения и резисторы для управления током светодиода, это переключение вызывает нагрев, который снижает эффективность системы. Также эта дополнительная схема приводит к увеличению общей стоимости лампочки. Вот почему в нашей предыдущей статье мы обсуждали недорогую систему драйверов светодиодов и даже создали ее для проверки ее производительности.

Еще одна серьезная проблема драйверов светодиодов переменного тока - эффект мерцания.Как большинство из нас заметили, старые схемы драйверов светодиодов имеют эффект мерцания. В максимальных случаях эти традиционные схемы драйверов светодиодов переменного тока используют полусинусоидальную волну на удвоенной частоте линии питания. Это означает, что в линии электропередачи с частотой 50 Гц он производит почти 100 щелчков, которые могут быть обнаружены человеческим глазом, и это вредно. Это следует устранить. Таким образом, внедряется современная технология, в которой используется несколько пассивных компонентов вместо традиционного преобразователя переменного тока в постоянный с использованием топологии переключения.

Светодиодные фонари переменного тока без водителя - рабочие

Светодиодная система без водителя имеет так называемый светодиодный двигатель переменного тока . Но что такое светодиодный двигатель переменного тока? Обычно двигатель используется для преобразования одной формы энергии в другую. Например, моторный двигатель используется для преобразования тепла, выделяемого топливом, в движение вала. Точно так же светодиодный световой двигатель переменного тока используется для преобразования электрической энергии в световой поток люмен.

Светодиодный светильник переменного тока - это механическое приспособление или монтажная плата, в которую встроены светодиодные микросхемы со всеми электрическими соединениями. Это готовый источник света, который легко устанавливается в розетку переменного тока. Это помогает светодиодным лампам действовать как прямая замена другим обычным лампам.

Разработка этого светодиода переменного тока проходит в несколько этапов. Все началось с простого последовательного подключения стандартных светодиодов для согласования комбинированного прямого напряжения светодиодов с максимальным входным напряжением переменного тока.Было бы неплохо зажечь эти светодиоды без какого-либо драйвера, но это не увенчалось успехом. У этой конструкции есть серьезный недостаток: переменный ток меняет свою полярность с положительной на отрицательную для каждого цикла, и из-за этого в каждом положительном цикле светодиоды смещены в прямом направлении (включены), но в каждом отрицательном цикле светодиоды смещаются в обратном направлении, что делает их выключают.

Бесприводные светодиоды первого поколения

Итак, какое решение? В это время было представлено первое поколение светодиодных фонарей переменного тока без водителя , в котором каждый сегмент светодиодов заменен встречно-параллельной парой, как показано на рисунке ниже.

На изображении выше светодиоды соединены встречно-параллельным образом. В каждом положительном цикле одна сторона пар смещена в прямом направлении, а другая сторона - в обратном, но в отрицательном цикле состояния меняются, и другие светодиоды загораются. Ток здесь ограничивается одним резистором большой мощности R1.

Положительной стороной схемы является КПД. КПД очень высокий. Синфазные колебания тока и напряжения, проходящие по цепи, создают высокий коэффициент мощности.Но, несмотря на вышеупомянутую положительную сторону, первое поколение беспилотных светодиодных двигателей оказалось провальным. Это из-за плохого индекса мерцания и удвоенного количества светодиодов, чем требуется. Он производит эффект вспышки, который легко обнаруживается человеческим глазом, и половина используемых светодиодов остается выключенной в любой момент времени.

Бесприводные светодиоды второго поколения

На основе этого недостатка были разработаны светодиодные двигатели переменного тока второго поколения без водителя.На этот раз цель - , чтобы уменьшить количество светодиодов на . Это возможно только в том случае, если переменный ток преобразуется в постоянный. Следовательно, мостовой выпрямительный диод включен в светодиодные двигатели переменного тока без водителя второго поколения. Кроме выпрямительных диодов, все в схеме без изменений.

Как и раньше, резистор R1 регулирует ток светодиода. Теперь каждый отрицательный и положительный цикл проходят через светодиоды, поэтому они остаются включенными в течение обоих циклов.

Бесприводные светодиоды третьего поколения

Третье поколение светодиодных двигателей переменного тока представлено в , увеличивая эффективность и получая улучшенный индекс мерцания . В схему добавлен контроллер переключения, который может индивидуально управлять светодиодами до определенного уровня, при котором напряжение линии питания совпадает с напряжением светодиода. Функция ограничения тока также доступна во встроенном контроллере переключения и может быть изменена с помощью внешних компонентов.Такая схема может обеспечить почти 80% КПД и индекс мерцания от 0,30 до 0,35.

Бесприводные светодиоды четвертого поколения

В двигателях со светодиодной подсветкой переменного тока 4-го поколения отсутствует контроллер, и используются пассивные компоненты для компенсации производственных затрат. Кроме того, эффективность выше благодаря высокому коэффициенту мощности и улучшенному индексу мерцания.

Схема работает с двумя независимыми импульсами тока , которые представляют собой емкостно ограниченный импульс тока и резистивно ограниченный импульс тока.Эти импульсы тока подаются в цепочку светодиодов таким образом, что цепочка светодиодов получает два импульса тока за полупериод линейного напряжения. На изображении ниже представлена ​​схема маломощного светодиодного двигателя переменного тока без водителя четвертого поколения.

Работа вышеуказанной схемы весьма интересна. Во время первого полупериода входного переменного тока ток проходит через резистор R1 и, в конечном итоге, заряжает конденсатор C1 и возвращается обратно в мостовой выпрямительный диод через вторую цепочку светодиодов, заряжая конденсатор C2 и через резистор R2.Во время отрицательного пика конденсатор C4 разряжает C1 и C2 соответственно и проталкивает ток во вторую цепочку. Таким образом, в каждом цикле ток, необходимый для зажигания светодиодных цепочек, не проходит полностью через резисторы. Почти 40-50% общего тока проходит через резисторы, которые увеличивают КПД до 90% за счет уменьшения тепловыделения.

Форма входного сигнала светодиодов и входного напряжения переменного тока показаны на рисунке ниже.

На приведенном выше графике показаны три графика: входное напряжение, ток в строке левого светодиода и ток в строке правого светодиода с течением времени. При сетевом напряжении 230 В светодиодные цепочки горят попеременно. Это очень быстрый переход в миллисекундном диапазоне.

Преимущества технологии светодиодного освещения без водителя

1. Эти светодиодные фонари без водителя проще в производстве. Стоимость снижена и требует очень низкого обслуживания.

