Схема соединения акб – Последовательное и параллельное соединение аккумуляторов
Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
Так как я довольно часто делал обзоры аккумуляторов, а также упоминал о переделке аккумуляторного инструмента, то в личке меня часто спрашивают о тех или иных нюансах переделок.Спрашивают разные люди и вопросы часто примерно одинаковы, потому я решил сделать небольшой обзор и одновременно ответить на некоторые общие вопросы, связанные с выбором комплектующих и переделкой батарей.
Возможно кому нибудь обзор покажется неполным, так как переделке подверглась только сама батарея, но не волнуйтесь, я планирую сделать вторую часть обзора, где попробую ответить на вопросы по переделке зарядного устройства. А заодно хотелось бы узнать, как считает общественность, что лучше — универсальная плата совмещенная с БП, плата сама по себе, платы DC-DC или другие варианты.
Шуруповерты, да и просто любой другой аккумуляторный инструмент, производится уже довольно много лет. Потому на руках у пользователей накопилась довольно большая масса как старых батарей, так и лежащего иногда мертвым грузом инструмента.
1. Просто ремонт батареи, т.е. замена старых элементов на новые.
2. Переделка с аккумуляторного питания на сетевое, вплоть до установки БП в аккумуляторный отсек.
3. Замена Никель-кадмиевых и Никель-Металл гидридных на Литиевые.
В качестве небольшого отступления, иногда смысла переделывать/ремонтировать просто нет. Например если у вас совсем дешевый шуруповерт, купленный на мегараспродаже за 5 баксов, то вас может несколько удивить, что стоимость переделки выйдет как несколько таких шуруповертов (я утрирую). Потому надо сначала для себя прикинуть плюсы/минусы от переделки и ее целесооразность, иногда проще купить второй инструмент.
Первый вариант наверняка многие уже проходили, как впрочем и я. Он дает результат, хотя в случае фирменного инструмента часто хуже, чем был изначально. По цене выходит немного дешевле, по трудоемкости проще и значительно.
Второй вариант также имеет право на жизнь, особенно если работа происходит дома и неохота тратиться на замену аккумуляторов.
Третий вариант самый трудоемкий, но позволяет существенно улучшить эксплуатационные характеристики инструмента. Это и увеличение емкости аккумулятора и отсутствие «эффекта памяти», а иногда и увеличение мощности.
Но кроме трудоемкости появляется побочный эффект, литиевые аккумуляторы немного хуже работают на морозе. Хотя при условии, что многие фирмы без проблем производят такой инструмент, то я считаю, что иногда проблема преувеличена, хотя и справедлива.
Батареи имеют разную конструкцию, хотя в общем они имеют много общего, потому я буду рассказывать, а заодно и показывать на примере одного из представителей такой категории, шуруповерта Bosch PSR 12 VE-2. Этот шуруповерт моего товарища, он же и выступил «спонсором» обзора, предоставив для переделки сам шуруповерт, аккумуляторы, плату защиты и расходники.
Шуруповерт довольно неплохой, имеется блокировка шпинделя, две скорости, потому переделывать имеет смысл.
Так получилось, что аккумуляторных блоков было даже три, но переделывать будем один, еще один оставлю для другого обзора 🙂Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
Кстати, аккумуляторы разные, но оба на 12 Вольт, емкость 1.2Ач, соответственно 14.4 Втч.Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
Разбираются аккумуляторные блоки по разному, но чаще всего корпус скручен при помощи нескольких саморезов. Хотя мне попадались варианты как на защелках, так и склеенные.Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
В любом случае внутри вы увидите примерно такую картину. В данном случае сборка из 10 никель-кадмиевых аккумуляторов, причем обычно применяются аккумуляторы одного типоразмера, но вот их укладка может иногда отличаться. На фото один из распространенных вариантов, 9 штук внизу и один в вертикальной части. Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
Первым делом предстоит выбор аккумуляторов для замены.
В электроинструменте применяются аккумуляторы, рассчитанные на большой разрядный ток.
Я не так давно делал обзор разных аккумуляторов, в конце которого привел табличку, которая может помочь в этом вопросе, но если не уверены, то просто найдите документацию по аккумуляторам, которые планируете купить. Благо у фирменных аккумуляторов обычно с этим проблем нет.
Например я рекомендую такие типы:
Для инструмента средней мощности — LGDBHG21865, LGDBHE41865, Samsung INR18650-30Q
Следует помнить, что часто заявленная емкость аккумулятора обратно пропорциональна максимально отдаваемому току. Т.е. чем на больший ток рассчитан аккумулятор, тем у него меньше емкость. Пример конечно довольно условный, но очень близок к реальности. Например очень емкие аккумуляторы Panasonic NCR18650B для электроинструмента не подходят, так как их максимальный ток всего 6.8 Ампера, шуруповерт же потребляет 15-40 Ампер.
Плата защиты аккумуляторной батареи или как переделать батарею шуруповертаА теперь что нельзя применять:
Аккумуляторы показанные на фото ниже, а также всякие Ультрафайр, Мегафайр, а также любые 18650 с заявленной емкостью 100500мАч.
Кроме того я категорически не рекомендую применять старые аккумуляторы от батарей ноутбуков. Во первых, они не рассчитаны на такой ток, во вторых, они скорее всего будут иметь большой разброс характеристик. Причем не только по емкости, а и по внутреннему сопротивлению. Лучше примените их где нибудь в другом месте, например в ПоверБанке для заряда вашего смартфона. Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
Альтернативный вариант, модельные батареи, например для катеров, квадракоптеров, машин и т.п.
Применять вполне можно, но я бы предпочел привычные 18650 или 26650 и виду наличия прочного корпуса, а также более реальной замены в будущем. 18650 и 26650 купить легко, а модельные могут убрать из продажи, заменив их батареями другого формфактора.
Но кроме всего прочего следует помнить, что нельзя применять аккумуляторы разной емкости. А вообще желательно использовать аккумуляторы из одной партии купив сразу необходимое количество (в идеале +1 про запас, если все таки попадутся разные). Т.е. если у вас на полке год лежит 2 аккумулятора, а потом вы покупаете к ним пару новых и соединяете последовательно, то это лишний шанс получить проблемы и балансировка здесь уже может не помочь, не говоря о аккумуляторах с изначально разной емкостью.
Шуруповерт не очень мощный, потому я думаю что проблем быть не должно. Аккумуляторы рассчитаны на длительный разрядный ток в 20 Ампер, при выборе аккумуляторов следует найти в документации на аккумулятор соответствующую строку и посмотреть какой ток там указан.Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
Литиевые аккумуляторы имеют заметно большую емкость при меньших габаритах, чем кадмиевые. На фото слева сборка 10.8В 3Ач (32Втч), справа родная, 12В 1.2Ач (14.4Втч). При выборе количества требуемых аккумуляторов для замены следует руководствоваться тем, что условно один литиевый (LiIon, LiPol) заменяет 3 штуки обычных. В 12 Вольт батарее стоит 10 штук, потому обычно их меняют на 3 штуки литиевых. Можно поставить 4 штуки, но инструмент будет работать с перегрузкой и возможны ситуации, когда может пострадать.
Если у вас 18 Вольт батарея, то там скорее всего стоит 15 обычных, которые меняются на 5 литиевых, но такой инструмент встречается реже.
Или говоря простым языком,
2-3 NiCd = 1 литиевый,
5-6-7 NiCd = 2 литиевых,
8-9-10 NiCd = 3 литиевых,
11-12-13 NiCd = 4 литиевых
и т.д.Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
Перед сборкой необходимо проверить емкость аккумуляторов, потому как даже в одной партии аккумуляторы могут иметь разброс, причем чем «безроднее» производитель, тем больше будет разброс.
После этого следует полностью зарядить все аккумуляторы чтобы уравнять их заряд.Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
Соединение аккумуляторов.
Для соединения аккумуляторов применяют несколько решений:
1. Кассеты
2. Пайка
3. Точечная сварка.
1. Кассета, очень просто и доступно, но категорически не рекомендуется для больших токов, так как имеет высокое сопротивление контакта.
2. Пайка. Вполне имеет право на жизнь, я сам так делаю иногда, но данный способ имеет нюансы.
Как минимум паять надо уметь. Причем уметь паять правильно, а главное — быстро.
Кроме того надо иметь соответствующий паяльник.
Пайка происходит следующим образом: Зачищаем место контакта, покрываем это место флюсом (я использую F3), берем залуженный провод (лучше не очень большого сечения, 0.75мм.кв достаточно), набираем на жало паяльника много припоя, прикасаемся к проводу и вместе с ним прижимаем к контакту аккумулятора. Либо прикладываем провод к месту пайки и паяльником с большой каплей припоя прикасаемся к месте между проводом и аккумулятором.
Потому берут старый паяльник с большим медным жалом, желательно хорошо прогретый, тогда прогреваться будет только место пайки и после тепло просто распределится и общая температура будет не очень высокой.
Проблемы касаются минусового вывода аккумулятора, с пайкой плюсового обычно сложностей нет, он легче, но тоже сильно перегревать не советую.
В любом случае, если у вас нет опыта пайки, то крайне не рекомендую этот способ.
3. Самый правильный способ — точечная сварка, мгновенно, без перегрева. Но сварочный станок должен быть правильно настроен чтобы не сделать сквозную дыру в дне аккумулятора, потому лучше обратиться к профессионалам. За небольшую денежку на рынке вам сварят вашу батарею.
Альтернативный вариант, в некоторых онлайн магазинах предлагается услуга (вернее варианты лотов, с лепестками и без) по привариванию контактных лепестков, это не очень дорого, но гораздо безопаснее пайки.
Данную сборку «сварил» тот же товарищ, который и дал мне шуруповерт для обзора.
На фото видно, что между лепестком и корпусом аккумулятора проложен тряпичный изолятор. Это важно, так как без него вы можете перегреть лепесток и он проплавит изоляцию аккумулятора, последствия думаю понятны.
Внимательные читатели наверняка заметили непонятные пластмассовые проставки между аккумуляторами.
Данное решение относится к классу — как делать правильно.
Инструмент в работе подвержен вибрации и возможна ситуация повреждения изоляции между банками (я такого не встречал, но теоретически). Установка проставок исключает данную ситуацию. Можно не ставить, но так более правильно. Вот только где их купить, не подскажу, но можно поискать на рыках в батарейных киосках.Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
Затем необходимо вывести провода для подключения к плате защиты и клеммной колодке.
Для силовых проводов я использую провод сечением не менее 1.5мм.кв, а для менее нагруженных цепей 0.5мм.кв.
Конечно вы спросите, зачем провод 0.5мм.кв если там тока нет и можно применить гораздо более тонкий провод. Провод большего сечения имеет толще изоляцию и обеспечивает большую механическую прочность, т.е. его сложнее повредить. Вы конечно можете использовать любой провод, я лишь показал вариант, который считаю более правильным.
В идеале провода сначала залудить с обеих сторон, а свободные концы изолировать, но такое возможно при второй переделке одного и того же аккумулятора, когда длина проводов уже известна. Для первой я обычно беру провода с запасом.Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
Если присмотреться, то на верхнем фото заметны отверстия в крайних клеммах аккумулятора, это также делается для повышения надежности соединения. Незалуженный провод вставляется в отверстие и запаивается, в таком варианте меньше риск получить плохой контакт.
В общем паяем провода, заодно желательно дополнительно изолировать клеммы при помощи термоусадки.Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
В итоге у нас получится такая сборка. От плюсового контакта отходит два провода, это обусловлено особенностью подключения платы защиты.Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
Последний шаг в подготовке сборки скорее желателен, чем обязателен. Так как сборка «живая», то необходимо зафиксировать элементы друг относительно друга. Для этого я использую термоусадочную трубку, хотя в данном случае корректнее — трубу. Она довольно тонкая, но весьма прочная, ее цель именно сжать всю конструкцию.Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
Надеваем термоусадку и при помощи фена усаживаем ее. Привычный вариант с зажигалкой скорее всего не пройдет, так как желательно делать это равномерно.
В тоге у нас вполне заводская, на вид, сборка аккумуляторов.Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
Примеряем собранную сборку в корпусе. Вообще конечно обычно это делают сначала, этот момент я как то упустил, но думаю что это вполне логично 🙂Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
Монтаж.
Дальше следует этап установки сборки в батарейный отсек. Тривиальная на первый взгляд операция кроет в себе небольшие подводные камни.
Для начала вымываем пыль и грязь из отсека. Я сделал ошибку и протер только нижнюю часть, остальное потом вычищал щеткой и ваткой. Потому проще помыть с мылом и просушить.
Дальше приклеивание сборки. В исходном варианте аккумуляторы просто были зажаты половинками корпуса, но в нашем случае такое редко возможно, потому сборки чаще всего приклеивают.
Здесь как и раньше, есть несколько вариантов, рассмотрим их.
1. Двухсторонний скотч
2. Термоклей
3. Силиконовый герметик
4. Прибить насквозь 150 гвоздями, а с обратной стороны загнуть. 🙂
Так как последний вариант больше подходит для любителей экстрима, то распишу более «приземленные».
1. Очень просто и удобно, но так как место контакта маленькое, то держит не очень хорошо, а кроме того надо использовать хороший скотч.
2. Вариант хороший, сам иногда пользуюсь (кстати, применяю черный термоклей). Но в данном случае не советовал бы. Дело в том, что термоклей имеет свойство «плыть» при нагреве. Для этого достаточно забыть шуруповерт летом на улице и получить в итоге болтающуюся внутри батарею. Я не скажу что такое будет обязательно, но такое свойство клей имеет, факт. Кроме того, термоклей не очень хорошо липнет к массивным элементам и при нагрузке может просто отвалиться.
3. На мой взгляд самый удобный вариант. Герметик не боится нагрева, не течет со временем и имеет хорошую адгезию к большинству материалов. Кроме того он довольно эластичен и при этом практически не теряет эластичность со временем.
Я использовал санитарный герметик Церезит. На фото может показаться что он еле намазан, это не так, герметика довольно много. Кстати, следует учитывать, что большинство герметиков не клеит к предыдущему слою герметика.
Кроме того можно применить похожий монтажный клей в таких же тубах, например «Момент», но силикон мне кажется более подходящим.
В общем наносим герметик, вставляем нашу сборку, прижимаем и оставляем сохнуть.
Плата защиты аккумуляторной батареи или как переделать батарею шуруповертаПлата защиты.
Вот мы и дошли до собственно предмета данного обзора, платы защиты. Заказаны они были еще весной, но посылка потерялась, их потом выслали заново, в итоге они таки пришли.
Почему были заказаны именно эти платы я уже не вспомню, но они смирно лежали и ждали своего часа, дождались 🙂
Данная плата рассчитана на подключение трех аккумуляторов и имеет заявленный рабочий ток 20 Ампер.
Только сейчас я обратил внимание, что плата имеет довольно высокий порог срабатывания защиты по превышению напряжения, 4.325 Вольта. Возможно я неправ, но считаю что лучше 4.25-4.27.
Также указано, что ток 20 Ампер это максимальный длительный, ток срабатывания при перегрузке составляет 52 Ампера.
Табличка очень похожа на таблички от других плат, потому я выделю отдельные важные пункты.
1. Ток балансировки, так как данная плата этого не умеет, то здесь прочерк
2. Максимальный длительный ток, для большинства применения надо 20-25 Ампер. На менее мощном инструменте достаточно и 15-20, более мощный потребует 25-35 и более.
3. Максимальное напряжение на элементе, при котором плата отключает батарею. Зависит от типа примененных аккумуляторов.
4. Минимальное напряжение на элементе при котором плата отключит нагрузку. 2.5 Вольта это довольно мало, лучше выбирать этот параметр таким же, как заявлено в даташите на аккумулятор.
5. Ток, при котором срабатывает защита от перегрузки. Не надо стремится к запредельным величинам. Хотя этот ток напрямую связан с максимальным рабочим, потому обычно здесь проблем нет. Даже если сработала защита, то чаще всего достаточно просто отпустить кнопку шуруповерта и потом нажать опять.
6. Данный пункт отвечает за автоматический сброс срабатывания защиты.
7. Сопротивление ключевых транзисторов, чем меньше, тем лучше.
Внешне к плате претензий нет, качество сборки вполне аккуратное.Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
Снизу ничего нет, это и к лучшему, не будет проблем с приклеиванием платы 🙂Плата защиты аккумуляторной батареи или как переделать батарею шуруповерта
О платах защиты я расскажу немного подробнее.
Для начала отвечу на вопрос — а можно без платы защиты? Нет.
Плата защиты как минимум обеспечивает отключение при перегрузке, это вредно как для аккумуляторов, так и для инструмента.
Кроме того плата защищает от перезаряда и переразряда. По сути можно сказать, что переразряд можно почувствовать по падению мощности, но это относится не ко всем инструментам, а кро
www.kirich.blog
Подключение второго аккумулятора в машину — схема подключения
Назначение АКБ – обеспечить запуск авто, во время движения, подпитывать потребителей бортовой сети тандемом генератор – аккумулятор. Но современные машины оборудованы дополнительными приборами. Их суммарная мощность временами превосходит возможности силового узла. В результате батарея садится, не справляется с запуском двигателя. Назрела необходимость установки второй АКБ в авто.
Как подключить второй аккумулятор в машине
Проблема, найти место для дополнительного прибора, часто решается за счет багажника. Не следует использовать ниши под сидениями в салоне – выделения от работающей батареи вредные.
Следует решить вопрос с восстановлением заряда во втором аккумуляторе в машине. Генератор рассчитан на работу в паре с одним АКБ определенной емкости. Подключение второй батареи перегружает генератор. Можно второй аккумулятор заряжать от сети, но это неудобно. Значит, необходимо найти способ питания помощника от бортовой сети, не укорачивая срок службы генератора.
Способы подключения двух источников:
- использовать резистор для подстройки, устанавливая порог срабатывания, для подключения второй АКБ;
- схемой соединения, объединять оба источника энергии в момент запуска, обеспечивая большой пусковой ток;
- установив 2 АКБ следить, чтобы один был всегда полностью заряжен– для экстремалов, которым может потребоваться электролебедка;
- использовать энергию второго АКБ в машине для музыки или для работы медиасистемы.
Как подключить второй аккумулятор в машине
Часто установкой второго аккумулятора в машину решают несколько проблем: отдельного питания бытовых приборов и удвоения тока на лебедку. Но генератор один. Как подключить второй АКБ? Соединив батареи параллельно, мы заставим генератор отдавать в сеть удвоенный ток. Одна батарея может паразитировать за счет другой, забирая больший заряд. Батареи могут и сесть равномерно, не позволив запустить стартер.
1.Применение разделительного контроллера при подключении второго аккумулятора в машину, позволит заряжать АКБ поочередно и заряд использовать рационально. Коммутационные устройства представляют переключатели различных конструкций. Примером служат устройства развязки аккумуляторов (УРА), самый популярный – УРА 200. С помощью этого прибора можно использовать двойную энергию при работе лебедки или запуске мотора зимой.
2.Комплект для установки второй АКБ включает полупроводниковое сопротивление. Подключение через диодный изолятор разделяет питание бортовой сети авто и дополнительных бытовых систем. В период простоя дополнительный аккумулятор будет разряжаться, поддерживая работу гаджетов. Основной АКБ сохраняет готовность к запуску мотора. Но во время движения генератор подзаряжает обе батареи. Для того чтобы воспользоваться вторым АКБ в основной цепи, его потребуется переставить в гнездо главного.
3.Наиболее рациональная схема подключения второго и последующих АКБ разработана с установкой переключателя зарядки. Устройство может быть ручным или автоматическим, но заряжается от генератора всегда одна батарея. Уровень заряда всех аккумуляторов выведен на панель управления. У водителя есть выбор, что на данный момент в приоритете, музыка, кондиционер или готовность поработать лебедкой.
Есть авто, где производитель предусмотрел схему и установку второго аккумулятора. Но чаще создавать комфорт в машине приходится своими руками.
Второй аккумулятор в автомобиле для музыки
Аккумулятор для звука – насколько это оправдано? Современные акустические системы мощны, при работе на одном общем АКБ идет просадка напряжения, меняется качество звука. Собственно, свинцово-кислотные батареи и не приспособлены работать с мощными бытовыми устройствами с тонкой настройкой.
Планируя, как установить второй аккумулятор только для автозвука в машину, нужно знать:
- Стандартный свинцово-кислотные батареи стоят дешево, но есть требования к установке их только вертикально в проветриваемом пространстве. А нужно источник энергии установить рядом с аудиосистемой. Стандартные АКБ быстро садятся и долго заряжаются.
- Гелевые аккумуляторы стоят дорого, плохо работают при низкой температуре, требовательны к качесту зарядки, но подходят для обеспечения качественного звучания и установки в любом положении.
- Батареи AGM хорошо подходят для того чтобы обеспечивать отличное и продолжительное звучание. Смущает цена батареи. Обязательное условие – зарядное устройство должно быть программируемым.
Основное требование при установке второго аккумулятора – емкость батарей в машине должна быть равной. Устанавливать прибор нужно вне салона. Схемы подсоединения используются те, что описаны выше.
Видео
Как правильно поставить второй аккумулятор в машину, последовательность действий, можно посмотреть на видео.
batts.pro
Параллельное и последовательное соединение аккумуляторов между собой
Аккумулятор, как видно из названия – устройство для накапливания электрической энергии. В нужный момент эта энергия зажигает светодиоды или лампочки накаливания в фонарях, приводит в движение электромоторы, питает электронные устройства, обеспечивает работу блоков бесперебойного питания.
Параллельное и последовательное, а также комбинированные соединения аккумуляторов используют для сборки батарей с различными характеристиками.
Виды изделий разного назначения
Для чего соединяют источники питания
Соединяя между собой отдельные источники питания, можно получить несколько выгод:
- Поднять напряжение питания.
- Уменьшить или увеличить ток в цепи потребителя.
- Увеличить общую ёмкость сборки батарей.
Потребляемая мощность равна произведению напряжения, приложенного к потребителю и протекающего в цепи тока.
Таким образом, увеличивая напряжение питания, можно снизить нагрузку на провода от протекающего тока. Легко можно заметить, что чем больше параметр тока, тем сильнее греются проводники. Нагрев не производит никакой работы, а значит, суммарный коэффициент полезного действия электрического устройства снижается.
Важно! Увеличивая напряжение питания, и снижая протекающий ток, получают экономию энергии за счёт снижения тепловых потерь в цепи.
Основные характеристики заряжаемых батарей
Прежде чем приступить к «опытам» и соединить аккумуляторы, надо понять, какими характеристиками они обладают и что даёт каждый из видов соединений.
Первая характеристика номинальное напряжение. Параметр определяет, какое напряжение может быть между положительной и отрицательной клеммами. Характеристика эта не постоянная и номинальное значение выдаётся в цепь только от полностью заряженного источника питания, по мере разряда и под нагрузкой электродвижущая сила (ЭДС) снижается.
На сегодняшний день самыми популярными значениями являются 1,2, 2,4, 6 или 12 Вольт.
Обратите внимание! Минимальное напряжение накопителей 1,2 Вольта, а не 1,5 В как у «одноразовых» батареек.
Подключая несколько источников последовательно, достигают повышенного напряжения на выходе сборки.
Ёмкость показывает, какое количество электричества устройство способно выдать до достижения минимального допустимого уровня разряда и измеряется в Ампер/часах.
Например, обозначение 50 А/ч говорит о том, что при токе равном 1А, батарея будет обеспечивать питание 50 часов, или при токе 2 А проработает 25 часов до следующей зарядки.
Представленный расчёт примерный и действует только для малых токов разряда. Повышенный ток быстрее разряжает аккумулятор. Уточнить характеристику можно по прилагаемым к изделиям диаграммам разрядных характеристик.
Пример характеристики разряда в зависимости от тока нагрузки
Общая ёмкость при любом из видов подключений будет равна суммарным показателям всех включённых в цепь аккумуляторов.
Последовательное подключение
Схема последовательного подключения предполагает соединение проводником положительного полюса первого источника и отрицательного второго. Далее положительный выход второго источника питания соединяют с отрицательным третьего и так далее. Выводами сборки служат отрицательная клемма первой батареи и положительная последнего в схеме.
Последовательное соединение
Общее напряжение такой сборки будет равняться сумме ЭДС всех источников, включённых в сеть. Если в батарею включены накопители одинаковой ёмкости, то и общее значение останется равным характеристике одного источника.
Например, при последовательном включении 3 изделий по 1,2 В суммарное напряжение между выводными клеммами первого и третьего подключённого источника будет равняться 3,6 В.
При подключении в цепь приёмника электротока через последовательную цепь будет протекать ток, не превышающий возможности 1 источника электричества. Например, если сборка изготовлена из одинаковых батарей 2000 мА/ч, то суммарное значение для любого количества «ячеек» в схеме останется на том же значении.
Смысл последовательного подключения – повысить напряжение в сети, и при малом токе обеспечить на выходе повышенную мощность.
Особенности последовательного включения
При последовательном включении строго соблюдают правила, невыполнение которых приводит к быстрому выходу из строя батареи, а в некоторых случаях опасно для здоровья пользователя.
Каждый источник питания обладает внутренним сопротивлением. У изделий, выполненных по одной технологии, с использованием одних и тех же комплектующих и имеющих одинаковые характеристики внутренне сопротивление примерно одинаково и зависит в основном от степени заряженности.
У одинаковых по изготовлению, но разных по ёмкости батарей внутреннее сопротивление резко отличается. Это же относится к разным по технологии изготовления батареям.
Чем опасно соединение источников питания с разными характеристиками при заряде и разряде последовательно соединённых изделий.
Зарядка
При включении последовательно соединённых аккумуляторных батарей разной ёмкости, каждая из них будет заряжаться одним током, который выдаёт зарядное устройство. При различии ёмкости в два раза, меньший из накопителей зарядится примерно в три раза быстрее больших.
Таким образом, через какое-то время одни из АКБ наберут полную зарядку, в то время как большие будут нуждаться в дальнейшей подаче зарядного тока.
Возможны два итога:
- Недозагрузка «больших» источников, если зарядное устройство будет выключено. Следовательно, в дальнейшем подключённые потребители не проработают долго.
- Перезаряд меньшего аккумулятора, если заряд не будет отключён. Как следствие перегрев. Выкипание электролита, выход из строя изделия. Возможен взрыв.
Внимание! Заряжать последовательно включённые накопители разрешается только в том случае, когда они имеют одинаковую ёмкость и напряжение.
Разряд
Не менее опасен для разных источников процесс разряда. Ток в каждой точке последовательной цепи одинаков. Аккумулятор меньшей ёмкости разрядится быстрее подключенных с ним последовательно более мощных устройств. Если в цепи есть устройство защиты от глубокого разряда, то питание потребителя прекратиться, когда мощные АКБ ещё способны отдавать ток. Эффективность применения общей сборки будет снижена в несколько раз.
Если же устройство не оборудовано защитой, то отдача тока будет продолжена. В результате глубокого разряда неминуемо выйдет из строя самый «маленький» прибор.
Параллельное включение
При параллельном соединении все плюсы источников питания должны быть подключены в одну точку. То же самое делают с отрицательными полюсами.
Параллельное включение
При соединении этого типа действуют другие правила определения характеристик сборки.
Допускается применять параллельное соединение для аккумуляторов разной ёмкости, при условии, что номинальное напряжение изделий одинаково.
Пример изменения характеристик при параллельном подключении
Общая ёмкость параллельной сборки будет равна сумме ёмкостей всех включённых изделий. Соединив два одинаковых АКБ параллельно, получают сборку в два раза большей ёмкости. Каждый из источников разряжается и заряжается допустимым для него током. Небольшие расхождения на начальных этапах циклов не оказывают существенного влияния на время исправной работы.
При первом подключении важно, чтобы степень заряда и соответственно напряжение на клеммах соединяемых изделий было равно.
Вызвано это тем, что если меньший по ёмкости АКБ будет заряжен сильнее (выше напряжение на выходе) то больший аккумулятор станет потребителем электричество (малый начнёт «заряжать» больший). Это чревато перегрузкой по току и разрушением. Тот же эффект будет наблюдаться если напряжение больше на АКБ большей ёмкости. В этом случае меньший по уровню напряжения источник станет нагрузкой, по нему потечёт ток близкий по значению к короткому замыканию.
Внимание! Запрещено соединять параллельно аккумуляторы с разным номинальным напряжением.
Кроме выхода из строя больших накопителей, что в момент подключения между клеммами и соединительными проводами потечёт большой ток. Это в свою очередь может привести к их повреждению или даже разрушению. Искрение между двумя источниками с разным напряжением – источник ультрафиолетового излучения, что опасно для зрения человека.
Соединяйте аккумуляторы в параллельную цепь, только после предварительного выравнивания ЭДС.
Параллельно последовательное соединение
Параллельно последовательный способ соединения аккумуляторов часто применяют при создании блоков питания для различных переносных электроинструментов. Метод позволяет получить «высокое» напряжение при большой ёмкости.
Параллельно-последовательное соединение
Несколько изделий соединяют последовательно, получая нужное напряжение. Затем этим цепочки подключают параллельно, выигрывая в ёмкости общей сборки.
Правила соединения применяют те же, что и для ранее описанных способов включения. В таких устройствах принято подключать одинаковые по характеристикам аккумуляторы. Применив «батарейки» из одной партии получают примерно одинаковое внутреннее сопротивление составных частей.
Разные схемы включения нужны для обеспечения работы различных устройств, требующих автономного питания. Применив полученные в статье знания, можно сделать самостоятельные подключения, необходимые для корректной работы аппаратуры.
technosova.ru
Последовательное и параллельное соединение аккумуляторов
В процессе эксплуатации источников питания зачастую возникает вопрос о комбинировании нескольких элементов в батарею одним или несколькими способами. При определенном соединении в итоге на выходе можно добиться разных вариантов основных технических показателей батарей. Для подключения аккумуляторов необходимо владеть определенными знаниями, что позволит избежать преждевременного выхода из строя одного из элементов.Зачем соединять аккумуляторы в батарею
Для питания некоторых потребителей необходимо создать определенное значение напряжения, тока и емкости, которые невозможно иметь при использовании заводских устройств. Поэтому приходится использовать разнообразные методы комбинирования подключений. В результате соединения изделий в батареи можно добиться следующих результатов:
- увеличение значение вольтажа;
- увеличение диапазона рабочего тока;
- повышение внутренней емкости.
Важно! При изменении значений тока, получают экономию энергозатрат, снижая потери на нагрев проводников.
Различное соединение аккумуляторов позволяет добиться разнообразных параметров, при этом следует помнить, что показание внутренней энергии при каждом подключении элементов будет иметь разные цифры.
Существует три варианта коммутации:
- последовательное;
- параллельное;
- параллельно-последовательное.
При комплектовании устройства необходимо помнить, что запрещается применять источники питания разного вида, такое подключение может привести к преждевременному выходу из строя изделия.
Последовательное соединение аккумуляторов
При последовательном коммутировании источников питания положительный вывод соединяется с общим контактом, а отрицательный с положительным выводом следующего аккумулятора и так далее в зависимости сколько элементов в батарее.
АКБ одинаковой емкости
В результате коммутации одинаковых источников питания увеличивается напряжение при постоянном токе, как при заряде, так и при разряде. Заряд при последовательном подключении будет иметь постоянное значение.
АКБ разной емкости
Часто возникает необходимость применить в батарее элементы с различным значением внутреннего заряда. При этом стоит помнить, что у источника питания с меньшим значением будет самое высокое внутреннее сопротивление, в результате на этом элементе падение напряжения будет увеличиваться, что приведет к быстрому разряду. Однако мощные элементы будут при этом продолжать функционировать, поддерживая всю батарею в рабочем состоянии. Такой фактор приведет к снижению заряда слабой батареи до минимально допустимого значения.
Во время восстановления заряда слабый аккумулятор восстановиться быстрее остальных, хотя другие еще будут заряжаться. В результате такой ситуации может возникнуть перезаряд элемента с пониженной емкостью, что приведет к его нагреву.
Важно знать! При постоянном снижении заряда ниже допустимого, а также перезаряде источник в скором времени растратит свой ресурс и преждевременно выйдет из строя.
Параллельное соединение аккумуляторов
Конструктивной особенностью такого соединения является то, что все положительные клеммы соединяются в одни вывод, а отрицательные клеммы в другой вывод.
АКБ одинаковой емкости
Такое соединение позволяет добиться увеличения тока, напряжение при параллельном соединении остается неизменным. При этом значение емкости будет равно сумме всех элементов в системе. Благодаря этому способу соединения можно подавать питание на потребители повышенной мощности с большими пусковыми токами.
АКБ разной емкости
При использовании источников питания в батарее с различным значением напряжения общий вольтаж системы будет равен показанию самого сильного из элементов. Причем такое применение пагубно скажется на слабых изделиях, что приведет к преждевременному выходу из строя.
В результате параллельного соединения источников питания большой емкости и малым напряжением с изделиями малой емкости, но повышенном напряжении произойдет электрическое замыкание слабого элемента. Происходить такое явление за счет разности во внутреннем сопротивлении, при этом в аккумуляторе с меньшей емкостью будет протекать повышенный ток постепенно приводя к его разрушению.
Если же в системе присутствует источник высокой емкости и повышенного значения напряжения, то такое соединение в батарею приведет к перезаряду слабого источника питания. Производители рекомендуют перед подключением выравнивать значение напряжения, что позволит избежать возникновения неисправности в процессе эксплуатации.
Важно! чтобы избежать явления перетекания рабочего тока в системе рекомендуется применять аккумуляторы с равными значениями напряжения.
Последовательно-параллельное соединение аккумуляторов
Такой метод часто применяется для создания батареи с высокой емкостью и повышенным напряжением. Конструктивно изначально источники собираются в последовательную цепочку набирая определенный вольтаж, а затем несколько цепей коммутируют в параллель при этом набирают необходимую емкость. Однако существует и другой метод в параллель собирают элементы одинакового напряжения, а потом их подключают последовательно.
Соединение устройств таким методом подразумевает применение требований и правил, как в вышеописанных способах. Примерная схема соединения аккумуляторов может выглядеть так:
Балансировка заряда аккумуляторных батарей
Для того, чтобы избежать выход из строя при комплектовании системы батарей с применением элементов различных параметров необходимо проводить постоянный контроль. В настоящее время находят распространение различные устройства позволяющие обеспечить данный контроль при заряде и разряде. К таким приборам относят BMS- система мониторинга и управления.
BMS позволяет правильно зарядить и разрядить источник питания, при этом устройство в течение всего срока службы проводит контроль за состоянием устройства и обеспечивает безопасность предотвращая преждевременный выход из строя аккумулятора. Устройство изготавливается в виде электронной платы, которая входит в общую конструкцию источника питания.
Благодаря BMS стало возможно:
- обеспечить защиту как отдельных элементов, так и всей системы устройств в целом;
- увеличить срок эксплуатации источников питания;
- контролировать и поддерживать изделия разных видов в работоспособном состоянии при различных условиях использования.
Основные функции устройства BMS:
- Контроль за напряжением, температурой, показаний зарядных параметров, а также исправным состоянием.
- Интеллектуально-вычислительные функции, благодаря которым возможно следить за основными параметрами заряда-разряда.
- Функции связи, проводным и беспроводным способом.
- Защита изделия от скачков напряжения и тока, а также от перепада температур.
- При балансировке происходит равномерное распределение заряда между всеми элементами системы.
Интересно знать! В некоторых комплексных системах аккумуляторных батарей применяются несколько балансировочных плат, которые управляют своей отдельной ячейкой.
Правильное соединение аккумуляторов позволяет добиться определенных значений необходимых параметров. При соблюдении правил эксплуатации возможно добиться значительного увеличения срока службы источников питания.
batteryzone.ru
схема. Что дает параллельное соединение аккумуляторов?
Аккумуляторы обычно изготавливаются с прицелом на работу с определённой стандартизированной нагрузкой. Так, есть батареи, обеспечивающие функционирование микроконтроллеров – они обладают напряжением 5 В. Для работы с двигателями используются аккумуляторы, которые могут предоставить 12 В или 24 В. А что делать, если необходимо получить 60 В? Батарею с таким напряжением ещё попробуй найди. В таком случае нам может помочь соединение аккумуляторов параллельно. Что даёт такой ход? Какова схема такого подключения? Какие особенные аспекты этого хода есть? Как делается параллельное соединение аккумуляторов? Схема для этого действия как выглядит? Все эти, а также ряд других вопросов мы с вами и рассмотрим в рамках данной статьи.
Что дает параллельное соединение аккумуляторов на практике?
Итак, для начала обрисуем общую схему. Соединение аккумуляторов параллельно предусматривает такой подход, чтобы все положительные клеммы подсоединялись к определённой точке на электрической схеме, которая именуется плюсом. Подобное необходимо сделать и с отрицательными выводами. Только они подсоединяются к минусу. Зачем нам нужно такое делать? В конечном результате мы имеем напряжение, которое есть у одного аккумулятора (рассматривается ситуация, что у нас одинаковые батареи). Но вот емкость получившейся конструкции будет равна сумме этого параметра всех источников питания, которые есть в схеме. Электрическая энергия равна единичному значению, помноженному на количество устройств. Это, впрочем, не зависит от того, какое соединение используется – параллельное или последовательное.Зачем аккумуляторы соединять в батарею?
Результат таких действий мы рассмотрели. А почему нам может понадобиться соединение аккумуляторов параллельно? Любые электрические системы или устройства несут омические потери, когда часть энергии превращается в тепло и при этом не происходит полезная работа. Это из-за невозможности получения коэффициента полезного действия 100%. При этом из курса школьной физики можно вспомнить, что чем больше напряжение, тем меньше ток при той же мощности и менее значительные омические потери. Таким образом, чем более высоковольтные аккумуляторы мы используем, тем лучший результат получим. Но даже с таким подходом не всегда может хватать емкости одной батареи. В таком случае можно заменить её на аккумулятор повышенной емкости. Но это не всегда удобно, и иногда проще просто поставить ещё один источник питания и использовать параллельное соединение аккумуляторов, чтобы они дольше поддерживали какую-то систему.Подходит ли этот вариант для источников питания различной емкости?
Параллельное соединение разных аккумуляторов не несёт в себе опасности, если рассматривать проблему с точки зрения напряжения. С клеммами батарей ничего страшного не сможет случиться. Разряд или заряд источников питания будет происходить синхронно в силу характера соединения. А вот если затронуть тему токов, то здесь уже немного сложнее. Так, необходимо позаботиться о том, чтобы он не превышал определённой величины, которая указывается непосредственно самим производителем.Наиболее распространёнными являются показатели 100 А и 130 А. Причиной такого ограничения является то, что непосредственно клеммы не смогут передавать такой ток (хотя теоретически самому аккумулятору это под силу). Но это самый верх, который может быть только считанные секунды. Давайте рассмотрим более реалистический вариант использования.
Технические ограничения
Если посмотреть на технические характеристики разрешенной величины тока, то обычно здесь больших цифр не увидишь. Так, обычно нельзя допускать, чтобы соединялись вместе аккумуляторы, емкость которых разнится от 5 до 25 раз (это как правило). Более того, данный аспект необходимо внимательно изучить, поскольку возможным является даже короткое замыкание. Риск его возникновения находится в диапазоне 15-70 емкостей самого малого аккумулятора (зависит от марки и технической реализации). Грубо говоря, чем меньше времени они функционируют, тем с большим значением тока можно работать. Так, если разница между ними составляет 5 раз, то это значит, что они смогут функционировать всё время (теоретически). Но вот если мы работаем со 20-кратным различием, то желательно, чтобы счет был на секунды. Многие производители источников питания указывают пороговые значения тока для своей продукции. Например, 2,6 А.
Почему есть ограничения?
Давайте далее изучать тему про параллельное соединение аккумуляторов разной емкости. Ранее было указано, что производители рекомендуют ограничения в единицы Ампер, хотя на практике этот предел может быть превышен многократно. Почему так? Для этого рассмотрим само строение аккумулятора на примере свинцово-кислотной батареи. Такой выбор сделан благодаря распространенности источников питания данного типа.Итак, для успешного протекания необходимой электрохимической реакции необходимо обеспечить её качественным электролитом. Важно также совершение процесса в верхних слоях и отвод продуктов. В этом значительным образом помогает активная масса пластин аккумулятора. Ведь благодаря ей легче подводится и отводится вещество, участвующее в реакции. Но по мере перемещения «ресурсных материалов» вниз всё начинает происходить медленнее. Активно сказывается и то, что в электролите появляется сера. Поэтому соединение аккумуляторов параллельно предпочтительным является только когда батарея заряжена. Чем ниже реальный показатель напряжения, тем опаснее работа источников питания разной емкости. Поэтому желательным является обеспечение своевременного питания. Лучше всего будет не давать емкости упасть меньше 1/3 номинала.
Особенности зарядки при параллельном соединении
Во время начала этого процесса предпочтительной является передача довольно большого зарядного тока. Ведь сначала будет восстанавливаться поверхность аккумулятора, а потом — нижние его слои. Одновременно с этим желательным является уменьшение тока, поскольку снижается интенсивность электрохимической реакции, вследствие чего из-за большого количества энергии может «закипеть» электролит (будет происходить его разложение).
Если рассматривать один из самых популярных типов аккумуляторов – свинцово-кислотный, то он при нарушении данного предписания вряд ли сразу выйдет из строя. Но вот срок его службы явно существенно сократится. Вообще, если говорить о зарядке источников питания, то стоит сконцентрировать внимание на том, что желательно пользоваться заводскими приборами. Если эксплуатировать что-то иное, то могут быть не учтены определённые аспекты (или неправильно приняты во внимание), что обернётся проблемами в будущем.
Об аккумуляторах и емкости
Давайте ещё углубимся в параллельное соединение разных аккумуляторов (а также одинаковых). Необходимо понимать, что если суммарный ток не будет превышать установленные ограничения, то проблем и опасностей не появится.Давайте рассмотрим соединение двух аккумуляторов параллельно на 2 А, когда они из одной партии и заряжаются током 2*2= 4 А. Здесь нет опасностей, поскольку благодаря одинаковой конструкции токи будут разделяться пропорционально. И никакие рубежи не пересекутся.
А вот теперь давайте возьмем источники питания, где существует значительная разница. Когда ток превысит установленные производителем ограничения, то потечёт через аккумулятор, при том, что он не рассчитан на это. Думаем, говорить о результате не нужно. Это относится ко всем, а не только к свинцово-кислотным батареям. Даже если вы хотите сделать параллельное соединение аккумуляторов Li-Ion, которые считаются имеющими повышенную надежность, не пренебрегайте техникой безопасности.
Рассчитываем необходимые показатели
Итак, нам необходимо обеспечить значительную величину тока с применением параллельно соединённых элементов питания. Как узнать, что нам нужно? Для этого можно воспользоваться специальной формулой, которая сейчас и будет приведена:Т=РТОЭП*КЭПОТ
А сейчас расшифровка формулы:
Т – ток, который получится. Необходимо, чтобы он совпадал с нужным результатом.
РТЕЭП – разрядный ток единицы элемента питания. То есть сколько может дать один аккумулятор.
КЭПОТ – количество элементов питания одного типа.
В радиолюбительской практике бывает сложно получить необходимые значения. Эта же формула сделает достижение цели более лёгким.
Ищем другие способы включения батарей
Мы уделили параллельному соединению аккумуляторов значительное внимание. Надеемся, что это поможет решить поставленные задачи. Но если во время ознакомления со статьей к вам пришла мысль, что описываемые здесь решения не подходят под какой-то конкретный случай, предлагаем ознакомиться со следующим:
- Последовательное соединение. Грубо говоря, мы увеличиваем напряжение, которое нам дадут источники бесперебойного питания.
- Смешанное соединение. В данном случае происходит одновременное увеличение и тока, и напряжения. Но это весьма сложная схема для построения.
Заключение
Напоследок хочется дать немного напутствий. Прежде всего, соблюдайте технику безопасности. Также перед работой с аккумуляторами совсем не лишним будет ознакомление с инструкциями и рекомендациями, которые представляют их производители. Это позволит избежать ситуаций, которые могут негативно влиять на срок службы источников питания. Также соблюдайте особенную осторожность при работе с батареями, обеспечивающими значительные показатели. Ведь в таких случаях риск электротравмы становится весьма вероятным. Да и со слабыми элементами не нужно обращаться легкомысленно.fb.ru
Схема подключения аккумуляторов на 24 вольта
Пелинг Инфо солнечные батареи – ветрогенераторы DIY своими руками 2011 г-2017г
сделай сам, обзоры солнечных контроллеров, обзор солнечных батарей, тестирование, электротранспорт, светодиоды, моторколесо, своими руками, солнечные панели
Варианты соединения аккумуляторов различной емкости в одну систему, емкость при разном подключении аккумуляторов.
Очень частый вопрос задают многие люди, кто собрали или только планируют собрать аккумуляторный банк, в котором будет хранится собираемая энергия и аккумулироваться для последующего ее использования. Данная тема должна так же помочь людям понять на какой же системе лучше остановится. Данная тема создана специально для начинающих а так же может будет полезна и реальным пользователям чтобы оценить реальную емкость своей системы.
В данной теме мы рассмотрим всего три системы на 12 Вольт, 24 вольта, и 48 вольт. Для остальных вариантов включения аккумуляторов так же действует данное правило!
И так рассмотрим предложенный мной рисунок:
На рисунке один мы видим четыре аккумулятора соединенных последовательно, емкость каждого аккумулятора равна для легкости подсчетов по 100А/ч. Соединив по данной схеме мы получаем систему на 48 вольт и емкость 100 А/ч но не как не 200 а/ч.
Для рисунка 1 и 3 очень важно, чтобы емкость каждого аккумулятора была одинакова, это нужно для того чтобы аккумуляторы заряжались равномерно!
На рисунке 2 мы видим соединение параллельное, где четыре аккумулятора соединены между собой плюсами от каждого аккумулятора это общий +, и все минусы соединены между собой, это общий минус.
Для рисунка 2 нет никаких ограничений какой емкости аккумуляторы должны быть соединены в параллель, они могут иметь разную емкость но это не желательно! Именно для того чтобы соединить аккумуляторы разной емкости, я на своем жизненном опыте придумал правильное соединение, которое позволило подключать разные аккумуляторы для системы без потерь по качеству заряда и итоговой емкости аккумуляторов.
Если подключать по рисунку 2 аккумуляторы разной емкости самая большая нагрузка при съеме инвертором приходится на слабый аккумулятор, что и выводит его из строя очень быстро!
По рисунку 3 мы видим два аккумулятора соединенных последовательно, каждый аккумулятор имеет напряжение 12 В и емкость 100 А/ч, в сумме мы получаем при таком подключении всего 24 вольта и емкость 100 а/ч. То есть данные отличаются от рисунка один тем что аккумуляторов на два меньше а емкость так – же равна!
Рассмотрим варианты подключений на примере 12 аккумуляторов, где каждый аккумулятор на нашим примерам на 100 а/ч, для легкости подсчетов.
Далее рассмотрим рисунок по увеличению емкости на 48 вольтовую систему.
Следующая система на 12 аккумуляторах при подключении в 24 вольтовыю цепь.
И последний вариант подключения на самую расспространенную систему включения на 12 В, при том же количестве аккумуляторов.
И так подведем итог, из 12, двенадцати вольтовых аккумуляторов можно получить следующие системы по емкости :
48 В система будет иметь емкость – 300 а/ч
24 В система будет иметь емкость – 600 А/ч
12 В система будет иметь емкость 1200 А/ч
Э лектрическая энергия, накопленная в аккумуляторной батарее равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы – параллельно или последовательно.
Вот как-то так, надеюсь теперь не возникнет подсчитать емкость вашей системы.
Пелинг Инфо солнечные батареи – ветрогенераторы DIY своими руками 2011 г-2017г
Пелинг Инфо солнечные батареи – ветрогенераторы DIY своими руками 2011 г-2017г сделай сам, обзоры солнечных контроллеров, обзор солнечных батарей, тестирование, электротранспорт, светодиоды,
Источник: peling.ru
Hyundai Solaris эх. › Бортжурнал › О последовательном и параллельном подключении двух АКБ?прошу помощи.
прошу действительно помочь и разобраться в этом вопросе!
и надеюсь дочитаете до конца, инфа думаю полезна)
имеем два АКБ
простой акб 60 A/h и варта AGM
1 акб под капотом другой в багажнике.
будет соединятся кг50 проводом.
как лучше соединить?
я конечно понимаю что нужно параллельно, так как ток 24в мне не нужен
лучше всего схема-
генератор-АКБ-предохранитель и реле автоматич подзаряда акб типо стингера и ура200- второй акб- предохранитель- дистрибьютер- моноблок и усилитель. так же?
в кратце об этих соеденений.
При параллельном соединении, аккумуляторы соединяют так, чтобы положительные клеммы всех аккумуляторов были подключены к одной точке электрической схемы (″плюсу″), а отрицательные клеммы всех аккумуляторов были подключены к другой точке схемы (″минусу″).
Получившаяся при паралельном соединении аккумуляторная батарея имеет то же напряжение, что и у одиночного аккумулятора, а емкость такой аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые емкости, то емкость аккумуляторной батареи равна емкости одного аккумулятора, умноженной на количество аккумуляторов в батарее.
то есть ток остается 12 а два акб становятся одним.вместе заряжаются вместе разряжаются
Для последовательного соединения аккумуляторов, к ″плюсу″ электрической схемы подключают положительную клемму первого аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к ″минусу″ электрической схемы.
Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой аккумуляторной батареи равно сумме напряжений входящих в нее аккумуляторов. Т.е. Если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.
то есть из 12в делаем 24 а емкости просто суммируются…
но как говорят что параллельно нельзя( т.е плюс к плюсу минус к минусу) они буду истощат друг друга до полного разряжения, это правда?но все так ставят)))
если мы соединим в параллельную батарею разные аккумуляторы, и суммарный разрядный или зарядный ток заметно превысит ограничения, установленные для отдельного свинцового аккумулятора, то через какой-то аккумулятор может потечь ток, превышающий возможности этого аккумулятора.
в общем я понимаю что нужно соединять параллельно?и не мучаться)
в дальнейшем приобрету реле автоматического заряда второго АКБ от стингер на 200А. или УРА 200. посмотрим.
прошу действительно помочь и разобраться в этом вопросе!
спасибо большое, жду предложений и решения проблемы!надеюсь на ваc:)
Hyundai Solaris эх
Рассказ владельца Hyundai Solaris — автозвук. прошу действительно помочь и разобраться в этом вопросе! и надеюсь дочитаете до конца, инфа думаю полезна) имеем два АКБ простой акб 60 A/h и варта AGM 1 акб под капотом другой в багажнике. будет соединятся кг50 проводом. как лучше соединить?<,/b>, я конечно понимаю что нужно параллельно, так как то…
Источник: www.drive2.ru
Варианты подключения Аккумуляторов
Схемы подключения аккумуляторов
Последовательное, параллельное и последовательно-параллельное соединение аккумуляторов
Статья посвящена возможным вариантам подключения аккумуляторов и характеристикам которые в результате получается.
У любого аккумулятора выделяют следующие основные характеристики:
- Номинальное напряжение (В ― Вольт)
- Емкость (Ач – Ампер*час)
- Максимальное количество запасенной энергии = Номинальное напряжение умноженное на Емкость (кВт*ч – киловатт*час)
Существует три возможных варианта соединения аккумуляторов между собой – последовательно, параллельно или последовательно-параллельно. В зависимости от схемы соединения аккумуляторов в Банк Аккумуляторов может меняться Номинальное напряжение или Емкость системы, при этом максимальное количество запасенной энергии всех аккумуляторов останется неизменным.
Итак, рассмотрим каждый из возможных вариантов соединения аккумуляторов в Банк Аккумуляторов:
1) Последовательное соединение аккумуляторов
При таком соединении минусовая клемма первого аккумулятора соединяется с плюсом второго, минус второго с плюсом третьего и так далее.
В случае такого соединения Емкость системы остается неизменной, но напряжение системы является суммой всех соединенных последовательно аккумуляторов.
Имеем 4 аккумулятора емкостью 200Ач и номинальным напряжением 12В. Подключив их последовательно, мы получим номинальное напряжение равное 12В*4=48В и емкость равную 200Ач. При этом максимальное количество запасенной энергии определяется как сумма максимального запаса энергии всех аккумуляторов – 200Ач*12В*4=9600Вт*ч=9,6кВт*ч, или, что то же самое, как максимальный запас энергии всего банка аккумуляторов – 200Ач*48В=9600Вт*ч=9,6кВт*ч.
Такая схема включения используется для поднятия напряжения системы.
2) Параллельное соединение аккумуляторов
При таком соединении плюсовые клеммы аккумуляторов поочередно соединяются между собой. Минусовые клеммы также соединяются поочередно между собой.
В случае такого соединения напряжение системы остается неизменным, при этом емкость Банка Аккумуляторов является суммой всех соединенных параллельное аккумуляторов.
Имеем те же 4 аккумулятора емкостью 200Ач и номинальным напряжением 12В. Подключив их параллельно, мы получим номинальное напряжение равное 12В, а емкость при этом будет равна 4*200Ач=800Ач. При этом максимальное количество запасенной энергии определяется как сумма максимального запаса энергии всех аккумуляторов – 200Ач*12В*4=9600Вт*ч=9,6кВт*ч, или, что то же самое, как максимальный запас энергии всего банка аккумуляторов – 800Ач*12В=9600Вт*ч=9,6кВт*ч.
Такая схема включения используется для увеличения емкости (тока заряда) системы.
3) Последовательно-параллельное соединение аккумуляторов
Такое соединение является самым востребованным при сборке Банков Аккумуляторов для различных целей.
При таком соединении цепочки последовательно соединенных аккумуляторов соединяются параллельно.
Например:
Снова обратимся к нашим 4 аккумуляторам емкостью 200Ач и номинальным напряжением 12В. Соединив по 2 аккумулятора последовательно и затем объединим их параллельно, мы получим номинальное напряжение равное 12В*2=24В и емкость равную 200Ач*2=400Ач. При этом максимальное количество запасенной энергии определяется как сумма максимального запаса энергии всех аккумуляторов – 200Ач*12В*4=9600Вт*ч=9,6кВт*ч, или, что то же самое, как максимальный запас энергии всего банка аккумуляторов – 400Ач*24В=9600Вт*ч=9,6кВт*ч.
Примечание: обратите внимание, что максимальное количество запасенной энергии ― не зависит от схемы соединения аккумуляторов!
Различные схемы подключения аккумуляторов нужны для оптимизации работы комплекса оборудования используемого вместе с аккумуляторами. Выбирая различные схемы соединения, мы устанавливаем необходимые токи и напряжения для всей системы.
О том какую схему соединения выбрать для вашей собственной солнечной электростанции, а также как рассчитать необходимую емкость Банка Аккумуляторов вы можете прочитать в статье:
Калькулятор для подбора комплекта освещение и светофор на солнечной батарее
Значения терминов связанных с Альтернативной энергетикой
Варианты подключения Аккумуляторов
Схемы подключения аккумуляторов Последовательное, параллельное и последовательно-параллельное соединение аккумуляторов Статья посвящена возможным вариантам под.
Источник: oporasolar.ru
Схема подключения двух аккумуляторов
Способы соединения двух аккумуляторов: последовательное и параллельное
Достаточно большое количество охотников, рыболовов и путешественников, в виду своего хобби, зачастую устанавливают на свои транспортные средства дополнительный аккумулятор. Это необходимо для того, чтобы энергия основного аккумулятора сохранялась, и в дальнейшем можно было уехать с места дислокации без приключений.
Зачем необходим второй аккумулятор ?
Областей применения второго аккумулятора великое множество:
Как правильно соединить два аккумулятора?
Для успешного осуществления данной операции стоит следовать следующим советам:
- Необходимо, чтобы и первый и второй аккумулятор были в идеальном состоянии. Как известно, аккумуляторные батареи, после определенного числа циклов заряда и разряда, начинают портиться, приходить в негодность, и как следствие, быстрее разряжаться. Если подключить к новому аккумулятору старый, то старый аккумулятор будет «поглощать» энергию из нового, и в конечном итоге оба элемента питания будут разряжены. Это же, в свою очередь, не позволит завести силовой агрегат.
- Следует использовать коммутатор для второго аккумулятора. Это устройство позволит использовать энергию первого аккумулятора, но позволит сохранить заряд второй зарядной емкости. Это же позволит всегда оставаться уверенным в том, что можно будет спокойно «сесть и уехать».
- Для того, чтобы не пострадала электропроводка транспортного средства, стоит использовать более мощный генератор, или же установить еще один.
- Аккумуляторные батареи должны быть примерно одинаковой мощности, если же батареи будут разной мощности, то это может привести к выходу из строя элементов питания.
- Необходимо использовать короткие шнуры для соединения аккумуляторных батарей, тогда процесс работы этих аккумуляторов будет наиболее эффективным.
Итак, постаравшись соблюсти данные рекомендации, можно cделать свой досуг на природе, на рыбалке, в походе или на охоте поистине красочным и незабываемым.
Однако, нужно определиться со способами подключения двух аккумуляторов друг к другу.
Первый способ: последовательное соединение: перемычка накидывается на клеммы: своя перемычка на «минусовые», своя перемычка на «плюсовые», далее оставшиеся две «противоположные» клеммы двух аккумуляторов соединяются между собой, ну а «плюсовые» и «минусовые» провода подключаются к остальной электрической системе транспортного средства.
Второй способ: параллельное соединение: при данном виде соединения двух аккумуляторов, перемычка накидывается следующим образом: соединяются «минусовые» и «плюсовые» клеммы аккумуляторных батарей, далее отводятся от спаренных элементов питания провода, которые подключаются ко всей остальной электрической системе автомобиля.
После того, как аккумуляторы были подключены между собой, следует сделать установить между ними либо коммутатор, либо переключатель.
Этот шаг позволит использовать энергетический ресурс только одного аккумулятора. Например, при выключенном двигателе, будет работать свет автомобиля, или же аудиосистема.
Если же двигатель транспортного средства включен, то энергия, необходимая для работы электроприборов в автомобиле, вырабатывается особым генератором. Но, правда, гораздо сильнее тратится топливо в транспортном средстве, а это, в свою очередь, приводит к возникновению неимоверных расходов на топливо.
Заключение
Подытоживая вышесказанное, стоит сказать о том, что установка периферийного элемента питания в автомобиль, станет прекраснейшим решением. Теперь можно не бояться внезапной разрядки аккумулятора, и последующих проблем с получением искры для зажигания.
Но второй аккумулятор будет эффективен лишь тогда, когда он был установлен и соединен с первым в соответствии с общепризнанными рекомендациями и нормами. Неверно подключенные батареи, станут настоящей головной болью для автолюбителя. При выборе аккумулятора, необходимо ориентироваться не только на размер, емкость и бренд, а также четко понимать назначение аккумулятора и сферу его применения. Например существуют стартерные и тяговые аккумуляторы, предназначенные для разных целей.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Схема подключения двух аккумуляторов
Схема подключения двух аккумуляторов. Способы соединения двух аккумуляторов: последовательное и параллельное
Источник: elektronchic.ru
Схемы соединения аккумуляторных батарей для электропитания
Аккумуляторные батареи (АКБ) в зависимости от их назначения собираются из определенного количества аккумулирующих энергию элементов. Схема соединения аккумуляторных батарей при этом зависит от того, какая преследуется цель. Это может быть увеличение емкости батареи, повышение напряжения либо сочетание обеих этих параметрических характеристик устройства.
В основном батареи собирают последовательно-параллельно, а сами сборки служат для промежуточного или резервного хранения электроэнергии
Известны и повсеместно применяются 3 варианта соединения отдельных аккумуляторов в батарею: последовательное, параллельное и смешанное или комбинированное.
Повышение рабочего напряжения батареи
Аккумуляторы электрической энергии имеют различное рабочее напряжение. Варьироваться оно может в очень широком диапазоне: от 0,5 до 48 Вольт. В то же время, для обеспечения автономного питания приборов, запуска двигателей внутреннего сгорания, питания электроприводной техники требуется другой диапазон напряжений. Повысить рабочее напряжение автономного источника тока можно последовательным соединением нескольких аккумуляторов в батарею.
Схемы и формулы при последовательном соединении батарей
При последовательном соединении коммутируются разнополярные клеммы аккумулятора. Плюсовой вывод предыдущего устройства соединяется с минусовым выводом последующего. Суммарное рабочее напряжение батареи при таком способе будет равно сумме рабочих напряжений коммутированных источников тока. Это значит, что для получения АКБ с рабочим напряжением 12 В необходимо последовательно соединить 4 трехвольтных источника либо 10 аккумуляторов с рабочим напряжением 1,2 В. Емкость скомплектованной последовательным соединением источников не изменяется и остается равной емкости каждого включенного в схему аккумулятора.
Очевидным и наглядным примером такого способа комплектации батареи могут служить автомобильные АКБ. В них отдельные источники, именуемые банками, объединены в общем корпусе и последовательно соединены свинцовыми шинами. Выбор в качестве материала для соединительных шин свинца объясняется просто: аккумуляторные электроды также изготавливаются из свинца. Шины, интегрированные в коммуникационную схему, соединяются с электродами на молекулярном уровне, а не механически. Это позволят избежать возникновения электрохимических коррозионных процессов.
Увеличение емкости источника питания
Нередки технические условия, когда от источника питания при сохранении рабочего напряжения требуется повышенная емкость. В таких случаях для комплектования батареи применяется параллельное соединение аккумуляторов. Такой способ коммутирования позволяет в разы, а в особо ответственных случаях – в десятки раз увеличить суммарную емкость питающего устройства.
Параллельное соединение батарей с формулами
Параллельное соединение осуществляется путем коммутации однополюсных выводов источников тока: плюсовой и минусовой выводы предыдущего аккумулятора соединяются с одноименными выводами последующего. Суммарная электрическая емкость скомпонованной таким способом коммутации батареи будет равна сумме электрических емкостей входящих в схему отдельных источников. Это значит, что при соединении трех аккумуляторных батарей с номинальной емкостью 60 А*ч получится устройство, имеющее электрическую емкость 180 А*ч.
В качестве примера подключения аккумуляторных батарей параллельной коммутацией можно привести источники бесперебойного либо аварийного питания приборов и аппаратуры. Параллельно подключаются АКБ большегрузных автомобилей и тяжелой специальной техники с большим объемом двигателя. Большой распространение параллельная коммутация получила на флоте: здесь параллельно соединенные устройства питания применяются для запуска вспомогательных дизелей, работы освещения, систем связи и жизнеобеспечения в аварийных ситуациях.
Повышение напряжения с одновременным увеличением емкости АКБ
Ярким примером смешанного или комбинированного соединения аккумуляторов в комплекс с необходимыми показателями рабочего напряжения и электрической емкости служат источники питания машин с электрическим приводом.
ВАЖНО! При увеличении емкости аккумуляторных батарей увеличиваются и токи. Правильно подбирайте сечения проводов! Используйте негорючие или самозатухающие провода.
Комбинированное соединение подразумевает использование в коммутационной схеме одновременно последовательного и параллельного способов подключения. Возможны два варианта:
1. Сначала методом последовательного соединения источников подготавливаются батареи с требуемым рабочим напряжением. На втором этапе параллельно коммутируется необходимое количество подготовленных сборок для обеспечения потребной электрической емкости.
2. Во втором варианте параллельной коммутацией предварительно набираются батареи с требуемой емкостью. После этого устройства соединяются последовательно до достижения необходимого рабочего напряжения.
Схема последовательно-параллельного соединения аккумуляторных батарей наиболее часто применяемая, так как современные батареи для автономного энергообеспечения домов имеют номинальное напряжение 3,4 В
Комплектование АКБ комбинированным способом позволяет формировать источники питания, напряжение и электрическая емкость которых ограничивается только занимаемым ими рабочим пространством.
Особенности комплектования батарей аккумуляторов
Все три способа соединения отдельных источников питания в комплекс подчиняются не сложным, но важным для эффективной и долгосрочной эксплуатации правилам.
Последовательно-параллельная схема подключения на примере литий-ионных батарей
Пролонгированная работа батареи и ее экономическая целесообразность может быть обеспечена при соблюдении следующих правил:
- электрическая емкость включаемых в комплекс источников не должна отличаться на величину, превышающую 5% от номинальной,
- рабочие напряжения отдельных элементов батареи должны находиться в разумном соотношении,
- эксплуатационное техническое состояние включаемых в комплекс автономного питания элементов должно быть максимально сбалансированным,
- сечение коммутационных линий и шин должно быть рассчитано с учетом токовых нагрузок как внутри батареи, так и во внешних электрических цепях.
Ассортимент предлагаемых рынком источников питания при грамотном подходе позволяет создавать аккумуляторные батареи со всеми необходимыми для надежного использования характеристиками.
Схемы соединения аккумуляторных батарей для электропитания
Три варианта схем подключения аккумуляторных батарей для комплектации автономных источников питания. Существует параллельная, последовательная и смешанная коммуникация аккумуляторов.
Источник: tcip.ru
avtonomny-dom.ru
ОДНОВРЕМЕННАЯ ЗАРЯДКА НЕСКОЛЬКИХ АККУМУЛЯТОРОВ
Сейчас всё большую популярность набирают литиевые аккумуляторы. Особенно пальчиковые, типа 18650, на 3,7 В 3000 мА. Ни сколько не сомневаюсь, что ещё 3-5 лет, и они полностью вытеснят никель-кадмиевые. Правда остаётся открытым вопрос про их зарядку. Если со старыми АКБ всё понятно — собирай в батарею и через резистор к любому подходящему блоку питания, то тут такой фокус не проходит. Но как же тогда зарядить сразу несколько штук, не используя дорогие фирменные балансировочные ЗУ?
Теория
Для последовательного соединения аккумуляторов, обычно к плюсу электрической схемы подключают положительную клемму первого последовательное соединение аккумуляторов аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к минусу блока. Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой батареи равно сумме напряжений входящих в нее аккумуляторов. Значит если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.
Энергия, накопленная в АКБ, равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы — параллельно или последовательно.
Литий-ионные батареи просто подключить к БП нельзя — нужно выравнивание зарядных токов на каждом элементе (банке). Балансировку проводят при зарядке аккумулятора, когда энергии много и её можно сильно не экономить и поэтому без особых потерь можно воспользоваться пассивным рассеиванием «лишнего» электричества.
Никель-кадмиевые АКБ не требуют дополнительных систем, поскольку каждое звено при достижении его максимального напряжения заряда перестает принимать энергию. Признаки полного заряда Ni-Cd — это увеличение напряжения до определенного значения, а затем его падение на несколько десятков милливольт, и повышение температуры — так что лишняя энергия сразу превращается в тепло.
У литиевых аккумуляторов наоборот. Разрядка до низких напряжений вызывает деградацию химии и необратимое повреждение элемнта, с ростом внутреннего сопротивления. В общем они не защищены от перезаряда, и можно потратить много лишней энергии, резко сокращая тем самым время их службы.
Если соединить несколько литиевых элементов в ряд и запитать через зажимы на обоих концах блока, то мы не можем контролировать заряд отдельных элементов. Достаточно того, что одно из них будет иметь несколько более высокое сопротивление или чуть меньшую емкость, и это звено гораздо быстрее достигнет напряжения заряда 4,2 В, в то время как остальные будут еще иметь 4,1 В. И когда напряжение всего пакета достигнет напряжение заряда, может оказаться, что эти слабые звенья заряжены до 4,3 Вольт или даже больше. С каждым таким циклом будет происходить ухудшение параметров. К тому же Li-Ion является неустойчивым и при перегрузке может достичь высокой температуры, а, следовательно, взорваться.
Чаще всего на выходе источника зарядного напряжения ставится устройство, называемое «балансиром». Простейший тип балансира — это ограничитель напряжения. Он представляет из себя компаратор, сравнивающий напряжение на банке Li-Ion с пороговым значением 4,20 В. По достижении этого значения приоткрывается мощный ключ-транзистор, включенный параллельно элементу, пропускающий через себя большую часть тока заряда и превращающий энергию в тепло. На долю самой банки при этом достается крайне малая часть тока, что, практически, останавливает ее заряд, давая дозарядиться соседним. Выравнивание напряжений на элементах батареи с таким балансиром происходит только в конце заряда по достижении элементами порогового значения.
Упрощённая схема балансира для АКБ
Вот упрощённая схема балансира тока на базе TL431. Резисторы R1 и R2 устанавливают напряжение 4,20 Вольт, или можно выбрать другие, в зависимости от типа батареи. Эталонное напряжение для регулятора снимается с транзистора, и уже на границе 4,20 В система начнет приоткрывать транзистор, чтобы не допустить превышения заданного напряжения. Минимальное увеличение напряжения вызовет очень быстрый рост тока транзистора. Во время тестов, уже при 4,22 В (превышение на 20 мВ), ток составил более 1 А.
Сюда подходит в принципе любой транзистор PNP, работающий в диапазоне напряжений и токов, которые нас интересуют. Если батареи должны быть заряжены током 500 мА. Расчет его мощности прост: 4,20 В х 0,5 А = 2,1 В, и столько должен потерять транзистор, что вероятно, потребует небольшого охлаждения. Для зарядного тока 1 А или больше мощность потерь, соответственно, растет, и все труднее будет избавиться от тепла. Во время теста были проверены несколько разных транзисторов, в частности BD244C, 2N6491 и A1535A — все они ведут себя одинаково.
Делитель напряжения R1 и R2 следует подобрать так, чтобы получить нужное напряжение ограничения. Для удобства вот несколько значений после применения которых, мы получим следующие результаты:
- R1 + R2 = Vo
- 22K + 33K = 4,166 В
- 15К + 22K = 4,204 В
- 47K + 68K = 4,227 В
- 27K + 39K = 4,230 В
- 39K + 56K = 4,241 В
- 33K + 47K = 4,255 В
Схема устройства для балансировки аккумуляторов
Это аналог мощного стабилитрона, нагруженного на низкоомную нагрузку, роль которой здесь выполняют диоды D2…D5. Микросхема D1 измеряет напряжение на плюсе и минусе аккумулятора и если оно поднимается выше порога, открывает мощный транзистор, пропуская через себя весь ток от ЗУ. Как соединяется всё это вместе и к блоку питания — смотрите далее.
Блоки получаются действительно маленькие, и вы можете смело устанавливать их сразу на элементе. Следует только иметь в виду, что на корпусе транзистора возникает потенциал отрицательного полюса батареи, и вы должны быть осторожны при установке систем общего радиатора — надо использовать изоляцию корпусов транзисторов друг от друга.
Испытания
Сразу 6 штук балансировочных блоков понадобились для одновременной зарядки 6 аккумуляторов 18650. Элементы видны на фото ниже.
Все элементы зарядились ровно до 4,20 вольта (напряжение были выставлены потенциометрами), а транзисторы стали горячие, хотя и обошлось без дополнительного охлаждения — зарядка током 500 мА. Таким образом, можно смело рекомендовать данный метод для одновременного заряда нескольких литиевых аккумуляторов от общего источника напряжения.
Форум по АКБ
Обсудить статью ОДНОВРЕМЕННАЯ ЗАРЯДКА НЕСКОЛЬКИХ АККУМУЛЯТОРОВ
radioskot.ru