Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Схема индукционного нагревателя из сварочного инвертора: Как сделать индукционный нагреватель и печь из сварочного инвертора

Содержание

Как сделать индукционный нагреватель и печь из сварочного инвертора

Отопительная система – важная составляющая любого дома. Её можно назвать «сердцем» жилища, ведь именно тепло формирует уют и атмосферу.
Рынок изобилует различными видами газовых котлов, потому что они считаются самыми эффективными. Однако газовая магистраль может быть расположена довольно далеко, поэтому в данном случае электрическое оборудование выходит на первый план. Довольно популярны индукционные котлы. Достоинством этого типа обогрева является то, что индукционная печь из сварочного инвертора без проблем изготавливается своими руками.  На основе вихревых током можно сконструировать также индукционный нагреватель для металла, взяв за источник тока сварочный инвертор.

Принцип работы

Нагревательный элемент представлен набором трёх элементов:

  1. Нагревательный элемент – трубка (обычно металлическая или полимерная). Находится в индукторном элементе. Внутри него имеется теплоноситель.
  2. Генератор переменного тока (альтернатор) увеличивает показатели частоты бытовой сети (делает их выше стандарта в 50 Гц).
  3. Индуктор – медная цилиндрическая катушка из проволоки, являющаяся генератором электромагнитного поля.

Принцип конструирования нагревателя ТВЧ

Теория применения индукционных нагревателей значительно опережала практику по той причине, что использование устройств с низкой частотой не приносило бы адекватной пользы. Однако после решения проблемы о выработке высокой частоты магнитного поля, индукционные элементы стали широко использоваться.
Чтобы понять, как сделать индукционный нагреватель, сначала нужно рассмотреть, как он работает. Принципы работы довольно прост:

  1. Генератор оперирует токами высокой частоты (ТВЧ). В индуктор передаётся высокочастотный ток из генератора.
  2. Катушка принимает ток. Она является преобразователем, так как на выходе получается уже электромагнитное поле.
  3. Повышается температура нагревательного элемента, благодаря вихревым потокам, возникающим от смены вектора поля. Энергия передаётся практически без потерь.
  4. Также нагревается теплоноситель, расположенный внутри трубы, а энергия передаётся в систему отопления.

Плюсы и минусы

Индукционные электронагреватели выделяются рядом важных преимуществ, выраженных в следующих характеристиках:

  1. На нагревательном элементе исключено образование накипи, так как создаётся вибрация посредством воздействия вихревых токов. Отсюда следует, что траты на чистку котлов отсутствуют.
  2. Теплогенератор вихревого типа герметичен, даже самодельный. Поэтому протечки в котлах стопроцентно исключены. Это достигается за счёт принципа работы теплогенератора: теплоноситель разогревается внутри металлической трубы, а энергия передаётся на расстоянии через электромагнитное поле. Разъёмные соединения отсутствуют.
  3. Нагревательный элемент не нужно ремонтировать или заменять, так как это металлическая трубка. А вот нагревательная спираль ТЭНа вполне может перегореть, так что конструкция для нагрева металла из сварочного инвертора безопасна в это отношении.
  4. Индукционный нагреватель из сварочного инвертора беззвучен, хоть он и вибрирует. Частота вибрации попросту мала по сравнению со слышимыми звуковыми волнами.
  5. Немаловажное достоинство – это низкие затраты на сборку.

Несмотря на важные преимущества, у индукционных нагревателей есть ряд недостатков:

  1. Нахождение в непосредственной близости от нагревателя может быть опасно, так как разогревается не только нагревательный элемент, то и ближайшее к нему пространство.
  2. Обогревание дома на электричестве обходится дороже по сравнению с газом. Поэтому перед тем, как сделать индукционный нагреватель из сварочного инвертора, неплохо подсчитать будущие затраты.
  3. Присутствует опасность детонации котла по причине перегрева теплоносителя. Чтобы избежать этой проблемы, обычно устанавливают датчик давления.

Конструирование электронагревателя

Чтобы начать создание индукционного нагревателя своими руками, необходимо подготовить детали:

  1. Корпус устройства –труба из полимера диаметром 50 мм, которая должна выдерживать высокие температуры.
  2. Нагреваемый элемент – проволока из нержавеющего металла.
  3. Держатель для кусков проволоки – металлическая сетка с маленькими отверстиями.
  4. Составляющая индуктора – проволока из меди.
  5. Прибор для подачи воды – циркуляционный насос.
  6. Устройство для контроля температуры – терморегулятор.
  7. Подключение к отоплению – шаровые краны и переходники.
  8. Кусачки.

Принципиальная схема, использующая принцип последовательного резонанса

Инвертор от устройства для сварки.

Формирование электромагнитного поля за пределами индуктора требует мощной катушки с большим количеством витков, да и согнуть трубу тоже дело не из лёгких. Поэтому мастера рекомендуют сделать из трубы подобие сердечника, поместив её в индукционную катушку.
Вообще, корпус устройства задумывался металлическим, но, в силу малых размеров индуктора, трубу заменяют на полимерную с металлической проволокой внутри.
После сбора необходимых деталей можно приступить к изготовлению индукционного котла по приведённой ниже схеме. Нужно обратить внимание на последовательность шагов, так как от соблюдения этапов зависит результат.

Сначала нужно закрепить металлическую сетку на один из концов полимерной трубы, чтобы нагревательные кусочки проволоки не проваливались во время эксплуатации.

С этого же конца трубы закрепляется переходник для дальнейшего соединения с отоплением.

Далее нужно нарезать проволоку, используя кусачки. Длина кусочков варьируется от 1 до 6 см.
Потом эти кусочки нужно максимально плотно уложить в трубу так, чтобы в ней не оставалось свободного пространства.

Второй конец трубы проходит те же 2 начальных этапа: установка металлической сетки и переходника.
Далее начинается этап изготовления индуктора: нужно намотать медную проволоку, при этом норма витков составляет 80-90 штук.
К полюсам инвертора нужно подключить концы медной проволоки.

Важно: Необходимо изолировать все электрические соединения. Этот этап лучше перепроверить несколько раз.После этого нужно подключить обогреватель к отоплению.

Нужно монтировать в систему отопления циркуляционный насос (если он отсутствовал).
И, наконец, подключается терморегулятор. Он обеспечивает автоматизированную работу нагревателя.

Индуктор начинает создавать электромагнитное поле после запуска инвертора. Появляются вихревые потоки, нагревающие проволоку внутри трубы, и как итог – весь теплоноситель.

 

Так, создание индукционного нагревателя на базе сварочного инвертора довольно несложное дело. Тем более, у данного типа обогревания есть множество плюсов, которые вытекают в эффективность, долговечность оборудования и низкие финансовые затраты. Однако нужно помнить о мерах предосторожности, чтобы не пришлось переделывать всю работу заново, подбирать качественные детали и сохранять поэтапность сборки нагревателя.

Индукционный нагреватель из сварочного инвертора своими руками

Можно ли самостоятельно сделать индукционный нагреватель своими руками из сварочного инвертора, причём никаких противозаконных действий вы не делаете, и контролирующие или надзорные органы не могут вам наказать за такой способ подключения к электросети. Многие считают, что рациональным решением создания отопительной системы в доме будет подключение газового котла. В принципе, все это верно, но как быть собственнику недвижимости, если нет прямого выхода на централизованную систему газоснабжения. В данном случае поможет один из распространённых вариантов, это монтаж индукционный нагреватель из сварочного инвертора.

Внешний вид индукционного нагревателя из сварочного инвертора

Конструктивные элементы индукционной системы

Состав основных компонентов изготовления нагревателя включает в себя такие компоненты, детали и узлы:

  • Генераторные установки преобразования переменного типа тока. В качестве варианта, используют специальный вариант прибора, который преобразует стандартную частоту в 50 Гц в более высокие параметры бытовой электросети с высокими частотными характеристиками.
  • Конструкция индуктора. Специальное устройство в виде цилиндрической катушки, в основе которой используется медная проволока, принцип работы которой зависит от имеющего электромагнитного поля.

Медная катушка для нагревателя

  • Нагревательный компонент или узел, элемент. В качестве детали используют специальную металлическую трубу стандартного диаметра и размера или пруток, который вводится в магнитное поле.

В дальнейшем собирая индукционный нагреватель из сварочного инвертора своими руками, все взаимосвязанные компоненты взаимодействуют следующим образом:

  • Генератор соответствующим естественным путём повышает частоту используемого тока и в трансграничном варианте модифицированного состояния транслирует получаемую энергию на основную катушку.
  • Индуктор, по своим параметрам, осуществляет приём высоко частного имеющегося тока, далее происходит преобразование в электромагнитное поле соответствующего переменного вида. В этом случае происходит комплексное изменение направления вектора электромагнитных характеристик волновых значений, причём, обязательно с высокой частотой принципа воздействия.

В конечном итоге происходит передача нужного уровня электроэнергии, без видимых условных потерь. КПД показателей данных индуктивности хватает на обогрев необходимой площади здания.

«Обратите внимание!

Примечательно, что данный эффект пользуется повышенным спросом во многих отраслях промышленности и индукционный нагреватель из сварочного инвертора для кузнечного дела и в металлургии является обыденным явлением в сегодняшних экономических реалиях.»

В дальнейшем общий принцип распределения получаемой энергии может иметь тривиальный характер. Так, вы можете передать энергию для разогрева жидкости в теплоносителе, или использовать для иных целей, где необходимо использовать повышенные температурные режимы эксплуатации.  Расход энергии осуществляется в трубчатом теплоносителе, где происходит естественная циркуляция. Примечательно, что если индукционный нагреватель из сварочного инвертора не греет, то его можно использовать в качестве охладителя того же варианта отопительной системы.

Преимущественные характеристики индукционного нагревателя

Как видно, режим жёсткой экономии электроэнергии позволяет реализовать на практике интересные идеи как сделать индукционный нагреватель из сварочного инвертора, не прибегая к дорогостоящим вариантам. Основные технические и конструкционные достоинства системы:

Достоинства

Очень высокий КПД, который может достигать до 100 %
Нет необходимости прибегать к частому техническому уходу
Электромагнитное поле образует вибрационный режим воздействия, что предотвращает образованию накипи на стенках металлического корпуса.
Полностью бесшумный принцип работы установки.
Высокие критерии уровня полной безопасности, как по противопожарным мерам, так и в электробезопасности.
Полностью герметичная конструкция, которая исключает появление неприятных моментов в виде протечек устройства.
Режим работы установки, полностью автоматизированный.

Есть один существенный недостаток, для того, что собрать схему индукционного нагревателя из сварочного инвертора, потребуется вложиться в немаленькую сумму. Промышленные варианты стоят действительно дорого, но сэкономить вы можете только в том случае, если произведёте сборку конструкции согласно общим рекомендациям ведущих специалистов.

Электрическая схема индукционного нагревателя

Материалы, необходимые для самостоятельной сборки индукционного нагревателя

Теперь перейдём к самому главному, какие материалы необходимы для устройства индукционного нагревателя. В данном случае вам понадобятся:

  • Инверторный комплекс, который мы используем в сварочном агрегате инверторного типа.
  • Пластиковая основа корпуса, где будет собрана основная часть устройства с металлическими частями.
  • Проволока стандартная из нержавейки, которая станет нагревательным элементом в действующем электромагнитном поле.
  • Сетка металлическая с мелким ячеистым зерном, которая будет в процессе эксплуатации, удерживать внутри действующего прибора, куски из нержавеющей проволоки.
  • Медный компонент проволоки, для удерживания индуктора.
  • Для полдачи воды, подбираем эффективный циркуляционный насос общего принципа действия.
  • Терморегулятор общего вида
  • Переходные варианты кранов, или шаровые соединения, для подключения к основной системе отопления.
  • Инструмент для обработки проволоки – кусачки.

Сборка и монтажные работы

После того, как вы подготовили необходимый минимум инструментов и оборудования для изготовления индукционного нагревателя, приступаем к непосредственному монтажу, который включает в себя следующие характеристики:

  • В одном из доступном концах пластиковой трубы крепим металлическую сетку, которая предотвратить проваливание проволоки, в процессе режима нагрева.
  • В этой же части торцевого соединения крепим переходник, который подсоединяется к отопительной системе общего принципа действия.
  • При помощи слесарных стандартных кусачек нарезаем нержавеющую проволоку длиной от 1 до 6 см.
  • Готовые части нарезанных кусков проволоки плотно и тщательно укладываем в трубу. Обратите внимание, не должно быть никакого свободного пространства внутри пластиковой трубы.
  • На втором конце трубы также фиксируем сетку, и точно также устанавливаем второй переходник, который будет подключён к отопительному комплексу здания.
  • Индуктор изготавливаем путём наматывания (накручивания обычным метолом) на металлическую трубу медной проволоки, причём общее количество витковых соединений на трубе должно быть в пределах 80-90 единиц.
  • Используя общую схему подключения, подсоединяем медные обмотки к требуемым полюсам инвертора, встроенного в сварочное оборудование.
  • Все компоненты электрической части индуктора и нагревателя тщательно изолируем специальными доступными средствами.
  • Монтируем в отопительную систему циркуляционный насос, если такового варианта не было изначально.
  • К инверторной части нагревателя подсоединяем терморегулятор, который будет служить принципом автоматизированного управления всей системы в целом.

Далее, мы осуществляем подключение инвертора, который будет на индукторе образовывать магнитное поле, провоцируемое появлением специальных вихревых потоков.

 

В данном случае потоки будут разгонять конструкцию индуктора до требуемого режима разогрева всей системы теплоносителя. Обязательно соблюдаем меры безопасности и аккуратно подсоединяем все задействованные узлы и компоненты для индукционного нагревателя общего и специального принципа действия.

как сделать своими руками, схемы и процесс установки

На чтение 10 мин. Опубликовано

Индукционный нагреватель из сварочного инвертора представляет собой эффективный прибор с высоким КПД и несложным внутренним устройством. Устройства промышленного производства обойдутся достаточно дорого, поэтому самостоятельная сборка является неплохой альтернативой.

Описание самодельного индукционного нагревателя

Нагревательное оборудование, которое работает по принципу индукции, стремительно набирает популярность. Это обусловлено практически бесшумной работой, эффективным обогревом окружающего пространства и повышенной безопасностью в сравнении с топливными системами.

Индукционные нагреватели из сварочного инвертора отличаются 

высоким КПД и несложным внутренним устройством.

Устройство самоделки

Самодельный прибор состоит из таких частей:

  1. Нагревательного элемента. В его качестве используется трубка из металла или полимерных материалов, которая спрятана в индукторном компоненте и содержит теплоноситель.
  2. Альтернатора (генератора переменного ТВЧ). Устройство требуется для повышения частот бытовой сети. Оно делает их выше стандарта в 50 Гц.
  3. Индуктора. Представляет собой цилиндрическую катушку из проволоки, которая генерирует электромагнитное поле.

Сфера применения

Принцип индукции широко применяется в таких сферах человеческой деятельности:

  1. Металлургия. С помощью технологии производится плавка металлических заготовок.
  2. В бытовой сфере. С помощью нагревателей выполняется готовка пищи, нагрев воды или обогрев частных сооружений.
  3. В отдельных направлениях промышленности. Метод используется в работе индукционных печей быстрого разогрева.

Принцип работы индукционного нагревателя для металла

Под индуктором подразумевается катушка, изготовленная из медной проволоки, которая провоцирует магнитное поле. С помощью генератора переменного тока формируется высокочастотный поток из базового потока бытовой электросети с частотой 50 Гц. Роль нагревателя играет металлический элемент, поглощающий тепло. При правильном соединении таких составляющих получается эффективный прибор, который может использоваться для нагрева жидкого вещества и обогрева помещения.

Принцип работы нагревателя.

Генератор направляет электрический ток с соответствующими параметрами на катушку (индуктор). Когда сквозь деталь проходит поток заряженных частиц, это вызывает формирование магнитного поля.

Индукционные нагреватели работают по принципу образования электропотоков в проводниках. Магнитное поле может менять направление электромагнитных волн. В случае взаимодействия с металлическими изделиями, оно моментально нагревает их без контакта с индуктором. Этому способствуют вихревые токи.

Действительно ли можно сэкономить на индукционном нагреве

Популярность использования оборудования в быту обусловлена неплохой экономией электроэнергии. При установке на кухне плит, работающих по методу индукции, у владельца исчезает необходимость включения вентиляции, т.к. окружающее пространство практически не прогревается. Нагревательная поверхность не требует сложной очистки, поскольку она выполнена из стекла.

Из-за увеличенной скорости нагрева продолжительность работы системы сокращается, что тоже позволяет сэкономить на электричестве.

Преимущества самодельного устройства

Нагреватели имеют несколько важных достоинств. К ним относят следующие пункты:

  1. На поверхности агрегата не появляется накипь, поскольку при образовании вихревых токов происходит вибрация. Подобная особенность исключает дополнительные траты на очистку котлов.
  2. Теплогенератор отличается максимальной герметичностью, даже если он изготовлен своими руками. Вероятность протечек в котлах исключается, поскольку теплоноситель прогревается внутри трубы, а тепловая энергия передается посредством электромагнитного поля. В устройстве системы не предусмотрены разъемные соединения.
  3. Нагревательный прибор не нуждается в ремонте или обслуживании, поскольку он представляет собой трубку из меди. Для сравнения, спираль ТЭНа часто перегорает и требует замены.
  4. Во время работы инверторного оборудования отсутствует избыточный шум. При этом агрегат создает вибрации, но их частота настолько низкая, что они практически не ощущаются.
  5. Сборка и обслуживание системы не сопровождаются большими затратами. Это позволяет без особых сложностей и финансовых вложений соорудить обогревательный прибор в домашних условиях.

Недостатки нагревателя

Помимо положительных качеств, нагреватели индукционного типа имеют и недостатки. При размещении на небольшом расстоянии от оборудования можно получить ожоги, поскольку оно нагревает не только теплоноситель, но и окружающее пространство. В сравнении с газовыми котлами индукционные системы дороже в эксплуатации.

В число недостатков относится риск детонации из-за перегрева теплоносителя.

Проблема исключается путем монтажа датчика давления.

Что потребуется для изготовления своими руками

Для предстоящей сборки нагревателя из инверторного механизма потребуется подготовить:

  1. Корпус будущего агрегата. Его делают из полимерной трубы диаметром 50 мм, которая устойчива к нагреву.
  2. Нагревательный элемент. В качестве этой детали можно использовать проволоку из нержавеющего материала.
  3. Держатель для проволочных отрезков. Это металлическая сетка с небольшим сечением ячеек.
  4. Индукторная составляющая. Подойдет медная проволока.
  5. Система подачи жидкости. Для этих целей используется циркуляционный насос.

Кроме того, потребуется подготовить терморегулятор и элементы подключения к отопительному контуру, к которым относятся шаровые краны и переходники.

Схемы для изготовления нагревателя

Существуют готовые чертежи для сборки нагревательного оборудования. В зависимости от технических параметров и назначения устройства они различаются.

Классическая схема нагревателя функционирует по принципу «двойного полумоста», который оснащен 4 силовыми транзисторами и изолированным затвором. Для управления транзисторами используют микросхему IR2153.

Схема индукционного нагревателя.

Инструкция по изготовлению индукционного нагревателя

Чтобы осуществить переделку сварочного оборудования в индукционную печь, необходимо подготовить расходные детали и инструменты. Также важно подготовить чертежи и придерживаться инструкции по сборке.

Простое изделие на основе сварочного инвертора

Для изготовления простого, но эффективного нагревателя, можно использовать сварочный инвертор. Процесс изготовления достаточно простой:

  1. Для начала нужно взять толстостенную полимерную трубку.
  2. С торцевой части трубы стоит установить разводку и 2 вентиля, а внутрь засыпать куски стальной проволоки небольшого диаметра и размера (5 мм).
  3. Закрепить верхний вентиль.
  4. Выполнить 90 витков медной проволокой для сборки индуктора.

В качестве генератора используется сварочный аппарат, а роль нагревателя играет трубка с проволокой. Аппарат устанавливается в режим переменного тока с повышенной частотой.

Чтобы система работала корректно, останется подключить медную проволоку к плюсовому значению сварки и оценить работоспособность конструкции.

В процессе нагрева происходит излучение магнитного поля и прогревание проволоки вихревыми потоками. Это вызывает закипание жидкости.

Экспериментальная модель нагревателя мощностью 1600 Вт

Для сборки экспериментального оборудования мощностью 1,6 кВт потребуется подготовить металлическую трубу с толстыми стенками. Поскольку катушка без особых сложностей сможет прогреть любой материал, можно усовершенствовать нагреватель.

Корпус можно изготовить из пластиковой трубы, которая обладает большим диаметром, чем элемент системы отопления. Оптимальная длина изделия составляет 1 м, а внутреннее сечение — 50-80 мм.

Чтобы подключить нагреватель к оборудованию, потребуется закрепить переходники сверху и снизу корпуса. Нижняя секция закрывается решеткой, а затем внутрь корпуса помещают наполнитель из небольших металлических частиц.

Длина отрезков регулируется индивидуально без особых ограничений. При этом, чем выше показатель магнитного сопротивления стали, тем быстрее будет осуществляться нагрев.

Для обмотки подходит медный провод с изоляцией сечением 1-1,5 мм. Использование более толстой проволоки неоправданно, поскольку это усложнит плотное расположение витков.

Печь для нагрева металла

Из-за повышенной пожарной безопасности метод индукции применяется в металлургии. Собрать нагреватель для обработки металлических заготовок можно из подручных средств. Для предстоящих работ потребуется подготовить:

  1. 12-вольтный аккумулятор.
  2. Медную обмоточную проволоку.
  3. Пленочные конденсаторы.
  4. Транзисторы и диоды.
  5. Кольца блока питания от персонального компьютера.
Индукционная печь из сварочного инвертора.

Последующая сборка производится по такой инструкции:

  1. На радиаторы охлаждения устанавливаются транзисторы. Во время использования прибор интенсивно нагревается, поэтому лучше подготовить крупные радиаторы.
  2. Изготавливаются дроссели. Для их сборки применяют медную проволоку и кольца блока питания ПК. Важно следить, чтобы межвитковое расстояние оставалось идентичным на каждом отрезке.
  3. Собирается конденсаторная батарея. Емкость элемента питания должна составлять 4,7 мкФ.
  4. Изготавливается обмотка. Диаметр медной проволоки должен составлять 2 мм. Потребуется выполнить 8 витков, чтобы во внутреннем пространстве поместились все обрабатываемые детали.

На последнем этапе подключается аккумулятор. Ток регулируется во время изготовления печи. Для этого достаточно поменять количество витков.

Если планируется частая и интенсивная эксплуатация оборудования, лучше подготовить блок питания повышенной мощности.

Кроме того, следует предусмотреть систему отвода тепла и вентиляции, т.к. во время работы печь сильно нагревается.

Нагреватель для воды

Использование такого агрегата в частном доме позволит организовать бесперебойную подачу ГВС или обогрев помещения. Система расходует много электрической энергии, но обладает простой схемой сборки и отсутствием сложностей в обслуживании. Предстоящая сборка начинается с подготовки:

  1. Сварочного инвертора.
  2. Теплоизолятора (подойдет керамзит).
  3. Проволоки из меди и стали.
  4. Отрезка пластиковой трубы с толстыми стенками.
  5. Трубок разного диаметра.

На первом этапе начинается изготовление котла. Его можно соорудить из 2 трубок разного сечения, которые вставляются друг в друга с выдерживанием зазора 20-25 мм.

Дальше производится приваривание концов колец и подсоединение к общей системе отопления. Во внешнюю стенку нужно вварить выходную и входную трубки.

Затем изготавливается обмотка, которая в точности повторяет форму котла. Всего нужно выполнить 35-40 витков, соблюдая равное межвитковое расстояние.

На последнем этапе собирается защитный корпус, который делается из диэлектрического материала, и подключается инверторный аппарат и теплоноситель.

Правильно собранная конструкция сможет прослужить в течение 20-25 лет без ремонта и замены расходных деталей.

Особенности эксплуатации самоделки

При благополучной сборке индукционного устройства нужно научиться правильно его использовать. Каждая система представляет опасность, т.к. не умеет автоматически регулировать интенсивность нагрева теплоносителя. Проблема решается посредством некоторых доработок, которые сводятся к монтажу и подсоединению дополнительных механизмов.

Индукционная катушка

Рабочая катушка состоит из проволоки диаметром 3.3 мм. Рекомендуется изготавливать ее из медной трубы, в которую можно интегрировать примитивный контур охлаждения. В процессе работы катушка подвергается интенсивного нагреву. Поэтому нужно собирать ее из устойчивых к температурному воздействию материалов.

Индукционная катушка должна быть из материалов, устойчивых к температурному воздействию.

Модуль резонансного конденсатора

Для сборки резонансного конденсатора, который напоминает небольшую батарею, нужно использовать 23 небольших конденсатора. Емкость детали составит 2,3 мкФ. Допускается применение конденсаторов емкостью 100 нФ.

Такие типы не предназначаются для схемы индукционного нагревателя, но они хорошо справляются со своей задачей.

Установка индукционного нагревателя

Чтобы исключить перегрев индукционного нагревателя и деформацию трубы из пластика, нужно предусмотреть термостат и подключить его к системе аварийного отключения.

Специалисты применяют для таких целей терморегуляторы с реле и датчиками. Такие элементы умеют отключать цепь при нагреве теплоносителя до требуемой температуры.

Безопасность устройства

Для повышения безопасности самодельного нагревателя необходимо выполнить такие требования:

  1. Организовать качественную изоляцию. Все проводники и соединения нужно тщательно заизолировать, чтобы исключить риск получения удара током.
  2. Правильно выбрать отопительную систему. Индукционные системы не подходят для совместного использования с оборудованием, которое применяет принцип естественной циркуляции воды. Для этих систем нужен водяной насос.
  3. Выбрать подходящее размещение устройства. Прибор должен находиться на расстоянии от 40 см от стен и предметов интерьера, и на расстоянии от 80 см от потолка или напольного покрытия.
  4. Установить регулировочные клапаны и манометры. Такие средства безопасности защитят оборудование от скачков давления. Кроме того, нужно предусмотреть систему стравливания воздуха.

Полезное видео по созданию нагревателя индукционного типа

В предложенных видео подробно описан принцип работы устройств индукционного типа. Также в ролике можно посмотреть особенности самостоятельной сборки агрегата.

Дополнительные советы по изготовлению

При изготовлении системы необходимо изолировать открытые элементы для повышения безопасности. Рекомендуется предусмотреть автоматическую систему управления системой и подключать прибор к электрической сети с помощью подходящих переходников. Такие действия повысят безопасность нагревателя и продлят срок его службы.

Как сделать индукционный нагреватель своими руками по схеме. Схема индукционного нагревателя

Не рекомендуется использовать установку людям с вживлёнными кардиостимуляторами!

Печь для плавки металлов в домашних условиях может использоваться также для быстрого нагрева металлических элементов, например, при их лужении или формовке. Характеристики работы представленных установок можно подогнать под конкретную задачу, меняя параметры индуктора и выходной сигнал генераторных установок — так можно добиться их максимальной эффективности.

Использование индукционных катушек вместо традиционных ТЭН в отопительном оборудовании позволило значительно увеличить КПД агрегатов при меньшем потреблении электроэнергии. Индукционные нагреватели появились в продаже относительно недавно, к тому же по достаточно высоким ценам. Поэтому народные умельцы не оставили эту тему без внимания и придумали, как сделать индукционный нагреватель из сварочного инвертора.

Индукционные нагреватели с каждым днем набирают популярность у потребителя благодаря следующим достоинствам:

  • высокий показатель КПД;
  • агрегат работает практически бесшумно;
  • индукционные котлы и нагреватели считаются достаточно безопасными в сравнении с газовым оборудованием;
  • нагреватель работает полностью в автоматическом режиме;
  • оборудование не требует постоянного обслуживания;
  • благодаря герметичности аппарат, исключаются протечки;
  • из-за вибраций электромагнитного поля образование накипи становится невозможным.

Также к преимуществам данного типа нагревателя можно отнести простоту его конструкции и доступность материалов для сборки аппарата своими руками.

Схема работы индукционного нагревателя

Нагреватель индукторного типа содержит следующие элементы.

  1. Генератор тока . Благодаря данному модулю переменный ток бытовой электросети преобразуется в высокочастотный.
  2. Индуктор . Изготавливается из медной проволоки, скрученной в виде катушки, для образования магнитного поля.
  3. . Представляет собой металлическую трубу, размещенную внутри индуктора.

Все перечисленные элементы, взаимодействуя между собой, работают по следующему принципу . Выработанный генератором высокочастотный ток поступает на катушку индуктора, изготовленную из медного проводника. Ток высокой частоты преобразуется индуктором в электромагнитное поле. Далее, металлическая труба, находящаяся внутри индуктора, разогревается благодаря воздействию на нее вихревых потоков, возникающих в катушке. Теплоноситель (вода), проходящий через нагреватель, забирает тепловую энергию и переносит ее в отопительную систему. Также теплоноситель выступает в роли охладителя нагревательного элемента, что продляет “жизнь” отопительному котлу.

Ниже предоставлена электрическая схема индукционного нагревателя.

На следующем фото показано, как работает индукционный нагреватель металла.

Важно! Если прикоснуться разогреваемой деталью к двум виткам индуктора, то произойдет межвитковое замыкание, от которого мгновенно выгорят транзисторы.

Сборка и монтаж системы

Подключать индуктор к клеммам сварочного аппарата, предназначенным для подсоединения сварочных кабелей, нельзя. Если это сделать, то агрегат просто выйдет из строя. Чтобы приспособить инвертор под работу с индукционным нагревателем, потребуется достаточно сложная переделка аппарата, требующая, в первую очередь, знаний в радиоэлектронике.

В двух словах, эта переделка выглядит так: катушку, а именно ее первичную обмотку, требуется подсоединить после преобразователя высокой частоты инвертора вместо встроенной индукционной катушки последнего. Кроме этого, потребуется удалить диодный мост и спаять конденсаторный блок.

Как происходит переделка сварочного инвертора в индукционный нагреватель, можно узнать из этого видео .

Индукционная печь для металла

Чтобы сделать индукционный нагреватель из сварочного инвертора, потребуются следующие материалы.

  1. Инверторный сварочный аппарат . Хорошо, если в агрегате будет реализована функция плавной регулировки тока.
  2. Медная трубка диаметром около 8 мм и длиной, достаточной, чтобы сделать 7 витков вокруг заготовки 4-5 см в диаметре. Кроме этого, после витков должны остаться свободные концы трубки длиной около 25 см.

Для сборки печи выполните следующие действия.

  1. Подберите какую-либо деталь диаметром 4-5 см, которая будет служить шаблоном для наматывания катушки из медной трубки. Это может быть деревянная круглая деталь, металлическая или пластиковая труба.
  2. Возьмите медную трубку и заклепайте один ее конец молотком.
  3. Плотно заполните трубку сухим песком и заклепайте второй ее конец. Песок не даст трубке сломаться при скручивании.
  4. Сделайте 7 витков трубки вокруг шаблона, после чего спилите ее концы и высыпьте песок.
  5. Подсоедините получившуюся катушку к переделанному инвертору.

Совет! Если предполагается, что индукционная печь будет работать длительное время на большой мощности, то к трубке рекомендуется подвести водяное охлаждение.

Индукционный нагреватель для воды

Для сборки отопительного котла потребуются следующие конструктивные элементы.

  1. Инвертор. Аппарат выбирается такой мощности, какая нужна для отопительного котла.
  2. Толстостенная труба (пластиковая), можно марки PN Ее длина должна быть 40-50 см. Сквозь нее будет проходить теплоноситель (вода). Внутренний диаметр трубы должен быть не меньше 5 см. В таком случае наружный диаметр будет равняться 7,5 см. Если внутренний диаметр будет меньше, то и производительность котла буде невысокой.
  3. Стальная проволока . Также можно взять пруток из металла диаметром 6-7 мм. Из проволоки или прутка нарезаются небольшие куски (4-5 мм). Эти отрезки будут выполнять роль теплообменника (сердечника) индуктора. Вместо стальных отрезков можно использовать цельнометаллическую трубку меньшего диаметра или стальной шнек.
  4. Палочки или стержни из текстолита , на которые будет наматываться индукционная катушка. Применение текстолита убережет трубу от нагретой катушки, поскольку данный материал устойчив к высоким температурам.
  5. Изолированный кабель сечением 1,5 мм 2 и длиной 10-10,5 метров. Изоляция кабеля должна быть волокнистой, эмалевой, стекловолоконной или асбестовой.

Совет! Вместо стальной проволоки допускается использовать металлическую губку из нержавейки. Но перед покупкой их проверяют магнитом: если мочалка притягивается магнитом, то ее можно использовать в качестве нагревателя.

Индукционный котел отопления собирается по следующему алгоритму. Заполните корпус теплообменника изделиями из металла, о которых говорилось выше. На конце трубы, служащей корпусом, припаяйте переходники, подходящие по диаметру к трубам отопительного контура.

При необходимости, к переходникам можно припаять уголки. Также следует припаять муфты-американки . Благодаря им нагреватель будет легко демонтировать, для проведения ремонта или профилактического осмотра.

На следующем этапе на корпус теплообменника необходимо наклеить текстолитовые полоски , на которые будет наматываться катушка. Также следует сделать из того же текстолита пару стоек высотой 12-15 мм. На них будут расположены контакты для подключения нагревателя к переделанному инвертору.

Поверх полосок из текстолита намотайте катушку. Между витками должно быть расстояние не менее 3 мм. Намотка должна состоять из 90 витков проводника. Концы кабеля необходимо закрепить на ранее подготовленных стойках.

Вся конструкция помещается в кожух, который в целях безопасности будет выполнять роль изоляции. Для кожуха подойдет пластиковая труба диаметром большим, чем катушка. В защитном кожухе необходимо сделать 2 отверстия для вывода электрического кабеля. В торцы трубы можно установить заглушки, после чего в них следует проделать отверстия под патрубки. Через последние котел будет подсоединяться к отопительной магистрали.

Важно! Испытывать нагреватель можно лишь после заполнение его водой. Если включить его “на сухую”, то пластиковая труба расплавится, и придется собирать нагреватель заново.

Схема подключения состоит из следующих элементов.

  1. Источник высокочастотного тока . В данном случае – это видоизмененный инвертор.
  2. Элементы безопасности . В эту группу могут входить: термометр, предохранительный клапан, манометр и т.д.
  3. Шаровые краны . Используются для слива или заправки системы водой, а также для перекрытия подачи воды на определенном участке контура.
  4. Циркуляционный насос . Благодаря ему вода сможет двигаться по отопительной системе.
  5. Фильтр. Применяется для очистки теплоносителя от механических загрязнений. Благодаря очистке воды продлевается срок службы всего оборудования.
  6. Расширительный бачок мембранного типа. Применяется для компенсации теплового расширения воды.
  7. Радиатор отопления . Для индукционного отопления лучше использовать либо алюминиевые радиаторы, либо биметаллические, поскольку они при небольших габаритах имеют высокую теплоотдачу.
  8. Шланг, через который можно заполнять систему либо сливать из нее теплоноситель.

Как видно из вышеописанного метода, самостоятельно изготовить индукционный нагреватель вполне возможно. Но лучше покупного он не будет. Даже если вы обладаете необходимыми знаниями в электротехнике, следует задуматься, насколько будет безопасной эксплуатация такого аппарата, поскольку он не оборудован ни специальными датчиками, ни блоком контроля. Поэтому рекомендуется отдать предпочтение готовому оборудованию, изготовленному в заводских условиях.

Принцип индукционного нагрева пришел в наш быт относительно недавно и сразу завоевал большую популярность. Причина – бесконечный поиск человеком недорогих и экономичных источников тепла для обогрева своего жилища. Многие даже решились попробовать сделать индукционный нагреватель своими руками с целью присоединить его к системе отопления частного дома. Попытаемся разобраться, что из этого получилось и оправдывают ли себя затраченные усилия и время.

Схема индукционного нагревателя

Благодаря открытию М. Фарадеем в 1831 году явления электромагнитной индукции в нашей современной жизни появилось множество устройств, нагревающих воду и другие среды. Мы каждый день пользуемся электрочайником с дисковым нагревателем, мультиваркой, индукционной варочной панелью, поскольку реализовать это открытие для быта удалось только в наше время. Ранее оно использовалось в металлургической и других отраслях металлообрабатывающей промышленности.

Заводской индукционный котел использует в своей работе принцип воздействия вихревых токов на металлический сердечник, помещенный внутрь катушки. Вихревые токи Фуко имеют поверхностную природу, поэтому есть смысл задействовать в качестве сердечника полую металлическую трубу, сквозь которую протекает нагреваемый теплоноситель.

Принцип действия индукционного нагревателя

Возникновение токов обусловлено подачей на обмотку переменного электрического напряжения, вызывающего появление переменного электромагнитного поля, меняющего потенциалы 50 раз в секунду при обычной промышленной частоте 50 Гц. При этом индукционная катушка выполнена таким образом, чтобы ее можно было подключить к сети переменного тока напрямую. В промышленности для такого нагрева используют токи высокой частоты – до 1 МГц, поэтому добиться работы устройства при частоте 50 Гц достаточно непросто.

Толщина медной проволоки и количество витков обмотки, которую используют индукционные нагреватели воды, рассчитано отдельно для каждого агрегата по специальной методике под требуемую тепловую мощность. Изделие должно работать эффективно, быстро нагревать протекающую по трубе воду и при этом не перегреваться. Предприятия вкладывают немалые средства в разработку и внедрение подобных продуктов, поэтому все задачи решены успешно, а показатель КПД нагревателя составляет 98%.

Помимо высокой эффективности особо привлекает скорость, с которой происходит нагрев протекающей через сердечник среды. На рисунке представлена схема работы индукционного нагревателя, сделанного в заводских условиях. Такая схема применена в агрегатах известной торговой марки «ВИН», выпускаемых Ижевским заводом.

Схема работы нагревателя

Долговечность работы теплогенератора зависит только от герметичности корпуса и целостности изоляции витков провода, а это получается достаточно большой период, производители декларируют – до 30 лет. За все эти достоинства, которыми в действительности обладают данные аппараты, надо выложить немалые деньги, индукционный нагреватель воды – самый дорогой из всех видов отопительных электроустановок. По этой причине некоторые умельцы взялись за изготовление самодельного прибора с целью задействовать его в отоплении дома.

Самодельные индукционные котлы

Самая простая схема устройства, которую собирают, состоит из отрезка пластиковой трубы, в полость которую закладываются различные металлические элементы с целью создать сердечник. Это может быть тонкая нержавеющая проволока, скатанная шариками, нарубленная мелкими кусочками проволока – катанка диаметром 6-8 мм или даже сверло диаметром, соответствующим внутреннему размеру трубы. Снаружи к ней приклеиваются палочки из стеклотекстолита, а на них наматывается провод толщиной 1.5-1.7 мм в стеклоизоляции. Длина провода – порядка 11 м. Технологию изготовления можно изучить, просмотрев видео:


Затем самодельный индукционный нагреватель испытали, заполнив его водой и подключив к индукционной варочной панели заводского изготовления ORION мощностью 2 кВт вместо штатного индуктора. Результаты испытаний показаны на следующем видео:


Другие мастера рекомендуют в качестве источника принять сварочный инвертор небольшой мощности, подключив клеммы вторичной обмотки к выводам катушки. Если внимательно изучить проделанную автором работу, то напрашиваются выводы:

  • Автор хорошо потрудился и его изделие, несомненно, работает.
  • Никаких расчетов по толщине провода, числу и диаметру витков катушки не производилось. Параметры обмотки были приняты по аналогии с варочной панелью, соответственно, индукционный водонагреватель получится мощностью не выше 2 кВт.
  • В лучшем случае самодельный агрегат сможет нагревать воду для двух радиаторов отопления по 1 кВт каждый, этого хватит на обогрев одной комнаты. В худшем случае нагрев будет слабым или вообще пропадет, ведь испытания проводились без протока теплоносителя.

Более точные выводы сделать трудно из-за недостатка информации о дальнейших испытаниях прибора. Другой способ, как самостоятельно организовать индукционный нагрев воды для отопления, показан на следующем видео:

Сваренный из нескольких металлических труб радиатор выполняет роль внешнего сердечника для вихревых токов, создаваемых катушкой той же индукционной варочной панели. Выводы следующие:

  • Тепловая мощность получившегося отопителя не превышает электрической мощности панели.
  • Количество и размер труб были выбраны случайно, но обеспечили достаточную поверхность для передачи тепла, возникающего от вихревых токов.
  • Данная схема индукционного нагревателя оказалась успешной для конкретного случая, когда квартира окружена помещениями других отапливаемых квартир. Кроме того, автор не показывал работу установки в холодное время года с фиксацией температуры воздуха в комнатах.

В подтверждение сделанных выводов предлагается просмотреть видео, где автор пытался применить подобный нагреватель в условиях отдельно стоящего утепленного здания:

Заключение

Конструирование и изготовление индукционных котлов – процесс непростой и требующий серьезного подхода. Представленные примеры показывают, что на данный момент пока не удалось создать надежный и работоспособный в каждой системе отопления самодельный агрегат. Экспериментальные модели нельзя предложить домовладельцам, которые хотели бы своими руками изготовить подобный индукционный нагреватель в домашних условиях.

Сегодня при организации нагрева воды большое распространение получил индукционный водонагреватель. Эта востребованность обеспечена тем, что прибор является полностью экологически безопасным, не сушит и не пережигает воздух. Использование такого прибора может быть реализовано для проточного нагревания воды или в качестве нагревательного котла. Купить индукционный водонагреватель можно как в магазине, так и изготовить своими руками. Стоит отметить, что по техническим характеристикам он не уступит покупаемой модели, правда, будет выглядеть не так привлекательно, но стоит при этом намного меньше.

Применение такого прибора в домашних условиях позволяет получить максимальную производительность и надежность в эксплуатации. При этом агрегат не нужно сопровождать особой документацией и разрешением для установки, например, как газовый бойлер. Применяя индукционный нагреватель в роли традиционного отопительного котла, в некоторых случаях не потребуется использование насоса. Движение теплоносителя достигается путем процессов конвекции : вода при большом нагревании превращается в пар.

Стоит отметить, что у индукционного водонагревателя есть масса преимуществ, которые выделяют его среди конкурентов.

  1. Стоимость такого устройство незначительная.
  2. Есть возможность собрать нагреватель самостоятельно.
  3. Не издает постороннего шума. Катушка в процессе работы достаточно сильно вибрирует, но она практически не ощутима.
  4. Из-за постоянной вибрации грязь и накипь не успевает прикрепляться к функциональным элементам, поэтому прибор не нуждается в регулярной чистке.
  5. В своем составе имеет тепловой генератор, который очень легко делается герметичным. Вода, выступающая теплоносителем, помещена в нагревательный элемент, благодаря чему энергия передается через магнитное поле. Здесь не требуется использование контактов, а соответственно сальников и различных уплотнительных резинок, которые имеют особенность быстро выходить из строя.
  6. Редко ломается, так как за нагрев воды отвечает простая трубка, в которой просто нечему сломаться или перегореть.

Выбирая индукционный водонагреватель, хозяин получает прибор с минимальным эксплуатационным обслуживанием, так как он состоит из небольшого числа составляющих. А они, в свою очередь, очень редко выходят из строя.

Принцип работы индукционного котла

Но и без недостатков нельзя обойтись. Как и в любом виде техники, они есть.

  1. Высокое потребление электроэнергии , которое выльется большими счетами за свет;
  2. Устройство очень сильно нагревается, причем горячим становится все вокруг, поэтому не стоит прикасаться к прибору во время его работы.
  3. Индукционный водонагреватель имеет сильную теплоотдачу, поэтому необходима установка датчика температуры , чтобы предотвратить перегрев прибора, и, соответственно, взрыв.

Виды индукционных водонагревателей

Все приборы подобного типа, которые могут быть изготовлены своими руками, можно разделить на две группы:

  1. Вихревые нагреватели индукторного типа , которые чаще всего используются в домах для выполнения функций отопления. Именно их процесс изготовления будет рассмотрен ниже.
  2. Обогреватели, конструкция которых подразумевает применение разных видов электронных узлов и деталей.

При создании вихревого индукционного нагревателя (или сокращенно ВИН) своими руками, следует предусмотреть следующие конструкционные узлы:

  • элемент, отвечающий за преобразование электроэнергии в ток высокочастотного типа;
  • индуктор (чаще всего выполняется в виде цилиндрическом элементе из медной проволоки), что при использовании выполняет функцию трансформатора, отвечающего за образование поля магнитного характера;
  • элемент, который будет играть роль нагревательного, располагается внутри самого индуктора.

Работа ВИН выглядит следующим образом.

  1. Высокочастотный ток из преобразователя передается на индуктор.
  2. В индукторе образуется магнитное поле , что в свою очередь создает потоки вихревого характера.
  3. Теплообменник под действием вихревых потоков достаточно быстро достигает высокой температуры и, соответственно, нагревает теплоноситель, который распространяет тепло дальше.

Схема современного водонагревателя

Одним из самых главных компонентов является индукционная катушка, к изготовлению которой стоит отнестись с особой внимательностью. Медная проволока очень аккуратно наматывается на трубу из пластика, причем число мотков не должно быть меньше 100.

Из представленного описания можно сделать вывод, что изготовить индукционный водонагреватель самостоятельно не сложно.

Особенности изготовления

Индукционный нагреватель своими руками можно изготовить двумя способами. Вкратце стоит рассмотреть каждый из них.

Вариант 1

Наиболее простой прибор (при этом он будет иметь высокую мощность) можно изготовить на основе печатной схемы . Среди особенностей схемы, которая будет использоваться в приборе, следует выделить следующие моменты:

  • вся конструкция, по сути, представлена мультивибратором с организацией высокой мощности;
  • особое внимание стоит уделить сопротивлению, так как именно оно будет предотвращать перегрев транзисторов;
  • индуктор в таком приборе должен быть выполнен в виде спирали из 6-8 витков медной проволоки;
  • в качестве регулятора можно использовать соответствующий элемент из блока питания компьютера и не задумываться над его контракцией.

Вихревой индукционный нагреватель

Вариант 2

В основу изготовления такого прибора своими руками положено использование электронного трансформатора.

Суть такого способа изготовления индукционного водонагревателя состоит в следующем.

  1. Две трубы с использованием сварки стоит соединить так, чтобы визуально они походили на бублик. Этот элемент впоследствии будет играть роль как элемента для нагревания, так и проводника.
  2. На корпус потребуется намотать проволоку из меди.
  3. Чтобы обеспечить качественное и быстрое движение воды, в основной корпус приваривают 2 патрубка. В один из них вода будет поступать, а со второго выходить уже в саму систему.

Вот и все советы по тому, как собрать такой нагревательный прибор своими руками и обеспечить в доме качественное отопление и постоянное присутствие горячей воды.

Индукционный нагреватель своими руками – схема, устройство, видео

Идея нагревать металл вихревыми токами Фуко, возбуждаемыми электромагнитным полем катушки, отнюдь не нова. Она давно и успешно эксплуатируется в промышленных плавильных печах, кузнечных мастерских, бытовых нагревательных приборах – плитах и электрокотлах. Последние довольно дороги, так что домашние умельцы не оставляют попыток сделать индукционный нагреватель воды своими руками. Наша задача – рассмотреть работоспособные варианты самодельных устройств и разобраться, можно ли применять их для отопления дома.

О принципе индуктивного нагрева

Для начала разъясним, как функционируют электрические индукционные нагреватели. Переменный ток, проходя по виткам катушки, образует вокруг нее электромагнитное поле. Если поместить внутрь обмотки сердечник из магнитящегося металла, то он станет нагреваться вихревыми токами, возникающими под воздействием поля. Вот и весь принцип.

Важное условие. Чтобы металлический сердечник нагревался, катушка должна питаться переменным током, меняющим знак и вектор поля с высокой частотой. При подаче на обмотку постоянного тока вы получите обыкновенный электромагнит.

Сам нагревательный элемент носит название индуктора и является главной частью установки. В отопительных котлах он представляет собой стальную трубу с протекающим внутри теплоносителем, а в кухонных плитах – плоскую катушку, максимально приближенную к варочной панели, как изображено далее на фото.

Катушка-индуктор нагревает железную трубу, которая передает тепло протекающей воде

Вторая часть индукционного нагревателя — схема, повышающая частоту тока. Дело в том, что напряжение с промышленной частотой 50 Гц малопригодно для работы подобных устройств. Если присоединить индуктор к сети напрямую, то он начнет сильно гудеть и слабо прогревать сердечник, причем вместе с обмотками. Чтобы эффективно преобразовывать электричество в теплоту и полностью передавать ее металлу, частоту нужно повысить минимум до 10 кГц, чем и занимается электросхема.

В чем заключаются реальные преимущества индукционных котлов перед ТЭНовыми и электродными:

  1. Деталь, нагревающая воду, — это простой кусок трубы, не участвующий в электрохимических процессах (как в электродных теплогенераторах). Поэтому срок службы индуктора ограничивается только работоспособностью катушки и может достигать 10—20 лет.
  2. По той же причине элемент одинаково хорошо «дружит» со всеми видами теплоносителей – водой, антифризом и даже машинным маслом, разницы нет.
  3. Внутренности индуктора не покрываются накипью в процессе эксплуатации.
Здесь сердечником служит посуда из магнитного металла

Примечание. С индукционными котлами связано множество мифов. Например, продавцы утверждают, что они экономичнее других электрических обогревателей на 10—20%, хотя в действительности КПД всех электрокотлов равен 98%. Список преимуществ ограничивается тремя вышеперечисленными пунктами, остальное – реклама.

Варианты самодельных устройств

На просторах интернета размещено достаточное количество разнообразных конструкций, создаваемых для различных целей. Взять индукционный малогабаритный нагреватель, сделанный из компьютерного блока питания 250—500 Вт. Модель, показанная на фото, пригодится мастеру в гараже или автосервисе для плавки стержней из алюминия, меди и латуни.

Но для отопления помещений конструкция не подойдет по причине малой мощности. В интернете есть два реальных варианта, чьи испытания и работа засняты на видео:

  • водонагреватель из полипропиленовой трубы с питанием от сварочного инвертора либо индукционной кухонной панели;
  • стальной котел с нагревом от той же варочной панели.

Справка. Существуют и другие, полностью самодельные конструкции, где преобразователи частоты умельцы собирают с нуля. Но для этого нужны знания и навыки в области радиотехники, поэтому рассматривать их мы не будем, а просто приведем пример такой схемы.

Теперь давайте подробнее разберем, как делаются индукционные нагреватели своими руками, а главное, — как они потом функционируют.

Изготавливаем нагревательный элемент из трубы

Если вы плотно занимались поиском информации по данной теме, то наверняка столкнулись с этой конструкцией, поскольку мастер выложил ее сборку на популярном видеоресурсе YouTube. После чего многие сайты разместили текстовые версии изготовления этого индуктора в виде пошаговых инструкций. Вкратце нагреватель делается так:

  1. Внутрь трубы из полипропилена диаметром 40 мм и длиной 50 см наталкиваются металлические ершики для мытья посуды (можно рубленую проволоку — катанку). Они должны притягиваться магнитом.
  2. К трубе припаиваются отводы с резьбами для подключения к отопительной сети.
  3. Снаружи вдоль корпуса приклеиваются 4—5 стержней из текстолита. На них наматывается провод сечением 1.7—2 мм² со стеклоизоляцией, применяющийся в сварочных трансформаторах.
  4. Варочная панель разбирается и «родной» индуктор плоской формы демонтируется. Вместо него подключается самодельный нагреватель из трубы.

Важный нюанс. Длину и сечение провода для намотки катушки следует определять по штатному индуктору печки, чтобы она соответствовала мощности полевых транзисторов в электросхеме. Если взять больше провода, то упадет мощность нагрева, меньше – перегреются и выйдут из строя транзисторы. Как это выглядит визуально, смотрите на видео:

Как нетрудно догадаться, роль нагревательного элемента здесь играют металлические ершики, находящиеся в переменном магнитном поле катушки. Если запустить варочную панель на максимум, одновременно пропуская через импровизированный котел проточную воду, то ее удастся нагреть на 15—20 °С, что и показали испытания агрегата.

Поскольку мощность большинства индукционных плит лежит в пределах 2—2.5 кВт, то с помощью теплогенератора можно обогреть помещения общей площадью не более 25 м². Есть способ увеличить нагрев, подключив индуктор к сварочному аппарату, но здесь есть свои сложности:

  1. Инвертор выдает постоянный ток, а нужен переменный. Для подсоединения индукционного нагревателя аппарат придется разобрать и найти на схеме точки, где напряжение еще не выпрямлено.
  2. Нужно взять провод большего сечения и подобрать число витков путем расчета. Как вариант, медную проволоку Ø1.5 мм в эмалевой изоляции.
  3. Понадобится организовать охлаждение элемента.

Проверку работоспособности индуктивного водонагревателя автор демонстрирует в своем видео, представленном ниже. Испытания показали, что агрегат требует доработки, но конечный результат, к сожалению, неизвестен. Похоже, что умелец оставил проект незавершенным.

Как собрать индукционный котел

В этом случае дешевую китайскую плиту разбирать не нужно. Суть в том, чтобы сварить по ее размерам котловой бак, руководствуясь пошаговой инструкцией:

  1. Возьмите стальную профильную трубу 20 х 40 мм с толщиной стенки 2 мм и нарежьте из нее заготовок по ширине панели.
  2. Сварите трубки между собой по длине, стыкуя меньшими сторонами.
  3. Сверху и снизу к торцам герметично приварите железные крышки. Сделайте в них отверстия и поставьте патрубки с резьбами.
  4. К одной из сторон прикрепите сваркой 2 уголка, чтобы они образовали полку для индукционной печки.
  5. Покрасьте агрегат термостойкой эмалью из баллончика. Подробнее процесс сборки показан в видеоролике.

Окончательная сборка и запуск заключается в монтаже котла на стену и его врезке в систему отопления. Варочная панель вставляется в гнездо из уголков на задней стенке бака и подключается к электросети. Остается заполнить систему теплоносителем, стравить воздух и включить нагрев индуктора.

Здесь вас подстерегает та же проблема, что встречалась с предыдущей моделью. Несомненно, индукционный нагрев будет работать, но его мощности 2.5 кВт хватит для обогрева парочки небольших комнат при морозе на улице. Осенью и весной, когда температура не опустилась ниже нуля, самодельный котел сможет отопить площадь 35—40 м². Как его правильно подключить к системе, смотрите в очередном видеосюжете:

Выводы и рекомендации

Мы намеренно представили варианты индукционных водонагревателей несложной конструкции, чтобы каждый желающий мог сделать подобный агрегат своими силами. Но остался вопрос, нужно ли заниматься этим делом и тратить собственное время. На этот счет есть ряд объективных соображений:

  1. Пользователи, не разбирающиеся в электрике и радиотехнике, вряд ли смогут добиться увеличения мощности нагрева свыше 2. 5 кВт. Для этого придется собрать схему преобразователя частоты.
  2. КПД индуктора ничуть не выше, чем у других электрических котлов. Но собрать нагреватель с ТЭНами гораздо проще.
  3. Если у вас не завалялась дома индукционная панель, то потребуется ее купить примерно за 80 у. е. Столько стоят дешевые китайские изделия в интернет-магазинах. За те же деньги продаются готовые электродные котлы мощностью до 10 кВт.
  4. Электроплиты оснащаются автоматикой безопасности, отключающих бытовой прибор спустя 1 или 2 часа работы. Это доставляет неудобство при эксплуатации.
  5. Если в силу разных причин теплоноситель вытечет из самодельного теплогенератора, то нагрев не прекратится. Это чревато пожаром.

Конечно, вы можете обойтись без дорогих покупок, досконально разобраться в конструкции и смастерить индукционный нагреватель с нуля. Но выполнить все бесплатно не получится, ведь потребуется приобрести комплектующие для схемы. Заметьте, что бонусы от подобного отопительного агрегата невелики, так что всерьез браться за его изготовление с целью обогрева частного дома нецелесообразно.

Индукционный нагреватель из сварочного инвертора

Нагревательные системы стали более совершенными, благодаря индукционным катушкам, сменившим традиционные ТЭНы. У них существенно возрос КПД, а энергопотребление, наоборот, снизилось. Эти устройства еще не нашли широкого применения, в основном из-за высокой стоимости. Используя подручные материалы, домашние мастера конструируют индукционный нагреватель из сварочного инвертора не только для систем отопления, но и для разогрева металлических заготовок перед их обработкой.

Принцип действия

Теоретические разработки в области индукционных средств нагрева долгое время не могли найти практического применения, так как низкая частота не давала нужного эффекта. Существенные сдвиги появились после того как разрешилась проблема относительно выработки высокочастотных магнитных полей. После этого появилась реальная возможность применения индукционных элементах в нагревательных системах.

Конструкция типового устройства состоит из следующих деталей:

  • Генератор тока. Выполняет преобразование напряжения домашней сети в высокочастотный электрический ток.
  • Индуктор. Представляет собой катушку, изготовленную из медной проволоки, в которой, под действием тока образуется магнитное поле.
  • Нагревательный элемент. Как правило, это отрезок металлической трубы, помещенный внутрь индуктора. Он нагревается сам и передает тепловую энергию в систему отопления.

Все эти компоненты находятся в тесном взаимодействии между собой. Ток высокой частоты, вырабатываемый генератором, попадает на индукционную катушку и превращается в электромагнитное поле. Вихревые потоки, возникающие в катушке, воздействуют на металлическую трубу, помещенную внутри, и разогревают ее. Вода, используемая в качестве теплоносителя, проходит через нагревательный элемент, нагревается и переносит тепловую энергию во всю систему отопления. Одновременно вода охлаждает нагревательный элемент, продлевая срок его эксплуатации.

Устройство самодельного нагревателя

Классическое индукционное устройство рекомендуется рассматривать на примере конструкции водонагревателя отопительной системы. Подобные схемы чаще всего используются на дачах и в загородных домах. Изготовление прибора начинается с индуктора. Для этого медную проволоку нужно намотать в один ряд, придав ей изначально цилиндрическую форму. Каждый виток изолируется от соседнего, исключая контакты между ними.

Количество витков, обеспечивающее нормальную работоспособность, составляет в среднем 80-100. Медные проводники могут иметь разное сечение – от 2,5 до 4 мм2. Сердечником служит сама отопительная труба, но на практике данный вариант не дает нужного эффекта.

Поэтому, чтобы сделать нагрев теплоносителя более интенсивным, рекомендуется воспользоваться пластиковой трубой определенной длины. Ее внутреннее пространство заполняется стальной проволокой Д 5-6 мм, разрезанной на короткие части. В этом случае, за счет индукции начинает нагреваться проволока, обтекаемая водой. Площадь теплообмена существенно увеличивается, и теплоноситель нагревается намного быстрее. Для того чтобы обрезки проволоки не смыло водным потоком, концы участка трубы ограничиваются защитой из стальных сеток.

Соединение индуктора и инвертора может быть выполнена разными способами. Некоторые специалисты изготавливают дополнительный промежуточный трансформатор. Затем к его вторичной обмотке подключается индуктор вместе с конденсатором. В другом варианте на тороидальный трансформатор высокой частоты, имеющийся в инверторе, наматывается медный провод в количестве одного витка. Далее, к нему напрямую подключается индуктор.

Во всех случаях нельзя пользоваться плюсовой и минусовой клеммами инвертора, предназначенными для сварки. На выходе у них выпрямленное напряжение, которое сопровождают пульсации высокой частоты. Под его воздействием рабочее магнитное поле не появится, а индуктор перегреется и сгорит. Инвертор придется переделывать, что само по себе достаточно сложно, поскольку будут нужны знания и навыки работы с радиоэлектронными схемами.

Свойства электромагнитной индукции применяются не только в системах отопления. Данное явление успешно используется в конструировании нагревательных печей, предназначенных для работы со всеми видами металлов.

Чтобы изготовить индукционный нагреватель из сварочного инвертора, необходимо в первую очередь запастись следующими компонентами:

  • Сварочный инвертор. Желательно, чтобы он был оборудован функцией, позволяющей плавно регулировать ток.
  • Медная трубка. Ее диаметр составляет примерно 8 мм, а длина должна быть достаточной для семи витков, наматываемых на шаблон диаметром 40-50 мм. Длина свободных концов трубки после намотки остается примерно по 25 см.

Сборка конструкции осуществляется в следующем порядке:

  • Подбирается шаблон для намотки подходящего размера, диаметром 4-5 см. Лучше всего воспользоваться металлическими или пластиковыми трубами, или круглыми деревянными заготовками.
  • Один из концов медной трубки заклепывается молотком.
  • Далее трубка как можно плотнее заполняется сухим песком, после чего ее нужно заклепать со второго конца. Песок предотвратит возможные изломы трубки во время скручивания.
  • Трубка наматывается на шаблон в количестве 7 витков, затем ее концы отпиливаются, а песок высыпается.
  • Полученную конструкцию необходимо соединить с инвертором, подвергшемся предварительной переделке.
  • Если работа индукционной печи рассчитана на продолжительное время, к трубке индуктора рекомендуется сделать подводку водяного охлаждения.

Особенности эксплуатации

Самодельная сборка нагревателя – это лишь половина дела. Не менее важное значение имеет правильная эксплуатация получившейся конструкции. Изначально, каждый такой прибор представляет определенную опасность, поскольку он не способен самостоятельно контролировать уровень нагрева теплоносителя. В связи с этим, каждому нагревателю требуется определенная доработка, то есть установка и подключение дополнительных контрольных и автоматических устройств.

В первую очередь выход трубы оборудуется стандартным набором устройств, обеспечивающих безопасность – предохранительным клапаном, манометром и приспособлением для отвода воздуха. Следует помнить, что индукционные водонагреватели будут нормально работать лишь при наличии принудительной циркуляции воды. Самотечная схема очень быстро приведет к перегреву элемента и разрушению пластиковой трубы.

Во избежание подобных ситуаций, в нагревателе устанавливается термостат, подсоединенный к устройству аварийного отключения. Опытные электротехники используют для этих целей терморегуляторы с температурными датчиками и реле, отключающие цепь при достижении теплоносителем заданной температуры.

Самодельные конструкции отличаются довольно низкой эффективностью, поскольку вместо свободного прохода, на пути воды имеется препятствие в виде частиц проволоки. Они почти полностью перекрывают трубу, вызывая повышенное гидравлическое сопротивление. При нештатных ситуациях возможны повреждения и разрыв пластика, после чего горячая вода непременно приведет к короткому замыканию. Обычно такие нагреватели используются в небольших помещениях, в качестве дополнительной системы отопления в холодное время года.

устройство и принцип работы, схема изготовления своими руками

Индукционный нагреватель можно устанавливать в квартире, для этого не нужно никаких согласований и связанных с ними расходов и хлопот. Достаточно желания хозяина. Проект подключения требуется только теоретически. Это и стало одной из причин популярности индукционных нагревателей, даже несмотря на приличную стоимость электроэнергии.

Индукционный способ нагрева

Индукционный нагрев — это нагрев переменным электромагнитным полем проводника, помещенного в это поле. В проводнике возникают вихревые токи (токи Фуко), которые и нагревают его. По сути дела — это трансформатор, первичная обмотка — это катушка, называемая индуктором, а вторичная обмотка — это вкладка или короткозамкнутая обмотка. Тепло не подводится к вкладке, а генерируется в ней самой блуждающими токами. Все, окружающее ее, остается холодным, что является определенным преимуществом устройств такого рода.

Тепло во вкладке распределяется неравномерно, а только в поверхностных ее слоях и далее по объему распространяется за счет теплопроводности материала вкладки. Причем с повышением частоты переменного магнитного поля глубина проникновения уменьшается, а интенсивность увеличивается.

Для работы индуктора с частотой большей, чем в сети (50Гц), применяются транзисторные или тиристорные преобразователи частоты. Тиристорные преобразователи позволяют получать частоты до 8 КГц, транзисторные — до 25КГц. Схемы их подключения можно найти легко.

Планируя установку систем отопления в собственном доме или на даче, кроме прочих вариантов на жидком или твердом топливе, необходимо рассмотреть вариант с применением индукционного нагрева котла. С таким отоплением экономить на электроэнергии не удастся, но отсутствуют опасные для здоровья вещества.

Принцип работы индуктора

Основное назначение индуктора — выработка тепловой энергии за счет электрической без использования теплоэлектронагревателей принципиально другим способом.

Типовой индуктор состоит из следующих основных деталей и устройств:

  • генератор переменного тока — устройство для изменения сетевой частоты в более высокую, которая транслируется на катушку;
  • индуктор — катушка, в которой индуцируется переменное магнитное поле;
  • нагревательный элемент — металлический предмет, в котором под воздействием электромагнитного поля возникают вихревые токи, которые и нагревают проводник.

Устройство нагревательного прибора

Основные элементы индукционного нагревателя для отопительной системы.

  1. Стальная проволока диаметром 5-7 мм.
  2. Труба из пластика с толстой стенкой. Внутренний диаметр не менее 50 мм и длина подбирается по месту установки.
  3. Медная эмалированная проволока для катушки. Размеры подбираются в зависимости от мощности устройства.
  4. Сетка из нержавеющей стали.
  5. Сварочный инвертор.

Порядок изготовления индукционного котла

Вариант первый

Стальную проволоку порубить на отрезки длиной не более 50 мм. Рубленой проволокой заполнить пластиковую трубу. Торцы заглушить проволочной сеткой для предотвращения высыпания проволоки.

На концах трубы установить переходники от пластиковой трубы к размеру трубы в месте подключения нагревателя.

Медным эмалированным проводом намотать обмотку на корпусе нагревателя (пластиковой трубе). Для этого понадобится порядка 17 метров провода: количество витков — 90, наружный диаметр трубы порядка 60 мм: 3,14 х 60 х90 = 17 (метров). Длину уточните дополнительно, когда будет точно известен наружный диаметр трубы.

Пластиковую трубку, а теперь уже индукционный котел, врезать в трубопровод в вертикальном положении.

При проверке работоспособности индукционного нагревателя убедитесь, что в котле присутствует теплоноситель. В противном случае корпус (пластиковая труба) расплавится очень быстро.

Подключить котел к инвертору, необходимо заполнить систему теплоносителем и можно включать.

Вариант второй

Конструкция индукционного нагревателя из сварочного инвертора по этому варианту более сложна, требует определенных навыков и умений работать своими руками, однако, она более эффективна. Принцип тот же — индукционный нагрев теплоносителя.

Для начала нужно изготовить сам индукционный нагреватель — котел. Для этого понадобятся две трубки разного диаметра, которые вставляются одна в другую с зазором между ними порядка 20 мм. Длина трубок от 150 до 500 мм, в зависимости от предполагаемой мощности индукционного нагревателя. Нужно вырезать два кольца соответственно зазору между трубками и приварить их герметично по торцам. Получилась емкость тороидальной формы.

Остается вварить в наружную стенку входную (нижнюю) трубку по касательной к корпусу и верхнюю (выходную) трубку параллельно входной на противоположной стороне тороида. Размер трубок — по размеру труб отопительной системы. Расположение входного и выходного патрубков по касательной, обеспечит циркуляцию теплоносителя по всему объему котла без образования застойных зон.

Второй шаг — создание обмотки. Эмалированный медный провод нужно наматывать вертикально, пропуская его внутрь и поднимая наверх по внешнему контуру корпуса. И так 30-40 витков, образуя тороидальную катушку. В таком варианте нагреваться будет одновременно вся поверхность котла, таким образом, значительно повышая его производительность и эффективность.

Изготовить наружный корпус обогревателя из непроводящих материалов, использовав, например, пластиковую трубу большого диаметра или банальное пластиковое ведро, если будет достаточно его высоты. Диаметр наружного корпуса должен обеспечивать выход патрубков котла сбоку. Обеспечить соблюдение правил электробезопасности по всей схеме подключения.

Корпус котла отделить от наружного корпуса теплоизолятором, можно использовать как сыпучий термоизоляционный материал (керамзит), так и плиточный (изовер, минплита и тому подобное). Этим предотвращаются потери тепла в атмосферу от конвекции.

Остается заполнить систему своим теплоносителем и подсоединить индукционный нагреватель из сварочного инвертора.

Такой котел совершенно не требует вмешательства и может работать 25 и более лет без ремонта, поскольку в конструкции отсутствуют движущиеся детали, а в схеме подключения предусмотрено использование автоматического управления.

Вариант третий

Это, наоборот, самый простой вариант обогрева жилища, выполняемый своими руками. На вертикальной части трубы системы отопления нужно выбрать прямой участок длиной не менее метра и очистить его от краски наждачной шкуркой. Затем этот участок трубы изолировать 2-3 слоями электротехнической ткани или плотной стеклоткани. После этого эмалированным медным проводом намотать индукционную катушку. Тщательно изолировать всю схему подключения.

Остается только подключить сварочный инвертор и наслаждаться теплом в своем жилище.

Обратите внимание на несколько моментов.

  1. Нежелательно устанавливать такой обогреватель в жилых комнатах, где чаще всего находятся люди. Дело в том, что электромагнитное поле распространяется не только внутри катушки, но и в окружающем пространстве. Чтобы убедиться в этом, достаточно воспользоваться обыкновенным магнитом. Нужно взять его в руку и подойти к катушке (котлу). Магнит начнет ощутимо вибрировать и тем сильнее, чем ближе катушка. Поэтому лучше использовать котел в нежилой части дома или квартиры.
  2. Устанавливая катушку на трубе, убедитесь, что на этом участке системы отопления теплоноситель естественным образом течет вверх, чтобы не создавать противотока, иначе система вообще не будет работать.

Можно предложить много вариантов применения индукционного нагрева в жилище. Например, в системе горячего водоснабжения можно вообще отказаться от подачи горячей воды, подогревая ее на выходах из каждого крана. Однако, это тема для отдельного рассмотрения.

Несколько слов о безопасности при использовании индукционных нагревателей со сварочным инвертором:

  • для обеспечения электробезопасности необходимо тщательно изолировать токопроводящие элементы конструкций по всей схеме подключения;
  • индукционный нагреватель рекомендуется только для закрытых систем отопления, в которых циркуляция обеспечивается водяным насосом;
  • рекомендуется размещать индукционную систему на расстоянии не менее 30 см от стен и мебели и в 80 сантиметрах от пола или потолка;
  • чтобы обезопасить работу системы нужно оснастить систему манометром, аварийным клапаном и устройством автоматического регулирования.
  • установить устройство для стравливания воздуха из системы отопления во избежание образования воздушных пробок.

КПД индукционных котлов и нагревателей близка к 100%, при этом нужно учитывать, что потери электроэнергии в сварочных инверторах и проводке, так или иначе, возвращаются к потребителю в виде тепла.

Прежде чем приступать к изготовлению индукционной системы, посмотрите технические данные промышленных образцов. Это поможет определиться с исходными данными самодельной системы.

Желаем успехов в творчестве и труде на самого себя!

Оцените статью: Поделитесь с друзьями!

Змеевики индукционного нагрева — компоненты индукционного нагрева

Элементы индукционного нагрева

Типичная система индукционного нагревателя включает источник питания, цепь согласования импеданса, цепь резервуара и аппликатор. Аппликатор, представляющий собой индукционную катушку, может быть частью цепи резервуара. Цепь резервуара обычно представляет собой параллельный набор конденсаторов и катушек индуктивности. Конденсатор и индуктор в контуре резервуара являются резервуарами электростатической энергии и электромагнитной энергии соответственно.На резонансной частоте конденсатор и катушка индуктивности начинают передавать накопленную энергию друг другу. В параллельной конфигурации это преобразование энергии происходит при большом токе. Большой ток через катушку способствует хорошей передаче энергии от индукционной катушки к заготовке.

Щелкните здесь, чтобы узнать , что такое индукционные катушки и как они работают, а также различные типы катушек .

а) Источник питания

Источники питания — одна из важнейших частей системы индукционного нагревателя.Обычно они оцениваются по диапазону рабочих частот и мощности. Существуют различные типы индукционных источников питания, которые включают источники сетевой частоты, умножители частоты, мотор-генераторы, преобразователи искрового разрядника и твердотельные инверторы. Твердотельные инверторы имеют наибольшую эффективность среди источников питания.

Типичный твердотельный инверторный источник питания состоит из двух основных частей; Выпрямитель и инвертор. Линейные переменные токи преобразуются в постоянный в выпрямительной секции с помощью диодов или тиристоров.Постоянный ток поступает в инвертор, где твердотельные переключатели, такие как IGBT или MOSFET, преобразуют его в ток, на этот раз с высокой частотой (обычно в диапазоне 10–600 кГц). Согласно диаграмме ниже, IGBT могут работать на более высоком уровне мощности и более низкой частоте по сравнению с MOSFET, работающими на более низком уровне мощности и более высоких частотах.

b) Согласование импеданса

Источники питания для индукционного нагрева, как и любое другое электронное устройство, имеют максимальные значения напряжения и тока, которые нельзя превышать.Чтобы передать максимальную мощность от источника питания к нагрузке (заготовке), полное сопротивление источника питания и нагрузки должно быть как можно ближе. Таким образом, значения мощности, напряжения и тока могут одновременно достигать своих максимально допустимых пределов. Для этого в индукционных нагревателях используются схемы согласования импеданса. В зависимости от области применения могут использоваться различные комбинации электрических элементов (например, трансформаторы, регулируемые катушки индуктивности, конденсаторы и т. Д.).

c) Резонансный резервуар

Резонансный бак в системе индукционного нагрева обычно представляет собой параллельный набор конденсатора и индуктора, который резонирует на определенной частоте.Частота получается по следующей формуле:

, где L — индуктивность индукционной катушки, а C — емкость. Согласно анимации ниже, явление резонанса очень похоже на то, что происходит в качающемся маятнике. В маятнике кинетическая и потенциальная энергии преобразуются друг в друга, пока он колеблется от одного конца к другому. Движение затухает из-за трения и других механических потерь. В резонансном резервуаре энергия, обеспечиваемая источником питания, колеблется между индуктором (в форме электромагнитной энергии) и конденсатором (в форме электростатической энергии).Энергия затухает из-за потерь в конденсаторе, катушке индуктивности и заготовке. Потери в заготовке в виде тепла желательны и предназначены для индукционного нагрева.

Сам резонансный бак состоит из конденсатора и индуктора. Блок конденсаторов используется для обеспечения необходимой емкости для достижения резонансной частоты, близкой к мощности источника питания. На низких частотах (ниже 10 кГц) используются масляные конденсаторы, а на более высоких частотах (более 10 кГц) используются керамические или твердые диэлектрические конденсаторы.

г) Индукторы индукционного нагревателя

Что такое индукционные катушки и как они работают?

Катушка индукционного нагрева представляет собой медную трубку особой формы или другой проводящий материал, через который пропускается переменный электрический ток, создавая переменное магнитное поле. Металлические части или другие проводящие материалы помещаются внутри, через катушку индукционного нагрева или рядом с ней, не касаясь катушки, и создаваемое переменное магнитное поле вызывает трение внутри металла, вызывая его нагрев.

Как работают индукционные катушки?

При проектировании катушки необходимо учитывать некоторые условия:

1. Для повышения эффективности индукционных нагревателей расстояние между катушкой и заготовкой должно быть минимизировано. Эффективность связи между катушкой и заготовкой обратно пропорциональна квадратному корню из расстояния между ними.

2. Если деталь расположена в центре спиральной катушки, она будет лучше всего связана с магнитным полем.Если он смещен по центру, область заготовки, расположенная ближе к виткам, будет получать больше тепла. Этот эффект показан на рисунке ниже.

3. Кроме того, позиция рядом с соединением выводов и катушки имеет более слабую плотность магнитного потока, поэтому даже центр внутреннего диаметра спиральной катушки не является центром индукционного нагрева.

4. Следует избегать эффекта отмены (рисунок слева). Это происходит, когда раскрытие катушки очень мало. Добавление петли в катушку поможет обеспечить необходимую индуктивность (рисунок справа).Индуктивность индуктора определяет способность этого индуктора накапливать магнитную энергию. Индуктивность можно рассчитать по следующей формуле:

.

где ε — электродвижущая сила, а dI / dt — скорость изменения тока в катушке. Сам по себе ε равен скорости изменения магнитного потока в катушке (- dφ / dt), где магнитный поток φ может быть рассчитан из NBA, где N — количество витков, B — магнитное поле и A — площадь индуктор. Следовательно, индуктивность будет равна:

Очевидно, что величина индуктивности линейно пропорциональна площади индуктора.Следовательно, необходимо учитывать минимальное значение для контура индуктора, чтобы он мог накапливать магнитную энергию и передавать ее индукционной заготовке.

Эффективность катушки

КПД змеевика определяется следующим образом:

В таблице ниже показаны типичные значения КПД различных катушек:

Модификация змеевика по заявке

В некоторых случаях нагревательный объект не имеет однородного профиля, но требует равномерного нагрева. В этих случаях необходимо изменить поле магнитного потока. Для этого есть два типичных метода. Один из способов — разделить витки там, где деталь имеет большее поперечное сечение (при использовании спиральной катушки). Более распространенный метод — увеличить расстояние между обмотками в тех областях, где поперечное сечение детали больше. Оба метода показаны на рисунке ниже.

Такая же ситуация происходит при нагреве плоских поверхностей большими змеевиками. Центральная зона получит излишнее тепло.Чтобы избежать этого, зазор между поверхностью катушки и плоским предметом будет увеличен путем придания катушке блина конической формы.

Змеевик с футеровкой используется в приложениях, где требуется широкая и однородная зона нагрева, но мы не хотим использовать большие медные трубки. Лайнер представляет собой широкий лист, который прихваткой припаян к гибкой трубе как минимум в двух точках. Остальная часть стыка будет припаяна только для обеспечения максимальной теплопередачи. Также синусоидальный профиль поможет увеличить охлаждающую способность змеевика.Такая катушка изображена на рисунке ниже.

По мере увеличения длины нагрева количество витков необходимо увеличивать, чтобы сохранить равномерность нагрева.

Режим нагрева меняется в зависимости от изменения формы заготовки. Магнитный поток имеет тенденцию накапливаться на краях, порезах или вмятинах на поверхности нагреваемого объекта, вызывая тем самым более высокую скорость нагрева в этих областях. На рисунке ниже показан «краевой эффект», когда змеевик находится выше края нагревательного элемента, и в этой области происходит чрезмерный нагрев.Чтобы этого не произошло, катушку можно опустить ниже, ровно или немного ниже края.

Индукционный нагрев дисков также может вызвать чрезмерный нагрев кромок, как показано на рисунке ниже. Края нагреваются сильнее. Высота катушки может быть уменьшена, или концы катушки могут быть сделаны с большим радиусом для отделения от края заготовки.

Острые углы прямоугольных катушек могут вызвать более глубокий нагрев детали.Разделение углов катушки, с одной стороны, снизит скорость нагрева угла, но, с другой стороны, снизит общую эффективность индукционного процесса.

Одним из важных моментов, которые следует учитывать при проектировании многопозиционных катушек, является влияние соседних катушек друг на друга. Чтобы сохранить максимальную мощность нагрева каждой катушки, расстояние между центрами соседних катушек должно быть как минимум в 1,5 раза больше диаметра катушки.

Разделенные индукторы

используются в приложениях, где требуется тесная связь, а также невозможно извлечь деталь из катушки после процесса нагрева.Важным моментом здесь является обеспечение очень хорошего электрического контакта в месте соединения шарнирных поверхностей. Обычно для обеспечения наилучшего электрического контакта с поверхностью используется тонкий слой серебра. Разделенные части змеевиков будут охлаждаться с помощью гибкой водяной трубки. Автоматическое пневматическое сжатие часто используется для закрытия / открытия змеевика, а также для обеспечения необходимого давления в шарнирной области.

Типы нагревательных змеевиков

Катушка для блинов с двойной деформацией

В таких применениях, как нагрев наконечника валов, достижение однородности температуры может быть затруднено из-за эффекта компенсации в центре поверхности наконечника.Двойной деформированный змеевик для блинов с обработанными сторонами, подобный приведенной ниже схеме, можно использовать для достижения равномерного профиля нагрева. Следует обратить внимание на направление двух блинов, в которых центральные обмотки намотаны в одном направлении и имеют дополнительный магнитный эффект.

Сплит-возвратная катушка

В таких применениях, как сварка узкой ленты на одной стороне длинного цилиндра, где относительно большая длина должна нагреваться значительно выше, чем другие области объекта, обратный путь тока будет иметь значение. Используя катушку типа Split-Return, большой ток, наведенный на сварочном пути, будет разделен на две части, которые будут еще шире. Таким образом, скорость нагрева на сварочном пути как минимум в четыре раза выше, чем у остальных частей объекта.

Канальные катушки

Катушки канального типа используются, если время нагрева не очень короткое, а также требуются довольно низкие удельные мощности. Несколько нагревательных частей проходят через змеевик с постоянной скоростью и достигают максимальной температуры при выходе из машины.Концы катушки обычно согнуты, чтобы обеспечить путь для входа и выхода деталей из катушки. Там, где требуется обогрев профиля, можно использовать пластинчатые концентраторы с многооборотными канальными змеевиками.

Квадратная медная трубка

имеет два основных преимущества по сравнению с круглой трубкой: а) поскольку она имеет более плоскую поверхность, «смотрящую» на заготовку, она обеспечивает лучшую электромагнитную связь с нагревательной нагрузкой и б) конструктивно легче выполнять повороты с квадратными трубками, а не с круглыми.

Конструкция выводов для индукционных катушек

Конструкция выводов: выводы являются частью индукционной катушки, и хотя они очень короткие, они имеют конечную индуктивность. В общем, на приведенной ниже схеме показана принципиальная электрическая схема тепловой станции системы индукционных агрегатов. C — резонансный конденсатор, установленный в тепловой станции, L_lead — это общая индуктивность выводов катушки, а L_coil — индуктивность индукционной катушки, связанной с нагревательной нагрузкой. V_total — это напряжение, подаваемое от индукционного источника питания на тепловую станцию, V_lead — это падение напряжения на индуктивности вывода, а V_coil — это напряжение, которое будет приложено к индукционной катушке.Общее напряжение — это сумма напряжения на выводах и индукционной катушке:

V_lead представляет собой величину общего напряжения, занятого выводами, и не оказывает никакого полезного индукционного действия. Задача дизайнера — минимизировать это значение. V_lead можно рассчитать как:

Из приведенных выше формул очевидно, что для минимизации значения V_lead индуктивность выводов должна быть в несколько раз меньше индуктивности индукционной катушки (L_lead≪L_coil).

Уменьшение индуктивности свинца: На низких частотах, обычно из-за использования катушек с высокой индуктивностью (многооборотные и / или с большим внутренним диаметром), L_lead намного меньше, чем L_coil. Однако, поскольку количество витков и общий размер катушки уменьшается для высокочастотных индукторов, становится важным применять специальные методы для минимизации индуктивности выводов. Ниже приведены два примера для этого.

Концентраторы потока: Когда магнитный материал помещается в окружающую среду, включая магнитные поля, из-за низкого магнитного сопротивления (сопротивления) они имеют тенденцию поглощать линии магнитного потока.Способность поглощать магнитное поле количественно оценивается относительной магнитной проницаемостью. Это значение для воздуха, меди и нержавеющей стали равно единице, но для мягкой стали может доходить до 400, а для железа — до 2000. Магнитные материалы могут сохранять свою магнитную способность до температуры Кюри, после чего их магнитная проницаемость падает до единицы и они больше не будут магнитными.

Концентратор потока — это материал с высокой проницаемостью и низкой электропроводностью, который предназначен для использования в конструкции катушек индукционного нагревателя для увеличения магнитного поля, приложенного к нагревающей нагрузке.На рисунке ниже показано, как размещение концентратора потока в центре блинной катушки будет концентрировать силовые линии магнитного поля на поверхности катушки. Таким образом, материалы, помещенные поверх змеевика для блинов, лучше соединятся и получат максимальный нагрев.

Влияние концентратора потока на плотность тока в индукционной катушке показано на рисунке ниже. Большая часть тока будет сосредоточена на поверхности, не покрытой концентратором флюса. Следовательно, змеевик может быть сконструирован таким образом, что только сторона змеевика, обращенная к нагревательной нагрузке, останется без материалов концентратора. В электромагнетизме это называется щелевым эффектом. Щелевой эффект значительно увеличит эффективность змеевика, и для нагрева потребуется более низкий уровень мощности.

Артикул:

  • С. Зинн и С. Л. Семятин, «Элементы индукционного нагрева, проектирования, управления и приложений», A S M International, ISBN-13: 9780871703088, 1988

(PDF) Индукционный нагрев высокой мощности

> ЗАМЕНИТЕ ЭТУ СТРОКУ НА ИДЕНТИФИКАЦИОННЫЙ НОМЕР ВАШЕЙ БУМАГИ (ДВОЙНОЙ ЩЕЛКНИТЕ ЗДЕСЬ ДЛЯ ИЗМЕНЕНИЯ) <

ССЫЛКИ

[1] E.Р. Лэйтуэйт, «Влияние Майкла Фарадея на энергетику

», Power Engineering Journal, vol. 5, вып. 5, pp. 209 {219,

1991.

[2] Т. П. КИНН, «Характеристики лампового радиочастотного генератора

и приложение к проблеме индукционного нагрева», AIEE Trans. т. 63, pp.

1290–1303, 1944.

[3] W. C. Moreland, «Индукционный диапазон: его характеристики и проблемы разработки

», IEEE Trans.Ind. Appl., Vol. 9, вып. 1, pp. 81–

85, январь 1973 г.

[4] В. Эстев, Э. Санчис-Килдерс, Дж. Джордан, Э. Дж. Деде, К. Кейзс, Э. Мазет,

JB Ejea, and А. Ферререс, «Повышение эффективности резонансных инверторов IGBT серии

с использованием модуляции плотности импульсов», IEEE Trans. Инд.

Электрон., Т. 58, нет. 3, pp. 979–987, март 2011 г.

[5] JM Espi Huerta, EJ Dede Garcia Santamaria, R. Garcia Gil, J.

Castello Moreno, «Конструкция резонансного инвертора L-LC для индукции.

нагрев на основе эквивалентного SRI, IEEE Trans.Ind. Electron., Vol.

54, нет. 6, pp. 3178–3187, декабрь 2007 г.

[6] Х. Фудзита, Н. Учида и К. Одзаки, «Новая индукционная система нагрева

с зональным контролем, использующая несколько инверторных блоков, применимых по взаимной

условия магнитной связи », IEEE Trans. Power Electron., Т. 26,

нет. 7, стр. 2009–2017, июль 2010 г.

[7] И. Йилмаз, М. Эрмис, И. Кадирчи, «Среднечастотная индукционная плавильная печь

как нагрузка на энергосистему», IEEE Trans .Ind. Appl.,

vol. 48, вып. 4. С. 1203–1214, июл. / Авг. 2012.

[8] С. Чуджуарджин, А. Сангсванг и К. Коомпай, «Улучшенный резонансный инвертор LLC

для приложений индукционного нагрева с асимметричным управлением

», IEEE Trans. Ind. Electron., Vol. 58, нет. 7, pp. 2915–2925, Jul.

2011.

[9] NA Ahmed, «Высокочастотная схема преобразования переменного тока с мягким переключением

с двухрежимной стратегией управления PWM / PDM для мощных IH

приложений », IEEE Trans.Ind. Electron., Vol. 58, нет. 4, стр. 1440–

1448, апрель 2011 г.

[10] Дж. И. Родригес и С. Б. Либ, «Нерезонансная и резонансная частота —

выбираемых мишеней для индукционного нагрева», IEEE Trans. Ind. Electron., Vol.

57, вып. 9, pp. 3095–3108, сентябрь 2010 г.

[11] Дж. И. Родригес и С. Б. Либ, «Многоуровневая топология инвертора для передачи энергии с индуктивно связанной мощностью

», IEEE Trans. Power Electron., Т.

21, вып.6, pp. 1607–1617, Nov. 2006.

[12] Ф. П. Доусон и П. Джайн, «Сравнение систем инвертора с коммутацией нагрузки

для приложений индукционного нагрева и плавления», IEEE Trans.

Power Electron., Т. 6, вып. 3, стр. 430–441, июль 1991 г.

[13] М. Камли, С. Ямамото и М. Абэ, «Полумостовой инвертор

50–150 кГц для приложений индукционного нагрева», IEEE Trans. Инд.

Электрон., Т. 43, № 1, стр. 163–172, фев.1996.

[14] Э. Дж. Деде, Дж. В. Гонсалес, Дж. А. Линарес, Дж. Джордан, Д. Рамирес и П.

Руэда, «Генератор 25 кВт / 50 кГц для индукционного нагрева», IEEE Trans.

Ind. Electron., Vol. 38, № 3, стр. 203–209, июнь 1991 г.

[15] Р. Л. Стейгервальд, «Сравнение топологий полумостового резонансного преобразователя

», IEEE Trans. Power Electron., Т. 3, вып. 2, pp. 174–182,

Apr 1988.

[16] Х. Фам, Х. Фудзита, К. Одзаки и Н.Учида, «Контроль фазового угла

высокочастотных резонансных токов в системе с несколькими инверторами для управления индукционным нагревом зоны

», IEEE Trans. Power Electron., Т. 26, вып.

11, стр. 3357–3366, ноябрь 2011 г.

[17] Х. Н. Фам, Х. Фуджита, К. Одзаки и Н. Учида, «Метод оценки

распределения тепла с использованием трехмерной матрицы сопротивления для зонно-регулируемые индукционные

системы отопления », IEEE Trans. Power Electron., Т.27, нет. 7, pp.

3374-3382, июль 2012 г.

[18] Х. Н. Фам, Х. Фуджита, К. Одзаки и Н. Учида, «Динамический анализ и

контроль резонансных токов в зоне контроля система индукционного нагрева

», IEEE Trans. Power Electron., Т. 28, вып. 3, стр. 1297–1307,

март 2013 г.

[19] Х. Фудзита и Х. Акаги, «Управление и характеристики последовательно-резонансного инвертора с модуляцией плотности импульсов

для процессов коронного разряда»,

IEEE Trans. Ind. Appl., Vol. 35, нет. 3, стр. 621–627, май / июн. 1999.

[20] Дж. Эгалон, С. Ко, П. Маусион, М. Сулей и О. Пато, «Многофазная система

для индукционного нагрева металлических дисков: моделирование и управление током RMS

», IEEE Trans. Ind. Appl., Vol. 48, вып. 5, pp. 1692–1699,

сентября / октября 2012 г.

[21] Н. Парк, Д. Ли и Д. Хён, «Схема управления мощностью с постоянной частотой коммутации

в инверторе класса D для применения с индукционным нагревом

», IEEETrans.Ind. Electron., Vol. 54, нет. 3, pp. 1252–1260,

Jun. 2007.

[22] Д. Наварро, О. Люсия, Л. А. Барраган, И. Урриса и О. Хименес, «Синтез высокого уровня

для ускорения FPGA. реализация

вычислительно требовательных алгоритмов управления для преобразователей мощности »,

IEEE Trans. Инд. Информатика, т. 9, № 3, стр. 1371–1379, август 2013 г.

[23] Ф. Дугьеро, М. Форзан, К. Поцца и Э. Сиени, «Трансляционная связанная

Инновационная электромагнитная и тепловая инновационная модель для индукционная сварка

труб », IEEE Trans. Магн., Т. 48, вып. 2, стр. 483–486, февраль 2012 г.

[24] Ф. Карикки, Ф. Марадеи, Г. ДеДонато и Ф. Г. Каппони, «Генератор с постоянным магнитом Axial-flux

для генераторных установок индукционного нагрева», IEEE

Пер. Ind. Electron., Vol. 57, № 1, стр. 128–137, январь 2010 г.

[25] Р. Бенато, Ф. Дугьеро, М. Форзан и А. Паолуччи, «Эффект близости

и расчет магнитного поля в GIL и изолированные фазные шинопроводы »

IEEE Trans. Magn., т. 38, № 2, стр.781–784, март 2002 г.

[26] А. Кандео, К. Дукасси, П. Боше и Ф. Дугьеро, «Мультифизическое моделирование

индукционного упрочнения зубчатых колес. для аэрокосмической промышленности

», IEEE Trans. Магн., Т. 47, № 5, стр. 918–921, май 2011 г.

[27] А. Алиферов, Ф. Дугьеро, М. Форзан, «Связанная магнитотермическая

FEM-модель прямого нагрева ферромагнитных гнутых трубок». IEEE

Пер.Магн., Т. 46, № 8, стр. 3217–3220, август 2010 г.

[28] Ф. Форест, С. Фаучер, Ж.-Й. Гаспар, Д. Монтлу, Ж.-Ж. Huselstein,

и C. Жубер, «Частотно-синхронизированные резонансные преобразователи для питания

многообмоточных катушек в индукционных варочных приборах», IEEE

Trans. Ind. Electron., Vol. 54, нет. 1, pp. 441–452, Feb. 2007.

[29] Ф. Форест, Э. Лабуре, Ф. Коста и Ж.-Й. Гаспар, «Принцип системы

с несколькими нагрузками / одним преобразователем для маломощного индукционного нагрева»,

IEEE Trans.Ind. Electron., Vol. 15, вып. 2, pp. 223–230, Mar. 2000.

[30] О. Люсия, Л. А. Барраган, Дж. М. Бурдио, О. Хименес, Д. Наварро и И.

Урриса, «Универсальный испытательный стенд для силовой электроники. архитектура применима к домашнему индукционному нагреву

», IEEE Trans. Ind. Electron., Vol. 58, нет.

3, стр. 998–1007, март 2011 г.

[31] Дж. М. Бурдио, Ф. Монтерде, Дж. Р. Гарсия, Л. А. Барраган и А.

Мартинес, «Последовательно-резонансный инвертор с двумя выходами для индукционного нагрева

кухонных приборов , ”IEEE Trans. Power Electron., Т. 20, нет. 4, pp.

815–822, июль 2005 г.

[32] О. Люсия, Дж. М. Бурдио, Л. А. Барраган, Дж. Асеро и И. Миллан, «Резонансный мультиинвертор серии

для нескольких индукционных нагревателей», IEEE Trans.

Power Electron., Т. 25, нет. 11, pp. 2860–2868, ноябрь 2010 г.

[33] О. Люсия, К. Карретеро, Дж. М. Бурдио, Дж. Асеро и Ф.

Алмазан, «Резонансный матричный преобразователь с несколькими выходами для кратных

индукционные нагреватели », IEEE Trans.Ind. Appl., Vol. 48, вып. 4. С. 1387–

1396, июл. / Авг. 2012.

[34] О. Люсия, Дж. М. Бурдио, И. Миллан, Дж. Асеро и Л. А. Барраган,

«Ориентированная на эффективность конструкция полумостового резонансного инвертора серии ZVS

с регулируемой частотой включения» IEEE Trans. Мощность

Электрон., Т. 25, нет. 7, pp. 1671–1674, Jul. 2010.

[35] Х. Сарнаго, О. Люсия, А. Медиано и Дж. М. Бурдио, «Двухрежимный резонансный преобразователь класса D / DE

для повышения эффективности.

Бытовая система индукционного нагрева », IEEE Trans.Power Electron., Т.

28, корп. 3, стр. 1274–1285, март 2013 г.

[36] Х. Сарнаго, А. Медиано и О. Люсия, «Высокоэффективный электронный преобразователь переменного тока в переменный ток

, применяемый для домашнего индукционного нагрева», IEEE

Пер. Power Electron., Т. 27, нет. 8, pp. 3676–3684, август 2012 г.

[37] А. Фудзита, Х. Садаката, И. Хирота, Х. Омори и М. Накаока, «Последние

разработок высокочастотной последовательной резонансной нагрузки. инверторный тип

встроенные варочные панели для индукционного нагрева всех металлических приборов », в Proc.

IEEE Power Electron. Конференция по управлению движением, 2009, стр. 2537–2544.

[38] Н. А. Ахмед и М. Накаока, «Полумост с усилением краевого резонансного мягкого

импульсного высокочастотного ШИМ-преобразователя для индукционного нагрева потребителей

приборов», Proc. Inst. Избрать. Eng . –– Избран. Power Appl., Vol. 153, нет.

6, стр. 932–938, ноябрь 2006 г.

[39] Х. Кифунэ, Ю. Хатанака, М. Накаока, «Квазипоследовательно-резонансный тип

Инвертор с модуляцией фазового сдвига

с мягким переключением», Proc. .Inst. Избрать. Eng .––

Элект. Power Appl., Vol. 150, нет. 6, pp. 725–732, Nov. 2003.

[40] К. Огура, Л. Гамаге, Т. Ахмед, М. Накаока, И. Хирота, Х. Ямасита,

и Х. Омори, «Перформанс» оценка частотно-резонансного высокочастотного преобразователя ZVS-PWM

с использованием транзисторных транзисторов IGBT для потребителя

индукционного варочного нагревателя », Тр. Inst. Избрать. Eng .–– Избран. Power Appl.,

об. 151, нет. 5, pp. 563–568, Sep. 2004.

[41] H.Сугимура, С.-П. Мун, С.-К. Квон, Т. Мисима и М. Накаока,

«Высокочастотный резонансный матричный преобразователь с использованием однокристальных обратных переключателей

, блокирующих двунаправленные переключатели на базе IGBT для индукционного нагрева», в

Proc. IEEE PESC, 2008, стр. 3960–3966.

[42] С. Ван, К. Идзаки, И. Хирота, Х. Ямасита, Х. Омори и М. Накаока,

«Устройство для приготовления пищи с индукционным нагревом, использующее новый квазирезонансный инвертор

ZVSPWM с коэффициентом мощности исправление », IEEE Trans.Инд.

Прил., Т. 34, нет. 4. С. 705–712, июл. / Авг. 1998.

Низкочастотный двухпозиционный индукционный нагреватель мощностью 45 кВт, 1–20 кГц

Примечание. Эта модель доступна только в трехфазном исполнении на 460–480 Вольт.

Низкочастотные индукционные нагреватели серии Across International от 1 кГц до 20 кГц подходят для широкого спектра применений, включая глубокое проникновение тепла для процессов полной закалки, ковку стальных стержней, отпуск штампов, предварительный нагрев для сварки и плавление. металлических партий более 4 фунтов.Они не ограничиваются ферромагнитными материалами, поэтому цветные металлы также могут быть эффективно использованы.

Система состоит из трех основных компонентов: источника питания, компенсирующего конденсатора / трансформатора и индукционной катушки / плавильного тигля. Наши нагреватели автоматически настраиваются на оптимальную резонансную частоту для достижения наиболее эффективных общих результатов нагрева в соответствии с требованиями наших клиентов, которые включают проникновение тепла, эффективность нагрева, рабочий шум и электромагнитную однородность.Две из наших самых популярных низкочастотных машин — это плавильные печи с плиточным плавильным аппаратом и печи с автоматической загрузкой стержня для ковки.

Индукционный нагрев включает не внешнее нагревание, а внутреннее тепловыделение в самой заготовке. Этот процесс не требует длительных периодов нагрева и позволяет ограниченное подведение тепла локально и точно по времени, таким образом достигая высокой степени эффективности и максимального использования энергии.По сравнению с традиционными методами нагрева, индукционный нагрев обеспечивает максимальный уровень качества и эффективности в практически неограниченном диапазоне применений.

Основные принципы индукционного нагрева применяются в производстве с 1920-х годов. Во время Второй мировой войны технология быстро развивалась, чтобы удовлетворить насущные потребности военного времени в быстром и надежном процессе упрочнения металлических деталей двигателя. В последнее время акцент на бережливых производственных технологиях и упор на улучшенный контроль качества привели к новому открытию индукционной технологии, наряду с разработкой полностью контролируемых твердотельных индукционных источников питания.Что делает этот метод нагрева таким уникальным? В наиболее распространенных методах нагрева к металлической части непосредственно прикладывают горелку или открытое пламя. Но при индукционном нагреве тепло фактически «индуцируется» внутри самой детали за счет циркулирующих электрических токов. Поскольку тепло передается продукту с помощью электромагнитных волн, деталь никогда не вступает в прямой контакт с пламенем, сам змеевик не нагревается, и продукт не загрязняется. При правильной настройке процесс становится очень повторяемым и управляемым.

КАК РАБОТАЕТ ИНДУКЦИОННЫЙ НАГРЕВ

Как именно работает индукционный нагрев? Это помогает получить базовое представление о принципах электричества. Когда переменный электрический ток подается на первичную обмотку трансформатора, создается переменное магнитное поле. Согласно закону Фарадея, если вторичная обмотка трансформатора находится в магнитном поле, индуцируется электрический ток.

В базовой установке индукционного нагрева твердотельный высокочастотный источник питания передает переменный ток через медную катушку, а нагреваемая часть помещается внутри катушки.Катушка служит первичной обмоткой трансформатора, а нагреваемая часть становится вторичной обмоткой короткого замыкания. Когда металлическая деталь помещается в индукционную катушку и попадает в магнитное поле, внутри детали индуцируются циркулирующие вихревые токи. Эти вихревые токи протекают против удельного электрического сопротивления металла, генерируя точное и локализованное тепло без какого-либо прямого контакта между деталью и катушкой.

ВАЖНЫЕ ФАКТОРЫ, КОТОРЫЕ СЛЕДУЕТ УЧИТАТЬ
Эффективность системы индукционного нагрева для конкретного применения зависит от нескольких факторов: характеристик самой детали, конструкции индукционной катушки, мощности источника питания и степени нагрева. изменение температуры, необходимое для применения.

МЕТАЛЛ ИЛИ ПЛАСТИК
Во-первых, индукционный нагрев работает напрямую только с проводящими материалами, обычно с металлами. Пластмассы и другие непроводящие материалы часто можно нагревать косвенно, сначала нагревая проводящий металлический приемник, который передает тепло непроводящему материалу.

МАГНИТНЫЙ ИЛИ НЕМАГНИТНЫЙ
Магнитные материалы легче нагревать. Помимо тепла, вызванного вихревыми токами, магнитные материалы также выделяют тепло за счет так называемого эффекта гистерезиса.Во время процесса индукционного нагрева магнитные элементы, естественно, оказывают сопротивление быстро меняющимся электрическим полям, и это вызывает достаточное трение, чтобы обеспечить вторичный источник тепла. Этот эффект перестает проявляться при температурах выше «точки Кюри» — температуры, при которой магнитный материал теряет свои магнитные свойства. Относительное сопротивление магнитных материалов оценивается по шкале «проницаемости» от 100 до 500; в то время как немагнитные материалы имеют проницаемость 1, магнитные материалы могут иметь проницаемость до 500.

ТОЛЩАЯ ИЛИ ТОЛЩАЯ
В случае проводящих материалов около 80% эффекта нагрева происходит на поверхности или «коже» детали; интенсивность нагрева уменьшается по мере удаления от поверхности. Поэтому мелкие или тонкие детали обычно нагреваются быстрее, чем большие толстые, особенно если более крупные детали необходимо нагреть полностью. Исследования показали взаимосвязь между глубиной проникновения нагрева и частотой переменного тока. Частоты от 100 до 400 кГц производят относительно высокоэнергетическое тепло, идеально подходящее для быстрого нагрева небольших деталей или поверхности / кожи больших деталей.Было показано, что для глубокого проникающего тепла наиболее эффективными являются более длительные циклы нагрева с частотой от 5 до 30 кГц.

СОПРОТИВЛЕНИЕ
Если вы используете один и тот же индукционный процесс для нагрева двух кусков стали и меди одинакового размера, результаты будут совершенно разными. Почему? Сталь — наряду с углеродом, оловом и вольфрамом — имеет высокое электрическое сопротивление. Поскольку эти металлы сильно сопротивляются току, быстро накапливается тепло. Металлы с низким удельным сопротивлением, такие как медь, латунь и алюминий, нагреваются дольше.Удельное сопротивление увеличивается с ростом температуры, поэтому очень горячая сталь будет более восприимчива к индукционному нагреву, чем холодная.

КОНСТРУКЦИЯ ИНДУКЦИОННОЙ КАТУШКИ
Именно внутри индукционной катушки создается переменное магнитное поле, необходимое для индукционного нагрева, за счет протекания переменного тока. Таким образом, конструкция змеевика — один из наиболее важных аспектов всей системы. Хорошо спроектированная катушка обеспечивает правильный режим нагрева для вашей детали и максимизирует эффективность источника питания индукционного нагрева, при этом позволяя легко вставлять и извлекать деталь.

Индукционные катушки обычно изготавливаются из медных трубок — очень хороших проводников тепла и электричества — диаметром от 1/8 дюйма до 3/16 дюйма; медные змеевики большего размера предназначены для таких применений, как нагрев полосы металла и нагрев труб. Индукционные змеевики обычно охлаждаются циркулирующей водой и чаще всего изготавливаются по индивидуальному заказу, чтобы соответствовать форме и размеру нагреваемой детали. Таким образом, катушки могут иметь один или несколько витков; иметь винтообразную, круглую или квадратную форму; или быть спроектированным как внутреннее (часть внутри катушки) или внешнее (часть рядом с катушкой).Существует пропорциональная зависимость между величиной протекающего тока и расстоянием между катушкой и деталью. Размещение детали близко к катушке увеличивает ток и количество тепла, индуцируемого в детали. Это соотношение называется эффективностью связи катушки.

A Источник питания для индукционного нагрева 25 кВт, 25 кГц для системы MOVPE с использованием резонансного инвертора L-LC

Топология резонансного инвертора L-LC (RI) для приложений индукционного нагрева (IH) использует большинство достоинств традиционных серий и параллельные резонансные схемы при снятии их ограничений.В этой статье пересматривается анализ переменного тока на основной частоте L-LC RI, и предлагается новая рабочая точка с улучшенным коэффициентом усиления по току и почти синфазной работой по сравнению с традиционной рабочей точкой. Также описан приблизительный анализ схемы с источником прямоугольного напряжения, в котором подчеркивается влияние вспомогательной катушки индуктивности на форму волны тока источника. Анализ также приводит к оптимальному выбору вспомогательной индуктивности. Представлены требования к системе парофазной эпитаксии из металлоорганических соединений (MOVPE), в которой графитовый токоприемник должен быть нагрет до 1200 ° C, требующий источника питания IH 25 кВт, 25 кГц, конфигурация разработанной системы IH и результаты экспериментов. .

1. Введение

Индукционный нагрев (IH) [1] обычно используется для термической обработки металлов (закалка, отпуск и отжиг), нагрева перед деформацией (ковка, обжимка, осадка, гибка и прошивка), пайка и пайка, термоусадка, покрытие, плавление, выращивание кристаллов, герметизация крышек, спекание, осаждение из паров углерода, эпитаксиальное осаждение и генерация плазмы. IH — бесконтактный метод. Тепло выделяется только в части, а не в окружающей среде, за исключением излучения.Местоположение нагрева может быть определено в определенной области на металлическом компоненте, что позволяет получить точные и стабильные результаты. Поскольку нагрев происходит в самом объекте, IH считается более эффективным, чем альтернативные методы.

Система IH включает в себя базовый индукционный источник питания, который обеспечивает требуемую выходную мощность при требуемой частоте сети, в комплекте с соответствующими компонентами, узел индукционной катушки, метод обработки материалов и некоторый метод охлаждения. Как правило, полумостовые или полумостовые резонансные инверторы (RI) чаще всего используются в качестве источников питания для IH.Эквивалентная модель катушки IH с обрабатываемой деталью может быть представлена ​​в упрощенной форме эквивалентной индуктивностью () и сопротивлением (), как показано на рисунке 1. Если катушка IH питается напрямую от источника питания, отношение полной мощности к реальной будет большим. Следовательно, катушка IH должным образом компенсируется конденсаторами и дополнительными катушками индуктивности в подходящей конфигурации, так что от источника потребляется минимальная реактивная мощность. Кроме того, чтобы согласовать требования к напряжению-току нагрузки с доступным источником, требуется соответствующая сеть.Согласование обычно достигается с помощью изолирующего трансформатора с подходящим соотношением витков.


Основываясь на соединении компенсирующего конденсатора с катушкой IH, наиболее часто используются следующие две топологии RI. (1) Последовательный резонансный инвертор (SRI): компенсирующий конденсатор подключается последовательно с катушкой IH, и он питается от источника напряжения [2–6]. (2) Параллельный резонансный инвертор (PRI): компенсирующий конденсатор размещен параллельно катушке IH, и он питается от источника тока [7–11].

Анализ этих схем был проведен очень подробно, и сравнительная оценка также представлена ​​в литературе [12, 13].

Для приложений IH была предложена топология L-LC RI [14–21], которая использует большинство достоинств SRI и PRI, устраняя при этом их ограничения. Он работает с источником входного постоянного напряжения, тем самым устраняя громоздкую индуктивность, сглаживающую входной ток. Он обеспечивает высокий коэффициент усиления по току, что, в свою очередь, снижает номинальный ток вторичной обмотки согласующего трансформатора и фидера к катушке.

Металлоорганическая парофазная эпитаксия (MOVPE) [22] — это строго контролируемый метод осаждения полупроводниковых эпитаксиальных слоев и гетероструктур, необходимых для разработки нескольких оптоэлектронных и электронных устройств. Процесс MOVPE включает парофазную реакцию между металлоорганическим соединением и газообразным гидридом, которые транспортируются к нагретому (около 1200 ° C) приемнику графита, что приводит к росту желаемого материала. IH — один из предпочтительных методов бесконтактного нагрева токоприемника.

Целью статьи является исследование характеристик L-LC RI для приложения, требующего источника питания IH 25 кВт, 25 кГц для нагрева графитового токоприемника до 1200 ° C в системе MOVPE для выращивания нитридных полупроводников, разрабатываемой в нашем институте. . Раздел 2 описывает анализ переменного тока L-LC CN и исследует различные характеристики, когда преобразователь работает на резонансной частоте. Предлагаемая рабочая точка отличается от ранее предложенной рабочей точки, которая обеспечивает повышенный коэффициент усиления по току с меньшей вспомогательной индуктивностью и приводит к работе, близкой к синфазной.В разделе 3 описывается работа компенсирующей сети с высоким L-LC (CN) с источником прямоугольного напряжения, что позволяет выбрать оптимальный вспомогательный индуктор. Требования, описание и конструкция практической системы обсуждаются в разделе 4. Экспериментальные результаты представлены в разделе 5.

2. Анализ L-LC CN

На рисунке 2 показан L-LC RI. Источником входного постоянного тока может быть нерегулируемый источник (полученный с однофазным или трехфазным диодным выпрямителем и фильтром) или может быть источник регулируемого напряжения (полученный с однофазным или трехфазным диодным / тиристорным выпрямителем и фильтром или другим передним выходом). концевой импульсный регулятор).В первом случае регулирование мощности, подаваемой на обрабатываемую деталь, должно выполняться на этапе RI с использованием изменения частоты [23, 24], широтно-импульсной модуляции с фиксированной частотой (PWM) [25–27] или модуляции плотности импульсов (PDM). ) [28, 29]. В последнем случае управление выходной мощностью может осуществляться путем изменения, что обеспечивает легкое управление выходной мощностью в широком диапазоне. Однако два каскадных преобразователя имеют тенденцию к снижению общей эффективности.


Следующий анализ, основанный на приближении основной частоты, исследует важные характеристики топологии L-LC.В эквивалентной схеме L-LC CN, показанной на рисунке 3, предполагается, что источником входного напряжения является источник синусоидального напряжения, действующее значение которого равно действующему значению основной составляющей прямоугольного возбуждения. Для анализа сделаны следующие определения.


Угловая резонансная частота:

Нормализованная рабочая частота: где — угловая рабочая частота, а — рабочая частота или частота переключения.

Характеристическое сопротивление:

Цепь:

Коэффициент индуктивности:

Выражение для нормализованного тока в катушке и нормализованного тока источника (или тока в катушке индуктивности) может быть соответственно получено как

Затем исследуются основные характеристики преобразователя, работающего в предлагаемой рабочей точке,, в результате чего получены следующие наблюдения:

За ,

Также видно, что ток источника при является индуктивным для всех значений, а фазовый угол является функцией от и.Если, ток источника всегда синфазен с напряжением.

На рис. 4 (а) показан график зависимости от для различных значений. Когда преобразователь работает при, очевидно, что он относительно нечувствителен, особенно при высоких значениях, — типичных рабочих условиях в приложении IH.

На рисунке 4 (b) показан график зависимости от. Ток источника отстает от приложенного прямоугольного напряжения. Хотя этот запаздывающий ток полезен для переключения при нулевом напряжении (ZVS) полупроводниковых переключателей, можно ожидать, что более высокое значение приведет к более высокому току источника, вызывая большие потери проводимости в переключателях.Из графиков на рис. 4 (b) видно, что он мал для работы при, особенно для работы при высоком. Следовательно, ток источника и потери проводимости в переключателях будут меньше в этой рабочей точке.

Текущее усиление CN, определяется выражением который может быть дополнительно упрощен как На рис. 5 показан график зависимости от для и различных значений. Максимальный коэффициент усиления по току (равный) наблюдается для работы в предложенной рабочей точке.


Характеристики и конструкция L-LC RI для приложений IH, работающих в, широко описаны в литературе [15–21]. В этой рабочей точке Для, что меньше теоретического максимального значения, заданного формулой (12), в предлагаемой рабочей точке. Таким образом, как также показано на рисунке 5, предлагаемая рабочая точка L-LC RI приводит к усилению по току. Кроме того, выражение для в обычной рабочей точке может быть записано как Графики (14) в зависимости от показаны на рисунке 4 (b) для и.Можно видеть, что фазовый угол меньше в предлагаемой рабочей точке, чем в обычной рабочей точке, что приводит к меньшим потерям проводимости в переключателях.

3. Поведение L-LC CN с источником прямоугольного напряжения

Анализ, основанный на приближении основной частоты, представленный в разделе 2, предполагает, что преобразователь при работе с максимальным коэффициентом усиления по току и малым фазовым углом между напряжением источника и током что приводит к низкой нагрузке реактивной мощности и низким потерям проводимости в полупроводниковых устройствах прямоугольного инвертора.Анализ, представленный в разделе 2, предполагает наличие источника синусоидального напряжения на входе. На практике входное напряжение представляет собой прямоугольную волну, генерируемую рабочими переключателями, показанными на Рисунке 2, при 50-процентном рабочем цикле. В этом разделе рассматривается поведение резонансного инвертора L-LC при работе с источником прямоугольного напряжения. Эквивалентная схема для L-LC RI для анализа с источником прямоугольного напряжения показана на рисунке 6 (а). Напряжение источника можно определить как можно разложить на его основную составляющую и гармоники как Из (15) и (16) где — период переключения.Таким образом, эквивалентная схема на рисунке 6 (a) может быть перерисована как на рисунке 6 (b), где разложена на и.

Эквивалентный импеданс () резонансного контура, и при определяется выражением Кроме того, для высокорезонансного контура в приложениях IH его можно приблизить к нулю для всех рабочих точек, кроме. При этом предположении эквивалентная схема для рисунка 6 (b) может быть отключена для работы на частотах гармоник и на них, как показано на рисунках 6 (c) и 6 (d), соответственно.Предполагая, что эквивалентную схему в можно дополнительно упростить, как показано на рисунке 6 (c). При таком упрощении схема может быть проанализирована на предмет основных частот и гармоник отдельно, чтобы определить ток отдельного источника, а затем быть добавлена ​​для определения результирующего тока источника. Выражение для может быть получено как На рисунке 7 (а) показаны расчетные формы сигналов для работы схемы в условиях низкого уровня. Легко заметить, что, будучи обратно пропорциональным, значительно больше, чем для низких значений.Следовательно, результат также почти синусоидальный. При этом условии прогнозы анализа переменного тока (раздел 2) достаточно точны. Однако в высоких условиях, как показано на рисунке 7 (b), амплитуда намного меньше, чем. Следовательно, он почти такой же, как и в значительной степени несинусоидальный. При этом условии прогнозы раздела 2 имеют тенденцию быть ошибочными. Поскольку анализ раздела 2 не учитывает гармоники, фактические пиковые и среднеквадратичные значения, рассчитанные по (19), значительно больше, чем предсказанные по (9).Это приведет к ухудшению текущего усиления по сравнению с его значением, предсказанным (12). Однако амплитудой и среднеквадратичным значением можно управлять, выбирая надлежащее значение. На рисунке 7 (c) показана рассчитанная форма сигнала для различных значений when. Поскольку среднеквадратичное значение можно уменьшить, увеличив значение, ухудшение текущего усиления можно в некоторой степени скорректировать, выбрав более высокое значение. На рис. 8 показаны графики зависимости коэффициента усиления по току от для различных значений.Для прямого сравнения также показан график текущего усиления, предсказанного (12). На рисунке также показано изменение коэффициента усиления по току в обычной рабочей точке, предсказанное формулой (13) для и. Замечено, что фактическое усиление тока в предлагаемой рабочей точке выше, чем в обычной рабочей точке.


Физический размер катушки индуктивности зависит от ее значения, пикового тока и среднеквадратичного значения тока. Поскольку пиковое и среднеквадратичное значение уменьшается с увеличением, интуитивно понятно, что физический размер будет сначала уменьшаться по мере увеличения, достигать минимума, а затем увеличиваться с дальнейшим увеличением.Чтобы получить значение минимального размера, следующий термин определяется как его нормализованный индекс размера: На рис. 9 показаны графики (20) для различных значений. Видно, что для высокопроизводительных приложений обычно должно быть 5 раз.


4. Описание системы

MOVPE — это строго контролируемый метод осаждения полупроводниковых эпитаксиальных слоев и гетероструктур, необходимых для разработки нескольких оптоэлектронных и электронных устройств.Процесс MOVPE включает парофазную реакцию между металлоорганическим соединением и газообразным гидридом, которые транспортируются к нагретому (около 1200 ° C) приемнику графита, что приводит к росту желаемого материала. Для нагрева графитового токоприемника (диаметр 50 мм и длина 20 мм) до 1200 ° C в кварцевом реакторе диаметром 80 мм требуется источник питания.

4.1. Рабочая катушка и резонансный конденсатор

Хотя рекомендуемые методы проектирования катушек предполагают, что катушка должна быть как можно ближе к токоприемнику, а длина катушки должна быть больше, чем у токоприемника [1], физические размеры токоприемника и реактора вынуждают внутреннюю диаметр бухты 100 мм.Кроме того, поскольку душевая лейка из нержавеющей стали с соплами для подачи газов в реактор прикреплена к одному концу реактора, максимальная длина змеевика также ограничена 50 мм. Катушка состоит из полого медного проводника. Число витков, диаметр проводника и толщина его стенки оптимизированы с учетом различных параметров, таких как сопротивление катушки, потери мощности, электрический КПД, требуемый расход охлаждающей воды и падение давления. Разработанная катушка имеет 4 витка полого медного проводника с внешним диаметром 3/8 дюйма и толщиной стенки SWG 19.Сопротивление катушки оценивается в 11,3 мОм, а индуктивность катушки составляет 2,70 мк H. Рабочая частота 25 кГц была зафиксирована для обеспечения равномерного нагрева токоприемника (толщина скин-слоя графита составляет почти 17 мм при 25 кГц). . Эквивалентное сопротивление заготовки оценивается в 16,6 мОм. Катушка рассчитана на максимальное действующее значение 1000 А.

В качестве резонансного конденсатора использовалась батарея из 6 конденсаторов с кондуктивным охлаждением по 3 мк Ф каждый. Эти конденсаторы установлены на холодной пластине, которая, в свою очередь, охлаждается водой.Однако для получения резонансной частоты 25 кГц используется всего 5 конденсаторов. Конденсаторная батарея находится очень близко к катушке, чтобы сократить путь циркуляции.

4.2. Схема питания

Принципиальная принципиальная схема силовой цепи показана на рисунке 10, который в общих чертах можно разделить на три части: входной трехфазный диодный выпрямитель с фильтром, преобразователь постоянного тока в постоянный и L-LC RI. . В дополнение к этому, фактическая силовая цепь также состоит из прерывателей, фильтра электромагнитных помех и цепи ограничения пускового тока в ступени выпрямителя.Однако для ясности они не показаны на рисунке 10.


Вход для источника питания — 415 В, 50 Гц, трехфазный переменный ток. Значения индуктивности фильтра () и конденсатора () во входной секции выпрямителя составляют 2,2 мГн и 3 мФ соответственно, что дает частоту отсечки 70 Гц.

В разделе 2 видно, что RI L-LC демонстрирует желаемое поведение только тогда, когда он работает на. Следовательно, изменение частоты переключения для управления выходной мощностью не допускается. Следовательно, могут использоваться методы управления с фиксированной частотой, такие как широтно-импульсная модуляция (ШИМ), или методы квантованного управления, такие как модуляция плотности импульсов.Однако операция мягкого переключения переключателей на этапе RI не может быть гарантирована во всем рабочем диапазоне, а методы квантованного управления, такие как PDM, приводят к дискретным выходным уровням, а также имеют ограниченный диапазон управления выходной мощностью. Если, с другой стороны, входное напряжение каскада RI контролируется, можно обеспечить контроль выходной мощности в более широком диапазоне и эксплуатационную гибкость. Недостатки этой схемы, а именно необходимость наличия промежуточного каскада преобразователя постоянного тока и снижение общей эффективности преобразования, принесены в жертву вышеупомянутым преимуществам.

Понижающий преобразователь постоянного тока выбран в качестве промежуточного каскада преобразователя постоянного тока. БТИЗ и диод составляют основную коммутационную ячейку. Пассивная демпферная цепь без потерь (состоящая из демпфирующей катушки индуктивности, конденсаторов, и диодов, и) используется для ограничения коммутационных потерь на этом этапе. Стоит отметить, что помимо тщательного выбора значений компонентов, описанного в [30], для эффективного демпфирования также важно уделять внимание нескольким практическим аспектам [31], таким как прямое восстановление демпфирующих диодов и паразитные индуктивности. действие.Индуктор, конденсаторы и резистор составляют высокочастотный фильтр нижних частот с демпфированием.

Два полумостовых модуля IGBT SKM100GB123D используются для реализации H-моста в секции инвертора, подающей прямоугольное напряжение на высокочастотный изолирующий трансформатор. Трансформатор с соотношением витков 1: 1 был разработан с использованием 7 пар сердечников EE80 с 7 витками первичной обмотки и 7 витками вторичной обмотки. В то время как первичная обмотка намотана из медной фольги, для вторичной обмотки с водяным охлаждением используется полый медный провод с высокой проводимостью, не содержащий кислорода.Результаты на Рисунке 9 показывают, что дополнительная резонансная катушка индуктивности должна быть примерно в 5 раз больше для высокопроизводительной работы. Поэтому в настоящей системе выбран. Индуктивность рассеяния трансформатора оценивается в 5 мк Гн. Дополнительная индуктивность 8,5 мк Гн реализуется за счет пропускания вторичных витков вокруг вспомогательного сердечника с зазором (2 пары EE80) в соответствии с конфигурацией, предложенной в [32].

Конденсатор был включен последовательно с первичной обмоткой трансформатора (не показан на рисунке 10), чтобы предотвратить насыщение трансформатора в случае несимметричного возбуждения.В таблице 1 приведены значения компонентов и номера деталей полупроводниковых устройств, используемых в системе.



Компонент Значение / Каталожный номер

2,2 мH
H
30 μ F
150 μ F
2.2
5 μ H
0,03 μ F
0,33 μ F
15 μ F
VUO 82
SKM100GAR123D
— и — SKM100GB123D, два модуля
4.3. Схема управления

Входное постоянное напряжение прямоугольного инвертора регулируется для регулирования температуры токоприемника. Блок-схема всей системы управления также показана на рисунке 10. Планируется, что термопарный датчик температуры и модуль ПИД-регулятора процесса будут использоваться для программирования и управления температурой токоприемника. Выход модуля ПИД-регулятора действует как эталон для внутреннего контура управления для управления входным постоянным напряжением, подаваемым на прямоугольный инвертор, путем управления скважностью понижающего преобразователя.Дополнительный контур управления фазой используется для поддержания состояния настройки ступени RI против медленного дрейфа резонансной частоты в течение различных рабочих условий и времени. Этот контур определяет фазу выходного тока инвертора с помощью фазового детектора PD. Выход контроллера управляет генератором, управляемым напряжением (ГУН), который регулирует частоту переключения инвертора таким образом, что выходной ток инвертора немного отстает от напряжения.

5. Результаты

Фотография разработанного блока питания индукционного нагрева, испытываемого в лаборатории на нагрев графитового сенсора, показана на рисунке 11.На вставке показан графитовый токоприемник, нагретый до 1200 ° С на воздухе.


Выходное напряжение инвертора, (кривая 1, 200 В / дел.) И формы волны тока,, (кривая 2, 25 А / дел.) Показаны на Рисунке 12 (а). Характер формы волны тока соответствует прогнозируемой форме волны, показанной на рисунке 7. Формы сигналов напряжения коллектор-эмиттер (кривая 1, 200 В / дел) и затвор-эмиттер (кривая 2, 10 В / дел) IGBT в H-мостовом инверторе во время переходов включения и выключения показаны на рисунках 12 (b) и 12 (c), соответственно, демонстрируя мягкое переключение.На рисунке 12 (d) показаны формы сигналов (кривая 1, 200 В / дел) и напряжения на рабочей катушке (кривая 2, 200 В / дел), показывающие, что только основная составляющая входного прямоугольного напряжения была передана на рабочая катушка.

6. Заключение

В документе сообщается о различных проблемах при разработке источника питания IH для приложения MOVPE с использованием L-LC RI. Пересмотрен анализ основной частоты переменного тока L-LC RI, и показано, что преобразователь демонстрирует повышенное усиление по току и коэффициент мощности, близкий к единице, при работе на резонансной частоте.Дальнейший анализ схемы с источником прямоугольного напряжения подчеркивает влияние вспомогательной катушки индуктивности на форму волны тока источника, что приводит к оптимальному выбору значения вспомогательной катушки индуктивности. Требования к системе MOVPE, требующей источника питания IH 25 кВт, 25 кГц для нагрева графитового токоприемника до 1200 ° C, конфигурация разработанной системы IH и экспериментальные результаты представлены, тем самым демонстрируя пригодность L-LC RI, работающего на своем резонансная частота для этого приложения.

DHI-15 PKW Инверторный индукционный нагреватель

Описание индукционного нагревателя DHI-15 PKW:

  • Равномерное и стабильное отопление. Объект нагревается равномерно, без локальных горячих точек, вызванных методами пламенного нагрева. Датчики гарантируют, что деталь не будет перегреваться при достижении заданной температуры.
  • Более безопасная и комфортная рабочая среда для оператора. Оператор не подвергается воздействию открытого пламени, горячих газов и риска возгорания и взрыва, как при нагревании пламенем.
  • Снижение затрат на обучение операторов, снижение затрат на заработную плату. Операторы не нуждаются в частом регулярном обучении и сертификации, как в случае с системами на основе автогенного газа и сжиженного нефтяного газа.
  • Низкая стоимость расходных материалов. Отсутствие операционных затрат, связанных с покупкой и арендой газовых баллонов.
  • Детали можно нагревать до 800 ° C и выше.
  • Высокоэффективная система отопления.

Использование индукционного нагревателя DHI-15 PKW:
Система DHI-15 PKW нагревает болт M12 или гайку до температуры выше 800 ° C всего за 15 секунд.Время подготовки и настройки для системы индукционного нагрева намного быстрее по сравнению с системой автономной горелки. Просто подключите DHI-15 PKW к розетке 230 В, установите катушку соответствующего типа на деталь, которую вы хотите нагреть, затем нажмите кнопку ВКЛ / ВЫКЛ, чтобы начать процесс индукции. Процесс нагрева выполняется за секунды, даже для деталей, требующих высокой температуры. Индукционные катушки можно легко заменить на большие или меньшие. То же самое относится и к нагревательной спирали, которая должна быть намотана вокруг детали.Комплект катушек различного диаметра можно заказать в качестве опции вместе с индукционным нагревателем.

  • Автомобильная, железнодорожная и судостроительная промышленность, машиностроение, автомастерские, сборочные цеха, сантехники и теплотехники, комнаты для домашних хобби и т. Д.
  • Производство, ремонт, ремонт, обслуживание.
  • Детали, требующие нагрева, такие как болты, стержни и профильная сталь, металлические листы, подшипники, корпуса, приводные валы, подвески, гайки, трубы, шестерни, пружинные основания, валы, лямбда-зонды, детали и компоненты машин и транспортных средств, выхлопные трубы, шкивы коробки, втулки и т. д.
  • Нагрев инструментов и деталей перед закалкой, склеиванием, пайкой.
  • Размораживание.
  • Те же области применения, что и газовые горелки и газовые горелки.

Технические данные:

  • Напряжение сети U1 / I1max 230 В, 50/60 Гц
  • Потребляемая мощность P1max 1,5 кВА
  • Рабочая частота 25-60 кГц, автомат. наставени
  • PF (коэффициент мощности) 0,99 (PFC)
  • Непрерывный нагрев / коэффициент нагрузки 100% *
  • Катушки постоянной индуктивности Ano
  • Гибкие индукторы Ano
  • Проверка индуктивности Ano
  • Защита от короткого замыкания Ano
  • Защита от обрыва цепи Ano
  • Управление вентилятором Ano
  • Вес 4,5 кг
  • Размер (ДxШxВ) 200x140x75 мм

Преимущества индукционного нагревателя DHI-15:

  • Мобильность — весит всего 4 штуки.5 кг при компактных размерах, сопоставимых с небольшим сварочным аппаратом.
  • Мощность 1,5 кВт, высокий коэффициент нагрузки.
  • Простота обращения и доступа — соединительный кабель катушки длиной 70 см с небольшой ручкой для переноски.
  • Гибкость и простота эксплуатации — его можно подключить в любом месте к электросети с помощью одного подключения 230 В, простая и быстрая подготовка.
  • Универсальные нагревательные элементы для любого применения — для фасонных, плоских, круглых, позиционированных или стандартных деталей.
  • Современный и доступный способ обогрева цеха.

Аппарат DHI-15 PKW:

  • Технология надежных транзисторов IGBT
  • Защита от короткого замыкания и обрыва
  • Автоматическая настройка на резонансную частоту
  • Частота: 25 кГц — 60 кГц
  • Очень удобный и экономичный
  • Процессорная система управления
  • Сигнализация перегрузки
  • Соединительный кабель 70 см
  • Управляемое вентиляторное охлаждение

Индукционный нагреватель

| Майлз Дай

Осень 2018

Фон

Индукционный нагрев — это явление, при котором вихревые токи, образующиеся в электропроводящем материале в соответствии с Законом индукции Фарадея, нагревают объект.Чтобы воспользоваться этим эффектом, индукционный нагреватель пропускает переменный ток через электромагнит, чтобы создать быстро меняющееся магнитное поле. Это вызывает ток в заготовке, температура которого повышается из-за резистивного и, возможно, гистерезисного нагрева.

Индукционный нагрев особенно интересен, поскольку он не требует контакта нагревательного элемента с объектом и не требует внешнего нагревательного элемента, который необходимо довести до желаемой температуры.Вместо этого само устройство, например плита, может оставаться близкой к температуре окружающей среды, при этом значительно повышается только температура целевого материала.

Физика

Суть успешного индукционного нагревателя — создание переменного магнитного поля. Это поле создается в так называемой рабочей катушке — катушке с проволокой, окружающей нагреваемый объект. Затем поток от этого поля (\ (\ Phi_B \)) направляется в целевой объект для генерации напряжения (\ (v \)) в соответствии с законом Фарадея.$$ v = — \ frac {d \ Phi_b} {dt} $$

Генерируемое напряжение вызывает ток в объекте, который выделяет тепло. Этот эффект нагрева вызван омическими потерями (джоулевым нагревом), а также гистерезисными потерями, если объект ферромагнитный.

Другим важным фактором при проектировании системы является скин-эффект, при котором переменные токи имеют тенденцию концентрироваться около поверхности проводника при увеличении их частоты.В результате эффективное сопротивление детали увеличивается с увеличением частоты.

Схемотехника

Базовая схема индукционного нагрева будет использовать тотемный столб в качестве инвертора для преобразования источника постоянного тока 12 В в напряжение переменного тока. Это приведет в движение бак LC аналогично цепи балласта лампы. Однако теперь нагрузка будет представлять собой катушку, которая действует как первичная обмотка трансформатора, а нагреваемый объект представляет собой закороченный одиночный виток, который действует как вторичная обмотка трансформатора.Таким образом, за нагрев отвечает небольшое сопротивление в объекте. Индуктор в резервуаре LC — это просто магнитная индуктивность первичной катушки (т. Е. Рабочей катушки).

Разработка схемы началась с выбора частоты. При проектировании индукционного нагревателя возникает значительный компромисс по частоте. Более высокие частоты позволяют лучше передавать энергию заготовке, но также вызывают более тонкий слой тока из-за скин-эффекта.Таким образом, при более эффективном нагреве нагрев будет происходить в основном на поверхности. Это говорит о том, что более высокая частота (около 100-200 кГц) подходит для небольших объектов, поскольку теплопроводность позволяет объекту нагреваться относительно равномерно.

Рисунок 1: Схема полного индукционного нагревателя.

Генерация переменного тока из источника постоянного тока осуществлялась с помощью инвертора.В инверторе используется полумост, построенный из тотемного столба MOSFET, как показано на рисунке 1.

Генератор прямоугольных волн

Индуктивность рабочей катушки (и, следовательно, резонансная частота) контура сильно зависит от геометрии рабочей катушки. Следовательно, генератор прямоугольных сигналов должен быть достаточно гибким в диапазоне частот, который он может генерировать. Я выбрал частоты в диапазоне от 50 до 150 кГц.Этот широкий диапазон был выбран для того, чтобы можно было легко отключать несколько катушек без замены электроники.

Генератор треугольных волн использовал генератор 74HC14 с потенциометром 10k для регулировки частоты. Треугольная волна была преобразована в прямоугольную волну путем пропускания ее через компаратор LM311 для получения прямоугольной волны с коэффициентом заполнения 50%. Для этого проекта не требовалось изменять рабочий цикл, поскольку целью было создание синусоидальной волны переменного тока для управления контуром резервуара.

Индукционный нагреватель Модель

Полезно рассмотреть идеальную эквивалентную модель для резонансного контура на рисунке 2.

Рисунок 2: Модель резонансного резервуара индукционного нагревателя и его сопряжения с заготовкой.

На этой схеме \ (C \) — резонансный конденсатор, \ (C_ {blk} \) — блокирующий конденсатор, а \ (L \) — индуктивность намагничивания рабочей катушки.Показанный трансформатор представляет собой трансформатор \ (N: 1 \). Заготовка моделируется как закороченный одиночный виток. Сопротивление \ (R \) учитывает резистивный нагрев и гистерезисный нагрев, который происходит в заготовке, когда в ней индуцируются вихревые токи. К тому же индукционный нагреватель — далеко не идеальный трансформатор. Заготовка в идеале значительно меньше рабочей катушки. Это объясняется введением константы связи трансформатора, \ (k \), которая представляет собой значение от 0 до 1 и приблизительно представляет долю магнитного потока от катушки, которая проходит через заготовку.

Эту модель можно упростить для анализа, объединив конденсаторы и отразив резистор поперек трансформатора (с учетом константы связи). Это дает схему, показанную на рисунке 3.

Рисунок 3: Упрощенная модель резонансного резервуара индукционного нагревателя.

На рисунке 3 эквивалентная емкость задается как \ (C_ {eq} = \ frac {C \ cdot C_ {blk}} {C + C_ {blk}} \).Кроме того, отражение резистора дает \ (R_ {ref} = \ frac {N \ cdot R} {k} \). Эта схема дает понять, что меньшее значение \ (R_ {ref} \) снижает добротность резонатора, поскольку больший ток отводится от резервуара и рассеивается в резисторе.

Дизайн резонансного резервуара

Эта модель позволяет выбирать компоненты. Одним из основных факторов, влияющих на выбор резонансного конденсатора \ (C \), является тот факт, что это должен быть конденсатор высокого напряжения.Примерная оценка показывает, что для наведения всего 2 В на резисторе на идеальном 40-витковом трансформаторе может потребоваться до 80 В на первичной стороне. С учетом константы связи и других паразитных факторов потребуется большее напряжение. Таким образом, выбор \ (C \) ограничен имеющимися конденсаторами на 400 В, поэтому емкость будет порядка 20 — 200 нФ.

Прежде чем принять решение о точной емкости резонансного конденсатора, полезно проверить катушки, которые будут использоваться.Индукционный нагреватель в идеале должен поддерживать катушки различной геометрии, чтобы можно было нагревать различные предметы. Для этого эксперимента я намотал две катушки из провода магнита AWG 22, которые кратко описаны ниже.

Диаметр (см) \ (l \) (см) \ (N \) (оборотов) \ (L_ {theor} (\ mu H) \) \ (L_ {mes} (\ mu H \)) СОЭ (\ (\ Omega \))
5 2 27 90 75 0. 2 \ pi} {l} $$ Фактические индуктивности были измерены на измеритель импеданса на частоте 100 кГц.Я буду называть первую катушку «большой катушкой», а вторую катушку — «маленькой катушкой».

Индуктивности двух вышеупомянутых катушек предполагают, что жизнеспособная емкость составляет \ (90 мкФ), состоящую из P1074-ND (22 нФ), подключенного параллельно к P1080-ND (68 нФ). Это даст резонансную частоту 61,3 кГц для большой катушки и 108 кГц для маленькой катушки.

\ (C_ {blk} \) теперь можно выбрать, чтобы он имел низкий (\ (\ le5% \)) импеданс по сравнению с резонансным конденсатором в резонансе.Блокирующая емкость \ (1,8 мкФ \) достаточна и может быть изготовлена ​​из 2 пленочных конденсаторов P4675-ND (\ (1 \ мкФ \)).

Анализ частотной характеристики

Отсюда можно провести частотный анализ для определения ожидаемого усиления и резонансной частоты. 2 + \ frac {s} {R_ {ref} C_ {eq}} + \ frac {1} {LC_ { eq}}} $$

Прежде чем строить график Боде, необходимо рассмотреть два важных момента относительно \ (R_ {ref} \).Отраженное сопротивление зависит от сопротивления детали и коэффициента связи. Оба эти значения нелегко измерить или рассчитать, и поэтому их необходимо оценивать.

  • Значение \ (R \) (до отражения) является мерой потерь в заготовке. Это различно для разных объектов, но я выбрал значение \ (2 \ Omega \) после некоторого начального тестирования и исследования в Интернете. Хотя это может показаться довольно большим для учета омических потерь, создаваемых вихревыми токами, этот резистор также отражает гистерезисные потери в ферромагнитных материалах, которые возникают во время нагрева.Таким образом, \ (R \) не представляет собой исключительно омическое сопротивление материала.
  • Другое предположение состоит в том, что заготовка относительно мала по сравнению с рабочей катушкой. То есть в трансформаторе плохая связь. Учитывая, что значения \ (k> 0,5 \) считаются сильно связанными, я оценил \ (k \ приблизительно 0,1 \).

Эти значения дали графики Боде, показанные на рисунке 4 в MATLAB.Маленькая катушка имеет резонансную частоту 110 кГц и коэффициент усиления по напряжению 25,4. Большая катушка имеет резонансную частоту 62,5 кГц и коэффициент усиления по напряжению 18,2.

Рисунок 4: График Боде упрощенной схемы с большой катушкой (слева) и маленькой катушкой (справа).

Выбор MOSFET

IRF540 является подходящим выбором в качестве переключающего элемента, поскольку он имеет постоянный ток стока 28 А при комнатной температуре.Он работает при напряжении около 1 А при напряжении 2–20 В на тотемном полюсе, что соответствует максимальной безопасной рабочей зоне. По практическим соображениям в сборке повторно использовалась тотемная плата, на которой были установлены полевые МОП-транзисторы IRF1407. IRF1407 имеет более высокие рейтинги и отлично подходит для этого проекта.

Результаты

Следующие осциллограммы были сняты во время начальной фазы тестирования, во время которой небольшое напряжение (1-2 В) использовалось в верхней части тотемного столба с маленькой катушкой.На рисунках 5 и 6 показано, что наблюдаемый результат вполне соответствует прогнозируемому. Выигрыш оказался не таким большим, как прогнозировалось, что может быть связано с паразитами, которые не были включены в идеализированную модель. Также интересно то, что блокирующий конденсатор успешно снимает напряжение постоянного тока, как показано на рисунке 7. Зеленая форма волны сосредоточена около 0 В. Однако резкие переходы прямоугольной волны не отфильтровываются и видны как дефекты синусоиды на напряжении рабочей катушки.

Рисунок 5: Управляющий сигнал (зеленый), напряжение рабочей катушки (желтый), 1 В на тотемном столбе.

Рисунок 6: Управляющий сигнал (зеленый), напряжение рабочей катушки (желтый), 2 В на общей стойке.

Рисунок 7: Напряжение после \ (C_ {blk} \) (зеленый), напряжение рабочей катушки (желтый), дифференциальное напряжение конденсатора (розовый), 2 В на общей клемме.

Кроме того, когда нагреватель приближается к резонансу, заметна разность фаз. На рисунке 8 нагреватель далек от резонанса, и напряжение катушки и напряжение инвертора совпадают по фазе, тогда как на рисунке 9, где нагреватель находится в резонансе, два напряжения сдвинуты по фазе на 90 градусов. Если бы использовалась фазовая автоподстройка частоты, эти два напряжения были бы синхронизированы вместе, чтобы поддерживать резонанс.

Рисунок 8: Напряжение инвертора (зеленый), напряжение рабочей катушки (желтый), вне резонанса.

Рисунок 9: Напряжение инвертора (зеленый), напряжение рабочей катушки (желтый), в резонансе.

Как только было подтверждено, что цепь безопасна и работает, было добавлено больше мощности за счет увеличения напряжения на вершине тотемного столба. Это позволяло нагревать предметы до очень высоких температур. Используя большую катушку, металлический радиатор нагревали путем повышения напряжения до тех пор, пока через инвертор не протекал ток 1А.Радиатор помещался плашмя поверх катушки. На рисунке 10 показана температура радиатора.

Температуру контролировали с помощью цифрового лазерного инфракрасного термометра. Как и ожидалось, начальная скорость нагрева довольно высока, когда температура радиатора близка к комнатной. Однако с повышением температуры скорость отвода тепла от радиатора также увеличивается. В конце концов, мощность индукционного нагревателя не успевает за передачей мощности от радиатора, и кривая начинает выравниваться.\ circ C \) в течение 45 секунд, при этом рабочая катушка лишь слегка нагрелась на ощупь. На полной мощности напряжение на катушке достигнет 200 В (от пика до пика), как показано на рисунке 11.

Рисунок 11: Напряжение рабочей катушки при работе на большой мощности. Обратите внимание, что вертикальный масштаб составляет 50 В / дел.

Обратная связь

В качестве интересного дополнения к этому проекту я решил реализовать автоматический поиск резонанса с помощью микроконтроллера.Идея состоит в том, что когда пользователь нажимает кнопку, микроконтроллер должен запускать подпрограмму для определения резонансной частоты. Этот вид настройки на самом деле удобен, потому что вставка заготовки внутрь рабочей катушки изменит индуктивность рабочей катушки и, таким образом, также изменит резонансную частоту контура.

Основная идея поиска резонанса заключается в том, что при резонансе синусоида на выходе катушки достигает максимума.Таким образом, если мы сможем создать сигнал, который пропорционален выходному сигналу для подачи в АЦП микроконтроллера, и позволить ему подавать управляющий сигнал на тотемный полюс, мы можем превратить задачу поиска резонанса в задачу поиска пиков программного обеспечения. .

На практике возникает несколько трудностей. Прежде всего, индукционный нагреватель работает на частоте порядка 100 кГц. Это означает, что для микроконтроллера с частотой 16 МГц, такого как Arduino Uno, в лучшем случае будет около 160 тактов на цикл инвертора, что серьезно ограничивает наши возможности для генерации сигнала ШИМ.Кроме того, АЦП на Arduino требуется около 100 микросекунд для чтения входа, что ограничивает его частоту дискретизации до 10 кГц. Таким образом, сигнал не может быть дискретизирован напрямую.

Поколение ШИМ

Частота ШИМ на Arduino с помощью команды analogWrite () устанавливается равной 490 Гц на большинстве контактов и 980 Гц на контактах 5 и 6. Таким образом, использование команды analogWrite () для создания квадрата не является жизнеспособным вариантом, поскольку частота не является допустимой. регулируемый (только рабочий цикл).(Важно помнить, что цель здесь на самом деле не в том, чтобы модулировать ширину импульса, а в том, чтобы изменить частоту прямоугольной волны.) Другой вариант — использовать бит ШИМ и просто вручную переключить вывод на высокий уровень и низкий с соответствующей задержкой. Это можно сделать с помощью команды delayMicroseconds, но это не обеспечивает достаточно хорошего разрешения при 100 кГц. Ясное решение — работать напрямую с регистрами времени на микросхеме Atmega. Если бы у нас было больше времени, это было бы хорошим вариантом для изучения, но, как оказалось, более быстрым решением было переключиться на Teensy 3.1 микроконтроллер. Teensy — это микроконтроллер с напряжением 3,3 В, работающий на частоте 96 МГц. Он имеет функцию под названием analogWriteFrequency (pin, freq), которая позволяет вам установить частоту analogWrite в установочном коде. Он может легко устанавливать частоты от нескольких Гц до сотен кГц. Единственным недостатком является то, что все выводы ШИМ, привязанные к одному таймеру, будут одновременно менять свою частоту, но для этого проекта нам нужен только один. Простота этого решения побудила использовать Teensy в качестве микроконтроллера.

После того, как мы выбрали микроконтроллер, нам нужно подумать, как на самом деле управлять инвертором с помощью Teensy. Хотя можно управлять сигналами DELAY и #DELAY в программном обеспечении, гораздо проще просто создать одну прямоугольную волну из Teensy и отправить ее через сеть задержки 74HC14. Это очень просто реализовать: мы просто заменяем LM311 и генератор 74HC14 на Teensy. Важно помнить, что Teensy — это 3.Устройство 3 В, которое теперь взаимодействует с устройством 0-5 В (уровень TTL). Оказывается, это нормально, потому что пороговых значений TTL для высокого и низкого логических уровней более чем достаточно для обеспечения правильного вывода. Если бы требовалось большее размах напряжения, было бы несложно подать сигнал в соответствующий компаратор (например, LM311) с правильным напряжением смещения для увеличения амплитуды.

Сигнал обратной связи

Последнее соображение касается обратной связи с Teensy.Напряжение катушки, которое может возрасти до 300 В (размах), должно быть преобразовано в безопасные для Teensy уровни (т.е. 3,3 В (размах)). Наиболее очевидным решением является простой делитель напряжения 100 к 1, который я реализовал с помощью резистора \ (100 к \ Омега \) и \ (1 к \ Омега \) (не совсем 100 к 1, но абсолютные значения не нужны. для этого приложения). Кстати, я изначально выбрал чрезвычайно высокие значения для резисторов (в диапазоне десятков мегаом), и это приводило к очень запутанным результатам на осциллографе, пока я не понял, что мои пробники являются пробниками \ (1M \ Omega \).Таким образом, я сильно нагружал свою схему, когда измерял ее. Указанных выше значений в киломах более чем достаточно для ограничения потребляемого тока.

Наконец, я не хотел, чтобы АЦП просто как можно быстрее считывал сигнал из-за высокой частоты сигнала. Arduino Uno может производить выборку только до 10 кГц. Я не смог найти явного верхнего предела частоты дискретизации для Teensy 3.1, но некоторые быстрые исследования в Интернете показали, что она составляет около 600 кГц.Это будет около 6 точек за период, что недостаточно для надежного определения пика. Мне пришло в голову, что нет необходимости находить пики сигнала в цифровом виде. Вместо этого я мог бы выпрямить синусоидальную волну и затем отфильтровать ее с помощью фильтра нижних частот, чтобы получить значение постоянного тока, пропорциональное размаху напряжения синусоидальной волны. Это постоянное напряжение может быть максимизировано при очень низких требованиях к частоте дискретизации, поскольку это сигнал постоянного тока. Я выбрал простой однополупериодный выпрямитель и параллельный RC-фильтр нижних частот.

Защита входа

В качестве последнего штриха к схеме я добавил стабилитрон на 3,3 В и резистор перед выводом АЦП в качестве защиты входа в Teensy в случае ошибки пользователя (например, пользователь слишком сильно поворачивает тотем и поднимается выше 300 В (размах)). от напряжения катушки).

Рисунок 12: Полная схема цепи обратной связи.

Программное обеспечение

Код этого проекта можно найти на Github. Основы кода заключаются в том, чтобы пройти через предварительно установленный диапазон частот (50-150 кГц) с шагом 10 кГц, найти диапазон, который дает наибольший отклик, и пройти через этот диапазон с шагом 1 кГц, чтобы найти резонансную частоту в 1 кГц. Поскольку сигнал обратной связи был слегка зашумленным, в программном обеспечении был реализован усредняющий фильтр, чтобы предотвратить любые неправильные показания.

Результаты обратной связи

Следующие формы сигналов показывают работу цепи обратной связи. Обратите внимание, что сигнал постоянного тока имеет более низкое значение, когда частота не резонансная, чем когда она находится в резонансе.

Рисунок 13: Вне резонанса, сигнал постоянного тока (синий) имеет очень низкое значение.

Рисунок 14: При резонансе сигнал постоянного тока (синий) имеет более высокое значение.

При желании резистивный делитель можно отрегулировать для максимального увеличения динамического диапазона. АЦП Teensy был достаточно точным, чтобы система могла найти резонансную частоту лучше, чем у человека, но чувствительность и точность можно отрегулировать, изменив программное обеспечение и изменив схему резисторного делителя.

схема% 20 схема% 20для% 20 сварка% 20 таблица данных и примечания к применению

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

схема платы питания жк-дисплея

Резюме: Схема жесткого диска samsung СХЕМА ОСНОВНОЙ ПЛАТЫ ICh5-M hdd схема Схема последовательности включения питания принципиальная схема samsung принципиальная схема зарядного устройства Схема ddr
Текст: Текст файла отсутствует


Оригинал
PDF 47ент схема платы питания lcd схема samsung hdd ГЛАВНАЯ ПЛАТА ИЧ5-М схема жесткого диска последовательность мощности схематический принципиальная схема samsung принципиальная схема зарядного устройства схема ddr
Принципиальная схема
S

Реферат: 911p «Схемы» samsung 943 схема
Текст: Нет текста в файле


Оригинал
PDF
схема платы питания жк-дисплея

Реферат: ICh5-M принципиальная схема lcd samsung samsung dmb samsung ddr принципиальная схема зарядного устройства samsung hdd принципиальная схема датчик ac ddr схема
Текст: Нет текста в файле


Оригинал
PDF
СХЕМА VGA плата

Аннотация: Схема телевизора samsung Схема основной платы телевизора Схема телевизора samsung Схема телевизора samsung
Текст: Нет текста в файле


Оригинал
PDF
SAMSUNG 834

Резюме: b527 EXF-0023-05 конфиденциально Samsung КРАТКИЕ СВЕДЕНИЯ13 SAMSUNG 840 схема Samsung 822
Текст: Текст файла недоступен


Оригинал
PDF
Схема
Samsung

Резюме: нет текста аннотации
Текст: нет текста файла


Оригинал
PDF
Схема клавиатуры и тачпада

Аннотация: Схема сенсорной панели Схема Схема платы модема ЖК-схема платы питания RB5C478 RJ11 4-контактный разъем печатной платы 4.Резистор 7 кОм BA41-00037A K935U
Текст: Текст файла отсутствует


Оригинал
PDF S630 / S670 W48S87-72HTR схема клавиатуры и тачпада схема тачпада Схематические диаграммы схематическая плата модема схема платы питания lcd RB5C478 4-контактный разъем для печатной платы RJ11 4,7 кОм резистор BA41-00037A K935U
Принципиальные схемы

Резюме: SHEET30 Samsung P40 samsung 943 «Принципиальные схемы» принципиальная плата
Текст: Нет текста в файле


Оригинал
PDF
условные обозначения

Аннотация: Навигатор проекта ispLEVER Использование иерархии в VHDL Design Схема интерфейса lpc
Текст: Нет текста в файле


Оригинал
PDF
2008 — КОД VHDL К ИНТЕРФЕЙСУ ШИНЫ LPC

Аннотация: условные обозначения схемы FD1S3IX LCMXO256C TQFP100 простой проект vhdl
Текст: текст файла недоступен


Оригинал
PDF
Схема
Samsung

Резюме: нет текста аннотации
Текст: нет текста файла


Оригинал
PDF
Самсунг

Резюме: нет текста аннотации
Текст: нет текста файла


Оригинал
PDF
Схема карты PCI

Аннотация: s850 pc card memory schematic s820 schematic s820
Текст: Нет текста в файле


Оригинал
PDF S820 / S850 схема карты pci s850 схема памяти карты ПК схема s820 s820
6143

Реферат: Схема телефонного интерфейса Схема входа SPDIF Схема подключения монитора аудиоустройства Электронная схема WM8350 Eh21
Текст: Нет файла с текстом


Оригинал
PDF 6143-EV1-REV3 WM8350 6143 схема телефонного интерфейса ввод spdif схематический принципиальная схема аудиоустройства схема монитора электронная схема Eh21
2005 — Полный отчет по счетчику объекта

Аннотация: решетчатая логика Полный отчет по счетчику объектов с использованием семисегментного дисплея LC4256V Руководство по проектированию ABEL Руководство по проектированию ABEL-HDL Справочное руководство ABEL-HDL
Текст: Текст файла отсутствует


Оригинал
PDF
Схема
, samsung led

Аннотация: samsung p28 Схема ЖК-дисплея Samsung 546 СХЕМА Плата VGA Схема платы ЖК-контроллера Схема ЖК-дисплея samsung GFX 49 ЖК-схемы samsung северный мост
Текст: Текст файла отсутствует


Оригинал
PDF
схема

Резюме: схема электронная схема D-10 D-12 D-16 D-18 Конструкция LXD9784
Текст: Текст файла отсутствует


Оригинал
PDF LXD9784 схематический схемы электронная схема D-10 D-12 D-16 D-18 дизайн
Поворотные переключатели

Аннотация: Ползунковые переключатели EG1218 EG1206A EG1206 EG1205A EG1205 EG1201A EG1201 EG-2215
Текст: Текст файла отсутствует


Оригинал
PDF 500 В постоянного тока EG4319 EG4319A Поворотные переключатели Ползунковые переключатели EG1218 EG1206A EG1206 EG1205A EG1205 EG1201A EG1201 EG-2215
2008 — WM8741

Аннотация: WM8741-6060-DS28-EV2-REV1 wolfson microelectronics wm8741 schematic WM8741-6060-DS28EV2-REV1 DS28 Eh21
Текст: Текст файла отсутствует


Оригинал
PDF WM8741-6060-DS28-EV2-REV1 WM8741 WM8741-6060-DS28-EV2-REVдля WM8741 WM8741-6060-DS28-EV2-REV1 wolfson microelectronics wm8741 схематический WM8741-6060-DS28EV2-REV1 DS28 Eh21
Нет в наличии

Резюме: нет текста аннотации
Текст: нет текста файла


Оригинал
PDF EG1206A EG1206 EG4319 EG4319A
2009-6220-EV1-REV1

Реферат: WM8993 принципиальная схема аудиоустройства Eh21 6220e
Текст: Текст файла отсутствует


Оригинал
PDF 6220-EV1-REV1 WM8993 2009бл 6220-EV1-REV1 WM8993 принципиальная схема аудиоустройства Eh21 6220e
Поворотные переключатели

Резюме: eg1271a EG2210A EG2201B EG2201A EG2201 EG1271 EG1206A EG1206 TACT SWITCH datasheet
Текст: Текст файла недоступен


Оригинал
PDF EG1206A EG1206 EG4319 EG4319A Поворотные переключатели eg1271a EG2210A EG2201B EG2201A EG2201 EG1271 EG1206A EG1206 Техническое описание TACT SWITCH
1997 — Нет в наличии

Резюме: нет текста аннотации
Текст: нет текста файла


Оригинал
PDF EPE6087A EPE6165S EPE6173S EPE6046S EPE6062S EPE6065S EPE6141S EPE6172AS EPE6174 EPE6177
dffeas

Реферат: техническое описание конечного автомата verilog code обработка изображений, фильтрация, серия RTL, принципиальная схема ИБП QII51013-7 Станок управляет картой Карно, схематической диаграммой счетчика FLIPFLOP SCHEMATIC
Текст: Нет текста в файле


Оригинал
PDF QII51013-7 dffeas таблица конечного автомата Verilog код обработка изображений фильтрация серия RTL принципиальная схема ИБП Органы управления станком карта Карно СХЕМА ФЛИПФЛОПА принципиальная схема счетчика