2. Благодаря улучшенному индексу мерцания его можно использовать в прожекторах. Кроме того, в офисах, комнатах и ​​образовательных учреждениях используются светодиодные лампы переменного тока без водителя.

3. Когда драйвер светодиода удален, он включает функцию изменения формы. Светодиодные изделия могут быть разных форм и размеров.

4. Простая и быстрая установка - еще одна замечательная особенность светодиодных фонарей переменного тока без водителя.

Производитель светодиодных фонарей без водителя

Светодиодный светильник переменного тока без водителя сегодня продается как горячий пирог. Разные производители производят разные типы светодиодов переменного тока без драйверов. Китай является одним из ведущих поставщиков светодиодных светильников переменного тока без водителя. Однако светодиоды с очень высоким прямым напряжением и большим световым потоком также производятся несколькими компаниями. Светодиоды с высоким прямым напряжением обеспечивают низкое количество компонентов в светодиодной системе переменного тока без драйвера. Популярные производители светодиодов переменного тока без драйверов в этом сегменте: Cree, LUMILEDS, SAMSUNG, NMB Technologies, Opulent и т. Д.

Нужен ли мне светодиодный драйвер? - 1000 лампочек.com Blog

В связи с ужесточением правил в области энергетики большинство людей уже знакомы с длительным сроком службы и экономией энергии, связанными с светодиодами или светоизлучающими диодами. Однако многие не знают, что в этих инновационных источниках света для работы используются специальные устройства, называемые драйверами светодиодов. Драйверы светодиодов (также известные как источники питания для светодиодов) похожи на балласты для люминесцентных ламп или трансформаторы для низковольтных ламп: они обеспечивают светодиоды правильным источником питания для работы и максимальной производительности.Ниже мы обсудим, когда вам нужен светодиодный драйвер, зачем вам нужен светодиодный драйвер и какой тип драйвера может вам понадобиться.

Когда мне нужен светодиодный драйвер?

Для каждого светодиодного источника света требуется драйвер. Вопрос должен заключаться в том, нужно ли вам покупать его отдельно. Некоторые светодиоды уже имеют встроенный драйвер внутри лампы. Светодиоды, предназначенные для домашнего использования (лампы с цоколем E26 / E27 или GU24 / GU10 и работающие от 120 В), как правило, уже включают драйвер. Однако низковольтные светодиодные источники света, такие как некоторые MR-лампы (MR GU5.3s, MR8s и MR11s) и ленточный светильник, а также некоторые приспособления, панели или светильники для наружного освещения обычно требуют отдельного драйвера. Когда светодиод, для которого требуется отдельный драйвер, перестает работать до истечения его номинального срока службы, его обычно можно сохранить, если заменить драйвер.

Зачем мне нужен светодиодный драйвер?

  • Светодиоды предназначены для работы от низкого напряжения (12-24В) постоянного тока. Однако в большинстве мест есть более высокое напряжение (120-277 В), электричество переменного тока.Основное назначение драйвера светодиода - выпрямлять высокое напряжение переменного тока в низкое напряжение постоянного тока.

  • Драйверы светодиодов также защищают светодиоды от колебаний напряжения или тока. Изменение напряжения может вызвать изменение тока, подаваемого на светодиоды. Световой поток светодиода пропорционален его току, и светодиоды рассчитаны на работу в определенном диапазоне тока (измеряется в амперах). Поэтому слишком большой или слишком низкий ток может привести к изменению или более быстрому ухудшению светоотдачи из-за более высоких температур внутри светодиода.

В общем, драйверы светодиодов служат двум целям: преобразовывать более высокое напряжение переменного тока в низкое напряжение постоянного тока и поддерживать напряжение или ток, протекающие по цепи, на номинальном уровне.

Какой тип светодиодного драйвера мне нужен?

Существует два основных типа внешних драйверов светодиодов, постоянного тока и постоянного напряжения, а также третий тип драйверов, называемый драйвером светодиодов переменного тока, который также будет обсуждаться. Каждый тип драйвера предназначен для работы со светодиодами с различным набором электрических требований.При замене драйвера требования старого драйвера к вводу / выводу должны быть максимально согласованы. Ключевые отличия подробно описаны ниже.

Постоянный ток

Почему светодиодным лентам всегда нужен светодиодный драйвер

Вы только что вернулись из строительного магазина с большими мечтами и охапкой светодиодных лент. Вы открываете все пакеты и - какого черта? Как все это работает? Как их включить?

Добро пожаловать в мир светодиодных драйверов

Для светодиодных фонарей

требуется специальное устройство, называемое драйвером светодиодов, для включения и работы.Драйверы светодиодов выполняют те же функции, что и пускорегулирующие устройства для люминесцентных ламп. Драйвер преобразует линейное напряжение в мощность, подходящую для работы светодиода. Кроме того, поскольку электрические свойства светодиода меняются при колебаниях температуры, драйвер регулирует и поддерживает постоянную величину тока.

Для чего нужны светодиодные драйверы?

Драйверы светодиодов служат трем основным целям:
  1. Большинство домашних хозяйств используют электричество переменного тока 120–277 В, но светодиоды работают от электричества постоянного тока низкого напряжения.Таким образом, драйвер изменяет переменный ток с более высоким напряжением на постоянный ток с более низким напряжением, чтобы соответствовать тому, что необходимо для работы светодиодных ламп.
  2. Входное напряжение драйвера должно быть таким же, как напряжение, требуемое драйвером. В противном случае изменение напряжения может вызвать мерцание или мигание.
  3. Распространенным подходом к управлению светоотдачей светодиодов является широтно-импульсная модуляция. Когда светодиодные лампы приглушены, особенно при низком уровне светоотдачи, может возникнуть мерцание.

Нужен ли драйвер для светодиодов?

Для большинства светодиодов требуется драйвер, некоторые предназначены для работы от переменного тока. Хотя светодиодные лампы, которые вы ввинчиваете в приспособление, могут не выглядеть так, как будто у них он есть, на самом деле у них есть внутренний драйвер, точно так же, как у ввинчиваемых CFL есть встроенный балласт. Большинство бытовых светодиодов, которые являются прямой заменой ламп накаливания, галогенных ламп и CFL с цоколем E26 / E27 или GU10 / GU24, имеют внутренний драйвер.

Это световые полосы, по которым люди спотыкаются. Для светодиодных лент также требуется драйвер, но вы можете купить светодиодные ленты отдельно от драйвера, и один драйвер может подавать электричество на несколько светодиодных лент!

Светодиод неисправен или это драйвер?

Вот еще один совет: если ваши светодиодные индикаторы тускнеют, проблема может быть в драйвере, а не в светодиоде! Драйверы работают при высокой внутренней температуре, поэтому срок службы светодиода может быть сокращен, если лампа находится в закрытом светильнике или используется, например, в горячем гараже. Драйвер может выйти из строя до того, как выйдет из строя твердотельный переход светодиодного чипа.По этой же причине светодиоды намного лучше работают при низких температурах, чем КЛЛ. Они загораются мгновенно (технически быстрее, чем лампы накаливания), в то время как сопоставимым лампам CFL может потребоваться тусклый свет, период прогрева перед достижением полной светоотдачи.

Завершение тех полосовых огней

Итак, теперь, с вашей коллекцией светодиодных лент и без драйвера, что вы делаете? Единственное решение - подобрать драйвер для своих фонарей.

Драйверы светодиодов

: какие они и какие мне нужны?

Переход на светодиодное освещение имеет огромное значение в коммерческой отрасли.Из-за их длительного срока службы и энергоэффективности многие подрядчики начинают понимать преимущества этого светодиода. Узнайте больше о светодиодах с помощью The Only LED Guide, который вам когда-либо понадобится

… Итак, как запитать светодиоды?

Поскольку светодиоды работают с низким напряжением, для их питания требуется специальное оборудование. Для светодиодных светильников требуется специальное устройство, называемое светодиодным драйвером. Эти драйверы обеспечивают правильное функционирование светодиодных лампочек. аналогично тому, как балласт питает люминесцентную лампу или трансформатор питает низковольтную лампу накаливания.

Как работают светодиодные драйверы? Драйверы светодиодов

в основном поддерживают электрический ток, протекающий через цепь светодиодов, на номинальном уровне мощности. Светодиоды рассчитаны на низкое напряжение (12-24 вольт), но в большинстве коммерческих помещений подача питания намного выше (120-277 вольт).

Драйверы светодиодов

используются для направления нужного количества электричества на лампочку. В случае изменения напряжения (мощности) драйвер светодиода защитит светодиодную лампу от любых колебаний электрического тока.Эти колебания могут привести к изменению светоотдачи (яркости) лампочки или вызвать перегрев светодиодной лампы. Светодиодный драйвер жизненно важен для безопасности лампы.

Внутренние и внешние драйверы

Для питания каждого светодиодного светильника требуется драйвер. Есть два разных типа устройств: внутренние драйверы и внешние драйверы.

Внутренние драйверы

Внутренние драйверы обычно используются в бытовых лампочках.Это стандартные сменные лампы накаливания и КЛЛ с возможностью ввинчивания или вставки.

Внешние драйверы

Внешние драйверы обычно используются для коммерческого освещения. Это везде, от освещения площадей до освещения складских помещений и уличного освещения. В большинстве случаев заменить внешний драйвер намного дешевле, чем полностью заменить светодиодный светильник. Для установки освещения ознакомьтесь с нашим Руководством по модернизации

.

Когда мне следует заменить внешний драйвер?

Неудивительно, что внешние драйверы выйдут из строя, но перед заменой всего светодиодного светильника вам следует подумать о преимуществах простой замены внешнего драйвера.Часто водители терпят неудачу из-за воздействия высоких температур.

Эти высокие внутренние температуры могут сократить срок службы драйвера и привести к прекращению работы светодиодной лампы. Просто заменив старый драйвер на новый, вы сэкономите время и деньги!

Как возникают такие высокие температуры?

Температура в драйвере светодиода напрямую коррелирует с внешней температурой драйвера. Высокие температуры возникают, когда электролитические конденсаторы, обнаруженные внутри драйвера, начинают перегреваться.

Внутри этих конденсаторов находится гель, который со временем постепенно испаряется. При воздействии более высоких температур гель испаряется быстрее, из-за чего водитель неожиданно прекращает работу. Драйвер светодиода укажет на этикетке свою самую горячую точку, известную как точка TC.

Эта точка используется для обозначения максимальной рабочей температуры водителя. Вот почему драйверы светодиодов с высокими значениями термостойкости могут выдерживать более высокие температуры и, следовательно, имеют более длительный срок службы. Если ваша светодиодная лампа неожиданно перестала работать, это, вероятно, означает, что пришло время заменить внешний драйвер.

Какой внешний светодиодный драйвер мне нужен?

Существует три типа внешних драйверов: драйверы постоянного тока, постоянного напряжения и переменного тока. При замене старого драйвера вы должны убедиться, что требования к входу / выходу идеально соответствуют вашей светодиодной лампе. Светодиоды не могут работать с обычными трансформаторами, такими как низковольтные галогенные лампы или лампы накаливания. Поскольку они работают с низким напряжением, им требуется специальное устройство, которое может обнаруживать низкие напряжения.

Драйверы постоянного тока

Внешние драйверы постоянного тока обеспечивают питание светодиодов фиксированным выходным током и набором переменных выходных напряжений. Определенная светодиодная лампа будет показывать один определенный ток, обозначенный в амперах, и будет иметь различные напряжения, которые будут варьироваться в зависимости от мощности лампы. Эти характеристики можно найти в техническом описании внешнего драйвера.

Драйверы постоянного напряжения

Внешние драйверы постоянного напряжения обеспечивают питание светодиодов с фиксированным выходным напряжением и максимальным выходным током.В этой конкретной светодиодной лампе максимальный ток уже регулируется внутри лампы, а напряжение будет фиксированным на 12 В постоянного тока или 240 В постоянного тока. Эти характеристики можно найти в техническом описании внешнего драйвера.

Драйверы светодиодов для кондиционеров

Драйверы светодиодов

A / C используются с лампами, которые уже содержат внутренний драйвер. Внутренний драйвер преобразует электрический ток из переменного в постоянный.

Драйвер светодиодов кондиционера просто определяет напряжение светодиодной лампы и преобразует электрический ток в соответствии с требованиями к мощности для этого конкретного осветительного устройства.Эти светодиодные драйверы обычно используются в светодиодных лампах MR16, но их можно использовать с любой светодиодной лампой переменного тока 12-24 В.

Другие моменты, которые следует учитывать при покупке внешнего драйвера светодиода

Максимальная мощность

Драйверы светодиодов

всегда должны использоваться в паре со светодиодными лампами, которые используют 80% своей максимальной номинальной мощности. Например, если ваш внешний драйвер может работать с максимальной мощностью 120 Вт, он должен работать только с светодиодными лампами мощностью 96 Вт.

120 Вт x 0.80 = 96 Вт

* Примечание * НИКОГДА НЕ ПЕРЕГРУЖАЙТЕ ВАШ CIRUCIT

Регулировка яркости

Все три типа внешних драйверов обеспечивают возможность регулирования яркости. Убедитесь, что и светодиодная лампочка, и драйвер указывают в паспорте продукта, что у них есть функции регулировки яркости. Для большинства внешних драйверов с регулируемой яркостью потребуется внешняя система управления освещением. Эти устройства укажут, какой внешний диммер необходим для управления определенными светодиодными лампами. Узнайте, как установить диммеры и датчики, из нашего Руководства по управлению освещением .

Класс I по сравнению с классом II

Драйверы UL класса II соответствуют стандарту UL1310. Это означает, что выходная мощность безопасна для контакта, и при обращении не требуется никаких серьезных защитных мер. (Существует NO риска возгорания или поражения электрическим током)

Эти драйверы могут работать с:

  • Менее 60 В в сухой среде
  • 30 В во влажных средах
  • Менее 5 ампер
  • Менее 100 Вт

Обратите внимание * Существует ограничение на количество лампочек, которое может работать с одним драйвером класса II *

Драйверы UL класса I имеют выходную мощность, выходящую за рамки драйверов класса I.Из-за высокого выходного напряжения драйверы класса I требуют защиты при обращении с ними. В отличие от своих аналогов драйверы класса I намного более эффективны, поскольку в них можно установить больше светодиодных лампочек.

Мы стремимся предоставлять качественную продукцию по конкурентоспособным ценам. Если вы хотите заменить или модернизировать систему освещения, мы можем помочь вам в этом. HomElectrical предлагает широкий выбор светодиодных драйверов и светодиодного освещения для вашего удобства.

Магазин светодиодного освещения

Оставайтесь на связи

Нравится этот блог? Мы хотим знать, о каких блогах вы хотите читать.

Поделитесь некоторыми темами блога, которые вас интересуют, в разделе комментариев ниже или отправьте нам сообщение на Facebook!

Не забудьте поделиться с друзьями на Facebook и подписаться на нас в Twitter!

Нужен ли трансформатор для светодиодных ламп? - LED Hut

Для всех светодиодных ламп с питанием от сети требуется трансформатор. В зависимости от типа лампы трансформатор / драйвер может быть встроен в корпус лампы или может быть расположен снаружи. Трансформатор предназначен для снижения сетевого напряжения (240 В) до желаемого уровня относительно лампы, на которую подается питание (например,г. 12 В или 24 В).

Переход на светодиоды - для каких ламп нужен трансформатор?

Большинство людей, которые решат переключиться на светодиоды, сделают это для домашнего использования. В большинстве случаев в корпусе отдельной светодиодной лампы находится соответствующий драйвер, подходящий для питания этой лампы. Это означает, что лампа готова к использованию и не требует дополнительных затрат на драйверы / трансформаторы. Лампы, которые содержат драйвер светодиода и поэтому могут использоваться без добавления внешнего трансформатора, включают:
  • Колпачки для байонетных ламп (например,г. B22)
  • Винтовые колпачки для ламп (например, E26, E27)
  • Крышки типа Twist and Lock (например, GU10, GU24)

Причина описания трансформатора как «драйвера» по отношению к домашним светодиодным лампам заключается в том, что, хотя термин «светодиодный трансформатор» стал популярным обобщающим термином для всех драйверов и трансформаторов, термин «трансформатор» следует использовать для более крупных Проекты светодиодного освещения, требующие более мощного внешнего источника питания (подробнее см. Ниже).

В чем разница между светодиодным «драйвером» и светодиодным «трансформатором»?

При установке между сетью питания и светодиодной лампой в электрической цепи драйверы светодиодов и трансформаторы светодиодов выполняют ту же функцию (т.е. каждая служит для уменьшения подачи питания на лампочку). Однако между двумя электрическими компонентами есть четкое различие. Напряжение электросети в британских домах составляет около 240 В. Учитывая, что светодиодные лампы, предназначенные для домашнего использования, требуют значительно меньшего источника питания для правильной работы в течение ожидаемого срока службы, в цепь необходимо установить драйвер / трансформатор для защиты лампы. Основное отличие светодиодных драйверов от светодиодных трансформаторов - выходная мощность:

Светодиодные драйверы

Обычно драйверы светодиодов ограничены максимальной выходной мощностью 100–200 Вт.Это означает, что драйверы светодиодов являются предпочтительным источником питания для небольших светодиодных осветительных установок в доме, поскольку для отдельных светодиодов может потребоваться только 2–4 В постоянного тока. Когда светодиоды соединены последовательно - или "массив" - требуется гораздо более высокое напряжение. В этом случае может быть установлен светодиодный трансформатор (например, для питания световой ленты).

Светодиодные трансформаторы

Светодиодные трансформаторы

способны управлять большим потоком электроэнергии. Таким образом, трансформаторы представляют собой «тяжелое» решение по источникам питания для крупномасштабных проектов светодиодного освещения, таких как ленточное освещение (также известное как «светодиодная лента»).См. Ниже дальнейшие соображения по использованию светодиодного трансформатора со светодиодной лентой.

Как далеко я должен разместить светодиодный трансформатор?

В рамках рассмотрения вопроса о покупке осветительной ленты или светодиодной ленты необходимо решить вопрос о максимальном расстоянии, на котором источник питания должен быть размещен от световой ленты. Это связано с тем, что светодиодный трансформатор, который подключен к цепи на слишком большом расстоянии от светодиодной ленты, может привести к провалу источника питания, достигающего полосы. В зависимости от свойств электрических кабелей, подключенных к осветительной полосе (и, следовательно, в зависимости от электрической нагрузки, которую кабель может выдерживать), ответы будут следующими:
Электропроводка Максимальное рекомендуемое расстояние светодиодного трансформатора от осветительной ленты
0,75 мм 5 мес.
1 мм 10 мес.
1,5 мм 15 мм
2.5 мм 20 м

Могут ли несколько светодиодных лент питаться от одного трансформатора?

Да. Питание нескольких светодиодных лент может осуществляться через один светодиодный трансформатор при условии, что общая мощность, требуемая для лент, не превышает пределов электрической нагрузки трансформатора. Если нагрузка превышает возможности трансформатора, это повлияет на мощность (что может привести к затемнению или мерцанию света).

Нужен ли для всех светодиодных даунлайтов отдельный драйвер?

Лампы, предназначенные для использования во влажных зонах (например, светильники в ванной комнате), должны иметь степень защиты IP для такого использования.Это означает, что каждая герметичная лампа будет содержать драйвер, и внешний трансформатор не потребуется. При установке светодиодных точечных светильников в других частях дома, например на кухонных потолках, необходимо учитывать электрическую арматуру - например, если светильник предназначен для размещения лампы MR16 (двухштыревой лампы), необходимо установить отдельный драйвер с лампой. . Консультации относительно драйверов для ламп MR16 можно получить в информации о продукте производителя и у качественных поставщиков продукта в момент покупки.

Могу ли я установить светодиодный трансформатор?

Всегда обращайтесь за советом к квалифицированному электрику, прежде чем приступать к крупномасштабным проектам освещения, требующим планирования и безопасного выполнения внешнего источника питания, питаемого через светодиодный трансформатор.

Светодиодные двигатели без водителя с КПД до 93% и без заметного мерцания (ЖУРНАЛ)

Светодиодные двигатели без водителя обеспечивают КПД до 93% и не имеют заметного мерцания (ЖУРНАЛ)

PETER SHACKLE описывает светодиодный светильник переменного тока двигатель, который подключается непосредственно к сети переменного тока, обеспечивая при этом фотометрические и электрические характеристики, аналогичные тем, которые достигаются конструкциями с приводом от постоянного тока.

В последние несколько лет светодиодные двигатели без водителя (также известные как светодиодные двигатели переменного тока) становятся все более важными для сектора твердотельного освещения (SSL) и для осветительной отрасли в целом. Действительно, некоторые ведущие производители светильников полагаются на продукцию на основе светодиодов переменного тока для половины своих продаж. Привлекательность с точки зрения стоимости и сложности очевидна в том, что минимальная схема драйвера может быть размещена на печатной плате, на которой размещены светодиоды, и отдельный модуль драйвера не требуется. А последние реализации сочетают в себе электрический КПД до 93% с низкой стоимостью и отсутствием заметного мерцания.

Светодиодные двигатели переменного тока имеют множество преимуществ - начиная с плоского и компактного форм-фактора, обеспечиваемого отсутствием драйвера светодиода, что упрощает конструкцию светильника. Но многие продукты, представленные сегодня на рынке, страдают от мерцания на частоте 120 Гц (близкой к 100%), а эффективность обычно составляет всего около 83%. Сильное мерцание делает их неприемлемыми для многих дизайнеров / проектировщиков освещения для таких приложений освещения, как офисы и мастерские.

Здесь мы опишем новый двигатель светодиодного освещения без водителя, который производит меньше мерцания и предлагает более высокую эффективность, чем многие существующие продукты. Новая технология приводит к созданию прототипов легких двигателей практически без заметного мерцания на частоте 120 Гц и демонстрирует электрический КПД 93%. Описанная конструкция используется в световом двигателе, производимом ERG Lighting. Эта новая ветвь в дереве технологий освещения может изменить будущее развитие индустрии SSL.

Как это работает

Чтобы понять драматический характер этой инновации, мы начнем с обзора обычных технологий. В самом раннем поколении светодиодных двигателей без водителя использовались схемы, подобные показанной на рис. 1.

Светодиодные двигатели без водителя обеспечивают КПД до 93% и отсутствие заметного мерцания (ЖУРНАЛ)
РИС. 1. Ранние двигатели без водителя просто выпрямляли главную цепь и использовали резистор для ограничения тока.

В этой компоновке линия питания переменного тока выпрямляется и подается на цепочку светодиодов с общим требованием прямого напряжения чуть меньше пика напряжения линии питания переменного тока. Резистор, включенный последовательно со светодиодами, ограничивает ток в пределах номинала светодиодов. Эта схема производит интенсивную вспышку света 120 раз в секунду, в результате чего качество света аналогично свету люминесцентной лампы с магнитным балластом.

Технологи улучшили эту схему, отрегулировав количество светодиодов, последовательно соединенных с линией питания, с помощью переключателей на протяжении всего цикла линии, как показано на рис. 2.Было разработано много различных устройств для управления переключателями. Иногда вместо простого резистора можно использовать резистор с регулируемым током или схему ограничителя тока. В этих схемах используются относительно дорогие контроллеры IC и множество дорогостоящих высоковольтных переключателей.

РИС. 2. Конструкции, которые сегментируют светодиоды с помощью переключателей, управляющих каждым сегментом, улучшают характеристики светодиодов переменного тока.

Схема с сегментированной коммутацией производит полный ток светодиода, который напоминает серию полусинусоидальных волн, а входной ток очень похож на синусоидальную волну.В результате эти продукты имеют хороший коэффициент мощности и полный коэффициент гармонических искажений (THD). Но полусинусоидальный выходной ток означает, что мерцание на частоте 120 Гц близко к 100%. Поскольку некоторый уровень тока светодиода всегда течет (а некоторые светодиоды всегда включены), мерцание менее заметно на схеме на рис. 2, чем на схеме на рис. Однако некоторые люди все еще могут воспринимать мерцание, особенно периферическим зрением, и по этой причине многие специалисты по спецификации все еще возражают против качества света.

Устранение мерцания

В нашей новой архитектуре (рис. 3) ток светодиода поддерживается почти постоянным, с очень коротким промежутком 1,5 мс в выходном токе, в течение которого конденсаторы заряжаются дважды за цикл линии питания. Эта работа схемы соответствует частоте выше 600 Гц, что намного превышает то, что может обнаружить человеческий глаз, и поэтому воспринимается как отсутствие мерцания. В нем не используются дорогие микросхемы драйверов IC или дорогостоящие микросхемы переключателя питания, которые являются обычным явлением в традиционной технологии.

РИС. 3. Новая схема AC-LED сочетает в себе смещение и гальванический привод.

Простым способом объяснить, как работает эта схема, является отслеживание токов, генерируемых линией питания переменного тока или источником напряжения (S1). Когда напряжение на левой стороне источника растет положительно, через конденсаторы C4 и C9 протекает ток смещения, который посылает ток через матрицу 10 светодиодов и обратно в линию питания.Когда входное напряжение становится достаточно высоким, дополнительный ток течет через матрицу 7 светодиодов, через диод D2 и затем через резистор R6. Таким образом, работа характеризуется сначала током смещения, протекающим через массивы светодиодов, а затем гальваническим током.

Пока входное напряжение растет положительно, конденсатор C8 заряжается до пика линии через диод D14. Таким образом конденсаторы C8 и C9 работают попеременно; пока один разряжается, другой заряжается. Следовательно, как только входное напряжение линии питания становится немного выше (или ниже) нуля, полный выходной ток может немедленно начаться с предварительно заряженного конденсатора. Когда ток смещения начинает уменьшаться в середине полупериода, гальванический ток начинает расти и поддерживает ток светодиода дольше. Конечный результат - относительно длительный период выходного тока на относительно однородном уровне.

Экспериментальный проект архитектуры AC-LED показал полный ток светодиода, проходящий через все четыре цепочки прототипа светового двигателя мощностью 19 Вт (не показан).Этот прототип работал с электрическим КПД 93%. Входной ток был относительно синусоидальным, что привело к коэффициенту мощности 0,53 и THD 24%.

Практические подробности

Теперь рассмотрим работу схемы на уровне системы SSL. Световой поток исходит от четырех цепочек светодиодов, которые работают последовательно. На рис. 4 показаны токи четырех светодиодных цепочек и суммарный ток в зависимости от времени, вычисленные в моделировании SPICE.

РИС.4. Изобразив ток через каждую из светодиодных матриц, мы видим относительно постоянный суммарный ток.

Видно, что каждая струна возбуждается только один раз каждые 16 мсек. Для получения желаемого равномерного светового потока один светодиод из каждой цепочки должен быть установлен близко друг к другу в массиве из четырех, а затем эти массивы необходимо упаковать вместе до тех пор, пока их суммарное прямое напряжение светодиодов не станет сравнимым с напряжением линии питания. Конденсаторы предпочтительно представляют собой керамические конденсаторы, поскольку электролитические конденсаторы не могут выдерживать большие пульсации тока.

Предложенная архитектура может быть применена в широком спектре продуктов, если форм-фактор позволяет правильно разместить светодиоды, как обсуждалось ранее. Такой световой двигатель идеально подходит для освещения рабочего места, освещения бухты и освещения под шкафом в потребительской среде.

Без физических ограничений драйвера светодиода конструкторам светильников теперь предоставляется совершенно новая платформа для творчества. Возможны квадратные, прямоугольные, круглые и другие формы.Легкие двигатели могут изготавливаться разных размеров и форм без ущерба для производительности. В настоящее время разрабатываются более совершенные продукты с улучшенным коэффициентом мощности и непрерывным световым потоком, и светотехническая промышленность может рассчитывать на новую эволюцию продуктов в результате внедрения технологии без драйверов.

ПИТЕР У. ШЕКЛ ([email protected]) - отраслевой консультант Photalume.com, которому принадлежит патентная заявка на технологию легкого двигателя, описанную в этой статье.

Plug-and-play по сравнению с байпасом балласта и другими линейными светодиодными решениями

Если вы хотите преобразовать линейные люминесцентные лампы в линейные светодиодные, теперь есть больше возможностей и дополнительные риски, которые следует учитывать.

Благодаря новым технологиям и более низким ценам стало проще и доступнее перейти на энергоэффективные линейные светодиоды.

Проверенные, хорошо известные традиционные производители ламп снизили цены на линейные светодиодные лампы (например, T8s).Больше нет смысла выбирать продукцию более рискованных, менее известных производителей ламп, которые используют более низкие цены для привлечения клиентов. Кроме того, важны гарантии. Вы хотите выбрать производителя, который будет поддерживать его продукт.

Рентабельность инвестиций (ROI) менее чем за год сегодня становится все более обычным явлением, в зависимости от годовой продолжительности работы, тарифов за кВт / ч, наличия скидок коммунальных предприятий для продуктов, сертифицированных DLC, и т.

В отличие от ожидания следующего крутого технологического гаджета или падения цен, теперь есть затраты, связанные с ожиданием перехода на более энергоэффективное освещение - экономия энергии и труда, которой вы могли бы наслаждаться каждый день.

Готовы купить линейные светодиодные лампы?

Современные линейные светодиодные решения T8

Во-первых, мы разберем четыре варианта, если вы хотите перейти с линейных люминесцентных ламп на линейные светодиоды.

1. Линейный светодиод с функцией Plug-and-Play или прямой установки (UL тип A)

Линейный светодиод с функцией Plug-and-Play или прямой установкой - это, вероятно, то, что вы себе представляете - простая замена оригинальной линейной люминесцентной лампы один на один.Эта лампа работает напрямую с имеющимся балластом люминесцентных ламп, поэтому не требуется переналадка или замена балласта. Но вы действительно хотите убедиться, что ваш балласт совместим.

Забегая вперед, расскажем о плюсах и минусах.

2. Балласт-байпас, линейное напряжение или линейный светодиод с прямым проводом (UL тип B)

Линейные светодиоды с обходом балласта - также известные как линейные светодиоды с линейным напряжением или линейные светодиоды с прямым подключением - работают напрямую от сетевого напряжения, поступающего непосредственно на розетки, что требует удаления оригинального люминесцентного балласта.

Забегая вперед, расскажем о плюсах и минусах.

3. Светодиодная лампа и драйвер (UL тип C)

Это линейное светодиодное решение требует замены балласта, за исключением того, что вместо замены балласта другим балластом вы замените его светодиодным драйвером, а ваши люминесцентные лампы будут заменены линейными светодиодными лампами.

Забегая вперед, расскажем о плюсах и минусах.

4. Гибридный или двухтехнологический линейный светодиод (UL тип A и B)

Гибридные линейные светодиодные лампы

могут работать по принципу «plug and play» - с существующим балластом - и, как только балласт разрядится, вы можете снять его, и лампа будет отключена от сетевого напряжения.

Забегая вперед, расскажем о плюсах и минусах.

Plug-and-play T8 LED за и против (UL тип A)

Plug-and-play светодиодные лампы (тип A) плюсы:

  • Простота для установщика

    Лампа вставляется в существующий светильник без каких-либо модификаций проводки, что означает, что установка может быть выполнена практически кем угодно, если ваш существующий балласт совместим.

  • Безопасность

    Когда мы можем сократить время, которое кто-то должен проводить, свешиваясь с лестницы, все автоматически становится безопаснее.

  • Самое дешевое линейное светодиодное решение В качестве простой замены лампы один к одному, стоимость ламп в сочетании с минимальными трудозатратами на их установку делает их менее дорогим вариантом.
  • Балластная защита Люминесцентные балласты предназначены для управления током или напряжением в розетках, регулируя всплески тока, которые обычно возникают в течение дня.

Plug-and-play светодиодные лампы (тип A) минусы:

  • Первоначальная стоимость

    Даже с учетом недавнего снижения цен на линейные светодиоды, они, как правило, в 3-5 раз превышают цену существующих люминесцентных ламп.Однако позитивная новость заключается в том, что нередко удается достичь окупаемости инвестиций менее чем за год за счет экономии энергии и рабочей силы.

  • Совместимость с балластом

    Несмотря на то, что линейные светодиоды plug-and-play становятся все лучше благодаря совместимости с балластом, вам все же следует это проверить. Лучший способ сделать это - взять образец ваших обычных балластов и убедиться, что они указаны в утвержденном производителем списке совместимости. Наша цель - упростить освещение, поэтому мы составили список ресурсов, где вы можете проверить совместимость балласта.

  • Постоянное обслуживание балласта Хотя светодиодные лампы не оказывают на балласт такую ​​же нагрузку, как линейные люминесцентные лампы, постоянное техническое обслуживание балласта все же требуется.

Плюсы и минусы светодиодной лампы T8 балластно-байпасного типа (UL тип B)

Светодиодная трубка с байпасом балласта (тип B) плюсы:

  • Меньше потребляемой энергии за счет исключения потребления балласта

    Дополнительная пара ватт потребляется при соединении светодиодной лампы с балластом. Поскольку вы используете обход балласта, мощность лампы равна потребляемой мощности. Это называется балластным фактором.

Балласт-байпасная светодиодная трубка (тип B) минусы:

  • Риск безопасности

    Самым существенным недостатком линейного светодиода с байпасом балласта является риск поражения электрическим током, поскольку на розетки подается напряжение сети. При установке лампы обычно прикладывают палец к контактам лампы, а при использовании однотактных балластно-байпасных ламп это становится рискованным занятием.Некоторые производители светодиодов включают конструкции безопасности, чтобы решить эту проблему, но мы всегда рекомендуем двусторонние светодиодные трубки вместо односторонних для систем типа B.

  • Крепежи необходимо перемонтировать

    Можно утверждать, что это простой процесс. Отключите балласт от цепи и подключите розетки к сети. Для демонстрации этой задачи доступно несколько видеоуроков. Интересно, что большинство этих демонстраций выполняется с перемонтированным приспособлением, лежащим на столе.Если вы делали это раньше, вы понимаете, что выполнение этого над головой, балансируя на лестнице (и, возможно, перед утренним кофе), может усложнить задачу.

  • Точная погрешность подключения

    К сожалению, не существует стандартной схемы подключения линейных светодиодов с байпасом балласта. У разных производителей есть разные подходы, которые должен учитывать установщик. Среди 31 линейной лампы, испытанной в отчете DOE Caliper, использовались семь различных конфигураций проводки.Что еще больше усложняет ситуацию, есть два распространенных типа ламп - двухцокольные и одноцокольные. Тип лампы и тип цоколя (шунтируемый или не шунтируемый) влияют на проводку. Такой тип изменений среди коммерческих продуктов создает новый уровень сложности, и по соображениям безопасности мы рекомендуем использовать квалифицированного электрика.

  • Совместимость с люминесцентными лампами или защелкивание

    Мы надеемся, что после модернизации светодиодной лампы вы не решите вернуться к люминесцентной лампе, но возможно, что кто-то случайно установит линейную люминесцентную лампу в балластном перепускном приспособлении. Когда светодиодная лампа все же требует замены, если вы по ошибке попытаетесь заменить ее люминесцентной, лампа может не работать или представлять опасность.

  • Требования Раздела 24

В Калифорнии существуют требования Раздела 24, которые необходимо выполнить при модернизации существующих приспособлений путем замены балласта. Пожалуйста, обратитесь к текущим требованиям Раздела 24 для получения более подробной информации.
  • Более высокие начальные затраты на рабочую силу

    Необходимость удаления оригинального люминесцентного балласта и повторного подключения сетевого напряжения к розеткам требует больше труда, чем решения plug-and-play, которые работают с существующим люминесцентным балластом.

  • Совместимость розеток

    При обходе балласта вам может потребоваться заменить розетки с наиболее распространенных шунтируемых розеток на нешунтированные. Если вы используете однотактные лампы, требуются нешунтированные розетки. Для их замены потребуются небольшие дополнительные материальные затраты и больше труда. Кроме того, некоторые производители могут больше не соблюдать гарантию на розетки, если линейное напряжение напрямую подключено к их розеткам. Если вы используете двухсторонние светодиодные лампы, вам обычно не нужно менять розетки.

    Один из наших ключевых партнеров недавно выпустил продукт, который может решить проблему совместимости сокетов. Двухцокольные светодиодные лампы с байпасом и балластом от Sylvania имеют нейтральную полярность. Это означает, что они работают в шунтированных или не шунтированных розетках.
  • Светодиодная лампа T8 и драйверы за и против (UL Type C)

    Светодиодная лампа и драйвер (Тип C) плюсы:

    • Лучшая экономия энергии Драйверы светодиодов более энергоэффективны, чем современные балласты.Мощность светодиодной лампы - это все, что потребляется, тогда как при использовании с люминесцентным балластом потребляемая энергия увеличивается в среднем примерно на два ватта на лампу.
    • Снижение затрат на обслуживание Драйверы светодиодов рассчитаны на более длительный срок службы, чем традиционные люминесцентные балласты, что снижает затраты на техническое обслуживание.
    • Нет проблем с совместимостью балласта Драйверы светодиодов, правильно соединенные с правильными линейными светодиодными лампами, устраняют любые проблемы совместимости балласта, которые часто характерны для светодиодных ламп plug-and-play.
    • Без защелкивания Термин «откат назад» означает замену энергоэффективной лампы на более старые, менее энергоэффективные технологии (в данном случае линейные люминесцентные лампы). Если светодиодную лампу необходимо заменить, если вы попытаетесь заменить ее на люминесцентную, лампа будет несовместима и не будет правильно работать с драйвером светодиода.

    Светодиодная лампа и драйвер (Type C) минусы:

    • Более высокие начальные затраты на материалы

      Замена балласта на светодиодный драйвер и новые светодиодные линейные лампы требует более высоких материальных затрат по сравнению с решениями plug-and-play. Это компенсируется более высокой экономией энергии и сокращением будущих затрат на рабочую силу.

    • Более высокие начальные затраты на рабочую силу Необходимость замены оригинального люминесцентного балласта новым светодиодным драйвером требует больше труда, чем решения plug-and-play, которые работают с существующим люминесцентным балластом.
    • Требования Раздела 24

      В Калифорнии существуют новые требования Раздела 24, которые необходимо выполнить при модернизации существующих приспособлений путем замены балласта.Большинство систем типа C будут соответствовать требованиям раздела 24, но для получения более подробной информации обратитесь к текущим требованиям раздела 24.

    Hybrid T8 LED за и против

    Hybrid linear LED Плюсы:

    • Большая гибкость

      Гибридные лампы были разработаны для работы как с существующим люминесцентным балластом, так и в обход его. Вы можете начать с использования его как лампы plug-and-play, а затем, когда балласт выходит из строя, вы можете подключить его к сетевому напряжению.

    • Первоначальная простота для установщика Лампа вставляется в существующий светильник без каких-либо модификаций проводки, что означает, что установку может выполнить практически любой.

    Гибридный линейный светодиод, минусы:

    • Возможная угроза безопасности Самым существенным недостатком обхода балласта с помощью линейного светодиода - после того, как балласт перегорел, - является риск поражения электрическим током, поскольку розетки находятся под напряжением сети. Большинство гибридов используют светодиодные лампы с одним концом.Обычно при установке лампы прикладывают палец к контактам лампы, и это становится рискованным делом при подключении проводки с байпасом балласта.
    • Приспособления со временем необходимо перемонтировать Можно утверждать, что это простой процесс. Отключите балласт от цепи и подключите розетки к сети. Для демонстрации этой задачи доступно несколько видеоуроков. Интересно, что большинство этих демонстраций выполняется с перемонтированным приспособлением, лежащим на столе.Если вы делали это раньше, вы понимаете, что выполнение этого над головой, балансируя на лестнице (и, возможно, перед утренним кофе), может усложнить задачу.
    • Проблемы со списком DLC Чтобы иметь право на потенциальные скидки от коммунальных предприятий, линейные светодиодные лампы обычно должны быть внесены в список сертифицированных продуктов Консорциума Design Lights Consortium (DLC). Гибридные лампы часто упоминаются как сертифицированные DLC при использовании с люминесцентным балластом, но не имеют сертификата DLC при обходе балласта, поскольку это считается модификацией светильника.Некоторые производители могут иметь DLC для обоих.
    • Возможные дополнительные трудозатраты После того, как оригинальный люминесцентный балласт умирает, необходимость его удаления и повторного подключения сетевого напряжения к розеткам требует дополнительных трудозатрат.
    • Совместимость с люминесцентными лампами или защелкивание Мы надеемся, что после модернизации светодиодной вы не решите вернуться к люминесцентной лампе, но возможно, что кто-то случайно установит линейную люминесцентную лампу в светильник после того, как вы подключите ее напрямую к линейное напряжение.Если светодиодная лампа все же нуждается в замене, если вы по ошибке попытаетесь заменить ее люминесцентной, лампа будет несовместима и не будет работать должным образом.

    Другие важные моменты, которые следует учитывать при сравнении линейных светодиодных решений

    1. Правильная установка гнезда

    Хотя традиционные люминесцентные розетки имеют пластиковый корпус, они имеют металлические контакты с каждой стороны внутри розетки. Чтобы лампа была правильно «установлена» в патроне, она должна надежно защелкнуться, чтобы избежать расшатывания или смещения, и чтобы оба штифта светодиодной лампы соприкасались с металлическими контактами внутри патронов.

    Также необходимо убедиться, что розетки не сломаны и не сломаны. Это может вызвать проблемы с посадкой гнезда. Неправильная установка гнезда - наиболее частая причина опасности возгорания или расплавления труб.

    Если вы хотите убедиться, что у вас есть подходящие гнезда для ваших новых светодиодных трубок, используйте это руководство. Затем вы можете приобрести подходящие розетки (также известные как надгробия) здесь.

    2. Совместимость с аварийным балластом

    Многие традиционные аварийные балласты, используемые с люминесцентными лампами, несовместимы с большинством линейных светодиодных решений, представленных сегодня на рынке.Наиболее распространенные аварийные балласты, совместимые со светодиодами, часто намного дороже люминесцентных версий. Это увеличит материальные затраты и трудозатраты на проект модернизации. Убедитесь, что ваш аварийный балласт указан в списке совместимости производителя.

    3. Ограниченные возможности диммирования

    Хотя в настоящее время доступно несколько хороших линейных светодиодов с регулируемой яркостью, выбор ограничен и часто стоит дороже.

    Выбор правильного линейного светодиода

    Первая часть вашего решения о линейных светодиодах должна включать выбор надежного производителя.Вы хотите работать с кем-то, кто прошел надлежащее тестирование своего продукта и в конечном итоге будет его поддерживать. По нашему опыту, одни из лучших линейных светодиодов на рынке включают продукты Sylvania SubstiTUBE и Philips InstantFit. Также везем товары от MaxLite и TCP.

    Вторая часть вашего решения - какое линейное светодиодное решение лучше всего подходит для вашего приложения. Наиболее распространенное решение - байпас балласта или подключение по принципу «включай и работай». Для одних удобна простота установки на продукты, работающие по принципу «plug-and-play», но для других ценно более простое долгосрочное обслуживание светодиода с прямым подключением.Оба являются жизнеспособными вариантами, которые сэкономят ваше время и деньги, но мы настоятельно рекомендуем либо plug-and-play, либо двусторонний байпас балласта.

    Вот почему:

    Ваша безопасность чрезвычайно важна.

    Если вы выбираете светодиодные лампы с байпасом балласта, ищите лампу с прямым проводом, которая поставляется с действующей наклейкой «модификация», которую можно прикрепить к светильнику и сохранить ее список UL.

    Наконец, вариант светодиодной лампы и драйвера обеспечивает значительную экономию на долгосрочном обслуживании и светоотдачу, но более высокая стоимость продлит вашу окупаемость.

    При рассмотрении переменных, которые используются при принятии решения о модернизации освещения, не забывайте оценивать свои приоритеты для проекта и ставить безопасность превыше всего.

    В эту статью добавлены новые линейные светодиодные решения и текущие рекомендации. Первоначально он был опубликован в сентябре 2015 года.

    .

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *