Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Температура пламени костра из дров: Сколько температура в костре — Морской флот

Содержание

Температура горения дров: сравнительная таблица различных пород

Смотреть на горящий огонь – это одно из самых любимых развлечений человека. Однако, помимо сугубо эстетических целей – горящий огонь может выполнять и чисто утилитарную задачу – нагревать окружающее пространство и другие предметы.

температура горения дров

Одним из самых распространенных источников огня в загородных домах являются обыкновенные дрова. Удивительно, но температура горения дров зависит от породы дерева и условий их сжигания. Соответственно каждая из древесных пород может использоваться в различных целях, для выполнения тех или иных задач.

Какие дрова могут выделить максимальное количество тепла?

Для того, чтобы дрова, да и любой другой органический материал горел – ему необходим воздух (вернее кислород из воздуха, но это уточнение несущественно). В ходе сгорания органика дров при взаимодействии с кислородом превращается в водяной пар и углекислый газ. Пар в свою скрепляется с не сгоревшими материалами или уходит наружу через дымоход.

Каждый тип горючей органики, будь то нефть, газ, уголь или дерево имеет свой особенный химический состав. Также имеются различия в химическом составе и внутри каждого типа. Как существует каменный уголь с большим и малым содержанием золы, так же существуют и породы древесины, отличающиеся по температуре, выделяемой в процессе сгорания и по составу остающихся продуктов сгорания.

Сравнить в домашних условиях температуру горения дров практически невозможно, но вот в лабораторных условиях специалисты смогли провести такой сравнительный тест. Для того, чтобы получить разные стартовые результаты дрова из древесины разных пород высушивали до определенного максимального процента остающейся влажности.

таблица теплотворность горения дров

Этот момент – сушку дров необходимо учитывать и при домашнем использовании: ведь понятно, что сырые дрова будут гореть хуже и с меньшим выделением тепла. Поэтому, дрова, предназначенные для топки проходят из поленницы во дворе определенный путь, задерживаясь в сухом помещении или под навесом для просушки.

Сразу отметим, что понятие «температура горения дров» не совсем точно отражает ключевую характеристику дров. Более верным будет оценивать горючие материалы по их способности выделять определенное количество тепла. Единицей измерения такой характеристики является калория – это такое количество тепловой энергии, которое может нагреть на 1 градус один грамм обычной воды. В приведенной ниже таблички отраженны ключевые характеристики различных типов дров по их теплотворной способности.

Что может влиять на качество дров как топлива?

Наиболее негативно на теплотоворную способность дров оказывает содержащаяся в них вода. При жизни любая древесина содержит в себе воду, которая добывается корнями растений. При большой влажности древесины тепловая энергия, выделяемая при сгорании будет расходоваться не только на полезные цели (например, обогрев помещения, приготовление пищи или нагрев воды в бане) но и просто на испарение влаги из древесины.

Для понимания проблемности ситуации отметим, что если древесина (практически любая) содержит всего лишь 15 процентов влаги, то ее теплотворный показатель уменьшается до 3660 калорий. А теперь сравните эту цифру с показателями, приведенными в таблице и получится, что использовать влажные дрова – это все равно, что выкинуть часть их еще до размещения в топке.

Потери, определяемые влагой в дровах настолько велики, что эквивалента испарения 15 процентов влаги в килограмме дров хватит, чтобы нагреть до кипения около 10 литров воды.

Какие породы дров больше всего любят в народе

Наиболее популярными и эффективными исходя из народного опыта могут являться дрова, заготовленные из бука, граба, срубленного зимой дуба, горных сосен, обыкновенной акации и, конечно же, березы.

Наиболее жаркое пламя дают дрова, заготовленные из ясеня, клена, смолистой лиственницы, равнинной сосны и срубленного летом дуба.

Чуть более низкое образование жара показывают дрова, заготовленные из ели, пихты, кедра и каштана.

Ну и уж совсем плохие дрова получаются из липы, ольхи, осины, ивы, тополя.

Как уже стало понятно – наиболее эффективными с точки зрения образования тепла являются дрова, изготовленные и плотной, тяжелой древесины. Между прочим, дерево с низким коэффициентом теплообразования прекрасно подойдут для того, чтобы смастерить из них полки и утварь в бане.

Как сгорают дрова?

Не все дрова сгорают по-одинаковому. Некоторые из них пропадают в топках практически полностью, оставляя вместо себя всего лишь горстку пепла. Другие долго и нудно чадят, забивая остатками своего сгорания все топочное пространство.

Скорость и полнота сгорания дров также зависят не только от происходящих в открытом пламени химических реакций, но и от конструкции печи. Качественные печи имеют довольно сложное устройство, включающее в себя множество элементов, таких как золотник и поддувало, топка и колосники.

На полноту сгорания дров также будет влиять и их порода, а также (в очень существенной степени – удельная влажность).

горящие дрова

Но строго говоря для расчета тепловых устройств обычно не принимают во внимание разные характеристики дров, заготовленных из разных пород древесины. Для расчетов берется среднестатистическая величина, которая составляет для древесины 3800 калорий.

Какие дрова горят жарче других?

Помимо теплотворности, которая характеризует количество тепловой энергии, выделяемой при сжигании дров – нас в ходе практической жизни может заинтересовать и жаропроизводительность – то есть та максимальная температура, которая может быть достигнута в топке при сжигании того или иного типа дров.

Различные виды топлива и различные породы дерева сгорают разными способами. Одни из них могут давать ровное и высокое пламя, а другие будут демонстрировать низкий огонь, но показывать большую температуру непосредственно в области горения.

жаропроизводительность дров

Существует два основных момента, которые влияют на температуру, производимую дровами при сгорании.

Прежде всего температура горения зависит от того, с какой интенсивностью в топку поступает кислород, необходимый для горения. Этот показатель определяется обычно конструкцией самой топки.

Также на температуру влияет и конструкция самой печи.

Печки и топки могут создаваться из разных материалов. И Каждый из материалов может особым образом влиять на температуру горения дров.

В массивной каменной печи дрова сгорают практически полностью, но процесс этот происходит сравнительно долго. С другой стороны печка-буржуйка, то есть топка, изготовленная из тонкого стального листа очень быстро остывает., раздавая тепло в окружающее пространство. При этом тепло из зоны горения постоянно переносится на стенки и далее в помещение. Вследствие этого дрова в таких печках сгорают практически без остатка.

Как измерить температуру горения дров?

Обычным термометром измерить температуру горения дров у вас вряд ли получится. Тем более – совсем пропащее дело определять температуру горения «на глазок». Для того, чтобы проводить такие исследования, необходимо запастись специальным прибором – пирометром.

Но заметьте, самая высокая температура горения дров вовсе не означает, что дрова такого типа могут выделить большее количество тепла.

Заметьте, что в хороших топочных устройствах, например в закрытых каминах можно искусственно уменьшать поступление кислорода из воздуха к сгорающим дровам, добиваясь тем самым повышения температуры сгорания и понижения теплоотдачи.

Для сравнения вы можете посмотреть еще одну табличку, в которой отражены теплотворные способности различных видов органического топлива.

теплотворные способности

Несколько практических советов

Если вы почувствовали, что в помещении, в котором находится печка при плотно закрытой дверце топки запахло влажными дровами – проверьте целостность и герметичность печного оборудования.

Учтите, что продукты сгорания содержат в себе много кислот, поэтому трубы дымоходов необходимо делать из материалов, устойчивых к агрессивным средам.

После использования дров с высоким содержанием смолы прочистите дымоход.

Чтобы нагревать камни, например для парилки – лучше использовать дрова, которые горят слабо и подают тепло постепенно.

Если вам необходимо быстро нагреть парную комнату – используйте дрова с большой температурой горения и увеличьте подачу воздуха в топку.

Замеры температуры печи: видео

 

Температура горения дров. Какие дрова лучше выбрать

Какая температура горения дров в печи – породы дерева, какие дрова лучше выбрать

Содержание:

 

 

Дрова являются традиционным видом твердого топлива, которое издавна использовалось в регионах, где есть большое количество доступной древесины. От того, насколько высока температура горения дров в печке, зависит не только скорость прогрева дома, но и эффективность применения топлива, а значит, и размер финансовых затрат. Об основных характеристиках древесины, а также факторах, влияющих на количество выделяемой дровами тепловой энергии, и пойдет речь в статье ниже.

 

 

 

 

Температурный порог горения древесины различных пород

В зависимости от структуры и плотности древесины, а также количества и характеристик смол, зависит температура горения дров, их теплотворность, а также свойства пламени.

Если дерево пористое, то гореть оно будет очень ярко и интенсивно, однако высоких температур горения оно не даст – максимальный показатель составляет 500 ℃. А вот более плотная древесина, как, например, у граба, ясеня или бука, сгорает при температуре около 1000 ℃. Чуть ниже температура горения у березы (около 800 ℃), а также дуба и лиственницы (900 ℃). Если речь идет о таких породах, как ель и сосна, то они загораются примерно при 620-630 ℃.

Использование древесины исходя из ее теплоемкости

При выборе разновидности дров, стоит учитывать соотношение стоимости и теплоемкости той или иной древесины. Как показывает практика, оптимальным вариантом можно считать березовые дрова, у которых эти показатели сбалансированы лучше всего. Если закупать более дорогие дрова, затраты будут менее эффективными.

Для отопления дома твердотопливным котлом не рекомендуют использовать такие виды дерева, как ель, сосна или пихта. Дело в том, что в данном случае температура горения дров в котле будет недостаточно высокой, а на дымовых трубах будет скапливаться много сажи.

 

Низкие показатели теплоэффективности также и у дров из ольхи, осины, липы и тополя из-за пористой структуры. Кроме того, иногда в процессе горения ольховые и некоторые другие виды дров выстреливают углями. В случае открытой топки печи такие микро взрывы могут привести к пожарам.

Стоит отметить, что какой бы ни была древесина, если она сырая, то горит хуже сухой и сгорает не до конца, оставляя много золы.

Теплоотдача при сгорании дров в печи

Существует прямая взаимосвязь между температурой горения дров в печи и теплоотдачей – чем жарче пламя, тем больше тепла оно выделяет в помещение. На количество генерируемой тепловой энергии влияют различные характеристики дерева. Расчетные величины можно найти в справочной литературе.

Стоит отметить, что все нормативные показатели рассчитывались в идеальных условиях:

  • древесина хорошо просушена;
  • топка печи закрыта;
  • кислород подается четко дозированными порциями для поддержания процесса горения.


Естественно, что в домашней печи создать такие условия невозможно, поэтому тепла будет выделяться меньше, чем показывают расчеты. Поэтому нормативы будут полезны лишь для определения общей динамики и сравнения характеристик.

Что собой представляет процесс горения

Изотермическая реакция, при которой выделяется определенное количество тепловой энергии и называется горением. Эта реакция проходит несколько последовательных стадий.

На первом этапе древесина разогревается внешним источником огня до точки воспламенения. По мере нагрева до 120-150 ℃ древесина превращается в угли, которая способна самовоспламеняться. По достижении температуры в 250-350 ℃ начинают выделяться горючие газы – этот процесс называется пиролизом. Одновременно происходит тление верхнего слоя древесины, которое сопровождается белым или бурым дымом – это смешанные пиролизные газы с водяным паром.

На втором этапе в результате разогрева пиролизные газы загораются светло-желтым пламенем. Оно постепенно распространяется на всю площадь древесины, продолжая нагрев древесины.

Следующая стадия характеризуется воспламенением древесины. Как правило, для этого она должна разогреться до 450-620 ℃. Чтобы дрова воспламенились, необходим внешний источник тепла, который будет достаточно интенсивным для резкого нагрева дерева и ускорения реакции.

Кроме того, на скорость воспламенения дров влияют такие факторы, как:

  • тяга;
  • влажность древесины;
  • сечение и форма дров, а также их количество в одной закладке;
  • структура древесины – рыхлые дрова загораются быстрее, чем плотные;
  • размещение дерева относительно потока воздуха – горизонтально или вертикально.

 

Проясним некоторые моменты. Поскольку влажное дерево при горении в первую очередь испаряет лишнюю жидкость, то разжигается и сгорает оно намного хуже, чем сухое. Форма также имеет значение – ребристые и зазубренные бревна воспламеняются легче и быстрее, чем гладкие и круглые.

Тяга в дымоходе должна быть достаточной, чтобы обеспечить приток кислорода и рассеять внутри топки тепловую энергию на все находящиеся в ней объекты, но не задуть при этом огонь.

Четвертая стадия термохимической реакции – устойчивый процесс горения, который после вспышки пиролизных газов охватывает все находящееся в топке топливо. Горение проходит две фазы – тление и горение пламенем.

В процессе тления сгорает образовавшийся в результате пиролиза уголь, при этом газы выделяются довольно медленно и не могут воспламениться по причине малой концентрации. В результате конденсирования газов по мере их охлаждения образуется белый дым. Когда древесина тлеет, внутрь постепенно проникает свежий кислород, что приводит к дальнейшему распространению реакции на все остальное топливо. Пламя возникает в результате сгорания пиролизных газов, которые перемещаются вертикально по направлению к выходу.

Пока внутри печи поддерживается необходимая температура, подается кислород и есть не сгоревшее топливо, процесс горения продолжается.

Если такие условия не поддерживаются, то термохимическая реакция переходит в финальную стадию – затухание.

Как определить температуру горения в печи на дровах

Измерение температуры горения дров в камине можно выполнять только пирометром – никакие другие измерительные приборы для этого не годятся.

Если же такого прибора у вас нет, можно визуального определить примерные показатели, исходя из цвета пламени. Так, пламя низкой температуры имеет темно-красную окраску. Желтый огонь свидетельствует о слишком высокой температуре, получаемой с помощью усиления тяги, однако в этом случае большее количество тепла сразу улетучивается сквозь дымовую трубу. Для печи или камина наиболее подходящей будет температура горения, при которой цвет пламени будет желтым, как, например, у сухих березовых дров.

 

Современные печи и твердотопливные котлы, а также камины закрытого типа, оборудованы системой контроля подачи воздуха, чтобы корректировать теплоотдачу и интенсивность горения.

Жаропроизводительность древесины

Помимо значения теплотворности, то есть количества выделяемой тепловой энергии при сгорании топлива, есть еще понятие жаропроизводительности. Это та максимальная температура в печи на дровах, которой может достигать пламя в момент интенсивного горения древесины. Данный показатель также полностью зависит от характеристик древесины.

 

В частности, если дерево имеет рыхлую и пористую структуру, оно сгорает на довольно низких температурах, образуя светлое высокое пламя, и дает довольно мало тепла. А вот плотная древесина, хоть и гораздо хуже разгорается, даже при слабом и низком пламени дает высокую температуру и большое количество тепловой энергии.

Влажность и интенсивность горения

Если древесина была срублена недавно, то в ней содержится от 45 до 65 % влаги в зависимости от времени года и породы. У таких сырых дров температура горения в камине будет невысокой, поскольку большое количество энергии будет затрачиваться на испарение воды. Следовательно, теплоотдача от сырых дров будет достаточно низкой.

Достигнуть оптимальных показателей температуры в камине и выделения достаточного для прогрева количества тепловой энергии можно несколькими способами:

 

  • Сжигать за один раз в 2 раза больше топлива, чтобы обогреть дом или приготовить еду. Такой подход чреват существенными материальными затратами и усиленным накоплением сажи и конденсата на стенках дымоотвода и в ходах.
  • Сырые бревна распиливают, колют на небольшие поленья и размещаются под навесом для просушки. Как правило, за 1-1,5 года дрова теряют до 20 % влаги.
  • Дрова можно закупить уже хорошо просушенными. Хотя они несколько дороже, зато теплоотдача от них намного больше.

 

Стоит отметить, что совершенно непригодна для использования в качестве топлива древесина сырого срубленного тополя и некоторых других пород. Она рыхлая, содержит очень много воды, поэтому при горении дает очень мало тепла.

В то же время, у березовых сырых дров наблюдается достаточно высокая теплотворность. Кроме того, пригодны для использования сырые поленья из граба, ясеня и прочих пород дерева с плотной древесиной.

Как тяга в печке влияет на горение

Если в топку печи поступает недостаточное количество кислорода, то интенсивность и температура горения древесины снижается, а вместе с тем сокращается и ее теплоотдача. Некоторые предпочитают прикрывать поддувало в печке, чтобы продлить время горения одной закладки, однако в результате топливо сгорает с более низким КПД.

Если дрова сжигают в открытом камине, то в таком случае кислород свободно поступает в топку. В данном случае тяга зависит главным образом от характеристик дымовой трубы.

В идеальных условиях формула термохимической реакции выглядит примерно так:

C+2H2+2O2=CO2+2H2O+Q (тепловая энергия).

Это значит, что при доступе кислорода происходит сгорание водорода и углерода, что в результате дает тепловую энергию, водяной пар и углекислый газ.

Для максимальной температуры сгорания сухого топлива в топку должно поступать около 130 % кислорода, необходимого для горения. Когда входные заслонки перекрывают, образуется избыток угарных газов, вызванных недостатком кислорода. Такой недожженный углерод улетучивается в дымоход, однако внутри топки падает температура горения и сокращается теплоотдача топлива.

Современные твердотопливные котлы очень часто оборудованы специальными теплоаккумуляторами. Эти устройства накапливают излишнее количество тепловой энергии, выделяемой в процессе горения топлива при условии хорошей тяги и с высоким КПД. Таким способом можно экономить топливо.

В случае с печами на дровах возможностей экономить дрова не так уж и много, поскольку они сразу же отдают тепло в воздух. Сама печка способна сохранять лишь небольшое количество тепла, а вот железная печь и вовсе на такое не способна – из нее лишнее тепло сразу же уходит в трубу.

Так, при увеличении тяги в печи можно добиться усиления интенсивности горения топлива и его теплоотдачи. Однако в таком случае существенно возрастают теплопотери. Если же обеспечить медленное сгорание дров в печи, то их теплоотдача будет меньше, а количество угарного газа – больше.

Обратите внимание, что КПД теплогенератора напрямую влияет на эффективность сжигания дров. Так, твердотопливный котел может похвастаться 80 % эффективности, а печь – всего 40 %, причем имеет значение ее конструкция и материал.

Выводы

Таким образом, наилучшим вариантом с точки зрения экономии средств, а также эффективности сгорания и теплоотдачи, можно считать дрова из березы. Поскольку твердые породы древесины с высокой жаропроизводительностью стоят существенно дороже, они используются в качестве дров намного реже.

 

 

Температура горения дров в печи, котле и камине

Домовладельцы, использующие для обогрева своих жилищ твердотопливные котлы и печи, часто обращают внимание на такой параметр, как температура горения дров. Интерес к вопросу понятен, ведь для хозяина дома важно получить максимальное количество тепла. Соответственно, во время заготовки топлива на зиму надо побеспокоиться о достаточном количестве дров на весь сезон. На самом деле вопрос теплоотдачи древесины стоит несколько шире и зависит не только от температуры, но и других параметров. Каких – рассмотрим в данном материале.

Температура горения и теплоотдача

Эти два параметра взаимосвязаны, чем выше температура горения дров в печи или твердотопливном котле, тем больше тепла выделяется. Но каждый, кому однажды доводилось топить печь разными породами дерева, замечал, что одни дрова ярко пылают, выделяя нестерпимый жар, а другие вяло горят и тепла дают совсем мало.

Причина в том, что разные породы древесины имеют различную температуру горения и удельную теплотворность.

Чтобы понять, насколько велика эта разница, ниже предлагается таблица температуры горения различных пород дерева в идеальных условиях. Вы спросите – идеальные условия – это какие? Собственно, их три:

  • древесина содержит в себе минимум влаги;
  • процесс идет в закрытом пространстве;
  • в зону горения подается именно столько кислорода, сколько требуется для полноценного сжигания.

Для справки. Дуб, бук и лиственница считаются ценными породами древесины, в качестве основного топлива они используются очень редко. Разве что их отходы в виде стружки, опилок и горбылей.

Как уже было сказано выше, данные будут неполными, если не представить удельную теплоту сгорания каждой из пород. Ниже в таблице показаны значения теплоотдачи дров, выраженные в различных единицах и по отношению к весу и объему топлива:

Все табличные данные являются справочными и пригодятся для приблизительного расчета количества топлива, что выполняется с большим запасом. Еще по ним можно понять, что дуб и береза горят значительно жарче, чем тополь и ольха, а потому отдадут больше тепловой энергии. Но таблицы не могут представлять практическую ценность для рядового домовладельца, ведь условия сжигания в реальной жизни далеки от идеальных.

В реальности температура горения дерева в различных печах и каминах никогда не достигает значений, указанных в таблице. Для этого нужно, чтобы дрова были абсолютно сухими, чего в жизни не бывает, люди сжигают в топке такое горючее, какое у них есть в наличии. Снижается температура и от недостатка кислорода. Подробнее эти вопросы мы рассмотрим ниже.

Зависимость от влажности

Любое свежесрубленное дерево имеет повышенную влажность, в среднем ее значение лежит в диапазоне 45—55%, а у некоторых пород содержание влаги доходит и до 65%. Что происходит при горении таких дров? Часть выделяющегося тепла попросту расходуется на испарение воды, поэтому температура горения древесины не может повыситься до максимальной. Соответственно, падает и теплоотдача.

Чтобы получить необходимое количество теплоты для обогрева дома, можно пойти двумя путями:

  • оптимальное решение – высушить дрова. Чтобы достигнуть приемлемой влажности, их надо распилить и расколоть, а затем сложить в штабель под навесом или в сарае. Срок природной сушки – минимум 1 год. Через 1.5 года, когда поленница простоит 2 летних сезона, вы гарантированно получите дрова влажностью до 20%.
  • жечь свежесрубленное топливо или то, что есть в наличии. Тогда надо понимать, что расход дров будет чуть ли не вдвое больше положенного и заготовить соответствующе количество. Не говоря уже о том, что в газоходах и дымовой трубе рекордными темпами будет оседать сажа.

Примечание. Некоторые породы древесины непригодны к сжиганию в топке котла или печи в свежесрубленном виде. К таковым относится ива и тополь, они будут гореть очень плохо и совсем не дадут тепла.

Чтобы определить теплоотдачу дров, сложенных в поленницу, надо снять ее размеры, а потом выяснить общее количество теплоты, пользуясь данными таблицы. В ней теплотворность на единицу складского объема указана в зависимости от влажности:

Породы, чья теплотворная способность наиболее высока, можно сжигать свежесрубленными, имея в виду предостережения, описанные выше. Например, теплоотдача и температура горения дуба, ясеня и березы самые высокие, так что их хватит на испарение влаги и обогрева частного дома. Похуже обстоит дело с хвойными породами – сосной и елью, но они могут успешно гореть из-за своей смолистости. Не до конца высушенную сосну лучше класть в уже разогретую топку.

Вывод здесь простой: чем лучше вам удастся просушить дерево, тем выше будет температура сжигания и больше теплоты выделится, а расход дров уменьшится.

Зависимость от подачи воздуха

Парадокс в том, что температуру горения и теплоотдачу топлива мы снижаем сами путем ограничения поступления кислорода. Заслонки печи или котла прикрываются с целью увеличить длительность процесса и таким образом, по нашему мнению, экономить горючее. Исключение — температура горения костра в камине открытого типа, куда воздух из помещения поступает свободно.

Но даже каминный костер подчиняется химической формуле идеального горения древесины, представленной в упрощенном виде:

С + 2Н2 + 2О2 = СО2 + 2Н2О + Q (теплота).

В левой части уравнения – углерод и водород, сжигаемые в присутствии кислорода. В правой – продукты горения, это углекислый газ, вода и выделяющееся тепло, что мы используем для обогрева. На практике в топку надо подавать воздух в количестве 130% от объема, нужного для сжигания. Тогда сухие дрова при горении развивают температуру, близкую к максимальной.

Когда мы прикрываем подачу воздуха заслонками, уравнение нарушается, в нем появляется третий элемент – угарный газ (СО). Это результат того, что не все атомы углерода встретили по два атома кислорода, им просто не хватило для этого воздуха. Недожженный угарный газ вылетает в трубу, температура в топливнике снижается, а за ней и теплоотдача.

Правильный подход – это установить буферную емкость и постоянно выводить твердотопливный котел на максимальный режим работы с достаточной подачей воздуха и полноценным сжиганием. А вот с печами такой фокус не пройдет, они нагревают воздух помещения, а не воду в системе, так что аккумулировать тепло не получится. Вот почему при горении смоленых дров, да и вообще, любой древесины в печах всегда присутствует угарный газ.

Помните, количество угарного газа зависит от того, насколько перекрыта подача воздуха. Чем меньше кислорода проходит в топку, тем больше образуется угара, а тепла — меньше.

Заключение

Помимо перечисленных факторов, на реальную теплоотдачу влияет КПД теплогенератора. Например, как бы ни была высока температура в топливнике буржуйки, печка может отобрать только 40% образующегося тепла. Остальное улетает в дымоход, и это надо учитывать при заготовке дров. КПД твердотопливных котлов побольше – до 80%.

Влияет ли температура горения дров на эффективность работы печи

Одно из самых распространенных видов топлива, которое используют для обогрева загородных домов — это дрова. Они доступны, недороги и прекрасно сгорают, отдавая большое количество тепловой энергии. Но температура горения дров не у всех пород древесины одинакова, поэтому есть необходимость разобраться в данном вопросе и определить, какие дрова горят лучше, а какие хуже. Для чего это необходимо, наверное, понятно и без разъяснений.

Начнем с того, что напомним, без кислорода гореть ничего не будет на нашей планете. Поэтому подача воздуха в зону сгорания – основной критерий правильного процесса горения дров. Но древесина разделяется на породы, каждая из которых отличается от других химическим составом и плотностью. Внизу приложена таблица теплоты сгорания дров различных пород древесины.

Порода Теплота сгорания (калл)
Береза 4968
Осина 4950
Ольха 5050
Ель 4860
Сосна 4952

Как видите, разница даже очень существенная, особенно между елью и ольхой. Из этой таблицы видно, что, к примеру, при сжигании одного кубометра еловых дров теплоты будет выделяться меньше, чем при сжигании такого же объема дров из ольхи. Получается так, что для того чтобы получить необходимую определенную тепловую энергию вам придется сжигать поленьев из ели больше, чем из ольхи. А это не только количественные расходы топлива, это финансовые расходы из вашего кошелька.

Сухие дрова

Внимание! На эффективность горения древесного топлива будет влиять не только плотность дровишек, но и их влажность. Вот почему процесс сушки начинается с выбора сухого дерева для распила, а заканчивается поленницей под навесом в специально отведенном для этого месте, где всегда сухо. В таком положении поленья должны пролежать не меньше года, чтобы стать на самом деле сухими и качественными дровами.

Сжигая древесину, потребитель получает необходимое ему количество тепловой энергии, которая расходуется на обогрев жилища, на горячее водоснабжение дома, на приготовление пищи. Сухие дрова будут сгорать максимально. А вот с влажными будут проблемы, потому что часть энергии будет расходоваться на утилизацию влаги, которая в древесине присутствует. И чем больше влажности, тем больше энергии будет уходить на ее испарение. Эффективность сжигания падает.

Для понимания ситуации обратимся к таблице, которая расположена выше. Если поднять влажность используемых для растопки дрова хотя бы до 15%, то их теплоотдача упадет в среднем до 3660 кал. А это существенная разница.

Ярко горящие дрова

Кстати, удельная теплота сгорания дров определяется единицей, которая носит название калория. Что это такое? По сути, это все та же тепловая энергия, которая образуется при нагреве одного грамма воды, температура которого повышается на 1°С. Для многих это может быть не сразу понятным, но не это самая главная суть темы статьи. Наша задача объяснить потребителям, что важнее приобретать те виды дров, которые будут при малых объемах выделять большое количество теплоты. Это наиважнейший показатель эффективной работы дровяных нагревательных агрегатов, при высокой экономии денежных средств.

Какие дрова горят жарче

Итак, теплота сгорания дров зависит от их влажности и плотности структуры древесины. Но вот что удивительно, не все древесное топливо сгорает одинаково. Какие-то породы дерева сгорают, оставляя лишь небольшую горку золы, какие-то сгорают не полностью, оставляя целые головешки потухшего угля. Некоторые горят ярко, выделяя большой объем тепловой энергии, другие еле тлеют, выделяя дым и чад.

Залог успеха – правильно высушенное топливо

Отметим также, что на эффективность сгорания влияет и конструкция самой печи. Если этот агрегат возводил настоящий мастер, если в процессе производства были учтены все новшества и высококачественные материалы, тогда есть гарантия, что такой нагревательный прибор будет правильно сжигать дрова. А это и высокая теплоотдача, и полное выгорание древесины, и эффективная работа самого прибора.

Внимание! Обычно для расчета теплоотдачи каминов, печей и котлов, работающих на дровах, не учитываются все те показатели, о которых шел разговор выше. Есть определенная стандартная величина, равная 3800 калорий.

Теперь несколько слов еще об одном показателе. Это жаропроизводительность топлива. То есть это максимальная температура в печи на дровах. Обратите внимание, именно температура внутри камеры сгорания, а не на воздухе на улице или в помещении. Это важный момент, потому что разные породы деревьев горят по-разному. Некоторые горят ярко, шумно и быстро, другие еле тлеют, но при этом в зоне горения выделяется огромный объем тепловой энергии. Дадим еще одну таблицу, где покажем, какие породы древесины горят жарче.

Температура внутри топки

Порода древесины Жаропроизводительность (%) Температура (ºС)
Береза 68 816
Дуб 75 900
Липа 55 650
Сосна 52 624
Осина 51 612
Ольха 46 552
Тополь 39 468

На примере березы можно показать, что сгорает это дерево при температуре +816°С, при этом выделяет тепла 68% от максимального уровня жаровыделения. Но что влияет на эти показателя?

  1. В каких пропорциях в зону горения поступает кислород. А это в свою очередь зависит от устройства поддувала.
  2. Какая конструкция печи и из какого материала она была сооружена. К примеру, в каменной (кирпичной) печи дрова горят медленно и сгорают не до конца, оставляя солидные горки золы. В металлической печке буржуйке дрова горят быстро, ярко, отдавая через тонкий металлический лист тепло в помещение. Поэтому в такой печке от дров ничего не остается.

температура, цвет огня, сравнение характеристик

Первые химики считали, что огонь вызывается выделением из тел вещества «флогистон», который содержат все взрывчатые и горючие материалы. Но в XVIII веке было доказано, что причиной горения является менее таинственный элемент — кислород. Согласно этой модели явления, пламя указывает на место взаимодействия окислителя с горючим материалом, а его цвет — на температуру огня.

Костёр — контролируемый огонь, разведённый на открытом воздухе

Огонь и древние люди

Контролируемое использование огня для обеспечения себя теплом и светом — одно из первых великих достижений человечества. Это дало возможность древним людям освоить места с более суровым климатом, готовить пищу, защищаться от хищников и обрабатывать некоторые материалы. Доказано, что предки современных людей знали, как пользоваться огнём по меньшей мере 790 тысяч лет. Некоторые археологические данные свидетельствуют об использовании его значительно раньше:

  1. 1,6 млн лет назад — анализ сгоревших костей антилоп в одной из пещер Южной Африки подтверждает, что их сожгли австралопитеки в рукотворном костре.
  2. 1,9 млн лет назад — в другой пещере на границе пустыни Калахари были найдены следы старейшего контролируемого огня. Предварительные данные говорят о том, что гомо эректус готовили пищу на костре с момента своего появления.

    Огонь является очень важным для человеческого развития, так как позволил нашим предкам готовить пишу и обогреваться

Многие культуры не одну тысячу лет поклонялись открытому пламени и использовали его в религиозных обрядах.

Роль важного элемента во многих церемониях огонь сохранил и до настоящих дней. Его значение для людей было настолько велико, что он стал героем мифов и основой мировоззренческих систем: Прометей похитил огонь у богов, чтобы отдать его людям; Аристотель определил его в качестве одного из четырёх природных элементов; китайские философы дали ему роль одной из пяти сущностей, из которых состоит всё живое.

Физика процесса

Огнём называют бурное окисление материалов в процессе необратимой экзотермической реакции с выделением энергии в виде тепла и света. Огонь возникает как результат воспламенения горючего при достаточном количестве кислорода, позволяющем поддерживать скорость окисления на уровне цепной реакции. Пламя — видимая газообразная часть огня. Над жидкостью оно возникает в результате её испарения, над твёрдым топливом благодаря выделению из него горючего газа в процессе пиролиза.

Огонь – бурное окисление материалов в процессе необратимой экзотермической реакции с выделением энергии в виде тепла и света

Доминирующий цвет пламени меняется с температурой открытого огня. Хорошей иллюстрацией этого явления может быть горение традиционного костра. Рядом с дровами, где происходит самая бурная реакция, огонь белый, переходящий в жёлтый. Над этой областью цвет меняется на оранжевый, маркирующий зону, в которой холоднее. Следующий, ещё более холодный участок — красный. Над ним реакция практически не происходит, а выше можно наблюдать такие несгоревшие частицы углерода как дым. Диапазон температур горения костра в соответствии с цветовой гаммой выглядит так:

  • едва заметный красный — 500°C;
  • вишнёвый тёмный — 800°C;
  • вишнёво-красный яркий —1000°C;
  • глубокий красно-оранжевый — 1100°C;
  • яркий оранжево-жёлтый — 1200°C;
  • белесовато-жёлтый — 1300°C;
  • яркий белый 1400°C;
  • ослепительно белый — 1500°C.

Фазы горения

По сути, деревья — концентрат энергии излучения Солнца. Листья растений работают как небольшие солнечные панели, поглощающие световую энергию, чтобы с её помощью преобразовать воду, углекислый газ и минералы в органические вещества. Горение можно рассматривать как процесс обратный фотосинтезу. Поджигание дров освобождает накопленную за время жизни растения энергию, реализуя её в виде высокой температуры огня в костре. Горение древесины проходит три фазы:

  1. Испарение влаги под воздействием температуры открытого пламени. Любая древесина содержит влагу, после поджигания вода в ней закипает и испаряется через трещины. Поскольку значительная часть подводимого тепла затрачивается на испарение, успешное поджигание либо требует сухих дров, либо большого количества тепла. Первая фаза завершается при достижении древесиной 100°C.
  2. Повышение температуры и газификация древесины. При 150 °C дерево начинает разлагаться на угли и летучие горючие вещества, оптимальная температура для этого процесса — от 280°C. Воспламенение газов происходит при температурах между 260 и 315°C с дальнейшим заметным пламенным горением. При 700°C и выше начинается процесс выделения и сжигания газов с высокой теплотворной способностью. Фаза заканчивается с прекращением образования летучих горючих веществ.
  3. Углеродное горение. После выделения первичных и вторичных газов остаются углеродные цепи и несгораемые вещества. Углерод, или древесный уголь, горит долго и без видимого пламени. Стадия заканчивается полным сгоранием твёрдых веществ в древесине до негорючей золы.

Искусство истопника или разжигателя костров состоит в знаниях и навыках, необходимых для обеспечения благоприятных условий протекания горения во всех трёх фазах: от поддержания температуры пламени костра до подачи необходимого количества кислорода.

Виды древесины

Есть несколько закономерностей, обуславливающих разницу в горении различных пород дерева. Прежде всего это наличие смол — они заметно добавляют теплотворной способности дровам. Мягкий лес горит легче из-за низкой плотности. Тяжёлые породы долго поддерживают горение.

В то время как плотность древесины существенно варьируется от вида к виду, теплотворная способность их на единицу массы практически одинакова (за исключением хвойных смолистых пород). Независимо от того, какие виды деревьев пошли на дрова, влажность — основной фактор, влияющий как на процесс горения, так и на тепловой результат.

Знание разных пород древесины позволяет получить комфортное горение с меньшим расходом дров

Перечень особенностей древесины некоторых пород:

  • акация — горит медленно и даёт много тепла, быстро сохнет, в кострище издаёт характерный треск;
  • берёза — сгорает быстро, легко воспламеняется даже влажной, даёт ровный и устойчивый огонь;
  • бук — калорийное топливо, оставляет мало золы;
  • дуб — высокая теплотворная способность, выделяет при горении приятный запах, очень долго сохнет;
  • тополь — невысокая теплота сгорания;
  • фруктовые деревья — горят медленно и равномерно;
  • хвойные — ароматный дым, могут стрелять смолой, образуют много копоти.

Знание основ обращения с древесиной как топливом позволяет получить комфортное горение с меньшим расходом дров.

Важно только не забывать главное: неконтролируемое открытое пламя может быть очень опасным для живых существ. Помимо ожогов от пламени и тлеющих углей, огонь может принести несравненно больше беды разгоревшись в пожар.

дрова в печи, возгорание костра, воспламенение открытого огня из древесины

Температура горения дерева зависит от их породы и других факторовДрова являются классическим и самым распространенным вариантом твердого топлива. При сжигании древесины образуется тепловая энергия, которая используется для отопления различных помещений. Эффективность сгорания всецело зависит от температуры горения дров, а вот она в свою очередь зависит от породы древесины, их влажности и условий сжигания. Каждая разновидность древесины может использоваться для выполнения разных целей и задач. Одни используют для приготовления пищи на мангале или печке, другие для обогрева пространства (в камине или буржуйке).

Горение древесины: основные этапы

Горение – это изотермическое явление, проще говоря, реакция, при которой идет выделение тепла. У каждой породы дерева свое КПД тепла. Чтобы измерить температуру горения дерева в печи используют специальный термометр – пирометр. Все другие приборы и термометры для этой цели не годятся, сколько бы вы не старались.

Определить температуру сгорания можно и по цвету пламени используемой породы. Если порода загорается темно-красным пламенем, значит это низкотемпературное горение. Белое пламя указывает на высокую температуру горения. Но самое оптимальное пламя все же должно быть желтого цвета. Таким пламенем горит обычно сухая береза.

Весь процесс горения дерева заключается в нескольких важных этапах, которые взаимосвязаны между собой.

Этапы горения древесины:

  1. Разогрев. При температуре 120 – 150 градусов дерево обугливается, в результате образуется уголь, который затем сам воспламеняется.
  2. Возгорание дымовых газов. Дальнейший разогрев способен привести к термическому разложению и газы вспыхивают, охватывая всю зону. Дерево при этом горит светло-желтым пламенем.
  3. Воспламенение. Его температура составляет 450 – 620 градусов. Для успешного воспламенения требуется хорошая тяга в определенном количестве.
  4. Горение. Оно состоит из двух фаз: процесса тления и горение пламенем. Горит огонь в том случае, пока для него создаются и поддерживаются определенные условия: пока есть само несгоревшее топливо, продолжает поступать кислород и сохраняется нужная температура.
  5. Затухание. Если хоть одно из условий не соблюдается, процесс горения прекращается и огонь тухнет.

Чтобы древесина быстрее начала гореть, ее можно полить любой жидкостью, которая быстро воспламеняется

Самыми качественными дровами являются твердые лиственные породы, они имеют высокую теплопроводность и обладают длительным горением. К таким породам можно отнести дуб, бук, березу, акацию. Бук так же отличается приятным ароматом и его используют для копчения. А вот если разжечь в доме грушу, яблоню или вишню, то их приятный запах заполнит все помещение. Способность березовых дров разгораться даже в свежесрубленном виде очень высока, поэтому они являются самым выгодным и востребованным топливом.

Температура горения древесины: факторы, способствующие процессу

Каждый владелец частного дома, где есть печь или камин, знает, что от теплопроводности дров будет зависеть и их КПД. Так же за качество горения дров отвечает и еще один важный показатель. Таким показателем является температура горения дров. У каждой породы дерева она различна. Чем больше будет происходить увеличение градусов, тем система обогрева будет нагреваться быстрее, а вот вода в трубах или кирпичная кладка сохранит тепло дольше.

Существует разный каменный уголь, в котором присутствует большее или меньшее содержание золы. Так же есть отличия и у разных пород древесины. Например, отличаются они температурой, которая выделяется в процессе горения и составом продуктов, оставшихся после сгорания дров.

Чтобы выбрать качественную и добротную древесину, нужно знать некоторые важные факторы, которые отвечают за лучшее горение дерева. От этих факторов будет зависеть не только качество возгорания костра, но и температура пламени и самого процесса сгорания.

Факторы, которые способствуют процессу горения:

  • Сорт древесины;
  • Влажность дерева;
  • Количество воздуха, поступающего в топку.

Чтобы дерево хорошо горело, оно должно быть хорошо высушено

Так же породы дерева отличаются: плотностью, структурой, а так же составом смол и его количеством. Все эти факторы прямым образом так же влияют на теплопроводность, характер пламени, температуру воспламенения и сгорания разных пород. Например: тополь загорается высоким и очень ярким пламенем, однако максимальная его температура горения может составлять только 500 градусов Цельсию, а это вовсе не достаточно для обогрева. А вот при сгорании таких пород как: бук, ясень или граб выделяется температура более 1000 градусов, что способствует отличному отоплению.

Жаропроизводительность дров: таблица основных пород

Рассматривая разные породы дерева, в итоге, можно заметить некоторые различия: одни из них очень ярко и отлично горят, при этом ощущается сильное тепло, а другие просто еле-еле тлеют, оставляя за собой практически никакого жара. Дело здесь вовсе не в их сухости или влажности, а в их структуре и составе, а так же строении дерева.

Однако стоит обратить свое внимание и на то, что влажное дерево очень плохо возгорается и горит, при этом остается большое количество золы, что плохо сказывается на дымоходе, они сильно засоряются.

Самая высокая жаропроизводительность у дуба, бука, березы, лиственницы или граба, однако эти породы являются самыми нерентабельными и дорогими. Поэтому их применяют очень редко и то в виде стружки или опилок. Самая низкая теплоотдача – у тополя, ольхи и осины. Существует таблица, в которой указаны основные породы и их жаропроизводительность.

Таблица некоторых основных пород и их теплоотдача:

  • Ясень, бук – 87%;
  • Граб – 85%;
  • Дуб – 75, 70%;
  • Лиственница – 72%;
  • Береза – 68%;
  • Пихта – 63%;
  • Липа – 55%;
  • Сосна – 52%;
  • Осина – 51%;
  • Тополь – 39%.

Хвойные породы имеют низкую температуру горения, поэтому их лучше использовать для загорания открытого огня (костра). Однако древесина сосны загорается очень быстро и способна долго тлеть, так как в ее состав входит огромное количество смол, поэтому эта порода способна длительное время сохранять тепло. Но все же для отопления хвойную породу лучше не использовать, так как при ее сгорании образуется много дымовых газов, которые оседают в виде сажи на дымоходе и его приходится чистить, так как он быстро засоряется.

Полное и неполное сгорание: что выделяется при горении древесины

Гореть может не только дерево, но и его продукты (ДСП, ДВП, МДФ), а так же металл. Однако температура горения у всех продуктов разная. Например: температура горения стали составляет 2000 градусов, алюминиевой фольги – 350, а дерево начинает воспламеняться уже при 120 – 150.

При неполном сгорании продукты горения могут быть использованы повторно

При сгорании древесины в конечном итоге образуется дым, где твердым веществом является сажа. Весь состав продуктов сгорания всецело зависит от составляющих дерева. Древесина в основном состоит из самых главных составляющих: водорода, азота, кислорода и углерода.

Если сгорел 1 кг древесины, то продуктов сгорания в газообразном состоянии выделиться где-то 7,5 – 8,0 м кубических. В дальнейшем они гореть уже не способны, кроме окиси углерода.

Продукты сгорания дерева:

  • Азот;
  • Окись углерода;
  • Углекислый газ;
  • Пары воды;
  • Сернистый газ.

Горение по характеру может быть полным или неполным. Но оба они происходят с образованием дыма. При неполном горении некоторые продукты сгорания еще могут гореть в дальнейшем (сажа, окись углерода, углеводороды). А вот если произошло полное сгорание, то тогда продукты, которые образовались в дальнейшем, гореть не способны (сернистый и углекислый газы, пары воды).

Средняя температура горения дерева (видео)

Горение – это сложный процесс, где в результате выделяется тепло. На сегодняшний день самым актуальным топливом является дерево. От его качества будет зависеть и сам процесс сгорания. Дрова нужно выбирать желательно твердых пород, абсолютно сухие с высокой теплоотдачей, тогда и эффективность обогрева увеличиться.


Добавить комментарий

Воспламенение и горение дров | Древесина как топливо | Отопительный модуль | Принципы конструирования бань

Для простейшего качественного анализа возьмём деревянную дощечку и положим её плашмя на тлеющие угли очага (рис. 95). Ясно, что доска должна нагреваться снизу, а значит и дрова в кострах и в печах вспыхивают и горят снизу. Поминутно перевёртывая дощечку для осмотра нагревающейся стороной вверх, можно заметить, что сначала обугливаются и начинают тлеть заусеницы (ворсинки) на поверхности доски 3. Поэтому для облегчения загорания дров, перед растопкой на поленьях иногда делают топором крупные насечки (заусенцы, заструги). И наоборот, для предотвращения преждевременного воспламенения, доски обжигают паяльной лампой (газовой горелкой, факелом, лучиной) для удаления ворсистости поверхности древесины, например, на потолке курной бани.

Рис. 95. Воспламенение и горение деревянной дощечки, закладываемой на угли (пламя) в печи: 1 — деревянная дощечка (вид с торца), 2 — угли (пламя) в печи, 3 — заусеница, воспламеняющаяся в первую очередь, 4 — пористый газопроницаемый обугливающийся слой, 5 — газообразные горючие продукты пиролиза (летучие), сгорающие в обугливающемся слое в режиме тления, 6 — распределение температуры при тлеющем горении, 7 — летучие, сгорающие вне древесины в форме пламени, 8 — распределение температуры при пламенном горении, 9 — пламя (факел), охватывающее нижнюю пласть (сторону) доски и вырывающееся вверх за кромкой доски, 10 — годичные слои древесины (иллюстративно).

Конечно, воспламенившиеся заусенцы в виде микроугольков могут поджечь дощечку лишь в том случае, если она уже вся в своей массе предварительно нагрета до температуры воспламенения. Наша же дощечка в эксперименте пока холодная, так что воспламенившиеся заусеницы пока не могут воспламенить массив дощечки.

Продолжая нагревать дощечку на раскалённых углях, мы замечаем, что поверхность нижней пласти (широкой стороны) дощечки начинает постепенно буреть, а затем и чернеть (обугливаться). Однако, при перевёртывании доски ни тления, ни устойчивого пламени на её горячей стороне пока нет. Лишь местами видны ленивые голубые прозрачные всполохи (см. поз. 9 на рис. 94), похожие на горение метана в кухонной плите или спирта в медицинской спиртовке. Это указывает на то, что из доски начинают выделяться горючие газы, причём, видимо, простейшие вещества (типа спиртов, альдегидов, кетонов, окиси углерода и т. п.) в незначительном количестве и в виде смеси с воздухом. Все эти соединения имеют высокую подвижность в порах древесины (особенно в продольном направлении) ввиду высоких коэффициентов диффузии в воздухе Dт=Dₒ(Т/273)n, где Т — температура в градусах Кельвина (П.А. Долин, Справочник по технике безопасности, М.: Энергоатомиздат, 1984 г.):

Вещество, продукт Dₒ, см²/сек n
Водород 0,660 1,70
Формальдегид 0,146 1,81
Метиловый спирт 0,129 2,08
Вода 0,216 1,80
Окись углерода 0,149 1,72
Двуокись углерода 0,138 1,80
Метан 0,196 1,76
Бензол, фенол 0,077 1,86
Нафталин 0,062 1,89
Бензин 0,061 2
Керосин 0,046 2
Уайт-спирит 0,050 2
Масла автотракторные 0,035 2

При дальнейшем прогреве дощечки обугливающийся слой на нижней пласти (на широкой стороне) начинает тлеть (то есть гореть без пламени). При этом из дощечки (причём преимущественно с торцов) начинает выделяться белый (бурый) дым. Это конденсат (роса, туман) жижки, выходящей из пор древесины в виде газа (паров) сначала диффузионно, а затем и под напором (струями). Наконец, на границе с кромкой (узкой стороной) белый дым воспламеняется, возникает светло-жёлтое пламя, впоследствие охватывающее всю нижнюю пласть. Это означает, что доска воспламенилась, и если её извлечь из очага, она может гореть на воздухе самостоятельно.

Горение может попеременно переходить то в тлеющий режим, то в пламенный (факельный, огневой). Оба режима тесно связаны между собой общей природой, но отличаются химизмом и кинетикой. В режиме тления главным (ведущим) процессом является горение твёрдых продуктов пиролиза (углей). В режиме пламенного горения ведущим является горение газообразных продуктов пиролиза. В режиме тления газообразные продукты выделяются медленно (столь же медленно, как горит обугленный слой древесины), не могут воспламеняться из-за малой концентрации паров и при охлаждении конденсируются, давая обильный белый дым.

Таким образом, горение древесины обычно начинается с тления — воспламенения углей обугленного слоя (а не воспламенения горючих газов). При увеличении толщины первичного обугленного слоя до 1-3 мм и повышении температуры обугленного слоя (до 300-350°С для берёзы и 350-400°С для сосны) поверхность углей самовоспламеняется в воздухе. Это означает, что угли на поверхности вступили в реакцию окисления С+О₂ ® СО₂ с выделением энергии и нагревом поверхности углей до 1000-1200°С, в результате чего поверхность начинает светиться и «истлевать» (разрушаться). При этом возникает повышенный тепловой поток внутрь древесины (за счёт теплопроводности от горячей поверхности). За счёт разогрева начинается пиролиз глубинных слоев древесины. Газообразные продукты пиролиза (так называемые летучие) либо сгорают в обугленном слое, либо выходят через холодные части поверхности древесины в виде белого дыма.

Скорость сгорания углей в режиме тления ограничивается скоростью диффузии молекул кислорода в воздухе к поверхности обугленного слоя и внутрь него (навстречу диффундирующим от поверхности молекулам углекислого газа), то есть механизм окисления в режиме тления является диффузионным (по аналогии с процессами испарения).

Если тлеющую поверхность обдуть потоком воздуха, то она начнёт разгораться. Тлеющая поверхность получает всё большее (может быть даже чрезмерное) количество кислорода. Скорость потребления кислорода теперь уже ограничивается скоростью самой реакции окисления (кинетикой реакции). Поэтому режим разгорания называется кинетическим. Скорость реакции окисления очень быстро (экспоненциально) растёт с температурой, так что по мере разогрева поверхности растёт темп нагрева, и реакция идёт в разгон. Скорость выхода газообразных продуктов пиролиза становится столь большой, что они уже не успевают сгореть ни внутри, ни на поверхности обугленного слоя, выходят наружу и сгорают в виде пламени (факела). Поверхность обугленного слоя целиком оказывается в атмосфере газов пиролиза, которые сплошным потоком продувают обугленную поверхность, оттесняя с поверхности углей воздух. Поскольку продукты пиролиза не содержат свободного кислорода, обугленный слой перестаёт окисляться. Тем не менее, поверхность обугленного слоя остаётся раскалённой, но теперь уже не за счёт горения углей, а за счёт нагрева от пламени.

Толщина обугленного слоя постепенно увеличивается вплоть до полного преобразования полена в куски древесного угля (в угли). При этом выход газообразных продуктов пиролиза прекращается. Раскалённая поверхность древесного угля оказывается в атмосфере воздуха и начинает гореть самостоятельно, без пламени. Этот режим интенсивного горения углей внешне похож на тление, но в древнем быту назывался «жаром» в отличие от тления, которое поддерживает огонь как бы подспудно, в скрытом виде («тлеют как под пеплом головешки»). Пламенное горение называли пылом. Горение полностью обугленного полена (крупного куска углей) происходит в диффузионном режиме, точно так же, как и в случае тления древесины. Поэтому, если подуть на горящие угли воздухом, то они начинают светиться ярче, но в отличие от тления древесины пламя, естественно, не возникает, поскольку газообразным горючим продуктам взяться уже не из чего.

Возвращаясь к углям (к обугленному слою) на повехности тлеющей древесины, поясним, что обдув тлеющей древесины может перевести тление в пламенное горение, а может и потушить тлеющую древесину. Дело в том, что поток воздуха не только увеличивает подачу кислорода к тлеющим углям, но захолаживает сами угли за счёт конвективной составляющей теплообмена. Поэтому для надёжного перевода режима тления в режим пламенного горения необходимо плавно повышать скорость воздушного потока («раздувать» тлеющую древесину) так, чтобы температура поверхности углей непрерывно повышалась. Собственно, абсолютно такая же ситуация возникает и при «раздуве» дров, горящих пламенным горением. В любом случае при достижении кинетического режима дальнейшее увеличение концентрации кислорода уже не способно ускорить реакцию окисления: необходимо повышение температуры углей. Отметим попутно, что все эти соображения объясняют и факт перехода пламенного горения в тлеющее при снижении парциального давления кислорода в топке.

Смены режимов горения дров, казалось бы, осуществляются легко. Например, в печи открыли воздухозаборные отверстия топливника — появилось пламя, прикрыли —пламя увяло, дрова стали тлеть. На самом деле ситуация более сложная. Изменение скорости подачи кислорода — это лишь одна сторона процесса, обуславливающая изменение скорости тепловыделения и, как следствие, изменение скорости пиролиза. Но скорость пиролиза (действительно являющуюся основным отличием между тлением и пламенным горением) можно регулировать не только изменением тепловыделения, но и изменением теплопотерь. Например, лежит полено и тлеет. Можно подуть в зону тления, количество кислорода у раскалённой обугленной поверхности увеличится, скорость окисления возрастёт, и бревно загорится пламенем. Но можно положить рядом с тлеющим поленом ещё одно тлеющее полено так, чтобы тепловое излучение тлеющей поверхности одного полена грело тлеющую поверхность другого полена. В таком случае теплопотери на излучение уменьшаются, температуры обугливающихся слоев обоих поленьев возрастают, и между тлеющими поленьями возникает пламя. Подобный приём используется повсеместно и называется костром (рис. 96). Выход летучих облегчается в крупных щелях поленьев и особенно брёвен при пожарах: языки пламени рвутся в первую очередь из щелей. Подогревать тлеющую поверхность можно и внешним инфраскасным источником («отражательные» панели в пламенных печах), и пламенем другого полена или другого участка полена, что в принципе и обуславливает распространение огня по дровам. Так, вертикально расположенная спичка (полено) схватывается огнём лучше, если первичное пламя расположено снизу. Вместе с тем, в режиме увядания тления (при прекращении подачи воздуха или при охлаждении) именно щели и промежутки между поленьями становятся источниками дымления, поскольку в них дольше всего сохраняется высокая температура и высокая скорость пиролиза, хотя кислорода для сгорания горючих газов именно в них в первую очередь уже не хватает. Поэтому дольше всего дымят при тлении глубоко «изъеденные» расщелины (трещины) в обугленном слое древесины (обычно расположенные поперёк полена), причём дымление происходит белым дымом и чёрным (чадом) одновременно. Особенно долго дымят так называемые «головешки» — витиеватые сучки древесины.

Рис. 96. Костры: а — колотые поленья уложены шатром (двускатным или конусным), поджигаемые снизу лучинами; б — три бревна на общей подкладке со сближенными концами, поджигаемые вспомогательным костром или керосином, горят до 6-8 часов; в — три бревна диаметром 25-30 см, глубоко насечённые топором, уложенные отёсаными сторонами друг к другу с прокладкой из щепы и стружек от тёса, разжигаемой по всей длине брёвен, горят 9-10 часов.

Переход от интенсивного пламенного горения к тлению часто происходит отнюдь не просто: при сокращении скорости подачи воздуха в печь, пламя вовсе не увядает, переходя в тление, а наоборот, сначала неожиданно удлинняется, языки пламени «растут», охватывая весь топливник и «залезая» даже в дымоход. Пламя начинает «реветь», возникает обманчивое ощущение огромной мощности пламени. Печь «трясётся от огня», но стенки печи при этом вовсе не разогреваются, а остывают, поскольку мощность тепловыделения всё-таки определяется скоростью подачи воздуха. Причина явления в том, что массивные долго остывающие поленья продолжают выделять горючие газы, но те из-за нехватки кислорода не могут быстро сгореть, «мечутся» по топливнику в те стороны, куда ещё проникает (или сохраняется) кислород (за счёт воспламенений случайно образующихся горючих смесей).

При наблюдениях за работой печей часто возникает вопрос, почему цвет пламени не столь уж сильно зависит от количества подаваемого воздуха. Казалось бы, сажистые частицы должны были бы гореть (светиться) при полностью открытых заслонках печи значительно ярче, вплоть до белого цвета (впрочем, также и угли). Ну, во-первых, чем меньше размер горящей в воздухе частицы, тем меньше её температура может отличаться от температуры воздуха. Это закон природы, следующий из уравнения теплопроводности для частицы, горящей в воздухе. Поэтому горящие сажистые частицы, имея размеры 1 мкм и меньше, всегда имеют точно такую же температуру, как и окружающий их газ. Если мелкие частицы, не успев сгореть в пламени, попадают в холодный воздух, то тотчас охлаждаются, поликонденсируются и превращаются в чёрный дым (или сизый дымок). А вот крупные частицы могут сильно отличаться по температуре от окружающей газовой среды, могут ярко и долго гореть даже в очень холодном воздухе в виде известных «горящих искр» от костра. По той же причине крупные капли душа медленно остывают в воздухе, мелкие же капли тонкораспылённого душа тотчас остывают, нагревая воздух.

Во-вторых, пламя над древесиной (так же как над парафиновой свечей) образуется в месте контакта объёма горючего газа с окружающим воздухом (в оболочке языков пламени). В зону (плёнку, слой) горения с одной стороны непрерывно диффундируют молекулы горючего газа, с другой стороны - молекулы кислорода; продукты горения (молекулы воды и двуокиси углерода) столь же непрерывно удаляются диффузией навстречу кислороду и горючему газу (А.Г. Гейдон, Спектроскопия и теория горения, М.: ИЛ, 1950 г.; А.Г. Гейдон, Х.Г. Вольфгард, Пламя, его структура, излучение и температура, М.: Металлургиздат, 1959 г.; P.M. Фристром, A.A. Вестенберг, Структура пламени, М.: Металлургия, 1969 г.). Не углубляясь в теорию диффузионного горения, напомним, что пламя при этом может потреблять лишь ограниченное количество кислорода, лимитируемое не кинетикой химреакции, а скоростью диффузии кислорода (определяющейся парциальным давлением кислорода в воздухе, а также температурой и давлением воздуха в топливнике). Если при изменении расхода воздуха через печь эти параметры изменяются, то только тогда изменяется и температура пламени (то есть скорость реакции и температура газа в зоне горения), а значит, и цвет излучения сажистых частиц, имеющих ту же температуру, что и газ.

Если факт появления сажистых частиц обусловлен плохим смешением, то цвет их свечения и степень дымления особенно сильно изменяются при нехватке кислорода. Действительно, стехиометрический режим характерен именно тем, что в результате горения в топке потребляется абсолютно весь кислород. Но это же значит, что на заключительных стадиях горения и диффундировать в зону горения практически нечему. Это ведёт к росту времён сгорания (с удлиннением пламен и появлением дымления) и к «разбуханию» (диффузионному) языков пламени. Поэтому, когда мы погружаем в пламя парафиновой свечи металлическую чайную ложку, то снижение температуры пламени и появление дымления обусловлено не только прямым контактным охлаждением, но и ограничением поступления кислорода в пламя.

В заключение отметим, что понятия температур воспламенения и самовоспламенения древесины весьма неопределены и даже более условны, чем в случае жидкостей, поскольку при воспламенении древесины мы имеем дело со взаимодействием воздуха сразу с тремя фазами: твёрдой, жидкой и газообразной. Наиболее простой случай для анализа явлений воспламенений — смесь горючего газа с воздухом. Для каждого горючего газа имеется вполне определённая область концентрации газа в воздухе, когда смесь может воспламениться. Эта область концентрации называется концентрационными пределами распространения пламени (КПР по ГОСТ 12.1.044-89) или, как говорили раньше, концентрационными пределами воспламенения (КПВ). Если концентрация (содержание) горючего газа в смеси ниже нижнего концентрационного предела воспламенения (взрываемости) НКПВ, то смесь не может воспламениться (с выделением пламени и с существенным повышением температуры). В концентрационных пределах воспламенения смесь самопроизвольно вспыхивает при определённой температуре самовоспламенения (как в дизеле). Температуры воспламенения (то есть такой температуры, при которой смесь можно зажечь внешним поджигающим устройством) как таковой нет (вернее, она очень низкая) — достаточно нагреть внешним высокотемпературным источником некую минимальную зону смеси до температуры самовоспламенения. Для ориентировки укажем, что НКПВ для нафталина составляет 0,44% об., для бензола 1,43% об., для водорода 4,09% об., окиси углерода 12,5% об., генераторного газа (синтез-газа) 20,0% об., скипидара 0,73% об. Температуры самовоспламенения могут быть весьма низкими: наинизшие значения у кислородосодержащих углеводородов — эфиров 160-200°С, спиртов 200-300°С, скипидара 300°С. Ясно, что основной преградой к воспламенению горючих газов пиролиза древесины (с появлением пламени) является их низкая концентрация в воздухе над древесиной. Причём воспламеняются в первую очередь сложные соединения, но отнюдь не водород и окись углерода.

У горючих жидкостей в соответствии с ГОСТ 12.1.004-76 различают температуру вспышки (при которой над поверхностью жидкости достигается НКПВ паров и возможна кратковременная вспышка от внешнего источника зажигания, но поддержание горения оказывается в дальнейшем невозможным из-за малой скорости поступления паров из жидкости в воздух), температуру воспламенения (при которой пары воспламеняются от внешнего источника и продолжают гореть) и температуру самовоспламенения (при которой пары воспламеняются и горят самостоятельно без внешнего источника воспламенения). Температуры вспышки очень низки и составляют Твсп=0,736Ткип (эмпирическая формула Орманди-Грэвена), где Твсп и Ткип — температуры вспышки и кипения жидкости в градусах Кельвина Т=273+1, где I в градусах Цельсия. Так, температура вспышки скипидара всего 34°С, но никаких вспышек паров над тёплой древесиной от внешнего источника (например, спички) никогда не наблюдалось. Это означает, что скипидар в древесине находится в соединениях, разрушающихся лишь при пиролизе.

У горючей же древесины обычно различают температуру воспламенения летучих (газообразных продуктов пиролиза) и температуру самовоспламенения обугленного слоя (твёрдых продуктов пиролиза). Температура самовоспламенения летучих интереса не представляет, так как температура самовоспламенения угля обычно ниже температуры самовоспламенения летучих. Считается, что температура воспламенения летучих (газообразных продуктов пиролиза) составляет 270-300°С в том смысле, что при нагреве древесины до такой температуры можно добиться по крайней мере кратковременной вспышки газообразных продуктов пиролиза от внешнего источника зажигания. Температура самовоспламенения обугленного слоя (и фактически древесины, поскольку древесина при температурах самовоспламенения уже имеет обугленный слой), более информативна, поскольку определяет пожарную опасность древесины как конструкционного материала и лёгкость зажигания древесины как топлива. Считается, что древесный уголь древесины разных пород самовоспламеняется на воздухе при 300-470°С, однако при очень длительном нагреве древесины в связи с возможностью образования ультрамелкой сажи на поверхности древесины (пирофорного угля) может наблюдаться самовоспламенение уже при 140°С. Так или иначе, финские специалисты полагают, что деревянные потолки в саунах в принципе способны самовоспламеняться при 140°С (при поддержании сухой сауны в квартире в разогретом виде, может быть, и годами). Поэтому на электрокаменках рекомендуется устанавливать термовыключатели, срабатывающие при температурах потолка 140°С. Что касается пожарников, то они в нашей стране полагают, что температуры самовоспламенения древесины превышают 320°С, в связи с чем максимальная температура внешних поверхностей металлических печей по НПБ 252-98 установлена 320°С (в помещениях с временным пребыванием людей).

Источник: Дачные бани и печи. Принципы конструирования. Хошев Ю.М. 2008

Насколько сильно горит древесина? Проверено

Как партнер Amazon, я зарабатываю на соответствующих покупках (без дополнительных затрат для вас).

Подумываете о том, чтобы развести в этом году хороший костер или избавиться от старых дров, сжигая их, но хотите знать, насколько горячими могут быть вещи? Он может немного отличаться, но давайте посмотрим, насколько горячее дерево становится при горении.

Существует много различных видов древесины, некоторые горят при температуре до 930 градусов по Фаренгейту (500 по Цельсию), а другие могут гореть до 2000 градусов по Фаренгейту (1093 по Цельсию).Температура может влиять на множество вещей.

В этой статье мы поговорим о различных вещах, влияющих на температуру дров, при какой температуре воспламеняется древесина, может ли древесина плавиться или испаряться, и посмотрим, какова средняя температура костра. Вот что вам нужно знать.

Если вас интересуют подлинные рюкзаки, сумки и кошельки, сделанные пожарными, посмотрите их здесь.

Также прочтите: Какова температура огня? Насколько жарко становится?

При какой температуре горит дерево?

При возгорании древесина подвергается довольно сложному процессу, известному как «пиролиз». Это трехэтапный процесс, который позволяет дереву эффективно разлагаться при горении.

Во-первых, при температуре от около 320 градусов по Фаренгейту до около 500 градусов древесина начинает гореть, и вы можете видеть, как оно изменяется таким образом, что необратимо (следы обугливания, растрескивание, усадка и т. Д.), А в какой-то момент (где-нибудь выше 390 градусов) древесина загорится.

Итак, древесина воспламеняется при температуре от 390 до 500 градусов по Фаренгейту.

Следующая фаза пиролиза более горячая, разложение становится более быстрым и начинает расходовать древесину с приличной скоростью. Это происходит между 500 и 800 градусами.

После этого вы начинаете достигать температуры, известной как «печь для обжига». Вся древесина на этом этапе должна полностью загореться, а единственным остатком должен быть горящий уголь.

На этом видео показан процесс воспламенения древесины:

Читайте также: Температура возгорания в доме: насколько жарко?

При какой температуре горит?

Порода дерева имеет прямое отношение к «температуре горения древесины» древесины, которую оно производит. Без сюрпризов, правда?

Вероятно, самая низкая температура ожога из любой общедоступной древесины - это Викторианский ясень, который может вызвать пламя около 592 градусов по Фаренгейту.

На другом конце шкалы у вас есть могучая береза ​​, которая вполне может создать настоящий ад и может гореть при температуре 1500 градусов и более!

По мере обгорания древесины она претерпевает несколько изменений.

Во-первых, большая часть веса воды начинает исчезать по мере того, как вода выкипает - свежесрубленная древесина составляет примерно половину своего веса в воде, древесина, которой дали время высохнуть, с другой стороны, имеет примерно пятую часть веса. его вес как содержание воды.

Мокрая древесина горит при более низкой температуре, чем сухая древесина. Это связано с тем, что часть энергии используется для преобразования воды в пар, а не направляется в пламя.

Примечание: Вода расширяется в 1600 раз при нагревании и превращается в пар (пар), что позволяет ей поглощать тонну тепла. Это одна из причин того, что вода так эффективна при тушении пожаров.

Вы также должны обнаружить, что при сжигании древесины образуется дым - это горючие газы, образующиеся в процессе горения, и для их поддержания необходим кислород.

Затем происходит пиролиз, и большая часть энергии в древесине выделяется в виде пламени и тепла.

Чтобы лучше понять науку о процессе горения древесины, посмотрите это:

Также прочтите: При какой температуре горит / воспламеняется бумага? Выявлено

Что такое Flashpoint?

Это полностью зависит от типа древесины, которую нужно сжигать.

Обычные дрова имеют температуру воспламенения (то есть минимально возможную температуру горения) около 570 градусов по Фаренгейту.

Однако, как мы уже видели, некоторые виды деревьев производят гораздо более низкие точки воспламенения, и Береза ​​потребует гораздо больше энергии для сгорания.

Также прочтите: Легковоспламеняющийся ли бамбук? Проверено

Что такое точка плавления?

Может ли древесина плавиться?

С физической точки зрения плавление требует нескольких изменений в структуре вещества.

Во-первых, молекулы в твердой форме вещества должны быть по существу разделены друг от друга.

Во-вторых, молекулы должны иметь возможность свободно перемещаться друг вокруг друга, создавая своего рода ток.

Однако при этом химические свойства вещества должны оставаться неизменными. Так, например, если вы плавите золото, вы получаете жидкое золото как конечный продукт, а не как новое вещество.

Когда дело доходит до дерева, первая проблема заключается в том, что если вы попытаетесь нагреть его до состояния плавления, оно загорится. Когда он загорается, древесина окисляется, то есть отдельные молекулы распадаются и соединяются с кислородом воздуха, образуя новые соединения.

Это означает, что при нормальных условиях древесина не плавится, потому что вместо этого она меняет свою химическую структуру.

Но могли бы мы расплавить дерево, если бы мы просто сделали его достаточно горячим и вместо этого удалили весь кислород?

К сожалению, нет. Вся вода из дерева и летучие химические вещества, которые могли скрываться внутри, испарились бы, таким образом, они были бы такими же, как когда они начинались.

Однако древесина состоит из очень длинных волокнистых нитей, которые сделаны из целлюлозы, они придают древесине большую часть ее прочности.Эти волокна не могут разрушиться при нагревании на более мелкие, которые свободно движутся, лучшее, что мы могли сделать, - это направить на них достаточно тепла, чтобы разрушить «карбонильные» связи внутри.

К сожалению, это снова изменит структуру древесины. У нас больше не было целлюлозных волокон; у нас был уголь, и дерево не расплавилось бы.

Однако можно было бы расплавить древесину, если бы мы могли поддерживать стандартное давление, а затем поднять температуру до 3500 градусов по Фаренгейту (это точка плавления не древесины, а углеродного элемента - ключевого строительного блока древесина).

Однако мы пока не можем сделать это и, следовательно, для каких-либо практических целей - древесина не имеет температуры плавления, потому что она просто не может плавиться.

Может ли древесина испаряться?

Испарение - это продолжение плавления. Это дальнейшее разрушение молекулярной структуры, при котором все межмолекулярные связи удаляются, и отдельные молекулы могут свободно плавать в воздухе вокруг них.

Как и следовало ожидать, если древесину невозможно расплавить, она не сможет испариться. Есть несколько необычных веществ, которые подвергаются процессу сублимации, то есть они превращаются из твердого вещества в газ без жидкой фазы между ними.

Древесина не входит в число этих веществ, а это значит, что нам, вероятно, потребуется довести ее до температуры 8720 градусов по Фаренгейту, то есть температуры кипения углерода.

Поскольку мы не можем даже довести температуру до 3500 градусов (точка плавления), этот теоретический эксперимент вряд ли будет проведен на практике в ближайшем будущем.

По крайней мере, пока древесина не испаряется.

Насколько сильно нагревается дровяной камин?

Если вы хотите измерить температуру дров, вам нужно знать точный состав древесины и относительное количество воды в древесине, а также есть ли что-нибудь еще в огне.

Совершенно очевидно, что это смехотворно сложное вычисление, которое не принесло бы нам большой пользы, даже если бы мы могли его сделать правильно.

Итак, лучше использовать среднюю температуру, определенную в лабораторных условиях, а затем осознавать, что могут быть существенные различия в этих цифрах, когда дело доходит до практического использования.

Средняя температура костра

Костер обычно горит при температуре около 1112 градусов по Фаренгейту.

Температура костра повысится после того, как большая часть древесины будет превращена в древесный уголь в процессе горения. Древесный уголь горит при гораздо более высокой температуре - примерно 2 012 градусов по Фаренгейту.

Отметим, что еще в 2016 году предполагалось, что костры стали причиной более 60 000 пожаров в Соединенных Штатах, которые привели к уничтожению 4 миллионов акров земли.Потому что потушить пожар такой температуры довольно сложно.

Чтобы сделать это правильно, убедитесь, что дерево полностью сгорело до пепла, затем задушите его водой (пока вода не перестанет шипеть), а затем, на всякий случай, выкопайте немного земли или песка поверх огня. Наконец, прикоснитесь к поверхности (очень осторожно), чтобы убедиться, что она больше не горячая.

Не оставляйте за собой горящий огонь.

Заключение

Насколько сильно горит дрова? В целом, древесина будет гореть примерно до 2000 градусов по Фаренгейту в зависимости от типа древесины и способа организации огня.Можно заставить его гореть при еще более высоких температурах, но это требует очень специфической настройки.

Однако древесина может загореться при более низких температурах, особенно если она высохла и в ней очень мало воды, чтобы противостоять пламени.

Статьи по теме

Черный дым: что это значит и что его вызывает?

Горит ли металл в огне? Проверено

При какой температуре горит хлопок? Легковоспламеняющийся?

Температура возгорания древесины - узнайте, как получить хорошую температуру возгорания

Хотя температура дровяной печи может показаться несущественным фактором, температура, при которой работает ваша дровяная печь, имеет решающее значение для ее эффективности.Когда в топке установлена ​​оптимальная температура горения дров, сгорание дров происходит лучше. Другими словами, при сжигании древесины в основном выделяется тепло, водяной пар и углекислый газ. При неполном сжигании древесины вы получаете нежелательные побочные продукты, такие как дым, избыток углекислого газа и засорение креозотом. Изучение этого процесса поможет вам эффективно поддерживать печь.


Изучение горящих материалов не совсем простое дело. Помимо тепла, необходимо учитывать множество факторов, например кинетику.Кинетика - это скорость реакции.

Когда огонь горит как источник тепла, нам нужна энергия для начала процесса горения. Когда процесс начинается, необходим постоянный источник энергии, позволяющий увеличить энергию активации.
Для процесса горения требуется древесина. Когда древесина горит в качестве топлива, небольшие молекулы и газы выделяются из деревянных поверхностей, когда дрова нагреваются. Газы реагируют с кислородом воздуха с образованием продуктов сгорания и тепла.

Какая самая лучшая температура возгорания древесины?

Закаленные дрова долго остаются сухими.Влажная древесина, в том числе зеленая древесина, плохо горит и выделяет меньше тепла. Избегайте использования влажного дерева и всегда используйте мертвое дерево, если это возможно.


Энергетическое содержание или температура возгорания древесины выражается в британских тепловых единицах (BTU). Стандартный метод оценки температуры возгорания древесины - это указать BTU и сравнить ее с вашими потребностями.

Древесина выделяет определенное количество тепла. Деревья с высокой температурой возгорания древесины - вяз, клен и красный дуб.Хвойные породы, такие как белая сосна, липа, зеленый ясень и белая ель, очень плотные и горят дольше при той же теплоемкости.

Температура возгорания древесины и цвет

Пожар - это результат химической реакции топлива и кислорода. Когда в результате реакции выделяется достаточно тепла, образуется пламя. Пламя со временем меняет цвет и часто имеет несколько цветов в разных частях.


Два наиболее отличительных свойства огня - это тепло и цвет. Цвет пламени зависит от температуры.Вы можете оценить температуру огня, определив интенсивность света.

Часто синий цвет используется как холодный, а красный - как горячий. Тем не менее, с пламенем в действительности все обстоит наоборот. Красный цвет обычно находится на внешнем крае пламени. Снаружи температура дров при возгорании ниже, чем внутри. Напротив, синий - самая высокая температура.
https://www.youtube.com/watch?v=ATvrHbvOCSQ
Самая теплая часть пламени - это центр. По этой причине центр обычно горит другим цветом, чем внешние края.Голубое пламя - самое горячее, за ним идет белое. Затем желтый, оранжевый и красный - это основные цвета, которые вы можете видеть при пожаре.

Горение

Горение древесины - сложная химическая реакция. Когда это начинается изначально, все, что происходит, - это то, что вода в древесине рассеивается или испаряется. Этот метод использует начальную энергию. Когда температура древесины достигает 500 градусов по Фаренгейту, она химически разлагается. В этот момент вы получаете летучие газы и можете почувствовать жар реакции.


Когда температура приближается к 1100 градусам по Фаренгейту, газы и дым начинают реагировать, если в них достаточно кислорода. Оставшийся уголь реакции горит при температуре выше 1100 градусов по Фаренгейту.

Горящий дым

Есть способы сжигать дым и летучие газы, не повышая температуру древесины до 1100 градусов. Например, в некоторых печах есть катализатор, который заставляет дым гореть только при температуре 600 градусов по Фаренгейту.


В некаталитических печах используется циркулирующий воздух для более эффективного сжигания дыма и газов, и их легче использовать и обслуживать, чем каталитические печи. Однако каталитические печи сжигают дрова медленнее. Кроме того, эти плиты могут готовить при более низкой температуре, чем некаталитические плиты, и при этом работать правильно. Это делает каталитические печи более эффективными.

Температура

Теоретический максимум для углерода на основе огня в воздухе при стандартном атмосферном давлении составляет около 4500 ° F / 2500 ° C, если вы используете чистый кислород вместо воздуха.Кроме того, если вы увеличите давление воздуха, он может стать еще горячее.


Стандартные дрова ограничивают максимальную температуру около 1600 ° F / 900 ° C. Однако можно делать это поэтапно. Во-первых, преобразование древесины в древесный уголь путем сжигания в среде с ограниченным содержанием кислорода и ковка, при которой на горящие угли выдувается воздух. Тогда он может стать намного горячее, по крайней мере, 2500 ° F / 1400 ° C. Это состояние близко к температуре плавления железа.

Как контролировать температуру

Вы можете отрегулировать температуру дровяного огня в печи с регулируемыми вентиляционными отверстиями, которые позволяют кислороду достигать огня.Вы можете открыть вентиляционные отверстия, чтобы увеличить количество кислорода внутри гриля, увеличив количество огня, что обеспечит более горячее горение. Кроме того, отверстия могут уменьшить количество кислорода вокруг радиатора, что снижает температуру.


При оценке степени открытия или закрытия небольшое движение вентилятора может изменить температуру. Полностью закройте все четыре вентиляционных отверстия, чтобы погасить огонь.

Примеры температуры

Пропановая горелка

Температура сгорания пропана и воздуха составляет примерно 1900 ° C.Бутановый огонь будет иметь аналогичную температуру.

Горящая спичка

При таком небольшом пламени домашняя спичка горит примерно при 600-800 ° C.

Пламя свечи

Самая горячая часть пламени свечи горит около 1400 ° C, в то время как средняя температура обычно составляет 1000 ° C.

Костер

Температура костра постепенно повышается примерно до 600 ° C, но костры могут достигать 1000–1100 ° C.

Дрова

Дрова горят около 600 ° C.Температура может меняться в зависимости от породы древесины и ее состояния.

Горелка Бунзена

Исключительная горелка Бунзена регулируется с температурой пламени около 300 ° C. Полностью открытая горелка Бунзена может достигать 1500 ° C, с видимым голубым и белым проникающим пламенем.

Твердая древесина и хвойная древесина

Разная древесина выделяет разный уровень тепла. Например, сухая древесина излучает больше тепла, чем влажная. Это связано с тем, что в начальной химической реакции все тепло испаряет или испаряет воду.Следовательно, чем меньше воды, тем больше тепла вы чувствуете.


Различные породы древесины выделяют разное количество тепла. Как правило, древесина твердых пород горит больше, чем древесина мягких пород, и выделяет больше тепла. Некоторые виды с высокой калорийностью включают грецкий орех, красный и белый дуб, желтую березу и сахарный клен. К видам с низкой калорийностью относятся красное дерево, хлопок, болиголов и аламо.

Твердая древесина имеет более высокий балл по тепловой энергии по отношению к объему древесины. Таким образом, они лучше подходят для нагрева и нагрева древесины.Однако им сложнее произвести зажигание в первую очередь.

Хвойные деревья имеют низкую густоту и более смолистые. Это означает, что они воспламеняются намного быстрее. Поэтому лучше начать с деревьев, на которых горит огонь. Однако, как правило, они выделяют меньше тепла и горят быстрее.

Некоторые образцы древесины лиственных пород

Лучшие дрова - Ясень, дуб красный, дуб белый, бук, береза, орех, клен, орех, вишня, кизил, миндаль, яблоко (ладан-приятный парфюм)

Камины разные

Раньше некоторые дымоходы были деревянными с пакетом грязи внутри.Средняя температура дымохода для такого открытого огня находится в пределах 250-400 градусов.


В наши дни в разных частях камина может быть разная температура. Самая высокая температура у большинства пожаров наступает после того, как огонь потухнет некоторое время. Эти температуры составляют от 1200 до 1500 градусов по Фаренгейту. Однако из-за того, что огонь циркулирует в таком большом количестве воздуха, решетки и другие близлежащие объекты обычно превышают 1000 градусов.

Тем не менее, газовый огонь горит при более низкой температуре, а гриль также является самой горячей частью примерно в 1000 градусов. Этот факт очевиден, потому что сетки иногда светятся. Кроме того, утюг светится примерно при температуре от 1000 до 1100 градусов по Фаренгейту.

Противопожарная

Поддержание печи в тепле, чтобы избежать пожара, может показаться нелогичным, но на химическом уровне это логично. Креозот - это смолистое вещество, которое попадает в дымоход как часть дыма. Липкий креозот затрудняет выстрел и препятствует хорошему кровообращению.Кроме того, он легко воспламеняется.


Типичная причина возгорания дымохода - горение креозота внутри камина. Есть много методов борьбы или предотвращения этого. Один из способов - сохранить температуру шота более 250 градусов по Фаренгейту. Температура выше этой точки слишком высока для того, чтобы креозот конденсировался на поверхности дымохода.

Дрова

Ива - лучший вид дров. Если откажемся от загрязняющей железной печки.


Использование «непригодной» мягкой древесины для обогрева дома

Мягкие породы дерева обычно не подходят для отопления дома. Твердая древесина, как и дуб, является предпочтительным топливом для большинства людей. Но на самом деле это ива - или должна быть!

Проблема с чугунными дровяными печами
Причина, по которой лиственные породы предпочитают большинство владельцев дровяных печей, заключается в том, что они дают продолжительный огонь, в то время как мягкие дрова нуждаются в более частом пополнении.При использовании железной печи в качестве основной системы отопления она должна постоянно гореть в течение дня. Как только вы перестанете гореть, плита быстро остынет. Но это еще не все. Из-за конструкции стандартной железной дровяной печи температура горения редко превышает 500 градусов по Цельсию (932 градуса по Фаренгейту), что означает, что процесс горения еще далек от завершения. Результатом является не только много золы с несгоревшими компонентами, но и древесно-смолистый креозот в дымоходе и, что, вероятно, наиболее тревожно, большое количество загрязняющих веществ, которые выбрасываются в атмосферу.Неудивительно, что власти склонны запрещать использование дровяных печей в более густонаселенных районах [1].
По-настоящему высокотемпературное сжигание в обычной дровяной печи сложно. Тепло пламени легко уходит из печи, а это означает, что сам огонь не может достичь температуры, при которой начинается чистое горение. Это характерно для железных печей: тепло быстро доставляется в окружающую среду и быстро уменьшается, когда огонь перестает гореть. Подача большего количества воздуха для повышения температуры пламени может не только повредить печь, но и не привести к желаемому результату: при увеличении расхода древесины большая часть тепла просто уходит через дымоход.
Но история продолжается. Железные печи также ухудшают качество воздуха в помещении. Из-за конвекции, которую создает железная печь, частицы пыли начинают циркулировать, попадают на горячую поверхность печи, обугливаются и снова уносятся в воздух, что еще больше ухудшает качество воздуха. Тепло в виде излучения предпочтительнее конвекции. Он воспринимается как более удобный, и требуется более низкая общая температура для ощущения тепла при обогреве с помощью излучающего источника тепла, а не конвектора.

В целом железная печь работает плохо.Вы можете спросить, почему это так успешно, но это в основном вопрос того, к чему люди привыкли. Если стандартом становится железная печь, люди склонны покупать железную печь. Но лучшее решение - печь, которая во многом противоречит описанным выше характеристикам.

Массовый обогреватель
Каменный обогреватель - это тип печи, который существует уже много веков. В отличие от железных печей эти обогреватели способны накапливать большое количество тепла. «Массовая батарея» заряжается во время короткого горения небольшой связкой дров.Огонь горит при температуре, превышающей 1100 градусов по Цельсию (2012 градусов по Фаренгейту), обеспечивая чистый ожог, без отложений креозота в дымоходе и минимального количества золы. Масса каменного утеплителя заряжена теплом, которое излучается в часы между ожогами. Каменные обогреватели большего размера нужно сжигать только один раз в 24 часа. Поверхность не так сильно нагревается, как железная печь, и к ней можно прикасаться, не опасаясь обжечь кожу. Потребность в топливе каменной печи в несколько раз меньше, чем у железной печи.В среднем в пять раз ниже. И хотя железная печь лучше всего работает при использовании древесины твердых пород, каменная печь предпочитает мягкую древесину. В конце концов, нам нужно не медленное тление, а быстрое, чистое и высокотемпературное горение.
Каменные печи сегодня появляются во многих формах, поэтому более подходящим названием является «каменки». Каменные печи по-прежнему популярны, но теперь также используются различные материалы, от суглинка (кочерыжек) до специальных бетонов.

Ив, собранных в разные годы. На фото изображены ивы в парке.

Древесина ивы гарантирует повсеместное тепло
Нет большой разницы в количестве вложенной энергии в разные породы дерева. Например, ива производит от 13 до 18 мегаджоулей на килограмм [2]. Дуб, одна из лиственных пород, показывает сопоставимые показатели. Однако из-за меньшей плотности ива менее популярна среди владельцев железных печей. Просто горит слишком быстро. Но это именно то, что вам нужно, если вы являетесь счастливым обладателем массового обогревателя! В общем, ива оказалась лучшим топливом для массового обогревателя.Черенки сайды ивы идеальны, особенно если их расколоть на тонкие куски дерева. Связка этих маленьких кусочков в топке массовой печи будет гореть быстро и быстро при высоких температурах. Идеальный рецепт для очень экономичного и чистого производства тепла. И комфорт.

Растущая ива
Почва типичных сельскохозяйственных угодий почти не содержит органических материалов и не способна накапливать CO2 [3]. Нетронутые естественные почвы являются феноменальными поглотителями CO2, способными поглощать 8 метрических тонн CO2 на гектар.[4]. В идеале сельское хозяйство следует практиковать более естественным образом. Если бы существовала альтернатива нынешним интенсивным методам ведения сельского хозяйства. Способ земледелия, который гармонирует с природой, но при этом дает нам достаточно еды и топлива для обеспечения здорового образа жизни. О, но есть! И это называется пермакультура.
Подробное описание пермакультуры выходит за рамки данной истории. Есть масса информации по этому вопросу, и мне достаточно просто заявить, что пермакультура не только способна накормить мир, но и находится в полной гармонии с природой.Разделение на культивацию и естественные земли сокращается. Кроме того, пермакультура связана не только с устойчивым сельским хозяйством, но и с зеленой архитектурой и другими аспектами повседневной жизни.

Большинство сельскохозяйственных земель представляют собой биологические пустыри, не способные накапливать углекислый газ.

Плантации ивы
Часть многих квадратных километров биологически истощенных сельскохозяйственных угодий можно легко использовать для выращивания ивы. Ива мало требовательна к составу почвы и после укоренения начинает поглощать CO2.1,8 кг CO2 превращается в 1 кг сухой (ивовой) древесины. Кроме того, дерево будет расти в пять раз быстрее, чтобы компенсировать оползание. Часть этой дополнительной биомассы в какой-то момент будет снова опробована, но остальная часть будет храниться более долговременным образом в стволе и корневой системе [5]. Но поглощение CO2 на этом не заканчивается. Если оставить ее в покое и ее не уплотняет никакая тяжелая техника, почва тоже может поглотить огромное количество углерода. Это, в сочетании с тем фактом, что деревья только опрыскиваются, а не удаляются, приводит к превосходной ловушке CO2, удерживая этот парниковый газ на неопределенный срок.

Не CO2-нейтральный, но даже CO2-отрицательный
Преобразование сельскохозяйственных угодий в плантации ивы с целью обогрева наших домов может быть более чем нейтральным по CO2, баланс может даже сместиться к отрицательному результату CO2! Чем больше мы используем высокоэффективные нагреватели массы, тем больше СО2 сохраняется на ивовых плантациях. А применяя методы пермакультуры, мы можем превратить эти плантации в оазисы с богатым биоразнообразием. И знаешь, что? В этой истории нет излишне оптимистичных сторон.Это так же просто, как принять решение о переходе на экологически безопасные методы. Все знания уже есть!

Сколько дров нужно для обогрева дома?
Количество дров для обогрева вашего дома зависит от многих факторов. Степень теплоизоляции дома, размер дома, местоположение и т. Д. В Нидерландах средний расход природного газа для отопления составляет 1200 кубических метров. в год. Поскольку калорийность газа составляет 30 мегаджоулей на кубический метр, общая потребность в энергии составляет 36 гигаджоулей в год.
Калорийность одной тонны ивы составляет 13 гигаджоулей на тонну, что означает, что трех тонн древесины должно хватить для сохранения тепла в течение года при использовании эффективного массового обогревателя. И все это без дополнительного нагрева от других источников тепла, таких как система центрального отопления. Поскольку с гектара плантации ивы ежегодно производится не менее десяти тонн древесины, с каждым гектаром ивы можно согреть три семьи.
Тем не менее, средний владелец обогревателя не сочтет эти цифры точными.Для дома, в котором уделяется внимание надлежащей теплоизоляции, использованию пассивного солнечного тепла и другим энергосберегающим решениям, потребуется лишь небольшая часть количества древесины, рассчитанного выше. И это также хорошо, поскольку у сельскохозяйственных угодий есть и другие цели, например, для производства продуктов питания.

Ива как экологически чистое биотопливо
Хотя у большинства видов биотоплива не очень хорошая репутация, ива потенциально может быть очень экологичной. Если черенки ивы не обрабатываются тяжелой техникой, не перевозятся на большие расстояния и если земля, на которой они растут, используется естественным и многофункциональным образом, у топливной древесины ивы есть светлое будущее.

Артикулы:

[1] www.guardian.co.uk/world/2013/jul/03/fire-smoke-wood-stoves-burning
[2] www.seai.ie/Renewables/Bioenergy/Willow_Best_Practice_Guide_2010.pdf
[3] www.marcsiepman.nl/2013/06/12/voedsel-en-permacultuur
[4] www.marcsiepman.nl/2012/06/06/hoe-de-bodem-co2-op-kan-slaan
[5] www.thewillowbank.com/willow.firewood.facts.htm

Узнайте, почему ваши дрова не горят

Дрова для камина - это гораздо больше, чем думает большинство людей.Тип и качество бревен во многом зависят от количества выделяемого тепла, но также и от количества дыма, который превращается в креозот на внутренних стенах дымохода. Здесь мы ответим на несколько вопросов о дровах для камина и покажем вам, как получить от камина больше удовольствия.

Q: Имеет ли значение, где и как я храню дрова?

A: Совершенно верно. Идеальная среда для хранения - это место, где нет влаги (дождь / снег) и где воздух может циркулировать внутри и вокруг штабеля.Дрова, если вы покупаете их за шнур, а не по несколько поленьев за раз, следует хранить снаружи на короткой стеллаже, чтобы они не касались земли. Накройте верх брезентом, но оставьте боковые стороны открытыми. Цель состоит в том, чтобы древесина оставалась как можно более сухой и не способствовала росту плесени.

Q: Почему мои дрова так сильно дымят?

A: Скорее всего, потому что он не приправленный или влажный. «Зеленая» древесина выделяет огромное количество дыма и креозота, поэтому всегда покупайте полностью высушенные дрова.

Q: Мои дрова никогда полностью не сгорают. Почему это происходит?

A: То же, что и выше - у влажной древесины остаются участки, которые никогда полностью не сгорают во время пожара.

Q: Выделяют ли разные породы дерева разную температуру при горении?

А: Да. Более плотные лиственные породы, такие как гикори, береза, дуб, бук и клен, не только горят сильнее, но и дольше горят. Если требуется больше тепла и более длительное время горения, используйте древесину твердых пород. С другой стороны, ель, сосна, ива, тополь, кедр и другие более мягкие породы дерева будут гореть быстрее и не будут выделять столько тепла.

Q: Опасно ли постоянно сжигать плотные дрова при высоких температурах в моем камине? Могло ли это вызвать пожар?

A: Если ваш камин и дымоход находятся в надлежащем рабочем состоянии и если вы проводите профессиональную чистку дымохода раз в год, вам не нужно беспокоиться о возгорании дымохода из-за высоких температур.

Q: Вы сказали, что влажная древесина создает больше дыма и, следовательно, больше креозота в моем дымоходе. Если я сжигаю только сухие дрова, нужно ли мне чистить дымоход каждый год?

A: Да, это так.Даже если при пожаре образуется «минимальный» дым, креозота все равно будет образовываться, чтобы создать опасность пожара, если вы пренебрегаете регулярной профессиональной чисткой.

Q: Где я могу получить дополнительную информацию о дровах, сжигании дров и общей безопасности камина?

A: Если у вас есть или вы можете приобрести руководство пользователя для камина, вы найдете в нем много полезной информации. Еще один хороший ресурс - это местный домашний очаг, особенно если он продает и обслуживает бытовые приборы для отопления.

Специалисты по дымоходам из Хайленда, штат Висконсин, готовы помочь вам максимально эффективно использовать камины и печи. Мы не только продаем самую лучшую бытовую технику от ведущих производителей, мы также предоставляем круглогодичные услуги по проверке, чистке и ремонту дымоходов. Если у вас есть вопросы, зайдите к нам по адресу 869 Main St. или позвоните нам по телефону (608) 929-4887.

Как развести горячий огонь

Ключ к эффективному использованию дровяной печи - развести горячий огонь. Разве не весь огонь горячий? Да, но недостаточно жарко.Современные дровяные печи могут иметь эффективность сжигания от 75 до 90% из-за «вторичных ожогов». Вторичное горение - это когда углеводороды в дыме повторно воспламеняются перед тем, как покинуть печь, тем самым уменьшая выбросы и выделяя больше тепла. Для этого требуется горячий огонь с температурой 1000–1200 градусов по Фаренгейту. Горячий огонь также снижает накопление креозота в печи и дымоходе.

Как горит дерево

Вместо того, чтобы объяснять здесь продвинутую физику и принципы термодинамики, я поделюсь тем, что я узнал за всю жизнь использования дровяных печей:

Вопреки тому, что думает большинство людей, дерево само по себе не горят, а горючие газы выделяются из дерева при нагревании.Если вы присмотритесь, вы увидите маленькие «струи» газа на концах бревен. Они напоминают крошечные паяльные лампы, и тепло от этого горящего газа выделяет больше газа и поддерживает огонь. Ключ к разжиганию огня с большим количеством горючего газа - это начать его с помощью большого количества растопки. Растопка - это просто мелкие дрова, которые обеспечивают больший контакт с воздухом и, следовательно, более быстрое сгорание. Хорошая куча растопки быстро нагреет печь, а затем позволит более крупным поленьям быстрее загореться.

Хорошо выдержанная древесина

Перед тем, как древесина загорится чисто, необходимо удалить влагу (путем сушки) или удалить (путем сжигания). Если он шипит или вы видите пузыри, образующиеся на концах бревен, значит, ваша древесина не полностью высохла, и ее сжигание будет неэффективным. Эта влага и несгоревший «газ» могут вызвать дымный огонь и привести к накоплению креозота. Многие заготовленные дрова для уничтожения жуков уже некоторое время стоят мертвыми и почти готовы к работе.Если вы пилите живую древесину, практическое правило состоит в том, чтобы приправлять (сушить) ее примерно за год перед использованием. Очевидно, что расколотая древесина будет сохнуть быстрее, чем «круглая», поскольку большая площадь поверхности подвергается воздействию воздуха.

Предварительный нагрев дымохода - ключ к предотвращению накопления креозота

Быстрый горячий огонь предварительно нагреет дымоход и снизит вероятность накопления креозота. Этот предварительный нагрев также заставит дымоход «тянуть» должным образом. После того, как в дымоходе установится поток воздуха, через впускные отверстия на плите будет поступать достаточно воздуха, чтобы сгореть более полно.Ключом к низкому скоплению креозота является температура в дымоходе значительно выше точки кипения, чтобы влага древесины оставалась в газовой фазе до того, как она покинет трубу. Если труба холодная, эти несгоревшие газы, влага и углеродные продукты могут конденсироваться внутри дымохода.

Дым и уголь

Когда пожар впервые начнется, он будет дымить из-за продуктов сгорания, которые еще не достигли температуры горения. Иногда можно наблюдать, как этот дым «вспыхивает», когда становится достаточно горячим.Зимними вечерами, глядя на мой город, часто можно увидеть различные клубы дыма, когда люди разжигают вечерние костры. После того, как огонь окончательно разжился, дыма должно быть очень мало, если таковой имеется. Если к тому времени, когда растопка израсходована, ваш огонь все еще дымится, возможно, ваши дрова слишком влажные или у вас слишком низкий запас воздуха. При разжигании огня в дровяной печи полностью откройте все вентиляционные отверстия или даже оставьте дверь приоткрытой, чтобы огонь мог гореть с наиболее сильным воздействием кислорода.

Правильный выбор времени для огня

В моей большой печи запуск занимает около 15 минут.Нам нравится использовать маленькие кусочки дерева для запуска, а затем подбрасывать более крупные. Примерно через 30 минут начинает формироваться угольный слой, и мы закрываем каталитическую вентиляцию и устанавливаем всасывание примерно на 50%. Когда плита перейдет в такое состояние, мы можем добавлять большие куски каждые пару часов. В очень холодные ночи или когда ветер дует, мы загружаем лишние бревна перед сном. Утром мы часто можем воскресить несколько углей и начать все сначала. Наличие неглубокого слоя золы (около 2 дюймов) на самом деле позволяет разжечь огонь.Мы убираем пепел после нескольких недель пожаров. Если ваша печь работает чисто, скопление золы должно быть минимальным.

ВАЖНАЯ ИНФОРМАЦИЯ: Помните, что золу следует всегда помещать в металлические ведра для золы, а не в бумажные пакеты или пластиковые ведра. Один или два раза в год мы читаем в газете о домашнем пожаре из-за неправильного хранения золы. И наймите профессионального мастера, чтобы установить сигнализацию угарного газа, когда у вас есть дровяная печь или любое другое устройство для сжигания топлива.

Обновлено 27 декабря 2017 г.

Сжигание дров

Сжигание дров

Снижение воспламеняемости и горючести деревянных изделий основано на химических и физических средствах, которые влияют на различные стадии воспламенения и горения, например:

  • тепловые изменения внутренней структуры древесины на молекулярном уровне;
  • физические и химические процессы соединений, образующихся при этих изменениях, как внутри древесины, так и в газах, образующихся над ней;
  • передача тепла в изделиях из дерева;
  • перенос кислорода в реакционные зоны.

В этом разделе рассматриваются следующие темы:

Многие материалы в нашей среде, включая изделия из дерева, горят косвенно в том смысле, что материалы на самом деле не горят, но горение происходит как реакция между кислородом и газами, выделяемыми из материала (исключением из этого правила является горение раскаленного материала обугленная древесина, в которой кислород напрямую вступает в реакцию с углеродом). Под воздействием тепла древесина легко производит вещества, которые активно реагируют с кислородом, что приводит к высокой склонности древесины к воспламенению и горению.

Воспламенение и горение древесины в основном основано на пиролизе (т. Е. Термическом разложении) целлюлозы и реакциях продуктов пиролиза друг с другом и с газами в воздухе, в основном с кислородом. При повышении температуры целлюлоза начинает пиролиз. Продукты разложения либо остаются внутри материала, либо выделяются в виде газов. Газообразные вещества реагируют друг с другом и кислородом, выделяя большое количество тепла, которое в дальнейшем вызывает реакции пиролиза и горения.Процессы пиролиза и горения показаны на рисунке 1.

Рисунок 1. Схематическое изображение пиролиза и горения древесины: а) Внешний обогрев увеличивает температуру древесины. б) Начинается пиролиз, и химическая структура древесины разрушается. Легкие продукты пиролиза улетучиваются с поверхности. в) Начинается горение. Продукты пиролиза реагируют с кислородом и выделяют больше тепла, вызывая сильно нарастающую цепную реакцию.

В зависимости от условий окружающей среды (таких как температура, концентрация кислорода, влажность, антипирены, pH и т. Д.)) пиролиз древесины может протекать в основном по двум направлениям, представленным на рис. 2а. Путь образования смолы, происходящий при температуре около 300 ° C, связан с нормальным сжиганием древесины. В этом случае при пиролизе образуется много смолы, включая левоглюкозан, который легко разлагается на горючие газы под воздействием тепла (см. Рисунок 2b). Термическое разложение может происходить также по пути обугливания. В этом процессе целлюлоза сначала превращается в нестабильную активную целлюлозу, которая далее разлагается, так что продуктами реакции в основном являются диоксид углерода и вода, а также основная цепь целлюлозы, содержащая много углерода (см. Рисунок 2c).

Рис. 2. а) Два основных пути реакции термического разложения древесины. б) Расщепление молекул целлюлозы в реакции образования смолы (нормальное горение). в) Расщепление молекул целлюлозы в реакции обугливания.

Пиролиз древесины зависит от внешних факторов, таких как способ нагрева, скорость нагрева материала и т. Д. Следовательно, изделия из дерева не имеют явной температуры воспламенения, но воспламенение происходит в определенном диапазоне температур, в котором вероятность возгорания становится достаточно большой.Температура пилотируемого воспламенения древесины обычно составляет около 350 ° C, в то время как для самовоспламенения требуется температура около 600 ° C.

Свойства реакции на огонь, такие как воспламеняемость, тепловыделение и распространение пламени, наиболее важны для огнестойких изделий из древесины. Обугливание как характеристическое свойство огнестойкости также может зависеть, в частности, от поверхностных защитных слоев.

2.1 Воспламеняемость

Чтобы древесина могла воспламениться, ее температура должна подняться настолько, чтобы пиролиз прошел достаточно сильно и начались химические реакции горения.Следовательно, возгорание деревянного изделия зависит от способа нагрева, то есть тепловых свойств материала и способа теплового воздействия на материал.

Факторы, влияющие на возгорание древесины, в целом хорошо известны: влажная древесина трудно воспламеняется, тонкие куски дерева воспламеняются легче, чем толстые бревна, а легкие породы дерева воспламеняются быстрее, чем тяжелые. Внешними факторами, влияющими на возгорание, являются интенсивность теплового воздействия и форма его воздействия (например,г. расстояние пламени от поверхности).

Содержание влаги в древесине влияет на возгорание в основном как теплоотвод. Нагревание воды и особенно ее испарение потребляют тепловую энергию. Кроме того, влага увеличивает тепловую инерцию материала.

Воспламенение деревянных изделий разной толщины зависит от их термической толщины. Термически тонкий слой воспламеняется быстрее, чем термически толстый материал.Когда термически тонкий продукт подвергается нагреву с одной стороны, его противоположная сторона нагревается очень близко к температуре открытой стороны к моменту воспламенения. В случае термически толстого продукта противоположная сторона не нагревается, а остается при температуре окружающей среды, когда образец воспламеняется. Тепловая толщина практичных продуктов варьируется от термически тонкой до толстой. Как показывает практика, деревянное изделие является термически тонким, если его толщина составляет не более нескольких миллиметров, и термически толстым, если его толщина составляет порядка 10 мм или более.

Зависимость времени до воспламенения tig от внутренних свойств материала при радиационном тепловом воздействии можно описать следующим образом [18,19]:

где ρ , c и k - плотность, удельная теплоемкость и теплопроводность материала соответственно, L 0 - толщина образца, T ig ; - температура воспламенения, T 0 - температура окружающей среды, и - чистый тепловой поток к поверхности образца.

Когда термическая толщина продукта находится между термически тонким и толстым, показатель степени, описывающий влияние чистого теплового потока q " net и разницы температур T ig T 0 , находится между 1 и 2.

2.2 Тепловыделение и распространение огня

Тепло, выделяющееся при сгорании, является движущей силой пожара: чем больше тепла, выделяемого горящим предметом, тем быстрее распространяется огонь и тем горячее становятся газы и ограничивающие поверхности кожуха огня.Таким образом, одной из наиболее важных величин, описывающих горение материалов, является скорость тепловыделения, которая обозначается и выражается в кВт или МВт.

Помимо внутренней структуры и свойств материала, скорость тепловыделения сильно зависит от внешних факторов. Следовательно, точные значения для разных материалов не могут быть даны. Наиболее важными внешними факторами, влияющими на это, являются чистый тепловой поток к поверхности и концентрация кислорода в окружающей среде, описываемая коэффициентом f (O2).Внутренние свойства материала, влияющие на это: теплота сгорания ∆H c , теплота газификации L v и удельная теплоемкость C . Следующее уравнение показывает скорость тепловыделения на единицу площади горящего материала:

где T ig - температура воспламенения, а T 0 - температура окружающей среды. Отмечено, что, помимо поступающего теплового потока на поверхность, также зависят тепловые потери с поверхности.

Скорость тепловыделения на единицу площади может быть измерена, например, с помощью конического калориметра [20], который описывает горение в хорошо вентилируемой среде (ранняя стадия пожара). Полученные результаты описывают теплоотдающие свойства материалов, хотя они в некоторой степени зависят от уровня теплового воздействия, используемого в испытании, свойств открытой поверхности (в случае древесины, например, зерен, сучков и склонности к растрескиванию). , и толщину образца.

Когда дерево горит, по его поверхности распространяется пламя. Распространение пламени можно рассматривать как последовательность возгораний. Следовательно, на распространение пламени влияют те же факторы, что и на воспламенение. Тепло, выделяемое очагом горения, влияет на скорость распространения пламени непосредственно от пламени и через нагревание кожуха огня. Таким образом, факторы, определяющие скорость тепловыделения, также важны для распространения пламени.

2.3 Обугливание

Когда деревянное изделие горит с постоянной скоростью тепловыделения на единицу площади, граница между пиролизованным материалом и неповрежденной древесиной, т.е.е. фронт пиролиза продвигается к древесине в направлении глубины. Поскольку всю пиролизную древесину можно рассматривать как обугленную, скорость обугливания β соответствует скорости распространения фронта пиролиза. Скорость обугливания является важной величиной для огнестойкости деревянных конструкций, потому что древесина под слоем обугливания сохраняет свои первоначальные свойства.

Важными факторами скорости обугливания древесины являются плотность ρ , внешний тепловой поток и влажность w [21].Скорость обугливания уменьшается с увеличением плотности в соответствии с степенным законом, где υ находится между 0,5 и 1 ( υ = 0,5 является результатом изучения только теплопередачи, а υ = 1 соответствует модели, охватывающей только сохранение массы). Скорость обугливания линейно увеличивается с увеличением внешнего теплового потока. Приблизительное соотношение между скоростью обугливания и содержанием влаги составляет.

Типичное значение скорости обугливания древесины составляет примерно 0.5 - 1 мм / мин. В таблице 3 показаны расчетные значения скорости обугливания для различных изделий из древесины, представленные в европейских стандартах проектирования EN 1995-1-2 [22,23].

На скорость обугливания обычно не оказывают большого влияния антипирены [24]. Однако выход полукокса обычно значительно увеличивается, что может способствовать защите сердцевины древесины. Защитные покрытия обычно могут быть эффективными для предотвращения возгорания и обугливания древесины.

Таблица 3.Расчетные нормы обугливания изделий из дерева [22]. Обозначения: ρ k = характеристическая плотность, d = толщина, β 0 = расчетная скорость обугливания для одномерного обугливания при стандартном воздействии огня, β n = расчетная условная скорость обугливания при стандартном огне контакт.

2.4 Дымообразование и токсичность

Дым, образующийся во время пожара, состоит из мелких частиц, в основном содержащих углерод, которые ухудшают видимость.Сильное дымообразование на ранних стадиях пожара очень вредно с точки зрения пожарной безопасности зданий, поскольку оно создает опасность для аварийного выхода из-за уменьшения видимости и раздражающего и выводящего из строя воздействия дымовых газов. Дымообразование зависит от горящего материала, но также важны внешние факторы, такие как тип пожара (пламя / тление) и подача кислорода.

По сравнению с пластиком, дымообразование деревянных изделий незначительно.В хорошо вентилируемых условиях образование дыма от древесины обычно составляет около 25100 м 2 / кг, тогда как пластмассовые изделия выделяют сотни или тысячи м3 2 / кг дыма.

Распространено предположение, что антипирены увеличивают дымообразование древесины. Это может быть так, поскольку антипирены могут вызвать неполное сгорание, но антипирены также могут уменьшить образование дыма. Верна пословица: «Нет дыма без огня»: если антипирен достаточно хорошо препятствует горению, дымообразование также уменьшается.

Основными продуктами сгорания являются углекислый газ и вода, но могут выделяться и другие химические соединения. Если эти соединения токсичны, они препятствуют выходу людей из горящего здания. Основная причина отравления при пожарах - угарный газ (CO). Это преобладающий токсичный продукт сгорания при сжигании древесины. Образование CO в значительной степени зависит от вентиляции: при горении с хорошей вентиляцией образуется значительно меньше CO (менее 10 г / кг горючего материала), чем при сжигании с контролируемым кислородом, при котором образование CO составляет порядка 100 г / кг горящего материала.Также важным фактором является температура, поскольку она сильно влияет на протекание химических реакций при горении.

Производство токсичных газов изделиями из дерева с улучшенными противопожарными характеристиками зависит от веществ, используемых в качестве антипиренов. Следовательно, необходимо контролировать возможные токсичные продукты сгорания и удерживать их выброс в допустимых пределах.



Что самое горячее в костре: испытать

Поскольку я люблю готовить на костре, очень важно знать, как работать с жаром костра! Из-за этого я задавался вопросом, какая часть костра самая горячая?

Самая горячая часть костра - это воздух посреди дровяной «вигвамы».«В области над землей, но под тем местом, где все дрова встречаются в верхней части огня, температура может превышать 1400 градусов по Фаренгейту.

Читайте дальше, чтобы увидеть, как я это проверил!

Как я проверял температуру костра

Для проверки температуры огня я использовал инфракрасный термометр. Термометр оснащен лазером, который ставит красную точку на область, температуру которой вы проверяете.

Инфракрасный термометр

Для каждой области ниже я протестировал одну и ту же область несколько раз, чтобы убедиться, что получаю стабильные и точные показания температуры.

Древесина, которую я использовал, была гикори с приправами.

* Эта страница содержит партнерские ссылки Amazon, с которых я буду получать комиссию. Однако выбор, щелкнуть по ним, остается за вами.

Какая самая горячая часть у костра - испытание!

Я хотел разжечь средний костер, поэтому я зажег дрова в классической конфигурации костра «вигвам». Я бы счел это довольно небольшим огнем и держу пари, что у больших костров или костров температура может быть намного выше, чем у того, который я тестировал!

* Знайте, что когда я держал термометр на огне, он колебался примерно на 50 градусов, когда огонь немного изменился.Это приблизительные, а не точные температуры.

Показание у основания костра было всего около 122 градусов по Фаренгейту , что меня удивило!

В пустом пространстве внизу, где соприкасаются верхушки кусков дров, воздух прямо в центре костра превысил мой градусник! Моя модель регистрирует температуру до 1400 градусов по Фаренгейту, значит, она была выше.

Я исследовал, насколько жарко становится костер, и цифры немного различаются, как и в реальных условиях, а я нашел числа в диапазоне от 970 градусов (что было выше нашего) до 1650 градусов по Фаренгейту.

Температура на вершине самого высокого куска дерева в нашем вигваме у костра была около 250 градусов по Фаренгейту.

Я также хотел проверить воздух над костром, и я был удивлен, что он зарегистрировал только около 200 градусов по Фаренгейту.

Что влияет на жар моего костра?

Если вы не находитесь в научной лаборатории, жар костра никогда не будет постоянным, потому что на него влияет так много переменных.

Несколько факторов, определяющих температуру вашего костра:

  1. Породы древесины - твердые породы более плотные и горят более горячие, чем хвойные
  2. Содержание влаги - дрова, не полностью выдержанные или подвергшиеся воздействию влаги, не горят так же горячо, как сухие дрова
  3. Уровень гниения - дрова с гнилью менее плотны и имеют более высокое содержание влаги, и по обеим этим причинам они горит более прохладно.
  4. Ветровые условия более горячий огонь
  5. Размер огня - большой костер или костер не только имеет больше древесного топлива, которое можно превратить в тепло, но и внутренняя, более горячая часть огня имеет большую изоляцию и может определенно превышать температуру моей огонь испытан выше!

Как разогреть костер?

Есть ли другой способ, кроме использования хорошо выдержанной твердой древесины и разведения большого костра, получить больше тепла от костра? Ответ - да, и это легко исправить!

Сильфоны для костра - это металлическая трубка, в которую вы вдуваете воздух в основании огня. В вашем дыхании достаточно кислорода, чтобы подлить масла в огонь именно там, где он больше всего нужен, подогревая его.

Фактически, после этого эксперимента я какое-то время не бросал бревна, и огонь начал угасать. Я использовал сильфоны для костра, и через несколько мгновений огонь снова ожил.

Они недороги и занимают очень мало места, , но отлично подходят для разогрева огня, а также для его начала.

У меня есть модель Pocket Bellows, которую вы можете увидеть на Amazon здесь.

Связанные вопросы

Чем полезен инфракрасный термометр при приготовлении пищи на костре.

Если вы не любите строить догадки при приготовлении пищи на костре, инфракрасный термометр может оказаться невероятно полезным.

Я использовал термометр, чтобы проверить, насколько высоко должна находиться цепь штатива моей голландской духовки над дровами, чтобы получить определенную температуру приготовления, о чем вы можете прочитать немного подробнее в следующем разделе.

Что мне показалось полезным, так это то, что я мог протестировать как внешний вид, так и содержимое моей голландской духовки во время готовки, чтобы получить хорошее представление о том, при какой температуре я готовлю. Это особенно полезно для начинающего повара, который еще не научился на собственном опыте, но не хочет, чтобы кулинария провалилась при попытке!

См. Тот, который я получил от Amazon здесь.

Насколько высоко над огнем я могу поставить голландскую печь для приготовления пищи на костре?

Я покажу больше результатов в следующей статье, но, используя метод, который я описал выше, я проверил, насколько высоко голландская духовка находится на цепи в штативе и насколько горячая стала духовка dtuch.

Я обнаружил, что для приготовления при температуре около 350 градусов по Фаренгейту голландская духовка должна почти касаться верхней части дров в костре.

На расстоянии около 7-10 дюймов от дров в подогретой голландской духовке температура готовится чуть ниже 200 градусов. Это примерно такая же температура, как при низкой температуре готовки в мультиварке. Вы можете быстро начать ужин, начав с малого, прикоснувшись к верхней части костра на несколько минут, а затем подняв, когда духовка нагреется.

Как я могу быстро и легко развести костер?

Если вам сложно развести костер, попробуйте метод 6-Pack-in-a-Box !

Храните коробки от 6 упаковок в прачечной, а вставьте звено сушильной машины в отверстия на упаковке из 6 штук.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *