Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Схема подключения светодиодного светильника к сети: Подключение светодиодного светильника

Содержание

Подключение светодиодного светильника

Для бытового применения выпускают светодиодные лампы с рабочим напряжением в 220 и 12 вольт. Решение о том, как подключать светильники, не зависит от выбранной модели. На прокладку провода будет влиять способ подачи питания и количество приборов в сети. В этой статье вы найдете описание конкретных схем для подключения. Хотя все операции и можно выполнить самостоятельно, лучше обратиться за помощью к специалистам.

В этой статье:

Подключение светильников на 220В

Главное преимущество таких светильников перед моделями, работающими от 12 вольт, заключается в том, что питание подается напрямую от выключателя. В результате затрачивается меньше средств и усилий на монтаж ламп. В настоящее время существуют три способа подключить светильник:

  • последовательный;
  • параллельный;
  • лучевой.

Подключение точечных светильников к сети 220В без трансформатора

Каждый имеет свои достоинства и недостатки, применяется в разных ситуациях. Обсудим схемы более подробно.

Последовательный

Если возникает необходимость экономии провода, а к помещению нет особых требований, тогда последовательное подключение подойдет лучше других. Тут потребуется небольшое количество двойных или тройных проводов. При этом разрешается ставить в одну цепь не больше шести ламп, иначе яркость всех устройств будет низкой. А также если один из светильников выйдет из строя, подача питания прекратится, и придется проверять каждое устройство отдельно, чтобы найти дефект.

Сам процесс подключения прост: от выключателя прокладывается фаза к первому светильнику, далее от него подается провод к следующему и так до тех пор, пока не будет произведено подсоединение в одну цепь всех устройств. К последнему прокладывается ноль, идущий от распределительной коробки. Если перепутать провода местами и вместо питания пустить ноль, то лампы будут всегда оставаться под напряжением, что небезопасно.

Схема последовательного подключения светодиодных светильников

Все современные светильники выпускаются с расчетом на подключение провода «земля». Если в вашем случае в квартире есть заземление, тогда придется протягивать кабель напрямую от розетки к каждой лампе.

Для экономии средств, реализуя последовательную схему, применяют провод, так как в кабеле вторая жила будет просто обрываться и никак не использоваться.

Параллельный

Подключение светильников параллельным способом более практично и применяется чаще, чем последовательное. При реализации этого метода все источники света будут выдавать яркость, заявленную производителем. Единственным недостатком можно считать повышенный расход проводника по отношению к предыдущему варианту.

Рекомендуется применять кабель ВВГ нг 2х1,5 или 3х1,5. Эта маркировка означает, что два или три провода сечением 1,5 мм и кабель в целом имеют ПВХ-оболочку. Отметка «нг» в маркировке свидетельствует о том, что кабель негорючий. В некоторых случаях применяют кабель с дополнительной маркировкой «Is», означающей отсутствие сильного выделения дыма при воспламенении.

Параллельное соединение источников света шлейфным способом

Большинство пожаров возникает из-за некачественной проводки, поэтому на ней не стоит экономить, особенно если дом деревянный.

Для подключения от распределительной коробки через выключатель тянут кабель, который по очереди соединяется к каждому светильнику. После первой лампы провод обрезается и подается к следующей, пока не закончатся все устройства. Такая схема гарантирует работоспособность цепи даже в том случае, если одна из ламп перегорит.

В помещениях, разделенных на несколько функциональных зон, устанавливают две группы светильников. Обычно их подключают к двухклавишному выключателю. Так появляется возможность управлять включением света, давая его там, где планируется активность. В таком случае придется прокладывать кабель отдельно от каждой клавиши на определенную группу ламп. В целом принцип такой схемы ничем не отличается от описания в абзаце выше.

Лучевой

Лучевая схема по своей природе относится к параллельному методу подключения и часто встречается в люстрах. Он подразумевает прокладку питания к каждому светильнику индивидуально. Такой вариант более затратный, так как требует наибольшего количества провода. Чтобы сэкономить, прокладывают кабель в центр комнаты, откуда до каждого светильника будет равное расстояние. Далее к нулю и фазе подключаются одножильные провода, которые тянутся к осветительным приборам.

Важно решить, как будут соединены жилы кабеля с отдельным проводом. Если ламп немного, то можно довольствоваться обычно скруткой.

Важно ее надежно обжать пассатижами и сварить воедино. В таком случае соединение выходит неразъемным и требует много времени для реализации. Для более безопасного варианта понадобится приобрести клеммы с нужным количеством выходов. На каждую жилу одевается разъем, и уже от него тянут провода к лампам.

Шлейфное и лучевое соединение ламп

При желании в цепь можно подключить диммеры — устройства, позволяющие управлять яркостью светильников.

Особенности подключения ламп на 12В

Так как для работы некоторых разновидностей точечных светильников требуется напряжение в 12 вольт, к сети подключают понижающий трансформатор. Кроме того, в домашней сети находится переменный ток, а для светодиодов нужен постоянный. Если есть навык и опыт, преобразовать электричество можно самостоятельно, использовав диодный мост, резистор и емкость. Все же рекомендуется выбирать заводские устройства, так как они более надежны, безопасны и имеют гарантийный срок.

Перед тем как купить трансформатор, рассчитывают максимально разрешенные величины тока. Этот показатель зависит от количества подключаемых светильников. Общая мощность устройств должна быть на 20% ниже, чем у блока питания. Так, если планируете устанавливать 6 ламп по 20 Вт, тогда потребуется трансформатор с мощностью в 150 Вт (6 шт. * 20 Вт * 1,2 = 144 Вт). Все характеристики устройств указаны на их упаковках и в описании.

Подключение светодиодных ламп на 12В

При выборе трансформатора учитывайте место его установки. Так, для ванной комнаты лучше отдать предпочтение моделям, защищенным от проникновения влаги.

Схема подключения низковольтных светодиодных светильников мало чем отличается от описанных в предыдущих разделах. В цепь после распределительной коробки устанавливается трансформатор, и уже дальше протягивают кабель. Чтобы при монтаже не ударило током, не забудьте отключить подачу питания.

Все описанные схемы просты в реализации, а чтобы избавиться от лишних трат и головной боли, покупайте светильники, работающие от напряжения в 220 вольт. Если не уверены в собственных силах или недостаточно инструмента для выполнения работ, обращайтесь к профессионалам. Качественный монтаж гарантирует долгий срок службы светильников и безопасность работы электропроводки.

параллельное, последовательное соединение, последовательность работ

После того как составили план расположения точечных светильников на потолке, в подсветке шкафа, приходится задуматься об их электрическом подключении. Как подключить точечные светильники, по каким схемам, какими проводами и кабелями — обо всем этом дальше. 

Содержание статьи

Последовательное соединение

Подключить точечные светильники можно последовательно, хотя это — не лучший выход. Несмотря на то, что этот тип соединения требует минимального количества проводов, в быту он практически не используется. Все потому что имеет два существенных недостатка:

  1. Лампы светятся не в полную силу, так как на них подается пониженное напряжение. Насколько пониженное — зависит от количества подключенных лампочек. Например, подключено к 220 В три лампы — делить надо на 3. Это значит, что на каждый светильник приходит по 73 В. Если подключено 5 ламп, делим на 5 и т.д.

    Принцип последовательного соединения

  2. Если перегорает одна лампочка — не работают все. Найти причину неисправности можно только последовательно меняя лампочки во всей цепочке.

Именно по этим причинам такой тип подключения применяется исключительно в елочных гирляндах, где собрано большое количество маломощных источников света. Можно, конечно, первый недостаток использовать: подключить последовательно к сети 220 В лампочки на 12 В в количестве 18 или 19 штук. В сумме они дадут 220 В (при 18 штуках 216 В, при 19 — 228 В). В этом случае не понадобиться трансформатор и это плюс. Но при перегорании одной из них (или даже ухудшении контакта), искать причину придется долго. И это большой минус, который сводит на нет все положительные моменты.

Схема последовательного соединения лампочек (точечных светильников)

Если вы решили подключить точечные светильники последовательно, сделать это просто: фаза обходит все светильники один за другим, ноль подается на второй контакт последней лампочки в цепи.

Если говорить о фактической реализации, то фаза от распределительной коробки подается на выключатель, оттуда — на первый точечный светильник, со второго его контакта — на следующий…. и так до конца цепочки. Ко второму контакту последнего светильника подключается нулевой провод (нейтраль).

Схема последовательного подключения точечных светильников через одноклавишный выключатель

У этой схемы есть одно практическое применение — в подъездах домов. Можно параллельно подключить две лампочки накаливания к обычной сети 220 В. Они будут светиться в пол накала, но перегорать будут крайне редко.

Параллельное соединение

В большинстве случаев используется параллельная схема подключения точечных светильников (ламп). Даже несмотря на то что требуется большое количество проводов. Зато напряжение на все осветительные приборы подается одинаковое, при перегорании не работает одна, все остальные — в работе. Соответственно, никаких проблем с поиском места поломки.

Схема параллельного подключения точечных светильников

Как подключить точечные светильники параллельно

Есть два способа параллельного соединения:

  • Лучевой. На каждый осветительный прибор идет отдельный кабель (двух или трехжильный — зависит от того, есть у вас заземление или нет).
  • Шлейфное. Пришедшая от выключателя фаза и нейтраль со щитка заходят на первый светильник. От этого светильника идет кусок кабеля на второй, и так далее. В результате к каждому светильнику, кроме последнего, оказывается подключенным по четыре куска кабеля.

    Способы реализации параллельного подключения

Лучевая

Лучевая схема подключения более надежна — если проблемы случаются, то не горит только эта лампочка. Есть два минуса. Первый — большой расход кабеля. С ним можно смириться, так как делается проводка один раз и надолго, а надежность такой реализации высокая. Второй минус — в одной точке сходится большое количество проводов. Качественное их соединение — непростая задача, но решаемая.

Соединить большое количество проводов можно при помощи обычной клеммной колодки. В этом случае с одной стороны подается фаза, при помощи перемычек она разводится на нужное число контактов. С противоположной стороны подключаются провода, идущие к лампочкам.

Способы соединения проводов при лучевом исполнении

Практически так же можно использовать клеммники Ваго на соответствующее число контактов. Выбрать надо модель для параллельного соединения. Лучше — чтобы они были заполнены пастой, предотвращающей окисление. Этот способ хорош — легок в исполнении (зачистить провода, вставить в гнезда и все), но очень много низкокачественных подделок, а оригиналы стоят дорого (и то не факт, что вам продадут оригинал). Потому многие предпочитают пользоваться обычной клеммной колодкой. Кстати, есть они нескольких видов, но более надежными считаются карболитовые с защитным экраном (на рисунке выше они черного цвета).

И последний приемлемый способ — скрутка всех проводников с последующей сваркой (пайка тут не пойдет, так как проводов слишком много, обеспечить надежный контакт очень сложно). Минус в том, что соединение получается неразъемным. В случае чего, придется удалять сваренную часть, потому нужен «стратегический» запас проводов.

Подробнее о способах соединения электрических проводов читаем тут.

Пример исполнения лучевого подключения точечных светильников

Чтобы уменьшить расход кабеля при лучевом способе соединения, от выключателя до середины потолка тянут линию, там ее закрепляют, и от нее разводят провода к каждому светильнику. Если надо сделать две группы, ставят двухклавишный (двухпозиционный) выключатель, от каждой клавиши тянут отдельную линию, потом расключают светильники по выбранной схеме.

Шлейфное соединение

Шлейфное соединение применяют тогда, когда светильников очень много и тянуть к каждому отдельную магистраль очень уж накладно. Проблема при таком способе реализации в том, что при проблеме соединения в одном месте, все остальные тоже оказываются неработоспособны. Зато локализация повреждения проста: после нормально работающего светильника.

Фактическая реализация параллельного соединения шлейфным способом

В этом случае также можно разделить светильники на две или больше группы. В этом случае понадобиться выключатель с соответствующим количеством клавиш. Схема подключения в этом случае выглядит не очень сложно — добавиться еще одна ветка.

Как подключить точечные светильники к двойному выключателю

Собственно, схема справедлива для обоих способов реализации параллельного подключения. При необходимости можно сделать и три группы. Такие — трехпозиционные — выключатели тоже есть. Если же нужны четыре группы — придется ставить два двухпозиционных.

Подключение встроенных потолочных светильников со светодиодными лампами на 12 в

Точечные светильники могут работать и от пониженного напряжения 12 В. В них тогда ставят светодиодные лампочки. Подключатся они по параллельной схеме, питание подается с трансформатора (преобразователя напряжения). Его ставят после выключателя, с его выходов подают напряжение на светильники.

Схема подсоединения точечных светильников на 12 В через общий трансформатор

В этом случае мощность трансформатора находят как суммарная мощность подключенной к нему нагрузки, с запасом в 20-30%. Например, установить надо 8 точек освещения по 6 ватт (это мощность светодиодных лампочек). Общая нагрузка — 48 Вт, запас берем 30% (для того чтобы транс не работал на пределе возможностей и служил дольше). Получается надо искать преобразователь напряжения мощностью не ниже 62,4 Вт.

Если хочется источники света разбить на несколько групп, нужны будут несколько трансформаторов — по одному на каждую группу. Также нужен будет многопозиционный выключатель (или несколько обычных).

Подключение светильников на 12 В через двойной выключатель

Обе эти схемы имеют один недостаток — при выходе из строя адаптера не работает группа лам или даже все. При желании можно подключить точечные светильники  на 12 вольт так, чтобы повысить надежность их работы. Для этого к каждому источнику света устанавливают свой трансформатор.

Подключение точечных светильников на 12 В с персональным трансформатором

С точки зрения эксплуатации практически идеальная схема подключения светильников на 12 вольт — с трансформатором на каждый элемент освещения.

Схема подключения точечных светильников на 12 В с персональным трансформатором

В этом случае параллельно подключаются трансформаторы, а к их выходам — сами светильники. Такой способ получается более затратный. Но при выходе из строя трансформатора не горит только одна лампа и никаких проблем с выявлением участка повреждения.

Выбор сечения проводов

При подаче низкого напряжения ток на светильники идет большой и потери по длине будут значительные. Потому для подключения точечных светильников на 12 В важно выбрать правильное сечение кабеля. Проще всего это сделать по таблице, ориентируясь на длину кабеля, прокладываемого к каждому светильнику и потребляемый ток.

Таблица для определения сечения кабеля при подключении точечных светильников на 12 В

Ток можно высчитать: разделить мощность на напряжение. Например, подключаем четыре точечных светильника со светодиодными лампами по 7 Вт. Напряжение — 12 В. Суммарная мощность — 4*7 = 28 Вт. Ток — 28 Вт/12 В = 2,3 А. В таблице берем ближайшее большее значение силы тока. В данном случае это 4 А. При длине линии до 8,5 метров можно брать медный кабель сечением 0,75 мм2. Такое малое сечение получается исключительно из-за малой мощности светодиодных ламп. При использовании экономок, галогенок или ламп накаливания, сечение будет намного больше, так как токи значительно возрастают.

Этот способ расчета сечения кабеля подходит для шлейфного типа параллельного соединения с одним трансформатором. При лучевом те же самые действия приходится производить для каждого светильника.

 Особенности монтажа

Монтируют точечные светильники обычно в подвесные или натяжные потоки. Еще вариант — подсветка шкафов. В любом случае, согласно ПУЭ, прокладка получается скрытой, и рекомендовано использовать кабель в негорючей оболочке. Наиболее популярный вариант — подключить точечные светильники кабелем ВВГнг. По желанию можно выбрать еще более безопасную его версию — ВВГнг Ls, которая во время пожара выделяет мало дыма.

Использование кабелей или проводов, не содержащих в маркировке буквы НГ — только на ваш страх и риск. Так как при работе освещения выделяется тепло, что может привести к возгоранию.

Если точечные светильники монтируются в подвесной потолок, кабель можно уложить в поперечные профили, к которым гипсокартон не крепится. В продольные его класть не стоит, так как высок шанс повредить саморезом изоляцию при монтаже гипсокартонных листов. Еще один вариант — крепить кабели на профили сбоку, притягивая их пластиковыми стяжками.

Укладывать кабель для подключения точечных светильников можно в поперечные профили, которые находятся повыше

В таком случае сначала собирают каркас, затем растягивают провода, оставляя концы в 20-30 см для удобства монтажа. При использовании светильников на 12 В трансформаторы располагают в непосредственной близости от одного из отверстий. При повреждении или необходимости обслуживания к нему можно добраться вытащив светильник.

Если планируется натяжной потолок, кабели крепят  в первую очередь, непосредственно к потолку. В этом случае их часто укладывают в гофрошланг — для повышения пожарной безопасности. Использовать можно любой подходящий крепеж для кабеля — стяжки, дюбель-стяжки, клипсы подходящего размера, проволочные лотки и др.

Как подключить точечные светильники: схемы, порядок работ

Точечные светильники могут работать от напряжения 220 В или 12 В. Вне зависимости от напряжения, подключаться они параллельно (в шлейф или отдельными проводами) или последовательно (гирлянда). Разница в том, что питание для споты на 12 В подается через понижающий трансформатор. Он преобразует сетевые 220 вольт в нужные 12. Подробнее о том, как подключить точечные светильники к одно- и двух- клавишным выключателям поговорим подробнее.

Содержание статьи

Схемы подключения на 220 В

Некоторые точечные светильники работают от 12 В. Для подачи им питания необходимо устанавливать преобразователь (говорят еще трансформатор или драйвер). С развитием технологии появились споты которые могут работать от 220 В. Такая схема хоть немного, но проще, потому в последнее время чаще подключить точечные светильники требуется к сети напрямую, без преобразователей.

Использование встраиваемых светильников позволяет получить равномерное освещение. Кроме того, можно выбрать красивое размещение точечных светильников на потолке

Последовательное подключение

Эта схема проста в реализации, для нее требуется мало проводов, но последовательно подключить точечные светильники можно лишь в относительно небольшом количестве — пять-шесть штук. Главный минус такого способа — светиться лампы будут не в полную силу. Еще один недостаток: при выходе из строя одной лампы (перегорании) перестают работать все лампы, так как разрывается цепь. Для восстановления работоспособности приходится проверять каждую.

Схема последовательного включения точечных светильников

Схема очень проста — фаза последовательно обходит все светильники, а к выходу последнего подается ноль. Схема с распределительной коробкой и выключателем расположена ниже.

Разводка электропроводки при последовательном подключении спотов

При работе будьте внимательны: на выключатель должна идти фаза, которая дальше идет на светильники. Ноль (нейтраль) — прямиком подается на последний в цепочке светильник. Это важно для правильной работы схемы а также для безопасности.

Если у вас проводка трехжильная — кроме нуля и фазы есть еще защитный провод «земля», его берут напрямую с «земляной» колодки и подают на каждый из светильников к соответствующей клемме. Можно «землю» взять в близлежащей розетке или на выключателе.

Схема последовательного подключения точечных светильников к двухклавишному (двойному) выключателю

Практическая реализация этой схемы удобнее не с кабелем а с проводами — ведь один провод постоянно разрывается обходя все светильники, а нулевой идет целым куском от распредкоробки до последнего осветительного прибора. Но еще раз повторимся — такой тип подключения почти не используется.

Схемы параллельного подключения

При параллельном подключении все лампы будут светить с нормальной интенсивностью, потому эта схема более популярна даже несмотря на то, что требуется большее количество проводников. Для подключения любого количества встроенных светильников (даже со светодиодными лампами) используют негорючий кабель ВВГ нг 2*1,5 или 3*1,5  (трехжильный провод используют если проводка с заземлением). Возможно использование кабель ВВГ нг ls (негорючий с пониженным выделением дыма при горении) но это уже по желанию. Он может быть круглым или плоским = это не важно, но негорючим — обязательно, особенно если перекрытие у вас деревянное.

Способы

Реализовываться параллельное подключение может двумя способами:

Шлейфное подключение

Рассмотрим схемы. На рисунке внизу показано как вести провод при шлейфном способе разводки. Из распредкоробки выходит кабель, он заходит на первый светильник, к выходу этого светильника подключается другой кусок кабеля, который тянется к следующему светильнику. Так подключаются все светильники.

Как подключить точечные светильники параллельно

Физически это выглядит так, как на фото внизу. Несколько отрезков кабеля соединяют светильники один за другим.

Так выглядит если делать это на подвесном или натяжном потолке

Если вы хотите осветительные приборы разделить на две группы, их подключают к двухклавишному выключателю. Схема становится несколько сложнее, но только тем, что увеличивается количество проводов.

С выключателем на две клавиши

Пример реализации можно увидеть в видео. Можно использовать другие клеммы, но сам способ показан неплохо.

 

Лучевое

При лучевом подключении на каждый осветительный прибор идет свой кусок кабеля. Способ затратный по расходу кабеля, но более надежный в плане работы: при поломке не горит только одна точка освещения. В этом случае имеет смысл дотянуть кабель от распределительной коробки по потолку до середины комнаты, там его закрепить. От этой точки начинать тянуть кабели к каждому встраиваемому светильнику.

Обратите внимание на рисунок справа. На нем показано, что от фазного провода расходятся провода к лампам и отдельно от нулевого. Так как проводов в одном месте сходится много надо выбрать надежный способ. Если провода одножильные и ламп не очень много, можно сделать скрутку, но ее потом надо будет хорошо обжать пассатижами, а потом сварить. Не самый простой способ и соединение получается неразъемным. Но надежный. Второй способ проще: на каждом проводнике кабеля установить разъем с нужным количеством входов и подключать провода к ним. Можно использовать клемники Wago на соответствующее количество подсоединяемых проводов. Они надежны, легко устанавливаются, но стоят прилично (подделки лучше не брать).

Параллельное подключение — кабелем к каждому светильнику

Еще вариант — обычные клеммные колодки с винтовым соединением. Они дешевые и вполне надежные, но придется с той стороны, где подключать надо будет кабель, поставить перемычки на все задействованные клеммы. Так на все провода будет подаваться напряжение.

Так можно использовать винтовые клеммные колодки

Несмотря на высокую надежность способ используется редко — расходы велики, да и качественно соединить большое количество проводов в одной точке проблематично.

Подключение точечных светильников на 12 В

Схемы точно такие же, но кабель с выключателя заводится на преобразователь, а с выхода преобразователя идет уже на лампы.

С трансформатором на 12 В

Если точечных светильников много, их предпочитают подключить к двум клавишам. В этом случае потребуются два трансформатора (блока питания, переходника).  Схема выглядит не намного сложнее — есть две ветки. При желании можно найти выключатели и на три клавиши, а можно поставить рядом несколько. Но, если вам надо изменять освещенность в широких пределах, лучше поставить диммер.

Схема подключения точечных светильников к двуклавишному выключателю

Как вы поняли, схемы отличаются только наличием или отсутствием трансформатора. Так что и остальные схемы реализовать будет несложно.

Выбор мощности преобразователя/трансформатора

Чтобы освещение работало нормально, необходимо чтобы мощность драйвера была на 15-20% больше, чем все подключенные к нему потребители. Например, нужно подобрать понижающий трансформатор для подключения 8 точечных светильников, в которые будут установлены лампы накаливания по 40 Вт. Суммарная мощность всех ламп будет 320 Вт. Трансформатор потребуется на на 380-400 Вт.

С преобразователем на каждой ветке

Понятно, что чем больше источников света будете подключать, тем более мощный преобразователь потребуется. Но с увеличением мощности растет цена и размеры устройства. Кроме того, мощные трансформаторы найти бывает сложно. Е еще: большую и тяжелую коробку спрятать бывает сложно. Потому в таком случае большую группу ламп делят, и к каждой ставят свой преобразователь, но меньшей мощности (как подключить точечные светильники в этом случае, можно увидеть на схеме выше).

 

 

Особенности монтажа

Чтобы правильно подключить точечные светильники надо не только грамотно выбрать схему. Надо соблюсти определенную последовательность действий, которая зависит от типа потолка.

Надо всего лишь подключить несколько точечных светильников — и вы имеете красивый интерьер

В натяжные потолки

Точечные светильники обычно устанавливают с подвесными или натяжными потолками. Если потолки натяжные, все провода укладывают заранее. Их крепят к потолку, не подключая к питанию, размещают и закрепляют на подвесах светильники, затем подключают к ним провода и проверяют работу.

Подготовлено к установке натяжных потолков

Перед монтажом натяжных потолков питание отключают, вынимают лампы и снимают части, которые могут пострадать от температуры. После установки натяжных потолков в материале прорезают отверстия (светильники видны или их можно нащупать), устанавливают уплотнительные кольца, после чего собирают светильники.

В потолки из гипсокартона

Если потолок сделан из гипсокатрона, можно действовать по той же схеме, но монтировать светильники надо после того, как потолок будет зашпаклеван. То есть, развести проводку, оставить свободно свисающие концы проводки. Чтобы не возникли проблемы с определением мест расположения осветительных приборов, необходимо нарисовать подробный план с указанием точных расстояний от стен и друг от друга. По этому плану делают разметку и дрелью с коронкой соответствующего размера вырезают отверстия. Так как небольшие подвижки — в несколько сантиметров — могут быть, нарезая кабель оставляйте запас в 15-20 см. Этого будет вполне достаточно (но не забудьте, что провода крепятся к основному потолку и они должны на 7-10 см выходить за уровень гипсокартона. Если концы окажутся слишком длинными, их всегда можно укоротить, а вот нарастить — большая проблема.

Если необходима установка преобразователя

Есть второй способ подключить точечные светильники на гипсокартонный потолок. Он используется если источников света немного — четыре-шесть штук. Весь монтаж точечных светильников вместе с проводкой делают после того как завершили работу с потолком. До начала монтажа за уровень потолка заводят кабель/кабели от распределительной коробки. После окончания работ по шпаклевке и шлифовке делают разметку, сверлят отверстия. Через них прокидывают кабель, выводя концы наружу. После монтируют сами светильники.

Все несложно, но этот способ нельзя назвать правильным: кабели просто лежат на гипсокартоне, что точно не соответствует противопожарным нормам. На это еще можно закрыть глаза, если перекрытие бетонное, кабель взят негорючий, сечение провода не маленькое, соединение проводов сделано правильно.

Последовательность работ в фото формате

Если же перекрытия деревянные, по ПУЭ требуется прокладка в негорючих цельнометаллических лотках (кабель каналах) или металлических трубах. Смонтировать такую проводку можно только до начала работ с потолком. Нарушать правила монтажа очень нежелательно — дерево, электричество, выделение тепла при работе… не самое безопасное сочетание.

 

Как подключить светильник через выключатель

При обустройстве домашней электросети или самостоятельном ремонте электрики необходимо разобраться с подключением светильника через выключатель, порядок которого зависит от самых различных факторов. В этом случае должен учитываться не только тип коммутатора, но и класс подключаемого к бытовой системе осветительного прибора. Для понимания особенностей этих электротехнических процедур следует разобраться с тем, как правильно подключить прибор в каждом конкретном случае. При этом возможны следующие варианты:

  • Использование одноклавишного прибора.
  • Вариант подключения к двухклавишному выключателю.
  • То же самое, но только касающееся другой разновидности прибора (на три клавиши, например).
  • Подача питания на светильник от любой розетки, имеющейся в комнате, реализуемая путем прокладки от нее отдельной линии.

Но также важно ознакомиться со способами подключения к одному выключателю сразу нескольких лампочек, а также с вариантами, когда к ним подсоединяются светодиодные или точечные светильники.

Подключение через одноклавишный выключатель

Схема подключения светильника через одноклавишный выключатель является самой простой из рассматриваемого ряда возможных способов коммутации нагрузки. Для ее реализации придется проделать следующую последовательность обязательных операций:

  1. Прежде всего, потребуется снять с данной линии питающее напряжение 220 вольт (это проще всего сделать с помощью вводного или линейного автомата).
  2. После этого необходимо убедиться в его отсутствии посредством индикаторной отвертки или специального измерительного прибора – мультиметра (он включается в режим измерения переменных напряжений на пределе до 750 вольт).
  3. Затем нужно удалить с выключателя клавишу, поддев ее сбоку отверткой с тонким жалом.
  4. Далее нужно зафиксировать корпус выключателя в заранее подготовленной в стене нише и аккуратно вывести два имеющихся к ней провода наружу.
  5. Внутри открытого основания необходимо отыскать два контакта, к одному из которых (нижнему) подсоединяется подходящий снизу провод, а ко второму (верхнему) подводится конец, идущий непосредственно на осветительный прибор.

Важно! Порядок подводки проводов к выключателю строго регламентируется требованиями ПУЭ.

В результате этих манипуляций выключатель с одной клавишей окажется включенным в разрыв фазного провода.

Благодаря такой схеме с его помощью можно будет подавать питание 220 вольт непосредственно к светильнику.

Подключение светильников к двойному выключателю

Под двойным выключателем понимается прибор особой конструкции, в котором вместо одного перекидного контакта встроены сразу два.

Дополнительная информация: По своему устройству они полностью идентичны, но используются каждый по своему назначению.

Перед тем как подключить двойной выключатель – потребуется обратить внимание на следующую деталь. В этом случае принцип подсоединения и порядок проведения операций остается тем же, что был рассмотрен в предыдущем разделе. Отличие состоит лишь в количестве подключаемых к верхним клеммам проводов. При проведении коммутаций нужно учесть следующие моменты:

  • Фазный провод должен располагаться снизу и подводиться к двойному выключателю со стороны нижней клеммы.
  • На корпусе типового прибора – двойного выключателя сверху имеются два контакта.
  • К каждому из них подсоединяется провод от отдельной группы осветителей (лампочек).

После того как удалось подключить двухклавишный выключатель – с его помощью можно будет включать либо одну группу осветителей, либо другую. При необходимости, нажав сразу на обе клавиши, можно зажечь все лампы одновременно.

Подключение осветителя от розетки

В ситуации, когда выключатель устраивается на новом месте (при отсутствии специальной ниши) – его можно закрепить непосредственно на стене и запитать от расположенной рядом розетки. В этом случае, перед тем как подключить светильник через выключатель, от нее необходимо протянуть фазу и ноль, как это изображено на фото ниже. В определенных условиях для этого достаточно одной фазы, поскольку нулевой провод уже подведен к настенным светильникам от распределительной коробки.

Перед тем как подключать светильники с выключателем от ближайшей розетки необходимо ознакомиться с особенностями этой процедуры. Порядок ее выполнения выглядит так:

  1. Сначала берется индикаторная отвертка, посредством которой определяется и запоминается фазный провод, от которого впоследствии отводится провод на выключатель (он может располагаться как справа, так и слева).
  2. После этого с линии, в которую наряду с розетками устанавливается и выключатель, с помощью автомата снимается опасное напряжение 220 вольт.
  3. Чтобы быть уверенным в его отсутствии – желательно проверить это посредством индикаторной отвертки.
  4. Прежде чем подключить светильник через выключатель от розетки с нее нужно снять декоративную крышку, под которой расположены два контакта.
  5. К одному из них (фазному) подсоединяется проводник требуемой длины и отводится к одиночному выключателю.

По завершении подготовительных процедур к закрепленному на стене выключателю со снятой крышкой подводится отходящий от розетки провод (он подключается к его нижней клемме). От верхнего контакта в сторону светильника протягивается еще один проводник, который для эстетичности помещается в кабельный канал или трубчатую гофру. Таким же способом можно закрыть провод на участке от розетки до выключателя.

Схема подключения светильника через выключатель в совмещенном блоке розетка-выключатель в одном корпусе:

Подключение точечных светильников

При необходимости использования в квартире осветителей точечного типа исходят из возможности подводки к ним либо стандартного сетевого напряжения 220 вольт, либо пониженных до безопасного уровня 12-ти Вольт.

Конкретная схема подключения точечных светильников выбирается с учетом типа используемых осветителей, рассчитанных на соответствующее напряжение.

Перед тем как подключить точечные светильники – следует обратить внимание на то, что порядок их коммутации не отличается от стандартного способа.

Подключение без блока питания

Современные светодиодные лампочки выпускаются сейчас на напряжение 220 вольт, так как внутри лампы установлен электронный преобразователь, обеспечивающий питание светодиодов пониженным напряжением. С конструкцией светодиодной лампы вы можете ознакомиться в этой статье. Схема подключения точечных светильников со светодиодными лампами на 220 вольт точно такая же что и с обычными светильниками.

Подключение с блоком питания

При установке точечных светильников или светодиодных лент в схему дополнительно вводится трансформатор, понижающий напряжение с 220-ти до 12-ти Вольт. Сейчас эти устройства называются блоками питания, выпускаемые на различные напряжения и мощность нагрузки.

Обратите внимание: При подключении двух или более точек блок питания устанавливается сразу вслед за выключателем (смотрите схему ниже).

Схема подключения группы точечных светильников с одним понижающим трансформатором:

Схема подключения группы точечных светильников с трансформатором на каждый осветитель:

Обычно для подключения точечных светильников выбирается электронный преобразователь (он же блок питания), выгодно отличающийся от других приборов следующими достоинствами:

  • Малые размеры и небольшой вес.
  • Встроенной защиты от короткого замыкания.
  • Плавное нарастание напряжения при включении, продлевающее срок службы лампочек.
  • Возможность регулировки и поддержания стабильного питания.

К тому же эти устройства отличаются предельно низким уровнем шума, создаваемого при работе вспомогательного оборудования.

Предлагаем Вам посмотреть обучающее видео на тему: «Как правильно произвести монтаж точечных светильников».

Подключение светодиодных лент и светильников

Схема подсоединения осветителей на основе светодиодов ничем не отличается от уже рассмотренных ранее вариантов. Единственно, на что следует обратить внимание, перед тем как подключить светодиодную ленту или светильник – это использование преобразователя напряжения (блока питания) или драйвера.

Как и в случае с точечными осветителями в данной ситуации блок питания устанавливается сразу после одноклавишного, двухклавишного или трехклавишного выключателя (фото ниже).

Каждая отдельная ленточка или светодиодный прибор подключаются через «свой» преобразователь, что позволяет управлять его работой независимо от других. К «мощным» адаптерам может подсоединяться сразу несколько осветительных лент.

Схема подключения трех светильников к трехклавишному выключателю

Перед тем как подключить выключатель света трехклавишного типа – сначала нужно разобраться с каждой из коммутируемых с его помощью нагрузок (их количество может быть произвольным). В простейшем случае – это три лампочки, включенные в управляемую сеть, как это показано на рисунке ниже.

На базе этого варианта реализуется множество других. В качестве примера может быть рассмотрена схема подключения двух светильников или пяти.

Дополнительная информация: Для подключения произвольного числа осветителей к трехклавишному прибору приходится группировать их по нескольку штук в линии, где они включены в параллель.

Каждая из таких групп подсоединяется к «своему» контакту (на одну клавишу из трех).

Помимо рассмотренных в этом обзоре случаев возможны и другие варианты, наибольший интерес среди которых представляют:

  • Подключение двух светильников к одноклавишному выключателю.
  • Подсоединение к одному двухклавишному выключателю сразу нескольких групп.
  • Включение коммутирующего прибора в цепь с произвольным количеством осветительных изделий.

В каждом из этих случаев потребуется продумать отдельную схему коммутаций и согласовать ее с требованиями ПУЭ (на предмет распределения нагрузок и допустимых токов).

В заключительной части обзора отметим, что при рассмотрении заявленных в нем вопросов нужно исходить из следующих соображений. Перед тем как сделать определенный шаг по выбору типа подключения – сначала следует внимательно разобраться с исходными данными. Под ними понимаются используемые в конкретном помещении люстры и светильники (их тип и количество осветительных единиц), а также применяемый для коммутации вид клавишного прибора с подводимыми к нему проводами.

Как подключить светодиодный прожектор к сети 220 В?

Общее снижение цен на светодиоды и матрицы на их основе определяет широкое распространение LED-прожекторов, а универсальный характер этих светильников расширяет сферы их применения — придомовые территории, автостоянки, декоративная подсветка и так далее.

Схемы подключения светодиодного прожектора к сети 220 В не отличаются большой сложностью — минимальный набор инструментов и небольшие навыки электромонтажа выступают достаточными факторами самостоятельного подключения прожектора к сети.

Немного о конструктивных особенностях

Конструктивно светодиодный прожектор оформлен в металлическом корпусе, внутри которого располагается светодиодная матрица и блок питания (драйвер). В мощных моделях блок питания размещают снаружи, а светодиодная матрица соединена с радиатором охлаждения. В LED-прожекторах небольшой мощности в качества радиатора используется корпус осветительного прибора.

Чтобы подключить LED-прожектор к сети потребуется набор отверток и кабель, по которому поступает питающее напряжение. Выбор сечения проводов зависит от мощности осветительного прибора, которая определяет силу тока по подводимому кабелю. Так как светодиодные прожекторы имеют сравнительно небольшую мощность, то стандартного провода сечением 1,5 мм² с большим запасом хватит, если нужно подключить осветительный прибор мощностью до 200 Вт.

Отдельно стоит отметить, что нормы электробезопасности требуют использовать для подключения уличных прожекторов гибкие силовые кабели с многожильной конструкцией внутренних проводников. Примером такого решения является кабель NYM.

Схемы подключения

Для подключения внешней сети в корпусе светодиодного прожектора предусмотрена входная муфта для кабеля и клеммная розетка на три контактных группы — фаза (L), ноль (N) и земля. Цветовая маркировка проводов: фаза — красный или коричневый, ноль — синий или черный, земля — зеленый с желтым.

Стоит помнить, что корпус осветительного прибора соединен с земляным проводом клеммной колодки, что определяется мерами безопасности владельца светодиодного источника света. Если подводящий провод имеет двухжильную конструкцию (фаза и ноль), то клемму заземления в розетки можно оставить свободной.

Если требуется подключить прожектор в схему освещения через датчик движения или освещенности, то подразумевается монтаж датчиков вместо, либо параллельно ручному выключателю.

В случае установки датчика рядом с осветительным прибором, для монтажных работ потребуется кабель с дополнительной жилой.

Последовательность работ

Непосредственное подключения кабеля к светодиодному прожектору состоит из нескольких основных этапов:

  1. Зачистка концевых окончаний проводов для их монтажа в клеммной розетке.
  2. Снятие крышки монтажной коробки или разборка корпуса прожектора — вид работы определяется конструкцией прибора освещения.
  3. Ввод сетевого провода через специальную муфту с сальником в корпусе прибора (гермоввод) и крепление жил в клеммных розетках. Подключение каждой жилы производится в соответствии с цветовой маркировкой и назначением жилы — фаза, нейтраль, земля.

В случае использования отдельных датчиков освещенности или движения, соединение проводов от датчика и ручного выключателя освещения выполняется в одну фазовую контактную группу.

После фиксации проводов в клеммной коробке необходимо аккуратно установить на место крышку монтажной коробки или корпуса осветительного прибора — светодиодный прожектор готов к установке на его рабочее место.

Подключение к электросети

Подключение провода от светодиодного прожектора к сети переменного тока 220 В необходимо производить после обесточивания места монтажа и отключения питающего напряжения. Для этого необходимо выключить главный автомат в щите управления или отдельный автомат, если таковой предусмотрен схемой разводки сети.

При отсутствии цветной маркировки кабеля сети переменного тока, перед отключением автомата, необходимо определить фазовую жилу с помощью специальной индикаторной отвертки. Такая мера связана с тем требованием, что все выключатели и датчики должны монтироваться в разрыв фазовой жилы.

Подключаем точечные светильники своими руками

Точечные светильники могут подключаться двумя вариантами:

  • Подключение через 220 в,
  • Подключение через 12 в.
Каждый из этих вариантов имеет свои достоинства и недостатки и подбирается индивидуально для каждого объекта.

Схема подключения точечных светильников через 220 в

Эта схема считается оптимальной в России и выглядит так: ток проходит через счетчик и защитную автоматику и попадает распределительную коробку. Здесь защитный ноль и рабочий ноль напрямую идут к точечному светильнику. Фазный провод подключается к выключателю. Из него выходят провода в количестве, соответствующем типу выключателя. Ниже приведена схема подключения точечного светильника 220 в к одноклавишному выключателю.


Схема подключения точечного светильника к двухклавишному выключателю:


Схема подключения точечных светильников 220 в имеет ряд достоинств:

  • Простота и надежность,
  • Любые значения длины цепи, т.е. светильники могут располагаться на большом расстоянии друг от друга, но эффективность освещения при этом не пострадает,
  • Возможность использования кабеля меньшего сечения

Но есть и минусы в этой схеме:

  • Благодаря высокому напряжению источник является опасным и требует квалифицированного обслуживания,
  • Требует дополнительных защитных устройств.

Схема подключения точечных светильников 12 в

Если в схеме подключения светильников 220 в все проблемы заключаются в высоком напряжении, то подключение светильников 12 в полностью исключает эти недостатки. Более того при напряжении 12 в кабель имеет больший диаметр сечения, что делает срок службы электроприборов дольше. Этот вариант подключения идеально подходит для светильников арте ламп.

Схема подключения светильников на 12 в отличается от 220 в наличием трансформатора, который преобразует стандартное напряжение сети в 12 в. Наибольшей популярностью пользуются сегодня электронные трансформаторы, которые имеют ряд достоинств:

  • Компактные размеры,
  • Встроенная защитная система,
  • Плавный пуск,
  • Постоянный показатель напряжения на выходе,
  • Бесшумность и пр.

Подключение через трансформатор подойдет для светильников favourite.

Схема подключения точечных светильников на 12 в через трансформатор


Оптимальным вариантом считается подключение точечных светильников на 12 в, при котором на каждой точке устанавливается индивидуальный трансформатор. Стоимость такого комплекта несколько дороже, но она быстро себя оправдывает, т.к. при перегорании одного трансформатора остальные лампы продолжают работать в прежнем режиме. Но можно купить светильник в СПб недорого и получить двойную выгоду. Схема такого подключения приведена ниже.


Обе схемы на 12 в подходят и для постоянного, и для переменного тока.

Инструкция по замене люминесцентных ламп Т8 G13 на светодиодные – База знаний Novolampa

Благодаря экономичному электропотреблению, безопасности и высокому сроку службы, в настоящее время светодиоды уверенно вытесняют многие традиционные источники света. В частности, на светодиодные аналоги повсеместно стали заменяться люминесцентные лампы типа T8.

Часто требуется не замена всего светильника целиком, а простая установка светодиодных ламп в уже существующие. И чтобы сделать этот процесс максимально простым, производители светодиодных ламп изготавливают их с таким же цоколем (G13), а размеры полностью повторяют размеры люминесцентных ламп (D=26мм L=600 мм / 900мм / 1200мм / 1500мм / 2400 мм). Остается только немного модернизировать электрическую схему и можно устанавливать светодиодные трубки.

Весь ассортимент этой продукции можете посмотреть в разделе светодиодные лампы g13.

Рассмотрим подробнее особенности установки светодиодных трубок (ламп) Т8 в светильники для люминесцентных ламп.



В зависимости от типа светодиодной лампы существует два варианта установки ламп:

  • С подключением ламп на AC 220V (подходит для любой исходной ПРА).
  • С подключением ламп на AC 110V (подходит только для светильников с ЭмПРА).

Обратите внимание!

  1. При установке нескольких ламп в один светильник используйте параллельное подключение. Не допускается последовательное подключение, т.к. это приводит к перепадам напряжения и повреждению драйвера лампы.
  2. Работы по замене должны выполняться квалифицированным персоналом в соответствии с нормами и требованиями безопасности.

1. Подключение ламп на AC 220V:
Первый вариант требует непосредственного питания ламп от электросети 50 Гц 220 В. В этом случае нужно предварительно удалить все элементы пускорегулирующей аппаратуры: электронный блок или элементы электромагнитной ПРА (стартер, дроссель и прочее). Потребляемая мощность светильника будет складываться из суммарной мощности светодиодных ламп.
Порядок действий:

  1. Обесточьте светильник, чтобы избежать поражения электрическим током.
  2. Удалите люминесцентные лампы.
  3. Удалите старую электронную схему: а) удалите электронный блок ПРА; б) удалите стартеры и извлеките балласт из электрической цепи, отключите конденсатор, если есть.
  4. Вставьте светодиодные лампы.
  5. Включите электропитание.

Схема подключения светодиодной лампы прямого включения 220В

После удаления ПРА светильники должны выглядеть примерно как на фото ниже (переделан светильник на две лампы длиной 1200 мм). Для соединения контактов используйте клеммы.


Светильник люминесцентный типо Арктика 2х36 1200мм в разобранном виде с обратной стороны после удаления всех элементов ПРА для подключения светодиодных ламп на 220В.

2. Подключением ламп на AC 110V:

Второй вариант подразумевает, что в схеме остается электромагнитный балласт, удаляется только стартер, такие светодиодные лампы рассчитаны на подачу напряжения 110 В. При таком подключении потребляемая мощность светильника складывается из суммарной мощности светодиодных ламп и мощности, потребляемой оставшейся ПРА. В этом варианте электроэнергии будет потребляться больше, чем в первом, а значит эффект экономии будет меньше. Кроме того, необходимо предварительно точно определить, какой тип ПРА установлен в светильниках.

Порядок действий:

  1. Обесточьте светильник, чтобы избежать поражения электрическим током.
  2. Удалите люминесцентные лампы.
  3. Удалите стартеры, оставьте балласт (или замените стартеры на специальные для светодиодных ламп).
  4. Вставьте светодиодные лампы
  5. Включите электропитание.

Поворотный цоколь. На что еще следует обратить внимание:


В светильниках бывают по-разному установлены патроны: горизонтально, вертикально, а иногда и под углом. Поскольку люминесцентные лампы светят на 360°, то для них неважно, как устанавливать лампу в патрон. Но светодиодные лампы имеют направленный световой поток, поэтому следует обращать внимание на расположение прорези под патрон в цоколе лампы, иначе может оказаться, что светодиодная лампа светит не вниз, а вбок. Наиболее универсальным в этом случае оказывается поворотный цоколь: он подходит к любым светильникам.


Цоколи светодиодных ламп: а) не поворотный б) поворотный.

Надеемся, что наша инструкция помогла Вам правильно выбрать и подключить светодиодные лампы, и сейчас Вы в полной мере используете все преимущества современного светодиодного освещения.

1: Схема системы. Сеть освещения состоит из светодиодных источников света, ...

Context 1

... узел датчика измеряет интенсивность и цветовую температуру всех источников и отправляет данные контроллеру (в данном исследовании - компьютеру). Контроллер обрабатывает эти данные и, учитывая предпочтения пользователя, устанавливает оптимальные условия освещения (рис. 4.1 на стр. 41). Этот метод можно расширить для нескольких узлов управления. ...

Контекст 2

.... цифровой датчик цвета измеряет энергетическую освещенность матрицы фотодиодов, состоящей из красного, зеленого, синего и прозрачных фильтров. Рисунок 4.2a на стр. 44 представляет собой изображение прототипа узла датчика. Прототип выполнен на двухслойной печатной плате толщиной 1,65 мм (0,065 дюйма) и имеет размеры 178 × 119 мм (7 × 4,7 дюйма). ...

Контекст 3

... обеспечивает точность измерения цвета. Рисунок 4.2b на странице 44 представляет собой изображение прототипа контроллера с удаленной схемой защиты входа. Прототип находится на двухслойной 1.Печатная плата толщиной 65 мм (0,065 дюйма) и ее размеры 178 × 119 мм (7 × 4,7 дюйма). ...

Context 4

... Светодиодная матрица также имеет встроенные датчики температуры (для оценки температуры перехода светодиодов) и может измерять с помощью фильтров красные, зеленые, синие и прозрачные значения освещенности с использованием датчик цвета TCS3414 (Таблица 4.1 на стр. 43). На рис. 4.3 показан фактический массив, использованный в исследовании. ...

Контекст 5

... это исследование, этот метод протестирован и представлен в главе 5, но, в конечном итоге, метод прямого просмотра (т.т.е. светодиодная матрица обращена вниз) выбрано для эффективности. На Рис. 4.4 на стр. 48 показан купол, установленный на массиве светодиодов, который, в свою очередь, установлен на алюминиевом радиаторе. Глава пятая ...

Контекст 6

... Эффект, этот параметр вычитал слишком большую освещенность из отдельных измерений светодиодов, так что между точкой белого и наложением отдельных спектров была большая ошибка. Эта проблема была исправлена ​​в эксперименте 2. Однако данные, полученные с помощью цифрового датчика цвета сенсорного узла, все еще действительны (см. Рис. 5.3 и рис. 5.4). Хотя датчик не сообщает об абсолютном измерении, он все же фиксирует влияние температуры (измеряется в количестве датчиков). ...

Контекст 7

... вероятный ответ: прямо или косвенно нам все равно, пока мы довольны. Обратим внимание на оценку производительности сети, представленной на рисунке 4.1. Мы рассматриваем гипотетический профиль освещенности окружающего света (например, дневного света), собранного в офисе в здании E14 Массачусетского технологического института (рисунок 6.5). ...

Первые шаги - документация ProtoPixel

Следующие шаги помогут вам установить контроллер и его сателлиты, а также подключить их к светодиодному освещению.

Примечание

Если у вас возникли проблемы, обратитесь к разделу «Устранение неисправностей». Особенно, если получить цветной шум, поскольку это может быть сложно.

Примечание

Важно дважды проверить проводку светодиода и источника питания. Используйте это руководство в качестве справочника и пошагово выполняйте все инструкции, описанные ниже.

Осторожно

Контроллер имеет три порта RJ45: один со светодиодными индикаторами для подключения к сети, а два - для подключения к спутникам. Не подключайте сетевой кабель к портам спутников , это может повредить вашу сетевую инфраструктуру.

Примечание

Светодиодные светильники

продаются отдельно, вы можете использовать любые светодиодные светильники на основе WS2811 или WS2812. Их можно приобрести в нашем интернет-магазине: https://shop.protopixel.net, а также основные необходимые материалы для вашей установки.

Это руководство покажет вам, как выполнить все подключения, подключения и настройки в четыре этапа.

Краткое описание шага:

Шаг Описание
1 Подключение сигнала данных светодиода к спутнику PPx
2 Питание светодиодов
3 Подключение контроллера
4 Настройка контроллера

Подключение сигнала данных светодиода к спутнику PPx

Для того, чтобы подключить ваше устройство к спутнику, вы должны найти провода данных и заземления, расположенные в начале вашего устройства (вход данных или din).

Осторожно

Проверьте документацию или техническое описание вашего светодиодного светильника, чтобы убедиться, какой провод является данными (обычно зеленым), а какой - заземлением (обычно синим).

Пример разъема для передачи данных и разъема питания, прикрепленного к светодиодной ленте

JST 3-контактные антенные разъемы наиболее часто используются для адресных светодиодных лент. В зависимости от поставщика светодиодных лент разъем может быть штыревым или гнездовым. Эти разъемы обычно сопровождаются разъемом питания или двумя проводами для обеспечения отдельного источника питания для вашего светодиодного светильника.

Примечание

Чтобы найти начало адресуемой светодиодной полосы, проверьте маленькую стрелку (стрелки), напечатанную на полосе, чтобы определить направление сигнала данных. Еще один эффективный способ найти это - нанести на светильник напечатанный «din» или «di».

Осторожно

В показанных примерах вывод данных (DIN) отображается как зеленый провод, а вывод GND - как синий провод. Обратите внимание, что на разъемах светодиодного освещения заказчика может отображаться другой цветовой код проводов.Всегда проверяйте техническое описание или документацию на ваше приспособление.

Пример расположения контакта Data IN (DIN) (зеленый провод в нашем примере).

Пример расположения контакта Ground (GND) (синий провод в нашем примере).

В корпусе светодиодного освещения обычно можно найти 3-контактный разъем, который соответствует разъему, прикрепленному к светодиодной ленте. Подключите два кабеля, вход данных и заземление к спутнику, как показано на следующих изображениях:

Осторожно

Убедитесь, что провод передачи данных находится с левой стороны разъема, а провод заземления - с правой.

Пример разъемов "папа" и "мама".

Вот и все !! Ваша первая светодиодная лента подключена и готова к приему данных!

Питание светодиодов

Существуют различные типы источников питания: закрытые, DIN-рейка, силовая стойка или адаптеры. В этом разделе мы сосредоточимся на адаптерах переменного / постоянного тока и закрытых источниках питания, поскольку они наиболее часто используются в малых и средних и крупных светодиодных установках. Следующие инструкции описывают, как подключить блок питания к розетке переменного тока.

Адаптеры

Адаптеры

AC / DC - это самый простой способ использования в небольших установках. Они имеют тенденцию быть компактными, снабжены всеми проводами и разъемами, и, если вы правильно выбрали тот, который подходит к вашему устройству, подключи и работай.

Недостатком этих источников питания является то, что они недостаточно мощные для питания большого набора светодиодов.

Для их использования необходимо только сначала подключить разъем питания к светодиодам, а затем вилку питания к розетке.

Предупреждение

Распространенной ошибкой этих источников питания является выбор устройства с недостаточной мощностью. Всегда следите за тем, чтобы вольты и ватты были подходящими для вашего светодиодного светильника, иначе ваш светильник может быть поврежден, а источник питания перегрет.

Закрытый источник питания

Источники питания закрытого типа чаще всего используются в средних и больших светодиодных установках. Они обладают большой мощностью и существуют разные модели в зависимости от марки и места, где они будут расположены (внешний вид, интерьер, охлаждаемые помещения,…)

Опасность

Источники питания закрытого типа имеют открытые клеммы питания и контакты, не манипулируйте ими, если вы не уверены, что делаете.При необходимости обратитесь к электрику или , пусть это сделает за вас специалист .

Предупреждение

Если для вашей установки требуется более одного блока питания, внимательно прочтите техническое описание блока питания или обратитесь к квалифицированному оператору. Эти устройства могут быть опасны, если неправильно подключены или плохо изолированы.

Примечание

В качестве рекомендации, чтобы предотвратить потерю мощности, мы предлагаем размещать источники питания как можно ближе к светодиодному осветителю. Это позволит избежать ухудшения цвета.

Подключение закрытого блока питания к розетке

В следующих инструкциях описывается, как подключить блок питания к розетке переменного тока.

Осторожно

Внимательно следуйте инструкциям, чтобы убедиться, что все кабели питания правильно установлены. Если шнур питания переменного тока не поставляется с установленной вилкой, при установке убедитесь, что клеммы правильно подключены (AC / L (синий), AC / N (коричневый) и FG (зеленый и желтый)).

Для установки шнура питания необходимо обнажить свободный конец шнура питания переменного тока.Для этого достаточно разделить разные провода переменного тока и зачистить концы каждого из них.

Примечание

Мы настоятельно рекомендуем использовать обжимные клеммы для предотвращения короткого замыкания между портами источника питания и открытыми металлическими участками.

Подключите каждый из 3 проводов к клеммам источника питания, используя тот же цветовой код, как показано на схеме:

Опасность

Обязательно соблюдайте цветовую кодировку этих проводов. В случае неправильного подключения контроллер ProtoPixel, светодиодные осветительные приборы и источник питания могут быть повреждены.

Подключение закрытого источника питания к светодиодным светильникам

Как было показано ранее, светодиодные светильники обычно сопровождаются разъемом питания или двумя запасными проводами (положительным и отрицательным), которые предназначены для питания светодиодов. Закрытые источники питания имеют одну или несколько положительных и отрицательных клемм для подключения светильников.

Пример положительной и отрицательной клемм закрытого источника питания.

Настройка контроллера

По умолчанию каждое устройство ProtoPixel настроено на получение IP-адреса по DHCP.Когда IP-адрес не назначается DHCP-сервером, контроллер использует статический IP-адрес, например 192.168.133.XXX, с сетевой маской 255.255.0.0. Каждое устройство имеет внутреннюю энергонезависимую память для хранения различных параметров подключения и устройств. В следующей таблице показана информация, хранящаяся в этой памяти, которая используется для настройки устройства. Манипуляции с этими параметрами должны выполняться с помощью Protopixel create, см. Подключение контроллера к устройству.

Параметр Описание
Конфигурация сети
Статический IP IPV4-адрес устройства, используемого, когда DHCP недоступен
Статический шлюз Сетевой шлюз используется, когда DHCP недоступен
Статическая маска Сетевая маска, используемая, когда DHCP недоступен
DHCP Включение или отключение DHCP (включение / выключение)
Поведение устройства
Тестовые светодиоды Включение или отключение тестовых светодиодов в начале (включение / выключение)
Уведомляющий светодиод Включение или отключение светодиода уведомления (S1) (включение / выключение)
Название устройства Название устройства

Подключиться к сети

ProtoPixel - это устройство plug and play.После включения устройство подключается к настроенной сети и автоматически обнаруживается программным обеспечением ProtoPixel. Пошаговое подключение Ethernet:

  1. Подключите разъем Ethernet 10/100 к порту Ethernet контроллера.
  2. Подключите другой конец кабеля напрямую к компьютеру или через сетевое устройство, например коммутатор или маршрутизатор, через локальную сеть.
  3. Подключите осветительные приборы к портам для осветительных приборов.
  4. Подключите разъем питания к контроллеру ProtoPixel.
  5. Устройство автоматически обнаруживается программой ProtoPixel.
  6. Подайте питание на осветительные приборы отдельно.

Прямое подключение вашего компьютера к контроллеру ProtoPixel

Если вы пытаетесь подключить контроллер напрямую к порту Ethernet вашего компьютера или используете контроллер со статическим IP-адресом, вам следует настроить сетевой интерфейс. По умолчанию для контроллера настроен IP-адрес внутри подсети 192.168.133.XX с маской 255.255.255.0. Чтобы настроить свою систему OSX, вы можете получить доступ к конфигурации сети, перейдя в Системные настройки -> Сеть -> Выберите порт Ethernet и измените его с использования DHCP на Вручную.

Отправить световую информацию

На этом этапе устройство включено и работает и может получать входные данные от различных программ освещения, сценариев или сифона с помощью программного обеспечения ProtoPixel.

Что такое последовательное и параллельное соединение и когда что применять? - служба поддержки клиентов

Возможны два различных метода подключения: последовательное соединение и параллельное соединение.Вы должны знать разницу в проводке светодиодного освещения. Светодиод должен быть подключен либо последовательно, либо параллельно. Как они должны быть связаны, зависит от источника света. Неправильное соединение со светодиодами приведет к выходу из строя светодиодных ламп.

Последовательный порт на 350 мА, 500 мА, 700 мА и 1050 мА

Требуется последовательное соединение со светодиодной подсветкой на 350 мА, 500 мА, 700 мА и 1050 мА. В этом случае вы используете источник питания с регулируемым током.

При последовательном подключении есть только один поток.Ток входит в первую точку через +, а затем уходит через -, чтобы перейти к следующей точке и сделать то же самое с третьей точкой. Ток течет таким образом в одном направлении, пока все точки не будут снабжены током. Всякий раз, когда хотя бы одна точка нарушена, цепь разрывается. Дефектное пятно больше не может проводить ток, поэтому все виды спорта в цепи выходят из строя.

Однако самые современные светодиодные прожекторы защищены от этого. Эти защищенные точки имеют встроенный мост, который позволяет току течь к другим точкам цепи в случае пробоя.

Параллельно с 12В, 24В и 230В

Требуется параллельное подключение со светодиодной подсветкой на 12В, 24В и 230В. В этом случае вы используете подачу напряжения.

При параллельном подключении начальные (+) и конечные (-) точки (-) разных точек соединяются друг с другом. В отличие от последовательного соединения, питание при параллельном соединении может проходить через несколько цепей. Всякий раз, когда одна точка выходит из строя, все остальные точки не выходят из строя.Электроэнергия все еще может достигать других точек в цепи.

На рисунке ниже показано, что происходит с силовой цепью при выходе из строя одной точки. При параллельном подключении силовая цепь остается неизменной, а все остальные точки продолжают работать. Однако при последовательном подключении, когда одна точка выходит из строя, питание больше не может циркулировать, поэтому другие точки выходят из строя.

При параллельном подключении цепь питания продолжается. При последовательном подключении цепь питания не может продолжаться.

Чтобы продлить срок службы светодиодных фонарей, мы советуем подключать их к источнику постоянного тока.

Электропроводка постоянного тока для светодиодных систем освещения

8 февраля 2017 г., Опубликовано в статьях: Вектор

Майка Райкрофта, EE Publishers

Все современные системы освещения работают на постоянном токе, и использование сетки постоянного тока в системах освещения на основе светодиодов становится обычным явлением в «умных» системах освещения.

Системы освещения для помещений обычно питаются от источника переменного тока, а проводка соответствует стандартам переменного тока. Однако современные системы освещения, будь то CFL, HFF или светодиодные, работают от постоянного тока. Светодиоды работают на постоянном токе, и для использования таких устройств от сети переменного тока требуется преобразователь в каждом устройстве.

Требования к напряжению светодиода

Светодиодные системы

предназначены для работы от напряжений 12, 24 или 48 В постоянного тока. Светодиоды будут оснащены внутренним преобразователем для управления напряжением и работой.Выбор напряжения зависит от размера комнаты и других факторов. Чем выше напряжение постоянного тока, тем ниже резистивные потери в проводнике. Использование более низких напряжений на большой площади и большой длины кабеля может привести к более высоким токам и более высоким потерям в кабеле, что может свести на нет любые выгоды, полученные от использования постоянного тока. Используемое напряжение в системах постоянного тока составляет 24 и 48 В.

Новые системы переходят на стандартное напряжение 60 В [4], что позволяет обслуживать большие площади. Чаще всего используется переменный ток в качестве источника и преобразование в постоянный ток в каждой осветительной арматуре.Помимо увеличения стоимости, преобразователи имеют потери и выделяют дополнительное тепло.

На рис. 1 представлена ​​блок-схема типичного светодиодного осветительного прибора [1].

Рис. 1: Расположение типичного светодиодного светильника с переменным током.

Переход на КЛЛ и светодиодные системы был вызван двумя основными факторами:

  • Необходимость экономии энергии на освещении.
  • Необходимость экономии (светодиоды и КЛЛ имеют более длительный срок службы, чем лампы накаливания).

Унаследованное освещение может работать напрямую от сети переменного тока.Но это освещение само по себе было неэффективным, и это причина того, что освещение потребляет около 30% всей производимой энергии. Светодиоды, управляемые постоянным током, обещают сократить потребление энергии, связанное с освещением в целом, а распределение мощности постоянного тока может повысить общую эффективность.

Энергия может быть сэкономлена за счет снижения потерь, которые существуют в цепочке поставки энергии. Во-первых, мы можем минимизировать количество преобразований мощности с потерями, используя сеть постоянного тока. Во-вторых, возобновляемые источники, такие как солнечные панели, производят энергию постоянного тока, и, несмотря на относительно низкую эффективность преобразования солнечных панелей, они могут обеспечивать энергоэффективные светодиодные светильники.В-третьих, сеть постоянного тока предлагает возможность хранения энергии в аккумуляторных системах от перебоев в подаче электроэнергии или солнечных изменений [2].

Преобразование мощности неизбежно приводит к потерям мощности в виде тепла. Преобразования происходят в источниках питания переменного / постоянного тока, которые преобразуют уровень напряжения, и в источниках питания постоянного / постоянного тока, которые преобразуют только уровень напряжения. Драйвер или контроллер, используемый в светодиодном освещении, представляет собой просто источник постоянного тока или постоянного напряжения. Как правило, большее количество преобразований означает большие потери энергии, а большие изменения уровня менее эффективны, чем меньшие изменения уровня.

Рис. 2: Установка светодиода с использованием низковольтного распределения постоянного тока.

Очевидным первым шагом является замена преобразователя переменного тока в постоянный в каждой арматуре на общий централизованный интерфейс для обеспечения защиты и преобразования переменного тока в постоянный, а затем для распределения постоянного тока на светодиодные светильники. Типичный пример показан на рис. 2. Блок питания имеет низковольтный выход постоянного тока в диапазоне 24–60 В постоянного тока. Емкость блока ограничена пропускной способностью кабелей, по которым постоянный ток подается к осветительной арматуре, и распределением осветительной нагрузки.Длина кабеля ограничена, и от этого зависит размер преобразователя. Обычно офисные или школьные здания требуют установки нескольких преобразователей по мере необходимости.

Светодиоды постоянного тока

были первоначально разработаны для солнечных батарей, но теперь нашли коммерческое и другое применение. Они особенно подходят для использования с солнечными батареями на крыше, которые становятся все более популярными среди конечных пользователей и коммерческих предприятий.

Электропроводка постоянного тока

Основными направлениями развития в распределении постоянного тока для зданий являются распределение постоянного тока для центров обработки данных и освещение для коммерческих зданий.Типовые разрабатываемые системы электропроводки постоянного тока работают при напряжении 380–400 В постоянного тока, в первую очередь для обслуживания оборудования с высокой нагрузкой. Проводка освещения постоянного тока является побочным продуктом этого сектора и может быть включена в такую ​​систему. Однако большинство систем освещения постоянного тока предназначены для работы независимо от других систем. Пример светодиодной системы освещения с питанием от сети постоянного тока показан на рис. 3.

Рис. 3: Светодиодная система, управляемая постоянным током.

Разработка систем

С развитием светодиодов пришла концепция «умного освещения», которая требует индивидуального управления светильниками и осветительной арматурой, а также использования осветительной арматуры в качестве датчиков.Применение концепции интеллектуального освещения к обычному освещению требует, чтобы управляющая проводка была отделена от силовой, что увеличивает стоимость и усложняет установку.

Низковольтный постоянный ток, используемый в светодиодных установках с централизованными преобразователями, и низкое энергопотребление светодиодов позволяют прокладывать кабели питания и передачи данных светодиодов в одном корпусе, а комбинированные кабели данных и питания, такие как кабели Ethernet, на самом деле могут, использоваться для обеспечения питания и управления светодиодными приборами.Комбинированная разводка LVDC и кабелей передачи данных составляет основу большинства «умных» светодиодных осветительных установок, доступных сегодня.

За прошедшие годы появилось несколько систем распределения постоянного тока. Все они предлагают ряд стандартных компонентов, таких как стандартные разъемы plug-and-play для светодиодного освещения, а также источники питания и контроллеры, позволяющие упростить проектирование и установку систем освещения.

EMerge Alliance [3]

Распределение постоянного тока

в офисных зданиях началось с системы EMerge Alliance, основанной на распределении 48 В постоянного тока.Система поддерживается промышленностью, и ряд крупных поставщиков имеют совместимые продукты, но их количество не так много. Несмотря на многочисленные технические достоинства платформы EMerge, массовая коммерциализация платформы не проводилась [3]. На рис. 4 показана типовая установка.

Питание через Ethernet (PoE) [4]

PoE использует два преимущества светодиодного освещения: низкое энергопотребление и возможность цифрового подключения и управления. Электрические провода на 240 В переменного тока и все связанные с ними расходы, нормативные требования и инфраструктура значительно превосходят то, что нужно светодиодным светильникам.Светодиодные светильники содержат электронику, требующую более низких напряжений, обычно 12–24 В постоянного тока. Кабель Ethernet, который уже используется в офисах, безопасно передает более низкое напряжение постоянного тока, не требующее специальной защиты и других мер безопасности.

Рис. 4: Система постоянного тока EMerge Alliance [2].

Поскольку светодиодное освещение основано на электронике в схеме драйвера, они готовы стать участниками Интернета вещей (IoT), выступая в качестве узлов сети передачи данных для приема и сбора информации с помощью датчиков, встроенных в корпуса светодиодов и светильники.Питание осветительных приборов через Интернет обеспечивает автоматическое подключение к функциям контроля и управления, таким как затемнение и контроль присутствия. Никаких дополнительных линий управления не требуется.

Сердцем системы PoE является коммутатор Ethernet, который обеспечивает подключение к кабелям Ethernet как для питания, так и для передачи данных. Номинальная мощность кабелей Ethernet и мощность, подаваемая каждой точкой подключения кабеля, постоянно увеличивались, чтобы обеспечить работу устройств PoE. Номинальная мощность сейчас находится в районе 60 Вт на соединение.

PoE составляет основу так называемой системы «умного освещения», которая сочетает в себе возможность передачи данных и мощность освещения. Сетевые компании, такие как Cisco, активно развивают эту концепцию в партнерстве с осветительными компаниями, такими как Philips. Многие установки PoE LED уже работают, но ограничены сайтами с обширным

Кабель Ethernet на месте или там, где преобладают соединения для передачи данных. Светодиодная система PoE находит идеальное применение как часть интегрированной системы управления зданием, где все устройства в здании управляются из центральной точки.

Система Eaton DLVP [5]

Архитектура распределенного низковольтного питания Eaton (DLVP) включает централизованное преобразование энергии для повышения эффективности и схему распределения постоянного тока. Силовые кабели и разъемы также могут передавать данные управления. Компания использует платформу DLVP в качестве опции в своем портфолио твердотельного освещения (SSL), а также стремится стандартизировать подход и позволить другим производителям освещения использовать DLVP [5]. Система DLVP - это упрощенная версия PoE, которая предлагает все средства, необходимые для питания и управления освещением, без высокого уровня интеграции PoE.DLVP также можно использовать в тех местах, где нет большой потребности в подключении других устройств в Интернете, например, на складах, в холлах или в закрытых спортивных объектах.

Рис. 5: Типовая система освещения PoE.

DVLP спроектирован как автономная система для управления освещением и имеет более простой набор элементов управления, чем тот, который предоставляется PoE. Это также упрощает электромонтаж там, где ИТ-оборудование не является общим. DVLP использует максимально допустимое напряжение на кабелях Ethernet, то есть 60 В, для достижения эффективности.DVLP использует предварительно заделанные низковольтные осветительные кабели для безопасных и гибких светодиодных осветительных установок. Низковольтные осветительные кабели обеспечивают быстрый и безошибочный монтаж светодиодных светильников. Доступны кабели с предварительно согласованной длиной, типичной для типа приложения / приспособления, для безошибочного подключения цепей в приложениях, рассчитанных на камеру статического давления.

Сердцем системы DVLP является модуль питания низкого напряжения. Каждое кабельное соединение может выдавать 100 Вт при
60 В постоянного тока. На каждый модуль можно обеспечить до шести кабельных соединений, что обеспечивает около 200 м2 освещения и контроля покрытия на каждый модуль.Таким образом, одного силового модуля должно хватить для среднего дома или небольшого офиса [5].

Светодиодные светильники

, используемые с системой DLVP, оснащены контроллерами, которые обеспечивают преобразование постоянного / постоянного тока и функции управления.

Дополнительные преимущества разводки постоянного тока для светодиодов

  • Низкое напряжение: Напряжение, используемое в системах освещения постоянного тока, подпадает под классификацию сверхнизкого напряжения (ELV) SANS-0142 и, следовательно, не подлежит тем же требованиям защиты, что и низкое напряжение.Это позволяет прокладывать кабели в доступных пространствах, таких как камеры статического давления, без необходимости использования кабелепровода или кабелепровода.
  • Возобновляемая энергия или солнечная энергия: Потому что постоянный ток может быть подключен непосредственно к выходу солнечной энергетической системы без использования инверторов.
  • Backup: DC позволяет напрямую использовать резервную батарею без проблем с преобразованием. Некоторые светильники имеют встроенную систему резервного питания от батарей.

Защита сетчатых систем постоянного тока [1]

Рис.6: Подробная информация о системе Eaton DLVP [6].

DC так же опасен, как и переменный ток, и требует защиты от замыканий на землю и коротких замыканий.
Первичной защитой от замыканий на землю и коротких замыканий является отключение устройством максимального тока, будь то автоматический выключатель или предохранители. Недостатком

DC является отсутствие перехода через нуль в форме волны, и поэтому обычные автоматические выключатели переменного тока, которые работают или работают при переходе через ноль тока, не могут быть использованы. Прерыватель постоянного тока должен отключать полный ток короткого замыкания.

Доступны автоматические выключатели

постоянного тока, которые станут более распространенными по мере установки большего количества цепей постоянного тока. Предохранители
также могут использоваться в качестве защиты, но они не обеспечивают такого же удобства, как автоматические выключатели, и всегда существует проблема замены перегоревшего предохранителя на предохранитель другого номинала.
Защита систем, поставляемых производителем, обычно встроена в силовые модули, и ее не нужно добавлять извне.

Список литературы

[1] К. Кейси: «Обзор защиты цепи светодиодного освещения» www.mouser.co.za/applications/lighting-circuit-protection/
[2] М. Райт: «Системы освещения используют распределение постоянного тока для максимальной эффективности», журнал LEDs, 1 апреля 2014 г., www.ledsmagazine.com/articles/iif/print/ volume-3 / issue-1 / features / dc-grids / lighting-systems-leverage-dc-distribution-for-maximum -fficiency.html
[3] М. Райт «Схема низкого напряжения упрощает установку светодиодного освещения и поддерживает элементы управления. ”LEDs Magazine, 21 октября 2016 г. www.ledsmagazine.com/articles/print/volume-13/issue-8/features/dc-power/low-voltage-scheme-trivializes-installation-of-led-lighting-and- поддерживает-контролирует.html
[4] Genesis «Системы освещения PoE» www.innovativelight.com/commercial-industrial-led-lighting/poe-led-lighting/
[5] Eaton: «Низковольтный силовой модуль: распределенная низковольтная энергосистема. - технические данные »www.cooperindustries.com/content/dam/public/lighting/products/documents/control_systems/spec_sheets/TD503076EN-DLVP-Low-Voltage-Power-Module-sss.pdf

Отправляйте свои комментарии по адресу [email protected]

Статьи по теме

  • Портал ресурсов правительства ЮАР по коронавирусу COVID-19
  • Постановлениями министерства предлагается 13813 МВт нового строительства на ГЭС, без Eskom
  • Настало время для южноафриканской национальной ядерной компании Necsa
  • Разбираясь со слоном в комнате, это Эском…
  • Интервью с министром полезных ископаемых и энергетики Гведе Манташе
  • Светодиодные схемы

    Защищенный сайт

    Магазин с

    Уверенность

    Лучше всего просматривать при использовании:

    Internet Explorer

    или

    Mozilla Firefox

    Светодиодные схемы

    Наша цель - дать обзор основных типы цепей, используемых для питания светодиодов.Принципиальные схемы или схемы, которые Следующие ниже изображены с использованием стандартных электронных символов для каждого компонента. Определения символов следующие:

    Символ светодиода является стандартным символом для диода с добавление двух маленьких стрелок, обозначающих излучение (света). Отсюда и название, свет излучающий диод (LED). "A" обозначает анод или плюс (+) соединение, а "C" катод или минус (-) соединение. У нас есть говорил раньше, но стоит повторить: светодиоды строго устройства постоянного тока и не будут работать с переменным током (переменным Текущий).При питании светодиода, если источник напряжения точно не соответствует Напряжение светодиодного устройства, необходимо использовать «ограничивающий» резистор последовательно со светодиодом. Без этого ограничивающего резистора светодиод не работал бы. мгновенно выгорают.

    В приведенных ниже схемах мы используем символ батареи для обозначения источник. Электропитание может быть легко обеспечено источником питания или колесом. пикапы с трассы на макете. Каким бы ни был источник, важно то, что он должен быть постоянным током и хорошо отрегулирован, чтобы предотвратить колебания перенапряжения, вызывающие повреждение Светодиоды.Если источник напряжения должен быть запитан от датчиков рельсов, мост выпрямитель должен использоваться, чтобы светодиоды получали только постоянный ток и неизменный полярность.

    Обозначения переключателей довольно просты. Однополюсный, однопозиционный переключатель (SPST) - это просто функция включения-выключения, в то время как SPDT (двухпозиционный) переключатель позволяет выполнять маршрутизацию между двумя разными цепями. Это может может использоваться как переключатель на один ход, если одна сторона ни к чему не подключена. В кнопка - выключатель мгновенного действия.

    Обозначение конденсатора, которое мы здесь используем, относится к электролитическому или конденсатор поляризованного типа. То есть его необходимо использовать в цепи постоянного тока. и подключен правильно (плюс подключение к плюсовому напряжению), или он будет поврежден. В наших целях он используется для мгновенного хранения, чтобы помочь «сглаживать» колебания питающего напряжения, вызванные малыми потерями в колесах подхватывание силового броска на грязных участках пути или в зазорах на стрелочных переводах. Поляризованные конденсаторы классифицируются по разным номинальным значениям максимального постоянного напряжения.Всегда используйте конденсатор, номинал которого безопасно превышает максимальное напряжение, ожидаемое в вашем применение.

    Базовая схема

    Это настолько просто, насколько возможно. Цепь одного светодиода - это строительный блок, на котором основаны все наши другие примеры. Для правильного функционирования должны быть известны три значения компонентов. Напряжение питания (Вс), светодиод устройства рабочее напряжение (Vd) и рабочий ток светодиода (I). С этими известными, используя вариант закона Ома, правильный ограничительный резистор (R) может быть определен.Формула:

    Пример работы с этой формулой можно найти на нашем Страница советов по подключению моста. Шаг проверки 7 для подробностей.

    На схеме выше у нас есть как ограничивающий резистор, так и переключатель, подключенный к положительной (+) стороне цепи. Мы сделали это, чтобы соблюдать "стандартные электрические методы" при работе с "горячими" (плюсовая) сторона цепи, а не минус (-) или сторона «земли». В схема действительно функционировала бы адекватно в любом случае, но стандартная безопасность Практика рекомендует "отключение" на "горячей" стороне, чтобы свести к минимуму возможность электрического замыкания проводов на другие «заземленные» цепи.

    Цепи с двумя или более светодиодами

    Цепи с несколькими светодиодами делятся на две основные категории; цепи с параллельным соединением и цепи с последовательным соединением. Третий тип, известный как последовательная / параллельная схема представляет собой комбинацию первых двух и также может быть довольно полезно в модельных проектах.

    Общие правила для параллельных и последовательных цепей светодиодов могут быть указано следующее:

    1. В параллельной цепи, напряжение одинаково на всех компонентах (светодиодах), но ток делится через каждый.

    2. В последовательной цепи, ток такой же, но напряжение делится.

    3. В последовательной цепи, сумма всех напряжений светодиодов не должна превышать 90% напряжения питания на обеспечить стабильную светоотдачу светодиодов.

    4. В последовательной цепи, все светодиоды должны иметь одинаковые характеристики напряжения (Vd) и тока (I).

    Параллельная проводная светодиодная схема

    Выше показаны два примера одной и той же схемы.Рисунок 1 на слева - схематическое изображение трех светодиодов, подключенных в параллельно батарее с переключателем для их включения или выключения. Вы заметите, что в этой схеме каждый светодиод имеет свой ограничивающий резистор и напряжение питания стороны этих резисторов соединены вместе и выведены на плюсовую батарею. терминал (через переключатель). Также обратите внимание, что катоды трех светодиодов соединены вместе и выведены на отрицательную клемму аккумуляторной батареи. Эта «параллель» соединение компонентов - вот что определяет схему.

    Если бы мы построили схему точно так, как показано на рисунке 1, с проводами, соединяющими устройства, как показано на схеме (перемычки между резисторами и перемычками между катодными соединениями), мы необходимо учитывать допустимую нагрузку по току выбранного провода. Если проволока слишком мала, может произойти перегрев (или даже плавление).

    Во многих случаях на этом веб-сайте мы приводим примеры Светодиоды подключены с помощью нашего магнитного провода с покрытием №38.Мы выбрали проволоку этого размера для очень конкретные причины. Он достаточно мал (диаметр 0045 дюймов, включая изоляцию). покрытие), чтобы выглядеть прототипом в виде провода или кабеля в большинстве проектов, даже в Z-шкала, и она достаточно велика, чтобы подавать ток на осветительные устройства 20 мА (например, наши Светодиоды) с дополнительным запасом прочности 50%. Как указано, сплошной медный провод №38 имеет номинальный рейтинг 31,4 мА и максимальный рейтинг 35,9 мА. Мы могли бы выбрать Провод №39 с номинальным значением тока 24,9 мА, но мы чувствовали, что этого не произойдет. безопасно учитывать колебания номиналов резисторов или отдельных светодиодов.Кроме того, немного меньший диаметр (0,004 дюйма вместо 0,0045 дюйма), вероятно, не сделать заметную разницу в моделировании.

    Возвращаясь к рисунку 1; вы можете увидеть в этом примере текущее требование для каждой пары светодиод / резистор, добавляется к следующей и следует правило параллельной цепи (# 1) выше. Мы не могли безопасно использовать для этого наш магнитный провод №38. всю схему. Например, перемычка с нижнего катода светодиода на минус клемма аккумулятора будет нести 60 мА. Наш провод быстро перегревается и возможно расплавление, вызывающее разрыв цепи.За это Причина, на Рисунке 1 - это всего лишь простой способ " схематично " представить как компоненты должны быть подключены для правильной работы схемы.

    В реальной жизни наш реальный проект проводки выглядел бы больше как Рис. 2. В этом случае мы можем безопасно использовать наш провод №38 для всего, кроме соединение между плюсовой клеммой аккумуляторной батареи и переключателем. Здесь нам понадобится по крайней мере провод # 34 (номинал 79,5 мА), но мы, вероятно, использовали бы что-то вроде Radio Изолированная оберточная проволока Shack's №30.Это недорого, легко доступно и будет нести 200ма (номинальная спец.). Достаточно большой для нашего приложения. Также, мы, вероятно, не стали бы паять три резистора вместе на одном конце, как как мы показали, мы просто использовали бы еще один кусок этого # 30, чтобы соединить их общие заканчивается вместе и к выключателю.

    Макеты железных дорог могут стать электрически сложными, всевозможные требования к проводке для таких вещей, как мощность трека, переключение, освещение, сигнализация, DCC и др.; у каждого свои потенциальные текущие потребности. Чтобы помочь в планировании таких вещей, таблица обычных проводов (сплошная медь однониточные) размеров и их токонесущей способности. здесь.

    Последовательная проводная светодиодная схема

    Эта схема представляет собой простую последовательную цепь для питания трех светодиодов. Вы заметите два основных различия между этой схемой и параллельной схемой. Все светодиоды используют один ограничивающий резистор, а светодиоды подключены анод-катод по схеме «гирляндной цепи».Следуя правилу № 2 выше, формула, которую мы будем использовать для определения нашего ограничивающего резистора, является еще одной вариацией формулы, которую мы использовали выше. Формула серии для вышеуказанной схемы будет записывается следующим образом:

    Единственная реальная разница в том, что наш первый шаг - добавить напряжение устройства для количества светодиодов, которые мы используем вместе, затем вычтите это значение из нашего напряжения питания. Затем этот результат делится на ток наших устройств (обычно 20 мА или 0,020).Все просто, да? Не забудьте также рассмотрите правило №3. То есть умножьте напряжение питания на 90% (0,9) и сделайте убедитесь, что сумма напряжений всех устройств (светодиодов) не превышает этого значения. Это почти все, что нужно ...

    Нам нужно знать, какой провод мы собираемся использовать, и что какое потребление тока можно ожидать от такой схемы? Что ж, в параллельная схема выше, для трех светодиодов по 20 мА каждый, мы будем потреблять 60 мА у батареи. Итак ... 60 мА? Нет. Фактически, чуть меньше 20 мА для всех трех светодиодов! Для простоты назовем его 20.

    Другой способ сформулировать правила 1 и 2 выше:

    1. В параллельной цепи напряжение устройства постоянно, но ток, необходимый для каждого устройства, складывается в общий ток.

    2. В последовательной цепи ток устройства постоянный, но Требуемое напряжение - это сумма всех напряжений устройства (вместе).

    Давайте рассмотрим несколько примеров с использованием 9-вольтовой батареи (или блок питания):

    Пример № 1

    Мы хотим подключить два наших супербелых светодиода 2x3 последовательно.

    1. Сначала определяем напряжение устройства, которое составляет 3,6 вольта и сложите его вместе для двух светодиодов (3,6 + 3,6 = 7,2).

    2. Теперь, когда у нас есть эта сумма, давайте убедимся, что она не нарушает Правило №3. 80% от 9 вольт составляет 7,2 вольт (0,8 x 9 = 7,2). Суммы равны. Мы не более 90%, поэтому мы можем продолжить.

    3. Затем мы вычитаем эту сумму 7,2 из нашего напряжения питания (9 вольт) и получите результат 1.8 (это часть Вс-Вд).

    4. Затем мы делим 1,8 на ток нашего устройства, который составляет 20 мА, или .02. Наш ответ - 90. Поскольку резистор на 90 Ом не является стандартным, мы выберем следующее по величине значение (100 Ом). Это немного более высокое сопротивление не вызовет разница в яркости светодиодов.

    5. Наконец, поскольку наша текущая потребляемая мощность составляет всего 20 мА, мы могли бы использовать наш провод №38 для всего, если мы захотим.

    Пример № 2

    Мы хотим последовательно соединить четыре наших красных светодиода Micro.Что резистор мы должны использовать?

    1. Мы находим напряжение устройства должно быть 1,7 вольт. Для четырех светодиодов это будет 6,8 вольт (4 x 1,7 = 6.8).

    2. Теперь, когда у нас есть это Сумма, убедимся, что она не нарушает правило №3. 90% от 9 вольт - это 7,2 вольт (0,8 х 9 = 7,2). И 6,8 на меньше , чем 7,2. Ага, все в порядке.

    3. Далее мы вычитаем это 6,8 от нашего напряжения питания (9 вольт) и получаем результат 2.2 (это часть Вс-Вд).

    4. Наконец, делим 2,2 током нашего устройства, который составляет 20 мА, или 0,02. Наш ответ - 110. Как оказалось, 110 Ом - стандартное сопротивление резистора, поэтому нам не нужно выбирать ближайший доступно более высокое значение (никогда не выбирайте меньшее значение!). Мы будем использовать 110 Ом 1/8 резистор 1% ватт.

    Пример № 3

    Мы хотим подключить три наших сверхбелых светодиода Micro вместе последовательно.

    1. Напряжение прибора 3.5 вольт. Так что для трех светодиодов это будет 10,5 вольт, и ... у нас проблема. Эта сумма не только нарушает правило № 3 выше, но и превышает напряжение питания. В В этом случае наши светодиоды даже не загораются. В этой ситуации, если нам нужно три из эти светодиоды, нам либо понадобится источник питания, который подает как минимум 11,67 вольт (это то, что 10,5 было бы 90%), или нам придется подключать только два последовательно а третий отдельно, с собственным резистором (последовательная / параллельная цепь, но об этом чуть позже).В этом случае у нас будет два типа схем, соединенных вместе на общем источнике питания. Схема будет выглядят следующим образом:

    Здесь мы снова можем использовать наш провод №38 для всего, кроме соединение между источником питания и выключателем. Чтобы определить, какие ограничения резисторы тут требуются, мы просто рассчитываем каждый отрезок схемы в отдельности. Неважно, какой сегмент определен первым, но мы сделаем одиночный светодиод / резистор.Для этого мы используем нашу оригинальную формулу:

    Мы знаем, что Vs (для этих примеров) составляет 9 вольт. И. мы Знаю, что Vd составляет 3,5 вольта, а I - 20 мА. Итак, (9 - 3,5) = 5,5 .020 = 275. Это резистор нестандартного значения, поэтому мы используйте здесь резистор 300 Ом.

    Теперь посчитаем последовательную пару светодиодов. Формула для всего два светодиода будут:

    Опять же, против составляет 9 вольт, поэтому 9 - (3.5 + 3,5) = 2 .020 = 100, и это стандарт номинал резистора. Были сделаны. Теперь мы можем подключить этот пример, и все будет работать должным образом.

    Подсветка Kato Amtrak Superliner с подсветкой EOT

    Вот схема легкового автомобиля, подключенного для освещения с помощью мостовой выпрямитель и емкость 600 мкФ для обеспечения На все светодиоды подается постоянный ток без мерцания и стабильной полярности. Супер-белый светодиод освещает салон автомобиля, а два красных светодиода Micro LED загораются в конце поезда.А добавлен переключатель, чтобы при желании можно было отключить функцию EOT. Бег пример этой машины (с 800 мкф мерцания control) можно увидеть здесь.

    Последовательная / параллельная проводная светодиодная цепь

    Здесь мы немного расширили наш пример №3 выше. У нас есть три группы последовательно-пар светодиодов. Каждый рассматривается как отдельная цепь для для расчетных целей, но соединены вместе для общего источника питания. Если бы все это были наши Micro Сверхбелые светодиоды, мы уже знаем все необходимое для построения этой схемы.Кроме того, мы знаем, что каждая последовательная пара потребляет ток 20 мА, поэтому всего на источнике питания будет 60 мА. Довольно просто.

    Самое интересное в последовательных / параллельных цепях светодиодов - это то, как Вы можете легко увеличить количество источников света на данном источнике питания. Возьми наш Например, импульсный источник питания N3500. Он обеспечивает ток 1 ампер (1000 мА). на 9 вольт.

    Используя нашу параллельную схему ранее, мы могли соединить 50 наших светодиодов 2x3, или Micro, или Nano Super-white (или любая комбинация равно 50), каждый со своим ограничительным резистором, и этот небольшой источник справится с этим.Этого, наверное, хватило бы для города приличных размеров. Сейчас же, если мы немного поумнее, мы могли бы использовать несколько последовательных / параллельных цепей и легко увеличить это количество, используя всего одну поставку. Если бы они все были последовательно / параллельно, мы могли запустить 100 ламп. Гипотетически, если бы мы были выполняя проект с использованием наших красных светодиодов N1012 Micro (напряжение устройства 1,7 В), мы смог запустить 400 светодиода с нашим небольшим запасом. Это красиво странный думал, однако.Кто-нибудь в темных очках?

    Для получения дополнительной информации об использовании нашего импульсного источника питания для вашего макеты или проекты диорам, нажмите здесь.

    Не забывайте правило №4. При создании групп серий убедитесь, что напряжения устройства и текущие требования очень похожи. Достаточно сказать, что смешение Светодиоды с большой разницей напряжения устройства или потребляемым током в та же группа серий не даст удовлетворительные результаты.

    Наконец, проявите изобретательность.Вы можете смешивать и сочетать. Последовательные схемы, параллельные, однопроводные светодиоды, последовательные / параллельные цепи, белые группы, красные группы, желтый, зеленый, что угодно. Пока вы рассчитываете каждый случай для правильного ограничения сопротивление и следите за схемами проводки на предмет правильного сечения проводов, освещения проекты будут работать с очень удовлетворительными результатами.

    Еще кое-что для тех из вас, кто чувствует себя некомфортно работая «вручную» с приведенными выше формулами, мы создали несколько калькуляторов делать вычисления за вас.Все, что вам нужно сделать, это ввести значения и нажать кнопка "вычислить". Их можно найти, нажав здесь.

    ... ДА БУДЕТ СВЕТ ...

    2008 Нжиниринг

    Решетки постоянного тока для светодиодного освещения - LED professional

    В качестве дополнительного преимущества можно снизить сложность устройств с питанием, перенеся их в инфраструктуру. Это может сделать устройства более прочными и надежными. Это снизит общую стоимость, особенно для массовых продуктов, таких как драйверы ламп и потребительские устройства, которые производятся и используются в большом количестве.

    С системной точки зрения выгодно изготавливать те устройства, которые необходимы в большом количестве, как можно проще и дешевле, а несколько центральных устройств могут быть более сложными. Это экономическое преимущество следует рассматривать как главное преимущество системы постоянного тока.

    Спецификация системы постоянного тока должна учитывать эти преимущества: Для уменьшения потерь в распределительной системе напряжение должно быть как можно более высоким. Для ламп предлагается рабочее напряжение вроде 380 В постоянного тока.
    Для уменьшения сложности требуется определение узкого допуска напряжения.

    Список литературы

    [1] Ульрих Бёке, Маттиас Вендт, Леннарт Исебудт, «Комбинированная система светодиодного освещения с питанием от солнечной и переменного тока», 14-я Европейская конференция по силовой электронике и приложениям (EPE'11), Бирминхем, Соединенное Королевство, 30 августа. -1 сентября 2011 г.

    [2] Т.-Ф. Ву, Ю.-К. Чен, Г.-Р. Ю., Ю.-К. Чанг, «Проектирование и разработка распределенной системы постоянного тока с подключением к сети для бытовых приложений», 8-я Международная конференция по силовой электронике - ECCE Asia, 30 мая - 3 июня 2011 г., Шилла Чеджу, Корея, статья №.ТуФ1-4.

    [3] Раквичиан Ваттанапонг, «Интеллектуальная сеть сообщества для децентрализации энергетики АСЕАН», презентация на Всемирном форуме по альтернативной энергии, Чиангмай, Таиланд, 12–14. Декабрь 2012 г. (Доступно в Интернете (29.06.2014) по адресу http://www.adicet.cmru.ac.th/waef2012/)

    [4] Бернхард Шерен, «Optionen für eine Gleichstromversorgung in einem Wohnhaus», магистерская диссертация в Кельнском университете прикладных наук, Институт электроэнергетики, Кельн, Германия, и Zuyd Hogeschool, Херлен, Нидерланды, 16.Апрель 2014.

    [5] Супонтана Вутхипонг, «Автономная фотоэлектрическая гибридная мини-система электросети масштаба МВт», презентация на Всемирном форуме по альтернативной энергии, Чиангмай, Таиланд, 12–14. Декабрь 2012 г. (Доступно в Интернете (29.06.2014) по адресу http://www.adicet.cmru.ac.th/waef2012/)

    [6] Чон-Хун Ан, Дон-Хи Ким, Бён-Кук Ли, Хён-Чхоль Джин, Джэ-Сун Шим, «Руководство по стандартам безопасности устройств постоянного тока на основе сравнительного анализа бытовой техники переменного и постоянного тока», Journal of Electrical Engineering & Technology Vol.7, No. 1, 2012, pp. 51 ~ 57, Интернет доступен (29.6.2014) по адресу: http://dx.doi.org/10.5370/JEET.2012.7.1.51

    Введение в средства управления освещением

    Хороший дизайн освещения включает в себя хороший дизайн элементов управления. Управление освещением играет важную роль в системах освещения, позволяя пользователям вручную или автоматически:

    • включать и выключать свет с помощью выключателя; и / или
    • отрегулируйте светоотдачу вверх и вниз с помощью диммера.

    Эта базовая функциональность может быть использована для получения следующих преимуществ для владельца освещения:

    • гибкость для удовлетворения визуальных потребностей пользователя; и / или
    • автоматизация для снижения затрат на электроэнергию и повышения устойчивости.

    В последние годы в средствах управления освещением появились две дополнительные возможности:

    • регулировка цвета источника света, включая оттенок белого света; и / или
    • генерировать данные посредством измерения и / или мониторинга.

    На основе обновления LCA Education Express EE101: Введение в управление освещением, эта статья содержит обзор основных функций современных средств управления освещением, преимуществ и основных вопросов, которые следует задать при определении подходящей стратегии управления освещением.

    Эффекты управления освещением

    Элементы управления освещением обеспечивают следующие основные функции. Конечные пользователи используют эти функции для поддержки управления энергопотреблением и / или визуальных потребностей.

    Элементы управления освещением

    развиваются, чтобы обеспечить расширенные функции, доступность которых зависит от типа системы и потребностей приложения.

    Преимущества: визуальные потребности

    Регулируя интенсивность одного или нескольких слоев освещения в пространстве, элементы управления освещением могут:

    • изменить внешний вид помещения;
    • облегчить выполнение различных функций пространства;
    • изменить атмосферу и настроение;
    • уменьшить блики; и / или
    • повысить удовлетворенность пользователей, предоставляя пользователям возможность управлять своим освещением.

    Изображения любезно предоставлены Finelite.

    Преимущества: управление энергопотреблением

    За счет уменьшения времени включения освещения, интенсивности или зонирования, средства управления освещением снижают как спрос, так и потребление энергии. Согласно исследованию Национальной лаборатории Лоуренса Беркли (LBNL), популярные стратегии управления освещением дают в среднем 24-38% экономии энергии освещения, что снижает эксплуатационные расходы здания.

    Из-за значительного сбережения энергии большинство государственных нормативов по энергопотреблению в коммерческих зданиях требует применения широкого диапазона средств контроля при новом строительстве.В существующей конструкции управляемость светодиодного освещения приводит к идеальному сочетанию с элементами управления, что позволяет минимизировать затраты на электроэнергию.

    Базовая функция

    Элементы управления освещением - это устройства и системы ввода / вывода. Система управления получает информацию, решает, что с ней делать, а затем соответствующим образом регулирует мощность освещения. Здесь мы видим базовую схему освещения (ножка переключателя). Энергия проходит по цепи, чтобы активировать группу огней. Эта система освещения обеспечивает освещение.

    Переключение

    Один из основных выходов переключается. Здесь мы видим переключатель, расположенный на линии между источником питания и нагрузкой. Когда переключатель замыкается (т. Е. Переключатель находится в положении «ВКЛ»), цепь замыкается, позволяя току течь к нагрузке. Когда он размыкается, цепь размыкается (переключатель в положении «ВЫКЛ.»), Что приводит к прекращению подачи питания на нагрузку. Это делает коммутатор контроллером мощности.

    Диммирование

    Другой основной выход - регулировка яркости.Если используется диммерный переключатель, в дополнение к включению / выключению, он может изменять ток, протекающий через нагрузку во время состояния включения, что увеличивает или уменьшает световой поток. Здесь мы видим диммер, помещенный на линию, причем выходной сигнал постоянно диммируется во всем диапазоне диммирования нагрузки.

    Управление цветом и CCT

    Со светодиодами относительно экономично предоставить пользователям возможность регулировать цвет освещения и CCT.

    В устройствах с настраиваемыми белыми светодиодами, отдельно регулируемые матрицы теплых и холодных белых светодиодов позволяют пользователям регулировать CCT источника света.Могут быть добавлены другие цвета для улучшения доступного цветового спектра и обеспечения хорошей цветопередачи.

    Два других подхода - от тусклого до теплого (светодиоды, которые затемняются до очень теплого белого цвета, как при диммировании лампами накаливания) и полноцветная настройка (отдельно регулируемые красные, зеленые и синие светодиоды плюс желтый или белый и, возможно, другие цвета).

    Изображение предоставлено USAI Lighting.

    Ручной или автоматический ввод

    Вход может быть ручным, автоматическим или их комбинацией, как показано на этом чертеже, изображающем функциональные возможности датчика присутствия настенного бокса с ручным включением.

    При ручном управлении ввод инициируется пользователем и осуществляется вручную. Он идеально подходит для приложений, движимых визуальными потребностями.

    При автоматическом управлении входным сигналом является сигнал от датчика (датчика присутствия или освещенности), компьютера или другой системы здания. Входной сигнал может зависеть от времени суток, количества людей, уровня освещенности или некоторых других условий. Автоматическое управление идеально подходит для приложений управления энергопотреблением.

    Разведка

    При ручном управлении человек принимает решение о том, регулировать ли освещение и насколько.При автоматическом управлении эту функцию выполняет микропроцессор или логическая схема. Этот микропроцессор или логическая схема называется контроллером освещения, который обеспечивает интеллектуальную систему управления. Контроллер освещения оценивает входные управляющие сигналы на основе своего алгоритма и решает, регулировать ли мощность освещения, когда и в какой степени.

    Контроллер может быть установлен как логическая схема в автономном устройстве управления или как отдельный компонент в системе управления.Если это отдельный компонент, он может находиться в центральном месте (централизованный интеллект), находиться рядом с нагрузкой или быть встроенным в светильники (распределенный интеллект). Чем более распределен интеллект системы, тем более гибким и гибким становится освещение.

    Выход переключения и затемнение

    Часто и переключение, и диммирование желательно в одном здании.

    Коммутация проста, но имеет ограниченную гибкость и может мешать работе в местах, занятых более чем одним пользователем.В результате он особенно эффективен для приложений управления энергопотреблением, таких как автоматическое отключение или уменьшение количества свободных помещений, а также для ручного управления в помещениях, где у пользователя (-ей) есть единое ожидание, когда будет включен свет.

    Регулировка яркости изменяет интенсивность с плавными переходами между уровнями освещенности, что обеспечивает высокий уровень гибкости, который может удовлетворить визуальные потребности пользователя. Большинство светодиодных светильников имеют драйверы с регулируемой яркостью в стандартной или стандартной комплектации, что снижает затраты на регулирование яркости.Регулировка яркости особенно подходит для приложений с визуальными потребностями и для реализации стратегий управления энергопотреблением, таких как управление дневным светом или настройка задач, в занятых помещениях.

    Правое изображение любезно предоставлено Schneider Electric.

    Контрольное зонирование

    Зонирование управления - важный аспект проектирования системы управления освещением, поскольку зонирование - это механизм, посредством которого управление освещением назначается осветительным нагрузкам. Зона управления определяется как один или несколько источников света, управляемых одновременно одним управляющим выходом.Зоны могут быть организованы в соответствии с энергетическими нормами, желаемой экономией энергии и гибкостью, обычным осветительным оборудованием (например, флуоресцентное или светодиодное), характеристиками пространства (например, меблировка и отделка), задачами, наличием дневного света и графиками освещения.

    Меньшие зоны управления (более высокая степень детализации зон в пространстве или здании) обеспечивают большую гибкость и, как правило, большую экономию энергии. По этой причине большинство энергетических кодексов регулируют контрольное зонирование, налагая ограничения на площадь.

    Традиционно контрольное зонирование и будущее изменение зонирования ограничивалось разводкой цепи освещения. Достижения в области коммуникаций делают возможным относительно экономичное зонирование, такое как отдельные светильники или балласты / драйверы, а также зонирование и изменение зон с использованием программного обеспечения вместо аппаратной разводки.

    Изображение любезно предоставлено Wattstopper.

    Элементы управления Описание

    Еще одним важным аспектом проектирования системы управления освещением является определение последовательности операций для системы.Последовательность операций - это описание выходов системы в ответ на различные входы для каждой контрольной точки. Он представлен в виде описательной части элементов управления, письменного документа, созданного на этапе концептуального проектирования проекта. Этот документ служит дорожной картой проекта для предполагаемой системы управления освещением.

    В частности, его можно использовать для:

    • сопровождение контрактной документации и подготовка спецификаций;
    • давать четкие указания подрядчикам и производителям во время торгов;
    • определить критерии для тестирования и принятия системы управления; и
    • служат в качестве общего справочника для владельца, подробно описывая, как работает система управления.

    Взаимодействие

    Чтобы система управления обеспечивала правильную работу, балласт / привод и источник света должны быть совместимы; балласт / водитель должны быть совместимы со стратегией управления и устройствами управления; и устройства управления должны иметь возможность обмениваться данными, если это необходимо.

    В основном функциональная совместимость зависит от метода управления или протокола. Протокол - это набор правил, которые определяют поведение компонентов в системе. В сети это включает в себя общение.Примеры включают Digital Addressable Lighting Interface (DALI) и ZigBee. Все элементы управления должны быть спроектированы для одного и того же протокола для обеспечения надежной совместимости, хотя системы с разными протоколами, включая освещение и автоматизацию зданий, могут интегрироваться с использованием шлюза, который может быть устройством или функцией программного обеспечения.

    Протокол может быть:

    • открытый или стандартизованный и доступный для всех производителей, что дает возможность выбора нескольких поставщиков;
    • закрытый или зависящий от производителя, который предоставляет решение, оптимизированное производителем, но связывает владельца с этим производителем для будущего обслуживания, изменений или расширения; или
    • сочетание этих двух типов, например, открытый протокол, адаптированный под конкретного производителя, или протокол, зависящий от производителя, который предоставляется другим производителям посредством лицензирования.

    Обратите внимание, что регулировка яркости 0–10 В - это метод, а не протокол. Таким образом, элементы управления и балласты / драйверы, предназначенные для регулирования яркости 0-10 В, могут быть совместимы, но дают несколько иные характеристики регулирования яркости. Это потому, что они тускнеют одинаково, но в остальном не работают в соответствии с одними и теми же унифицированными спецификациями. Чтобы обеспечить постоянное диммирование, рекомендуется избегать смешивания типов балласта / драйверов от разных производителей в одной и той же системе диммирования.

    Программное обеспечение

    Различные приложения и программное обеспечение поддерживают внедрение систем управления освещением.Наиболее надежное программное обеспечение доступно для централизованных интеллектуальных сетевых систем управления освещением. Находясь на сервере или в облаке, программное обеспечение может предоставлять множество функций, например:

    1) обнаружение контрольных точек (устройств и т. Д.)
    2) назначение контрольных точек зонам
    3) программирование последовательности операций для зон
    4) калибровка датчиков
    5) мониторинг контрольных точек и выдача сервисных предупреждений / сигналов тревоги
    6) запись и отображать потребление энергии и другие записанные данные
    7) резервное копирование данных и журналов событий и создание пользователей / уровней доступа

    Изображение любезно предоставлено Lutron Electronics.

    Проводные системы

    Управляющие устройства могут обмениваться данными, используя:

    Проводка сетевого напряжения , также называемая связью по линии электропередач или регулировкой яркости с управлением фазой. При использовании для управления проводка линейного напряжения обеспечивает путь как для сигналов питания, так и для сигналов управления. Несмотря на простоту, он не является гибким, ограничивая возможности управления.
    Электропроводка низковольтная . При использовании для управления низковольтная проводка обеспечивает выделенный путь для управляющих сигналов, которые проявляются в виде колебаний напряжения.Поскольку этот тип проводки не ограничивается кабелепроводом, он является гибким. Однако для каждой совместно используемой функции требуется свой собственный провод, что может привести к появлению большого количества низковольтных проводов и связанных с этим рисков неправильного подключения.
    Цифровая низковольтная проводка . Этот тип низковольтной проводки передает управляющие сигналы, состоящие из цифровых двоичных сообщений, вместо изменений напряжения. Пара проводов образует шину или путь передачи управляющих сигналов, соединяющих несколько светильников и управляющих устройств, которые обмениваются данными.Зоны управления создаются с помощью программного обеспечения, а не проводки. Оператор может дистанционно программировать и калибровать устройства управления. Потенциально двусторонняя проводка позволяет собирать данные с датчиков.

    Низковольтная управляющая проводка обычно перевозится навалом и разрезается в полевых условиях. Доступны варианты структурированной проводки, такие как заводские заделки с разъемами RJ45, RJ11 или другими, которые могут упростить установку, хотя для них требуется заранее определенная длина проводов.

    Беспроводные системы

    Беспроводные элементы управления обмениваются данными с помощью радиоволн или другого беспроводного подхода, что устраняет необходимость в проводке управления. Это особенно привлекательно для реализации сложных средств управления в существующих зданиях. Устройства ввода управления могут питаться от внутренней батареи или за счет сбора энергии окружающего света, перепада температур или механической энергии, производимой переключением переключателя. Они передают управляющие сигналы от беспроводного передатчика к беспроводному приемнику в контроллере освещения, который устанавливается на светильник, распределительную коробку или на панель.

    Изображение любезно предоставлено Daintree / GE.

    Ввод в эксплуатацию

    Ввод в эксплуатацию - это рекомендуемый процесс обеспечения качества, который гарантирует, что установленные системы управления освещением работают в соответствии с рекомендациями производителя и строительной документацией. Процесс ввода в эксплуатацию определяется директивой 0 ASHRAE (и кратко изложен в IES-DG-29) и требует ряда этапов, включая требования к проекту владельца, основы проектирования, функциональное тестирование, руководство по системе и обучение операторов.Некоторые пусконаладочные работы требуются в соответствии с последними нормами коммерческого энергопотребления. Для поддержки ввода в эксплуатацию производители предлагают устройства, которые калибруются самостоятельно или их легче калибровать.

    Стратегии управления

    Комбинирование различных входов и выходов приводит к нескольким доступным уникальным стратегиям управления освещением, которые могут удовлетворить визуальные потребности, потребности в управлении энергопотреблением или и то, и другое. В свою очередь, стратегии управления могут быть объединены в одном и том же пространстве с помощью слоев, чтобы максимизировать ценность.

    • Ручное управление
    • Определение присутствия
    • Расписание
    • Дневной свет
    • Настройка институциональной задачи
    • Настройка цвета
    • Генерация данных
    • Ответ на запрос

    Ручное управление

    Ручное управление - это простая стратегия, дающая пользователям возможность выбирать уровни освещенности ступенчато (переключение) или в широком диапазоне с плавными переходами между уровнями (затемнение). Визуальные потребности управляют ручным управлением, хотя это может сэкономить энергию в качестве побочного продукта.Типичные области применения включают частные и открытые офисы, помещения для встреч и обучения, молитвенные дома, развлекательные заведения и другие помещения. Согласно LBNL, эта стратегия может привести к экономии энергии освещения в среднем на 31%.

    Переключение может быть ВКЛ / ВЫКЛ или многоуровневым посредством отдельного управления ВКЛ / ВЫКЛ отдельных балластов / драйверов или светильников. Регулировка яркости может быть непрерывной, обеспечивая плавный переход в диапазоне затемнения, или ступенчатой, обеспечивая резкий или плавный переход между двумя или более фиксированными выходами.

    Изображение любезно предоставлено Lutron Electronics.

    Датчик присутствия

    Датчики присутствия - это устройства, которые автоматически включают и выключают свет в зависимости от того, занято ли место. Согласно LBNL, гарантируя, что свет включен только тогда, когда пространство занято, стратегии, основанные на занятости, обеспечивают экономию энергии освещения в среднем на 24%.

    Датчики присутствия

    отлично подходят для небольших замкнутых пространств, которые периодически заполняются, таких как частные офисы, классы, конференц-залы, комнаты для копирования и отдыха, туалеты и другие помещения.Они могут быть объединены в сеть для больших пространств.

    Если датчик обеспечивает автоматическое отключение, но требует ручного включения, его обычно называют датчиком незанятости. В качестве альтернативы датчик может автоматически включать нагрузку до 50% с ручным управлением с помощью переключателя, необходимого для полного включения света. Эти датчики обычно называются датчиками присутствия с частичным включением.

    Расписание

    Планирование регулирует выходную мощность системы освещения на основе временного события, реализованного с использованием часов, которые могут быть реализованы с использованием микропроцессора, встроенного в систему управления.В определенное время контролируемое освещение будет включаться, выключаться или тускнеть, чтобы либо сэкономить энергию, либо поддержать изменение пространственных функций. Планирование очень подходит для больших открытых пространств, которые регулярно используются, а также для пространств, которые периодически заполняются, но где свет должен оставаться включенным весь день по соображениям безопасности. Локальные элементы управления стеной (продление времени) часто используются для нерегулярного использования пространства. По данным LBNL, стратегии, основанные на загруженности (объединение планирования времени с отслеживанием присутствия), могут обеспечить экономию энергии освещения в среднем на 24%.

    Дневной свет

    Управление с учетом дневного света (также называемое сбором дневного света) использует датчик освещенности (также называемый фотосенсором или фотоэлементом) с контроллером мощности для переключения или затемнения освещения в ответ на доступный дневной свет. Когда уровень света поднимается выше целевого порога из-за дневного света, фотодатчик подает сигнал контроллеру о снижении светоотдачи, тем самым экономя энергию. Согласно LBNL, управление с учетом дневного света может обеспечить экономию энергии освещения в среднем на 28%.

    Эта стратегия хорошо подходит для освещения зон, прилегающих к окнам и потолочным окнам, а также под мансардными окнами и мониторами на крыше - везде, где дневной свет постоянный и обильный.

    Настройка задач

    Также называемая «институциональная настройка» и «высококачественная отделка», настройка задачи включает уменьшение освещения в пространстве на основе требований поддерживаемого рабочего уровня освещенности, рекомендованных IES, или предпочтений пользователя для отдельных пространств, а не изначально спроектированных поддерживаемых уровней освещенности, которые могут быть выше, чем нужно.По данным LBNL, настройка задач дает в среднем 36% экономии энергии на освещение.

    Настройка цвета

    Путем раздельного затемнения светодиодов красного, зеленого, синего и потенциально других цветов можно получить практически любой цвет. Это называется настройкой цвета. Настройка цвета подходит для развлечений, вывесок и подобных приложений. Путем раздельного затемнения матриц белых светодиодов с теплым и холодным CCT, CCT светильника можно регулировать в диапазоне, который называется настраиваемым белым освещением.Ниже приведены несколько примеров возможностей настраиваемого белого общего освещения:

    • Автоматический переход на очень теплую CCT во время диммирования, чтобы имитировать диммирование лампами накаливания.
    • Динамически калибруйте CCT для установленных светильников и поддерживайте заданный CCT с течением времени.
    • Отрегулируйте CCT после первоначальной установки, чтобы настроить внешний вид помещений и объектов, таких как искусство.
    • Отрегулируйте CCT в соответствии с изменяющимся использованием пространства, дисплеями, внутренней отделкой и предпочтениями пользователя.
    • Автоматическая регулировка CCT для создания идеального дневного цикла или оптимального сочетания с реальным дневным светом.
    • Имитируйте внешний вид популярных традиционных источников света и настраивайте новые источники света.
    • Играет потенциальную роль в циркадном освещении, поскольку свет, насыщенный синими волнами, действует как циркадный стимул.

    Изображение предоставлено Cree, Inc.

    Создание данных

    Некоторые системы управления освещением позволяют собирать данные с контрольных точек, подключенных через цифровую сеть. Система может напрямую измерять или оценивать потребление энергии и / или контролировать рабочие параметры.Дополнительные датчики могут собирать такие данные, как занятость и температура. В некоторых системах управления наружным освещением могут быть добавлены другие датчики, которые собирают данные обо всем, от угарного газа до снегопада.

    Данные передаются на сервер или в облако для извлечения и использования через программное обеспечение. Данные о потреблении энергии можно анализировать и использовать для различных целей. Контролируемые условия могут вызывать срабатывание аварийных сигналов при проведении технического обслуживания, как в примере, показанном здесь.

    Изображение любезно предоставлено Lutron Electronics.

    Ответ на спрос

    Реагирование по запросу (DR) включает снижение мощности освещения либо по запросу от поставщика электроэнергии во время аварийного события (аварийный DR), либо в зависимости от времени суток для минимизации затрат по запросу (экономичное DR). Поскольку значительная часть световой нагрузки типичного здания не может быть отключена в рабочее время, это обычно влечет за собой затемнение.

    Изображение любезно предоставлено OSRAM Encelium.

    Общие типы управления освещением

    Элементы управления освещением могут быть отнесены к следующим категориям:

    • Автономные устройства
    • Комнатные системы управления
    • Централизованные системы управления зданием

    Автономное управление

    Автономные органы управления - это устройства управления, предназначенные для обеспечения автономной работы осветительной нагрузки, которой может быть светильник или светильники, установленные на опоре переключателя.Обычно они устанавливаются на линии питания переменного тока и напрямую управляют нагрузкой.

    Примеры включают тумблеры, датчики присутствия, таймеры, диммеры, датчики света и переключатели с карточками отелей.

    Преимущества заключаются в том, что они относительно просты в установке, знакомы установщикам и не требуют подключения к контроллеру освещения. Недостатками являются регулируемые автономные элементы управления, требующие индивидуальной калибровки, а наложение нескольких стратегий управления на одну и ту же нагрузку может привести к сложной проводке.

    Изображение любезно предоставлено Wattstopper.

    Автономные встроенные датчики

    Автономные датчики присутствия и света могут быть установлены в светильниках или прикреплены к ним для автономного управления светильниками. Обычно датчики указываются производителем светильника и устанавливаются на заводе. Тем не менее, они могут быть указаны производителем управления для относительно простого монтажа в полевых условиях. Элементы управления могут предлагать такие параметры, как затемнение или переключение на более низкий уровень освещенности во время отсутствия, вместо выключения.Если светильники тускнеют, а не выключаются, может потребоваться дополнительное управление планированием для обеспечения отключения в соответствии с энергетическим кодексом.

    Преимущество этого подхода - индивидуальное управление светильниками, которое обеспечивает максимальную экономию энергии и оперативность, но без дополнительной проводки. Обеспокоенность заключается в том, что автономное управление отдельным светильником может вызывать сочетание состояний ВКЛ, затемнения и ВЫКЛ на потолке, что может представлять собой эстетический компромисс.

    Изображения любезно предоставлены Левитоном.

    Комнатные системы управления

    Комнатные системы управления включают в себя комплект контроллеров освещения и устройств ввода, предназначенных для установки по принципу «plug-and-play», готовых к соблюдению норм энергопотребления и автономной работы в помещении.

    Большинство контроллеров комнатного освещения оснащены ручным переключателем, входами датчиков присутствия и освещенности; 2-3 реле для переключения; и 2-3 диммирующих выхода для диммирования. Обычно кабели Ethernet соединяют переключатели и датчики с контроллером. Проводка линейного напряжения соединяет контроллеры освещения и светильники. Для регулирования яркости контроллер передает сигналы по сети или по низковольтной проводке. Контроллеры устанавливают возле светильников.

    Эти системы часто имеют заранее сконфигурированные последовательности операций для упрощения соблюдения энергетического кодекса.Некоторые системы позволяют контроллерам подключаться друг к другу и к центральному серверу для масштабируемого централизованного сетевого управления освещением. Преимущество такого подхода - простота.

    Изображение любезно предоставлено Eaton.

    Сетевые системы на базе светильников

    При таком подходе светодиодные светильники оснащены встроенными датчиками и контроллером освещения, устанавливаемыми на заводе. Контроллеры освещения имеют уникальные адреса в сети освещения, что позволяет их группировать и программировать.Многие решения имеют предварительно сконфигурированные последовательности операций для упрощения настройки и обеспечения соответствия нормам энергопотребления. Контроллеры подключаются с помощью низковольтной проводки или по беспроводной связи с использованием радиоволн. Некоторые системы предлагают возможность распределять светильники по группам и программировать их с помощью портативного ИК-пульта дистанционного управления. Управление зонированием не ограничивается сменой ног. Некоторые системы позволяют взаимодействовать с системами управления зданием, центральным сервером или другими сетями.

    Изображение любезно предоставлено Acuity Brands.

    Комнатные сетевые системы

    При таком подходе в каждый светильник встроен контроллер освещения, но датчики устанавливаются вне светильника. Светильники и устройства ввода обычно подключаются с помощью Ethernet или другой низковольтной проводки, образуя сеть индивидуально адресуемых / управляемых светильников. Это позволяет зонировать и повторно зонировать светильники индивидуально или в группах и с несколькими стратегиями управления. Программируемые функции могут включать расписание, целевые уровни освещенности и временные задержки.Некоторые системы позволяют взаимодействовать с системами управления зданием, центральным сервером или другими сетями.

    Изображение любезно предоставлено Wattstopper.

    Традиционное управление на уровне здания

    Традиционно автоматизация освещения на уровне здания реализовывалась с помощью панелей управления, обычно размещаемых в центральном месте, например, в электрическом помещении. Эти панели представляют собой металлические корпуса, в которых размещены реле, контакторы, дистанционно управляемые автоматические выключатели или диммерные модули.Типичная низковольтная панель имеет низковольтные входы для управляющих сигналов и линейные выходы для управления нагрузками. Интеллектуальные панели оснащены встроенным контроллером освещения для назначения устройств ввода нагрузкам и планирования функций управления. Подключение локальных переключателей к панели позволяет локально переопределить запланированное отключение, чтобы пользователи не оставались в темноте в нерабочее время.

    Этот подход централизует управление освещением и может быть интегрирован с системами управления зданием, но обеспечивает ограниченную гибкость в зонировании управления.Каждая зона требует прокладки низковольтной проводки обратно к панели.

    Изображение любезно предоставлено Институтом Новостройки.

    Централизованные интеллектуальные сетевые системы управления

    Централизованные интеллектуальные сетевые системы управления обеспечивают программируемое управление освещением для целых этажей, зданий или кампусов. Они могут быть опцией с расширенными функциями для решения управления на базе помещения или упакованы в виде комплексной системы. Операционное программное обеспечение и данные хранятся на центральном сервере или в облаке.

    Светильники

    имеют индивидуальную адресацию в сети, что позволяет зонировать и изменять зонирование с помощью программного обеспечения, обеспечивая максимальную гибкость. Светильники принимают управляющие входные сигналы от самых разных устройств управления, обеспечивая полный спектр стратегий управления, включая сложные последовательности операций. Основным преимуществом этого типа системы является потребление энергии, загруженность, состояние светильника / зоны и, возможно, другие данные могут быть записаны, сохранены и отображены для анализа энергии и технического обслуживания.

    Изображение любезно предоставлено OSRAM Encelium.

    Связанные

    .

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *