Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Схема индукционного нагревателя своими руками 220в: Индукционный нагреватель большой мощности схема. Как сделать высокочастотный индукционный нагреватель своими руками – схема простого индуктивного горна для нагрева металла электричеством. Простейший индукционный нагреватель своими руками

Содержание

ПРОСТОЙ ИНДУКЦИОННЫЙ НАГРЕВАТЕЛЬ

Приветствую пользователей сайта Радиосхемы. Недавно у меня появилась идея сделать индукционный нагреватель. На просторах интернета были найдены несколько схем для построения устройства. Из них выбрал самую, на мой взгляд, простую по сборке и настройке, и главное — реально рабочую.

Схема устройства

Список деталей

1. Полевой транзистор IRFZ44V 2 шт.
2. Диоды ультра быстрые UF4007 или UF4001 2 шт. 
3. Резистор на 470 Ом на 1 или 0.5 Вт 2 шт.
4. Конденсаторы плёночные 
   1) 1 мкФ на 250в 3 шт.
   2) 220 нФ на 250в 4 штуки.
   3) 470 нФ на 250в 
   4) 330 нФ на 250в
5. Провод медный диаметром 1.2 мм.
6. Провод медный диаметром 2 мм.
7. Кольца от дросселей компьютерном блоке питания 2 шт.

Сборка устройства

Задающая часть нагревателя выполнена на полевых транзисторах IRFZ44V. Распиновка транзистора IRFZ44V.

Транзисторы нужно поставить на большой радиатор.

Если устанавливать транзисторы на один радиатор то транзисторы нужно установить на резиновые прокладки и пластмассовые шайбочки чтобы не было замыкания между транзисторов.

Дросселя намотаны на кольцах от компьютерных БП. Сделанные из порошкового  железа. Проводом 1,2 мм 7-15 витков.

Батарея конденсаторов должна быть на 4.7 мкФ. Желательно использовать не один конденсатор, а несколько конденсаторов. Конденсаторы должны быть подключены параллельно.

Катушка нагревателя сделана на проводе диаметром 2 мм 7-8 витков.

После сборки устройство работает сразу. Питается устройство от аккумулятора 12 вольт 7.2 А/ч. Напряжение питания устройства 4.8-28 вольт. При продолжительной работе перегреваются: батарея конденсаторов, полевые транзисторы и дросселя. Потребление тока при холостом ходу 6-8 Ампер.

При внесении в контур металлического предмета потребление тока сразу увеличивается до 10-12 А.

Фото готового устройства смотрите далее.

Видео работы индукционного нагревателя

Далее можно оформить прибор в подходящий красивый корпус и использовать для различных опытов. С мощностью и размером катушки лучше поэкспериментировать, чтоб достичь наилучшего эффекта. Автор статьи 4ei3

   Форум

   Форум по обсуждению материала ПРОСТОЙ ИНДУКЦИОННЫЙ НАГРЕВАТЕЛЬ



Индукционный нагреватель из сварочного инвертора своими руками

Электрическая энергия обходится сегодня достаточно дорого, однако работающее на этом ресурсе отопительное оборудование не теряет популярности.

Принцип работы

Чтобы понять, как функционирует индукционный агрегат, необходимо ознакомиться с следующими важными моментами:

  • вода поступает в котлоагрегат по входному патрубку;
  • включается инвертор и подается высокочастотный ток;
  • вихревые потоки начинают сначала нагревать сердечник, а затем весь нагревательный элемент в целом;
  • получаемое тепло передается непосредственно теплоносителю;
  • разогретый теплоноситель с помощью гидростатического давления передается в отопительную систему через выходящий патрубок.

Совет специалиста: в качестве теплоносителя в индукционном котле может выступать вода, антифриз, масло и другие жидкости на нефтяной основе.

Принцип работы

Основная задача индуктора – использование тепловой энергии, которая образовывается под действием электрической энергии, индуцируемой переменным магнитным полем. Конструкция простейшего индуктора включает в себя всего три элемента:

  • генератор переменного тока;
  • катушка-индуктор;
  • нагревательный элемент.

Катушка-индуктор, как правило, выполнена в виде медной катушки, внутрь которой помещают обрабатываемую заготовку. Когда через катушку проходит переменный ток, заготовка подвергается мощному температурному воздействию. В данном случае заготовка играет роль вторичной обмотки трансформатора, тогда как индуктор – первичной.

Электромагнитное поле создает в детали вихревые токи, которые имеют направление, обратное электрическому сопротивлению металла. Таким образом, тепловое воздействие на металл оказывается без непосредственного контакта между заготовкой и индуктором.

Принцип работы

Нагревательный элемент представлен набором трёх элементов:

  1. Нагревательный элемент – трубка (обычно металлическая или полимерная). Находится в индукторном элементе. Внутри него имеется теплоноситель.
  2. Генератор переменного тока (альтернатор) увеличивает показатели частоты бытовой сети (делает их выше стандарта в 50 Гц).
  3. Индуктор – медная цилиндрическая катушка из проволоки, являющаяся генератором электромагнитного поля.

Принцип конструирования нагревателя ТВЧ

Теория применения индукционных нагревателей значительно опережала практику по той причине, что использование устройств с низкой частотой не приносило бы адекватной пользы. Однако после решения проблемы о выработке высокой частоты магнитного поля, индукционные элементы стали широко использоваться. Чтобы понять, как сделать индукционный нагреватель, сначала нужно рассмотреть, как он работает. Принципы работы довольно прост:

  1. Генератор оперирует токами высокой частоты (ТВЧ). В индуктор передаётся высокочастотный ток из генератора.
  2. Катушка принимает ток. Она является преобразователем, так как на выходе получается уже электромагнитное поле.
  3. Повышается температура нагревательного элемента, благодаря вихревым потокам, возникающим от смены вектора поля. Энергия передаётся практически без потерь.
  4. Также нагревается теплоноситель, расположенный внутри трубы, а энергия передаётся в систему отопления.

Конструктивные элементы индукционной системы

Состав основных компонентов изготовления нагревателя включает в себя такие компоненты, детали и узлы:

  • Генераторные установки преобразования переменного типа тока. В качестве варианта, используют специальный вариант прибора, который преобразует стандартную частоту в 50 Гц в более высокие параметры бытовой электросети с высокими частотными характеристиками.
  • Конструкция индуктора. Специальное устройство в виде цилиндрической катушки, в основе которой используется медная проволока, принцип работы которой зависит от имеющего электромагнитного поля.

Медная катушка для нагревателя

  • Нагревательный компонент или узел, элемент. В качестве детали используют специальную металлическую трубу стандартного диаметра и размера или пруток, который вводится в магнитное поле.

В дальнейшем собирая индукционный нагреватель из сварочного инвертора своими руками, все взаимосвязанные компоненты взаимодействуют следующим образом:

  • Генератор соответствующим естественным путём повышает частоту используемого тока и в трансграничном варианте модифицированного состояния транслирует получаемую энергию на основную катушку.
  • Индуктор, по своим параметрам, осуществляет приём высоко частного имеющегося тока, далее происходит преобразование в электромагнитное поле соответствующего переменного вида. В этом случае происходит комплексное изменение направления вектора электромагнитных характеристик волновых значений, причём, обязательно с высокой частотой принципа воздействия.

В конечном итоге происходит передача нужного уровня электроэнергии, без видимых условных потерь. КПД показателей данных индуктивности хватает на обогрев необходимой площади здания.

«Обратите внимание!

Примечательно, что данный эффект пользуется повышенным спросом во многих отраслях промышленности и индукционный нагреватель из сварочного инвертора для кузнечного дела и в металлургии является обыденным явлением в сегодняшних экономических реалиях.»

В дальнейшем общий принцип распределения получаемой энергии может иметь тривиальный характер. Так, вы можете передать энергию для разогрева жидкости в теплоносителе, или использовать для иных целей, где необходимо использовать повышенные температурные режимы эксплуатации.  Расход энергии осуществляется в трубчатом теплоносителе, где происходит естественная циркуляция. Примечательно, что если индукционный нагреватель из сварочного инвертора не греет, то его можно использовать в качестве охладителя того же варианта отопительной системы.

Что такое индукция и ее принцип

Электромагнитная индукция была открыта еще более ста лет назад. Она позволяет генерировать тепло с помощью высокочастотных токов – данная технология активно применяется для выплавки металлов. Дошла эта технология и до бытовых потребителей – мы можем увидеть ее воплощение на кухне в виде индукционных электрических печей. Индукционные печи позволяют быстро разогревать пищу и отличаются небольшими габаритами. Еще одним достоинством является их продолжительный срок службы.

Индукционный нагреватель представляет собой мощную катушку, на которую подается переменный ток высокой частоты. Внутри катушки помещается металлический сердечник, разогревающийся под действием вихревых токов. Таким образом, никаких привычных нагревательных элементов здесь нет, а тепло генерируется исключительно за счет индукционного нагрева.

Магнитная индукция используется в металлургической промышленности. Здесь она позволяет избавиться от угольных и газовых печей, отличающихся большими размерами. Сегодня в металлургических цехах стоят небольшие индукционные печи, быстро разогревающие металлы и сплавы до высоких температур. Они безопасны для людей и позволяют сократить время, затрачиваемое на переработку металлов.

С помощью индукционной катушки можно быстро нагреть металл до очень высоких температур.

В бытовой сфере магнитная индукция работает в индукционных кухонных печах и в электрических индукционных котлах. В чем заключаются преимущества такого нагрева?

  • Отсутствует прямой контакт между нагреваемым телом и индукционной катушкой.
  • Отсутствие накипи в индукционных котлах, что связано с отсутствием привычных нагревательных элементов.
  • Продолжительный срок службы оборудования.
  • Быстрый прогрев теплоносителей и металлических конструкций.
  • Высокая эффективность оборудования.
  • Безопасность для окружающих.

Электромагнитная индукция греет быстро и очень эффективно – коэффициент полезного действия тех же индукционных котлов достигает 98-99%. Также здесь отсутствует прямой контакт теплоносителя и токоведущих частей, что значительно повышает безопасность оборудования.

Напомним, что в ТЭНовых и электродных электрических отопительных котлах используется прямой контакт нагревательных элементов и теплоносителя.

Сделать индукционный нагреватель воды своими руками не так уж и сложно, как это может показаться на первый взгляд. Многие люди, обладающие познаниями в области электротехники и «прямыми руками», умеючи создают индукционные нагреватели, используемые для обогрева жилых домов. Давайте разберемся, как создаются такие нагреватели и что нам понадобится для самостоятельной сборки оборудования.

Инструкция по изготовлению

Чертежи

Рисунок 1. Электрическая схема индукционного нагревателя

Рисунок 2. Устройство.

Рисунок 3. Схема простого индукционного нагревателя

Для изготовления печи понадобятся следующие материалы и инструменты:

  • паяльник;
  • припой;
  • текстолитовая плата.
  • мини-дрель.
  • радиоэлементы.
  • термопаста.
  • химические реагенты для травления платы.

Дополнительные материалы и их особенности:

  1. Для изготовления катушки, которая будет излучать необходимое для нагрева переменное магнитное поле, необходимо приготовить отрезок медной трубки диаметром 8 мм, и длиной 800 мм.
  2. Мощные силовые транзисторы являются самой дорогой частью самодельной индукционной установки. Для монтажа схемы частотного генератора необходимо приготовить 2 таких элемента. Для этих целей подойдут транзисторы марок: IRFP-150; IRFP-260; IRFP-460. При изготовлении схемы используются 2 одинаковых из перечисленных полевых транзисторов.
  3. Для изготовления колебательно контура понадобятся керамические конденсаторы ёмкостью 0,1 mF и рабочим напряжением 1600 В. Для того, чтобы в катушке образовался переменный ток высокой мощности, потребуется 7 таких конденсаторов.
  4. При работе такого индукционного прибора, полевые транзисторы будут сильно разогреваться и если к ним не будут присоединены радиаторы из алюминиевого сплава, то уже через несколько секунд работы на максимальной мощности, данные элементы выйдут из строя. Ставить транзисторы на теплоотводы следует через тонкий слой термопасты, иначе эффективность такого охлаждения будет минимальна.
  5. Диоды, которые используются в индукционном нагревателе, обязательно должны быть ультрабыстрого действия. Наиболее подходящими для данной схемы, диоды: MUR-460; UF-4007; HER – 307.
  6. Резисторы, которые используются в схеме 3: 10 кОм мощностью 0,25 Вт – 2 шт. и 440 Ом мощностью – 2 Вт. Стабилитроны: 2 шт. с рабочим напряжением 15 В. Мощность стабилитронов должна составлять не менее 2 Вт. Дроссель для подсоединения к силовым выводам катушки используется с индукцией.
  7. Для питания всего устройства понадобится блок питания мощностью до 500. Вт. и напряжением 12 – 40 В. Запитать данное устройство можно от автомобильного аккумулятора, но получить наивысшие показания мощности при таком напряжении не получится.

Сам процесс изготовления электронного генератора и катушки занимает немного времени и осуществляется в такой последовательности:

  1. Из медной трубы делается спираль диаметром 4 см. Для изготовления спирали следует медную трубку накрутить на стержень с ровной поверхностью диаметром 4 см. Спираль должна иметь 7 витков, которые не должны соприкасаться. На 2 конца трубки припаиваются крепёжные кольца для подключения к радиаторам транзистора.
  2. Печатная плата изготавливается по схеме. Если есть возможность поставить полипропиленовые конденсаторы, то благодаря тому, что такие элементы обладают минимальными потерями и устойчивой работой при больших амплитудах колебания напряжений, устройство будет работать намного стабильнее. Конденсаторы в схеме устанавливаются параллельно образуя с медной катушкой колебательный контур.
  3. Нагрев металла происходит внутри катушки, после того как схема будет подключена к блоку питания или аккумулятору. При нагреве металла необходимо следить за тем, чтобы не было короткого замыкания обмоток пружины. Если коснуться нагреваемым металлом 2 витка катушки одновременно, то транзисторы выходят из строя моментально.

Индукционный генератор тепла в системе отопления

У применяемых в отопительных контурах индукционных водонагревателей имеются как общие для всех электронагревателей достоинства, так и присущие только им. Начнем с первой группы:

  1. По удобству использования электронагреватели опережают даже газовое оборудование, так как обходятся без розжига. К тому же они являются намного более безопасными: владельцу можно не опасаться утечки топлива или продуктов его сгорания.
  2. Электрооборудованию не нужны дымоход и обслуживание в виде удаления нагара и копоти.
  3. КПД электронагревателя не зависит от его мощности. Его можно установить на самый минимум, и при этом КПД агрегата останется на уровне 99%, в то время как КПД газового или твердотопливного котла в таких условиях окажется значительно ниже паспортного.
  4. При наличии электрического теплогенератора система отопления может работать в самом низкотемпературном режиме, что весьма актуально в периоды межсезонья. В случае применения газового или твердотопливного котла падение температуры «обратки» ниже 50 градусов не допускается, так как при этом на теплообменнике образуется конденсат (при использовании твердого топлива он содержит кислоту).
  5. Ну и последнее: при использовании электрообогрева можно обойтись без жидкостного теплоносителя, правда, к индукционным нагревателям это не относится.

Простой индукционный нагреватель

Перейдем к достоинствам непосредственно «индукционников»:

  1. Площадь контакта теплоносителя с горячей поверхностью в индукционных нагревателях в тысячи раз больше, чем в приборах с трубчатыми электронагревателями. Поэтому среда прогревается гораздо быстрее.
  2. Все элементы «индукционника» монтируются только снаружи, без каких-либо врезок. Соответственно, и протечки полностью исключаются.
  3. Поскольку нагрев осуществляется бесконтактным способом, нагреватель индукционного типа может работать с абсолютно любым теплоносителем, включая все виды антифризов (для ТЭНового электрокотла понадобился бы специальный). При этом вода может содержать сравнительно большое количество солей жесткости – переменное магнитное поле препятствует образованию накипи на стенках теплообменника.

На всякую бочку меда, как известно, найдется своя ложка дегтя. Здесь без этого тоже не обошлось: мало того, что сама по себе электроэнергия стоит достаточно дорого, так еще и индукционные нагреватели относятся к наиболее дорогому типу электроотопительного оборудования.

Индукционный генератор тепла в системе отопления

Чтобы организовать отопление частного дома с помощью индукционного нагревателя, проще всего использовать трансформатор, который состоит из первичной и вторичной короткозамкнутой обмотки. Вихревые токи в таком устройстве возникают во внутренней составляющей и направляют образовавшееся электромагнитное поле на вторичный контур, который одновременно выполняет роль корпуса и нагревательного элемента для теплоносителя.

Обратите внимание, что в качестве теплоносителя при индукционном нагреве может выступать не только вода, но также антифриз, масло и любые другие токопроводящие среды. При этом степень очистки теплоносителя большого значения не имеет.

Инверторный нагреватель имеет компактные размеры, работает бесшумно и может быть установлен практически в любом подходящем месте, соответствующем требованиям техники безопасности

Индукционный отопительный котел оснащают двумя патрубками. Нижний патрубок, по которому будет поступать холодный теплоноситель, необходимо устанавливать на вводном участке магистрали, а вверху устанавливают патрубок, передающий горячий теплоноситель к подающему участку трубопровода. Когда теплоноситель, находящийся в котле, нагревается, возникает гидростатический напор, и теплоноситель поступает в отопительную сеть.

В работе индукционного нагревателя есть ряд преимуществ, о которых следует упомянуть:

  • теплоноситель в системе постоянно циркулирует, что предотвращает вероятность ее перегрева;
  • индукционная система вибрирует, в результате накипь и другие осадки не откладываются на стенках оборудования;
  • отсутствие традиционных нагревательных элементов позволяет эксплуатировать котел с высокой интенсивностью, не опасаясь частых поломок;
  • отсутствие разъемных соединений исключает протечки;
  • работа индукционного котла не сопровождается шумом, поэтому его можно установить практически в любом подходящем помещении;
  • при индукционном нагреве не выделяются какие-либо опасные продукты разложения топлива.

Безопасность, бесшумная работа, возможность использовать подходящий теплоноситель и долговечность оборудования привлекли немало домовладельцев. Некоторые из них задумываются о возможности изготовить самодельный индукционный нагреватель.

Схема ZVC драйвера

Стандартный вариант генератора

Усиленный вариант схемы

Но видно мне войти в их число не судьба…

Были куплены все необходимые детали — новые полевые транзисторы, новые фаст диоды и стабилитроны. Всё перед пайкой было испытано на транзистор-тестере, в том числе для определения правильной цоколёвки.

Была собрана шикарная катушка из чистой меди диаметром 5 мм. Но работать сей девайс упорно отказывался.

Подозрение пало на дросселя, которые большинство радиолюбителей рекомендует мотать на желтых порошковых кольцах от БП АТХ.

Добыча искомых и установка также оказалась безрезультативной — индукционный нагреватель металлов как не работал раньше, так и не собирался работать дальше. Подключение различных вариантов катушек совместно с конденсаторами разной емкости картину не изменили — «открывает рыба рот, но не слышно что поёт», то есть транзисторы открываются, ток тянут, а генерации не происходит…

В конце концов всё это изрядно надоело, многодневные танцы с бубном закончились, и пришлось с поклоном идти к китайцам на ихний Алиэкспресс, заказывать за 7 долларов готовый модуль генератора.

Спустя 2 недели эта штука была доставлена курьером прямо на дом и после подключения к компьютерному блоку питания на 12 В успешно заработала.

Причём она работала и от 5-ти вольт, и с маленькой штатной катушкой, и с большой самодельной, в общем генерировала мощное электромагнитное поле во всех позах (с теми же деталями и схемой). Раскаляет 3 мм штырь до красна за 20 секунд. С железкой 6 мм возится несколько минут, при этом жутко греется само (в основном транзисторы и катушка).

На что тут грешить — даже не знаю. Может конденсаторы не те, может транзисторы… В любом случае факт остается фактом: промышленная плата заработала, а самодельная нет. Так что кто хочет — может смело кинуть в меня куском канифоли, другие — посочувствовать, третьи сами попробовать собрать этот индукционник и написать в комментариях о результатах…

Выводы и рекомендации

Мы намеренно представили варианты индукционных водонагревателей несложной конструкции, чтобы каждый желающий мог сделать подобный агрегат своими силами. Но остался вопрос, нужно ли заниматься этим делом и тратить собственное время. На этот счет есть ряд объективных соображений:

  1. Пользователи, не разбирающиеся в электрике и радиотехнике, вряд ли смогут добиться увеличения мощности нагрева свыше 2.5 кВт. Для этого придется собрать схему преобразователя частоты.
  2. КПД индуктора ничуть не выше, чем у других электрических котлов. Но собрать нагреватель с ТЭНами гораздо проще.
  3. Если у вас не завалялась дома индукционная панель, то потребуется ее купить примерно за 80 у. е. Столько стоят дешевые китайские изделия в интернет-магазинах. За те же деньги продаются готовые электродные котлы мощностью до 10 кВт.
  4. Электроплиты оснащаются автоматикой безопасности, отключающих бытовой прибор спустя 1 или 2 часа работы. Это доставляет неудобство при эксплуатации.
  5. Если в силу разных причин теплоноситель вытечет из самодельного теплогенератора, то нагрев не прекратится. Это чревато пожаром.

Конечно, вы можете обойтись без дорогих покупок, досконально разобраться в конструкции и смастерить индукционный нагреватель с нуля. Но выполнить все бесплатно не получится, ведь потребуется приобрести комплектующие для схемы. Заметьте, что бонусы от подобного отопительного агрегата невелики, так что всерьез браться за его изготовление с целью обогрева частного дома нецелесообразно.

Основные правила и рекомендации

Данными системами рекомендуется пользоваться в закрытых отопительных контурах с принудительной циркуляцией теплоносителя. Можно данные устройства использовать с пластиковыми трубопроводами.

Котел необходимо установить так, чтобы между ним, стенами и другими устройствами, работающими от электричества, было не менее 30 см. От пола и потолка также должна быть соблюдена дистанция в 80 см.

Кроме того, специалисты настоятельно рекомендуют установить систему безопасности на индуктивный прибор за выходным патрубком. Для этого потребуется манометр, устройство сброса воздуха и подрывной клапан.

Таким образом, теперь вы знаете, как сделать индукционный нагреватель своими руками без лишних капиталовложений и хлопот. Данный агрегат будет служить верой и правдой ни один год, обогревая жилище. Схема сборки достаточно простая и ее монтаж займет всего пару часов.

Общая информация

Способ включает использование законов и явлений физики.

  • эффекта близости;
  • возникновения электромагнитных сил;
  • поверхностного эффекта;
  • влияния на распределение тока в проводнике медных экранов и магнитопроводов;
  • катушечного или кольцевого эффекта;
  • изменения свойств металлов при изменении напряженности магнитного поля и температуры.

При высокочастотном нагревании основная роль отводится явлению поверхностного эффекта и эффекта близости.

Поверхностный эффект

Заключается в неравномерности распространения переменного тока по профилю проводника (глубина проникновения тока). У внешней поверхности плотность тока наибольшая и постепенно уменьшается по мере удаления вглубь. В центре тела она минимальна.

Благодаря поверхностному эффекту, в наружных слоях происходит концентрирование выделения энергии и быстрый нагрев металла. Эффект близости также способствует этому проявлению.

Эффект близости

Заявляет о себе путем прохождения в системе проводников переменного тока. На каждый из проводников при этом распространяется влияние как собственного переменного магнитного поля, так и поля других проводников.

Чем меньше расстояние, отделяющее проводники друг от друга, и выше частота тока, тем сильнее эффект близости.

Это явление способствует усилению концентрации энергии во внешнем слое металла, подвергаемому нагреву. Таким образом, выделение тепловой энергии происходит непосредственно в толще металла, обеспечивая быстрый нагрев в сварочной зоне и высокую эффективность способа нагрева.

С инвертором

Основной составной частью этой системы станет высокочастотный сварочный инвертор, где уже есть индуктор, нагревательный элемент и генератор переменного тока.

Устройство генерирует высокочастотный ток, который передается на катушку. Она, в свою очередь, и создает магнитное поле, изменяющееся со временем. Его вихревой ток нагревает металлическую часть, которая и передает энергию нужному объекту.

Инструкция создания:

  1. в полимерную трубу поместить металл;
  2. на трубку наносятся сто витков проволоки из меди таким образом, чтобы не осталось большое пространство.

Таким образом, дома можно изготовить индукционный нагреватель без особых затрат и глубоких знаний физики. Главное, не забывать о безопасности.

Индукционный нагреватель из сварочного инвертора своими руками — Жми!

Современный рынок отопительного оборудования весьма насыщен всевозможными видами котлоагрегатов. Многие эксперты сегодня советуют выполнять монтаж газового котла, так как он является эффективным способом обогрева жилища.

В таком утверждении, конечно, никто не сомневается, но что делать в том случае, когда строение расположено далеко от газовых магистралей? В таком случае, оптимальным выходом будет установка электрического оборудования для обогрева дома.

Чтобы опередить скептиков, которые читая эти строки, задумываются о постоянном подорожании электроэнергии, мы предлагаем рассмотреть такой вид электрического обогрева помещения, как индукционное отопление. Поэтому, в нашей статье мы подробно остановимся на описании вихревого индукционного нагревателя, который без особых усилий можно выполнить своими руками, применяя при этом сварочный инвертор.

Нагреватель этого вида состоит из следующих конструктивных узлов:

  • индуктор изготовлен из определенного количества витков медной проволоки, которые, по сути, и образуют электромагнитное поле;
  • нагревательный компонент представлен в виде металлической трубы, которая расположена внутри индукторного элемента;
  • генератор, который преобразует обычную бытовую энергию в высокочастотный ток.

Взаимодействие этих конструктивных элементов и представляет собой принцип действия индукционного нагревателя, который заключается в следующих важных моментах:

Такой принцип действия индукционного нагревателя, соответственно, несет в себе и преимущества использования агрегата этого вида.

Преимущества

К основным достоинствам нагревателя этого вида смело можно отнести следующие важные моменты:

  • высокий коэффициент полезного действия;
  • не требует частого технического ухода;
  • благодаря вибрациям электромагнитного поля, не образуется накипь;
  • бесшумность работы;
  • высокий уровень безопасности;
  • герметичность агрегата препятствует появлению протечек;
  • функционирование нагревателя полностью автоматизировано.

Основным недостатком нагревателя этого вида по праву считают его высокую стоимость. Но этот недостаток вполне можно исправить, если его конструкцию выполнить самому.

Стоит также отметить, что сборка индукционного нагревателя своими руками осуществляется из весьма доступных деталей, при этом, их стоимость не слишком высокая.

Необходимые материалы и инструменты

  • инвертор от агрегата для сварки, который значительно облегчит монтаж нагревателя;
  • пластиковая труба с толстыми стенками, которая будет корпусом собираемого устройства;
  • нержавеющая проволока из металла, которая станет нагреваемым элементом в электромагнитном поле;
  • металлическая сетка, роль которой будет заключаться в удержании внутри прибора кусков нержавеющей проволоки;
  • медная проволока для создания индуктора;
  • циркуляционный насос для беспрерывной подачи воды;
  • терморегулятор;
  • переходники и шаровые краны для подсоединения нагревателя к отоплению;
  • кусачки для обработки проволоки.

При этом необходимо четко соблюдать всю последовательность работ, которая заключается в следующих этапах:

  1. В один из концов пластиковой трубы крепится металлическая сетка для предотвращения проваливания нагревательных кусочков проволоки.
  2. В этом же торце трубы крепится переходник для подсоединения к отопительной системе.
  3. Кусачками нарезается нержавеющая проволока длиной от 1 до 6 см.
  4. Нарезанные куски проволоки плотно укладываются в пластиковую трубу.
  5. Замечание специалиста: в трубе не должно быть свободного пространства.

  6. Второй торец трубы также фиксируется сеткой из металла, а также монтируется еще один переходник для отопления.
  7. Изготовление индуктора осуществляется методом наматывания медной проволоки на трубу.
  8. Совет специалистов: количество витков в обмотке должно находиться в пределах от 80 до 90.

  9. Согласно схеме, концы медной обмотки подключаются к полюсам инвертора сварочного аппарата.
  10. Все электрические соединения тщательно изолируются.
  11. Индукционный нагреватель подключается к отоплению.
  12. Монтируется в отопительную систему циркуляционный насос, если такового не было.
  13. К инвертору подключается терморегулятор, который обеспечит автоматизирование функционирование индукционного нагревателя.

После того, когда включен инвертор, индуктор начинает образовывать магнитное поле, которое провоцирует появление вихревых потоков. Эти токи хорошо разогревают нарезанные куски проволоки, которые, в свою очередь, нагревают теплоноситель.

Таким образом, мы подробно рассказали о том, как сделать индукционный нагреватель из сварочного инвертора своими руками. Надеемся, что наша информация окажется вам полезной при сборке нагревателя своими руками.

Смотрите видео, в котором специалист подробно объясняет, как сделать индукционный нагреватель на базе сварочного инвертора своими руками:

  • DmitriiG
  • Распечатать

Индукционные нагреватели труб

Все типы труб можно обрабатывать индукционными нагревателями. Нагреватель для труб может быть с воздушным или водяным типом охлаждения, мощностью от 10-250 кВт, со следующими параметрами:

  • Индукционный нагрев трубы с воздушным охлаждением производится при помощи гибкого индуктора и термического одеяла. Температура нагрева до температуры 400 °C, и использовать трубы диаметром 20 — 1250 мм с любой толщиной стенки.
  • Индукционный нагрев трубы с водяным охлаждением имеет температуру нагрева 1600 °C и используется для “гибки” трубы диаметром 20 — 1250 мм.

Применение:

  • предварительный нагрев труб перед сваркой;
  • термообработка сварных швов трубопроводов;
  • термообработка металлических емкостей
  • подогрев нефтепродуктов

подробнее

Схема ZVC драйвера

Стандартный вариант генератора

Усиленный вариант схемы

Но видно мне войти в их число не судьба.

Были куплены все необходимые детали – новые полевые транзисторы, новые фаст диоды и стабилитроны. Всё перед пайкой было испытано на транзистор-тестере, в том числе для определения правильной цоколёвки.

Была собрана шикарная катушка из чистой меди диаметром 5 мм. Но работать сей девайс упорно отказывался.

Подозрение пало на дросселя, которые большинство радиолюбителей рекомендует мотать на желтых порошковых кольцах от БП АТХ.

Добыча искомых и установка также оказалась безрезультативной – индукционный нагреватель металлов как не работал раньше, так и не собирался работать дальше. Подключение различных вариантов катушек совместно с конденсаторами разной емкости картину не изменили – «открывает рыба рот, но не слышно что поёт», то есть транзисторы открываются, ток тянут, а генерации не происходит.

В конце концов всё это изрядно надоело, многодневные танцы с бубном закончились, и пришлось с поклоном идти к китайцам на ихний Алиэкспресс, заказывать за 7 долларов готовый модуль генератора.

Спустя 2 недели эта штука была доставлена курьером прямо на дом и после подключения к компьютерному блоку питания на 12 В успешно заработала.

Причём она работала и от 5-ти вольт, и с маленькой штатной катушкой, и с большой самодельной, в общем генерировала мощное электромагнитное поле во всех позах (с теми же деталями и схемой). Раскаляет 3 мм штырь до красна за 20 секунд. С железкой 6 мм возится несколько минут, при этом жутко греется само (в основном транзисторы и катушка).

На что тут грешить – даже не знаю. Может конденсаторы не те, может транзисторы. В любом случае факт остается фактом: промышленная плата заработала, а самодельная нет. Так что кто хочет – может смело кинуть в меня куском канифоли, другие – посочувствовать, третьи сами попробовать собрать этот индукционник и написать в комментариях о результатах.

Плавка металла методом индукции широко применяется в разных отраслях: металлургии, машиностроении, ювелирном деле. Простую печь индукционного типа для плавки металла в домашних условиях можно собрать своими руками.

Что такое индукционный нагрев

Процесс повышения температуры происходит без непосредственного контакта. Нагрев выполняется за счет токов очень высокой частоты, которые образуются за счет магнитного поля.

В основу устройства заложена катушка индуктивности, которая состоит из металлического сердечника и обмотки. Именно благодаря большому количеству витков металлической проволоки появляется возможность появления такого явления, как индукция. Поле индукции способно возникать не только при необходимости. Именно из-за него крайне не рекомендуется подключать к сети приборы, провода которых смотаны в катушку.

Устройство самодельного нагревателя

Классическое индукционное устройство рекомендуется рассматривать на примере конструкции водонагревателя отопительной системы. Подобные схемы чаще всего используются на дачах и в загородных домах. Изготовление прибора начинается с индуктора. Для этого медную проволоку нужно намотать в один ряд, придав ей изначально цилиндрическую форму. Каждый виток изолируется от соседнего, исключая контакты между ними.

Количество витков, обеспечивающее нормальную работоспособность, составляет в среднем 80-100. Медные проводники могут иметь разное сечение – от 2,5 до 4 мм 2 . Сердечником служит сама отопительная труба, но на практике данный вариант не дает нужного эффекта.

Поэтому, чтобы сделать нагрев теплоносителя более интенсивным, рекомендуется воспользоваться пластиковой трубой определенной длины. Ее внутреннее пространство заполняется стальной проволокой Д 5-6 мм, разрезанной на короткие части. В этом случае, за счет индукции начинает нагреваться проволока, обтекаемая водой. Площадь теплообмена существенно увеличивается, и теплоноситель нагревается намного быстрее. Для того чтобы обрезки проволоки не смыло водным потоком, концы участка трубы ограничиваются защитой из стальных сеток.

Соединение индуктора и инвертора может быть выполнена разными способами. Некоторые специалисты изготавливают дополнительный промежуточный трансформатор. Затем к его вторичной обмотке подключается индуктор вместе с конденсатором. В другом варианте на тороидальный трансформатор высокой частоты, имеющийся в инверторе, наматывается медный провод в количестве одного витка. Далее, к нему напрямую подключается индуктор.

Во всех случаях нельзя пользоваться плюсовой и минусовой клеммами инвертора, предназначенными для сварки. На выходе у них выпрямленное напряжение, которое сопровождают пульсации высокой частоты. Под его воздействием рабочее магнитное поле не появится, а индуктор перегреется и сгорит. Инвертор придется переделывать, что само по себе достаточно сложно, поскольку будут нужны знания и навыки работы с радиоэлектронными схемами.

Источник напряжения высокой частоты

Создание своими руками высокочастотного блока питания для индукционного нагревателя хоть и не относится к разряду невыполнимых задач, все же под силу далеко не каждому. И здесь на помощь может прийти готовое устройство, обычный бытовой сварочный инвертор.

Из сведений об устройстве сварочного инвертора известно, что в нем происходит формирование переменного напряжения с частотой до нескольких десятков килогерц.

То есть, сварочный инвертор представляет собой готовый мощный источник тока высокой частоты, который можно использовать для питания индуктора. Многочисленные примеры реализации этой идеи подтверждают возможность создания установки для индукционного нагрева металла из сварочного инвертора.

Преимущества

К основным достоинствам нагревателя этого вида смело можно отнести следующие важные моменты:

  • высокий коэффициент полезного действия;
  • не требует частого технического ухода;
  • благодаря вибрациям электромагнитного поля, не образуется накипь;
  • бесшумность работы;
  • высокий уровень безопасности;
  • герметичность агрегата препятствует появлению протечек;
  • функционирование нагревателя полностью автоматизировано.

Основным недостатком нагревателя этого вида по праву считают его высокую стоимость. Но этот недостаток вполне можно исправить, если его конструкцию выполнить самому.

Стоит также отметить, что сборка индукционного нагревателя своими руками осуществляется из весьма доступных деталей, при этом, их стоимость не слишком высокая.

Простой индукционный нагреватель 12 В

Простой индукционный нагреватель состоит мощного генератора высокой частоты и низкоомной катушки-контура, которая является нагрузкой генератора.

Генератор с самовозбуждением генерирует импульсы на основании резонансной частоты контура. В результате в катушке возникает мощное переменное электромагнитное поле частотой порядка 35 кГц.
Если в центр этой катушки поместить сердечник из токопроводящего материала, то внутри него возникнет электромагнитная индукция. В результате частой смены эта индукция вызовет в сердечнике вихревые токи, которые в свою очередь повлекут за собой выделение тепла. Это классический принцип преобразования электромагнитной энергии в тепловую.
Индукционные нагреватели очень давно используются во многих областях производства. С их помощью можно делать закалку, бесконтактную сварку, и самое главное — точечный прогрев, а также плавление материалов.
Я покажу вам схему простого низковольтного индукционного нагревателя, которая уже стала классической.

Мы её ещё больше упростим эту схему и стабилитроны «D1, D2» не будем устанавливать.
Элементы, которые понадобятся:
1. Резисторы на 10 кОм – 2 шт.
2. Резисторы на 470 Ом – 2 шт.
3. Диоды Шоттки на 1 А – 2 шт. (Можно другие, главное на ток от 1 А и быстродейственные)
4. Полевые транзисторы IRF3205 – 2 шт. (можно взять любые другие мощные)
5. Индуктор «5+5» — 10 витком с отводом от середины. Чем толще провод, тем лучше. Мотал на деревянной круглой палке, сантиметра 3-4 в диаметре.
6. Дроссель – 25 витков на кольце из блока старого компьютера.
7. Конденсатор 0,47 мкФ. Лучше набирать емкость несколькими конденсаторами и на напряжение не ниже 600 Вольт. Я по началу взял на 400, в результате чего он начал греться, далее заменил его на составной из двух последовательно, но так не делают, просто под рукой больше не было.

Изготовление простой индукционный нагреватель 12 В


Наматываем индуктор.


Собрал всю схему навесным монтажом, отделив колодкой индуктор от всей схемы. Конденсатор желательно располагать в непосредственной близости от выводов катушки. Не как у меня в этом примере в общем. Транзисторы установил на радиаторы. Запитал всю установку от аккумулятора 12 Вольт.


Работает отлично. Лезвие канцелярского ножа нагревает до красноты очень быстро. Рекомендую всем к повторению.
После замены конденсатора они больше не грелись. Транзисторы и сам индуктор греются, если работает постоянно. На небольшое время – не критично почти.



Смотрите видео сборки и испытаний:


Схема индукционного нагревателя. Как изготовить простой индукционный нагреватель своими руками

Индукционный нагреватель – это высокая стадия эволюции электроприборов. Благодаря такому устройству можно значительно экономить потребление энергии. Тепловой генератор, используемый в этом приборе, совершенно безвреден, при работе не выделяет копоти. Например, по эффективности преобразования электрической энергии в тепловую отопительный котел (схема индукционного нагревателя приведена ниже) уступает лишь инфракрасному обогревателю. Однако в отличие от ИК-приборов, которые продаются лишь в специализированных магазинах, индукционные нагреватели можно не только купить, но и собрать своими руками.

Такие устройства бывают нескольких уровней сложности и назначения, например, для воды и металла. Их устройства, конечно, отличаются, однако принцип работы идентичный. На фото ниже изображена схема индукционного нагревателя металла, по ней достаточно легко собрать данный прибор.

Итак, в этой статье мы рассмотрим процесс сборки индукционного нагревателя из подручных средств, которые можно найти в «закромах» любого домашнего мастера.

Как работает индукционный нагреватель, сделанный своими руками?

Принцип работы самодельного нагревателя ничем не отличается от заводского прибора. То есть теплоноситель циркулирует в сердечнике, нагреваясь от его стенок или содержимого. Он разогревается благодаря вихревым токам, генерируемым обмоткой.

Важно: полимерные сердечники набивают рубленой проволокой!

В свою очередь, обмотка накручивается на тело сердечника и замыкается на источник тока высокой частоты. Именно такая энергия способна сгенерировать переменное электромагнитное поле – первопричину появления вихревых токов в неподвижном сердечнике (или его наполнителе).

Схема индукционного нагревателя воды, представленная ниже, часто используется в отопительных котлах.

В роли источника высокочастотного переменного тока может выступать обычный сварочный инвертор или более сложная система на основе трансформатора и частотного преобразователя.

Необходимо отметить, что при правильном подходе к выбору источника и формированию обмотки можно создать действительно эффективный прибор, который будет работать не хуже заводского аналога. Кстати, в его комплекте всегда есть инструкция и схема индукционного нагревателя.

Своими руками собираем индукционный прибор: важные детали

Для сбора такого нагревателя понадобятся:

  • инвертор сварочный;
  • генерирующий сварочный ток силой не менее 15 ампер, с высокочастотным типом и с плавной регулировкой.

Именно этот прибор будет источником переменного электрического тока высокой частоты, питающего индуктор.

После этого необходимо взять медную проволоку. Намотать ее пружиной на корпус сердечника. Это устройство будет выполнять роль индуктора. Очень важно контакты проволоки соединить с клеммами инвертора, избегая спаек и скруток. Исходя из этого, отрезок данного материала, используемый для формирования сердечника, должен иметь достаточную длину. Количество витков обычно равно 50, а диаметр проволоки, как правило, равен 3 мм. Схема индукционного нагревателя показывает последовательность соединения отдельных составляющих.

Делаем сердечник

В роли сердечника выступает обычная полимерная труба, изготовленная из сшитого полиэтилена или полипропилена. Эти сорта пластмасс выдерживают максимально высокую температуру. Пропускной диаметр трубы-сердечника должен равняться 50 мм, а толщина стенок не может быть меньше 2,5-3 мм. Тогда эту деталь можно использовать в роли калибра, на который навивают медную проволоку, формируя индуктор.

Приблизительная схема индукционного нагревателя отображена на этой картинке.

Нагревательным элементом такого котла будет наполнитель полимерного сердечника – рубленые отрезки нержавеющей проволоки диаметром 7 мм. Причем длина их не может быть менее 5 см.

Сборка устройства на примере отопительного индукционного котла

Сам процесс сборки всех этих компонентов в единую систему выглядит следующим образом:

  • Вначале берете отрезок полимерной трубы, фиксируете его и наматываете поверх будущего сердечника 50 витков 3-миллиметровой медной проволоки.
  • Далее обрезаете торцы сердечника, оставляя по 7-10 см от края проволоки на отводы.

Важно: Схема индукционного нагревателя своими руками выполняется в несколько этапов, последовательность которых нарушать ни в коем случае нельзя. Во избежание ошибок необходимо в точности следовать инструкции.

  • На следующем этапе монтируете на нижнем отводе уголок. Причем боковое ответвление этого фитинга будет использовано в роли патрубка для обратки разводки системы. Причем на сгоне нужно установить шаровой вентиль, перекрыв который можно демонтировать сердечник без слива теплоносителя.
  • После установки нижнего фитинга заполняете сердечник рубленой проволокой, стараясь уложить ее максимально плотно. Ведь в роли водонагревателя выступает именно она.
  • Далее монтируете на верхнем патрубке тройник. Этот фитинг используют для отвода разогретого теплоносителя в напорный контур разводки. Причем отвод можно реализовать и по верхнему, и по боковому ответвлению, используя свободный патрубок тройника под монтаж предохранительного клапана. И разумеется, подключение тройника к напорной ветви разводки реализуется посредством шарового вентиля.
  • После этого можно смонтировать всю конструкцию в корпусе (металлическом или полимерном шкафу), установив в его нижней части сварочный инвертор. Причем для доступа к панели управления инвертором в корпусе шкафа вырезают особое окно.
  • Перепроверяете, соответствует ли схема индукционного нагревателя источнику.
  • Если все подключено правильно, то в финале нужно прикрепить проволоку на клеммы инвертора и залить воду в сердечник.

Безопасность индукторных нагревателей: советы профессионалов

Изготавливая индукционный нагреватель собственными руками, необходимо побеспокоиться о безопасности устройства. Для этого требуется руководствоваться следующими правилами, повышающими уровень надежности общей системы:

  1. В верхний тройник стоит врезать предохранительный клапан, стравливающий лишнее давление. Иначе при выходе из строя циркуляционного насоса сердечник попросту лопнет под воздействием пара. Как правило, схема простого индукционного нагревателя предусматривает такие моменты.
  2. Инвертор включается в сеть только через УЗО. Это устройство срабатывает в критических ситуациях и поможет избежать короткого замыкания.
  3. Сварочный инвертор нужно заземлить, выводя кабель на особый металлический контур, смонтированный в грунте за стенами сооружения.
  4. Корпус индукционного нагревателя нужно размещать на высоте 80 см над уровнем пола. Причем расстояние до потолка должно быть не менее 70 см, а до других предметов меблировки – более 30 см.
  5. Индукционный нагреватель – это источник очень сильного электромагнитного поля, поэтому такую установку нужно держать подальше от жилых помещений и вольеров с домашними животными.

Подведение итогов

Индукционный нагреватель, изготовленный своими руками, будет работать не хуже заводского прибора. Он не уступает в производительности, эффективности и безопасности, конечно же, если были соблюдены все правила.

Индукционный нагрев своими руками. Техника съема энергии с трансформатора тока

Индукционный нагрев своими руками. Техника съема энергии с трансформатора тока

 Целью является практическая реализации обогрева дома с использованием техники индукционной плавки металлов. Идея, не обладает новизной и состоит в том, чтобы индуктор разместить вокруг трубы отопления. Нагревая трубу, тем самым мы нагреваем воду которая циркулирует в системе отопления. Базовой предпосылкой, которая может значительно снизить затраты на электроэнергию является колебательный контур (индуктор->конденсаторы) который работает в резонансе. Возникает повышение напряжения примерно в десятки раз, которым и осуществляется нагрев металла.

 

 Классические индукционные схемы, как показала практика замены выходящих из строя транзисторов, требует дорогой элементной базы. За основу была взята схема индукционного нагрева использующая ZVS (zero voltage switching) метод переключения транзисторов. Схема взята с сайта http://www.rmcybernetics.com/projects/DIY_Devices/diy-induction-heater.htm.

 

 В собранной схеме, были использованы транзисторыы STP40N10, диоды шоттки 50SQ100 5A,100В; резисторы 240 ОМ, измереенная ёмкость батареи конденсаторов CBB81/224/2000V — 2,3 мкф. Магнитная проницаемость ферритового кольца — L2, по заявлению продавца 10000, но схема запускается с ферритовым кольцом. Источниеи питания — два аккумулятора замененны на трансформатор ОСМ1-1.6 c переменным напряжением 24 вольта и постоянным на конденсаторе порядка 27 Вольт. Схема заработала сразу, каких либо настроек не протребовалось. Более или менее интересный результат при данном размере индуктора начинается от 20 вольт.

 

 Напряжение на каждом из транзисторов относительно корпуса по 800 Вольт, не важно где мерять. Частота работы схемы без металлической трубы в индукторе, 321 Кгц, ток потребления 1,7 Ампера. При добавлении металлической трубы частота понижается до 138 Кгц, ток потребления вырастает до 5А. Труба 0,5 дюйма, индуктором с внутренним диаметром 85 мм нагревается в районе средней точки до вишневого цвета.


 Лучше всего в таких схемах использовать плёночные конденсаторы фирм Evox Rifa,Faratronic,Pilcor. КПД поднимется,да и количество кондёров потребуется в разы меньше.

 Ток потребления определяется заполнением индуктора металлом. Стоит использовать под бесшовную трубу с максимальной толщиной стенок. При токе потребления более 12 ампер, транзисторы STP40N10 долго не живут. Рекомендованное на сайте водяное охлаждение не используется. Греются радиатор и индуктор, конденсаторы холодные. Для охлаждения транзисторных радиаторов я использовал вентилятор от компьютера. При необходимости отвод тепла можно организовать на тот же стояк отопления.

 

Трансформатор тока.

 Вторым, не менее, если не более интересным способом нагрева теплоносителя является трансформатор тока.

Трансформатор тока представляет из себя ферритовое кольцо, установленное на проводе идущем от блока конденсаторов к индуктору. Подойдут ферритовые кольца, любой магнитопроницаемости. В том числе и кольцо из трансформаторного железа. Чем ниже магнитная проницаемость магнитопровода, тем меньший радиус кольца допустим, тем ниже частота тока на выходе, тем сильнее греется магнитопровод. В случае использования трансформаторного железа эффективность нагрева максималена. Ферритовые кольца с внутренним диаметром менее 60мм для длительной работы схемы не использовать. При малом, внутреннем, диаметре ферритового кольца, менее 50мм , резко растает ток потребления, необходимый для поддержания резонанса, транзисторы выходят из строя. В случае использования сердечника от ТВС необходим зазор, это не по феншую. В случае встречной намотки обмоток, как показано на фотографии, эдс отсутсвует.

 

 Ниже представлена схема подключения нагрузки. Лампу 220В 95W включать без диодного моста можно, но при этом следует уменьшить число витков трансформатора тока примерно до пяти, иначе лампа эффектоно сгорит. На сдвоенную пару витков, используемых в намотке обращать внимание не стоит. Так же следует поступить с парой проводов черный и красный, на транзисторных радиаторах к ним подключались высоковольтные конденсаторы от СВЧ печей. Конденсаторы сильно грелись, пришлось их заменить, провода пусть пока будут.

 Ферритовые кольца размещенные в индукторе увеличивают частоту до 400 кГц, токовый трансформатор ее понижает до 100 кГц. Яркость свечения лампы регулируется частотой за счет увеличения либо уменьшения сердечника из ферритовых колец в индукторе.

 


 На тестере видно, что при подключении нагрузки ток вырос на два ампера. (В первом случае ток необходимо умножить на 100) Это примерно равно мощности используемой лампы. Безвомездного съема энергии с токового трансформатора нет. Подключение активной нагрузки увеличивает ток потребляемый устройством. А вот использовать ферритовые кольца для нагрева теплоносителя в дополнение к индуктору — очень интересный вариант.

 

Дуговой разряд.

 На каждые три-четыре витка токового трансформатора приходится 1000 вольт. Попытка замера напряжения на большем числе витков закончилась неудачей по причине выхода из строя тестера. Можно предположить, что напряжение на токовом рансформаторе около пяти-шести тысяч вольт, поэтому третьим источником тепла, в предлагаемой схеме является дуговой разряд. Как его еспользовать для нагрева теплоносителя, я пока не решил. Плавится все с чем дуговой разряд находится в тесном контакте.

 

 

 
Промежуточный итог.

 1. Осуществлять нагрев трубы отопления токами фуко.
 2. Дополнительная тепловая мощность за счет охлаждения радиаторов, на которых установлены транзисторы.
 3. Охлаждения феррита токового трансформатора теплоносителем (водой).
 4. Использование дугового разряда — проблематично. Очень высокая температура. Но очень перспективно. Наличие дуги не увеличивает потребление тока устройством.

 

Пример страниц руководства:

 

Скачать руководство полностью:

А.Мищук — Индукционный нагрев. Техника съема энергии с трансформатора тока.pdf

Индукционный нагреватель металла. Принцип работы

Технология индукционного нагрева заготовок востребована не только в цехах горячей объёмной штамповки. Компактные индукторы необходимы, в частности, для автосервиса, занимающегося изготовлением и ремонтом стальных деталей из профилированного проката. Приобретать промышленный индуктор дорого. Есть ли альтернатива?

Как работает индукционный нагреватель?

Для реализации процесса индукционного нагрева используется известный физический принцип, когда для деформирования в горячем состоянии заготовку размещают в магнитном поле кольцеобразного индуктора. Питание такой катушки производится электрическим переменным током частоты, резко выше, чем обычная (50 или 60 Гц).

Принцип работы индукционного нагревателя следующий. Создаваемые в электромагнитном поле вихревые токи (у них есть и другое название – токи Фуко) производят нагрев металла. Непосредственное соприкосновение заготовки и нагревательного элемента не обязательно, важно только, чтобы индуктор равномерно охватывал нагреваемую поверхность металла. Используя трансформатор, установка подключается к генератору, который обеспечивает требующиеся значения мощности и частоты.

Индукционным нагревом можно обеспечить сравнительно быстрое повышение температуры поверхностных слоёв. В частности, для нагревания прутковой заготовки сечением 35…40 мм и длиной 140….150 мм потребуется около 20…25 с.

Примерные диапазоны соответствия наилучшей частоты тока и поперечного сечения круглого прутка приведены в таблице.

Диаметр, мм 20…40 40…60 60…80 80…100 100…120
Частота, кГц 100…40 40…10 10…4 4…1 1…0,5

Для полосового металла применять индукционный нагрев менее выгодно, чем для круглого прутка, поскольку расстояние между внутренним диаметром катушки и металлом непостоянно.

Обычно применяется частота от 10 кГц, тогда КПД индукционного нагревателя достигает максимума. Частота регулируется в зависимости от:

  • требуемой производительности нагрева;
  • температуры нагреваемого металла;
  • размеров поперечного сечения.

Конструкции промышленных индукторов снабжаются устройствами для автоматической загрузки-выгрузки нагретых заготовок. Это необходимо потому, чтобы интервал между нагревом и пластическим деформированием металла был минимальным.

Время нагрева стальных заготовок невелико: для сечения 20 мм оно составляет всего 10 с, поэтому потери металла в окалину незначительны.

Индукционный нагреватель своими руками

Известен ряд конструкций индукторов, изготовленных из сварочного инвертора, принцип действия которых может быть использован для наведения в металле вихревых токов Фуко.

Изготовление самодельного индуктора заключается в следующем. Вначале потребуется изготовить прочный корпус, в котором будет находиться узел крепления нагреваемой заготовки. Корпус необходимо подвергнуть закалке, чтобы он не деформировался под воздействием возможных ударов. Ещё лучше, если материал подвергнуть азотированию: в этом случае реализуются два преимущества —  дополнительное увеличение твердости за счет более полного превращения остаточного аустенита в мартенсит, и улучшение скин-эффекта, когда по внешней стороне заготовки будет протекать более мощный ток. Прочность оценивается по пробе на искру.

Следующей стадией является изготовление нагревающей катушки. Её делают из индивидуально изолированных проводов: в этом случае потери мощности будут минимальными. Подойдёт и медная трубка – она имеет  большую площадь поверхности, по которой будут наводиться вихревые токи, при этом собственный нагрев индуктора из-за высокой электропроводности меди практически отсутствует.

После подключения катушки к системе водяного охлаждения и проверки системы прокачки индуктор готов к работе.

Рабочая схема

В состав нагревателя входят следующие составляющие:

  1. Инверторный блок, рассчитанный на напряжение 220…240 В, при токе не менее 10 А.
  2. Трёхпроводная кабельная линия (один провод – заземляющий) с нормально разомкнутым переключателем.
  3. Система водяного охлаждения (крайне желательно использовать очистные фильтры для воды).
  4. Набор катушек, отличающихся внутренними диаметрами и длиной (при ограниченных объёмах работ можно обойтись и одной катушкой).
  5. Нагревающий блок (можно применить модуль на силовых транзисторах, которые выпускаются китайскими фирмами Infineon или  IGBT).
  6. Демпферная цепь с несколькими конденсаторами Semikron.

Генератор высокочастотных колебаний принимается тот же, что и у базового инвертора. Важно, чтобы его эксплуатационные характеристики полностью соответствовали тем, которые указаны в предыдущих разделах.

После сборки блок заземляется, и с помощью соединительных кабелей нагревательная индукционная катушка присоединяется к блоку питания инвертора.

Примерные эксплуатационные возможности самодельного индукционного нагревателя металла:

  • Наибольшая температура нагрева, °С – 800.
  • Минимальная мощность инвертора – 2 кВА.
  • Продолжительность включения ПВ, не менее – 80.
  • Рабочая частота, кГц (регулируемая) — 1,0…5,0.
  • Внутренний диаметр катушки, мм – 50.

Следует отметить, что такой индуктор потребует специально подготовленного рабочего места – бака для отработанной воды, насоса, надёжного заземления.

Самодельный индуктор для нагрева.

Простейший индукционный нагреватель своими руками. Печь для плавки металла на сварочном инверторе

Индукционные отопительные котлы – это приборы, которые отличаются очень высоким КПД. Они позволяют заметно снизить затраты на электроэнергию по сравнению с традиционными приборами, оборудованными ТЭНами.

Модели промышленного производства недешевы. Однако сделать индукционный нагреватель своими руками сможет любой домашний мастер, владеющий нехитрым набором инструментов. Ему в помощь мы предлагаем подробное описание принципа действия и сборки эффективного обогревателя.

Индукционный нагрев невозможен без использования трех основных элементов:

Индуктор представляет собой катушку, обычно выполненную из медной проволоки, с ее помощью генерируют магнитное поле. Генератор переменного тока используют для получения высокочастотного потока из стандартного потока домашней электросети с частотой 50 Гц.

В качестве нагревательного элемента применяется металлический предмет, способный поглощать тепловую энергию под воздействием магнитного поля. Если правильно соединить эти элементы, можно получить высокопроизводительный прибор, который прекрасно подходит для подогрева жидкого теплоносителя и .

С помощью генератора электрический ток с необходимыми характеристиками подается на индуктор, т.е. на медную катушку. При прохождении через нее поток заряженных частиц формирует магнитное поле.

Принцип действия индукционных нагревателей основан на возникновении электротоков внутри проводников, появляющихся под воздействием магнитных полей

Особенность поля состоит в том, что оно обладает способностью на высоких частотах изменять направление электромагнитных волн. Если в это поле поместить какой-нибудь металлический предмет, он начнет нагреваться без непосредственного контакта с индуктором под воздействием созданных вихревых токов.

Высокочастотный электрический ток, поступающий от инвертора к индукционной катушке, создает магнитное поле с постоянно изменяющимся вектором магнитных волн. Помещенный в это поле металл быстро разогревается

Отсутствие контакта позволяет сделать потери энергии при переходе из одного вида в другой ничтожными, чем и объясняется повышенный КПД индукционных котлов.

Чтобы подогреть воду для отопительного контура, достаточно обеспечить ее контакт с металлическим нагревателем. Часто в качестве нагревательного элемента используют металлическую трубу, через которую просто пропускают поток воды. Вода попутно охлаждает нагреватель, что значительно увеличивает срок его службы.

Электромагнит индукционного прибора получают путем намотки проволоки вокруг сердечника из ферромагнита. Полученная в результате катушка индукции разогревается и передает тепло нагреваемому телу или протекающему рядом теплоносителю через теплообменник

Преимущества и недостатки прибора

“Плюсов” у вихревого индукционного нагревателя великое множество. Это простая для самостоятельного изготовления схема, повышенная надежность, высокий КПД, относительно низкие затраты на электроэнергию, длительный срок эксплуатации, малая вероятность возникновения поломок и т.п.

Производительность прибора может быть значительной, агрегаты этого типа успешно используются в металлургической промышленности. По скорости нагрева теплоносителя устройства этого типа уверенно соперничают с традиционными электрическими котлами, температура воды в системе быстро достигает необходимого уровня.

Во время функционирования индукционного котла нагреватель слегка вибрирует. Эта вибрация стряхивает со стенок металлической трубы известковый осадок и другие возможные загрязнения, поэтому в очистке такой прибор нуждается крайне редко. Конечно, отопительную систему следует защитить от этих загрязнений с помощью механического фильтра.

Индукционная катушка нагревает металл (трубу или куски проволоки), помещенные внутри нее, с помощью высокочастотных вихревых токов, контакт не обязателен

Постоянный контакт с водой сводит к минимуму и вероятность перегорания нагревателя, что является довольно частой проблемой для традиционных котлов с ТЭНами. Несмотря на вибрацию, котел работает исключительно тихо, дополнительная шумоизоляция в месте установки прибора не понадобится.

Еще индукционные котлы хороши тем, что они практически никогда не протекают, если только монтаж системы выполнен правильно. Это очень ценное качество для , так как исключает или значительно сокращает вероятность возникновения опасных ситуаций.

Отсутствие протечек обусловлено бесконтактным способом передачи тепловой энергии нагревателю. Теплоноситель с помощью описанной выше технологии можно разогреть чуть ли не до парообразного состояния.

Это обеспечивает достаточную тепловую конвекцию, чтобы стимулировать эффективное перемещение теплоносителя по трубам. В большинстве случаев отопительную систему не придется оборудовать циркуляционным насосом, хотя все зависит от особенностей и схемы конкретной системы отопления.

Выводы и полезное видео по теме

Ролик #1. Обзор принципов индукционного нагрева:

Ролик #2. Интересный вариант изготовления индукционного нагревателя:

Для установки индукционного нагревателя не нужно получать разрешение контролирующих органов, промышленные модели таких устройств вполне безопасны, они подходят и для частного дома, и для обычной квартиры. Но владельцам самодельных агрегатов не следует забывать о технике безопасности.

Целью является практическая реализации обогрева дома с использованием техники индукционной плавки металлов. Идея, не обладает новизной и состоит в том, чтобы индуктор разместить вокруг трубы отопления. Нагревая трубу, тем самым мы нагреваем воду которая циркулирует в системе отопления. Базовой предпосылкой, которая может значительно снизить затраты на электроэнергию является колебательный контур (индуктор->конденсаторы) который работает в резонансе. Возникает повышение напряжения примерно в десятки раз, которым и осуществляется нагрев металла.

Классические индукционные схемы, как показала практика замены выходящих из строя транзисторов, требует дорогой элементной базы. За основу была взята схема индукционного нагрева использующая ZVS (zero voltage switching) метод переключения транзисторов. Схема взята с сайта http://www.rmcybernetics.com/projects/DIY_Devices/diy-induction-heater.htm.

В собранной схеме, были использованы транзисторыы STP40N10, диоды шоттки 50SQ100 5A,100В; резисторы 240 ОМ, измереенная ёмкость батареи конденсаторов CBB81/224/2000V — 2,3 мкф. Магнитная проницаемость ферритового кольца — L2, по заявлению продавца 10000, но схема запускается с ферритовым кольцом. Источниеи питания — два аккумулятора замененны на трансформатор ОСМ1-1.6 c переменным напряжением 24 вольта и постоянным на конденсаторе порядка 27 Вольт. Схема заработала сразу, каких либо настроек не протребовалось. Более или менее интересный результат при данном размере индуктора начинается от 20 вольт.

Напряжение на каждом из транзисторов относительно корпуса по 800 Вольт, не важно где мерять. Частота работы схемы без металлической трубы в индукторе, 321 Кгц, ток потребления 1,7 Ампера. При добавлении металлической трубы частота понижается до 138 Кгц, ток потребления вырастает до 5А. Труба 0,5 дюйма, индуктором с внутренним диаметром 85 мм нагревается в районе средней точки до вишневого цвета.

Лучше всего в таких схемах использовать плёночные конденсаторы фирм Evox Rifa,Faratronic,Pilcor. КПД поднимется,да и количество кондёров потребуется в разы меньше.

Ток потребления определяется заполнением индуктора металлом. Стоит использовать под бесшовную трубу с максимальной толщиной стенок. При токе потребления более 12 ампер, транзисторы STP40N10 долго не живут. Рекомендованное на сайте водяное охлаждение не используется. Греются радиатор и индуктор, конденсаторы холодные. Для охлаждения транзисторных радиаторов я использовал вентилятор от компьютера. При необходимости отвод тепла можно организовать на тот же стояк отопления.

Трансформатор тока.

Вторым, не менее, если не более интересным способом нагрева теплоносителя является трансформатор тока. Трансформатор тока представляет из себя ферритовое кольцо, установленное на проводе идущем от блока конденсаторов к индуктору. Подойдут ферритовые кольца, любой магнитопроницаемости. В том числе и кольцо из трансформаторного железа. Чем ниже магнитная проницаемость магнитопровода, тем меньший радиус кольца допустим, тем ниже частота тока на выходе, тем сильнее греется магнитопровод. В случае использования трансформаторного железа эффективность нагрева максималена. Ферритовые кольца с внутренним диаметром менее 60мм для длительной работы схемы не использовать. При малом, внутреннем, диаметре ферритового кольца, менее 50мм, резко растает ток потребления, необходимый для поддержания резонанса, транзисторы выходят из строя. В случае использования сердечника от ТВС необходим зазор, это не по феншую. В случае встречной намотки обмоток, как показано на фотографии, эдс отсутсвует.

Ниже представлена схема подключения нагрузки. Лампу 220В 95W включать без диодного моста можно, но при этом следует уменьшить число витков трансформатора тока примерно до пяти, иначе лампа эффектоно сгорит. На сдвоенную пару витков, используемых в намотке обращать внимание не стоит. Так же следует поступить с парой проводов черный и красный, на транзисторных радиаторах к ним подключались высоковольтные конденсаторы от СВЧ печей. Конденсаторы сильно грелись, пришлось их заменить, провода пусть пока будут.

Ферритовые кольца размещенные в индукторе увеличивают частоту до 400 кГц, токовый трансформатор ее понижает до 100 кГц. Яркость свечения лампы регулируется частотой за счет увеличения либо уменьшения сердечника из ферритовых колец в индукторе.

На тестере видно, что при подключении нагрузки ток вырос на два ампера. (В первом случае ток необходимо умножить на 100) Это примерно равно мощности используемой лампы. Безвомездного съема энергии с токового трансформатора нет. Подключение активной нагрузки увеличивает ток потребляемый устройством. А вот использовать ферритовые кольца для нагрева теплоносителя в дополнение к индуктору — очень интересный вариант.

Дуговой разряд.

На каждые три-четыре витка токового трансформатора приходится 1000 вольт. Попытка замера напряжения на большем числе витков закончилась неудачей по причине выхода из строя тестера. Можно предположить, что напряжение на токовом рансформаторе около пяти-шести тысяч вольт, поэтому третьим источником тепла, в предлагаемой схеме является дуговой разряд. Как его еспользовать для нагрева теплоносителя, я пока не решил. Плавится все с чем дуговой разряд находится в тесном контакте.

Промежуточный итог.

1. Осуществлять нагрев трубы отопления токами фуко.
2. Дополнительная тепловая мощность за счет охлаждения радиаторов, на которых установлены транзисторы.
3. Охлаждения феррита токового трансформатора теплоносителем (водой).
4. Использование дугового разряда — проблематично. Очень высокая температура. Но очень перспективно. Наличие дуги не увеличивает потребление тока устройством.

Пример страниц руководства:

Скачать руководство полностью:

Индукционный нагреватель — это высокая стадия эволюции электроприборов. Благодаря такому устройству можно значительно экономить потребление энергии. Тепловой генератор, используемый в этом приборе, совершенно безвреден, при работе не выделяет копоти. Например, по эффективности отопительный котел (схема индукционного нагревателя приведена ниже) уступает лишь инфракрасному обогревателю. Однако в отличие от ИК-приборов, которые продаются лишь в специализированных магазинах, индукционные нагреватели можно не только купить, но и собрать своими руками.

Такие устройства бывают нескольких уровней сложности и назначения, например, для воды и металла. Их устройства, конечно, отличаются, однако принцип работы идентичный. На фото ниже изображена схема индукционного нагревателя металла, по ней достаточно легко собрать данный прибор.

Итак, в этой статье мы рассмотрим процесс сборки индукционного нагревателя из подручных средств, которые можно найти в «закромах» любого домашнего мастера.

Как работает индукционный нагреватель, сделанный своими руками?

Принцип работы самодельного нагревателя ничем не отличается от заводского прибора. То есть теплоноситель циркулирует в сердечнике, нагреваясь от его стенок или содержимого. Он разогревается благодаря вихревым токам, генерируемым обмоткой.

Важно : полимерные сердечники набивают рубленой проволокой!

В свою очередь, обмотка накручивается на тело сердечника и замыкается на источник тока высокой частоты. Именно такая энергия способна сгенерировать переменное электромагнитное поле — первопричину появления вихревых токов в неподвижном сердечнике (или его наполнителе).

Схема индукционного нагревателя воды, представленная ниже, часто используется в отопительных котлах.

В роли источника высокочастотного переменного тока может выступать обычный или более сложная система на основе трансформатора и частотного преобразователя.

Необходимо отметить, что при правильном подходе к выбору источника и формированию обмотки можно создать действительно эффективный прибор, который будет работать не хуже заводского аналога. Кстати, в его комплекте всегда есть инструкция и схема индукционного нагревателя.

Своими руками собираем индукционный прибор: важные детали

Для сбора такого нагревателя понадобятся:


Именно этот прибор будет источником переменного электрического тока высокой частоты, питающего индуктор.

После этого необходимо взять Намотать ее пружиной на корпус сердечника. Это устройство будет выполнять роль индуктора. Очень важно контакты проволоки соединить с клеммами инвертора, избегая спаек и скруток. Исходя из этого, отрезок данного материала, используемый для формирования сердечника, должен иметь достаточную длину. Количество витков обычно равно 50, а диаметр проволоки, как правило, равен 3 мм. Схема индукционного нагревателя показывает последовательность соединения отдельных составляющих.

Делаем сердечник

В роли сердечника выступает обычная полимерная труба, изготовленная из сшитого полиэтилена или полипропилена. Эти сорта пластмасс выдерживают максимально высокую температуру. Пропускной диаметр трубы-сердечника должен равняться 50 мм, а толщина стенок не может быть меньше 2,5-3 мм. Тогда эту деталь можно использовать в роли калибра, на который навивают медную проволоку, формируя индуктор.

Приблизительная схема индукционного нагревателя отображена на этой картинке.

Нагревательным элементом такого котла будет наполнитель полимерного сердечника — рубленые отрезки диаметром 7 мм. Причем длина их не может быть менее 5 см.

Сборка устройства на примере отопительного индукционного котла

Сам процесс сборки всех этих компонентов в единую систему выглядит следующим образом:

  • Вначале берете отрезок полимерной трубы, фиксируете его и наматываете поверх будущего сердечника 50 витков 3-миллиметровой медной проволоки.
  • Далее обрезаете торцы сердечника, оставляя по 7-10 см от края проволоки на отводы.

Важно : Схема индукционного нагревателя своими руками выполняется в несколько этапов, последовательность которых нарушать ни в коем случае нельзя. Во избежание ошибок необходимо в точности следовать инструкции.


Изготавливая индукционный нагреватель собственными руками, необходимо побеспокоиться о безопасности устройства. Для этого требуется руководствоваться следующими правилами, повышающими уровень надежности общей системы:

  1. В верхний тройник стоит врезать предохранительный клапан, стравливающий лишнее давление. Иначе при выходе из строя циркуляционного насоса сердечник попросту лопнет под воздействием пара. Как правило, схема простого индукционного нагревателя предусматривает такие моменты.
  2. Инвертор включается в сеть только через УЗО. Это устройство срабатывает в критических ситуациях и поможет избежать короткого замыкания.
  3. Сварочный инвертор нужно заземлить, выводя кабель на особый металлический контур, смонтированный в грунте за стенами сооружения.
  4. Корпус индукционного нагревателя нужно размещать на высоте 80 см над уровнем пола. Причем расстояние до потолка должно быть не менее 70 см, а до других предметов меблировки — более 30 см.
  5. Индукционный нагреватель — это источник очень сильного электромагнитного поля, поэтому такую установку нужно держать подальше от жилых помещений и вольеров с домашними животными.

Подведение итогов

Индукционный нагреватель, изготовленный своими руками, будет работать не хуже заводского прибора. Он не уступает в производительности, эффективности и безопасности, конечно же, если были соблюдены все правила.

Умельцы придумали много способов для отопления дома. Один из них — индукционный нагреватель. Как и любой другой, он имеет свои преимущества и недостатки.

Принцип действия

В основе работы лежит закон Джоуля-Ленца, который отражает прямую зависимость тепловой отдачи проводника от напряженности электрического поля. Всем известна взаимосвязь магнетизма и электричества, которые просто не могут существовать одно без другого. Если на катушку подать ток высокой частоты, вокруг нее образуется магнитное поле. Его поток будет пронизывать токопроводящий сердечник, вставленный в катушку. Возникшая магнитная индукция будет постоянно меняться по направлению и времени, что вызовет появление вихревых токов, движущихся по замкнутому кругу. А это преобразовывает электромагнитную энергию в тепловую. Такова в общих чертах схема индукционного нагревателя.

Индукционные нагреватели блестяще зарекомендовали себя в самых разных областях применения. С их помощью можно проводить поверхностную закалку металлических изделий, сверхчистую, бесконтактную сварку, точечный прогрев и даже плавку токопроводящих материалов. Производственные индукторы оборудованы мощным трансформатором, способным подавать на них большие токи.

Индуктор в быту

Поскольку схема подобного нагревателя не отличается сложностью, а КПД такого устройства очень высок (до 98%), вихревой индукционный нагреватель не мог не заинтересовать народных умельцев.

Очень часто у многих возникает идея об использовании принципа индукции для отопления дома. Ведь индукционный обогреватель способен нагревать воду чуть ли не мгновенно. Поэтому существует целый ряд конструкций, представляющих собой самодельный индукционный нагреватель.

В физике много законов, обойти которые не получится никогда. Энергия не берется из ниоткуда, а потому количество потребляемого электричества не может быть меньше, чем требуется тепловой энергии.

Другими словами, если для прогрева помещения требуется 5 кВт/ч, то не получится сделать это, потребляя всего 2 кВт/ч электроэнергии, какой бы замечательной ни была конструкция нагревателя. Если планируется отапливаться с помощью индуктора, нужно быть готовым к повышению выплат за электричество.

Самым популярным вариантом среди мастеров-умельцев является индукционный нагреватель из сварочного инвертора. Этому есть ряд причин:

  1. Инвертор выдает ток повышенных частот, что значительно повышает напряженность электрического поля, а это благотворно сказывается на теплоотдаче.
  2. Сварочный инвертор способен на подачу больших токов. Из всех приборов, доступных для бытового применения, инвертор лучше всего подходит для использования в качестве блока питания индукционного нагревателя.

Элементы конструкции

Индукционный нагреватель своими руками делается следующим образом:

  1. Кусок пластиковой трубы с толщиной стенок не менее 3 мм заполняется кусками металлической проволоки. Длина их примерно около 5 см.
  2. Оба края этого отрезка трубы закрываются металлической сеткой, чтобы она удерживала эти куски на месте. Труба должна быть заполнена проволокой полностью.
  3. После этого она должна быть аккуратно обмотана толстым медным проводом — порядка 90 витков. Желательно выбирать провод с диаметром не ниже 3 мм.
  4. С помощью переходников и фитингов труба присоединяется к отопительной системе, которая после этого заполняется водой.
  5. Концы провода присоединяются к клеммам сварочного инвертора.
  6. Необходимо обеспечить выполнение всех мер пожарной и электробезопасности.

После включения устройства металлические куски проволоки мгновенно нагреются и начнут отдавать тепло проходящей свозь них воде.

Особо стоит заострить внимание на том, что вода обязательно должна непрерывно циркулировать.

В противном случае температура трубы поднимется настолько, что появится угроза ее расплавления

Это является 1 из самых серьезных недостатков подобных нагревателей. В случае частого отсутствия хозяев необходима система автоматического компьютерного контроля за работой нагревателя.

Индукционный нагреватель вполне пригоден для отопления, но при этом имеет свои недостатки. Они вполне исправимы и при грамотной проработке деталей данная конструкция способна конкурировать с другими.

Индукционный нагрев (Induction Heating) — метод бесконтактного нагрева токами высокой частоты (англ. RFH — radio-frequency heating, нагрев волнами радиочастотного диапазона) электропроводящих материалов.

Описание метода.

Индукционный нагрев — это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно — это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла (см. закон Джоуля-Ленца).

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электролиты, электропроводящая керамика и т. д.) μ примерно равна единице.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Применение:
Сверхчистая бесконтактная плавка, пайка и сварка металла.
Получение опытных образцов сплавов.
Гибка и термообработка деталей машин.
Ювелирное дело.
Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
Поверхностная закалка.
Закалка и термообработка деталей сложной формы.
Обеззараживание медицинского инструмента.

Преимущества.

Высокоскоростной разогрев или плавление любого электропроводящего материала.

Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в непроводящей жидкости, в вакууме.

Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева — эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал — металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п.

За счёт возникающих МГД усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе — так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигле).

Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева, или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.

Удобство эксплуатации за счёт небольшого размера индуктора.

Индуктор можно изготовить особой формы — это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.

Легко провести местный и избирательный нагрев.

Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более мягко за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина при этом остаётся вязкой).

Лёгкая автоматизация оборудования — циклов нагрева и охлаждения, регулировка и удерживание температуры, подача и съём заготовок.

Установки индукционного нагрева:

На установках с рабочей частотой до 300 кГц используют инверторы на IGBT-сборках или MOSFET-транзисторах. Такие установки предназначены для разогрева крупных деталей. Для разогрева мелких деталей используются высокие частоты (до 5 МГц, диапазон средних и коротких волн), установки высокой частоты строятся на электронных лампах.

Также для разогрева мелких деталей строятся установки повышенной частоты на MOSFET-транзисторах на рабочие частоты до 1,7 МГц. Управление транзисторами и их защита на повышенных частотах представляет определённые трудности, поэтому установки повышенной частоты пока ещё достаточно дороги.

Индуктор для нагрева мелких деталей имеет небольшие размеры и небольшую индуктивность, что приводит к уменьшению добротности рабочего колебательного контура на низких частотах и снижению КПД, а также представляет опасность для задающего генератора (добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией, образует короткое замыкание по индуктору и выводит из строя задающий генератор). Для повышения добротности колебательного контура используют два пути:
— повышение рабочей частоты, что приводит к усложнению и удорожанию установки;
— применение ферромагнитных вставок в индукторе; обклеивание индуктора панельками из ферромагнитного материала.

Так как наиболее эффективно индуктор работает на высоких частотах, промышленное применение индукционный нагрев получил после разработки и начала производства мощных генераторных ламп. До первой мировой войны индукционный нагрев имел ограниченное применение. В качестве генераторов тогда использовали машинные генераторы повышенной частоты (работы В. П. Вологдина) или искровые разрядные установки.

Схема генератора может быть в принципе любой (мультивибратор, RC-генератор, генератор с независимым возбуждением, различные релаксационные генераторы), работающей на нагрузку в виде катушки-индуктора и обладающей достаточной мощностью. Необходимо также, чтобы частота колебаний была достаточно высока.

Например, чтобы «перерезать» за несколько секунд стальную проволоку диаметром 4 мм, необходима колебательная мощность не менее 2 кВт при частоте не менее 300 кГц.

Выбирают схему по следующим критериям: надёжность; стабильность колебаний; стабильность выделяемой в заготовке мощности; простота изготовления; удобство настройки; минимальное количество деталей для уменьшения стоимости; применение деталей, в сумме дающих уменьшение массы и габаритов, и др.

На протяжении многих десятилетий в качестве генератора высокочастотных колебаний применялась индуктивная трёхточка (генератор Хартли, генератор с автотрансформаторной обратной связью, схема на индуктивном делителе контурного напряжения). Это самовозбуждающаяся схема параллельного питания анода и частотно-избирательной цепью, выполненной на колебательном контуре. Она успешно использовалась и продолжает использоваться в лабораториях, ювелирных мастерских, на промышленных предприятиях, а также в любительской практике. К примеру, во время второй мировой войны на таких установках проводили поверхностную закалку катков танка Т-34.

Недостатки трёх точки:

Низкий кпд (менее 40 % при применении лампы).

Сильное отклонение частоты в момент нагрева заготовок из магнитных материалов выше точки Кюри (≈700С) (изменяется μ), что изменяет глубину скин-слоя и непредсказуемо изменяет режим термообработки. При термообработке ответственных деталей это может быть недопустимо. Также мощные твч-установки должны работать в узком диапазоне разрешённых Россвязьохранкультурой частот, поскольку при плохом экранировании являются фактически радиопередатчиками и могут оказывать помехи телерадиовещанию, береговым и спасательным службам.

При смене заготовок (например, более мелкой на более крупную) изменяется индуктивность системы индуктор-заготовка, что также приводит к изменению частоты и глубины скин-слоя.

При смене одновитковых индукторов на многовитковые, на более крупные или более малогабаритные частота также изменяется.

Под руководством Бабата, Лозинского и других учёных были разработаны двух- и трёхконтурные схемы генераторов, имеющих более высокий кпд (до 70 %), а также лучше удерживающие рабочую частоту. Принцип их действия состоит в следующем. За счёт применения связанных контуров и ослабления связи между ними, изменение индуктивности рабочего контура не влечёт сильного изменения частоты частотозадающего контура. По такому же принципу конструируются радиопередатчики.

Современные твч-генераторы — это инверторы на IGBT-сборках или мощных MOSFET-транзисторах, обычно выполненные по схеме мост или полумост. Работают на частотах до 500 кГц. Затворы транзисторов открываются с помощью микроконтроллерной системы управления. Система управления в зависимости от поставленной задачи позволяет автоматически удерживать

А) постоянную частоту
б) постоянную мощность, выделяемую в заготовке
в) максимально высокий КПД.

Например, при нагреве магнитного материала выше точки Кюри толщина скин-слоя резко увеличивается, плотность тока падает, и заготовка начинает греться хуже. Также пропадают магнитные свойства материала и прекращается процесс перемагничивания — заготовка начинает греться хуже, сопротивление нагрузки скачкообразно уменьшается — это может привести к «разносу» генератора и выходу его из строя. Система управления отслеживает переход через точку Кюри и автоматически повышает частоту при скачкообразном уменьшении нагрузки (либо уменьшает мощность).

Замечания.

Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности Cos(φ).

Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).

При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев до точки Кюри идет намного эффективнее.

При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка — дуги).

Имеются два случая резонанса в колебательных контурах: резонанс напряжений и резонанс токов.
Параллельный колебательный контур – резонанс токов.
В этом случае на катушке и на конденсаторе напряжение такое же, как у генератора. При резонансе, сопротивление контура между точками разветвления становится максимальным, а ток (I общ) через сопротивление нагрузки Rн будет минимальным (ток внутри контура I-1л и I-2с больше чем ток генератора).

В идеальном случае полное сопротивление контура равно бесконечности — схема не потребляет тока от источника. При изменение частоты генератора в любую сторону от резонансной частоты полное сопротивление контура уменьшается и линейный ток (I общ) возрастает.

Последовательный колебательный контур – резонанс напряжений.

Главной чертой последовательного резонансного контура является то, что его полное сопротивление минимально при резонансе. (ZL + ZC – минимум). При настройке частоты на величину, превышающую или лежащую ниже резонансной частоты, полное сопротивление возрастает.
Вывод:
В параллельном контуре при резонансе ток через выводы контура равен 0, а напряжение максимально.
В последовательном контуре наоборот — напряжение стремится к нулю, а ток максимален.

Статья взята с сайта http://dic.academic.ru/ и переработана в более понятный для читателя текст, компанией ООО «Проминдуктор».

2 Простые схемы индукционного нагревателя — плиты-плиты

В этом посте мы узнаем о двух простых в сборке схемах индукционного нагревателя, которые работают с принципами высокочастотной магнитной индукции для генерирования значительного количества тепла на небольшом заданном радиусе.

Обсуждаемые схемы индукционной плиты действительно просты и используют всего несколько активных и пассивных обычных компонентов для требуемых действий.


Обновление: Вы также можете узнать, как разработать свою собственную варочную панель индукционного нагревателя:
Проектирование цепи индукционного нагревателя — Учебное пособие


Принцип работы индукционного нагревателя

Индукционный нагреватель — это устройство, которое использует высокочастотное магнитное поле для нагрева железного груза или любого ферромагнитного металла посредством вихревого тока.

Во время этого процесса электроны внутри железа не могут двигаться со скоростью, равной частоте, и это приводит к возникновению в металле обратного тока, называемого вихревым током. Это развитие сильного вихревого тока в конечном итоге вызывает нагрев железа.

Вырабатываемое тепло пропорционально току 2 x сопротивлению металла. Поскольку предполагается, что металл нагрузки состоит из железа, мы рассматриваем сопротивление R металлического железа.

Нагрев = I 2 x R (Железо)

Удельное сопротивление железа составляет: 97 нОм · м

Вышеупомянутое тепло также прямо пропорционально наведенной частоте, поэтому обычные трансформаторы с штамповкой из железа не используются в В приложениях с высокочастотным переключением вместо сердечников используются ферритовые материалы.

Однако здесь вышеупомянутый недостаток используется для получения тепла от высокочастотной магнитной индукции.

Обращаясь к предлагаемым ниже схемам индукционного нагревателя, мы находим концепцию, использующую ZVS или технологию переключения нулевого напряжения для требуемого запуска полевых МОП-транзисторов.

Технология обеспечивает минимальный нагрев устройств, что делает работу очень эффективной и действенной.

Кроме того, цепь, являющаяся саморезонансной по своей природе, автоматически настраивается на резонансную частоту присоединенной катушки и конденсатора, вполне идентичных цепи с резервуаром.

Использование генератора Ройера

В схеме в основном используется генератор Ройера, который отличается простотой и саморезонансным принципом работы.

Функционирование схемы можно понять по следующим пунктам:

  1. При включении питания положительный ток начинает течь от двух половин рабочей катушки к стокам МОП-транзисторов.
  2. В то же время напряжение питания также достигает ворот МОП-транзисторов, включая их.
  3. Однако из-за того, что никакие два МОП-транзистора или какие-либо электронные устройства не могут иметь точно одинаковые характеристики проводимости, оба МОП-транзистора не включаются вместе, скорее, один из них включается первым.
  4. Давайте представим, что T1 включается первым. Когда это происходит, из-за сильного тока, протекающего через T1, его напряжение стока имеет тенденцию падать до нуля, что, в свою очередь, высасывает напряжение затвора другого МОП-транзистора T2 через присоединенный диод Шоттки.
  5. Здесь может показаться, что T1 может продолжать вести себя и уничтожать себя.
  6. Однако именно в этот момент включается контур резервуара L1C1, который играет решающую роль. Внезапное проведение T1 вызывает скачок и коллапс синусоидального импульса на стоке T2. Когда синусоидальный импульс схлопывается, он снижает напряжение затвора T1 и отключает его. Это приводит к повышению напряжения на стоке T1, что позволяет восстановить напряжение затвора для T2. Теперь настала очередь Т2 проводить, Т2 теперь проводит, вызывая повторение, подобное тому, которое имело место для Т1.
  7. Этот цикл теперь продолжается быстро, заставляя контур колебаться на резонансной частоте контура резервуара LC. Резонанс автоматически настраивается на оптимальную точку в зависимости от того, насколько хорошо совпадают значения LC.

Однако основным недостатком конструкции является то, что в ней используется центральная катушка с ответвлениями в качестве трансформатора, что немного усложняет реализацию обмотки. Однако центральный отвод обеспечивает эффективный двухтактный эффект через катушку всего за пару активных устройств, таких как МОП-транзисторы.

Как видно, через затвор / исток каждого МОП-транзистора подключены диоды с быстрым восстановлением или высокоскоростным переключением.

Эти диоды выполняют важную функцию разряда емкости затвора соответствующих МОП-транзисторов во время их непроводящих состояний, тем самым делая операцию переключения быстрой и быстрой.

Как работает ZVS

Как мы обсуждали ранее, эта схема индукционного нагревателя работает по технологии ZVS.

ZVS означает переключение при нулевом напряжении, то есть МОП-транзисторы в цепи включаются, когда на их стоках присутствует минимальная или величина тока, или нулевой ток, мы уже узнали это из объяснения выше.

Это фактически помогает МОП-транзисторам безопасно включаться, и, таким образом, эта функция становится очень полезной для устройств.

Эту функцию можно сравнить с проводимостью при переходе через нуль для симисторов в цепях переменного тока.

Из-за этого свойства МОП-транзисторы в таких саморезонансных цепях ZVS требуют гораздо меньших радиаторов и могут работать даже с массивными нагрузками до 1 кВА.

Поскольку частота контура является резонансной по своей природе, она напрямую зависит от индуктивности рабочей катушки L1 и конденсатора C1.

Частота может быть рассчитана по следующей формуле:

f = 1 / (2π * √ [ L * C] )

Где f — частота, рассчитанная в Hertz
L — индуктивность основной нагревательной катушки L1, представленная в Henries
, а C — емкость конденсатора C1 в фарадах

МОП-транзисторы

Вы можете использовать IRF540 в качестве МОП-транзисторов, которые рассчитаны на хорошие 110 В, 33 ампера.Для них можно использовать радиаторы, хотя выделяемое тепло не вызывает опасений, но все же лучше укрепить их на теплопоглощающих металлах. Однако можно использовать любые другие N-канальные МОП-транзисторы с соответствующим номиналом, для этого нет никаких особых ограничений.

Индуктор или катушки индуктивности, связанные с катушкой основного нагревателя (рабочей катушкой), представляют собой своего рода дроссель, который помогает исключить любое возможное попадание высокочастотной составляющей в источник питания, а также ограничивает ток до безопасных пределов.

Значение этого индуктора должно быть намного выше по сравнению с рабочей катушкой. Обычно для этой цели вполне достаточно 2 мГн. Однако он должен быть построен с использованием проводов большого сечения, чтобы обеспечить безопасное прохождение через него большого диапазона тока.

Контур резервуара

C1 и L1 составляют здесь контур резервуара для предполагаемой фиксации высокой резонансной частоты. Опять же, они тоже должны быть рассчитаны на то, чтобы выдерживать высокие значения тока и тепла.

Здесь мы видим использование металлизированных полипропиленовых конденсаторов 330 нФ / 400 В.

1) Мощный индукционный нагреватель с использованием концепции драйвера Mazzilli

Первая конструкция, описанная ниже, представляет собой высокоэффективную индукционную концепцию ZVS, основанную на популярной теории драйверов Мазилли.

Он использует одну рабочую катушку и две катушки ограничителя тока. Такая конфигурация исключает необходимость в центральном отводе от основной рабочей катушки, что делает систему чрезвычайно эффективной и обеспечивает быстрый нагрев нагрузки огромных размеров. Нагревательный змеевик нагревает нагрузку посредством двухтактного механизма полного моста.

Модуль фактически доступен в Интернете и может быть легко куплен по очень разумной цене.

Принципиальная схема этой конструкции представлена ​​ниже:

Исходную схему можно увидеть на следующем изображении:

Принцип работы аналогичен технологии ZVS с использованием двух полевых МОП-транзисторов высокой мощности. Вход питания может иметь диапазон от 5 В до 12 В и ток от 5 до 20 ампер в зависимости от используемой нагрузки.

Выходная мощность

Выходная мощность вышеупомянутой конструкции может достигать 1200 Вт при повышении входного напряжения до 48 В и тока до 25 ампер.

На этом уровне тепло, выделяемое рабочим змеевиком, может быть достаточно высоким, чтобы за минуту расплавить болт толщиной 1 см.

Размеры рабочей катушки

Видео-демонстрация

2) Индукционный нагреватель с использованием рабочей катушки с центральным отводом

Эта вторая концепция также является индукционным нагревателем ZVS, но для работы используется центральное разветвление катушка, которая может быть немного менее эффективной по сравнению с предыдущей конструкцией.L1, который является наиболее важным элементом всей схемы. Он должен быть построен с использованием очень толстых медных проводов, чтобы выдерживать высокие температуры во время индукционных операций.

Конденсатор, как описано выше, в идеале должен быть подключен как можно ближе к клеммам L1. Это важно для поддержания резонансной частоты на указанной частоте 200 кГц.

Характеристики первичной рабочей катушки

Для катушки индукционного нагревателя L1 можно намотать множество медных проводов диаметром 1 мм параллельно или бифилярно, чтобы более эффективно рассеивать ток, вызывая меньшее тепловыделение в катушке.

Даже после этого катушка может подвергнуться сильному нагреву и деформироваться из-за этого, поэтому можно попробовать альтернативный метод намотки.

В этом методе мы наматываем его в виде двух отдельных катушек, соединенных в центре для получения требуемого центрального отвода.

В этом методе можно попробовать использовать меньшие витки для уменьшения импеданса катушки и, в свою очередь, увеличения ее способности выдерживать ток.

Емкость для этой схемы, напротив, может быть увеличена, чтобы пропорционально понизить резонансную частоту.

Конденсаторы резервуара:

Всего 330 нФ x 6 можно использовать для получения чистой емкости приблизительно 2 мкФ.

Как прикрепить конденсатор к индукционной катушке

На следующем изображении показан точный метод подключения конденсаторов параллельно концевым выводам медной катушки, предпочтительно через печатную плату хорошего размера.

Список деталей для указанной выше цепи индукционного нагревателя или цепи индукционной нагревательной плиты

  • R1, R2 = 330 Ом 1/2 Вт
  • D1, D2 = FR107 или BA159
  • T1, T2 = IRF540
  • C1 = 10000 мкФ / 25 В
  • C2 = 2 мкФ / 400 В, получено путем параллельного подсоединения показанных ниже конденсаторов 6 nos 330 нФ / 400 В
  • D3 —- D6 = 25-амперные диоды
  • IC1 = 7812
  • L1 = латунная трубка 2 мм намотанный, как показано на следующих рисунках, диаметр может быть где-то около 30 мм (внутренний диаметр катушек)
  • L2 = 2 мГн дроссель, полученный путем наматывания 2-миллиметрового магнитного провода на любой подходящий ферритовый стержень
  • TR1 = 0-15 В / 20 ампер
  • ИСТОЧНИК ПИТАНИЯ: Используйте стабилизированный источник питания постоянного тока 15 В, 20 А.
Использование транзисторов BC547 вместо высокоскоростных диодов

На приведенной выше схеме индукционного нагревателя мы можем видеть затворы полевых МОП-транзисторов, состоящих из диодов с быстрым восстановлением, которые могут быть труднодоступными в некоторых частях страны.

Простая альтернатива этому может заключаться в транзисторах BC547, подключенных вместо диодов, как показано на следующей схеме.

Транзисторы будут выполнять ту же функцию, что и диоды, поскольку BC547 может хорошо работать на частотах около 1 МГц.

Еще одна простая конструкция «сделай сам»

На следующей схеме показана еще одна простая конструкция, аналогичная приведенной выше, которую можно быстро сконструировать дома для реализации индивидуальной системы индукционного нагрева.

Список деталей

  • R1, R4 = 1K 1/4 Вт MFR 1%
  • R2, R3 = 10K 1/4 Вт MFR 1%
  • D1, D2 = BA159 или FR107
  • Z1, Z2 = 12 В, Стабилитрон 1/2 Вт
  • Q1, Q2 = МОП-транзистор IRFZ44n на радиаторе
  • C1 = 0,33 мкФ / 400 В или 3 н.у.1 мкФ / 400 В параллельно
  • L1, L2, как показано на следующих изображениях:
  • L2 восстановлен от любого старого блока питания компьютера ATX.
Как построен L2

Преобразование в горячую плиту Кухонная утварь

Вышеупомянутые разделы помогли нам изучить простую схему индукционного нагревателя, использующую пружинную катушку, однако эту катушку нельзя использовать для приготовления пищи, и она требует некоторых серьезные модификации.

В следующем разделе статьи объясняется, как изложенную выше идею можно изменить и использовать в качестве простой небольшой индукционной цепи нагревателя посуды или индукционной цепи кадай.

Конструкция является низкотехнологичной, маломощной и может не соответствовать традиционным устройствам. Схема была запрошена г-ном Дипешом Гуптой

Технические характеристики

Сэр,

Я прочитал вашу статью Простая схема индукционного нагревателя — Схема горячей плиты и был очень рад обнаружить, что есть люди, готовые помочь таким молодым людям, как мы, в сделай что-нибудь ….

Сэр, я пытаюсь понять принцип работы и пытаюсь разработать для себя индукционный кадай… Сэр, пожалуйста, помогите мне разобраться в дизайне, так как я так хорош в электронике

Я хочу разработать индукцию для нагрева кадай диаметром 20 дюймов с частотой 10 кГц по очень низкой цене !!!

Я видел ваши схемы и статью, но немного запутался насчет

  • 1. Используемый трансформатор
  • 2. Как сделать L2
  • 3. И любые другие изменения в схеме для частоты 10-20 кГц при токе 25А

Пожалуйста, помогите мне, сэр, как можно скорее..Это будет полезно, если вы можете предоставить точную информацию о необходимых компонентах. PlzzИ, наконец, вы упомянули об использовании ИСТОЧНИКА ПИТАНИЯ: Используйте регулируемый источник питания постоянного тока 15 В, 20 А. Где это используется ….

Спасибо

Dipesh gupta

The Design

Предлагаемая конструкция индукционной кадайной цепи, представленная здесь, предназначена только для экспериментальных целей и может не служить как обычные устройства. Его можно использовать для быстрого приготовления чашки чая или омлета, и ничего большего ожидать не стоит.

Указанная схема изначально была разработана для нагрева таких предметов, как железный стержень, например, головки болта. отвертка металлическая и т. д., но с некоторыми модификациями эта же схема может применяться для нагрева металлических кастрюль или сосудов с выпуклым дном, например «кадай».

Для реализации вышеизложенного исходная схема не нуждалась бы в каких-либо изменениях, за исключением основной рабочей катушки, которую нужно будет немного подправить, чтобы сформировать плоскую спираль вместо пружинной конструкции.

В качестве примера, чтобы преобразовать конструкцию в индукционную посуду так, чтобы она поддерживала сосуды с выпуклым дном, такие как кадай, змеевик должен иметь сферически-спиральную форму, как показано на рисунке ниже:

Схема будет такой же, как объяснено в моем предыдущем разделе, который в основном основан на конструкции Ройера, как показано здесь:

Проектирование спиральной рабочей катушки

L1 изготавливается с помощью 5-6 витков 8-миллиметровой медной трубки в сферическую форму. -спиральная форма, как показано выше, для размещения небольшой стальной чаши посередине.

Катушка может быть также плоско сжата в спиральную форму, если небольшая стальная сковорода предназначена для использования в качестве посуды, как показано ниже:

Конструирование ограничителя тока Катушка

L2 может быть изготовлена ​​путем наматывания суперэмалированной пленки толщиной 3 мм. медный провод над толстым ферритовым стержнем, количество витков необходимо экспериментировать, пока на его выводах не будет достигнуто значение 2 мГн.

TR1 может быть трансформатором 20 В 30 ампер или источником питания SMPS.

Фактическая схема индукционного нагревателя довольно проста по своей конструкции и не требует особых пояснений, необходимо позаботиться о следующих вещах:

Резонансный конденсатор должен располагаться относительно ближе к основной рабочей катушке. L1 и должен быть получен путем подключения около 10 ноль 0.22 мкФ / 400 В параллельно. Конденсаторы должны быть строго неполярного и металлизированного полиэфирного типа.

Хотя конструкция может показаться довольно простой, нахождение центрального отвода внутри спирально намотанной конструкции может вызвать некоторую головную боль, поскольку спиральная катушка будет иметь несимметричную компоновку, что затруднит определение точного центрального отвода для схемы.

Это можно сделать методом проб и ошибок или с помощью LC-метра.

Неправильно расположенный центральный ответвитель может заставить схему работать ненормально или производить неравномерный нагрев МОП-транзисторов, или вся схема может просто не колебаться в худшей ситуации.

Ссылка: Википедия

Как разработать и произвести один

Вы новичок в цепи индукционного нагревателя? Или вы, наверное, слышали об этом, но не знаете, как это работает?

Тогда эта статья для вас, но мы должны быть с вами честны!

Спроектировать и создать цепь индукционного нагревателя может быть непросто, особенно если у вас нет достаточной информации и опыта. Он немного отличается от сильноточных печатных плат.

К счастью, мы создали эту статью, чтобы помочь вам разбить предмет на понятные части и раскрыть секреты схемы индукционного нагревателя — как ее спроектировать и создать.

Итак, приступим.

Что такое цепь индукционного нагревателя?

Электромагнитное индукционное нагревание

Схема индукционного нагревателя — это устройство, используемое для выработки тепла для проводящих материалов, таких как железо, в чисто бесконтактном процессе. Кроме того, вы можете использовать схему индукционного нагревателя для коммерческих и личных проектов.

Хотя, он идеально подходит для ваших проектов DIY. В коммерческих целях он подходит для пайки, термообработки, пайки и других процессов, связанных с нагревом.

Одна замечательная особенность цепи индукционного нагревателя:

Он генерирует тепло внутри электронного прибора без использования каких-либо внешних источников тепла или какой-либо формы контакта. Таким образом, вы можете быстро нагреть бытовую технику — без загрязнения.

Принцип работы цепи индукционного нагревателя

Схема, показывающая метод испытания на магнитную индукцию

Для работы индукционного нагревателя необходимо высокочастотное магнитное поле для быстрого нагрева проводящего материала посредством «вихревого тока».”

Вихревые токи — это обратные токи, возникающие при быстром изменении магнитного поля. Когда это магнитное поле попадает на проводящий объект, внутри проводника генерируются электрические токи, называемые вихревыми токами.

Вихретоковый контроль

Но это только основная часть. Вот сделка!

Принцип работы индукционного нагревателя заключается в том, насколько он неэффективен в качестве электрического трансформатора.

Как?

Чтобы электрический трансформатор вырабатывал электричество, сердечник должен быть совместим с наведенной частотой. Когда происходит обратное, скорость нагрева резко возрастает.

Итак, если трансформатору с железным сердечником для работы требуется низкочастотный диапазон около 50-100 Гц, сердечник станет более горячим, если вы увеличите эту частоту. Следовательно, увеличение частоты до более высокого уровня, например 100 кГц, приведет к сильному нагреву в железном сердечнике.

Электрический трансформатор, изменяющий напряжение и ток

То же самое относится к цепи индукционного нагревателя.Когда вы увеличиваете частоту, индукционная катушка получает тепло, что приводит к быстрой нагревательной нагрузке на железный сердечник (варочные панели или наконечник паяльной машины).

Схемы простых индукционных нагревателей

Здесь мы обсудим две простые конструкции индукционного нагревателя и материалы, необходимые для их создания.

1. Проектирование схемы индукционного нагревателя с использованием концепции драйвера Mazzilli

Первый дизайн демонстрирует очень эффективную индукционную концепцию ZVS на основе хорошо известной «теории драйверов Mazzilli».”

Итак, в конструкции используется одна рабочая катушка и две катушки ограничителя тока. Его конфигурация не требует центрального отвода от значительной рабочей катушки. Следовательно, система становится эффективной и быстро нагревает нагрузку. Опять же, рабочая катушка использует двухтактное действие полного моста для нагрева нагрузки.

Лучшая часть:

Данную модель легко приобрести по разумной цене. Например, вот схема цепи ниже:

Конструктор индукционного нагревателя Mazzilli Driver Concept

Источник: Викимедиа

Для работы этой конструкции необходимы два мощных полевых МОП-транзистора с входным напряжением от 5 до 12 В и током от 5 до 20 ампер (в зависимости от выбранной нагрузки).

Между тем, выходная мощность этой конструкции может достигать 1200 Вт — при увеличении входного напряжения примерно до 48 В и тока до 25 ампер. В этот момент тепло, которое вы получите, может расплавить болт толщиной 1 см всего за минуту.

Наконец, размеры вашей рабочей катушки должны быть 30 мм в длину, 19 мм (для внутреннего диаметра) и 22,5 мм (для внешнего диаметра). Катушки двойного ограничителя тока должны быть длиной 24 мм и диаметром 14 мм.

2. Индукционный нагреватель с рабочей катушкой с центральным отводом

Эта вторая конструкция также имеет концепцию ZVS, но она не так эффективна, как первая, из-за необходимости в рабочей катушке с центральным отводом.Таким образом, рабочая катушка здесь представляет собой центральную бифуркацию.

Самым значительным элементом этой конструкции является L1. Таким образом, вы должны построить его из очень толстых медных проводов, чтобы удерживать тепло во время индукции. Кроме того, убедитесь, что вы подключаете конденсатор близко к клеммам L1, чтобы поддерживать заданную резонансную частоту (200 кГц).

Вот схема этого дизайна:

Индукционный нагреватель с центральной катушкой

Источник: Викимедиа

Для L1 (катушки индукционного нагревателя) вы можете намотать медные провода диаметром 1 мм в бифилярную катушку или в виде двух отдельных катушек в качестве альтернативного метода.Также вы можете приобрести предыдущий дизайн в Интернете.

Вот детали, необходимые для этой конструкции:

  • 330 Ом 1/2 Вт для R1, R2
  • BA159 / FR107 для D1, D2
  • IRF540 для T1, T2
  • 10,000 мкФ / 25 В для C1
  • 2 мкФ / 400 В для C2
  • 25-амперные диоды для D3 — D6
  • 7812 для IC1
  • Латунная намотанная труба 2 мм диаметром около 30 мм для tL1
  • Дроссель 2 мГн из намотанного магнитопровода 2 мм на ферритовый стержень для L2
  • 0-15В / 2 А для TR1
  • Регулируемый 15 В, 20 А постоянного тока для блока питания

И это все, что вам нужно для этого дизайна.

Как сделать схему индукционного нагревателя своими руками

Вот шаги для создания индукционного нагревателя 30 кВА и необходимые компоненты:

Шаг 1. Получите необходимые компоненты

Чтобы построить эту схему, вам понадобится несколько компонентов. К счастью, вы можете получить большинство из них бесплатно, утилизируя старые ЭЛТ-телевизоры или другие электронные устройства.

Итак, вот список того, что вам нужно.

Стабилитроны

Ряд медных проводов

  • Резисторы Ом (220)

Готовые к установке резисторы

Ом

Пакет Mosfets

  • Конденсаторы (10x /.047 мкФ)

Тороидальные индукторы

Свинцовые герметичные батареи

Шаг 2: Необходимые инструменты

Далее вам нужно получить инструменты, необходимые для этого DIY-проекта; необходимые вам инструменты:

  • Кусачки
  • Мультиметр
  • Паяльник

Шаг 3: Транзисторы и охлаждение

Силовой транзистор

Здесь мы используем концепцию ZVS (переключение при нулевом напряжении), поэтому транзисторы не должны сильно нагреваться. Итак, если вы хотите проработать эту схему более минуты, вам необходимо установить транзисторы на одном радиаторе.

Убедитесь, что ваши полевые транзисторы имеют необходимую изоляцию, проверив их с помощью мультиметра. Кроме того, убедитесь, что вы изолировали металлические задние поверхности полевых транзисторов от радиатора, чтобы избежать повреждений. Следовательно, вы получите преемственность, если они не изолированы.

Шаг 4: Банк конденсаторов

Конденсаторы на плате

Создайте медное кольцо и добавьте 10.Конденсаторы 047 мкФ, чтобы увеличить емкость вашей конденсаторной батареи до 0,47 мкФ и обеспечить достаточно места для охлаждения.

Почему? Потому что конденсатор всегда будет очень горячим из-за протекающего через них постоянного тока. Для правильной работы схемы конденсаторы должны быть емкостью 0,47 мкФ.

Поэтому разместите конденсаторы параллельно рабочей катушке.

Шаг 5: Изготовление рабочей катушки

Магнитная катушка

Этот шаг является важной частью схемы. Итак, здесь рабочая катушка генерирует магнитное поле для работы цепи индукционного нагревателя. Следовательно, для изготовления этой катушки вам понадобится медный провод. Для его создания девять раз оберните медную проволоку вокруг трубы из ПВХ.

Шаг 6. Построение схемы

Сначала скрутите диоды с резистором 10 кОм и припаяйте их между затвором и базой полевого МОП-транзистора. Затем припаяйте полевые МОП-транзисторы к перфорированной плате и используйте нижнюю часть для соединения двух быстрых диодов между желобом и воротами вашего полевого транзистора.

После этого подключите провод VCC вашего источника питания к затворам транзистора через два резистора (220 Ом). Опять же, припаяйте батарею конденсаторов и рабочую катушку параллельно друг другу и присоедините каждый конец к разному стоку.

Наконец, пропустите немного энергии через каждый сток MOSFET с индукторами (2x50uH). Вы также можете использовать тороидальные сердечники с десятью витками для индуктивности. И ваша схема готова к работе.

Таким образом, вы можете использовать кусок дерева в качестве основы для поддержки всех компонентов вашего индукционного нагревателя.

Заключительные слова

Вот и все: все, что вам нужно знать о схемах индукционного нагревателя и о том, как их создать.

Мы создали эту статью, чтобы помочь вам понять принципы и секреты схем индукционного нагревателя. Итак, с информацией, представленной здесь, вы можете легко интегрировать ее в свой проект.

Если вам нужна помощь по этой теме, не стесняйтесь обращаться к нам.

DIY Индукционный нагреватель мощностью 5 кВт | Homebrew Talk

2 года назад я построил систему индукционного нагревателя мощностью 5 кВт для Thing1 (ссылка в моей подписке).С тех пор я приготовил на нем десяток безотказных партий.

Я считаю, что индукционный нагрев идеален для пивоварения. Он быстро нагревается. Нагревается мягко, не пригорает сусло или затор. Нет проникновения в чайник, который он нагревает. Тихо. Не выделяет дымовых газов. У вас никогда не заканчивается топливо. Недорого в эксплуатации. Очень легко чистить.

Прямой нагрев заторного чана с помощью индукции намного проще и эффективнее, чем нагрев с помощью RIMS или HERMS.И есть небольшая вероятность ожога, в отличие от обычного электрического нагревательного элемента, такого как Grainfather или пропанового тепла.

После приготовления 12 порций дно моего чайника выглядит как новое, и для очистки никогда не требовалось ничего, кроме тряпки. Все мое пиво получилось превосходным.

Несколько человек просили инструкций по сборке обогревателя. Я воздержался, потому что беспокоился о безопасности, сложности, надежности и т. Д. После 2 лет использования я чувствую себя комфортно, рассказывая о том, что я сделал.

ВНИМАНИЕ: этот проект связан с электричеством высокого напряжения. Вы несете ответственность за свою безопасность. НЕ ПРОДОЛЖАЙТЕ ДАННЫЙ ПРОЕКТ, ЕСЛИ ВЫ НЕ УВАЖАЕТЕСЬ БЕЗОПАСНО РАБОТАТЬ С ВЫСОКОВОЛЬТНЫМ ЭЛЕКТРИЧЕСКИМ ТОКОМ. Не воспринимайте все, что я сделал, как Евангелие. Мои идеи и реализация могут иметь недостатки, которых я не обнаружил. ДЕЙСТВУЙТЕ НА СВОЙ СОБСТВЕННЫЙ РИСК. Я НЕ НЕСУ НИКАКОЙ ОТВЕТСТВЕННОСТИ ЗА ВСЕ, ЧТО ВЫ ДЕЛАЕТЕ. Если у вас нет навыков и знаний, чтобы самостоятельно безопасно построить эту систему, вы обязаны найти КТО-ТО ЕЩЕ, чтобы помочь вам.

ВНИМАНИЕ: я не собираюсь подробно объяснять все детали об индукционном нагреве или о том, как построить индукционный нагреватель мощностью 5 кВт. Я предоставлю общие детали, а теорию и реализацию оставлю на усмотрение разработчиков. На HomebrewTalk.com много умных людей. В совокупности я уверен, что вы, ребята, сможете это понять.

ПРЕДУПРЕЖДЕНИЕ: Всегда используйте это устройство от источника питания GFCI. Даже при тестировании и сборке. БЕЗ ИСКЛЮЧЕНИЙ !

Эта система индукционного нагрева немного привередлива / сложна в изготовлении.Но если подумать, становится ясно. Это может показаться устрашающим, но на самом деле это довольно просто, если обратить внимание на детали. По сути, весь проект заключается в установке платы индукционного драйвера и намотке для нее катушки.

Есть 2 основных компонента для создания индукционного нагревателя мощностью 5 кВт — драйвер индукционной катушки и сама катушка.

Driver Board

Это драйвер индукционной катушки, который я использовал.

Покупки с умом, жизнь лучше! Алиэкспресс.com

www.aliexpress.com
Предупреждение: существует еще одна плата драйвера индукционного нагревателя с меньшим радиатором, которая, как заявлено, выдает 5 кВт, но на самом деле выдает 3,5 кВт.

Плата с драйверами, которую я использовал, доступна на нескольких веб-сайтах. На некоторых из этих веб-сайтов могут быть лучшие цены или варианты доставки.

ПРИМЕЧАНИЕ: имеется ряд коммерчески доступных модулей индукционных драйверов с выходной мощностью выше и ниже 5 кВт. Принципы, содержащиеся в этой сборке, должны быть применимы к большинству других индукционных систем.Это второй индукционный нагреватель, который я построил. Первый выход 3кВт.

Этот приводной блок был разработан для нагрева плавильной камеры машины для экструзии пластмасс. При этом, если вы понимаете принципы индукционного нагрева, применение платы драйвера не имеет значения. Вы можете использовать одну и ту же плату драйвера для самых разных нагревательных приложений.

У меня есть контактный адрес электронной почты специалиста по продажам и технической поддержке этой платы с драйверами. Послепродажная поддержка ужасна.Не ждите послепродажной поддержки. Устройство не поставляется с какой-либо документацией.

Вот характеристики агрегата: (скопировано с сайта)

================================ ============================

Электромагнитный обогреватель мощностью 5,0 кВт, ручной

Во-первых, основные технические параметры обогревателя 5,0 кВт:

1: Размер: 219 * 160 * 160 (длина * ширина * высота)

2: Рабочее напряжение: 220 В

3: Мощность (регулируемая): 3500 Вт-5000 Вт

4: Индуктивность нагрузки: 65 ± 5 мкГн

5: Эффективность преобразования> 90%

6: Рабочая частота: 20-25 кГц

7: Рабочая температура: от -10 градусов до +50 градусов

8: Рабочий режим: непрерывный нагрев

9: Волновая защита — + 1500 В

10 : Помехи, препятствующие возникновению помех: 4000 В

11: Установочное расстояние индукционной катушки до нагревательного элемента составляет 17 мм (толщина эпоксидной плиты добавляется после прижатия изоляционного хлопка)

12: Намотано несколько комплектов катушек вокруг того же нагревательного элемента, и расстояние между катушками больше 2 см.

13: Ток 19-21A, 8-10 квадратных линий, около 9-11 метров, изоляционная вата 15-20 мм, индуктивность — только один параметр, (ток отлажен)

Необходимо использовать зажим введите амперметр для измерения входного тока и того, достигает ли он номинального входного тока. Если это невозможно, отрегулируйте его против часовой стрелки с помощью потенциометра. Обратите внимание, что если текущее отображаемое значение становится меньше, его нельзя изменить. Возможно, индуктивность слишком велика. Следовательно, необходимо уменьшить индуктивность.(Индуктивность уменьшается, то есть количество витков катушки уменьшается, входящий ток большой, а количество витков катушки увеличивается.)

Во-вторых, инструкции по подключению

1. Три индикатора световые индикаторы: «Power Light», «Work Light» и «Fault Light». Индикатор питания и рабочий свет горят во время нормальной работы. Индикатор неисправности не горит. Индикатор неисправности мигает, когда в цепи возникает неисправность.

2. Источник питания 220 В подключается к столбцу «подключено к 220 В переменного тока» и доступен без пожарной линии.

3. Катушка подсоединяется к двум клеммам на концах электромагнитной катушки, и винты должны быть затянуты.

4. Плата настроена на заводе для подачи питания и может работать. В это время есть линия короткого замыкания (черная) в гнезде «переключателя управления» для короткого замыкания гнезда. Вы также можете аккуратно удалить провод короткого замыкания (черный) на розетке «переключателя управления», вставить один конец двухжильного кабеля в разъем «переключателя управления» и подключить два других штекера к термостату.К испытательной машине можно подключить два нормально разомкнутых контакта.

1. Провод мягкого переключателя, кабель питания и провод электромагнитной катушки нельзя соединять друг с другом или иметь какое-либо соединение с внешним корпусом.

2. Не подвергайте воздействию электричества и не лейте воду в воду после включения.

3, примечание: радиатор, вентилятор заземлять нельзя!

================================================== ================

Несколько замечаний по поводу платы драйвера:

1) Мой блок не тушит и не потребляет 5кВт.Я не совсем уверен, почему, но я подозреваю, что горшок, который я использую (Bayou Classic 1044), лишь незначительно подходит для этого приложения, то есть дно слишком тонкое, чтобы обладать достаточным магнитным сопротивлением, чтобы позволить устройству выдавать полную мощность. Моя кастрюля также находится дальше от индукционной катушки (3/8 дюйма), чем это оптимально. Было бы лучше, чем ближе.

Моя установка будет потреблять от 16 до 18 ампер при 240 В переменного тока, в зависимости от того, насколько теплое сусло. Я подозреваю, что это обеспечил бы полную мощность (20А) на лучшем потенциометре. FWIW, коэффициент мощности на моем устройстве близок к единице.

Я не настраивал потенциометр на своем устройстве. С тех пор, как я купил доску, инструкции были улучшены! Если дно кастрюли является достаточно магнитным (т. е. достаточно толстым), не должно быть причин, по которым драйвер не подает мощность.

Несмотря на то, что мощность немного меньше 5 кВт, я очень, очень доволен этой системой отопления.

2) На моей плате «переключатель управления» не работает надежно. Предположительно существует 2 способа управления выходом драйвера — 1) путем включения и выключения подачи питания на него и 2) путем подключения или отключения двух контактов «управления переключателем», когда плата драйвера находится под напряжением.

Мне не удалось заставить метод № 2 работать надежно. Я пробовал использовать ручной переключатель между контактами, реле, SCR и т. Д. Он включает и выключает плату пару раз, а затем плата остается выключенной и не включается. Таким образом, я управляю своей платой, оставляя перемычку на порту «управления переключателем» и включая и выключая подачу питания.

Я подозреваю, что метод «управления переключением» имеет максимальное время выключения, прежде чем он больше не включится, но я предполагаю и не получил никакой официальной документации, подтверждающей это.

Обратите внимание на задержку в несколько секунд между включением подачи питания на устройство и подачей питания на катушку.

3) Радиатор на этой плате драйвера электрически ГОРЯЧ во время работы. Он заряжается до высокого постоянного напряжения. Он должен быть электрически изолирован от всех других напряжений, включая землю.

Мой радиатор открыт под Thing1. Thing1 защищен 20A GFCI, который срабатывает при любом контакте с радиатором. Вы можете полностью закрыть радиатор или, по крайней мере, поставить вокруг него клетку.Я случайно прикоснулся к радиатору, и мой GFCI сразу отключается. Возникающий в результате удар ощущается как прикосновение к влажной 9-вольтовой батарее. ВАШ ПРОБЕГ МОЖЕТ РАЗЛИЧАТЬСЯ. ПРОЙТИ СОГЛАСНО.

Я не думаю, что вентилятор радиатора когда-либо включался на моей плате.

Моя плата не поставлялась с вентилятором для охлаждения самой печатной платы. Если вы посмотрите на мою реализацию, вы заметите несколько маленьких вентиляторов с одной стороны. Эти вентиляторы предназначены для втягивания воздуха через полость между печатной платой и катушкой. Во время работы змеевик будет выделять тепло.

4) Моя плата драйвера не излучает значительных электромагнитных помех (EMI), когда полностью заключена в Thing1. Я могу слушать AM-радио во время работы с Thing1. Я не могу этого сделать с большинством беговых дорожек.

Катушка

Плата индукционного драйвера предназначена для управления катушкой, намотанной вокруг круглой стальной камеры на машине для литья пластмасс.

Существует ряд готовых индукционных катушек с предварительно намотанной поверхностью, которые можно приобрести у различных продавцов. Однако я не нашел ни одного, подходящего для моих пивоваренных нужд по следующим причинам:

1) Неподходящая индуктивность
2) Неподходящий размер (диаметр)
3) Неподходящая мощность

Из-за этого мне пришлось наматывать собственную катушку .

Выбранный индукционный драйвер требует катушки 65 +/- 5 мкГн с определенной площадью поперечного сечения, чтобы справляться с резонансными токами, генерируемыми при возбуждении платы. Площадь поперечного сечения не указана в спецификациях на веб-сайте, но указана в другом месте. Мне нужно найти эту спецификацию.

Индукционная катушка также должна состоять из множества отдельных небольших изолированных проводников, намотанных в один провод. Это сделано для того, чтобы в самой катушке не возникали вихревые токи.

Небольшие изолированные проводники обычно представляют собой эмалированные магнитные провода. У меня катушка намотана от 17? Магнитный провод диаметром 20 мм. Меньший калибр означает меньший нагрев катушки вихревыми токами. Чем больше проводников (больше площадь проводников), тем меньше резистивный нагрев в катушке. Если вы используете слишком большие проводники или недостаточно проводов, нагревательная спираль сильно нагреется. Изменить: мне нужно проверить свои записи о количестве проводников.

Настроенный резонансный контур на этой плате драйвера, по-видимому, имеет высокую добротность и, следовательно, будет управлять нагрузкой только с узким диапазоном индуктивности, то есть 65 +/- 5 мкГн.

Индуктивность нагрузки включает не только саму катушку, но и взаимную индуктивность, возникающую, когда горшок находится на вершине катушки.

Чтобы определить длину (количество витков) катушки, вы должны сделать длину проводника катушки, а затем намотать ее на длину и измерить общую индуктивность нагрузки, поместив катушку на дно чайника, как он будет в окончательной заявке. Не наматывайте саму катушку так, чтобы она имела индуктивность 65 +/- 5 мкГн, потому что индуктивность нагрузки выйдет за пределы допустимого диапазона, когда на нее будет помещен горшок.

Не забудьте поместить катушку на дно чайника при измерении индуктивности!

Чтобы определить индуктивность катушки и нагрузки, я купил цифровой измеритель индуктивности Victor 6243.

XI’AN BEICHENG ELECTRONICS CO., LTD.

www.victor-multimeter.com


Вы, вероятно, можете использовать любой измеритель индуктивности, но я выбрал 6243, потому что обнаружил, что это прибор, который производитель платы драйвера использовал для измерения своих катушек. 6243 измеряет индуктивность на частоте 200 Гц. Хотя это намного ниже, чем 20-25 кГц, которые используются на плате, похоже, для этого приложения он работает нормально.

Обратите внимание, что индуктивность может несколько изменяться в зависимости от частоты, поэтому катушка может правильно измерять на частоте 200 Гц, но отключаться на частоте 20 кГц. Однако у меня не было этой проблемы. Индуктивность нагрузки (катушка плюс чайник) составляет 65 мкГн, и плата, похоже, не имеет проблем с ее управлением.

Сначала я намотал около 48 футов катушки. В конце концов, я считаю, что моя катушка была длиной около 32 футов.Я думаю, что моя катушка имеет индуктивность около 55 мкГн. Я думаю, что мой горшок добавляет к магнитной цепи около 10 мкГн взаимной индуктивности.

Вот калькулятор индуктивности плоской катушки:

www.tesla-institute.com
Думаю, этот калькулятор по приблизительной оценке индуктивности катушки.

Подсказка: провод катушки почти не имеет индуктивности, если проводить его по прямой линии. Таким образом, вы можете немного намотать, затем натянуть провод катушки и измерить индуктивность, чтобы увидеть, где вы находитесь.Затем добавьте или удалите какой-нибудь провод из катушки и т. Д., Пока не получите нужную индуктивность.

Моя катушка мощностью 5 кВт имеет диаметр 12 дюймов. Это распределит тепло по широкой поверхности дна кастрюли. Большинство промышленных индукционных горелок имеют гораздо меньший диаметр катушки. Это концентрирует тепло на меньшей площади кастрюли и может вызвать коробление.

Кастрюля Bayou Classic 1044, которую я использую, вмещает 11 галлонов и имеет диаметр чуть более 13 дюймов.

Плата индукционного драйвера является самозащитой.Он определяет индукцию нагрузки при каждом включении. Если индуктивность нагрузки неправильная, загорится желтый светодиод, и на катушку не будет подаваться питание.

Индукционная катушка должна быть электрически и, возможно, термически изолирована от варочного котла. Теоретически эмалевое покрытие на магнитном проводе изолирует катушку, но вы никогда не захотите полагаться на это, поскольку это покрытие хрупкое по сравнению с обычной изоляцией проводов. Со временем, трением и нагреванием, он может испортиться, и поэтому индукционная катушка должна быть электрически изолирована.

Я установил свою катушку на нижнюю сторону куска фанеры для наружных работ толщиной 3/8 дюйма. Вы также можете использовать стекло. Я попытался использовать пластик для разделочной доски, и он не выдержал высокой температуры кастрюли, веса

Я изолировал свою катушку от фанеры куском тефлонового противня. Не уверен, что это было необходимо, но я все равно сделал это.

Моя катушка прикреплена к нижней стороне фанеры с помощью кусок диэлектрической плиты из стекловолокна, который обычно используется в высоковольтных шкафах, трансформаторах и двигателях.Он прочный, не проводящий электричество и хорошо выдерживает тепло. Другие материалы могут работать, я их не тестировал.

Проводники катушки необходимо удерживать прочно, иначе они будут вибрировать друг о друга и задевать изоляцию, вызывая короткое замыкание между проводниками. Несколько коротких замыканий — это нормально, но многие — нет.

Вы должны вырезать вентиляционные отверстия во всем, что вы используете, чтобы удерживать змеевик на месте.

Выводы от платы драйвера к катушке должны быть как можно короче.И они должны быть изолированы, чтобы они не закорачивались относительно рамы, корпуса или самой платы драйвера.

Вблизи платы драйвера или нагревательной катушки не должно быть ферромагнитных материалов, иначе они будут нагреваться! Корпус индукционной платы на Thing1 выполнен из алюминия. Подставка из нержавеющей стали. Крепеж — нержавеющая сталь. Вы заметите, что все крепления на плате драйвера выполнены из латуни.

220 В 2100 Вт мини индукционный нагреватель машина воздух вода двойное охлаждение DIY De Sale

Способы доставки

Общее примерное время, необходимое для получения вашего заказа, показано ниже:

  • Вы размещаете заказ
  • (время обработки)
  • Отправляем Ваш заказ
  • (время доставки)
  • Доставка!

Общее расчетное время доставки

Общее время доставки рассчитывается с момента размещения заказа до момента его доставки вам. Общее время доставки делится на время обработки и время доставки.

Время обработки: Время, необходимое для подготовки вашего товара (ов) к отправке с нашего склада. Это включает в себя подготовку ваших товаров, выполнение проверки качества и упаковку для отправки.

Время доставки: Время, в течение которого ваш товар (-ы) дойдет с нашего склада до пункта назначения.

Рекомендуемые способы доставки для вашей страны / региона показаны ниже:

Отправить по адресу: Корабль из

Этот склад не может быть доставлен к вам.

Способ доставки Срок доставки Информация для отслеживания

Примечание:

(1) Вышеупомянутое время доставки относится к расчетному времени в рабочих днях, которое займет отгрузка после отправки заказа.

(2) Рабочие дни не включают субботу / воскресенье и праздничные дни.

(3) Эти оценки основаны на нормальных обстоятельствах и не являются гарантией сроков доставки.

(4) Мы не несем ответственности за сбои или задержки в доставке в результате любых форс-мажорных обстоятельств, таких как стихийное бедствие, плохая погода, война, таможенные проблемы и любые другие события, находящиеся вне нашего прямого контроля.

(5) Ускоренная доставка не может быть использована для почтовых ящиков

Расчетные налоги: Может взиматься налог на товары и услуги (GST).

Способы оплаты

Мы поддерживаем следующие способы оплаты.Нажмите, чтобы получить дополнительную информацию, если вы не знаете, как платить.

* В настоящее время мы предлагаем оплату наложенным платежом для Саудовской Аравии, Объединенных Арабских Эмиратов, Кувейта, Омана, Бахрейна, Катара, Таиланда, Сингапура, Малайзии, Филиппин, Индонезии, Вьетнама, Индии. Мы отправим вам код подтверждения на ваш мобильный телефон, чтобы проверить правильность ваших контактных данных. Убедитесь, что вы следуете всем инструкциям, содержащимся в сообщении.

* Оплата в рассрочку (кредитная карта) или Boleto Bancário доступна только для заказов с адресами доставки в Бразилии.

U.S. Solid 15 кВт высокочастотный индукционный нагреватель 30-80 кГц, 220 В или 110 В

Описание продукта

Когда дело доходит до индукционного нагрева, высокочастотный индукционный нагреватель USS-HFIH00001 является одним из лучших. В нем используются новейшие силовые блоки MOSFET и IGBT, а также новейшие методы и методы управления частотой, а также обеспечивается высокая эффективность, низкое энергопотребление и очень высокая выходная мощность.Благодаря этому он обеспечивает эффективный и быстрый нагрев любой целевой области и очень полезен при нагревании металлов.

Он рассчитан на 100% нагрузку, что означает, что он может работать 24 часа без остановки. На случай возникновения проблем имеется инфракрасный датчик температуры, который предупреждает оператора о перегреве машины, а также упрощает контроль температуры и упрощает ручное управление.

Технические характеристики

Модель USS-HFIH00001
Входное напряжение Однофазный; 220 В или 110 В
Макс.Выходная мощность 15 кВт
Выходная мощность 7 кВт
Макс. Температура нагрева 1200 ° С
Колебательная частота 30-80 кГц
Колебательный ток нагрева 200-600 А
Ток теплоизоляции 200-600 А
Время охлаждения 1-99 с (Авто)
Время термической изоляции 1-99 с (Авто)
Время нагрева 1-99 с (Авто)
Расход охлаждающей воды 7. 5 л / мин, 0,06 — 0,12 МПа
Подъем охлаждающей воды ≥ 30 м
Температура воды. Точка защиты 40 ° С
Вес нетто 25 кг
Размер 550 x 220 x 470 мм


1. Нагревательный змеевик диаметром 30 мм и медная трубка M6 длиной 1,5 м будут включены бесплатно. Если вы хотите заказать дополнительные нагревательные змеевики или другие размеры, свяжитесь с нами по электронной почте service @ ussolid.com с вашим номером заказа и информацией о катушке, которая вам нужна.
2. Данную машину нельзя использовать с вилкой. Для прямого подключения машины к источнику питания потребуется провод (площадь поперечного сечения линии электропередачи должна быть больше 6 квадратных миллиметров).

Приложения
1. Работает с золотом, серебром, алюминием и т. Д. Весом от 0,5 до 2 кг;
2. Размер тигля, который можно использовать, составляет от 60 * 80 мм до 100 * 125 мм (обычно 75 * 90 мм).

Упаковочный лист
1 индукционный нагреватель
1 стандартный нагревательный змеевик (диаметр 30 мм, 3 витка)
1 ножная педаль
1 руководство на английском языке
1 медная трубка M6 1,5 м (подарок)

Пользовательское поле

категория продуктов google Бизнес и промышленность> Производство

эффективных конструкций индукционного нагрева — Технические статьи

Сковорода, разрезанная пополам, стоит на варочной поверхности с яйцом, аккуратно разбитым в ее центре.Половина на сковороде имеет идеально приготовленную, блестящую белизну, а оставшаяся половина — прозрачная и сырая. Это мощный имидж, который со всей очевидностью демонстрирует, насколько эффективнее индукционные плиты по сравнению с альтернативными технологиями приготовления пищи. Сообщение: индукционный нагрев направляет энергию туда, где она необходима.

Полупроводниковая промышленность отреагировала на спрос на приборы для индукционного нагрева путем постоянной настройки и улучшения технологии переключения, необходимой для ее оптимального внедрения.Таким образом, индукционная технология обычно используется в рисоварках, вспенивателях молока и плитах.

Использование индукционного нагрева в системах отопления

Принципы обычного трансформатора составляют основу приложений индукционного нагрева. Однако, в то время как трансформатор индуцирует ток во вторичной катушке от первичной катушки, индукционный нагреватель использует первичную катушку для индукции тока в самой посуде для приготовления пищи. Это гарантирует, что результирующий эффект нагрева будет сконцентрирован именно там, где это необходимо.Именно вихревые токи индуцируются в материале посуды для приготовления пищи, что приводит к тепловому эффекту, известному как джоулев нагрев. Высокое сопротивление обеспечивают сосуды, изготовленные из магнитных материалов, таких как нержавеющая сталь и железо, в то время как немагнитные материалы, такие как алюминий и медь, обеспечивают меньшее сопротивление.

Из-за используемых высоких частот ток в первичной катушке протекает в основном по поверхности проводника, что называется скин-эффектом. В змеевиках индукционного нагрева используется медная проволока особого типа, известная как литц-проволока, которая состоит из множества тонких отдельных жил.Это приводит к увеличению площади поверхности катушки, тем самым уменьшая сопротивление переменному току.

Выбор топологии и их функции

Существует несколько подходов к выбору топологии, но из-за ценового давления на многих рынках, на которые ориентированы эти приложения, наиболее распространенным выбором является схема одностороннего параллельного резонанса (SEPR) (рис. 1). Эта топология программного переключения использует резонансную сеть резервуаров, состоящую из конденсатора Cr и литц-катушки Lr. БТИЗ, работающий в условиях переключения при нулевом напряжении (ZVS), вместе с параллельным диодом завершают конструкцию. Вместо того, чтобы реализовывать дискретный подход, диод обычно интегрируется в IGBT, причем характеристики диода оптимизируются в соответствии с потребностями схемы этого типа. Частоты переключения 20–30 кГц гарантируют, что любой шум выходит за пределы слышимого диапазона, что делает эту схему подходящей для магнитной посуды. Более высокие частоты также могут использоваться как часть функции плавного пуска.

Рисунок 1: Несимметричный параллельный резонансный контур (SEPR) обычно используется для цепей с резонансным напряжением.

Работа цепи резонанса напряжения разбита на четыре периода времени (рисунок 3) и применима для случая, когда процесс запуска был завершен (т.е. Cr полностью заряжен):

  1. T1 — Цикл начинается с включения Q1, позволяя току течь от Cm через Lr и Q1 и вызывая линейное увеличение протекающего тока до тех пор, пока он не достигнет желаемого уровня. В это время напряжение на Cr ограничено до напряжения на Cm.

  2. T2 — Следующий Q1 отключается, в результате чего Lr и Cr входят в резонанс. Достигнутое пиковое резонансное напряжение увеличивается пропорционально времени включения T1.

  3. T3 — Резонансный ток изменяет направление, в результате чего напряжение выше Cr снижается.

  4. T4 — Теперь полярность напряжения на Cr меняется на обратную.Когда оно превышает напряжение на Cm, ток начинает течь через диод, возвращая полярность и напряжение Cr к значению Cm.

Рис. 2: Четыре фазы работы в конструкции с резонансным напряжением SEPR.

Номинал IGBT будет зависеть от пика напряжения, который видит Q1, который для источников питания 100 В переменного тока потребует номинального значения VCES от 900 до 1200 В или от 1350 до 1800 В для источников питания 220 В переменного тока.

По мере увеличения требований к мощности обычно используется подход полумостового токового резонанса с использованием двух IGBT со встроенными диодами (рисунок 3). Такие конструкции могут также поддерживать использование «полностью из металла», где частота переключения от 80 до 100 кГц может даже поддерживать использование немагнитных посуды для приготовления пищи. Резонансный контур выполнен в виде последовательной конструкции LC или LCR.

Рисунок 3: Полумостовая схема индукционного нагревателя с токо-резонансным последовательным соединением LC.

Работа этой схемы также может быть описана в четыре этапа (рисунок 4) после завершения процесса запуска следующим образом:

  1. T1 — Верхний переключатель Q1 включен, в результате чего ток течет от конденсатора Cm в цепь резонансного тока Cr-Lr.

  2. T2 — Переключатель Q1 выключается, оставляя Cr заряжаться из-за тока, протекающего от Lr через диод нижнего переключателя.

  3. T3 — Переключатель Q2 включен, позволяя резонансному току течь от Cr через Q2 в Lr. В этот момент VCE Q2 ограничивается прямым напряжением параллельного (или интегрированного) диода, тем самым активируя ZVS.

  4. T4 — Переключатель Q2 выключен, позволяя свободно протекать току от Lr через Cr, диод параллельно Q1 и Cm. В этот момент VCE Q1 аналогичным образом ограничивается прямым напряжением параллельного (или интегрированного) диода, обеспечивая ZVS для следующей фазы, T1.

Рис. 4. Четыре фазы работы полумостовой токово-резонансной конструкции.

В результате пиковое напряжение ограничивается суммой пикового входного напряжения переменного тока, что позволяет устанавливать IGBT с VCES от 600 до 650 В для входов 220 В переменного тока. Более высокие токи не позволяют использовать эту конструкцию с входами 100 В переменного тока.

Выбор подходящих IBGT для использования в устройствах индукционного нагрева

Очевидно, что правильное понимание напряжений, генерируемых на VCES, является критическим фактором при выборе IGBT. Напряжение управления затвором, VGES, также требует проверки. Обычно он работает при 18 В, чтобы уменьшить потери мощности в IGBT. Однако колебания в электросети на многих рынках, иногда до 20%, означают, что проектировщикам необходимо убедиться, что в таблице данных указан достаточный запас для этих параметров. Тепловые параметры, такие как Rth (j-c), дают представление о требуемой концепции охлаждения, в то время как следует проводить испытания на электромагнитную совместимость (ЭМС), особенно на отключение при более низких частотах испытаний.

Другим важным аспектом для рассмотрения является рейтинг IC (sat), параметр, который важен во время токов короткого замыкания, которые протекают для заряда Cr при начальном включении питания до тех пор, пока его напряжение не будет соответствовать напряжению на Cm. Наконец, следует проверить максимально допустимый ток коллектора VCE в зоне безопасной эксплуатации с прямым смещением (FBSOA) для различных значений длительности импульса.

Punch-through (PT) IGBT — предпочтительное устройство в таких приложениях, поддерживая более высокие частоты переключения, чем не-PT-типы в прошлом. Последние достижения позволили уменьшить толщину слоя коллектора P для создания структур, известных как IGBT с ограничителем поля (FS). Это позволяет создать слой N, чтобы включить корпусный диод с обратной проводимостью (RC), ведущий к RC-IGBT. Благодаря уменьшенному хвостовому току они хорошо подходят для схем софт-коммутации. Последний RC-IGBT от Toshiba, GT20N135SRA, представляет собой устройство нового поколения с поддержкой 20 А при 100 ° C и 1350 В. Он идеально подходит для устройств индукционного нагрева с питанием 220 В переменного тока для приборов средней мощности мощностью 2200 Вт.

По сравнению с устройствами предыдущего поколения, ток короткого замыкания IC (sat) ограничен примерно 150 А при 100 ° C. Во время фазы запуска схемы, когда Cr заряжается, это помогает снизить ток насыщения коллектора и подавить колебания напряжения (рисунок 5). Более широкий FBSOA также означает, что могут протекать более высокие токи, но это должно быть сбалансировано с учетом того, что некоторые потери преобразуются в тепло. GT20N135SRA имеет максимальное значение Rth (j-c) 0,48 ° C / Вт, поэтому, если предположить, что IGBT должен рассеивать 35 Вт в реализации устройства, температура корпуса будет примерно на 6 ° C ниже, чем у устройств предыдущего поколения (GT40RR21 — 0.65 ° C / Вт).

Рисунок 5: Насыщение коллектора короткого замыкания, когда Cr не заряжен, значительно улучшено в GT20N135SRA (справа) по сравнению с IGBT предыдущего поколения (слева) и приводит к уменьшению колебаний (красный кружок)

Улучшенный слой N также привел к снижению прямого напряжения VF на 0,5 В по сравнению с устройствами предыдущего поколения. При заданном типичном значении 1,75 В при 25 ° C это снижает потери и повышает эффективность.Операция выключения IGBT может затруднить соответствие стандарту CISPR, требуя резистора в тракте затвора для низкой скорости переключения. Однако это приводит к увеличению потерь. В том же настольном приложении с GT20N135SRA теперь достигается запас примерно на 10 дБ на частоте 30 МГц без такого резистора, что обеспечивает лучший компромисс между излучаемыми излучениями и рассеиваемой мощностью (рис. 6).

Рис. 6. Улучшенное отключение приводит к увеличению запаса по CISPR на 10 дБ на 30 МГц для того же устройства.

Сводка

Хотя индукционные нагревательные приборы обеспечивают большую эффективность и лучший контроль по сравнению со многими альтернативными технологиями, ответственность за их реализацию ложится на инженера-проектировщика. В ответ на это полупроводниковая промышленность представила коммутационные устройства IGBT, которые на протяжении нескольких поколений продолжали улучшать характеристики, критически важные для оптимальной производительности, от рассеивания тепла и ЭМС до характеристик напряжения и тока и улучшенных обратнопроводящих корпусных диодов.

GT20N135SRA, последнее поколение RC-IGBT от Toshiba, упрощает вывод на рынок продуктов, которые проходят испытания на излучение, а также являются более эффективными. Будучи оптимизированными для приложений с резонансным током 220 В переменного тока, будущие продукты будут расширяться для удовлетворения более высоких потребностей в токе для больших кухонных сосудов и более высоких напряжений, возникающих в приборах на 100 В переменного тока.

Эта статья изначально была опубликована в журнале Bodo’s Power Systems.

Цепи индукционного нагрева

Торговля в Китае, покупка в Китае напрямую на заводах по производству контуров индукционного нагрева на Alibaba.com

Горячая продажа мощная электрическая индукционная сковорода из нержавеющей стали ВВЕДЕНИЕ: НАЗВАНИЕ Электрическая индукционная сковорода МОДЕЛЬ HW-PL05X-01 / PL08X-01 НАПРЯЖЕНИЕ 220 В / 50 Гц 380 В / 50 Гц МОЩНОСТЬ 5 кВт / 8 кВт РАЗМЕР (мм) 600 * 500 * 500 мм СТИЛЬ Таблица Top КОРПУСНЫЙ МАТЕРИАЛ Нержавеющая сталь ТЕХНОЛОГИЯ Полумост и полумост Технология 5 Основные преимущества Технология Цифровое ядро ​​машины 1.32-битное ядро ​​машины DSP, высокоскоростная работа; 2. Точный контроль температуры, эффект бидонов; 3. Способность к помехам и стабильная работа 4. Интеллектуальное обнаружение и защита 30 видов 5. Более длительный срок службы 1. Экономическая эффективность: нагрев с электромагнитным принципом, нагрев быстрее, термический КПД до 90% и повышение скорости тарелок; 2. Энергосбережение: нет теплопроводности и тепла, энергосбережение более 50%, чем у обычного газового / масляного фокуса, экономия денег = зарабатывание денег 3. защита окружающей среды: без пламени, без пыли, галогенный световой выхлоп, сверхнизкий шумовой дизайн (ниже 45 дБ), оптимизированная кухонная обстановка; 4.Безопасность: защита безопасности, такая как водонепроницаемость, предотвращение дыма, предотвращение утечки, защита от сухого нагрева, более безопасная, экономия электроэнергии 5.Интеллектуальный дизайн: регулировка циркуляции огневой мощи с девятью шестернями, балансировка выходной мощности, циркулирующая охлаждающая структура, 6. красивый внешний вид: Сталь Seiko из нержавеющей стали дотошная гуманизированная конструкция, высококачественная прочная, легкая в очистке, 7. Долговечность: 201 прочная полоса из нержавеющей стали, отбортовывающая отбортовку, штамповочный котел; 8. передовые технологии: ведущая технология немецкого модуля Infeneon IGBT, дизайн двойного экрана с защитой от излучения; 9. Автоматическая функция воды: больше шоу человеческого интеллекта; 10. Удобное управление: открытие ручки (или ручного переключателя). Выходную мощность можно гибко регулировать; 11.Advance: передовая система управления микрокомпьютером, не имеет защиты от перегрева и обнаружения горшка, автоматическое обнаружение неисправностей; Энергосберегающая функция защиты таблицы контрастности Более 30 защитных устройств !!! ТАК КАК: 1. защита от пониженного напряжения, 2. автоматическая защита от снятия кастрюли, 3. защита от сбоя датчика, 4. защита от перегрева IGBT, 5. защита от перегрева.Защита от сухого возгорания, цифровое ядро ​​6.SQD, 7. молниезащита и т. Д.

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.