Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Светодиодные лампы подключение 220 вольт схема: Страница не найдена — Портал электриков ProFazu

Содержание

Простейшие схемы подключения светодиодов в 220 вольт без драйвера (самое простое питание светодиода от сети напряжением 220В)

Потому что нужно грамотно решить сразу две задачи:

  1. Ограничить прямой ток через светодиод, чтобы он не сгорел.
  2. Обеспечить защиту светодиода от пробоя обратным током.

Если проигнорировать любой из этих пунктов, светодиод моментально накроется медным тазом.

В самом простейшем случае ограничить ток через светодиод можно резистором и/или конденсатором. А предотвратить пробой от обратного напряжения можно с помощью обычного диода или еще одного светодиода.

Поэтому самая простая схема подключения светодиода к 220В состоит всего из нескольких элементов:

Защитный диод может быть практически любым, т.к. его обратное напряжение никогда не будет превышать прямого напряжения на светодиоде, а ток ограничен резистором.

Сопротивление и мощность ограничительного (балластного) резистора зависит от рабочего тока светодиода и рассчитывается по закону Ома:

R = (Uвх - ULED) / I

А мощность рассеивания резистора рассчитывается так:

P = (U

вх - ULED)2 / R

где Uвх = 220 В,
ULED - прямое (рабочее) напряжение светодиода. Обычно оно лежит в пределах 1.5-3.5 В. Для одного-двух светодиодов им можно пренебречь и, соответственно, упростить формулу до R=Uвх/I,
I - ток светодиода. Для обычных индикаторных светодиодов ток будет 5-20 мА.

Пример расчета балластного резистора

Допустим, нам нужно получить средний ток через светодиод = 20 мА, следовательно, резистор должен быть:

R = 220В/0.020А = 11000 Ом (берем два резистора: 10 + 1 кОм)

P = (220В)2/11000 = 4.4 Вт (берём с запасом: 5 Вт)

Необходимое сопротивление резистора можно взять из таблицы ниже.

Таблица 1. Зависимость тока светодиода от сопротивления балластного резистора.

Сопротивление резистора, кОм Амплитудное значение тока через светодиод, мА Средний ток светодиода, мА Средний ток резистора, мА Мощность резистора, Вт
43 7.2 2.5 5 1.1
24 13 4.5 9 2
22 14 5 10 2.2
12 26 9 18 4
10 31 11 22 4.8
7.5 41 15 29 6.5
4.3 72 25 51 11.3
2.2 141 50 100 22

Другие варианты подключения

В предыдущих схемах защитный диод был включен встречно-параллельно, однако его можно разместить и так:

Это вторая схема включения светодиодов на 220 вольт без драйвера. В этой схеме ток через резистор будет в 2 раза меньше, чем в первом варианте. А, следовательно, на нем будет выделяться в 4 раза меньше мощности. Это несомненный плюс.

Но есть и минус: к защитному диоду прикладывается полное (амплитудное) напряжение сети, поэтому любой диод здесь не прокатит. Придется подобрать что-нибудь с обратным напряжением 400 В и выше. Но в наши дни это вообще не проблема. Отлично подойдет, например, вездесущий диод на 1000 вольт - 1N4007 (КД258).

Не смотря на распространенное заблуждение, в отрицательные полупериоды сетевого напряжения, светодиод все-таки будет находиться в состоянии электрического пробоя. Но благодаря тому, что сопротивление обратносмещенного p-n-перехода защитного диода очень велико, ток пробоя будет недостаточен для вывода светодиода из строя.

Внимание! Все простейшие схемы подключения светодиодов в 220 вольт имеют непосредственную гальваническую связь с сетью, поэтому прикосновение к ЛЮБОЙ точке схемы - ЧРЕЗВЫЧАЙНО ОПАСНО!

Для уменьшения величины тока прикосновения нужно располовинить резистор на две части, чтобы получилось как показано на картинках:

Благодаря такому решению, даже поменяв местами фазу и ноль, ток через человека на "землю" (при случайном прикосновении) никак не сможет превысить 220/12000=0.018А. А это уже не так опасно.

Как быть с пульсациями?

В обеих схемах светодиод будет светиться только в положительный полупериод сетевого напряжения. То есть он будет мерцать с частой 50 Гц или 50 раз в секунду, причём размах пульсаций будет равен 100% (10 мс горит, 10 мс не горит и так далее). Это будет заметно глазу.

К тому же, при подсветке мерцающими светодиодами каких-либо движущихся объектов, например, лопастей вентилятора, колес велосипеда и т.п., неизбежно будет возникать стробоскопический эффект. В некоторых случаях данный эффект может быть неприемлем или даже опасен. Например, при работе за станком может показаться, что фреза неподвижна, а на самом деле она вращается с бешенной скоростью и только и ждет, чтобы вы сунули туда пальцы.

Чтобы сделать пульсации менее заметными, можно удвоить частоту включения светодиода с помощью двухполупериодного выпрямителя (диодного моста):

Обратите внимание, что по сравнению со схемой #2 при том же самом сопротивлении резисторов, мы получили в два раза больший средний ток. И, соответственно, в четыре раза большую мощность рассеивания резисторов.

К диодному мосту при этом не предъявляется каких-либо особых требований, главное, чтобы диоды, из которых он состоит, выдерживали половину рабочего тока светодиода. Обратное напряжение на каждом из диодов будет совсем ничтожным.

Еще, как вариант, можно организовать встречно-параллельное включение двух светодиодов. Тогда один из них будет гореть во время положительной полуволны, а второй - во время отрицательной.

Фишка в том, что при таком включении максимальное обратное напряжение на каждом из светодиодов будет равно прямому напряжению другого светодиода (несколько вольт максимум), поэтому каждый из светодиодов будет надежно защищен от пробоя.

Светодиоды следует разместить как можно ближе друг к другу. В идеале - попытаться найти сдвоенный светодиод, где оба кристалла размещены в одном корпусе и у каждого свои выводы (хотя я таких ни разу не видел).

Вообще говоря, для светодиодов, выполняющих индикаторную функцию, величина пульсаций не очень-то и важна. Для них самое главное - это максимально заметная разница между включенным и выключенным состоянием (индикация вкл/выкл, воспроизведение/запись, заряд/разряд, норма/авария и т.п.)

А вот при создании светильников, всегда нужно стараться свести пульсации к минимуму. И не столько из-за опасностей стробоскопического эффекта, сколько из-за их вредного влияния на организм.

Какие пульсации считаются допустимыми?

Все зависит от частоты: чем она ниже, тем заметнее пульсации. На частотах выше 300 Гц пульсации становятся совершенно невидимыми и вообще никак не нормируются, то есть даже 100%-ные считаются нормой.

Не смотря на то, что пульсации освещенности на частотах 60-80 Гц и выше визуально не воспринимаются, тем не менее, они способны вызывать повышенную усталость глаз, общую утомляемость, тревожность, снижение производительности зрительной работы и даже головные боли.

Для предотвращения вышеперечисленных последствий, международный стандарт IEEE 1789-2015 рекомендует максимальный уровень пульсаций яркости для частоты 100 Гц - 8% (гарантированно безопасный уровень - 3%). Для частоты 50 Гц - это будут 1.25% и 0.5% соответственно. Но это для перфекционистов.

На самом деле, для того, чтобы пульсации яркости светодиода перестали хоть как-то досаждать, достаточно, чтобы они не превышали 15-20%. Именно таков уровень мерцания ламп накаливания средней мощности, а ведь на них никто и никогда не жаловался. Да и наш российский СНиП 23-05-95 допускает мерцание света в 20% (и только для особо кропотливых и ответственных работ требование повышено до 10%).

В соответствии с ГОСТ 33393-2015 "Здания и сооружения. Методы измерения коэффициента пульсации освещенности"

для оценки величины пульсаций вводится специальный показатель - коэффициент пульсаций (Кп).

Коэфф. пульсаций в общем рассчитывается по сложной формуле с применением интегральной функции, но для гармонических колебаний формула упрощается до следующей:

Кп = (Еmax - Emin) / (Emax + Emin) ⋅ 100%,

где Емах - максимальное значение освещенности (амплитудное), а Емин - минимальное.

Мы будем использовать эту формулу для расчета емкости сглаживающего конденсатора.

Очень точно определить пульсации любого источника света можно при помощи солнечной панели и осциллографа:

Как уменьшить пульсации?

Посмотрим, как включить светодиод в сеть 220 вольт, чтобы снизить пульсации. Для этого проще всего подпаять параллельно светодиоду накопительный (сглаживающий) конденсатор:

Из-за нелинейного сопротивления светодиодов, расчет емкости этого конденсатора является довольно нетривиальной задачей.

Однако, эту задачу можно упростить, если сделать несколько допущений. Во-первых, представить светодиод в виде эквивалентного постоянного резистора:

А во-вторых, сделать вид, что яркость светодиода (а, следовательно, и освещенность) имеет линейную зависимость от тока.

Давайте попробуем приблизительно рассчитать емкость конденсатора на конкретном примере.

Расчет емкости сглаживающего конденсатора

Допустим, мы хотим получить коэфф. пульсаций 2.5% при токе через светодиод 20 мА. И пусть в нашем распоряжении оказался светодиод, на котором при токе в 20 мА падает 2 В. Частота сети, как обычно, 50 Гц.

Так как мы решили, что яркость линейно зависит от тока через светодиод, а сам светодиод мы представили в виде простого резистора, то освещенность в формуле расчета коэффициента пульсаций можем спокойно заменить на напряжение на конденсаторе:

Кп = (Umax - Umin) / (Umax + Umin) ⋅ 100%

Подставляем исходные данные и вычисляем Umin:

2.5% = (2В - Umin) / (2В + Umin) 100% => Umin = 1.9В

Период колебаний напряжения в сети равен 0.02 с (1/50).

Таким образом, осциллограмма напряжения на конденсаторе (а значит и на нашем упрощенном светодиоде) будет выглядеть примерно вот так:

Вспоминаем тригонометрию и считаем время заряда конденсатора (для простоты не будем учитывать сопротивление балластного резистора):

tзар = arccos(Umin/Umax) / 2πf = arccos(1.9/2) / (23.141550) = 0.0010108 с

Весь остальной остаток периода кондер будет разряжаться. Причем, период в данном случае нужно сократить в два раза, т.к. у нас используется двухполупериодный выпрямитель:

tразр = Т - tзар = 0.02/2 - 0.0010108 = 0.008989 с

Осталось вычислить емкость:

C = ILEDdt/dU = 0.02 0.008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ)

На практике вряд ли кто-то будет ставить такой большой кондер ради одного маленького светодиодика. Хотя, если стоит задача получить пульсации в 10%, то нужно всего 440 мкФ.

Повышаем КПД

Обратили внимание, насколько большая мощность выделяется на гасящем резисторе? Мощность, которая тратится впустую. Нельзя ли ее как-нибудь уменьшить?

Оказывается, еще как можно! Достаточно вместо активного сопротивления (резистора) взять реактивное (конденсатор или дроссель).

Дроссель мы, пожалуй, сразу откинем из-за его громоздкости и возможных проблем с ЭДС самоиндукции. А насчет конденсаторов можно подумать.

Как известно, конденсатор любой емкости обладает бесконечным сопротивлением для постоянного тока. А вот сопротивление переменному току рассчитывается по этой формуле:

Rc = 1 / 2πfC

то есть, чем больше емкость C и чем выше частота тока f - тем ниже сопротивление.

Прелесть в том, что на реактивном сопротивлении и мощность тоже реактивная, то есть ненастоящая. Она как бы есть, но ее как бы и нет. На самом деле эта мощность не совершает никакой работы, а просто возвращается назад к источнику питания (в розетку). Бытовые счетчики ее не учитывают, поэтому платить за нее не придется. Да, она создает дополнительную нагрузку на сеть, но вас, как конечного потребителя, это вряд ли сильно обеспокоит =)

Таким образом, наша схема питания светодиодов от 220В своими руками приобретает следующий вид:

Но! Именно в таком виде ее лучше не использовать, так как в этой схеме светодиод уязвим для импульсных помех.

Включение или выключение распложенных на одной с вами линии мощной индуктивной нагрузки (двигатель кондиционера, компрессор холодильника, сварочный аппарат и т.п.) приводит к появлению в сети очень коротких выбросов напряжения. Конденсатор С1 представляет для них практически нулевое сопротивление, следовательно мощный импульс направится прямиком к С2 и VD5.

К сожалению, электролитические конденсаторы, из-за своей большой паразитной индуктивности, плохо справляются с ВЧ-помехами, поэтому большая часть энергии импульса пойдет через p-n-переход светодиода.

Еще один опасный момент возникает в случае включения схемы в момент пучности напряжения в сети (т.е. в тот самый момент, когда напряжение в розетке находится на пике своего значения). Т.к. С1 в этот момент полностью разряжен, то возникает слишком большой бросок тока через светодиод.

Все это со временем это приводит к прогрессирующей деградации кристалла и падению яркости свечения.

Во избежание таких печальных последствий, схему нужно дополнить небольшим гасящим резистором на 47-100 Ом и мощностью 1 Вт. Кроме того, резистор R1 будет выступать в роли предохранителя на случай пробоя конденсатора С1.

Получается, что схема включения светодиода в сеть 220 вольт должна быть такой:

И остается еще один маленький нюанс: если выдернуть эту схему из розетки, то на конденсаторе С1 останется какой-то заряд. Остаточное напряжение будет зависеть от того, в какой момент была разорвана цепь питания и в отдельных случаях может превышать 300 вольт.

А так как конденсатору некуда разряжаться, кроме как через свое внутреннее сопротивление, то заряд может сохраняться очень долго (сутки и более). И все это время кондер будет ждать вас или вашего ребенка, через которого можно будет как следует разрядиться. Причем, для того, чтобы получить удар током, не нужно лезть в недра схемы, достаточно просто прикоснуться к обоим контактам штепсельной вилки.

Чтобы помочь кондеру избавиться от ненужного заряда, подключим параллельно ему любой высокоомный резистор (например, на 1 МОм). Этот резистор не будет оказывать никакого влияния на расчетный режим работы схемы. Он даже греться не будет.

Таким образом, законченная схема подключения светодиода к сети 220В (с учетом всех нюансов и доработок) будет выглядеть так:

Значение емкости конденсатора C1 для получения нужного тока через светодиод можно сразу взять из Таблицы 2, а можно рассчитать самостоятельно.

Вот здесь можно посмотреть, как еще сильнее усовершенствовать данную схему, добавив в нее стабилизатор тока на одном транзисторе и стабилитроне. Это существенно понизит пульсации и продлит срок службы светодиодов.

Расчет гасящего конденсатора для светодиода

Не буду приводить утомляющие математические выкладки, дам сразу готовую формулу емкости (в Фарадах):

C = I / (2πf√(U2вх - U2LED)) [Ф],

где I - ток через светодиод, f - частота тока (50 Гц), Uвх - действующее значение напряжения сети (220В), ULED - напряжение на светодиоде.

Если расчет ведется для небольшого числа последовательно включенных светодиодов, то выражение √(U2вх - U2LED) приблизительно равно Uвх, следовательно формулу можно упростить:

C ≈ 3183 ⋅ ILED / Uвх [мкФ]

а, раз уж мы делаем расчеты под Uвх = 220 вольт, то:

C ≈ 15 ⋅ ILED [мкФ]

Таким образом, при включении светодиода на напряжение 220 В, на каждые 100 мА тока потребуется примерно 1.5 мкФ (1500 нФ) емкости.

Кто не в ладах с математикой, заранее посчитанные значения можно взять из таблицы ниже.

Таблица 2. Зависимость тока через светодиоды от емкости балластного конденсатора.

C1 15 nF 68 nF 100 nF 150 nF 330 nF 680 nF 1000 nF
ILED 1 mA 4.5 mA 6.7 mA 10 mA 22 mA 45 mA 67 mA

Немного о самих конденсаторах

В качестве гасящих рекомендуется применять помехоподавляющие конденсаторы класса Y1, Y2, X1 или X2 на напряжение не менее 250 В. Они имеют прямоугольный корпус с многочисленными обозначениями сертификатов на нем. Выглядят так:

Если вкратце, то:

  • X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения в 4 кВ;
  • X2 – самые распространенные. Используются в бытовых приборах с номинальным напряжением сети до 250 В, выдерживают скачек до 2.5 кВ;
  • Y1 – работают при номинальном сетевом напряжении до 250 В и выдерживают импульсное напряжение до 8 кВ;
  • Y2 – довольно-таки распространенный тип, может быть использован при сетевом напряжении до 250 В и выдерживает импульсы в 5 кВ.

Допустимо применять отечественные пленочные конденсаторы К73-17 на 400 В (а лучше - на 630 В).

Сегодня широкое распространение получили китайские "шоколадки" (CL21), но в виду их крайне низкой надежности, очень рекомендую удержаться от соблазна применять их в своих схемах. Особенно в качестве балластных конденсаторов.

Внимание! Полярные конденсаторы ни в коем случае нельзя использовать в качестве балластных!

Итак, мы рассмотрели, как подключать светодиод к 220В (схемы и их расчет). Все приведенные в данной статье примеры хорошо подходят для одного или нескольких маломощных светодиодов, но совершенно нецелесообразны для мощных светильников, например, ламп или прожекторов - для них лучше использовать полноценные схемы, которые называются драйверами.

Как подключить светодиод к 220в: схемы, ошибки, нюансы, видео

Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.

Основы подключения к 220 В

В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:

То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.

В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.

Способы подключения светодиода к сети 220 В

Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.

Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более).

Рассмотрим схему подключения более подробно.

 

В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.

Такой вариант подключения наглядно показан в этом ролике:

Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.

Шунтирование светодиода обычным диодом.

Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.

Встречно-параллельное подключение двух светодиодов:

Схема подключения выглядит следующим образом:

Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.

Обратите внимание, что подключение светодиода к питанию 220В без защиты ведет к быстрому выходу его из строя.

Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.

Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:

9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.

То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.

Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.

Применение резистора недостаточной мощности ведет к его быстрому перегреву и выходу из строя, что может вызвать короткое замыкание в сети.

В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.

Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора. Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1. R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.

Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.

Применение полярных конденсаторов (электролит, тантал) в сети переменного тока недопустимо, т.к. ток, проходящий через них в обратном направлении, разрушает их конструкцию.

Емкость конденсатора рассчитывается по эмпирической формуле:

 

где U – амплитудное напряжение сети (310 В),

I – ток, проходящий через светодиод (в миллиамперах),

Uд – падение напряжения на led в прямом направлении.

Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:

Данная формула действительна только для частоты колебаний напряжения в сети 50 Гц. На других частотах потребуется пересчет коэффициента 4,45.

Нюансы подключения к сети 220 В

При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:

Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока. При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время. Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.

Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:

При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.

Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:

В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.

Параллельное (не встречно-параллельное) подключение led в сеть недопустимо, поскольку при выходе одной цепи из строя через другую потечет удвоенный ток, что вызовет перегорание светодиодов и последующее короткое замыкание.

Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:

Здесь показано, почему нельзя:

  • включать светодиод напрямую;
  • последовательно соединять светодиоды, рассчитанные на разный ток;
  • включать led без защиты от обратного напряжения.

Безопасность при подключении

При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению. Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам. Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.

В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.

Заключение

Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации. Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя. В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.

Схемы подключения светодиодов к 220В и 12В

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

  • 1. Типы схем
  • 2. Обозначение на схеме
  • 3. Подключение светодиода к сети 220в, схема
  • 4. Подключение к постоянному напряжению
  • 5. Самый простой низковольтный драйвер
  • 6. Драйвера с питанием от 5В до 30В
  • 7. Включение 1 диода
  • 8. Параллельное подключение
  • 9. Последовательное подключение
  • 10. Подключение RGB LED
  • 11. Включение COB диодов
  • 12. Подключение SMD5050 на 3 кристалла
  • 13. Светодиодная лента 12В SMD5630
  • 14. Светодиодная лента RGB 12В SMD5050

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

  1. светодиодный драйвер со стабилизированным током;
  2. блок питания со стабилизированным напряжением.

В первом варианте применяется специализированный источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения необходимо использовать токоограничивающий резистор.
Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Разница кристаллов

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены. Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была не с питанием.

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную мощность.

Подключение к постоянному напряжению

Далее будут рассмотрены схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный полярным напряжением на выходе. Несколько примеров:

  1. 3,7В – аккумуляторы от телефонов;
  2. 5В – зарядные устройства с USB;
  3. 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  4. 19В – блоки от ноутбуков, нетбуков, моноблоков.

Самый простой низковольтный драйвер

Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.

Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие. Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт. В длинной цепочке из 60-70 LED на каждом падает 3В, что и позволяет подсоединять напрямую к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление. Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов белого света, поэтому имеет 6 ножек. То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

Здравствуйте уважаемые Знатоки. Мне нужно собрать 2 шт. LED светильник состоящий из 20 диодов по 3W, а второй из 40 диодов. Напряжение у каждого 3,2-3,4 V, 600-700mA. Драйверы на них получаются достаточно дорогие, посоветуйте как можно их подключить в сеть 220v.
Тут представлены схемы без трансформатора через мост ну и там конденсаторы и резисторы. Подскажите её можно использовать для запитки фонаря, и как подобрать детали, Был бы очень признателен если бы кто то расписал как и что делать а главное из чего. Благодарю

Отвечает Друзь. Проще поставить диоды на 20-30 Ватт или использовать линейки светодиодные. Есть мощные диоды которые сразу подключаются в 220 вольт. У них драйвер расположен на подложке вместе с диодом, получается недорого и просто. Схема подключения светодиодов есть у меня на сайте в разделе «Питание».

Подключил 4 потолочных светильника с Led Driver,но почемуто один самый первый или самый последний в цепи мигает при выключином свете. Менял провода местами,менял блок,ничего не помогает.подскажите

Может выключатель с подсветкой. Выключатель должен размыкать фазу. Бывает небольшая наводка с другой линии на 220 вольт, заряд постепенно накапливается и светильник вспыхивает. Да и китайская схемотехника тут тоже влияет.

Добрый день.
Есть светодиодная матрица на на 64 светодиода 2835 включенная в 220в на ней есть 3-и микросхемы, произведение китайское.
Проблема заключается в том, что есть подсветка не всех светодиодов при выключенном 1-м из проводов из сети, т.е. работает как ночник.
Что можно сделать.

Пир выключении необходимо разрывать фазу, а не ноль. Может у вас выключатель с подсветкой.

Пытаюсь заменить галогеновое освещение на светодиодные лампы. От сети 220v питание идет на трансформатор HTM 70/230-240 OSRAM. Далее 12v двумя линиями по 3 лампы в каждой, подключенных параллельно. Лампы OSRAM LED STAR MR16 35 36° по 5w. При включении горят с мерцанием частотой 50гц. Как устранить мерцание с использованием готовых комплектующих, которые можно купить в магазине ( не «сделай сам»).

HTM 70/230-240 OSRAM

Купите хороший блок питания на 12 вольт и проблема исчезнет. Можете поставить параллельно конденсатор на 500-1000 микрофарад.

Здравствуйте. Вопрос такой: в здании поменяли светильники с накаливания на светодиодные. При снятии векторной диаграммы со счётчика электроэнергии заметили, что характер нагрузки поменялся на активно-емкостную (ток стал опережать напряжение на 30 градусов). Не может ли быть связано с установленными в светильника конденсаторами? Спасибо.

Коэффициент мощности изменился из-за светильников.

Добрый день!
На приборе установлено устройство плавного пуска ламп накаливания (220 вольт), при замене на светодиодные лампы, последние начинают мерцать.
Можно ли что нибудь сделать?

Уберите блок плавного пуска.

Доброго здоровья. Светодиод 3в. 20ма.сколько светодиодов можно подключить последовательно .Блок питания с гасящим конденсатором.

Длина цепи ограничена напряжением. 73 светодиода можно подключить без гасящего конденсатора.

Здравствуйте, как лучше подключить 1w диод от аккумулятора 6v, подойдет ли драйвер с питанием 12v из китая?

На схемах вроде всё указано, а дальше уже вам выбирать.

Светодиоды (они же led) на протяжении многих лет активно применяются как в производстве телевизоров, так и в качестве основного освещения дома или квартиры, однако вопрос о том, как правильно выполнить подключение светодиодов актуален и по сей день.

На сегодняшний день их существует огромное количество, различной мощности (сверхяркие Пиранья), работающих от постоянного напряжения, которые можно подключать тремя способами:

  1. Параллельно.
  2. Последовательно.
  3. Комбинированно.

Также существуют специально разработанные схемы, позволяющие подключить светодиод к стационарной бытовой сети 220В. Давайте рассмотрим более детально все варианты подключения led, их преимущества и недостатки, а также как это выполнить своими руками.

Основные принципы подключения

Как было сказано ранее, конструкция светоизлучающего диода подразумевает их подключение исключительно к источнику постоянного тока. Однако, поскольку рабочая часть светодиода – это полупроводниковый кристалл кремния, то очень важно соблюдать полярность, в противном случае светодиод не будет излучать световой поток.

Каждый светодиод имеет техническую документацию, в которой содержатся инструкции и указания по правильному подключению. Если документации нет, можно посмотреть маркировку светодиода. Маркировка поможет узнать производителя, а зная производителя, Вы сможете найти нужный даташит, в котором и содержится информация по подключению. Вот, такой не хитрый совет.

Как определить полярность?

Для решения вопроса существует всего 3 способа:

  1. Конструктивно. Согласно нормам, принятым во всем мире, на обычном светодиоде (не SMD типа), длинная ножка всегда является «+» или же анодом. Для работы светодиода на него должна подаваться положительная полуволна. А короткая – катодом.
  2. С помощью мультиметра. Для проверки необходимо переключатель прибора поставить в режим «Прозвонка» и установить красный щуп мультиметра на анод, а черный – на катод. В результате светодиод должен засветиться. Если этого не произошло, необходимо поменять полярность (черный на анод, а красный на катод). Если результат не меняется, тогда led вышел из строя (для установления более точного диагноза, читайте как проверить светодиод).
  3. Визуально. Если присмотреться к светодиоду, то можно увидеть 2 кончика возле кристалла. Тот, который больше – катод, тот, что меньше – анод.

С полярностью разобрались, теперь нам нужно определиться с тем, как подключить LED к сети. Для тех, кто не понял, читайте подробную и интересную статью определения полярности у светодиода. В ней мы собрали все возможные способы проверки, и даже при помощи батарейки.

Способы подключения

Условно, подключение происходит по 2 способам:

  1. К стационарной сети промышленной частоты (50Гц) напряжением 220В;
  2. К сети с безопасным напряжением величиной 12В.

Если необходимо подключить несколько led к одному источнику питания, тогда нужно выбрать последовательное или параллельное подключение.

Рассмотрим каждый из вышеприведенных примеров по отдельности.

Подключение светодиодов к напряжению 220В

Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:

в которой 0,75 – коэффициент надежности led, U пит – это напряжения источника питания, U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток, I – номинальный ток, проходящий через него, и R – номинал сопротивления для регулирования проходящего тока. После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.

Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:

Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.

После определения номинала и мощности сопротивления можно собрать схему для подключения одного светодиода к 220В. Для ее надежной работы необходимо ставить дополнительный диод, который будет защищать светоизлучающий диод от пробоя, при возникновении амплитудного напряжения на выводах светодиода в 315В (220*√2).

Схема практически не применяется, поскольку в ней возникают очень большие потери из-за выделения тепла в сопротивлении. Рассмотрим более эффективную схему подключения к 220 В:

На схеме, как видим, установлен обратный диод VD1, пропускающий обе полуволны на конденсатор C1 емкостью 220 нФ, на котором происходит падение напряжение до необходимого номинала.

Сопротивление R1 номиналом 240 кОм, разряжает конденсатор при выключенной сети, а во время работы схемы не играет никакой роли.

Но это упрощенная модель для подключения LED, в большинстве светодиодных ламп уже встроенный драйвер (схема), который преобразует переменное напряжение 220В в постоянное с величиной 5-24В для их надежной работы. Схему драйвера Вы можете видеть на следующем фото:

Подключение светодиодов к сети 12В

12 вольт – это безопасное напряжение, которое применяется в особо опасных помещениях. Именно к таким и относятся ванные комнаты, бани, смотровые ямы, подземные сооружения и другие помещения.

Для подключения к источнику постоянного напряжения номиналом 12В, аналогично, подключению к сетям 220В необходимо гасящее сопротивление. В противном случае, если подключить его напрямую к источнику, из-за большего проходящего тока светодиод мгновенно сгорит.

Номинал этого сопротивления и его мощность рассчитываются по тем же формулам:

В отличии от цепей 220В, для подключения одного светодиода к сети 12В нам потребуется сопротивление со следующими характеристиками:

Еще одним достоинством напряжения 12В, является то, что в большинстве случаев оно уже выпрямленное (постоянное), что значительно упрощает схему подключения. Рекомендуется дополнительно монтировать стабилизатор напряжения типа КРЭН или аналога.

Как мы уже знаем, светоизлучающий диод можно подключить как к цепям 12В, так и к цепям 220В, однако существует и несколько вариаций их соединения между собой:

Последовательное подключение

При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:

В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.

Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).

Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.

После несложных расчетов, мы видим, что не сможем включить в схему параллельного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).

Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.

Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных светодиодных гирляндах применяют смешанное подключение. Что за недостаток, разберем ниже.

Недостатки последовательного подключения
  1. При выходе из строя хотя бы одного элемента, не рабочей становится вся схема;
  2. Для питания большого количества led нужен источник с высоким напряжением.

Параллельное подключение

В данной ситуации все происходит наоборот. На каждом светодиоде уровень напряжения одинаковый, а сила тока состоит из суммы токов, проходящих через них.

Следуя из вышесказанного делаем вывод, если у нас есть источник в 12В и 10 светодиодов, блок питания должен выдерживать нагрузку в 0,2А (10*0,002).

Исходя из вышеупомянутых расчетов — для параллельного подключения потребуется токоограничивающий резистор с номиналом 2,4 Ом (12*0,2).

Это глубокое заблуждение. Почему? Ответ Вы найдете ниже

Характеристики каждого светодиода даже одной серии и партии всегда разные. Если другими словами: чтобы засветился один, необходимо пропустить через него ток с номиналом 20 мА, а для другого этот номинал может составлять уже 25 мА.

Таким образом, если в схеме установить только одно сопротивление, номинал которого был рассчитан ранее, через светодиоды будет проходить разный ток, что вызовет перегрев и выход из строя светодиодов, рассчитанных на номинал в 18мА, а более мощные будут светить всего на 70% от номинала.

Исходя из вышесказанного, стоит понимать, что при параллельном подключении, необходимо устанавливать отдельное сопротивление для каждого.

Недостатки параллельного подключения:
  1. Большое количество элементов;
  2. При выходе одного диода из строя увеличивается нагрузка на остальные.

Смешанное подключение

Подобный способ подключения является самым оптимальным. По такому принципу собраны все светодиодные ленты. Он подразумевает комбинацию параллельного и последовательного подключения. Как он выполняется можно увидеть на фото:

Схема подразумевает включение параллельно не отдельных светодиодов, а последовательных цепочек из них. В результате этого даже при выходе из строя одной или нескольких цепочек, светодиодная гирлянда или лента будут по-прежнему одинаково светить.

Мы рассмотрели основные способы подключения простых светодиодов. Теперь разберем методы соединения мощных светодиодов, и с какими проблемами можно столкнуться при неправильном подключении.

Как подключить мощный светодиод?

Для работоспособности мощных светоизлучающих диодов, так же, как и простых нам потребуется источник питания. Однако в отличии от предыдущего варианта, он должен быть на порядок мощней.

Чтобы засветить мощный светодиод номиналом 1W, источник питания должен выдерживать не менее 350 мА нагрузки. Если номинал 5W, то источник питания постоянного тока должен выдержать нагрузку тока не менее 1,4А.

Для корректной работы мощного светодиода обязательно необходимо использовать интегральный стабилизатор напряжения типа LM, который защищает его от скачков напряжения.

Если необходимо подключить не один, а несколько мощных LED, рекомендуем ознакомиться с правилами последовательного и параллельного подключения, которые были описаны выше.

Ошибки при подключении

  1. Прямое подключение к источнику питания. В данном случае светодиод моментально сгорит, поскольку отсутствует ограничивающий ток резистор.
  2. Параллельное подключение через один резистор. Светодиоды постепенно будут выходить из строя, поскольку рабочий ток у каждого разный.
  3. Последовательное подключение с различным током потребления. При такой схеме подключения есть 2 варианта: либо просто одни будут светить тусклее других, либо те, что рассчитаны на меньший ток – сгорят.
  4. Неправильно подобранный ограничивающий резистор. При неправильно подобранном сопротивлении через светодиоды будет проходить большой ток, в результате чего, они будут перегреваться и со временем перегорят. При большом сопротивлении они будут светить не в полную силу.
  5. Подключение к сети переменного напряжения номиналом 220В без диода или других компонентов защиты. Если при подключении с сети 220В, если не установить дополнительный диод, то на светодиоде возникнет амплитудное значение напряжения в 315В, которое моментально выведет его из строя.

Видео

Ошибки подключения могут повлечь за собой неприятные последствия, от банальной поломки светодиодов, до нанесения себе повреждений. Поэтому, настоятельно рекомендуем посмотреть видео, где разбирают часто встречающиеся ошибки.

Прочитав статью можно сделать вывод, что все светодиоды, вне зависимости от рабочего напряжения, всегда подключаются параллельно или последовательно — школьный курс физики. Еще стоит помнить, что никакой светодиод не подключается напрямую в сеть 220В, всегда нужно использовать защитные элементы в схеме подключения. Тип применяемых защитных элементов зависит от вида подключаемого светоизлучающего диода.

Самое правильное подключение нескольких светодиодов — последовательное. Сейчас объясню почему.

Дело в том, что определяющим параметром любого светодиода является его рабочий ток. Именно от тока через светодиод зависит то, какова будет мощность (а значит и яркость) светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя — быстрому перегоранию либо постепенному необратимому разрушению (деградации).

Ток — это главное. Он указан в технических характеристиках светодиода (datasheet). А уже в зависимости от тока, на светодиоде будет то или иное напряжение. Напряжение тоже можно найти в справочных данных, но его, как правило, указывают в виде некоторого диапазона, потому что оно вторично.

Для примера, заглянем в даташит светодиода 2835:

Как видите, прямой ток указан четко и определенно — 180 мА. А вот напряжение питания светодиодов при таком токе имеет некоторый разброс — от 2.9 до 3.3 Вольта.

Получается, что для того, чтобы задать требуемый режим работы светодиода, нужно обеспечить протекание через него тока определенной величины. Следовательно, для питания светодиодов нужно использовать источник тока, а не напряжения.

Конечно, к светодиоду можно подключить источник стабилизированного напряжения (например, выход лабораторного блока питания), но тогда нужно точно знать какой величины должно быть напряжение для получения заданного тока через светодиод.

Например, в нашем примере со светодиодом 2835, можно было бы подать на него где-то 2.5 В и постепенно повышать напругу до тех пор, пока ток не станет оптимальным (150-180 мА).

Так делать можно, но в этом случае придется настраивать выходное напряжение блока питания под каждый конкретный светодиод, т.к. все они имеют технологический разброс параметров. Если, подключив к одному светодиоду 3.1В, вы получили максимальный ток в 180 мА, то это не значит, что поменяв светодиод на точно такой же из той же партии, вы не сожгете его (т.к. ток через него при напряжении 3.1В запросто может превысить максимально допустимое значение).

К тому же необходимо очень точно поддерживать напряжение на выходе блока питания, что накладывает определенные требования к его схемотехнике. Превышение заданного напряжения всего на 10% почти гарантированно приведет к перегреву и выходу светодиода из строя, так как ток при этом превысит все мыслимые значения.

Вот прекрасная иллюстрация к вышесказанному:

А самое неприятное то, что проводимость любого светодиода (который по сути является p-n-переходом) находится в очень сильной зависимости от температуры. На практике это приводит к тому, что по мере разогрева светодиода, ток через него начинает неумолимо возрастать. Чтобы вернуть ток к требуемому значению, придется понижать напряжение. В общем, как ни крути, а без контроля тока никак не обойтись.

Поэтому самым правильным и простым решением будет использовать для подключения светодиодов драйвера тока (он же источник тока). И тогда будет совершенно неважно, какой вы возьмете светодиод и каким будет прямое напряжение на нем. Нужно просто найти драйвер на нужный ток и дело в шляпе.

Теперь, возвращаемся к главному вопросу статьи — почему все-таки последовательное подключение, а не параллельное? Давайте посмотрим, в чем разница.

Параллельное подключение

При параллельном подключении светодиодов, напряжение на них будет одинаковым. А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).

Очевидно, что такого неравномерного распределения мощностей нужно избегать.

Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:

Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.

Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока. Так все и работает.

В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:

Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.

Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.

Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):

Uпит ILED
5 мА 10 мА 20 мА 30 мА 50 мА 70 мА 100 мА 200 мА 300 мА
5 вольт 340 Ом 170 Ом 85 Ом 57 Ом 34 Ом 24 Ом 17 Ом 8.5 Ом 5.7 Ом
12 вольт 1.74 кОм 870 Ом 435 Ом 290 Ом 174 Ом 124 Ом 87 Ом 43 Ом 29 Ом
24 вольта 4.14 кОм 2.07 кОм 1.06 кОм 690 Ом 414 Ом 296 Ом 207 Ом 103 Ом 69 Ом

При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.

Последовательное подключение

При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.

Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).

Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:

Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!

Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.

Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.

Вот пример готового устройства:

Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64. 106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.

И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.

Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.

Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:

Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.

Как выбрать нужный драйвер?

Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:

  1. выходной ток;
  2. максимальное выходное напряжение;
  3. минимальное выходное напряжение.

Выходной (рабочий) ток драйвера светодиодов — это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.

Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:

Номинальный ток этих диодов — 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.

Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3. 4 вольта. Берем по-максимуму: 4В х 10 = 40В. Наш драйвер должен быть в состоянии выдать не менее 40 вольт.

Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).

Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.

Следовательно, для наших целей подойдет что-нибудь вроде этого:

Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.

Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:

Светодиоды Какой нужен драйвер
60 мА, 0.2 Вт (smd 5050, 2835) см. схему на TL431
150мА, 0.5Вт (smd 2835, 5630, 5730) драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов)
300 мА, 1 Вт (smd 3528, 3535, 5730-1, LED 1W) драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода)
700 мА, 3 Вт (led 3W, фитосветодиоды) драйвер 700мА (для 6-10 светодиодов)
3000 мА, 10 Ватт (XML2 T6) драйвер 3A, 21-34V (на 7-10 светодиодов) или см. схему

Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.

Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.

Чтобы подобрать резистор для светодиода, будем пользоваться следующим способом: нам известно, что напряжение светодиода 2В, соответственно при подключении светодиода к 12 вольтам (например, светодиод будем использовать в автомобиле) нам надо ограничить 10В, в принципе в случаях светодиодов правильней говорить ограничить ток светодиода, но мы при выборе резистора будем пользоваться простым проверенным многими годами способом без всяких математических формул. На каждый вольт необходим резистор сопротивлением 100 Ом, т.е. если светодиод с рабочим напряжением 2В, и мы подключаем к 12 вольтам, нам нужен резистор 100Ом х 10В=1000 Ом или 1кОм обычно на схемах обозначается 1К, мощность резистора зависит от тока светодиода, но если мы используем обычный не мощный светодиод, как правило, его ток 10-20мА и в этом случае достаточно резистора на 0,25Вт самого маленького резистора по размеру.

Резистор с большей мощностью нам понадобится в 2х случаях: 1) если ток светодиода будет больше и 2) если напряжение будет выше, чем 24В и соответственно в случаях подключения светодиода к напряжению 36-48В и выше нам понадобится резистор с большей мощностью 0,5 – 2Вт, а в случае подключения светодиода к сети 220В лучше использовать резистор на 2Вт, но при подключении светодиода к сети переменного тока нам потребуется еще ряд элементов, но об этом чуть позже.

Если требуется светодиод подключить к батарейке, скажем на 3В, то можно поставить резистор последовательно на 100 Ом, а если батарейка пальчиковая на 1,5В, то можно подключить и без резистора.
При расчете мы можем выбрать только резисторы из стандартных номиналов, поэтому нет ничего страшного, если сопротивление резистора, будет чуть больше или меньше расчетного.

Если вы используете очень яркий светодиод, а светодиод используется, к примеру, для индикации в каких-либо устройствах, то можно сопротивление резистора увеличить, и тем самым яркость светодиода уменьшится, и светодиод не будет ослеплять. Но лучше всего в таких случаях если не требуется большая яркость светодиода, то при покупке в магазине или заказе в Китае можно выбрать матовый светодиод нужного цвета и током, как правило, 6-20мА, угол обзора у данных светодиодов, как правило, составляет 60 градусов, они отлично подходят для индикации, не ослепляют и от них не устают глаза, даже если долго на них смотреть. Прозрачные белые светодиоды для данных целей, как правило, не подходят.

В случае подключения светодиода к микроконтроллеру или плате ARDUINO, как правило, рабочее напряжение составляет 5В, соответственно резистор можно взять 300-470 Ом можно и еще с большим сопротивлением. Главное учитывать, что ток не может превышать предельного тока вывода микроконтроллера, как правило, не более 10мА, поэтому сопротивление резистора 300-470 Ом для подключения светодиода является золотой серединой. Схема подключения светодиода к микроконтроллеру или плате ARDUINO представлена на рисунке 3. Стоит обратить Ваше внимание, что светодиод может быть подключен как анодом, так и катодом к микроконтроллеру и от этого будет зависеть программный способ управления светодиодом.

3. Последовательное подключение нескольких светодиодов
При последовательном соединении светодиодов чтобы их яркость не отличалась, друг от друга надо, чтобы светодиоды были одного типа. При последовательном соединении светодиодов сопротивление резистора будет меньше в отличие от случая, когда мы подключаем один светодиод. Для расчета резистора мы так же можем использовать ранее рассмотренный способ.

К примеру, нам необходимо последовательно подключить четыре светодиода к напряжению постоянного тока 12В, соответственно рабочее напряжение светодиодов 2В при последовательном соединении будет 2В х 4шт. = 8В. Тогда мы можем выбрать резистор из стандартного ряда на 470-510 Ом. При последовательном соединении светодиодов ток, протекающий через все светодиоды, будет одинаковым.

Рисунок 5 — Последовательное соединение светодиодов
Одним из недостатков последовательного соединения светодиодов является тот факт, что в случае выхода одного из светодиодов из строя, все светодиоды перестанут светится. Ниже приведена схема с последовательным соединением двух, трех и четырех светодиодов.

4.Параллельное подключение светодиодов
При параллельном подключении светодиодов резистор выбираем так же, как в случае одиночного светодиода. На каждый светодиод должен быть свой резистор при этом, если резисторы по сопротивлению будут отличаться или светодиоды будут различных марок, то будет очень заметно неравномерность свечения одного светодиода от другова. Ток при параллельном соединении будет складываться в зависимости от количества светодиодов.

5. Подключение мощных светодиодов с большим рабочим током, как правило, применяемых для освещения. При использовании мощных светодиодов лучше всего не использовать обычные резисторы, а применять специальные импульсные источники питания для светодиодов в них, как правило, уже установлены цепи стабилизации тока, данные источники питания обеспечивают равномерность свечения светодиодов и более долговечный срок службы. Светодиоды, применяемые для освещения необходимо устанавливать на теплоотвод (радиатор).

6. Подключение светодиода к переменному напряжению 220В.
(Внимание. Опасное напряжение все работы по подключению к сети 220В необходимо производить только при выключенном, снятом напряжении и при этом необходимо убедится, что напряжение отсутствует. Будьте внимательны. Ко всем элементам схемы не должно быть прямого доступа).
При подключении светодиода к переменному напряжению 220В нам понадобится не только резистор, но и диод для выпрямления напряжения, так как светодиод работает от постоянного тока. Без диода на переменное напряжение лучше не включать. Схема подключения светодиода к сети 220В представлена на рисунке 7. Благодаря тому что мы используем два резистора вместо одного, мы можем использовать резисторы мощностью 1Вт. Так же лучше всего установить конденсатор особено если будет заметно мерцание светодиода. Конденсатор может быть керамический или пленочный главное нельзя использовать электролитический конденсатор.

7. Подключение двухцветных светодиодов.
Если мы возьмем двухцветный светодиод, то увидим, что у данного светодиода не два, а три вывода, соответственно, один вывод по центру является общим, а два вывода по бокам каждый отвечает за свой цвет.

Немного математики :
Расчет сопротивления ограничивающего резистора при 5В и токе светодиода 20мА:
R = U / Imax = 5 / 0.020 = 250 Ом — соответственно сопротивление резистора при 5В должно быть не меньше 250 Ом

Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)

 При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радиоэлементом индикации на настоящий момент является светодиод. В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока - розетки, которая есть в любой благоустроенной квартире.
 Если вам необходимо будет запитать несколько светодиодов одновременно, то об этом мы также упомянем в нашей статье. Фактически такие схемы применяются для светодиодных гирлянд или ламп, это немного другое. Фактически здесь необходимо реализовать так называемый драйвер для светодиодов. Итак, давайте не будем все валить в одну кучу. Попробуем разобраться по порядку.

Принцип понижения напряжения питания для светодиода

 Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор. В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения. Что же, теперь обо всех этих вариантах по порядку.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)

 Схема подключения светодиода к 220 вольтам на вид не сложная, принцип ее работы прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода. Так в итоге полностью заряжается конденсатор. Далее приходит вторая полуволна, когда конденсатор начинает разряжаться. В этом случае напряжение также идет через стабилитрон, который теперь работает в своем штатном режиме и через светодиод. В итоге на светодиод в это время подается напряжение равное напряжению стабилизации стабилитрона. Здесь важно подобрать стабилитрон с тем же номиналом, что и светодиод.

 

Здесь все вроде как просто и теоретически реализуется нормально. Однако точные расчеты не столь просты. Ведь по сути надо рассчитать емкость конденсатора, который будет являться в данном случае гасящим. Делается это по формуле.

Прикинем: 3200*0,02/√(220*220-3*3)=0,29 мКФ. Вот какой должен быть конденсатор при напряжении для светодиода 3 вольта, а токе 0,02 А. Вы же можете подставить свои значения и рассчитать свой вариант.

Радиодетали для подключения светодиода к 220 вольтам

Мощность резистора может быть минимальной вполне подойдет 0.25 Вт (номинал на схеме в омах).
Конденсатор (емкость указана в микрофарадах) лучше подобрать с запасом, то есть с рабочим напряжением в 300 вольт.
Светодиод может быть любой, например с напряжением свечения от 2 вольт АЛ307 БМ или АЛ 307Б и до 5.5 воль - это КЛ101А или КЛ101Б.
Стабилитрон как мы уже упоминали должен соответствовать напряжению питания светодиода, так для 2 вольт это КС130Д1 или КС133А (напряжение стабилизации 3 и 3.3 вольта соответственно), а для 5.5 вольт КС156А или КС156Г

Такой способ имеет свои недостатки, так как при незначительном скачке напряжения или отклонении в работе конденсатора, можем получить напряжения куда более высокое нежели 3 вольта. Светодиод сгорит в один момент. Плюсом является экономичность схемы, так как она импульсная. Скажем так, не высокая надежность, но экономичность. Теперь о варианте комбинированном.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор + резистор)

Здесь все тоже самое, за исключением того, что в цепочку добавили резистор. В целом влияние резистора способно сделать всю схему более предсказуемое, более надежной. Здесь будет меньше импульсных токов с высоким напряжением. Это хорошо!

 

(...как и н на схеме выше использован гасящий конденсатор + резистор)

Все плюсы и минусы сродни варианту с гасящим конденсатором, но надежности здесь тоже нет. Даже более, того, использование диода, а не  стабилитрона, скажется на защите светодиода при разрядке конденсатора. То есть весь ток потечет именно через светодиод, а не как в предыдущем случае через светодиод и стабилитрон. Вариант этот так себе. И вот последний случай, с применением резистора.

Схема подключения светодиода к напряжению 220 вольт (резистор)

Именно эти схемы мы вам рекомендуем к сборке. Здесь все по классическим принципам, закону Ома и формуле расчета мощности. Первое, рассчитаем сопротивление. При расчете сопротивления будет пренебрегать внутренним сопротивлением светодиода и падением напряжения на нем. В этом случае получим небольшой запас, так как фактическое падение напряжения на нем, позволит ему работать в режиме чуть более щадящем, нежели предписано характеристиками. Итак, скажем у нас ток светодиода 0,01 А и 3 вольта.

R=U/I=220/0,01=22000 Ом=22 кОм. В схеме же 15 кОм, то есть ток приняли 0,014666 А, что вполне допустимо. Вот так и рассчитываются резисторы для этих случаев. Единственное здесь все будет зависеть от того, сколько резисторов вы применяете. Если два как на первой схеме, то делим получившийся результат пополам.

 

Если один, то само собой все напряжение будет падать только на нем.

Ну, как и положено, скажем о плюсах и минусах. Плюс один и очень большой, схема очень надежная. Минус тоже один, то что все напряжение будет падать на 1-2 резисторе, а значит он будет рассеивать большую мощность. Давайте прикинем. P=U*I=220*0,02=4,4 Ватта. То есть аж 4 Ватта должен быть резистор, если ток будет 0,02 А. В этом случае стоит щепетильно подойти к выбору резистора, он должен быть не менее 3-4 Ватт. Ну и сами понимаете, что об экономичности в этом случае речи не идет, когда на резисторе рассеивается 4 Ватта, а светодиодом можно пренебречь. Фактически это почти как маленькая светодиодная лампа, а горит всего лишь 1 светодиод.

Подключение нескольких светодиодов к 220 вольтам

 Когда вам необходимо подключить сразу несколько светодиодов, это несколько друга история. Фактически такие вариации схемы, еще вернее схемы стабилизатора для светодиодов называют драйвером. Видимо от слова drive (англ.) в движении. То есть вроде как схема запускающая в работу группу светодиодов. Не будем говорить о корректности применения данного слова и о новых словах, которые мы постоянно заимствуем из других языков. Скажем лишь, что это несколько иной вариант, а значит и разбирать его мы будем в другой нашей статье "Драйвер для светодиодов (светодиодной лампы)".

Видео о подключении светодиода к сети 220 вольт

А теперь тоже самое, но на видео, для тех кто видимо ленился читать;)

Итак, если хотите подключить светодиод надежно, но чуть с завышенными энергозатратами, то вам к сборке рекомендуется последних два варианта из статьи. Для всех ищущих приключений - первый вариант в самый раз!

Ну и напоследок калькулятор для тех, кто не в состоянии осилить подсчеты по формулам сам или лень;)

Схема и устройство светодиодной лампы на 220 вольт

Комплектация светильника и как его подобрать

Обычный светодиодный светильник включает в себя всего несколько элементов:

  • светодиоды;
  • корпус;
  • теплоотвод;
  • радиатор;
  • драйвер.

Если комплект стандартный, как же тогда подобрать светильник, чтобы его предустановленный драйвер прослужил как можно дольше?

Встраиваемый светодиодный светильник Kreonix с драйвером

Для исправной работы светодиодов от источника питания необходимо понизить напряжение. У каждого светильника есть следующие параметры, которые необходимо учитывать при выборе оптимального драйвера. Поговорим о них подробнее:

Мощность. Максимальная мощность у драйвера показывает, какую максимальную нагрузку он выдержит. К примеру, если на маркировке указанно (30х36)х1W, это значит, что к этому драйверу можно подключить 30 или 36 светодиодов мощностью 1 Ватт. Если мы говорим о подключении светодиодной ленты на 12-24 Вольт, то следует учесть, что источники питания для них ограничивают напряжение, а вовсе не ток.

Схема подключения светодиодных лент

А значит, мы должны внимательно следить за мощностью нагрузки, подключенной к блоку питания. В таком случае мощность драйвера ни в коем случае не должна быть ниже мощности цепи, иначе блок питания просто «сгорит».

  • Номинальные параметры тока и напряжения. Этот параметр указывается производителем на всех светодиодах, соответственно, и драйвер необходимо подбирать по этой отметке. Максимальный номинальный ток составляет 350 мА. При такой отметке в работе надо использовать источник питания с силой тока в интервале 300-330 мА. Это справедливо для любого вида подключения. Такой диапазон рабочего тока рекомендован для того, чтобы не сократить срок годности светильника, ведь теплоотвод может не выполнять свои функции в полной мере.
  • Класс герметичности и влагостойкости (защищенности). В настоящее время класс защиты определяется двумя цифрами, стоящими после IP. Первая цифра говорит о степени защиты от твердых воздействий (пыли, грязи, песка, льда). Вторая – о жидких средах (воде, веществах). Однако о требуемой температуре, при которой светильник может использоваться класс IP, ничего не сообщает. Можно или нельзя охлаждать, зависит от прочности корпуса.

Надо с не меньшей ответственностью подходить к покупке драйвера для светильника, чем к покупке самого светильника, потому что именно источник питания является гарантом долгой, исправной службы всего устройства. Если вы никак не можете выбрать подходящий драйвер для светильников, то его можно сделать своими руками. Схема сборки весьма проста.

Вероятные причины поломки и способы их устранения

Токоограничивающий конденсатор

Итак, прежде всего, необходимо определить причину неисправности вашего устройства. Если прожектор включается, но во включенном состоянии не горит равномерно, а мерцает и мигает – вероятно вышел из строя токоограничивающий конденсатор С1. Многие китайские производители грешат тем, что пытаясь добиться максимальной яркости от не самого мощного прожектора, используют токоограничивающий конденсатор, не подходящий по параметрам к драйверу. Токоограничивающий конденсатор на 400 Вольт номинального рабочего напряжения вполне подойдет.

Блок питания

Еще одной распространённой причиной может быть выход из строя блока питания. Вариантов выхода из ситуации два – обратиться в магазин электроники, где вам помогут подобрать подходящий блок питания (его характеристики указаны на нём, потому, желательно разобрать прожектор и прихватить блок с собой), либо подобрать блок питания (может подойти от сканера или принтера).

Второй вариант возможен, конечно, только если у вас вдруг завалялась ненужная и нерабочая оргтехника, которая может послужить донором блока питания. Сверьте блоки питания, чтобы они были схожи по параметрам. Точное совпадение не обязательно, но параметры не должны сильно расходиться. Как и говорилось ранее, при наличии навыков использования инструментов и понимания в вопросах электроники – вы легко сможете поменять блок питания самостоятельно.

Драйвер

Если в ремонте нуждается маломощный прожектор, вполне вероятно, что он может не иметь своего блока питания, а функцию изменения токов в нем выполняет светодиодный драйвер. Поскольку светодиод не может питаться напрямую от сети, нуждаясь в переменном токе, отличающемся от того, что может предложить ему сеть, в устройстве прожектора задействуется драйвер, учитывающий разброс характеристик светодиода в зависимости от рабочей температуры и времени, корректируя на выходе ток, подающийся на светодиод. Именно этот драйвер может выйти из строя.

Для его замены необходимо будет разобрать светодиодный прожектор и выяснить маркировку драйвера, чтобы купить или заказать замену. Если вы уверенный пользователь электроинструмента – можно найти вышедший из строя элемент драйвера и выпаять его и заменить. Если вы ремонтируете светодиодный прожектор, собранный своими руками, скорее всего вам будет достаточно легко найти проблему в драйвере или же найти аналогичный драйвер и произвести замену. Это будет однозначно дешевле, чем покупать или собирать новый прожектор с нуля.

Выгорание матрицы

Еще одним вариантом выхода из строя конструкции вашего светодиодного прожектора, помимо неисправности драйвера, блока питания или других мелких элементов, участвующих в процессе преобразования тока, может быть выгорание самой светодиодной матрицы. В случае выхода из строя самого светодиода, необходимо найти и приобрести аналогичный по характеристикам диод. После разбора прожектора, нужно будет аккуратно деинсталлировать сгоревшую матрицу, открутив четыре винтика крепления и отпаяв токопроводящие элементы. Затем нужно будет равномерно и аккуратно нанести слой термопасты на новый диод, припаять токоподводящие элементы и аккуратно прикрутить матрицу. Нужно учесть, что форма матрицы должна оставаться нетронутой, то есть желательно использовать те же винтики, что были использованы изначально. Они не должны иметь головки конической формы, так как при использовании таковых, если вы закрутите их с чуть большим усилием, они могут повредить матрицу, и вся ваша работа будет насмарку.

Схема подключения светодиодной ленты через блок питания

Чтобы 12 вольтовая светодиодная лента стабильно работала на протяжении долгих лет, её необходимо подключать от импульсного блока питания с напряжением на выходе 12 В. Это самый правильный вариант – импульсные источник питания имеют малый вес и компактные размеры, высокий КПД и коэффициент стабилизации, а также безопасны в эксплуатации. К недостаткам можно причислить генерацию импульсных помех, отдаваемых обратно в сеть и сложность схемы, для ремонта которой нужны специальные навыки.

До 5 метров

Очень часто рядовых пользователей интересует вопрос о том, как подключить светодиодную ленту длиной до 5 метров? Тут все очень просто. Достаточно воспользоваться приведенной ниже схемой. Процедуру подключения выполняют в следующей последовательности:

  • с помощью коннектора или путём пайки к одному из концов ленты подключают 2 питающих провода сечением 1-1,5 мм2;
  • свободные концы этих проводов зажимают в соответствующих клеммах блока питания (+V, -V), соблюдая полярность;
  • к клеммам L и N (220V AC) подключают сетевой провод.

Аналогичным образом выполняют параллельное подключение нескольких отрезков к одному блоку питания. Главное, чтобы мощность БП была больше суммарной мощности подключаемой светодиодной ленты минимум на 30%.

Чтобы яркость светодиодов была равномерной по всей длине LED-ленты, к отрезкам длиною больше 4 метров рекомендуется подводить провода с обоих концов. Это связано с падением напряжения на токоведущих печатных проводниках (дорожках), в результате чего к самым дальним светодиодам поступает напряжение меньше 12 В и их яркость падает. Плюс этого способа – равномерное свечение, а минус – затраты на дополнительные провода.

Свыше 5 метров

То, что длина светодиодной ленты в бобине ограничена 5 метрами – это не случайность, а вынужденная технологическая мера. Дело в том, что токопроводящие дорожки, приклеенные вдоль ленты, очень тонкие, узкие, и рассчитаны на подключение определённого количества светодиодов. Именно по этой причине нельзя подключать последовательно 2 отрезка общей длиной более 5 метров. Чтобы избежать токовых перегрузок, подключение светодиодных лент длиною 10, 15 и даже 20 метров следует выполнять по одной из приведенных схем ниже. Первый вариант предполагает использование одного блока питания большой мощности, способного обеспечить в нагрузке ток до 20 А. Для равномерного свечения светодиодов напряжение питания на каждый из 5 метровых отрезков подаётся с обеих сторон. Во втором варианте каждый отрезок запитан от отдельного источника 12В. Реализовать данную схему немного сложнее, так как потребуется еще один блок питания и больше соединительных проводов. На третьей схеме кроме двух источников постоянного напряжения на 12 В в цепь добавлены диммер и одноканальный усилитель сигнала. Диммер служит для регулировки яркости светового потока. Задача усилителя сигнала – в точности продублировать сигнал с диммера для тех светодиодных лент, которые запитаны от второго БП.

Подключение RGB или RGBW LED-лент

Правила и особенности подключения, о которых было сказано выше, необходимо соблюдать и при монтаже мультицветных аналогов. Однако функциональные схемы с RGB и RGBW лентами будут выглядеть немного сложнее из-за появления контроллера и дополнительных проводов. RGB/RGBW контроллер значительно расширяет возможности осветительной системы за счёт диммирования отдельных цветов, создания световых эффектов и управления с пульта дистанционного управления (ПДУ). RGB/RGBW контроллер предназначен для подключения мультицветных лент с отдельно расположенными белыми светодиодами, что позволяет использовать такую систему не только, как дополнительный, но и как основной источник света в помещении.

Советы по выбору LED-ламп

При покупке LED-устройств важно обращать внимание как на их технические характеристики, так и на ряд других нюансов. Лучший способ выбрать комфортную для глаз светодиодную лампу – включить одновременно несколько моделей в магазине и сравнить их светимость


Лучший способ выбрать комфортную для глаз светодиодную лампу – включить одновременно несколько моделей в магазине и сравнить их светимость

Представленные советы помогут приобрести качественный светильник, который прослужит долго и будет комфортен для глаз.

  1. На упаковке LED-ламп должна быть надпись об отсутствии пульсации.
  2. Световой поток должен быть больше, чем у заменяемой лампы накаливания.
  3. Рекомендуется сравнивать свечение ламп одинаковой мощности ещё в магазине.
  4. При наличии выключателя с индикатором желательно предварительно убедиться в корректной работе с ним LED-ламп.
  5. Потолочные лампы с небольшим углом рассевания света могут слепить глаза.
  6. Рекомендуется покупать лампы в крупных магазинах, предоставляющих минимум 2 года гарантии.

Желательно приобретать светильники только известных производителей, потому что изделия дешевых малоизвестных брендов зачастую не соответствуют заявленным на упаковке характеристикам.

Преимущества и недостатки светодиодов

Ещё недавно на вершине популярности были люминесцентные лампы, но за несколько лет они были вытеснены LED-светильниками.

Последние годы светодиодное освещение завоевало львиную рыночную долю благодаря множеству потребительских достоинств, среди которых можно выделить следующие:

  1. Экономичность. Новые LED-светильники потребляют в 9-10 раз меньше электроэнергии, чем аналогичные по световому потоку лампы накаливания.
  2. Долговечность. Срок беспрерывной службы хороших светодиодов исчисляется годами, хотя их светимость и несколько снижается со временем.
  3. Высокий КПД, благодаря которому лампы практически не нагреваются.
  4. Безопасность. При повреждении LED-лампы не образуется острых осколков и не выделяются вредные вещества. В излучаемом потоке отсутствует УФ излучение.
  5. Возможность регулирования цветовой температуры.
  6. Высокая прочность светодиодов.
  7. Регулирование яркости свечения.
  8. Работоспособность в широком диапазоне температур.
  9. Широкий ассортимент. Возможность выпуска осветительных приборов произвольной формы.

Многочисленные плюсы светодиодных ламп способствуют массовому переходу потребителей на эти источники освещения.


Чтобы обеспечить себе преимущества LED-светильников в полной мере, следует покупать модели именитых брендов, которые гарантируют качество своей продукции

Однако LED-светильники имеют и свои минусы, о которых следует помнить при покупке:

  1. Дороговизна. Стоимость дешевых LED-ламп в 4-5 раз выше ламп накаливания.
  2. Использование матовых колб ухудшает визуальные эффекты хрустальных люстр.
  3. Стремительное падение светимости при регулярном перегреве.
  4. Световое мерцание у дешевых моделей, которое негативно сказывается на зрении и общем самочувствии.
  5. Однонаправленность света, которая заставляет применять радиальное расположение светодиодов.
  6. Электронные компоненты дешевых LED-ламп ломаются быстрее, чем перегорает кристалл, что сокращает реальный срок эксплуатации.
  7. Некорректная работа при подключении к выключателю с индикатором.

Несмотря на недостатки светодиодных ламп, население продолжает их покупать. Реальная экономия достигается лишь за 3-4 года и только при условии работоспособности всех приобретенных светильников. Поэтому целесообразность их покупки ещё стоит оценить.

Ремонт светодиодной лампы серии «LL» GU10-3W

Лампу типа «LL» GU10-3W с виду было сложно разобрать. Стекло начинало трескаться в тот момент, когда я пытался его извлечь.

Что означает маркировка?

  • G — наличие штыревого цоколя;
  • U — лампа энергосберегающая;
  • 10 – размер между штырями (измеряется в мм)

Благодаря расширительным штырям, лампа крепко держится в патроне.

Эта лампу можно было разобрать при помощи высверленного отверстия. Место сверления находилось на уровне печатной платы. Свело было выбрано диаметром 2,5 мм. Во время сверления нужно учесть тот факт, что сверло может повредить светодиод. Если дрели нет, то отверстие можно сделать шилом.

В проделанное отверстие задевается отвертка. Используя ее как рычаг, необходимо приподнять стекло. Если при проверке светодиодов проблем не выявлено, извлекаем печатную плату.

В обеих лампах были обнаружены сгоревшие резисторы номиналом 160 Ом. По размеру можно было установить, что их мощность равна 0, 25 Вт. Она не соответствует мощности, которая выделяется при работе лампы.

Плата была залита силиконом, отсоединять ее я не стал. Я заменил сгоревшие резисторы более мощными. В одной лампе применил резистор на 150 Ом и 1 Вт, на другой 2 параллельно спаянных на 320 Ом и 0,5 Вт.

Во избежание короткого замыкания, выводы резисторов были промазаны силиконом. Он действует как изолятор.

На рынке можно встретить 2 вида силикона: жидкий в трубочках и твердый, имеющий вид стержня. Стержневой хорош тем, что его можно отделить паяльником и нанести на нужную поверхность. После застывания он становится крепким.

Обе лампы светились. Осталось прикрепить плату и надеть защитное стекло.

Чтоб закрепить платы, я пользуюсь жидкими гвоздями «Монтаж» момент. После высыхания этот клей имеет пластичность и хорошую термостойкость.

Клей наносится отверткой. Минут через 15 он будет удерживать нашу деталь.

Чтоб не держать плату до полного высыхания клея, я фиксирую ее силиконом в некоторых точках. Стекло было приклеено с помощью жидких гвоздей, лампа стала работоспособной.

Особенности систем питания комбинированных осветительных сетей

Для производства светодиодных светильников (СДС) обычно используют специальные светодиодные модули. Все светодиодные модули (СДМ), состоящие из одного или нескольких светодиодов, питаются постоянным током, величина которого может изменяться. Для получения постоянного тока должно использоваться устройство со специальной электрической схемой — драйвер. Входное напряжение драйвера обычно выбирают из стандартного ряда номинальных значений: 12, 24 или 48 В. Для СДС, способных освещать помещение с высотой потолков 4 метра и даже уличные пространства, целесообразно использовать стандарт 48 В. Этот номинал напряжения достаточно широко распространен в слаботочных системах современных зданий. Кроме того, в стандарте 48 В во всем мире массово выпускаются источники питания для телекоммуникационных применений, которые с успехом могут использоваться в осветительных системах благодаря высокой надежности и низкой стоимости.

Традиционно источник питания с входным напряжением 220 В переменного тока и СДМ располагали в одном корпусе, что было продиктовано единичными случаями их использования. С появлением возможности создания осветительных систем, использующих совместно СДС с традиционными ИС, острее стал вопрос о пересмотре концепции выбора для конкретного объекта номиналов питающего напряжения и принятия допустимых уровней отклонения его параметров .

Используемое сейчас при проектировании совмещение силовых и осветительных питающих сетей не приводит, как правило, к улучшению экономических показателей и создает неудовлетворительный режим подачи питающего напряжения для ламп. Совмещение питающих сетей оправдано сегодня только для небольших зданий и при использовании схем промежуточной трансформации ввиду чувствительности традиционных ИС к отклонениям и колебаниям напряжения. Снижение напряжения на 1% вызывает уменьшение светового потока у ламп накаливания на 3–4%, у люминесцентных ламп — на 1,5%, у ртутных ламп (ДРЛ) — на 2,2% . Снижение напряжения на 10% вызывает у люминесцентных ламп уменьшение светового потока на 30–40%. При снижении напряжения на 20% и более не происходит зажигания газоразрядных ламп. Повышение напряжения на 10% у ламп накаливания и люминесцентных сокращает срок их службы до 25–30% . Однако используемый в СДС драйвер способен поддерживать требуемые выходные параметры даже при уровне напряжения в питающей сети, равном 70% от номинального. Таким образом, при питании СДМ от магистрального силового щита появляется возможность соблюдения необходимых требований к качеству электроэнергии для осветительных приборов с длиной групповых сетей, которая ранее были недопустима.

Уровень напряжения в осветительных электросетях средних и крупных зданий может по ряду причин резко изменяться. По статистике, напряжение в электросети в ночное время повышается. При малой величине реактивной мощности в ночные часы это повышение во многих случаях может быть велико, что неизбежно приводит к выходу из строя ламп. Колебания напряжения вызываются также изменением силовой нагрузки в течение суток, особенно при большой длине питающих линий 220/380 В и высокого напряжения. Колебания напряжения имеют также сезонный характер: в летнее время отключаются отопительная система, котельные, сокращается осветительная нагрузка, и, как следствие, напряжение в это время в низковольтной электросети повышается.

Наиболее часто применяемая схема осветительной части электрооборудования типовой блок-секции шестнадцатиэтажного дома приведена на рис. 3 . Электроснабжение жилых домов имеет некоторые особенности. В схеме выделяются следующие группы потребителей:

  • освещение эвакуационных балконов;
  • освещение приквартирных холлов;
  • освещение лестничных клеток;
  • освещение лифтовых холлов;
  • освещение коридоров;
  • освещение балконов;
  • освещение лифтовых шахт;
  • освещение технических помещений;
  • освещение подвала;
  • освещение тамбуров;
  • освещение чердаков;
  • подсветка номеров дома.


Рис. 3. Принципиальная однолинейная схема электроснабжения 2-подъездного 16-этажного жилого дома

Все эти потребители подключаются от отдельных групп электропитания. При таких схемах включения светильники, освещающие приквартирные холлы, получают питание от того же щитка, что и электродвигатели лифтов, вентиляции, систем водоснабжения и пожаротушения. Кроме того, эти устройства работают в повторно-кратковременном режиме и, следовательно, влияют на качество электроэнергии в сети.

Подключение без адаптера

Существует еще один способ соединения, который позволяет применять светодиодная лента 220В (подключение без блока питания). Эту процедуру может выполнять только профессиональный электрик. В этом случае нагрузка подается прямо на прибор. Схема такого соединения используется при изготовлении светодиодных лампочек. Если 2 диода подключить параллельно, а также навстречу друг другу, их можно запитать от источника переменного тока на длительное время.

Чтобы избежать мерцания осветителя, применяется специальное устройство. Это электролитический конденсатор С1 с напряжением 300 Вт (емкость 4,7-10 мФ). Чтобы выровнять переменный ток сети, также потребуется дополнительный прибор. Это диодный мост VD1-VD4. После соединения системы необходимо проверить напряжение. Если оно больше допустимого значения, добавляют еще отрезок ленты или перед диодным мостом впаивают резистор или конденсатор.

Подключаем светодиодную ленту 12 В к блоку питания от компьютера

Часто у тех, кто занимается моддингом компьютеров возникает желание подключить светодиодную ленту к блоку питания от него. На первый взгляд это сложная задача. Но только на первый взгляд. На самом деле эта процедура не стоит выеденного яйца. И любой сможет справиться с этой задачей.

Для начала нам необходимо найти исправный блок питания и подготовить в нем 4-х контактный разъем. Выглядит он вот таким образом.

Для подключения нам нужны только желтый и черный провода. Черный — это минус, желтый — 12В. Для общей информации — красный +5В. Черный провод можно использовать любой. Это два минуса.

Подключения ленты 12 В к блоку можно провести двумя способами — либо использовать разъем «папа» и «мама», либо только проводами.

Мне больше предпочтителен был способ с использованием двух разъемов, так как разборные схемы меня больше устраивают.

В любом случае необходимо припаять проводники ( не забудьте пролудить ) к светодиодной ленте и концы соединить с одним из разъемов ( пустым ), который и вставляем в питающий.

Можно просто отрезать все разъемы и непосредственно провести соединение блока митания компьютера с LED лентой только проводами. Кому как нравится.

Такая схема подключения подойдет, если у Вас лента до 120 диодов на метр.

Виды лент

Помимо цвета свечения, ленты могут различаться по нескольким основным факторам. Светодиоды бывают разных размеров. Сегодня чаще всего выпускают устройства с габаритами 35 х 28 и 50 х 50 мм. Размер указывают в маркировке изделия (3528 или 5050). В первом случае диод имеет меньшую площадь, поэтому яркость его свечения меньше, и наоборот.

Значение имеет частота, с которой LED-элементы размещают на 1 м ленты. Если их количество находится в пределах 30-120 штук, устройство работает от напряжения 12В. Это может быть зональная или общая подсветка, которую предоставляет светодиодная лента (220В). Подключение на кухню, в гостиную, спальню и другие комнаты можно сделать такими устройствами. Для приборов на 24В плотность LED-элементов достигает 240 штук. Выбор ленты зависит от назначения устройства. Одноцветные разновидности чаще всего работают от напряжения 12В, а RGB-устройства – от 24В. Это связано с плотностью диодов на метре ленты.

Типы светодиодов

Светодиод – это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа – кристалла с площадкой для подключения проводников питания.

Чтобы воспроизвести белый свет, “синий” чип покрывается желтым люминофором. При излучении кристалла люминофор испускает собственное. Смешивание желтого и синего света образует белый.

Разные способы сборки чипов позволяют создавать 4 основных типа светодиодов:

  1. DIP – состоит из кристалла с расположенной сверху линзой и присоединенными двумя проводниками. Он наиболее распространен и используется для подсветки, в световых украшениях и табло.
  2. “Пиранья” – похожая конструкция, но с четырьмя выводами, что делает ее более надежной для монтажа и улучшает отвод выделяющегося тепла. Большей частью применяется в автомобильной промышленности.
  3. SMD-светодиод – размещается на поверхности, за счет чего удается уменьшить габариты, улучшить теплоотвод и обеспечить множество вариантов исполнения. Используется в любых источниках света.
  4. СОВ-технология, где чип впаивается в плату. За счет этого контакт лучше защищен от окисления и перегрева, а также значительно повышается интенсивность свечения. Если светодиод перегорает, его надо полностью менять, поскольку ремонт своими руками с заменой отдельных чипов не возможен.

Недостатком светодиода является его маленький размер. Чтобы создать большое красочное световое изображение, требуется много источников, объединенных в группы. Кроме того, кристалл со временем стареет, и яркость ламп постепенно падает. У качественных моделей процесс износа протекает очень медленно.

Заключение

Стоимость светодиодных ламп медленно, но верно снижается. Однако цена все же остается высокой. Не каждому по карману менять некачественные, но дешевые, лампы или покупать дорогостоящие. В этом случае ремонт таких осветительных приборов — неплохой выход

Если соблюдать  правила и меры предосторожности, то экономия составит приличную сумму

Лампа «кукуруза» дает больше света, но и потребление энергии у нее выше

Надеемся, что информация, изложенная в сегодняшней статье, будет полезна читателям. Вопросы, возникшие по ходу прочтения, можно задать в обсуждениях. Мы ответим на них как можно полно. Если у кого-либо был опыт подобных работ, будем благодарны, если Вы им поделитесь с другими читателями.

А напоследок, уже по традиции, короткое познавательное видео по сегодняшней теме:

Watch this video on YouTube

Предыдущая ОсвещениеПрактические советы, как повесить люстру на натяжной потолок
Следующая ОсвещениеДиммеры для светодиодных ламп 220 В: что это такое и в каких случаях используются

Список источников

  • sovet-ingenera.com
  • teremguru.com
  • ledjournal.info
  • leds-test.ru
  • homius.ru
  • jelectro.ru
  • cdelct.ru
  • www.syl.ru
  • www.kit-e.ru
  • samosvetil.ru

Поделитесь с друзьями!

правильное подключение лампочек к потолку, простые схемы монтажа, и полное пошаговое описание установки своими руками к сети 220В

Установка светодиодных точечных светильников не так сложна, как кажется, на первый взгляд. Достаточно заранее продумать места установки приборов. И позаботиться о подборе правильной проводки. Остальная работа займёт не так много времени. 

С каждым годом у светодиодных светильников появляется всё больше поклонников. Лампы накаливания, люминисцентные аналоги уходят в прошлое из-за низкой безопасности и экономности. Светодиодные приборы долго служат, эффективно используют имеющиеся ресурсы. Даже после выхода из строя некоторые модели подлежат повторному ремонту. Потребуется знать некоторые особенности схемы, чтобы эксплуатация принесла лучшие результаты.

Принцип работы

Здесь владельцы должны учитывать несколько особенностей:

  1. Переменное напряжение в 220 В подают к драйверам у светодиодных ламп. Частоты такой энергии составляет 50 Гц.
  2. Далее сам поток переходит по конденсатору, ограничивающему ток.
  3. Следующий компонент, где оказывается энергия – выпрямительный мост, собранный на основе четырёх диодов.

На выходе моста на следующем этапе появляется выпрямленная разновидность напряжения. Именно этот вариант энергии нужен, чтобы диоды правильно работали. Но драйвер нужно дополнить электролитическим конденсатором, чтобы устройство начало действовать как надо. Тогда пульсации, возникающие при выпрямлении переменного напряжения, сглаживаются.

В устройстве также присутствуют сопротивления разного вида. Для разрядки конденсатора, дополнительной защиты служит специальный резистор. Другой, с обозначением 1 на схемах – ограничивает ток, который поступает на лампочку при включении.

Устройство светодиодной лампочки 220В

В любой светодиодной лампе выделяют следующие компоненты:

  • Световой поток становится равномерным благодаря рассеивателю.
  • Резисторы или чипы, защищающие от резких изменениях в показателях.
  • Печатная плата, для впаивания светодиодов.
  • Радиатор, отводящий тепло.
  • Драйвер. Он основа для сбора схемы, преобразующей переменный ток напряжения в постоянный. Главное – получить на выходе необходимую величину.
  • Диэлектрическая прокладка, между корпусом и цоколем.
  • Цоколь, в который вкручивают люстру и бра, светильник.

Отличие светодиодной от люминесцентной: краткое описание

С конструкцией связаны главные отличия. Основа люминесцентных ламп – колба из стекла. Ртутные пары и инертные газы наполняют часть этого устройства внутри. Запайка обеспечивает герметичность. Сфера применения шире благодаря комплектам с цоколями различных габаритов.

На электронных матрицах построены светодиодные лампы. Это электронное соединение нескольких диодов друг с другом. В изделиях присутствуют и другие вспомогательные элементы, для обеспечения стабильной работы механизма. Низкое энергопотребление – главное преимущество светодиодных ламп по сравнению с другими.

Преимущества и недостатки

Среди главных положительных качеств выделяют:

  1. Низкий уровень энергопотребления.
  2. Колоссальная светоотдача.
  3. Экологичность.
  4. Продолжительный срок службы.

Высокая стоимость – главный недостаток, который мешает сделать такие лампочки распространёнными и доступными для каждого. Стоит выделить и другие отрицательные качества, которые могут стать значимыми для покупателей:

  1. Понижающие преобразователи с функцией стабилизации тока. Из-за этого изделие тоже становится дороже.
  2. Нейтральные и холодные белые цвета снижают выработку мелотонина. Это гормон, отвечающий за регулирование сна.
  3. Потеря яркости кристаллом и его деградация.

У дешёвых китайских аналогов часто страдают показатели яркости и светового потока.

Разновидности

Свечевидная форма или так называемая «кукуруза» подходит для большинства декоративных разновидностей приборов. Особенно удачными называют варианты с патронами, направленными вверх. Шарообразные, грушевидные изделия неплохо сочетаются с плафонами. Акцентное освещение помогают создать так называемые рефлекторы.

Для светодиодных ламп распространены следующие виды цоколей:

  1. E40 в случае с крупными изделиями повышенной мощности. Этот вариант актуален при организации уличного освещения.
  2. E41. Его ещё называют «миньоном». Для маломощных ламп.
  3. E27. С таким цоколем сталкивался каждый.

Есть и штырьковые модели:

  • G13 – вариант похож на линейные люминесцентные лампы. Есть поворотная разновидность.
  • GX53. Встраиваемые и накладные типы светильников с плоской широкой формой.
  • GU10. С расстоянием между контактами в 10 мм. На кончиках штырьков отличается увеличенным диаметром.
  • GU5.3. Оснащают ими популярные лампы с обозначением MR16.
  • G4 – для ламп с миниатюрными размерами.

Правильные схемы подключения к сети

Подключение во многом проходит также, как для ламп накаливания, люминисцентных аналогов. Надо просто обесточить цоколь, а затем вкрутить в него лампу. Главное во время установки избегать прикосновения к металлическим частям изделия.

Последовательный

Такой вариант соединения не всегда считается оптимальным. Количество проводов нужно минимальное, но в бытовых условиях эту схему практически не используют. Это связано с двумя серьёзными недостатками:

  1. При перегорании одной лампочки работать перестают все. Только последовательная замена приборов на всей цепи способна справиться с поиском неисправностей.
  2. На лампы подают пониженное напряжение, потому сила свечения у них – не полная. От количества соединённых лампочек зависит то, насколько эта энергия неполная.

Соединение такого типа актуально при построении гирлянд на ёлках, при большом количестве световых источников с низким показателем мощности.

Само подключение по последовательной схеме максимально простое:

  • От одного светильника к другому обходит фаза.
  • У последней лампочки в цепи ноль подают ко второму контакту.
  • Фаза проходит к выключателю, от распределительной коробки.
  • Далее всё переходит к точечному светильнику.

Нулевой провод или нейтраль подключают ко второму контакту у последнего светильника.

Для домовых подъездов практическое применение схемы тоже допустимо.

Параллельный

Для большинства случаев применяют эту схему. Потребители не пугаются даже проводов в большом количестве. Главное преимущество – в подаче одинакового напряжения ко всем осветительным приборам, участвующим в схеме. Только одна лампочка не работает после перегорания, остальные компоненты остаются нетронутыми. С поиском мест поломки не возникнет никаких проблем.

Параллельное соединение проводят двумя путями:

  1. Лучевой. Отдельный кабель соединяют с каждым из осветительных приборов. Наличие или отсутствие заземление влияет на то, будет провод трёх- или двухжильным.
  2. Шлейфная схема.

Фаза с нейтралью от щитка и выключателя переходят на первый светильник от выключателя, когда речь о последнем варианте. От светильника кусок кабеля переходит к следующей части. Потом идёт ко второй, и так далее. Каждый из компонентов соединяют с четырьмя кусками кабеля, последний элемент – исключение.

Лучевой

Вариант подключения отличается надёжностью. При перегорании одной лампочки другие не затрагиваются. Но имеются и отрицательные стороны:

  1. Кабелей нужно слишком много. Но качественное исполнение проводки позволяет смириться с таким недостатком.
  2. Одно место используют для соединения большого количества кабелей. Непросто соединить все элементы на достаточно высоком уровне качества, но решить проблему можно.

Обычная клеммная колодка – один из оптимальных вариантов для соединения. Фазу подают с одной стороны, в этом участвуют перемычки. Потом эту часть разводят по другим участкам конструкции. Провода, идущие к лампочкам, подсоединяются с другой стороны.

Такой же способ применения – у клеммников ВАГО на соответствующее число контактов. Главное – правильно выбрать модель, участвующую в параллельном соединении. Внутри всё рекомендуют заполнить пастой, защищающей от окисления.

Ещё один из приемлемых вариантов – применение скрутки всех проводников, с последующей спайкой.

Как правильно подсоединить

Все монтажные работы выполняются до того, как будет закончен сам подвесной потолок. Важно следовать выбранной схеме подключения. Место монтажа, высота установки осветительных приборов – одни из главных факторов, с которыми следует разобраться заранее.

Количество светильников тоже считают заранее. Надо учесть, что в некоторых случаях возникает необходимость в трансформаторе. Провода к местам монтажа подключают заранее. Чтобы не было контакта с каркасными подвесными конструкциями – для проводов берут гофрированные трубки. Для каждой ситуации разрабатывают отдельную схему.

Установка по простой схеме

Обычная схема предполагает последовательное подключение всех проводников. Токоограничивающий резистор необходим, если соединение выбрано параллельное. Лучше обратиться к электрикам с достаточно высокой квалификацией для таких работ, как сборка и установка светильников, прокладка электропроводов с достаточным сечением.

Общая схема действий выглядит следующим образом:

  1. Обесточивание электрической сети.
  2. Укомплектовать прибор блоком питания. Или использовать обычную деталь, если все характеристики подходят.
  3. Проверка типа цоколей.
  4. Проверить наличие термоколец, препятствующих перегреву в системе. Нужно убедиться в том, что для вентиляции хватает пространства.
  5. Строгое соблюдение полярности.

С дополнительной защитой

Назначение прибора влияет на то, какой класс защиты выбирать для конкретного случая:

  1. Фильтрация помех с высокими частотами, защита от дифференциальных перенапряжений, от остаточных бросков по этому показателю. Устанавливаются средства защиты рядом с потребителем.
  2. Для токораспределительной сети у объекта, от коммутационных помех. Элемент играет роль второй ступени, когда ударяет молния. Место монтажа – внутри распределительных щитов.
  3. Чтобы в защитную систему дома прямо не попадали молнии. Место монтажа – ввод в здание, внутри устройств по распределению. Главный распределительный щит для этого тоже допускается использовать.

Обычно устройства защиты снабжаются специальной разновидностью модуля, легко заменяемому при необходимости. Монтаж таких приспособлений продлевает срок эксплуатации всей системы.

С активным ограничителем тока

Элементом, ограничивающим ток, для этой схемы будет выступать резистор R1. Показатель коэффициента мощности в данном случае приближается к единице. Схема имеет один минус – у резистора тепло рассеивается в больших количествах.

Резистор R2 применяют для разрядки остаточного напряжения.

Как посчитать необходимое количество ламп?

Уровень освещённости подбирают индивидуально у каждой из комнат. Всё зависит от назначения помещения. Максимальная яркость нужна там, где постоянно читают или пишут. Для коридора этот показатель будет на порядок ниже.

Для измерения светового потока одной лампы уровень освещённости перемножают с площадью комнаты, а потом делят на количество ламп.

Расчёт на квадратный метр выглядит несколько иначе. Количество ламп перемножают со световым потоком, результат делят на площадь освещения. От типа монтажа зависит, сколько оборудования нужно в том или ином случае. При установке в обычную люстру опираются на уровень интенсивности света.

Эффективный угол света для светодиодов составит примерно 120 градусов. Главное – так рассчитать количество светильников, чтобы свет в итоге оказался равномерным.

Как происходит крепление к потолку: монтаж

Во время монтажа пользуются такими инструментами:

  1. Клеммники.
  2. Пассатижи.
  3. Строительный нож.
  4. Отвёртка.
  5. Кабель с достаточной длиной.
  6. Распределительные коробы.
  7. Дрель.

Установка ЛЕД ламп: схема включения

Любое количество встроенных светильников с лампами предполагает применение негорючего кабеля ВВГ нг 2*1,5. Допустим вариант 3*1,5. Проводка с заземлением требует применения трёхжильного провода.

При использовании схем важно запомнить, что за чем идёт.

Необходимый инструмент для включения в сеть

Распределительные коробки, провода и гофра – основные приспособления, которые применяются во время монтажа в таких ситуациях. Расположение и конфигурацию каждого светильника продумывают ещё на этапе проектирования.

Выбор провода

Стандартно рекомендуют для всех отрезков выбирать исключительно медную продукцию. Лучше пропаять и изолировать изделия, если на них встречаются скрутки первоначально. К каждому из светильников важно подвести отдельный гибкий провод. Медные гильзы или специальный «клеммник» помогают соединить элементы вместе. В последнем случае потом для изоляции используют ленту.

Разметка и прокладка кабеля

На этом этапе тоже нужно выполнить несколько действий.

  • Планирование общего пространства.

Потолки на нескольких уровнях предполагают выделение освещения по отдельным контурам. Для каждого из них управление организуется отдельным выключателем на 220 В. Надо заранее точно проработать монтажную схему.

  • Протяжка кабелей, их закрепление.

Для крепления рекомендуют выбирать металлические профили. Конструкция увеличивает надёжность благодаря стяжкам из пластмассы. Специальные петли формируют на местах, где крепятся световые точки. Их легко зацепить, достать через отверстия на потолке. Небольшое провисание таких компонентов вполне допустимо.

После монтажа потолочной поверхности схема крепления должна приобретать окончательный вид. По центру панелей лучше располагать светильники, когда речь идёт об алюминии, пластике. Дрель и специальная насадка под названием «коронка» помогут создать подходящие отверстия.

Что нужно знать о безопасности при закреплении на потолке?

Здесь специалисты дают несколько важных рекомендаций:

  1. Светодиоды сильно греются. Потому применяют специальные радиаторы, отвечающие за охлаждение.
  2. Контакт и отвод тепла улучшается благодаря специальной термопасте на месте соединения между двумя важными элементами.
  3. При установке важно проследить за тем, чтобы вокруг радиаторов было свободное место, не замкнутое. Иначе светодиоды выйдут из строя раньше времени.

Возле нагревающихся приборов монтировать светильники тоже запрещается.

Специальные регуляторы и лампочки с функцией диммирования понадобятся тем, кому интересно регулировать уровень яркости, освещения. Доступность ламп для замены – важный фактор при выборе подходящих моделей.

Где можно повесить светодиодный светильник?

Натяжные и подвесные потолочные конструкции – вот вместе с какими изделиями чаще всего используются точечные светодиодные светильники. Устройства могут располагаться по центру или по бокам. Здесь каждый покупатель выбирает вариант, который лучше всего отвечает текущим условиям эксплуатации.

Установка диодных светильников на натяжном потолке

Протяжка и закрепление отдельного кабеля нужны везде, где будут сами светильники. Монтаж натяжного потолка проводят после подготовительных работ. Работы проводят в таком порядке:

  1. В местах, намеченных ранее, монтируют профиль с круглой формой.
  2. Светильник потом вставляют в отверстие, прорезаемое в полотне.
  3. Выставление крепёжных стоек на одном уровне с полотном.
  4. Проводники выходят наружу через те же отверстия.
  5. На корпус светильника одевают термоизоляционное кольцо перед завершением установки.

Предложенный алгоритм подходит и для работы в помещениях вроде ванной комнаты.

Монтаж светильников на потолке из гипсокартона

Чтобы завершить монтаж светильников, достаточно сжать боковые распорочные пружины, завести корпус в отверстие, подготовленное заранее. Светильник без проблем правильно уходит в потолочную нишу при грамотном подборе диаметров. Главное – чтобы провода не оказались перегнутыми.

Для предварительного сжатия пружин запрещено использовать верёвки и куски проводов. Идеальный вариант – когда корпус свободно проходит через отверстие. Тогда потом проще будет демонтировать изделие, если возникнет необходимость.

Правила техники безопасности при подключении к сети

Основные советы уже были перечислены ранее. Главное – проводить любые работы по монтажу и демонтажу при отключенной сети питания. И внимательно проверять работу проводки перед началом эксплуатации.

Основные причины поломки

Гораздо проще исключить негативные факторы, из-за которых невозможна стабильная работа аппарата. Лучше сэкономить сегодня, чем тратить лишние деньги завтра. Но с некоторыми проблемами можно справиться.

Не работают светодиоды

Подпалины или чёрные точки на этих элементах точно говорят о том, что прибор вышел из строя. Тогда достаточно заменить деталь на новую, после чего – проверить работоспособность конструкции.

Вот самые распространённые проблемы:

  1. Повреждённый элемент.
  2. Неправильно отключенный свет.
  3. Кратковременные виды мерцания.
  4. Периодичное отсутствие освещение.
  5. Полное отсутствие свечения.

Причина поломок кроется во внутренних, либо внешних факторах. В большинстве случаев проблему решают заменой одного элемента на другой.

Диодный мост

Диодный мост может оказаться неисправным по следующим причинам:

  • Внешние воздействия.
  • Неправильная эксплуатация.
  • Неисправный аккумулятор, низкая плотность электролитов.

Для замены детали лучше обратиться к профессионалу. При возможности покупается новая деталь.

Плохая пайка

Иногда в изделиях некачественно пропаиваются края. Из-за этого отвод тепла происходит недостаточно интенсивно. Со временем это становится причиной перегрева в проводнике. Перегрев, короткие замыкания приводят к выходу устройства из строя. Решение – разбор корпуса. При возможности – сгоревшие элементы заменяются на новые, не обязательно приобретать весь корпус целиком.

Светодиодные лампочки давно признаны одним из самых практичных источников освещения. Высокая цена по сравнению с аналогами – единственный недостаток изделий. Но приборы полностью отрабатывают затраты благодаря высокой надёжности. Потому их выбирает всё большее число покупателей.

Полезное видео

Как подключить светодиод к 220В

Светодиод – полупроводниковый прибор, преобразующий электрический ток в видимый свет. Различают осветительные и индикаторные устройства. Они обладают разной мощностью, допустимой силой тока, напряжением, яркостью. Можно подключить светодиод к 220В, к 110В, к 1,5В, но только через устройство, ограничивающее электрический ток.

Особенности подключения светодиодного светильника к 220В

Принцип работы светодиодного светильника заметно отличается от всех остальных приборов такого рода устройств. Свет в данном случае генерирует полупроводниковый кристалл. Тело накаливания, как в других лампах, здесь попросту отсутствует, так как в полупроводнике электрический ток непосредственно преображается в световое излучение. Такое устройство не нагревается, генерирует световое излучение точно указанной световой температуры и отличается долговечностью.

Однако светодиод 220 Вольт или другой мощности работает только при пропускании тока в прямом направлении. То есть для такого светильника требуется постоянный ток с напряжением в 4–12 Вольт. Соответственно, непосредственно в бытовую электрическую сеть включить светодиод в 220В нельзя.

Важно! Большинство современных осветительных приборов оборудуются драйверами, позволяющими работать от сети с напряжением в 110–220 Вольт. В противном случае при подключении требуется сначала установить приспособления, выпрямляющие ток.

Правила безопасности при подключении

Техника безопасности в данном случае сводится не столько к предупреждению угрозы для здоровья, сколько к предотвращению поломки приборов и короткого замыкания. Рекомендации просты:

  • не допускается прямое подключение светодиодных ламп к сети с переменным током и напряжением в 220В;
  • прежде чем подключать любой вариант светильника, необходимо изучить технические характеристики;
  • следует определить катод и анод у светодиода, как правило, длинная ножка выступает плюсом, то есть является анодом, а короткая, соответственно, катодом;
  • необходимо рассчитать схему подключения светодиода к сети в 220В с учетом напряжения;
  • эффективную работу прибора обеспечивает блок питания или драйвер с оптимальной мощностью;
  • перед подключением обязательно определяют полярность светодиода;
  • рекомендуется разделять резисторы на 2 части, чтобы снизить риск поражения током;
  • необходимо тестировать конструкцию – включить и замерить уровень потребляемого тока в 220В.

Наиболее экономичным и простым решением проблемы является монтаж диммируемых устройств. Здесь достаточно определить мощность прибора.

Схемы подключения светодиода к 220В

Полупроводник пропускает ток только в одном направлении. Однако в сети в 220В имеется переменный ток, где с частотой в 50 Гц направление тока меняется. Чтобы компенсировать этот эффект и подключить светодиодную лампу, требуется выпрямитель какого-либо типа, способный погасить обратное напряжение.

В таком качестве выступает резистор, конденсатор, выпрямительный мост. Соответственно, подключить светодиод к сети в 220 Вольт можно несколькими способами. Чаще всего в быту используется схема с резистором, поскольку такой способ прост в монтаже и доступен по стоимости.

Как подключить светодиодный светильник последовательным способом

Такое подсоединение выполняется очень легко и вполне годится для бытовых светодиодных приборов и сети в 220 Вольт.

  1. Для начала рассчитывают требуемую мощность резистора и учитывают необходимость в защите от обратного напряжения. Теоретически при подсоединении светодиода, мощностью, например, в 3 Вольта, «избыток» в 217 Вольт оседает на резисторе. Однако на деле обратная полуволна в этом случае подается на светодиод, а не на резистор, а так как обратное напряжение у полупроводников невелико – до 30 Вольт, прибор быстро выходит из строя.
  2. Все элементы цепи – резистор, диод защиты и светодиод подключаются последовательно.

Важно! В схеме следует установить резистор мощностью не менее 2 Вт, так как устройство здесь заметно нагревается.

Как подключить светодиодный светильник к 220В параллельным способом

Подсоединить светодиодный светильник можно и параллельно. Такая схема более надежна, хотя не исключает эффект мерцания.

  1. Индикаторный диод подключают параллельно светодиоду. Диод должен иметь обратное включение. При первой полуволне работает индикаторный диод, при второй – светодиод. Напряжение, падающее на последний, не превышает 1 Вольт, что делает такую схему более долговечной.
  2. Мощность резистора и здесь должна быть избыточной – он нагревается.

Снизить эффект мерцания позволяет параллельная установка 2 светодиодов. При подсоединении к сети в 220В при одной полуволне включается 1 светодиод, при второй – параллельный ему. При таком расположении оба элемента в нужной степени защищены от избыточного обратного напряжения.

Важно! Окончательно от эффекта мерцания и в этом случае избавиться нельзя.

Схема включения светодиода в сеть 220 вольт лучевым соединением

Запитать светодиод от сети 220В таким способом – лучший вариант, так как метод предупреждает излишний нагрев всех деталей цепи и исключает заметные для глаза мерцания. Кроме того, цепь, включающая конденсатор, потребляет меньше тока. Минус схемы – подключение светодиодных ламп требует больше времени и подразумевает цепь из большого количества элементов.

  1. Вместо резистора основную нагрузку по выпрямлению тока берет на себя конденсатор. Использовать необходимо пленочное устройство – электролит не годится. Рассчитано на напряжение как минимум в 250 Вольт, а лучше в 400 Вольт.
  2. Параллельно конденсатору в цепь включают резистор. Его задача – разряд конденсатора после того, как светильник отключают от сети в 220 Вольт.
  3. Параллельно светодиоду подсоединяют диодный мост – его можно приобрести готовым, а можно самостоятельно сделать из 4 диодов с подходящими характеристиками. Максимальная сила тока моста должна быть выше, чем аналогичный показатель у светодиода. Возможное обратное напряжение – не менее 400 Вольт. Мост подсоединяется в обратном направлении по сравнению со светодиодным элементом.
  4. Последовательно конденсатору в цепь вставляют еще один резистор – токоограничительный. Его цель – защитить схему от случайных скачков напряжения в сети на 220 Вольт.

В такой схеме все элементы нагреваются незначительно, что обеспечивает высокую долговечность и надежность.

Схема шунтирования светодиода обычным диодом

Необходимость шунтирования доказана практикой. Теоретическая схема подключения светодиода без дополнительного элемента оказывается несостоятельной.

Рабочая схема включает индикаторный обычный диод с той же полярностью, что и светодиодное устройство. При этом излишне высокое напряжение обратной волны оседает на диодном элементе, а остаточное напряжение светодиод пробить уже не может. Диод монтируют между резистором и светодиодом.

Расчет гасящего конденсатора для светодиода

Подключение светодиодных светильников даже по самой удачной схеме выполняется после расчета характеристик резистора, дополнительных диодов, и, конечно, конденсатора. Емкость последнего вычисляют следующим образом.

Допустим, частота сети составляет обычные 50 Гц. Необходимо подсоединить светодиод в 20 мА, на который припадает 2 В. Необходимый коэффициент пульсаций составляет 2,5%.

  1. Светодиод представляют как простой резистор. Коэффициент пульсаций разрешается заменить напряжением на конденсаторе. Получается следующее: Кп = (Umax — Umin) / (Umax + Umin) ⋅ 100%, где после подстановки данных получают 2.5% = (2В — Umin) / (2В + Umin) ⋅ 100% => Umin = 1.9В.
  2. Используя типичную осциллограмму напряжения, можно вычислить время заряда конденсатора. tзар = arccos(Umin/Umax) / 2πf = arccos (1.9/2) / (2⋅1415⋅50) = 0.0010108 с. Остальной промежуток времени конденсатор разряжается. Так как в стандартной схеме используется двухполупериодный выпрямитель, этот показатель уменьшают вдвое.
  3. Затем вычисляют емкость по формуле и получают C = ILED ⋅ dt/dU = 0.02 ⋅008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ).

На деле ради 1 светодиодного светильника такой мощный конденсатор не устанавливают. Чтобы модифицировать схему, вместо обычного резистора в схему включают реактивное сопротивление – второй конденсатор.

Как подключить светодиодную ленту на 220 вольт

Нередко в быту вместо крупного прибора, который может выступать светильником, предпочитают установить подсветку. Для нее лучше всего использовать готовые светодиодные ленты. Монтаж очень прост, так как установщику нужно лишь следовать инструкции: все составляющие подсоединения при монтаже используют уже в готовом виде.

  1. Светодиодная лента – ряд последовательно закрепленных светодиодов. К блоку питания они присоединяются параллельно, друг к другу лучше монтировать платы тоже параллельно.
  2. Для начала определяют плюс и минус блок питания. Обычно красный шнур – это плюс, а синий или черный – минус. Если шнур отсутствует, подключение производят через маркированные зажимы.
  3. Лучше всего подсоединить ленту пайкой. В определенных случаях удобней использовать коннекторы. При монтаже требуется лишь отодвинуть зажимную пластину, насадить коннектор на край ленты и сдвинуть зажим назад. Затем провод от коннектора подсоединяют к блоку.

Если предполагается монтаж цветной ленты, схема будет включать контроллер, отвечающей за включение и отключение отдельных светодиодов.

Заключение

Подключить светодиод к 220В можно лишь с помощью дополнительных устройств. Схема подсоединения может включать резисторы, конденсаторы, выпрямительные мосты. Задача таких элементов – выпрямить переменный ток и предотвратить действие обратной волны напряжения на светодиод.

Отправить комментарий

electric - Как я могу преобразовать схему освещения с 220 вольт на 110 вольт?

Примечание. Предполагается, что вы находитесь в США или в регионе, который соответствует электрическим стандартам США. Если вы находитесь в другом месте, это может быть совершенно неверно.

Необходимо подключить горячий , нейтральный , заземляющий . В настоящее время у вас есть второй hot вместо нейтральный .

Загвоздка в том, что для этого нужно переместить провод у панели. Предполагая, что у вас «нормальная» проводка, у вас должен быть белый провод для нейтрали, зеленый или неизолированный провод для заземления и какой-либо другой цвет, обычно черный для горячего.

Если кабель от панели к приспособлению черный / белый / зеленый или голый, вам необходимо переместить белый цвет от горячего соединения к нейтральной полосе. ПРЕДУПРЕЖДЕНИЕ: Если вы никогда раньше не работали внутри панели выключателя, то, вероятно, это НЕ , чтобы сделать это самостоятельно.

Если кабель от панели черный / красный / зеленый или оголенный (т.е. предназначен для цепи 240 В без нейтрали), то кабель следует переключить на кабель с белым проводом.

Если кабель от панели черный / красный / белый / зеленый или оголенный (например, для плиты, сушилки или другой цепи), тогда у вас должно быть уже с нейтралью в кабеле (белый провод) и проводами. были неправильно подключены к панели или к приспособлению - белый цвет должен быть нейтральным на обоих концах.

Моя личная рекомендация (я не электрик) - нанять для этого электрика. Но, вероятно, - это другой электрик , потому что, хотя это должно быть «вы напортачили, вы исправите это», я бы побеспокоился, что, если они испортят такую ​​основную вещь, что им действительно нельзя доверять, чтобы исправить это должным образом. В частности, комментарий, сделанный кем-то еще о «подключении к источнику 110 В переменного тока и заземлению», немного пугает: это заставит свет работать правильно, но будет абсолютно нарушать код и будет небезопасно.Если бы ваш "электрик" решил что-то вроде этого, я бы сильно забеспокоился ...

Трехпроводное соединение на 240 В (разделенная фаза) Проводка байпаса балласта

Трехпроводное соединение на 240 В (разделенная фаза) Подключение байпаса балласта

Итак, вы пытаетесь перейти на светодиодные фонари с напряжением 240 В, но теперь у вас есть 2 провода под напряжением и нейтраль / земля. из здания. Как это вообще работает? Где мое возвращение? К чему я подключаюсь? У нас есть для вас несколько ответов.

Что такое разделенная фаза 240 В переменного тока?

В США для 120 и 277 вольт используются 3 классических провода.Горячий, нейтральный и заземленный. Это электричество, о котором нас всех учат. 240vac (v = -volt, ac = переменный ток) бросает вам вызов. В нем используются 2 провода под напряжением по 120 В каждый, которые чередуются с плюсом, чтобы генерировать полные 240 В, и заземление, которое действует как нейтраль (а не обычная нейтраль, как будто это вас не смущает). Объединив 2 провода по 120 В, вы получите 240 В переменного тока. Мы избавим вас от технических подробностей о 240v, его преимуществах и недостатках, но Википедия хорошо объясняет это, отправляйтесь туда.Мы собираемся сосредоточиться на выполнении работы и установке светодиодных лампочек, огней парковки и т. Д.

Черный, красный и зеленый провод? Черный, черный и зеленый (или другой случайный цвет)?

Да, в настройке с разделенной фазой у вас обычно черный = горячий, красный = горячий и зеленый = нейтраль / земля. Иногда вы видите два горячих провода, оба как черные. Итак, это черный = горячий, черный = горячий и зеленый (или что угодно) = нейтральный / заземленный, но это менее распространено.

Есть балласт, как подключить 240 В переменного тока к розетке или драйверу светодиода?

Да, в большинстве случаев при дооснащении светодиодными лампами вам придется обходить балласт и подсоединять провод прямо к розетке.Это связано с тем, что для ламп с более высоким световым потоком, таких как галогенид металла, HID или CFL, для правильной работы требуется балласт. Светодиоды используют драйвер, а не балласт. Если вы заменяете лампу накаливания, в этом нет необходимости. Хорошая новость в том, что перенастройку выполнить несложно. Вы буквально вырезаете балласт из системы и выбрасываете. Затем возьмем эти провода и подключим к розетке или драйверу.

Как подключить трехпроводную розетку на 240 В?

Мы рекомендуем одно и то же, будь то классическая лампа E26 или более крупная лампа Mogul E39.Красный провод считается горячим, а черный - нейтральным. Подключите их прямо к розетке. Теоретически у вас действительно будет 120 В на розетку, а не полные 240 В, но это нормально для светодиодов.

Разве он не работает лучше на 240в или 277в?

Нет, на светодиоды пофиг. В отличие от металлогалогенидов, которые лучше работали с большим количеством сока и даже требовали настройки импульсного запуска для оптимальной производительности, светодиодам это просто не нужно. Фактически, драйвер LED внутри LED Corn Buulbs понижает мощность с переменного на постоянный ток для каждого из светодиодов.

Что делать, если есть отдельный драйвер? Или просто провода с коричневой, синей и желтой полосой?

Если вы модернизируете не патрон лампочки, а целый светодиодный светильник для высоких пролетов или светодиодный комплект для модернизации с драйвером, вы делаете то же самое. Соедините красный с коричневым и черный с синим. Если они используют американскую проводку вместо международной, то ее красный к черному и черный к белому. Земля всегда одна и та же.

Как выглядит проводка?

Вот технический;

Схема тестирования светодиодов | УЧИТЬСЯ.PARALLAX.COM

Детали тестовой схемы светодиодов

(2) светодиода - красный
(2) резистора, 220 Ом (красно-красно-коричневый)
(3) перемычки

Всегда отключайте питание от вашей платы перед сборкой или модифицируя схемы!
1. Установите переключатель питания BOE Shield в положение 0.
2. Отсоедините кабель программирования и аккумуляторную батарею.

Контрольные схемы светодиодов

На изображении ниже показана схема светодиодной схемы индикатора слева и пример схемы подключения схемы, построенной на участке прототипирования вашего BOE Shield справа.

  • Постройте схему, показанную ниже. Если вы новичок в построении электрических цепей, постарайтесь точно следовать схеме подключения.
  • Убедитесь, что выводы катода вашего светодиода подключены к GND. Помните, что катодные выводы - это более короткие контакты, которые находятся ближе к плоской поверхности на пластиковом корпусе светодиода. Каждый катодный вывод должен быть вставлен в тот же 5-контактный ряд, что и провода, идущие к гнездам GND.
  • Убедитесь, что каждый более длинный анодный вывод подключен к тому же 5-контактному ряду, что и вывод резистора.

Следующее изображение даст вам представление о том, что происходит, когда вы программируете Arduino для управления схемой светодиода. Представьте, что у вас есть батарея на 5 В (5 В). У Board of Education Shield есть устройство, называемое регулятором напряжения, которое подает 5 вольт на розетки с маркировкой 5V. Когда вы подключаете анодный конец цепи светодиода к 5 В, это похоже на подключение его к положительной клемме 5-вольтовой батареи. Когда вы подключаете цепь к GND, это похоже на подключение к отрицательной клемме 5-вольтовой батареи.

На левой стороне изображения один вывод светодиода подключен к 5 В, а другой - к GND. Таким образом, электрическое давление 5 В заставляет электроны проходить через цепь (электрический ток), и этот ток заставляет светодиод излучать свет. Схема на правой стороне имеет оба конца цепи светодиода, подключенные к GND. Это делает напряжение одинаковым (0 В) на обоих концах цепи. Нет электрического давления = нет тока = нет света.

Вы можете подключить светодиод к цифровому выводу ввода / вывода и запрограммировать Arduino на изменение выходного напряжения вывода между 5 В и GND.Это включит / выключит светодиодный индикатор, и этим мы займемся дальше.

Вольт сокращенно В .
Когда вы прикладываете напряжение к цепи, это похоже на электрическое давление. Условно 5 В означает «на 5 В выше заземления». Земля, часто обозначаемая аббревиатурой GND, считается 0 В.

Земля обозначается сокращенно GND.
Термин заземление возник в электрических системах, где это соединение на самом деле представляет собой металлический стержень, вбитый в землю.В портативных электронных устройствах заземление обычно используется для обозначения соединений, которые идут к отрицательной клемме источника питания батареи.

Ток означает скорость, с которой электроны проходят через цепь.
Вы часто будете видеть измерения тока, выраженные в ампер , сокращенно A. Используемые здесь токи измеряются в тысячных долях ампера или миллиампер . Например, через схему, показанную выше, проходит 10,3 мА.

Могу ли я сэкономить деньги, используя светодиодные лампы для выращивания растений на 220/240 В вместо 110 В?

Распространенное заблуждение относительно светодиодных светильников для выращивания растений состоит в том, что их использование на 220 или 240 В позволит сэкономить на счете за электроэнергию.Использование ламп для выращивания растений на 220/240 В не снизит мощность и не сэкономит денег на счетах за электроэнергию.

Работа при 220/240 В снизит силу тока примерно наполовину, но потребляемая мощность останется прежней.

Закон Ома утверждает, что V = I * R, а формула мощности утверждает, что P = I * V.

В - напряжение (вольт) количество доступной электроэнергии

I - ток (амперы) количество электричества, проходящего через провод

R - сопротивление (Ом), способность материала сопротивляться току

P - мощность (ватт) сколько работы выполняет электричество

Следовательно, удвоение напряжения (В-вольт) уменьшит ток (I-ампер) вдвое, но потребляемая мощность (P-ватт) останется прежней.Количество потребляемой электроэнергии, измеряемое в ваттах, будет одинаковым при 110 В или 220 В. Коммунальная компания не взимает плату за силу тока, они взимают плату за мощность, поэтому на счетах за электроэнергию не будет экономии при работе от сети 220 В.

Пример - Закон Ома для светодиодных ламп для выращивания

G8-900 Светильник для выращивания овощей / цветов

P = I * V

Энергопотребление - 540 Вт (0,544 кВт)

при 110 / 120В ток (I) равен 4.6 А

При 220/240 В ток (I) составляет 2,3 А

Количество потребляемой мощности, измеренное в ваттах, одинаково в обоих случаях - 540 Вт (0,544 кВт) в час.

В чем преимущество работы от сети 220В?

Преимущество работы при 220 В состоит в том, что сила тока будет вдвое меньше, а это означает, что вы можете подключить к цепи больше устройств. Хотя вы не сэкономите на электроэнергии, использование более высокого напряжения для работы оборудования в некоторых случаях может быть выгодным.Одна из основных причин использования 240-вольтного питания - недостаточная электрическая сила тока для работы всего оборудования при более низком напряжении.

Цепь ограничена автоматическими выключателями в электрической панели для предотвращения перегрева проводов и возникновения пожара. Автоматические выключатели регулируют силу тока, которая может протекать через цепь, независимо от напряжения. При более низкой силе тока к данной комнате для выращивания можно подключить больше источников света. Однако помните, что ваш счет за электроэнергию рассчитывается по потребляемым ваттам, а не по напряжению или силе тока.

Резистор для светодиода | Применение резистора

Резисторы в схемах светоизлучающих диодов (LED)

Светодиод (светоизлучающий диод) излучает свет, когда через него проходит электрический ток. Самая простая схема для питания светодиода - это источник напряжения с последовательно соединенными резистором и светодиодом. Такой резистор часто называют балластным резистором. Балластный резистор используется для ограничения тока через светодиод и предотвращения его возгорания. Если источник напряжения равен падению напряжения светодиода, резистор не требуется.Сопротивление балластного резистора легко рассчитать по закону Ома и по законам Кирхгофа. Номинальное напряжение светодиода вычитается из источника напряжения и затем делится на желаемый рабочий ток светодиода:

Где V - источник напряжения, V LED - напряжение светодиода, а I - ток светодиода. Таким образом, вы сможете подобрать подходящий резистор для светодиода.

светодиода также доступны в интегрированном корпусе с резистором, подходящим для работы светодиода.Эту простую схему можно использовать в качестве индикатора включения DVD-плеера или монитора компьютера. Хотя эта простая схема широко используется в бытовой электронике, она не очень эффективна, поскольку избыток энергии источника напряжения рассеивается балластным резистором. Поэтому иногда применяются более сложные схемы с большей энергоэффективностью.

Пример простой светодиодной схемы

В следующем примере светодиод с напряжением 2 вольта и силой тока 20 миллиампер должен быть подключен к источнику питания 12 вольт.Балластный резистор можно рассчитать по формуле:

Резистор должен иметь сопротивление 333 Ом. Если точное значение недоступно, выберите следующее значение, которое выше.

Светодиод в последовательной цепи

Часто несколько светодиодов подключаются к одному источнику напряжения последовательным соединением. Таким образом, несколько резисторов могут использовать один и тот же ток. Поскольку ток через все последовательно соединенные светодиоды одинаков, они должны быть одного типа.Обратите внимание, что для освещения одного светодиода в этой цепи требуется столько же энергии, сколько для нескольких последовательно соединенных светодиодов. Источник напряжения должен обеспечивать достаточно большое напряжение для суммы падений напряжения светодиодов и резистора. Обычно напряжение источника на 50 процентов выше суммы напряжений светодиодов. Напротив, иногда выбирается источник более низкого напряжения. В этой стратегии более низкая яркость компенсируется большим количеством светодиодов. Кроме того, снижаются тепловые потери, а светодиоды имеют более длительный срок службы из-за меньшей нагрузки.

Пример серии светодиодов

В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и синий светодиод с 4,5 вольт. Оба имеют номинальную силу тока 30 мА. Согласно законам Кирхгофа, сумма падений напряжения в цепи равна нулю. Следовательно, напряжение резистора должно быть равно напряжению источника за вычетом суммы падений напряжения светодиодов. По закону Ома рассчитываем значение сопротивления балластного резистора:

Сопротивление резистора должно быть не менее 183.3 Ом. Учтите, что падение напряжения составляет 5,5 вольт. Можно было бы подключить в схему дополнительные светодиоды.

Светодиод в параллельной цепи

Можно подключить светодиоды параллельно, но это создает больше проблем, чем последовательные цепи. Прямые напряжения светодиодов должны точно совпадать, в противном случае загорится только светодиод с самым низким напряжением и, возможно, сгорит от большего тока. Даже если светодиоды имеют одинаковую спецификацию, они могут иметь плохие согласованные ВАХ из-за различий в производственном процессе.Это заставляет светодиоды пропускать другой ток. Чтобы минимизировать разницу в токе, параллельно включенные светодиоды обычно имеют балластный резистор для каждой ветви.

Как работает светодиод?

Светодиод (Light Emitting Diode) - полупроводниковый прибор; По сути, это соединение P-N с выводами, прикрепленными к каждой стороне. Идеальный диод имеет нулевое сопротивление при прямом смещении и бесконечное сопротивление при обратном смещении. Однако в реальных диодах на диоде должно быть небольшое напряжение, чтобы он проводил.Это напряжение наряду с другими характеристиками определяется материалами и конструкцией диода. Когда напряжение прямого смещения становится достаточно большим, избыточные электроны с одной стороны перехода начинают объединяться с дырками с другой стороны. Когда это происходит, электроны переходят в менее энергичное состояние и выделяют энергию. В светодиодах эта энергия выделяется в виде фотонов. Материалы, из которых изготовлен светодиод, определяют длину волны и, следовательно, цвет излучаемого света.Первые светодиоды были сделаны из арсенида галлия и излучали красный свет. Сегодня светодиоды могут быть изготовлены из самых разных материалов и могут излучать разные цвета. Напряжение варьируется от примерно 1,6 В для красных светодиодов до примерно 4,4 В для ультрафиолетовых. Знание правильного напряжения важно, потому что приложение слишком большого напряжения на диоде может вызвать больший ток, чем светодиод может безопасно выдержать.


Светодиоды сегодня выпускаются малой и большой мощности. Светодиоды обычно выделяют меньше тепла и потребляют меньше энергии, чем лампы накаливания такой же яркости.Они служат дольше, чем аналогичные лампочки. Светодиоды используются в широком спектре осветительных и светочувствительных приложений.

Использование светодиодов в качестве фотодиодов

В качестве фотодиодов можно использовать

светодиода. Фотодиоды - это полупроводники, которые ведут себя противоположно светодиодам. В то время как светодиод будет излучать свет, когда он проводит, фотодиод будет генерировать ток при воздействии света с правильной длиной волны. Светодиод будет проявлять эту характеристику при воздействии света с длиной волны ниже его нормальной рабочей длины волны.Это позволяет использовать светодиоды в таких схемах, как датчики света и оптоволоконные цепи связи.

Светодиодный символ

Все, что вам нужно знать о напряжении для вашей осветительной установки

На ваши вопросы о напряжении, электропитании и установке светильников (растительного света) ответит наша команда опытных светотехников.

Какое напряжение лучше всего подходит для моего приложения?

Мы рекомендуем использовать самое высокое напряжение, доступное на вашем предприятии, которое также будет наиболее эффективным.Используя более высокое напряжение для вашего приложения, вы можете снизить потери в драйвере и проводнике и повысить эффективность.

См. Наши спецификации светильников для получения информации о соотношении между напряжением, мощностью и силой тока.

Какое напряжение у меня в доме?

Поскольку существует так много комбинаций напряжений полей, необходим опытный электрик, чтобы оценить ваш конкретный объект / объект, чтобы определить, что у вас есть.Наиболее распространенные напряжения будут:

Однофазный:

3 фазы:

  • 208/120 В
  • 480/277 В (наиболее распространено в США)
  • 600/347 В (наиболее распространено в Канаде)
  • 400 В (специальные приложения)

С указанными выше источниками питания какое напряжение я могу использовать для работы моих светильников?

Как только вы узнаете, какое напряжение у вас в здании, вы можете двигаться дальше, решая, какое напряжение использовать для питания ваших светильников (растительного света).Если вы хотите установить определенное напряжение, можно использовать трансформаторы для подачи напряжения, которое в настоящее время не установлено на вашем предприятии. Мы всегда рекомендуем поговорить с электриком, прежде чем решить, какое напряжение использовать для работы ваших светильников.

С помощью электрика и в зависимости от имеющегося у вас напряжения на вашем предприятии вы можете использовать следующие напряжения для питания ваших светильников:

  • 120 В / 240 В
  • 120 В / 208 В
  • 277В
  • 347V
  • 400 В
  • 480 В

Обратите внимание, что не все модели светильников доступны для всех напряжений.Пожалуйста, обратитесь к спецификациям светильников для получения дополнительной информации или поговорите с одним из наших специалистов по освещению. Кроме того, наличие у вас трехфазного питания не означает, что у вас есть доступ к напряжениям, которые можно использовать с нашими светильниками - обратитесь к местному электрику за дополнительной информацией.

В чем разница между однофазным и трехфазным питанием?

Трехфазное питание:

  • Имеет три провода (или линии) под напряжением и, возможно, один нейтральный провод.
  • В основном поставляются на коммерческие и промышленные объекты
  • Обычно это 480/277 В или 600/347 В
    • Это также зависит от конструкции вашего предприятия и используемых трансформаторов

Однофазное питание:

  • Имеет два провода (или линии) под напряжением и один нейтральный провод.
  • Обычно поставляется в жилые или небольшие коммерческие объекты
  • Обычно это 120/240 В в Северной Америке

В чем разница между однофазной нагрузкой и трехфазной нагрузкой?

3-фазная нагрузка:

  • Некоторое оборудование, такое как двигатели или вентиляторы, требует подключения ко всем трем линиям от трехфазного источника питания.
  • Это оборудование классифицируется как «трехфазная нагрузка».
  • Для работы этого оборудования требуется трехфазный источник питания.

Однофазная нагрузка:

  • Другое оборудование, такое как светильники, требует подключения только к двум линиям или одной линии и нейтрали.
  • Это оборудование классифицируется как «однофазная нагрузка».
  • Это оборудование может питаться от «однофазного источника питания» или «трехфазного источника питания».

В чем разница между «линейным напряжением» и «линейным напряжением»?

Как однофазные, так и трехфазные источники питания могут быть сконфигурированы так, чтобы однофазные нагрузки получали либо «линейное напряжение», либо «линейное напряжение».

В однофазной системе питания более низкое напряжение (обычно 120 В) будет «линейным напряжением нейтрали», которое представляет собой напряжение между одной из линий и нейтралью. Более высокое напряжение (обычно 240 В) будет «межфазным напряжением». Оно будет в два раза больше «Напряжение от линии к нейтрали» и представляет собой напряжение, измеренное между двумя линиями.

В трехфазной системе питания нижнее напряжение (обычно 277 В или 347 В) будет «линейным напряжением нейтрали», которое представляет собой измеренное напряжение между одной из трех линий и нейтралью.Более высокое напряжение (обычно 480 В или 600 В) будет «линейным напряжением». Оно будет в 1,73 раза больше «Напряжение между фазой и нейтралью» и представляет собой напряжение между любыми двумя линиями из трех.

Могу ли я использовать однофазный светильник, если у меня трехфазное питание?

При трехфазном питании у вас есть возможность использовать все три фазы для таких нагрузок, как двигатели, вентиляторы и другое промышленное оборудование. Поскольку наши светильники работают от однофазной сети, вы можете воспользоваться преимуществами трехфазного источника питания с использованием одной или двух ветвей источника питания, чтобы обеспечить однофазное соединение между фазой и нейтралью или однофазное соединение между фазой.

Изображение ниже помогает продемонстрировать, как можно использовать однофазный источник питания через трехфазный источник питания для питания светильников, настроенных с использованием линейного напряжения и линейного напряжения.

В чем важность стабильного источника питания и каковы пагубные последствия перебоев в работе, отключения электроэнергии и т. Д.?

Пониженное напряжение - это состояние низкого напряжения, когда оно падает. Драйверы / балласты имеют диапазон напряжений, в котором они могут выдерживать определенный процент потемнений.Работа драйвера вне этого диапазона может нанести ущерб драйверу / балластам и сократить срок его службы. Важно рассмотреть возможность контроля мощности на вашем предприятии. Мониторинг качества электроэнергии и колебаний напряжения позволяет принимать корректирующие меры для улучшения качества электроэнергии.

Блэкауты - это когда питание отключается, а затем снова включается либо на мгновение, либо на длительные периоды времени. Это потенциально могло быть проблемой. Повторное включение HID-ламп более двух раз в день также может нанести вред водителю.Если на вашем предприятии часто случаются отключения электроэнергии, подумайте о том, чтобы связаться с вашим коммунальным предприятием, чтобы решить проблему (или подумайте об установке источника бесперебойного питания [ИБП] или системы генератора).

Есть ли какие-либо особые инструкции по подключению светодиодов?

Светодиодные светильники

могут быть подключены так же, как наши традиционные светильники HID, в зависимости от напряжения, необходимого для светильника (например, 120, 208, 240, 277, 347, 400). Некоторые светодиодные светильники могут выдерживать несколько напряжений, тогда как другие зависят от напряжения.Диапазон напряжения указан на этикетке продукта. Светильник с этикеткой продукта «120–240 В» принимает любое из этих трех напряжений 120, 208 или 240 и автоматически определяет подаваемое напряжение, чтобы обеспечить одинаковый выход на светодиоды независимо от входного напряжения. Светильник с этикеткой «277V» принимает только напряжение 277V. Для светодиодных светильников с функцией диммирования могут потребоваться отдельные провода управления для управления выходной мощностью светильника.

Нужно ли мне компенсировать пусковые токи светодиодных или скрытых светильников при электромонтаже на объекте?

Пусковой ток - одна из многих характеристик, которые инженер-электрик будет учитывать при проектировании электроустановки.

Есть ли пусковой ток, о котором мне нужно знать при установке автоматических выключателей для моих светильников?

Пусковой ток возникает во всех электронных устройствах из-за их электрических характеристик. Величина пускового тока зависит от конструкции электроники и нагрузки. Это значение броска тока должно быть предоставлено производителем светильника, чтобы инженер мог определить правильное электрическое оборудование для использования в установке.Инженеры-электрики выберут выключатели и другие электрические устройства, использующие бросок тока в качестве одной из многих переменных, чтобы спроектировать электрическую систему, которая будет работать правильно. Если бросок тока не учитывается при выборе и последовательности установки выключателей, может произойти ложное срабатывание и, в некоторых случаях, предохранение контактов на контакторах. При проектировании оборудования для выращивания сельскохозяйственных культур рекомендуется всегда проконсультироваться с электротехнической компанией.

Как начать работу с приложением:

Никогда не предполагайте, какое у вас напряжение, и всегда консультируйтесь с опытным электриком, который может помочь вам принять решение о том, какое напряжение использовать.

Пожалуйста, свяжитесь с нами по адресу [email protected] для получения дополнительной информации и не забывайте, что вы всегда можете ссылаться на нашу страницу ресурсов для получения информации о конкретных светильниках.

Автор:

Тревор Бернс - Технический менеджер

Питер Стэнли - Ведущий технический специалист

Просмотры сообщений: 3 208

Обзор светодиодных лент с подключением 220 Вольт без трансформатора

Светодиодная лента

, работающая от сети переменного тока 220 В, стала новым достижением производителей диодной продукции.Разницы с низковольтными аналогами практически нет.
В настоящее время высоковольтная лента 220В стала популярной в коммерческой деятельности, шоу-бизнесе, где использование светоэффектов привлекает внимание посетителей. Светодиодные ленты можно использовать при организации концертной площадки, световых рекламных щитов, создания крупномасштабных надписей, фигур или музыкальных фонтанов. Лента с питанием 220В также может быть использована в некоммерческой деятельности: оформление дизайнерских интерьеров и экстерьеров.

Области применения светодиодных лент

Светодиодные ленты 220 В предназначены для наружного использования, выполнены в силиконовой оболочке и имеют максимальную защиту. Они могут быть одноцветными и многоцветными. Не требуют использования блоков питания, преобразователей. Они подключаются через силовой кабель диодного моста, который преобразует переменный ток в постоянный.

Есть разные разновидности (светодиодная лента на тросике или светящиеся полосы на гибкой 220). По сути, Rope Light - это прозрачный шнур из гибкого полимера, внутри которого изначально находится миниатюрная лампа, а теперь и современные светодиодные светодиоды, способные работать без питания напрямую от 220В.Внутреннее пространство шнура заполнено поливинилхлоридом с целью гирметичности степени защиты. По внешнему виду и способу использования тесьма 220 Веревка и шнур очень похожи.

Современная светодиодная лента 220ВЛента дюролайт

ассортимент продукции

Классификация лент 220 отличается от низковольтной продукции и основывается на технических характеристиках. В зависимости от мощности различают следующие варианты:

  • Светодиодная лента 220 вольт мощность 4.4 Вт на метр;
  • Светодиодная лента 220 вольт мощностью 7,2 Вт на метр;
  • Светодиодная лента 220 вольт мощностью 14,4 Вт на метр.

По характеру чипов продукты делятся на множество видов. В основном ленты производятся SMD LED 3014, 2835, 3035, 5060, 5050, 3528 или более современными диодами SMD 5630. Количество и разнообразие микросхем на метр зависит от интенсивности света и потребляемого тока.

Светодиодная лента в бухте 100 м

По уровню защиты ленты IP68, IP67.Светодиодные продукты с высокой степенью защиты исключают контакт пользователя с токоведущими частями, поэтому вы можете использовать их на открытом воздухе. То есть они оснащены силиконовой трубкой, предназначены для использования на открытом воздухе и во влажных помещениях. По мнению специалистов, такая лента устойчива к перепадам температур.
Питатели могут быть жесткими или гибкими, в зависимости от базы для диодов.
В отличие от других высоковольтных лент отличается цветом и силой свечения. По типу монтажа они могут быть самоклеящимися или без клеевого слоя. Также стоит отметить светодиодную RGB-ленту 220 Вольт, собранную на трехцветных диодах (в основном SMD 5050).Они напечатаны на гибкой основе там 4 контакта, а подключение осуществляется через специальный контроллер RGB. Цветная декоративная лента бывает белого, синего, красного и зеленого трехцветного цветов.
Недавно в магазинах была продана веревочная лента, представляющая собой шнур из прозрачного полимера, в котором находятся светодиоды. Внутри шнура - ПВХ, повышающий уровень безопасности и прочности ледяных лент 220 ат. По способу использования и внешнему виду они похожи на веревочные шнуры.

Характеристики светодиодной продукции

Из-за высокого напряжения лента 220 может иметь последовательное соединение длиной до 100 м.Поэтому они продаются в катушках по 50, 100 м. Это позволяет охватить большой периметр освещения от единого сетевого подключения 220 Вольт.
определяется мощность (Вт / м), уровень защиты от влаги и цветовая температура.
Светодиодные ленты 220В Стоят аналоги меньшего размера, где напряжение 12 и 24 вольт. Это прочные и экономичные источники света. Освещение подключается к простой розетке, обеспечивающей уровень освещенности, соответствующий лампам накаливания. При правильном подключении и установке лента проработает до 50 тысяч часов интенсивного использования.Снижение стоимости продукта за счет отсутствия дорогостоящего блока питания.
Кратность - это нарезка светодиодных лент 1 метр, не всегда удается отмерить необходимую длину. Учитывая нестабильное напряжение, при котором возможны колебания или пульсации напряжения, быстрый разрыв с дешевой некачественной светодиодной лентой.
Еще один недостаток продукции - жесткость герметичной силиконовой трубки, в которой находится ремень, из-за чего его нужно застегивать в 4 точках на метр. Это исключает провисание или неравномерную посадку.Кормушки не подходят для ремонта, так как при замене микросхемы нарушается герметичный слой. У некоторых моделей отсутствует клеевой слой. Продукция китайских производителей отличается низким качеством. Поскольку мерцание вредно и опасно, высоковольтные ленты имеют ограниченную область применения. например: уличные фонари, реклама. Если светодиодные ленты постоянно устанавливаются на улице, примерно через 5 - 6 лет начинается разрушение силиконовой оболочки.

Учитывая все достоинства и недостатки лент, их желательно использовать при наружном освещении фасадов различных зданий.Для создания динамических световых эффектов за счет смены цветов Вам необходимо купить RGB ленту 220 Вольт.

Устройство и принцип действия

Конструктивная особенность лент 220, что они не имеют источника питания в виде понижающего преобразователя. Стабилизатор напряжения питания заменен диодным мостом, который находится в герметичном корпусе. Одна часть включает в себя проводную сеть, а другая подключается к разъему ленточного кабеля. На выходе выпрямителя постоянное напряжение, равное 200В.

Основным преимуществом светодиодных лент прямого подключения 220В является то, что в отличие от обычных лент с питанием 12-24В, First позволяет создавать непрерывную ленту длиной 100 м, защищенную от влаги.
Во избежание перегрузки на светодиодах они соединены группами, через резисторы, компенсирующие превышение напряжения. В основном падение напряжения на светодиодах составляет 3,3-3,5 В, из-за чего в каждой группе содержится 60 микросхем. Для диодов необходима полярность питания, благодаря чему используется выпрямитель (диодный мост).После выпрямителя наблюдается скачок напряжения, что сказывается на качестве света.
Для управления световым потоком в конструкции установлен диммер. В RGB-планках установлен выделенный контроллер, функциональная нагрузка на который больше, чем у диммера.
При покупке высокомощных SMD-лент 5630 с потребляемой мощностью на 1 м больше 10 Вт, то нужно обратить внимание на наличие в конструкции алюминиевого монтажного профиля или радиатора охлаждения.

Схема включения

Схема подключения светодиодной ленты 220В

Схема подключения высоковольтной ленты несложная, выполняется в следующей последовательности:

  • отрежьте шнур нужной длины, сложите ленту наименьшего допустимого размера;
  • обрезанный конец монтируется в штифт соединителя, прикрепляется клеем или герметиком;
  • с правильной полярностью, разъем подключен к выходному выпрямителю;
  • крышка обратной стороны откидной створки;
  • проверить герметичность конструкции и надежность соединений.

Выпрямитель, который подключается через ленту, имеет диодный мост и может иметь собственное питание. мощности выпрямителя 700 Ватт хватило бы на 40 м мощных лент и 100 м стандартных для освещения больших пространств. Цена выпрямителя будет невысокой, и сделать это можно будет независимо от 4-х диодов.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *