Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Теплопроводность строительных материалов: Теплопроводность строительных материалов, их плотность и теплоемкость: таблица теплопроводности материалов

Содержание

Теплопроводность строительных материалов, их плотность и теплоемкость: таблица теплопроводности материалов

ABS (АБС пластик)1030…10600.13…0.221300…2300
Аглопоритобетон и бетон на топливных (котельных) шлаках1000…18000.29…0.7840
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—721100…12000.21
Альфоль20…400.118…0.135
Алюминий (ГОСТ 22233-83)2600221897
Асбест волокнистый4700.161050
Асбестоцемент1500…19001.761500
Асбестоцементный лист16000.41500
Асбозурит400…6500.14…0.19
Асбослюда450…6200.13…0.15
Асботекстолит Г ( ГОСТ 5-78)1500…17001670
Асботермит5000.116…0.14
Асбошифер с высоким содержанием асбеста18000.17…0.35
Асбошифер с 10-50% асбеста18000.64…0.52
Асбоцемент войлочный1440.078
Асфальт1100…21100.71700…2100
Асфальтобетон (ГОСТ 9128-84)21001.051680
Асфальт в полах0.8
Ацеталь (полиацеталь, полиформальдегид) POM14000.22
Аэрогель (Aspen aerogels)110…2000.014…0.021700
Базальт2600…30003.5850
Бакелит12500.23
Бальза110…1400.
043…0.052
Береза510…7700.151250
Бетон легкий с природной пемзой500…12000.15…0.44
Бетон на гравии или щебне из природного камня24001.51840
Бетон на вулканическом шлаке800…16000.2…0.52840
Бетон на доменных гранулированных шлаках1200…18000.35…0.58840
Бетон на зольном гравии1000…14000.24…0.47840
Бетон на каменном щебне2200…25000.9…1.5
Бетон на котельном шлаке14000.56880
Бетон на песке1800…25000.7710
Бетон на топливных шлаках1000…18000.3…0.7840
Бетон силикатный плотный18000.81880
Бетон сплошной1.75
Бетон термоизоляционный5000.18
Битумоперлит300…4000.09…0.121130
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74)1000…14000.17…0.271680
Блок газобетонный400…8000.15…0.3
Блок керамический поризованный0.2
Бронза7500…930022…105400
Бумага700…11500.141090…1500
Бут1800…20000.73…0.98
Вата минеральная легкая500.045920
Вата минеральная тяжелая100…1500.055
920
Вата стеклянная155…2000. 03800
Вата хлопковая30…1000.042…0.049
Вата хлопчатобумажная50…800.0421700
Вата шлаковая2000.05750
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67100…2000.064…0.076840
Вермикулит вспученный (ГОСТ 12865-67) — засыпка100…2000.064…0.074840
Вермикулитобетон300…8000.08…0.21840
Воздух сухой при 20°С1.2050.02591005
Войлок шерстяной150…3300.045…0.0521700
Газо- и пенобетон, газо- и пеносиликат280…10000.07…0.21840
Газо- и пенозолобетон800…12000.17…0.29840
Гетинакс13500.231400
Гипс формованный сухой1100…18000.431050
Гипсокартон500…9000.12…0.2950
Гипсоперлитовый раствор0.14
Гипсошлак1000…13000.26…0.36
Глина1600…29000.7…0.9750
Глина огнеупорная18001.04800
Глиногипс800…18000.25…0.65
Глинозем3100…39002.33700…840
Гнейс (облицовка)28003.5880
Гравий (наполнитель)18500.4…0.93850
Гравий керамзитовый (ГОСТ 9759-83) — засыпка 200…8000.1…0.18840
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка400…8000.11…0. 16840
Гранит (облицовка)2600…30003.5880
Грунт 10% воды1.75
Грунт 20% воды17002.1
Грунт песчаный1.16900
Грунт сухой15000.4850
Грунт утрамбованный1.05
Гудрон950…10300.3
Доломит плотный сухой28001.7
Дуб вдоль волокон7000.232300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83)7000.12300
Дюралюминий2700…2800120…170920
Железо787070…80450
Железобетон25001.7840
Железобетон набивной24001.55840
Зола древесная7800.15750
Золото19320318129
Известняк (облицовка)1400…20000.5…0.93850…920
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80)300…4000.067…0.111680
Изделия вулканитовые350…4000.12
Изделия диатомитовые500…6000.17…0.2
Изделия ньювелитовые160…370
0.11
Изделия пенобетонные400…5000.19…0.22
Изделия перлитофосфогелевые200…3000.064…0.076
Изделия совелитовые230…4500.12…0.14
Иней0. 47
Ипорка (вспененная смола)150.038
Каменноугольная пыль7300.12
Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ810…8400.14…0.185
Камни многопустотные из легкого бетона500…12000.29…0.6
Камни полнотелые из легкого бетона DIN 18152500…20000.32…0.99
Камни полнотелые из природного туфа или вспученной глины500…20000.29…0.99
Камень строительный22001.4920
Карболит черный11000.231900
Картон асбестовый изолирующий720…9000.11…0.21
Картон гофрированный7000.06…0.071150
Картон облицовочный10000.182300
Картон парафинированный0.075
Картон плотный600…9000.1…0.231200
Картон пробковый1450.042
Картон строительный многослойный (ГОСТ 4408-75)6500.132390
Картон термоизоляционный (ГОСТ 20376-74)5000.04…0.06
Каучук вспененный820.033
Каучук вулканизированный твердый серый0.23
Каучук вулканизированный мягкий серый9200.184
Каучук натуральный9100.181400
Каучук твердый0.16
Каучук фторированный1800.055…0.06
Кедр красный500…5700. 095
Кембрик лакированный0.16
Керамзит800…10000.16…0.2750
Керамзитовый горох900…15000.17…0.32750
Керамзитобетон на кварцевом песке с поризацией800…12000.23…0.41840
Керамзитобетон легкий500…1200
0.18…0.46
Керамзитобетон на керамзитовом песке и керамзитопенобетон500…18000.14…0.66840
Керамзитобетон на перлитовом песке800…10000.22…0.28840
Керамика1700…23001.5
Керамика теплая0.12
Кирпич доменный (огнеупорный)1000…20000.5…0.8
Кирпич диатомовый5000.8
Кирпич изоляционный0.14
Кирпич карборундовый1000…130011…18700
Кирпич красный плотный1700…21000.67840…880
Кирпич красный пористый15000.44
Кирпич клинкерный1800…20000.8…1.6
Кирпич кремнеземный0.15
Кирпич облицовочный18000.93880
Кирпич пустотелый0.44
Кирпич силикатный1000…22000.5…1.3750…840
Кирпич силикатный с тех. пустотами0.7
Кирпич силикатный щелевой0.4
Кирпич сплошной0.67
Кирпич строительный800…15000. 23…0.3800
Кирпич трепельный700…13000.27710
Кирпич шлаковый1100…14000.58
Кладка бутовая из камней средней плотности20001.35880
Кладка газосиликатная630…8200.26…0.34880
Кладка из газосиликатных теплоизоляционных плит5400.24880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе16000.47880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе18000.56880
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе17000.52880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе1000…14000.35…0.47880
Кладка из малоразмерного кирпича17300.8880
Кладка из пустотелых стеновых блоков1220…14600.5…0.65880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе15000.64880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе14000.52880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе18000.7880
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе1000…12000.29…0.35880
Кладка из ячеистого кирпича13000.5880
Кладка из шлакового кирпича на цементно-песчаном растворе15000.52880
Кладка «Поротон»8000. 31900
Клен620…7500.19
Кожа800…10000.14…0.16
Композиты технические0.3…2
Краска масляная (эмаль)1030…20450.18…0.4650…2000
Кремний2000…2330148714
Кремнийорганический полимер КМ-911600.21150
Латунь8100…885070…120400
Лед -60°С9242.911700
Лед -20°С9202.441950
Лед 0°С9172.212150
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79)1600…18000.33…0.381470
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77)1400…18000.23…0.351470
Липа, (15% влажности)320…6500.15
Лиственница6700.13
Листы асбестоцементные плоские (ГОСТ 18124-75)1600…18000.23…0.35840
Листы вермикулитовые0.1
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 62668000.15840
Листы пробковые легкие2200.035
Листы пробковые тяжелые2600.05
Магнезия в форме сегментов для изоляции труб220…3000.073…0.084
Мастика асфальтовая20000.7
Маты, холсты базальтовые25…800.03…0.04
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75)1500. 061840
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82)50…1250.048…0.056840
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00)100…1500.045
Мел1800…28000.8…2.2800…880
Медь (ГОСТ 859-78)8500407420
Миканит2000…22000.21…0.41250
Мипора16…200.0411420
Морозин100…4000.048…0.084
Мрамор (облицовка)28002.9880
Накипь котельная (богатая известью, при 100°С)1000…25000.15…2.3
Накипь котельная (богатая силикатом, при 100°С)300…12000.08…0.23
Настил палубный6300.211100
Найлон0.53
Нейлон13000.17…0.241600
Неопрен0.211700
Опилки древесные200…4000.07…0.093
Пакля1500.052300
Панели стеновые из гипса DIN 1863600…9000.29…0.41
Парафин870…9200.27
Паркет дубовый18000.421100
Паркет штучный11500.23880
Паркет щитовой7000.17880
Пемза400…7000.11…0.16
Пемзобетон800…16000.19…0.52840
Пенобетон300…12500. 12…0.35840
Пеногипс300…6000.1…0.15
Пенозолобетон800…12000.17…0.29
Пенопласт ПС-11000.037
Пенопласт ПС-4700.04
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78)65…1250.031…0.0521260
Пенопласт резопен ФРП-165…1100.041…0.043
Пенополистирол (ГОСТ 15588-70)400.0381340
Пенополистирол (ТУ 6-05-11-78-78)100…1500.041…0.051340
Пенополистирол Пеноплэкс22…470.03…0.0361600
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75)40…800.029…0.0411470
Пенополиуретановые листы1500.035…0.04
Пенополиэтилен0.035…0.05
Пенополиуретановые панели0.025
Пеносиликальцит400…12000.122…0.32
Пеностекло легкое100..2000.045…0.07
Пеностекло или газо-стекло (ТУ 21-БССР-86-73)200…4000.07…0.11840
Пенофол44…740.037…0.039
Пергамент0.071
Пергамин (ГОСТ 2697-83)6000.171680
Перекрытие армокерамическое с бетонным заполнением без штукатурки1100…13000.7850
Перекрытие из железобетонных элементов со штукатуркой15501.2860
Перекрытие монолитное плоское железобетонное24001. 55840
Перлит2000.05
Перлит вспученный1000.06
Перлитобетон600…12000.12…0.29840
Перлитопласт-бетон (ТУ 480-1-145-74)100…2000.035…0.0411050
Перлитофосфогелевые изделия (ГОСТ 21500-76)200…3000.064…0.0761050
Песок 0% влажности15000.33800
Песок 10% влажности0.97
Песок 20% влажности1.33
Песок для строительных работ (ГОСТ 8736-77)16000.35840
Песок речной мелкий15000.3…0.35700…840
Песок речной мелкий (влажный)16501.132090
Песчаник обожженный1900…27001.5
Пихта450…5500.1…0.262700
Плита бумажная прессованая6000.07
Плита пробковая80…5000.043…0.0551850
Плита огнеупорная теплоизоляционная Avantex марки Board200…5000.04
Плитка облицовочная, кафельная20001.05
Плитка термоизоляционная ПМТБ-20.04
Плиты алебастровые0.47750
Плиты из гипса ГОСТ 64281000…12000.23…0.35840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77)200…10000.06…0.152300
Плиты из керзмзито-бетона400…6000.23
Плиты из полистирол-бетона ГОСТ Р 51263-99200…3000. 082
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75)40…1000.038…0.0471680
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78)500.056840
Плиты из ячеистого бетона ГОСТ 5742-76350…4000.093…0.104
Плиты камышитовые200…3000.06…0.072300
Плиты кремнезистые 0.07
Плиты льнокостричные изоляционные2500.0542300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80150…2000.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-962250.054
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия)170…2300.042…0.044
Плиты минераловатные повышенной жесткости ГОСТ 22950-952000.052840
Плиты минераловатные повышенной жесткости на органофосфатном связующем
(ТУ 21-РСФСР-3-72-76)
2000.064840
Плиты минераловатные полужесткие на крахмальном связующем125…2000.056…0.07840
Плиты минераловатные на синтетическом и битумном связующих0.048…0.091
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66)50…3500.048…0.091840
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-8780…1000.045
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые30…350.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00320. 029
Плиты перлито-битумные ГОСТ 16136-803000.087
Плиты перлито-волокнистые1500.05
Плиты перлито-фосфогелевые ГОСТ 21500-762500.076
Плиты перлито-1 Пластбетонные ТУ 480-1-145-741500.044
Плиты перлитоцементные0.08
Плиты строительный из пористого бетона500…8000.22…0.29
Плиты термобитумные теплоизоляционные200…3000.065…0.075
Плиты торфяные теплоизоляционные (ГОСТ 4861-74)200…3000.052…0.0642300
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе300…8000.07…0.162300
Покрытие ковровое6300.21100
Покрытие синтетическое (ПВХ)15000.23
Пол гипсовый бесшовный7500.22800
Поливинилхлорид (ПВХ)1400…16000.15…0.2
Поликарбонат (дифлон)12000.161100
Полипропилен (ГОСТ 26996– 86)900…9100.16…0.221930
Полистирол УПП1, ППС10250.09…0.14900
Полистиролбетон (ГОСТ 51263)150…6000.052…0.1451060
Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе200…5000.057…0.1131060
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах200…5000.052…0.1051060
Полистиролбетон модифицированный монолитный на портландцементе250…3000. 075…0.0851060
Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах200…5000.062…0.1211060
Полиуретан12000.32
Полихлорвинил1290…16500.151130…1200
Полиэтилен высокой плотности9550.35…0.481900…2300
Полиэтилен низкой плотности9200.25…0.341700
Поролон340.04
Портландцемент (раствор)0.47
Прессшпан0.26…0.22
Пробка гранулированная техническая450.0381800
Пробка минеральная на битумной основе270…3500.073…0.096
Пробковое покрытие для полов5400.078
Ракушечник1000…18000.27…0.63835
Раствор гипсовый затирочный12000.5900
Раствор гипсоперлитовый6000.14840
Раствор гипсоперлитовый поризованный400…5000.09…0.12840
Раствор известковый16500.85920
Раствор известково-песчаный1400…16000.78840
Раствор легкий LM21, LM36700…10000.21…0.36
Раствор сложный (песок, известь, цемент)17000.52840
Раствор цементный, цементная стяжка20001.4
Раствор цементно-песчаный1800…20000.6…1.2840
Раствор цементно-перлитовый800…10000.16…0.21840
Раствор цементно-шлаковый1200…14000. 35…0.41840
Резина мягкая0.13…0.161380
Резина твердая обыкновенная900…12000.16…0.231350…1400
Резина пористая160…5800.05…0.172050
Рубероид (ГОСТ 10923-82)6000.171680
Руда железная2.9
Сажа ламповая1700.07…0.12
Сера ромбическая20850.28762
Серебро10500429235
Сланец глинистый вспученный4000.16
Сланец2600…33000.7…4.8
Слюда вспученная1000.07
Слюда поперек слоев2600…32000.46…0.58880
Слюда вдоль слоев2700…32003.4880
Смола эпоксидная1260…13900.13…0.21100
Снег свежевыпавший120…2000.1…0.152090
Снег лежалый при 0°С400…5600.52100
Сосна и ель вдоль волокон5000.182300
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72)5000.092300
Сосна смолистая 15% влажности600…7500.15…0.232700
Сталь стержневая арматурная (ГОСТ 10884-81)785058482
Стекло оконное (ГОСТ 111-78)25000.76840
Стекловата155…2000.03800
Стекловолокно1700…20000.04840
Стеклопластик18000. 23800
Стеклотекстолит1600…19000.3…0.37
Стружка деревянная прессованая8000.12…0.151080
Стяжка ангидритовая21001.2
Стяжка из литого асфальта23000.9
Текстолит1300…14000.23…0.341470…1510
Термозит300…5000.085…0.13
Тефлон21200.26
Ткань льняная0.088
Толь (ГОСТ 10999-76)6000.171680
Тополь350…5000.17
Торфоплиты275…3500.1…0.122100
Туф (облицовка)1000…20000.21…0.76750…880
Туфобетон1200…18000.29…0.64840
Уголь древесный кусковой (при 80°С)1900.074
Уголь каменный газовый14203.6
Уголь каменный обыкновенный1200…13500.24…0.27
Фарфор2300…25000.25…1.6750…950
Фанера клееная (ГОСТ 3916-69)6000.12…0.182300…2500
Фибра красная12900.46
Фибролит (серый)11000.221670
Целлофан0.1
Целлулоид14000.21
Цементные плиты1.92
Черепица бетонная21001.1
Черепица глиняная19000.85
Черепица из ПВХ асбеста20000. 85
Чугун722040…60500
Шевелин140…1900.056…0.07
Шелк1000.038…0.05
Шлак гранулированный5000.15750
Шлак доменный гранулированный600…8000.13…0.17
Шлак котельный10000.29700…750
Шлакобетон1120…15000.6…0.7800
Шлакопемзобетон (термозитобетон)1000…18000.23…0.52840
Шлакопемзопено- и шлакопемзогазобетон800…16000.17…0.47840
Штукатурка гипсовая8000.3840
Штукатурка известковая16000.7950
Штукатурка из синтетической смолы11000.7
Штукатурка известковая с каменной пылью17000.87920
Штукатурка из полистирольного раствора3000.11200
Штукатурка перлитовая350…8000.13…0.91130
Штукатурка сухая0.21
Штукатурка утепляющая5000.2
Штукатурка фасадная с полимерными добавками18001880
Штукатурка цементная0.9
Штукатурка цементно-песчаная18001.2
Шунгизитобетон1000…14000.27…0.49840
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка200…6000.064…0.11840
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорита (ГОСТ 11991-83) — засыпка400…8000. 12…0.18840
Эбонит12000.16…0.171430
Эбонит вспученный6400.032
Эковата35…600.032…0.0412300
Энсонит (прессованный картон)400…5000.1…0.11
Эмаль (кремнийорганическая)0.16…0.27

Таблица теплопроводности строительных материалов, рекомендации

Комфорт и уют в доме во многом зависят от грамотно рассчитанного теплообмена ещё на этапе строительства. Для этого учитывают всё. Чтобы расчёты были более точными, а сделать их было гораздо легче, применяется таблица теплопроводности строительных материалов. С её помощью можно рассчитать, насколько тепло будет в доме и насколько экономнее получится его отопление. Рассмотрим основные параметры теплопроводности различных материалов и методику вычисления подобной величины общей конструкции.

Чем ниже теплопроводность строительных материалов, тем теплее в доме

Содержание статьи

Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности

Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.

Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.

ИСТ-1 – прибор для определения теплопроводности

Внимание! Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом.

Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

  1. Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.

    Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором

  2. Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.

    Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью

  3. Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

Коэффициент теплопроводности строительных материалов – таблицы

Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

Таблица коэффициентов теплоотдачи материалов. Часть 1Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных полов

Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

Таблица теплопроводности кирпича

Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

Теплопроводность разных видов кирпичей

Таблица теплопроводности металлов

Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3

Таблица теплопроводности дерева

Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

Проводимость тепла дереваПрочность разных пород древесины

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.

Таблица проводимости тепла воздушных прослоек

Калькулятор расчёта толщины стены по теплопроводности

На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.

Окно расчёта калькулятора

В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.

Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе

Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.

Расчёт проводимости тепла всех прослоек стен

Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.

 

Предыдущая

Строительные материалыИз чего делают цемент: от теории к практике

Следующая

Строительные материалыКрепкий пол в каждый дом: ламинат или линолеум — что лучше

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Таблица теплопроводности строительных материалов и утеплителей

Автор aquatic На чтение 6 мин. Просмотров 9k. Обновлено

Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров. Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.

Теплопроводность материалов влияет на толщину стен

Назначение теплопроводности

Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.

На схеме представлены показатели различных вариантов

Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.

Сравнение характеристик разных типов сырья

Что оказывает влияние на показатель теплопроводности?

Теплопроводность определяется такими факторами:

  • пористость определяет неоднородность структуры. При пропуске тепла через такие материалы процесс охлаждения незначительный;
  • повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;
  • повышенная влажность увеличивает данный показатель.

Характеристики различных материалов

Использование значений коэффициента теплопроводности на практике

Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.

При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.

При выборе утеплителя нужно изучить характеристики каждого варианта

Показатели теплопроводности для готовых построек. Виды утеплений

При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.

Монтаж минеральной ваты

Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.

Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:

  • показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
  • влагопоглощение имеет большое значение при утеплении наружных элементов;
  • толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
  • важна горючесть. Качественное сырье имеет способность к самозатуханию;
  • термоустойчивость отображает способность выдерживать температурные перепады;
  • экологичность и безопасность;
  • звукоизоляция защищает от шума.

Характеристики разных видов утеплителей

В качестве утеплителей применяются следующие виды:

  • минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;

Данный материал относится к самым доступным и простым вариантам

  • пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
  • базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
  • пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;

Для пеноплекса характерна пористая структура

  • пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
  • экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;

Данный вариант бывает разной толщины

  • пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.

Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины,  лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.

Обратите внимание! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.

Таблица теплопроводности строительных материалов: особенности показателей

Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве. Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.

Утепление производится в определенных местах

Как использовать таблицу теплопроводности материалов и утеплителей?

В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.

Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана. Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций. При сравнении твердых и пенных вариантов, нужно выделить , что пена не образует стыков.

Коэффициент разнообразных типов сырья

Значения коэффициентов теплопередачи материалов в таблице

При произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение  является отношением температур с обеих сторон к количеству  теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.

Значения плотности и теплопроводности

Все расчеты  вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение часто указывается на упаковке, если это изоляция. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.

Теплопроводность некоторых конструкций

Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала.  Сведения о паропроницаемости и плотности можно посмотреть в таблице.

При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении.

Теплопроводность строительных материалов (видео)

теплопроводность строительных материалов

Теплопроводность строительных материалов это своего рода оценка , которая описывает способность того или иного тела проводить тепло. В данной статье пойдет речь именно об этом, а для большего представления о теплопроводности различных материалов и не только, ниже будет приведена таблица.

Как вы понимаете все материалы обладают разными свойствами и соответственно разную теплопроводность, которая в свою очередь влияет на температуру внутри помещения. Если теплопроводность низкая, значит и теплообмен будет низким. Другими словами, дома зимой тепло будет сохраняться, а летом будет прохладно.

Кстати, очень удобно что теперь все обувные интернет-магазины нижнего новгорода (http://rmau.ru/obuv) собраны на одном сайте. Перейдите по указанной ссылке и выберите обувь для себя и близких из очень большого ассортимента с разными ценовыми категориями.


Существует три вида процессов теплообмена

— Первое — конечно теплопроводность,
— Второе — конвекция,
— Третье — будет тепловым излучением.

Говоря о первом виде теплопроводности можно сказать что, это своего рода передача тепла от тела к телу либо частицами находящиеся внутри тела с разной температурой, за счет активного движения молекулы обмениваются энергией наименьших частиц в теле.

Все это проходит благодаря беспорядочному движению атомов и молекул. Так как данный теплообмен может протекать в разных физических телах, которые имеют неравномерное распределение температуры. Теплопередача будет зависеть от состояния тела в конкретный период времени.
Говоря о втором виде теплопроводности, а именно о конвекции, можно сказать что очень часто все виды теплопередачи протекают вместе. В этом процессе обязательно частицы с различными температурами будут соприкасаться, из чего следует, что конвекция сопровождается теплопроводностью. Конвекция происходит от перемещения участков среды с разными температурами. Само тепло переноситься только совместно с данной средой и зависит от нее. Так же данный процесс иногда называют конвективным теплообменом.

Теплоотдачу можно объяснить как конвективный теплообмен проходящий между стеной которая стоит неподвижно и меняющейся средой.

Третий вид тепловое излучение — благодаря которому происходит процесс передачи тепла между телами с участием электромагнитных волн.

Для того чтобы строить различного вида постройки необходимо обязательно знать теплопроводность утеплителей и строительных материалов, чтобы в итоге получить то что планировалось. Теплопроводность стен зависит от материалов из которых эти стены состоят.

Единицей измерения способности к проведению тепла, является коэффициент теплопроводности. Он равен такому количеству тепла которое пройдет через различные материалы или тела с толщиной 1 м и имеющий площадь 1кв.м/сек с одной температурой по периметру.

Интересный факт: теплопроводность кирпича в отличие от дерева ниже. К примеру- для того чтобы получить с помощью кирпича тот же эффект что от дерева, нужно выложить стену из кирпича толщиной в три раза превышающую толщину стены из дерева.

Теплопроводность пенопласта равна 0,31-0,33 Вт/м*К, с плотностью 15 кг/м3- 50 кг/м3

Теплопроводность стали равна 58 Вт/м*К, с плотностью 7850 кг/м3

Для более расширенного представления о теплопроводности разных материалов, обобщим все в таблицу.


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Сравнительная таблица теплопроводности современных строительных материалов

Таблица теплопроводности строительных материалов.

Характеристики и сравнение строительных материалов

Строительство коттеджа или дачного дома – это сложный и трудоемкий процесс. И для того, чтобы будущее строение простояло не один десяток лет, нужно соблюдать все нормы и стандарты при его возведении. Поэтому каждый этап строительства требует точных расчетов и качественного выполнения необходимых работ.

Одним из самых важных показателей при строительстве и отделке строения является теплопроводность строительных материалов. СНИП (строительные нормы и правила) дает полный спектр информации по данному вопросу. Ее необходимо знать, чтобы будущее здание было комфортным для проживания как в летний, так и в зимний период.

Идеальный теплый дом

От конструктивных особенностей строения и применяемых при его возведении материалов зависит комфорт и экономичность проживания в нем. Комфорт заключается в создании оптимального микроклимата внутри вне зависимости от внешних погодных условий и температуры окружающей среды. Если материалы подобраны правильно, а котельное оборудование и вентиляция установлены согласно нормам, то в таком доме будет комфортная прохладная температура летом и тепло зимой. К тому же если все материалы, используемые при строительстве, обладают хорошими теплоизоляционными свойствами, то расходы на энергоносители при отоплении помещений будут минимальны.

Понятие теплопроводности

Теплопроводность – это передача тепловой энергии между непосредственно соприкасающимися телами или средами. Простыми словами теплопроводность – это способность материала проводить температуру. То есть, попадая в какую-то среду с отличающейся температурой, материал начинает принимать температуру этой среды.

Этот процесс имеет большое значение и в строительстве. Так, в доме с помощью отопительного оборудования поддерживается оптимальная температура (20-25°C). Если температура на улице будет ниже, то когда отключается отопление, все тепло из дома через некоторое время выйдет на улицу, и температура понизится. Летом происходит обратная ситуация. Чтобы сделать температуру в доме ниже уличной, приходится использовать кондиционер.

Коэффициент теплопроводности

Потеря тепла в доме неизбежна. Она происходит постоянно, когда температура снаружи меньше, чем в помещении. А вот ее интенсивность – это переменная величина. Она зависит от множества факторов, главными среди которых являются:

  • Площадь поверхностей, участвующих в теплообмене (крыша, стены, перекрытия, пол).
  • Показатель теплопроводности строительных материалов и отдельных элементов здания (окна, двери).
  • Разница между температурами на улице и внутри дома.
  • И другие.

Для количественной характеристики теплопроводности строительных материалов используют специальный коэффициент. Используя этот показатель, можно довольно просто рассчитать необходимую теплоизоляцию для всех частей дома (стены, крыша, перекрытия, пол). Чем выше коэффициент теплопроводности строительных материалов, тем больше интенсивность потери тепла. Таким образом, для постройки теплого дома лучше применять материалы с более низким показателем этой величины.

Коэффициент теплопроводности строительных материалов, как и любых других веществ (жидких, твердых или газообразных), обозначается греческой буквой λ. Единицей его измерения является Вт/(м*°C). При этом расчет ведется на один квадратный метр стены толщиной в один метр. Разница температур здесь берется 1°. Практически в любом строительном справочнике имеется таблица теплопроводности строительных материалов, в которой можно посмотреть значение этого коэффициента для различных блоков, кирпичей, бетонных смесей, пород дерева и других материалов.

Определение потерь тепла

Потери тепла в любом здании всегда есть, но в зависимости от материала они могут изменять свое значение. В среднем потеря тепла происходит через:

  • Крышу (от 15 % до 25 %).
  • Стены (от 15 % до 35 %).
  • Окна (от 5 % до 15 %).
  • Дверь (от 5 % до 20 %).
  • Пол (от 10 % до 20 %).

Для определения потерь тепла применяют специальный тепловизор, который определяет наиболее проблемные места. Они выделяются на нем красным цветом. Меньшая потеря тепла происходит в желтых зонах, далее – в зеленых. Зоны с наименьшей потерей тепла выделяются синим цветом. А определение теплопроводности строительных материалов должно проводиться в специальных лабораториях, о чем должен свидетельствовать сертификат качества, прилагаемый к продукции.

Пример расчета потерь тепла

Если взять, к примеру, стену из материала с коэффициентом теплопроводности 1, то при разности температур с двух сторон этой стены в 1°, потери тепла составят 1 Вт. Если же толщину стены взять не 1 метр, а 10 см, то потери составят уже 10 Вт. В случае, если разность температур будет 10°, то тепловые потери также составят 10 Вт.

Рассмотрим теперь на конкретном примере расчет потери тепла целого здания. Высоту его возьмем 6 метров (8 с коньком), ширину – 10 метров, а длину – 15 метров. Для простоты расчетов берем 10 окон площадью 1 м 2 . Температуру внутри помещения будем считать равную 25°C, а на улице -15°C. Вычисляем площадь всех поверхностей, через которые происходит потеря тепла:

  • Окна – 10 м 2 .
  • Пол – 150 м 2 .
  • Стены – 300 м 2 .
  • Крыша (со скатами по длинной стороне) – 160 м 2 .

Формула теплопроводности строительных материалов позволяет вычислить коэффициенты для всех частей здания. Но проще использовать уже готовые данные из справочника. Там есть таблица теплопроводности строительных материалов. Рассмотрим каждый элемент по отдельности и определим его тепловое сопротивление. Оно рассчитывается по формуле R = d/λ, где d – толщина материала, а λ – коэффициент его теплопроводности.

Пол – 10 см бетона (R=0,058 (м 2 *°C)/Вт) и 10 см минеральной ваты (R=2,8 (м 2 *°C)/Вт). Теперь складываем эти два показателя. Таким образом, тепловое сопротивление пола равняется 2,858 (м 2 *°C)/Вт.

Аналогично считаются стены, окна и кровля. Материал – ячеистый бетон (газобетон), толщина 30 см. В таком случае R=3,75 (м 2 *°C)/Вт. Тепловое сопротивление пластового окна — 0,4 (м 2 *°C)/Вт.

Кровлю будем считать из минеральной ваты толщиной в 10 см и профлиста. Так как металл имеет высокий коэффициент теплопроводности, то профлист в расчет не берем. Тогда R крыши составит 2,8 (м 2 *°C)/Вт.

Следующая формула позволяет выяснить потери тепловой энергии.

Q = S * T / R, где S – площадь поверхности, T – разница температур снаружи и внутри (40°C). Рассчитаем потери тепла для каждого элемента:

  • Для крыши: Q = 160*40/2,8=2,3 кВт.
  • Для стен: Q = 300*40/3,75=3,2 кВт.
  • Для окон: Q = 10*40/0,4=1 кВт.
  • Для пола: Q = 150*40/2,858=2,1 кВт.

Далее все эти показатели суммируются. Таким образом, для данного коттеджа тепловые потери составят 8,6 кВт. А для поддержания оптимальной температуры потребуется котельное оборудование мощностью не менее 10 кВт.

Материалы для внешних стен

На сегодняшний день существует множество стеновых строительных материалов. Но наибольшей популярностью в частном домостроении по-прежнему пользуются строительные блоки, кирпичи и дерево. Основные отличия – это плотность и теплопроводность строительных материалов. Сравнение дает возможность выбрать золотую середину в соотношении плотность/теплопроводность. Чем выше плотность материала, тем выше его несущая способность, а следовательно, и прочность конструкции в целом. Но при этом ниже его тепловое сопротивление, а как следствие, расходы на энергоносители выше. С другой стороны, чем выше тепловое сопротивление, тем ниже плотность материала. Меньшая плотность, как правило, подразумевает наличие пористой структуры.

Чтобы взвесить все за и против, необходимо знать плотность материала и его коэффициент теплопроводности. Следующая таблица теплопроводности строительных материалов для стен дает значение этого коэффициента и его плотность.

Теплопроводность утеплителей — сравнительная таблица

В привычной для населения страны холодной зиме, востребованность теплоизоляционных материалов всегда на высоком уровне. Необходимо учитывать все особенности каждого из утеплителей, чтобы сделать выбор в пользу качественного и целесообразного материала.

Зачем нужна теплоизоляция?

Актуальность теплоизоляции заключается в следующем:

  • Сохранение тепла в зимний период и прохлады в летний период.

Потери тепла сквозь стены обычного многоэтажного жилого дома составляют 30-40%. Для снижения теплопотерь нужны специальные теплоизоляционные материалы. Применение в зимний период электрических обогревателей способствует дополнительному расходу на электроэнергию. Эти расходы выгодней компенсировать использованием качественного теплоизоляционного материала, обеспечивающего сохранение тепла в зимний период и прохладу в летнюю жару. При этом затраты на охлаждение помещения кондиционером также будут сведены к минимуму.

  • Увеличение долговечности конструкций здания.

В случае промышленных зданий с использованием металлического каркаса, утеплитель позволяет защитить поверхность металла от коррозии, являющейся самым пагубным дефектом для данного вида конструкций. А срок службы для здания из кирпича определяется количеством циклов замораживания/оттаивания. Воздействие этих циклов воспринимает утеплитель, ведь точка росы при этом находится в теплоизоляционном материале, а не материале стены.

Такое утепление позволяет увеличить срок службы здания во много раз.

Защита от возрастающего уровня шума достигается при использовании таких шумопоглощающих материалов (толстые матрасы, звукоотражающие стеновые панели).

  • Увеличение полезной площади зданий.

Использование системы теплоизоляции позволяет уменьшить толщину наружных стен, при этом увеличивая внутреннюю площадь здания.

Как правильно выбрать утеплитель?

При выборе утеплителя нужно обращать внимание на: ценовую доступность, сферу применения, мнение экспертов и технические характеристики, являющиеся самым важным критерием.

Основные требования, предъявляемые к теплоизоляционным материалам:

  • Теплопроводность.

Теплопроводность подразумевает под собой способность материала передавать теплоту. Это свойство характеризуется коэффициентом теплопроводности, на основе которого принимают необходимую толщину утеплителя. Теплоизоляционный материал с низким коэффициентом теплопроводности является лучшим выбором.

Также теплопроводность тесно связана с понятиями плотности и толщины утеплителя, поэтому при выборе необходимо обращать внимание и на эти факторы. Теплопроводность одного и того же материала может изменяться в зависимости от плотности.

Под плотностью понимают массу одного кубического метра теплоизоляционного материала. По плотности материалы подразделяются на: особо лёгкие, лёгкие, средние, плотные (жёсткие). К легким относятся пористые материалы, подходящие для утепления стен, перегородок, перекрытий. Плотные утеплители лучше подходят для утепления снаружи.

Чем меньше плотность утеплителя, тем меньше вес, а теплопроводность выше. Это является показателем качества утепления. А небольшой вес способствует удобству монтажа и укладки. В ходе опытных исследований установлено, что утеплитель, имеющий плотность от 8 до 35 кг/м³ лучше всего удерживает тепло и подходят для утепления вертикальных конструкций внутри помещений.

А как зависит теплопроводность от толщины? Существует ошибочное мнение, что утеплитель большой толщины будет лучше удерживать тепло внутри помещения. Это приводит к неоправданным расходам. Слишком большая толщина утеплителя может привести к нарушению естественной вентиляции и в помещении будет слишком душно.

А недостаточная толщина утеплителя приводит к тому, что холод будет проникать через толщу стены и на плоскости стены образуется конденсат, стена будет неотвратимо отсыревать, появится плесень и грибок.

В случае игнорирования расчета может появиться ряд проблем, решение которых потребует больших дополнительных затрат!

Таблица теплопроводности материалов

МатериалТеплопроводность материалов, Вт/м*⸰СПлотность, кг/м³
Пенополиуретан0,02030
0,02940
0,03560
0,04180
Пенополистирол0,03710-11
0,03515-16
0,03716-17
0,03325-27
0,04135-37
Пенополистирол (экструдированный)0,028-0,03428-45
Базальтовая вата0,03930-35
0,03634-38
0,03538-45
0,03540-50
0,03680-90
0,038145
0,038120-190
Эковата0,03235
0,03850
0,0465
0,04170
Изолон0,03133
0,03350
0,03666
0,039100
Пенофол0,037-0,05145
0,038-0,05254
0,038-0,05274
  • Экологичность.

Этот фактор является значимым, особенно в случае утепления жилого дома, так как многие материалы выделяют формальдегид, что влияет на рост раковых опухолей. Поэтому необходимо делать выбор в сторону нетоксичных и биологически нейтральных материалов. С точки зрения экологичности лучшим теплоизоляционным материалом считается каменная вата.

  • Пожарная безопасность.

Материал должен быть негорючим и безопасным. Гореть может любой материал, разница состоит в том, при каком температуре он возгорается. Важным является то, чтобы утеплитель был самозатухающим.

  • Паро- и водонепроницаемость.

Преимущество имеют те материалы, которые обладают водонепроницаемостью, так как впитывание влаги приводит к тому, что эффективность материала становится низкой и полезные характеристики утеплителя через год использования снижаются на 50% и более.

В среднем срок службы изоляционных материалов составляет от 5 до 10-15 лет. Теплоизоляционные материалы, имеющие в составе вату в первые годы службы значительно снижают свою эффективность. Зато пенополиуретан обладает сроком службы свыше 50 лет.

Достоинства и недостатки утеплителей

  1. Пенополиуретан на сегодняшний день самый эффективный утеплитель.
Виды ППУ

Достоинства: бесшовный монтаж пеной, долговечность, лучшая тепло- и гидроизоляция.

Недостатки: дороговизна материала, неустойчивость к УФ-излучению.

  1. Пенополистирол (пенопласт) – востребован для использования в качестве утеплителя для помещений разных типов.

Достоинства: низкая теплопроводность, невысокая стоимость, удобство монтажа, водонепроницаемость.

Недостатки: хрупкость, легкая воспламеняемость, образование конденсата.

  1. Экструдированный пенополистирол – прочный и удобный материал, при необходимости элементов нужного размера легко разрезается ножом.

Достоинства: очень низкая теплопроводность, водонепроницаемость, прочность на сжатие, удобство монтажа, отсутствие плесени и гниения, возможность эксплуатации от -50⸰С до +75⸰С.

Недостатки: намного дороже пенопласта, восприимчивость к органическим растворителям, образование конденсата.

  1. Базальтовая (каменная) вата – минеральная вата, изготавливающаяся на базальтовой основе.

Достоинства: противостояние образованию грибков, звукоизоляция, прочность к механическим воздействиям, огнеупорность, негорючесть.

Недостатки: более высокая стоимость, по сравнению с аналогами.

  1. Эковата – утеплитель, выполненный на основе естественных материалов (волокна дерева и минералы). На сегодняшний день применяется довольно часто.

Достоинства: звукоизоляция, экологичность, влагостойкость, доступная стоимость.

Недостатки: во время эксплуатации повышается теплопроводность, необходимость специального оборудования для монтажа, возможность усадки.

  1. Изолон – современный утеплитель, изготавливаемый путем вспенивания полиэтилена. Является одним из самых востребованных.

Достоинства: низкая теплопроводность, низкая паропроницаемость, высокая шумоизоляция, удобство резки и монтажа, экологичность, гибкость, небольшой вес.

Недостатки: низкая прочность, необходимость устройства вентиляционного зазора.

  1. Пенофол – утеплитель, который отвечает многим требованиям, предъявляемым к качеству утеплителя и утепления различных помещений, а также конструкций и т.д.

Достоинства: экологичность, высокая способность к отражению тепла, высокая шумоизоляция, влагонепроницаемость, негорючесть, удобство перевозки и монтажа, отражение воздействия радиации.

Недостатки: малая жесткость, затрудненность крепления материала, в качестве теплоизоляции одного пенофола недостаточно.

Заключение

Рассмотренные достоинства и недостатки утеплителей позволят выбрать самый подходящий вариант уже на стадии проектирования. При этом учитывать все требования, предъявляемые к теплоизоляционному материалу, в первую очередь теплопроводность.

Сравнение теплопроводности строительных материалов — изучаем важные показатели

Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении.

Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров. Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.

Назначение теплопроводности

Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.

Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.

Что оказывает влияние на показатель теплопроводности?

Теплопроводность определяется такими факторами:

• Пористость определяет неоднородность структуры. При пропуске тепла через такие материалы процесс охлаждения незначительный;

• Повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;

• Повышенная влажность увеличивает данный показатель.

Использование значений коэффициента теплопроводности на практике.

Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.

При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.

Показатели теплопроводности для готовых построек. Виды утеплений.

При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.

Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.

Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:

• Показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;

• Влагопоглощение имеет большое значение при утеплении наружных элементов;

• Толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;

• Важна горючесть. Качественное сырье имеет способность к самозатуханию;

• Термоустойчивость отображает способность выдерживать температурные перепады;

• Экологичность и безопасность;

• Звукоизоляция защищает от шума.

В качестве утеплителей применяются следующие виды:

• Минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;

• Пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;

• Базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;

• Пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;

• Пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;

• Экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;

• Пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.

Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.

ОБРАТИТЕ ВНИМАНИЕ! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.

Таблица теплопроводности строительных материалов: особенности показателей.

Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве. Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.

Как использовать таблицу теплопроводности материалов и утеплителей?

В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.

Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана. Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций. При сравнении твердых и пенных вариантов, нужно выделить , что пена не образует стыков.

Значения коэффициентов теплопередачи материалов в таблице.

При произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение является отношением температур с обеих сторон к количеству теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.

Все расчеты вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение часто указывается на упаковке, если это изоляция. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.

Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала. Сведения о паропроницаемости и плотности можно посмотреть в таблице.

При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении. опубликовано econet.ru

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Коэффициент теплопроводности материалов таблица, формулы

Термин «теплопроводность» применяется к свойствам материалов пропускать тепловую энергию от горячих участков к холодным. Теплопроводность основана на движении частиц внутри веществ и материалов. Способность передавать энергию тепла в количественном измерении – это коэффициент теплопроводности. Круговорот тепловой энергопередачи, или тепловой обмен, может проходить в любых веществах с неравнозначным размещением разных температурных участков, но коэффициент теплопроводности зависим от давления и температуры в самом материале, а также от его состояния – газообразного, жидкого или твердого. Эквивалентная теплопроводимость строительных материалов и утеплителей

 

Физически теплопроводность материалов равняется количеству тепла, которое перетекает через однородный предмет установленных габаритов и площади за определенный временной отрезок при установленной температурной разнице (1 К). В системе СИ единичный показатель, который имеет коэффициент теплопроводности, принято измерять в Вт/(м•К).

Как рассчитать теплопроводность по закону Фурье

В заданном тепловом режиме плотность потока при передаче тепла прямо пропорциональна вектору максимального увеличения температуры, параметры которой изменяются от одного участка к другим, и по модулю с одинаковой скоростью увеличения температуры по направлению вектора:

q = − ϰ х grad х (T), где:

  • q – направление плотности предмета, передающего тепло, или объем теплового потока, который протекает по участку за заданную временную единицу через определенную площадь, перпендикулярный всем осям;
  • ϰ – удельный коэффициент теплопроводности материала;
  • T – температура материала.
Перенос тепла в неравновесной термодинамической системе

 

Знак «-» в формуле перед «ϰ» указывает, что тепло движется в противоположном направлении от вектора grad х (T)/ – в направлении уменьшения температуры предмета. Эта формула отражает закон Фурье. В интегральном выражении коэффициент теплопередачи согласно закону Фурье будет выглядеть как формула:

  • P = − ϰ х S х ΔT / l, выражается в (Вт/(м•К) х (м2•К) / м = Вт/(м•К) х (м•К) = Вт), где:
  • P ­– общая мощность потерь теплоотдачи;
  • S – сечение предмета;
  • ΔT – разница температуры по стыкам сторон предмета;
  • l – расстояние между стыками сторон предмета – длина фигуры.
Связь коэффициента теплопроводимости с электропроводностью материалов

 

Электропроводность и коэффициент теплопередачи

Собственно, коэффициент теплопроводности металлов «ϰ» связан с их удельной электропроводимостью «σ» согласно закону Видемана-Франца, в соответствии с которым коэффициент теплопроводности металлов зависит от удельной электропроводимости прямо пропорционально температуре:

Κ / σ = π2 / 3 х (К / e)2 х T, где:

  • К – постоянный коэффициент Больцмана, устанавливающий закономерность между тепловой энергией тела и его температурой;
  • e – заряд электрона;
  • T – термодинамическая температура предмета.

Коэффициент теплопроводности газовой среды

В газовой среде коэффициент теплопроводности воздуха может рассчитываться по приблизительной формуле:

ϰ ~ 1/3 х p х cv х Λλ х v, где:

  • pv – плотность газовой среды;
  • cv – удельная емкость тепловой энергии при одном и том же объеме тела;
  • Λλ – расстояние свободного перемещения молекул в газовой среде;
  • v – скорость передачи тепла.
Что такое теплопроводимость

 

Или:

ϰ = I x К / 3 x π3/3 x d2 √ RT / μ, где:

  • i – результат суммирования уровней свободы прямого движения и вращения молекул в газовой среде (для 2-атомных газов i=5, для 1-атомных i=3;
  • К – коэффициент Больцмана;
  • μ – отношение массы газа к количеству молей газа;
  • T – термодинамическая температура;
  • d – ⌀ молекул газа;
  • R – универсальный коэффициент для газовой среды.

Согласно формуле минимальная теплопроводность материалов существует у тяжелых инертных газов, максимально эффективная теплопроводность строительных материалов – у легких.

Теплопроводимость в газовой разреженной среде

Газовая среда и теплопроводность

 

Результат по выкладкам выше, по которым делают расчет теплопроводности для газовой среды, от давления не зависит. Но в очень разреженной газовой среде расстояние свободного перемещения молекул зависит не от столкновений частиц, а от препятствий в виде стен резервуара. При этом ограничение перемещения молекул в соответствующих единицах измерения называют высоковакуумной средой, при которой степень теплообмена уменьшается в зависимости от плотности материала и прямо пропорциональна значению давления в резервуаре:

ϰ ~ 1/3 х p х cv х l х v, где:

i – объем резервуара;

Р – уровень давления в резервуаре.

Согласно этой формуле теплопроводность в вакуумной среде стремится к нулевой отметке при глубоком вакууме. Это объясняется тем, что в вакууме частицы, которые передают тепловую энергию, имеют низкую плотность на единицу площади. Но тепловая энергия в вакуумной среде перетекает посредством излучения. В качестве примера можно привести обычный термос, в котором для уменьшения потерь тепловой энергии стенки должны быть двойными и посеребренными, без воздуха между ними. Что такое тепловое излучение

 

При применении закона Фурье не принимают во внимание инерционность перетекания тепловой энергии, а это значит, что имеется в виду мгновенная передача тепла из любой точки на любое расстояние. Поэтому формулу нельзя использовать для расчетов передачи тепла при протекании процессов, имеющих высокую частоту повторения. Это ультразвуковое излучение, передача тепловой энергии волнами ударного или импульсного типа и т.д. Существует решение по закону Фурье с релаксационным членом:

τ х ∂q / ∂t = − (q + ϰ х ∇T) .

Если ре­лак­са­ция τ мгновенная, то формула превращается в закон Фурье.

Ориентировочная таблица теплопроводности материалов:

ОсноваЗначение теплопроводности, Вт/(м•К)
Жесткий графен4840 +/ 440 – 5300 +/ 480
Алмаз1001-2600
Графит278,4-2435
Бора арсенид200-2000
SiC490
Ag430
Cu401
BeO370
Au320
Al202-236
AlN200
BN180
Si150
Cu3Zn297-111
Cr107
Fe92
Pt70
Sn67
ZnO54
 Черная сталь47-58
Pb35,3
НержавейкаТеплопроводность стали – 15
SiO28
Высококачественные термостойкие пасты5-12
Гранит

(состоит из SiO2 68-73 %; Al2O3 12,0-15,5 %; Na2O 3,0-6,0 %; CaO 1,5-4,0 %; FeO 0,5-3,0 %; Fe2O3 0,5-2,5 %; К2О 0,5-3,0 %; MgO 0,1-1,5 %; TiO2 0,1-0,6 %)

2,4
Бетонный раствор без заполнителей1,75
Бетонный раствор со щебнем или с гравием1,51
Базальт

(состоит из SiO2 – 47-52%, TiO2 – 1-2,5%, Al2O3 – 14-18%, Fe2O3 – 2-5%, FeO – 6-10%, MnO – 0,1-0,2%, MgO – 5-7%, CaO – 6-12%, Na2O – 1,5-3%, K2O – 0,1-1,5%, P2O5 – 0,2-0,5 %)

1,3
Стекло

(состоит из SiO2, B2O3, P2O5, TeO2, GeO2, AlF3 и т.д.)

1-1,15
Термостойкая паста КПТ-80,7
Бетонный раствор с наполнителем из песка, без щебня или гравия0,7
Вода чистая0,6
Силикатный

или красный кирпич

0,2-0,7
Масла

на основе силикона

0,16
Пенобетон0,05-0,3
Газобетон0,1-0,3
ДеревоТеплопроводность дерева – 0,15
Масла

на основе нефти

0,125
Снег0,10-0,15
ПП с группой горючести Г10,039-0,051
ЭППУ с группой горючести Г3, Г40,03-0,033
Стеклянная вата0,032-0,041
Вата каменная0,035-0,04
Воздушная атмосфера (300 К, 100 кПа)0,022
Гель

на основе воздуха

0,017
Аргон (Ar)0,017
Вакуумная среда0

Приведенная таблица теплопроводности учитывает теплопередачу посредством теплового излучения и теплообмена частиц. Так как вакуум не передает тепло, то оно перетекает при помощи солнечного излучения или другого типа генерации тепла.  В газовой или жидкой среде слои с разной температурой смешиваются искусственно или естественным способом.

Таблица теплопроводимости стройматериалов

 

Проводя расчет теплопроводности стены, необходимо принимать во внимание, что теплопередача сквозь стеновые поверхности меняется от того, что температура в здании и на улице всегда разная, и зависит от площади всех поверхностей дома и от теплопроводности стройматериалов.

Чтобы количественно оценить теплопроводность, ввели такое значение, как коэффициент теплопроводности материалов. Он показывает, как тот или иной материал способен передавать тепло. Чем выше это значение, например, коэффициент теплопроводности стали, тем эффективнее сталь будет проводить тепло.

  • При утеплении дома из древесины рекомендуется выбирать стройматериалы с низким коэффициентом.
  • Если стена кирпичная, то при значении коэффициента 0,67 Вт/(м2•К) и толщине стены 1 м при ее площади 1 м2 при разнице наружной и внутридомовой температуры 10С кирпич будет пропускать 0,67 Вт энергии. При разнице температур 100С кирпич будет пропускать 6,7 Вт и т.д.

Стандартное значение коэффициента теплопроводимости теплоизоляции и других строительных материалов верно для толщины стены 1 м. Чтобы провести расчет теплопроводности поверхности другой толщины, следует коэффициент поделить на выбранное значение толщины стены (метры). Ориентировочные показатели коэффициентов теплопроводимости

 

В СНиП и при проведении расчетов фигурирует термин «тепловое сопротивление материала», он означает обратную теплопроводность. То есть при теплопроводности листа пенопласта 10 см и его теплопроводности 0,35 Вт/(м2•К) тепловое сопротивление листа – 1 / 0,35 Вт/(м2•К) = 2,85 (м2•К)/Вт.

Ниже – таблица теплопроводности для востребованных строительных материалов и теплоизоляторов:

СтройматериалыКоэффициент теплопроводимости, Вт/(м2•К)
Плиты из алебастра0,47
Al230
Шифер асбоцементный0,35
Асбест (волокно, ткань)0,15
Асбоцемент1,76
Асбоцементные изделия0,35
Асфальт0,73
Асфальт для напольного покрытия0,84
Бакелит0,24
Бетон с заполнителем щебнем1,3
Бетон с заполнителем песком0,7
Пористый бетон – пено- и газобетон1,4
Сплошной бетон1,75
Термоизоляционный бетон0,18
Битумная масса0,47
Бумажные материалы0,14
Рыхлая минвата0,046
Тяжелая минвата0,05
Вата – теплоизолятор на основе хлопка0,05
Вермикулит в плитах или листах0,1
Войлок0,046
Гипс0,35
Глиноземы2,33
Гравийный заполнитель0,93
Гранитный или базальтовый заполнитель3,5
Влажный грунт, 10%1,75
Влажный грунт, 20%2,1
Песчаники1,16
Сухая почва0,4
Уплотненный грунт1,05
Гудроновая масса0,3
Доска строительная0,15
Фанерные листы0,15
Твердые породы дерева0,2
ДСП0,2
Дюралюминиевые изделия160
Железобетонные изделия1,72
Зола0,15
Известняковые блоки1,71
Раствор на песке и извести0,87
Смола вспененная0,037
Природный камень1,4
Картонные листы из нескольких слоев0,14
Каучук пористый0,035
Каучук0,042
Каучук с фтором0,053
Керамзитобетонные блоки0,22
Красный кирпич0,13
Пустотелый кирпич0,44
Полнотелый кирпич0,81
Сплошной кирпич0,67
Шлакокирпич0,58
Плиты на основе кремнезема0,07
Латунные изделия110
Лед при температуре 00С2,21
Лед при температуре -200С2,44
Лиственное дерево при влажности 15%0,15
Медные изделия380
Мипора0,086
Опилки для засыпки0,096
Сухие опилки0,064
ПВХ0,19
Пенобетон0,3
Пенопласт марки ПС-10,036
Пенопласт марки ПС-40,04
Пенопласт марки ПХВ-10,05
Пенопласт марки ФРП0,044
ППУ марки ПС-Б0,04
ППУ марки ПС-БС0,04
Лист из пенополиуретана0,034
Панель из пенополиуретана0,024
Облегченное пеностекло0,06
Тяжелое вспененное стекло0,08
Пергаминовые изделия0,16
Перлитовые изделия0,051
Плиты на цементе и перлите0,085
Влажный песок 0%0,33
Влажный песок 0%0,97
Влажный песок 20%1,33
Обожженный камень1,52
Керамическая плитка1,03
Плитка марки ПМТБ-20,035
Полистирол0,081
Поролон0,04
Раствор на основе цемента без песка0,47
Плита из натуральной пробки0,042
Легкие листы из натуральной пробки0,034
Тяжелые листы из натуральной пробки0,05
Резиновые изделия0,15
Рубероид0,17
Сланец2,100
Снег1,5
Хвойная древесина влажностью 15%0,15
Хвойная смолистая древесина влажностью 15%0,23
Стальные изделия52
Стеклянные изделия1,15
Утеплитель стекловата0,05
Стекловолоконные утеплители0,034
Стеклотекстолитовые изделия0,31
Стружка0,13
Тефлоновое покрытие0,26
Толь0,24
Плита на основе цементного раствора1,93
Цементно-песчаный раствор1,24
Чугунные изделия57
Шлак в гранулах0,14
Шлак зольный0,3
Шлакобетонные блоки0,65
Сухие штукатурные смеси0,22
Штукатурный раствор на основе цемента0,95
Эбонитовые изделия0,15
Влажность и теплопроводимость – зависимость

 

Кроме того, необходимо учитывать теплопроводность утеплителей из-за их струйных тепловых потоков. В плотной среде возможно «переливание» квазичастиц из одного нагретого стройматериала в другой, более холодный или более теплый, через поры субмикронных размеров, что помогает распространять звук и тепло, даже если в этих порах  будет абсолютный вакуум.

Сравнительная таблица теплопроводности современных строительных материалов

Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров.

Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.

Назначение теплопроводности

Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой.

Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения.

Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.

Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.Что оказывает влияние на показатель теплопроводности?Теплопроводность определяется такими факторами:Пористость определяет неоднородность структуры.

При пропуске тепла через такие материалы процесс охлаждения незначительный;Повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;Повышенная влажность увеличивает данный показатель.Использование значений коэффициента теплопроводности на практике.Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.При помощи таблицы определяются возможности их теплообмена.

Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.Показатели теплопроводности для готовых построек. Виды утеплений.При создании проекта нужно учитывать все способы утечки тепла.Оно может выходить через стены и крышу, а также через полы и двери.

Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками.

В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:Показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;Влагопоглощение имеет большое значение при утеплении наружных элементов;Толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;Важна горючесть.

Качественное сырье имеет способность к самозатуханию;Термоустойчивость отображает способность выдерживать температурные перепады;Экологичность и безопасность;Звукоизоляция защищает от шума.В качестве утеплителей применяются следующие виды:Минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;Пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью.

Рекомендуется для применения в нежилых строениях;Базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;Пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;Пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;Экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;Пенофол представляет из себя многослойный утепляющий пласт.

В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит.Они имеют стойкость к влаге и к огню.

А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.ОБРАТИТЕ ВНИМАНИЕ! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.Таблица теплопроводности строительных материалов: особенности показателей.Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве.

Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.Как использовать таблицу теплопроводности материалов и утеплителей?В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана.Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций.

При сравнении твердых и пенных вариантов, нужно выделить , что пена не образует стыков.Значения коэффициентов теплопередачи материалов в таблице.При произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение является отношением температур с обеих сторон к количеству теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.

Все расчеты вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности.Данное значение часто указывается на упаковке, если это изоляция.

Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала. Сведения о паропроницаемости и плотности можно посмотреть в таблице.При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении.

опубликовано econet.ruP.S. И помните, всего лишь изменяя свое потребление – мы вместе изменяем мир! © econetВ продаже доступно много строительных материалов, использующихся для повышения свойств сооружения сохранять тепло – утеплителей. В конструкции дома он может применяться практически в каждой ее части: от фундамента и до чердака. Далее пойдет речь об основных свойствах материалов, способных обеспечить необходимый уровень теплопроводности объектов различного назначения, а также будет приведено их сравнение, в чем поможет таблица.

Основные характеристики утеплителей

Соотношение качества утеплителя, в зависимости от его толщины

При выборе утеплителей нужно обращать внимание на разные факторы: тип сооружения, наличие воздействия высоких температур, открытого огня, характерный уровень влажности. Только после определения условий использования, а также уровня теплопроводности применяемых материалов для сооружения определенной части конструкции, нужно смотреть на характеристики конкретного утеплителя:

Теплопроводность.

От этого показателя напрямую зависит качество проведенного утеплительного процесса, а также необходимое количество материала для обеспечения желаемого результата. Чем ниже теплопроводность, тем эффективнее использование утеплителя.Влагопоглощение. Показатель особо важен при утеплении внешних частей конструкции, на которые может периодически воздействовать влага.

К примеру, при утеплении фундамента в грунтах с высокими водами или повышенным уровнем содержания воды в своей структуре.Толщина. Применение тонких утеплителей позволяет сохранить внутреннее пространство жилого сооружения, а также напрямую влияет на качество утепления.Горючесть. Это свойство материалов особенно важно при использовании для понижения теплопроводной способности наземных частей сооружения жилых домов, а также зданий специального назначения.

Качественная продукция отличается способностью к самозатуханию, не выделяет при воспламенении ядовитых веществ.Термоустойчивость. Материал должен выдерживать критические температуры. К примеру, низкие температуры при наружном использовании.Экологичность.

Нужно прибегать к использованию материалов безопасных для человека. Требования к этому фактору может изменяться в зависимости от будущего назначения сооружения.Звукоизоляция. Это дополнительное свойство утеплителей в некоторых ситуациях позволяет добиться хорошего уровня защиты помещения от шума, а также посторонних звуков.

Когда используется при сооружении определенной части конструкции материал с низкой теплопроводностью, то можно покупать самый дешевый утеплитель (если это позволят предварительные расчеты).

Важность конкретной характеристики напрямую зависит от условий использования и выделенного бюджета.

Сравнение популярных утеплителей

СРЕДНЯЯ ТОЛЩИНА ТЕПЛОИЗОЛЯЦИИ ДЛЯ РАЗЛИЧНЫХ СТЕНОВЫХ КОНСТРУКЦИЙТеплоизоляционный материалКирпичная кладка (полтора кирпича)Газобетон 30 смДеревянный брус 30 смКаркас из OSBЭкотермикс7 смЗ см5 см10 смМинеральная вата13 см8 см10 см15 смПенополистирол12 см7 см8 см13 смПеностекло11 см6,5 см7 см13 см

Давайте рассмотрим несколько материалов, применяемых для повышения энергоэффективности сооружений:

Минеральная вата. Производится из естественных материалов. Устойчива к огню и отличается экологичностью, а также низкой теплопроводностью.

Но невозможность противостоять воздействию воды сокращает возможности использования.Пенопласт. Легкий материал с отличными утеплительными свойствами. Доступный, легко устанавливается и влагоустойчив.

Недостатки: хорошая воспламеняемость и выделение вредных веществ при горении. Рекомендуется его использовать в нежилых помещениях.Бальзовая вата. Материал практически идентичный минвате, только отличается улучшенными показателями устойчивости к влаге.

При изготовлении его не уплотняют, что значительно продлевает срок службы.Пеноплэкс. Утеплитель хорошо противостоит влаге, высоким температурам, огню, гниению, разложению. Отличается отличными показателями теплопроводности, прост в монтаже и долговечен.

Можно использовать в местах с максимальными требованиями способности материала противостоять различным воздействиям.Пенофол. Многослойный утеплитель естественного происхождения. Состоит из полиэтилена, предварительно вспененного перед производством.

Может иметь различные показатели пористости и ширины. Часто поверхность покрыта фольгой, благодаря чему достигается отражающие эффект. Отличается легкостью, простотой монтажа, высокой энергоэффективностью, влагостойкостью, небольшим весом.

Коэффициент теплопроводности размерность

Выбирая материал для использования в непосредственной близости с человеком, необходимо особое внимание уделять его характеристикам экологичности и пожаробезопасности. Также в некоторых ситуациях рационально покупать более дорой утеплитель, который будет обладать дополнительными свойствами влагозащиты или звукоизоляции, что в окончательном счете позволяет сэкономить.

Сравнение с помощью таблицы

NНаименованиеПлотностьТеппопроводностьЦена , евро за куб.

м.Затраты энергии накг/куб. мминмаксЕвросоюзРоссияквт*ч/куб. м.1целлюлозная вата30-700,0380,04548-9615-3062древесноволокнистая плита150-2300,0390,052150800-14003древесное волокно30-500,0370,05200-25013-504киты из льняного волокна300,0370,04150-200210305пеностекло100-1500.050,07135-16816006перлит100-1500,050.062200-40025-302307пробка100-2500,0390,05300808конопля, пенька35-400,040.041150559хлопковая вата25-300,040,0412005010овечья шерсть15-350,0350,0451505511утиный пух25-350,0350,045150-20012солома300-4000,080,1216513минеральная (каменная) вата20-800.0380,04750-10030-50150-18014стекповопокнистая вата15-650,0350,0550-10028-45180-25015пенополистирол (безпрессовый)15-300.0350.0475028-7545016пенополистирол экструзионный25-400,0350,04218875-9085017пенополиуретан27-350,030,035250220-3501100

Показатель теплопроводных свойств является основным критерием при выборе утеплительного материала. Остается только сравнить ценовые политики разных поставщиков и определить необходимое количество.

Утеплитель – один из основных способов получить сооружение с необходимой энергоэффективностью. Перед его окончательным выбором точно определите условия использования и, вооружившись приведенной таблицей, совершите правильный выбор.

(1оценок, среднее: 5,00из 5)Загрузка…Читайте по теме

    Дата: 11-04-2015Просмотров: 263Комментариев: Рейтинг: 64

Строительство любого дома, будь то коттедж или скромный дачный домик, должно начинаться с разработки проекта. На этом этапе закладывается не только архитектурный облик будущего строения, но и его конструктивные и теплотехнические характеристики.

Схема теплопроводности и толщины материалов.

Основной задачей на этапе проекта будет не только разработка прочных и долговечных конструктивных решений, способных поддерживать наиболее комфортный микроклимат с минимальными затратами. Помочь определиться с выбором может сравнительная таблица теплопроводности материалов.

Понятие теплопроводности

В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.

Коэффициент теплопроводности кирпичей.

Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.

Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.

Численно процесс переноса тепла характеризуется коэффициентом теплопроводности. Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.

Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.

Вернуться к оглавлению

Теплопроводность материалов, используемых в строительстве, зависит от их параметров:

Зависимость теплопроводности газобетона от плотности.

Пористость — наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом.

Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.Структура пор — малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.Плотность — при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии.

В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.Влажность — значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.Влияние температуры на теплопроводность материала отражается через формулу:

λ=λо*(1+b*t), (1)

где, λо — коэффициент теплопроводности при температуре 0 °С, Вт/м*°С;

b — справочная величина температурного коэффициента;

t — температура.

Вернуться к оглавлению

Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление — нормируемая величина.

Упрощенная формула, определяющая толщину слоя, будет иметь вид:

Таблица теплопроводности утеплителей.

H=R/λ, (2)

где, H — толщина слоя, м;

R — сопротивление теплопередаче, (м2*°С)/Вт;

λ — коэффициент теплопроводности, Вт/(м*°С).

Данная формула применительно к стене или перекрытию имеет следующие допущения:

    ограждающая конструкция имеет однородное монолитное строение;используемые стройматериалы имеют естественную влажность.

При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:

    СНиП23-01-99 — Строительная климатология;СНиП 23-02-2003 — Тепловая защита зданий;СП 23-101-2004 — Проектирование тепловой защиты зданий.

Вернуться к оглавлению

Принято условное разделение материалов, применяемых в строительстве, на конструкционные и теплоизоляционные.

Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.

Значения коэффициентов теплопроводности сведены в таблицу 1:

Таблица 1

МатериалКоэффициент теплопроводности, Вт/(м*°С).Пенобетон(0,08 — 0,29) — в зависимости от плотностиДревесина ели и сосны(0,1 — 0,15) — поперек волокон0,18 — вдоль волоконКерамзитобетон(0,14-0,66) — в зависимости от плотностиКирпич керамический пустотелый0,35 — 0,41Кирпич красный глиняный0,56Кирпич силикатный0,7Железобетон1,29

Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.

При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.

Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.

Теплоизоляционные материалы имеют достаточно малые величины значения коэффициента теплопроводности.

Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы — это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.

Вернуться к оглавлению

Схема сравнения теплопроводности стен из газобетона и кирпича.

При проектировании и производстве строительных работ необходимо учитывать возможные пути теплопотерь:

    30-40% потерь тепла приходится на поверхность стен;20-30% — через межэтажные перекрытия и крышу;около 20% потерь приходится на поверхность, занимаемую оконными и дверными проемами;приблизительно 10% тепла уходит из помещения через плохо утепленные полы.

Важным фактором при учете теплопроводности в строительстве является обеспечение надлежащей ветро- и пароизоляции.

В наибольшей степени это справедливо для пористых утеплителей. Т.е. при ограничении доступа влаги внутрь конструкций (как извне, так и снаружи) сопротивление теплопередачи будет выше. Утеплитель будет более эффективно работать, соответственно, потребуется меньшая толщина конструкций.

В идеале стены и перекрытия должны выполняться из теплоизоляционных материалов.

Однако они обладают низкой конструкционной прочностью, что ограничивает широту их применения. Возникает необходимость выполнять основные несущие конструкции из кирпича, дерева, пенобетонных блоков и т. п.

Наиболее распространенным вариантом конструкций домов, встречающимся на практике, является комбинация несущей конструкции и теплоизоляции.

Здесь можно различить:

Сравнение теплопроводности соломобетонных блоков с другими материалами.

Каркасный вариант строительства — основной каркас, обеспечивающий пространственную жесткость, выполняется из деревянных досок или брусьев. Утеплитель укладывается в межстоечное пространство.

В некоторых случаях для достижения требуемых показателей по энергоэффективности осуществляется дополнительное утепление снаружи каркаса.Возведение стен дома из кирпича, пористых бетонных блоков, дерева — утепление осуществляется по наружной поверхности. Слой утеплителя компенсирует избыточную теплопроводность основного стенового материала. С другой стороны материал основной стены несет на себе нагрузки, компенсируя малую механическую прочность утеплителя.

Аналогичные закономерности будут справедливы при возведении межэтажных перекрытий и кровельных конструкций.

Таким образом, используя комбинацию материалов с требуемыми значениями коэффициентов теплопроводности, можно получить оптимальные по свойствам и толщине ограждающие конструкции здания.

Источники:

  • econet.ru
  • jsnip.ru
  • ostroymaterialah.ru

Теплопроводность

Теплопроводность

Теплопроводность — это свойство материала. Не будет отличаться от размеры материала, но это зависит от температуры, плотность и влажность материала. Тепловой проводимость материала зависит от его температуры, плотности и содержание влаги. Теплопроводность, обычно встречающаяся в таблицах, составляет значение действительно для нормальной комнатной температуры. Это значение не будет отличаться значительно между 273 и 343 К (0 — 70 ° C).Когда высокие температуры например, в духовках, влияние температуры должно быть учтено.

Как правило, легкие материалы являются лучшими изоляторами, чем тяжелые. потому что легкие материалы часто содержат воздухозаборники. Сухой неподвижный воздух имеет очень низкая проводимость. Слой воздуха не всегда будет хорошим изолятором, потому что тепло легко переносится излучением и конвекция.

Когда материал, например изоляционный, становится влажным, воздух корпуса наполняются водой и, поскольку вода является лучшим проводником чем воздух, увеличивается проводимость материала.Вот почему это очень важно устанавливать изоляционные материалы, когда они сухие и следите за тем, чтобы они оставались сухими.

Проводимость против проводимости

Электропроводность (k) — это свойство материала, означающее его способность проводить тепло через его внутреннюю структуру. Поведение по отношению к другому рука является свойством объекта и зависит как от его материала, так и от толщина. Электропроводность равна удельной электропроводности, умноженной на толщину, в дюймах. единиц Вт / м²К. Поскольку проводимость обратно пропорциональна удельному сопротивлению, поэтому общее сопротивление материала может быть выражено как его общее толщина, деленная на общую проводимость.В таблице ниже представлен список строительных материалов и их теплопроводности для сухой (закрытой) и влажные (наружные) условия.

Группа Материал Удельная масса (кг / м3) Теплопроводность (Вт / мК)
Сухой мокрый
Металл Алюминий 2800 204 204
Медь 9000 372 372
Свинец 12250 35 35
Сталь, железо 7800 52 52
цинк 7200 110 110
Натуральный камень Базальт, Гранит 3000 3.5 3,5
Голубой камень, Мрамор 2700 2,5 2,5
Песчаник 2600 1,6 1,6
Кладка Кирпич 1600-1900 0,6-0,7 0,9–1,2
Кирпич силикатный 1900 0.9 1,4
1000-1400 0,5-0,7
Бетон Гравийный бетон 2300-2500 2,0 2,0
Легкий бетон 1600-1900 0,7-0,9 1,2–1,4
1000-1300 0.35-0,5 0,5-0,8
300-700 0,12-0,23
Пемзобетон 1000-1400 0,35-0,5 0,5–0,95
700-1000 0,23–0,35
Изоляционный бетон 300-700 0.12-0,23
Ячеистый бетон 1000-1300 0,35-0,5 0,7–1,2
400-700 0,17-0,23
Шлакобетон 1600-1900 0,45-0,70 0,7–1,0
1000-1300 0.23-0,30 0,35-0,5
Неорганическое Асбестоцемент 1600-1900 0,35-0,7 0,9–1,2
Гипсокартон 800-1400 0,23–0,45
Гипсокартон 900 0,20
Стекло 2500 0.8 0,8
Пеностекло 150 0,04
Минеральная вата 35-200 0,04
Плитка 2000 1,2 1,2
Пластыри Цемент 1900 0,9 1.5
лайм 1600 0,7 0,8
Гипс 1300 0,5 0,8
Органическое Пробка (расширенная) 100-200 0,04–0,0045
Линолеум 1200 0,17
Резина 1200-1500 0.17-0,3
ДВП 200-400 0,08-0,12 0,09-0,17
Дерево Твердая древесина 800 0,17 0,23
Хвойная древесина 550 0,14 0,17
Фанера 700 0.17 0,23
Оргалит 1000 0,3
Мягкая доска 300 0,08
ДСП 500–1000 0,1-0,3
ДСП 350-700 0,1-0,2
Синтетика Полиэстер (GPV) 1200 0.17
Полиэтилен, полипропилен 930 0,17
Поливинилхлорид 1400 0,17
Синтетическая пена Пенополистирол, эксп. (ПС) 10-40 0,035
То же, экструдированный 30-40 0.03
Пенополиуретан (PUR) 30–150 0,025-0,035
Твердая пена на основе фенольной кислоты 25-200 0,035
ПВХ-пена 20-50 0,035
Изоляция полости Изоляция стенок полости 20–100 0.05
Битумные материалы Асфальт 2100 0,7
Битум 1050 0,2
Вода Вода 1000 0,58
Лед 900 2.2
Снег свежий 80-200 0,1-0,2
Снег, старый 200-800 0,5–1,8
Воздух Воздух 1,2 0,023
Почва Почва лесная 1450 0.8
Глина с песком 1780 0,9
Влажная песчаная почва 1700 2,0
Почва (сухая) 1600 0,3
Напольное покрытие Плитка напольная 2000 1.5
Паркет 800 0,17-0,27
Ковер из нейлонового войлока 0,05
Ковер (поролон) 0,09
Пробка 200 0,06-0,07
Шерсть 400 0.07

ОБЗОР ЕГО ОПРЕДЕЛЕНИЯ

Достижения в области вычислений и технологий

Школа вычислительной техники, информационных технологий и инженерии, 6-я ежегодная конференция 2011

Однако эти методы надежны в

, измеряющем сухую теплопроводность. Там

не так много данных о надежности

методов устойчивого состояния, которые относительно на

быстрее.Переходные методы удобны

для регулярного измерения проводимости;

влагозависимая проводимость может быть

, измеренная без серьезного влияния на градиент влажности

, однако этот метод

не подходит для неоднородных материалов.

Эксперимент авторов показывает, что существуют

значительных различий между определенным методом переходных процессов

и методом установившегося режима в

терминах данных, полученных для термической проводимости

волокнистых изоляционных материалов на основе целлюлозы

.

9. Ссылки:

BS EN 12429, «Теплоизоляционные изделия

для строительства: кондиционирование до равновесия влажности

при заданных условиях температуры и влажности

»,

Британский институт стандартов, 1996.

BS

EN 12667: 2001, «Тепловые характеристики

строительных материалов и изделий —

Определение термического сопротивления с помощью

средств охраняемой горячей плиты и теплового потока

Методы измерения — Сухие и влажные продукты

высокой и средней термической сопротивление »,

Британский институт стандартов, 2002.

BS EN ISO 8990: 1996, «Тепловая изоляция

— Определение устойчивых свойств теплопередачи

— Откалиброванный

и охраняемый горячий бокс», Британский институт стандартов

, 1998.

Carslaw, HS, Jaeger , JC, Проведение

тепла в твердых телах, второе издание, Clarendon Press,

1959.

Кларк, Дж. А., Янеске, П.П. «Рациональный подход

к гармонизации термических свойств

строительных материалов» , Building

and Environment, 44, 2009, стр.2046-2055.

Франко А., «Аппарат для рутинного

измерения теплопроводности материалов

для строительства на основе переходного метода горячей проволоки

», Applied

Thermal Engineering, 27, 2007, стр. 2495-

2504.

Лей, З., Чжу, С., Пан, Н., «Переходные методы

измерения термических свойств волокнистых материалов

», Журнал теплопередачи,

132, 2010, стр.1-7.

Поуп, А.Л., Завильски, Б., Тритт, Т.М.,

Описание съемного держателя образца

Аппарат для быстрой теплопроводности

измерения, Криогеника 41 (2001), 725-

731, Elsevier Ltd., 2002

Прутяну М., «Исследования теплопроводности соломы

», Бюллетень

Политехнического института Ясс,

Строительство. Секция архитектуры, Том

LVI (LX), Fasc.3, 2010, стр. 9-16.

Тритт, Т.М., Уэстон, Д., «Методы измерения

и соображения для

определения теплопроводности объемных

материалов», в Тритте, Т.М. (ред.) Тепловой

Проводимость: теория, свойства и

Applications, New York, Spinger, 2005.

Xamán, J., Lira, L., Arce, J., «Анализ

распределения температуры в защищенном горячем пластинчатом аппарате

для измерения теплопроводности

», Applied Thermal

Engineering, 29, 2009, стр.617-623.

Теплопроводность обычных материалов

В этой статье представлены данные о теплопроводности для ряда распространенных материалов. Теплопроводность измеряет способность материала пропускать тепло через проводимость.

Теплопроводность измеряет способность материала пропускать тепло через проводимость. Теплопроводность материала сильно зависит от состава и структуры. Вообще говоря, плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, плохо проводят тепло.

Теплопроводность материалов требуется для анализа сетей теплового сопротивления при изучении теплопередачи в системе.

Дополнительную информацию см. В статье «Значения теплопроводности для других металлов и сплавов».

В следующих таблицах показаны значения теплопроводности для обычных веществ.

Материал Температура
Теплопроводность
Температура
Теплопроводность
Почвы и земля
0.600 68 0,347
Гравий 20 2,50 68 1,44
Недра (Влажность 8%) 20 0,900 68 0,520
Грунт, сухой песок 20 0,300 68 0,173
Влажный песок (Влажность 8%) 20 0,600 68 0,347
Строительные материалы
Кирпич (здание) 20 0.720 68 0,416
Кирпич (глинозем) 430 3,10 806 1,79
Клинкер (цемент) 20 0,700 68 0,404
Бетон, тяжелый 20 1,30 68 0,751
Бетон, изоляция 20 0,207 68 0,120
Бетон легкий 20 0.418 68 0,242
Стекло 20 0,935 68 0,540
Дерево 20 0,170 68 0,098
Изоляция
Асбест 0 0,160 32 0,092
100 0,190 212 0,110
200 0.210 392 0,121
Силикат кальция 20 0,046 68 0,027
Пробка 30 0,043 86 0,025
Стекловолокно 20 0,042 68 0,024
Магнезия 85% 20 0,070 68 0,040
Магнезит 200 3.80 392 2,20
Слюда 50 0,430 122 0,248
Rockwool 20 0,034 68 0,020
Резина, мягкая 20 0,130 68 0,075
Твердая резина 0 0,150 32 0,087
Опилки 20 0.052 68 0,030
Пенополиуретан (жесткий) 20 0,026 68 0,015
Прочие твердые вещества
Алмаз 20 2,300 68 1,329
Графит 0 151 32 87,2
Кожа человека 20 0,370 68 0.214
Жидкости
Уксусная кислота, 50% 20 0,350 68 0,202
Ацетон 30 0,170 86 0,098
Анил 20 0,170 68 0,098
Бензол 30 0,160 86 0,092
Хлорид кальция, 30% 30 0.550 86 0,318
Этанол, 80% 20 0,240 68 0,139
Глицерин, 60% 20 0,380 68 0,220
Глицерин, 40% 20 0,450 68 0,260
Гептан 30 0,140 86 0,081
Ртуть 20 8.54 68 4,93
28 8,36 82 4,83
Серная кислота, 90% 30 0,360 86 0,208
Серная кислота, 60 % 30 0,430 86 0,248
Вода 20 0,613 68 0,354
30 0.620 86 0,358
60 0,660 140 0,381
Газы
Воздух 0 0,024 32 0,014
20 0,026 68 0,015
100 0,031 212 0,018
Диоксид углерода 0 0,015 32 0.009
Этан 0 0,018 32 0,010
Этилен 0 0,017 32 0,010
Гелий 20 0,152 68 0,088
Водород 0 0,170 32 0,098
Метан 0 0,029 32 0.017
Азот 0 0,024 32 0,014
Кислород 0 0,024 32 0,014
Вода (пар) 100 0,025 212 0,014
Статья создана: 5 ноября 2013 г.
Теги статьи

Теплопроводность — образование в области энергетики

Теплопроводность , часто обозначаемая [math] \ kappa [/ math], является свойством, которое связывает скорость потери тепла на единицу площади материала к скорости его изменения температуры.{\ circ} F} \ right) [/ math]. [3] Материалы с более высокой теплопроводностью являются хорошими проводниками тепловой энергии.

Поскольку теплопроводность включает передачу энергии без движения материала, логично, что скорость передачи тепла будет зависеть только от разницы температур между двумя точками и теплопроводности материала.

Для получения дополнительной информации о теплопроводности см. Гиперфизика.

Значения для общих материалов

Теплопроводность, [math] \ kappa [/ math] [4]
Материал Электропроводность при 25 o C
Акрил 0.2
Воздух 0,024
Алюминий 205
Битум 0,17
Латунь 109
Цемент 1,73
Медь 401
Алмаз 1000
Войлок 0,04
Стекло 1,05
Утюг 80
Кислород 0.024
Бумага 0,05
Кремнеземный аэрогель 0,02
Вакуум 0
Вода 0,58


Из таблицы справа видно, что большинство материалов, которые обычно считаются хорошими проводниками, обладают высокой теплопроводностью. В основном металлы обладают очень высокой теплопроводностью, которая хорошо сопоставима с тем, что известно о металлах.Кроме того, изоляционные материалы, такие как аэрогель и изоляция, используемые в домах, имеют низкую теплопроводность, что указывает на то, что они не пропускают тепло через себя. Таким образом, низкая теплопроводность свидетельствует о хорошем изоляционном материале.

Промежуточные материалы не обладают значительными изолирующими или проводящими свойствами. Цемент и стекло не проводят слишком большое количество тепла и не обладают хорошей изоляцией.

Идея о том, что теплопроводность определенных материалов связана с тем, насколько хорошо они изолируют, обеспечивает связь между теплопроводностью и R-значениями / U-значениями.Поскольку значения U и R отражают, насколько хорошо определенный материал сопротивляется потоку тепла, теплопроводность играет роль в формировании этих значений. Однако значения U и R также зависят от толщины материала, тогда как теплопроводность этого не учитывает.

Для дальнейшего чтения

Список литературы

  1. ↑ HyperPhysics. (12 мая 2015 г.). Теплопроводность [Онлайн]. Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html
  2. ↑ Р. Чабай, Б. Шервуд. (12 мая 2015 г.). Matter & Interactions , 3-е изд., Хобокен, Нью-Джерси, США: John Wiley & Sons, 2011
  3. ↑ Д. Грин, Р. Перри. (12 мая 2015 г.). Perry’s Chemical Engineers ‘Handbook , 7-е изд., McGraw-Hill, 1997.
  4. ↑ The Engineering Toolbox. (12 мая 2015 г.). Теплопроводность обычных материалов и газов [Онлайн]. Доступно: http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html

Энергии | Бесплатный полнотекстовый | О влиянии изменения теплопроводности в зданиях в строительном секторе Италии

В 2010 году на здания приходилось 32% общего глобального конечного энергопотребления, 19% выбросов парниковых газов (ПГ), связанных с энергетикой, 51% мирового потребления электроэнергии , 33% выбросов углерода и от восьмой до трети выбросов фторсодержащих газов [1].В жилых домах на отопление помещений приходится самая высокая доля от общего потребления первичной энергии, равная 32%. В коммерческих зданиях отопление помещений также преобладает в потреблении, составляя 33% от общего потребления первичной энергии [1]. В Европейском союзе (ЕС) в последние годы были предприняты важные усилия в области энергетической политики, и в результате были приняты различные директивы. Среди них наиболее важными являются Директива об энергоэффективности зданий [2,3] и Директива об энергоэффективности [4].Кроме того, есть много свидетельств того, что улучшение практики энергоэффективности в существующем жилом фонде будет иметь решающее значение для обеспечения энергетической устойчивости на уровне ЕС [5]. Эта стратегия даже определяется как «новый старт» для новой экономики ЕС [6], поскольку финансирование энергоэффективности может быть разблокировано государственным и частным партнерством, а не полагаться только на средства ЕС [7]. Принимая во внимание проблему снижения потребности в отоплении помещений, потери тепла могут быть уменьшены за счет улучшения характеристик оболочки с повышенным уровнем изоляции.Эта мера — наиболее эффективный способ резко снизить потребность в отоплении, учитывая, конечно, зависимость от климатических условий [8]. Однако в существующем жилом фонде эта мера намного дороже, чем замена котлов в системах отопления [9,10]. Тем не менее, существует очевидная синергия между улучшением характеристик ограждающих конструкций здания и определением размеров и эксплуатацией технических систем [11], даже в случае передовых систем преобразования энергии [12]. Следуя этим свидетельствам, многие исследовательские усилия были сосредоточены на определении методологий [13] для определения экономически оптимальных уровней энергетических характеристик [13] в новых и модернизированных зданиях [14,15], и влияние изоляции может быть уменьшено. чрезвычайно актуален при моделировании [16].Очевидно, что для оценки осуществимости проекта необходима достаточно надежная оценка производительности [17]. В этом смысле неопределенность энергетических характеристик представляет собой проблему в методологиях технико-экономической оценки, и необходимо учитывать соответствующие источники неопределенности, чтобы максимально ограничить «разрыв в производительности» [18] или побочные эффекты, такие как «повторное ограничение »[19],« предварительно привязанные »[20] и риск перегрева [21]. Эти эффекты могут потенциально подорвать доверие к методам повышения энергоэффективности, и по этим причинам необходимы соответствующие методологические инструменты для учета неопределенности в применении в зданиях — например, на уровне заключения контрактов на энергоэффективность [22].

В этой статье рассматривается один конкретный аспект, который может повлиять на характеристики строительных изоляционных материалов (и, следовательно, общие характеристики здания) — температурная зависимость теплопроводности — и то, как приближения, используемые в инструментах расчета, могут повлиять на оценки производительности. До сих пор этот аспект обычно игнорируется и не рассматривается в ряде научных публикаций об энергетическом поведении зданий. В частности, потенциальная неопределенность, вносимая приближениями постоянной и линейной температурной зависимости, решается путем объединения экспериментального анализа и термогигрометрического моделирования для отдельных тематических исследований в трех климатических условиях Италии.

Таблица 6 Теплопроводность, удельная теплоемкость и плотность

Бетон

Газобетонная плита

0,160

840

500

Литой бетон (плотный)

1.400

840

2100

Литой бетон (легкий)

0,380

1000

1200

Литой бетон

1,130

1000

2000

Бетонный блок (тяжелый)

1.630

1000

2300

Бетонный блок (средний)

0,510

1000

1400

Бетонный блок (легкий)

0,190

1000

600

Павиур из бетона

0.960

840

2000

Пеношлак

0,250

960

1040

Блок из пенобетона

0,240

1000

750

Огнеупорный изоляционный бетон

0.250

837

1050

Вермикулит агрегат

0,170

837

450

Бетонная плитка

1.100

837

2100

Сушеный заполнитель для тяжелого бетона — CC01

1.310

837

2243

Тяжелый бетонный невысушенный заполнитель — CC11

1,802

837

2243

Тяжелый бетонный невыдержанный заполнитель — HF-C12

1,730

837

2243

Легкий бетон — 80 фунтов — CC21

0.36

837

1282

Легкий бетон — 30 фунтов — CC31

0,130

837

481

Легкий бетон — 40 фунтов — HF-C14

0,173

837

641

Легкий бетон — HF-C2

0.380

837

609

Тяжелый бетонный блок — пустотелый — CB01

0,812

837

1618

Тяжелый бетонный блок — заполненный бетоном — CB02

1,310

837

2234

Тяжелый бетонный блок — наполненный перлитом — CB03

0.384

837

1650

Тяжелый бетонный блок — бетон с частичным заполнением — CB04

1.011

837

1826

Тяжелый бетонный блок — бетон и перлит с наполнителем — CB05

0,825

837

1842

Бетонный блок средней плотности — пустотелый — CB21

0.519

837

1218

Бетонный блок средней плотности — с бетонным заполнением — CB22

0,771

837

1842

Бетонный блок средней плотности — с перлитом — CB23

0,262

837

1250

Бетонный блок средней плотности — бетон с частичным заполнением — CB24

0.572

837

1426

Бетонный блок средней плотности — бетон и перлитный наполнитель — CB25

0,431

837

1442

Легкий бетонный блок — пустотелый — CB41

0,384

837

1041

Легкий бетонный блок — заполненный бетоном — CB42

0.639

837

1666

Легкий бетонный блок — наполненный перлитом — CB43

0,220

837

1073

Легкий бетонный блок — бетон с частичным заполнением — CB44

0,486

837

1250

Легкий бетонный блок — бетон и перлит с наполнителем — CB45

0.360

837

1266

Гравий, постельные принадлежности и т. Д.

Каменная крошка

0.960

1000

1800

Гравий

0,360

840

1840

Грунт на гравийной основе

0,520

184

2050

Постельное белье из плитки

1.400

650

2100

Изоляционные материалы

Плита Eps

0.035

1400

25

Кремний

0,180

1004

700

Одеяло из стекловолокна

0,040

840

12

Стекловолоконная плита

0,035

1000

25

Плита из минерального волокна

0.035

1000

30

Фенольная пена

0,040

1400

30

Полиуретановая плита

0,025

1400

30

Уф-пена

0,040

1400

10

Плита из древесной шерсти

0.100

1000

500

Вермикулитовый изоляционный кирпич

0,270

837

700

Огнеупорный изоляционный бетон

0,250

837

1050

Стекловата

0.040

670

200

Thermalite — высокопрочный

0,190

1050

760

Thermalite ‘Turbo’

0,110

1050

480

Thermalite ‘Shield’ / ‘Smooth Face’

0.170

1050

650

Siporex

0,120

1004

550

P.V.C

0,160

1004

1379

Полистирол

0,030

1380

25

Твердая резина

0.150

1000

1200

Доска Cratherm

0,050

837

176

Уф-пена Два

0,030

1764

30

Уф-пена Два

0,030

1764

30

Облицовка из легкого металла

0.290

1000

1250

Плотный утеплитель для плит Eps (пенополистирол)

0,025

1400

30

Ячеистое стекло

0,050

800

136

Стекловолокно — органическое соединение

0.036

1000

100

Вспученный перлит — органическая связка

0,052

1300

16

Вспененная резина — жесткая

0,032

1700

72

Ячеистый полиуретан

0.023

1600

24

Клеточный полиизоцианурат

0,023

900

32

Сотовый фенол — минеральное волокно со связующим на основе смолы

0,042

700

240

плита волокна цемента — измельченная древесина со связующим

цемента оксисульфида магнезии

0.082

1300

350

Вермикулит вспученный

0,068

1300

120

Войлок и мембрана — Войлок — HF-E3

0,190

1674

1121

Войлок и мембрана — Отделка — HF-A6

0.415

1088

1249

Минеральная вата / волокно — Батт — IN01

0,043

837

10

Минеральная вата / волокно — наполнитель — IN11

0,046

837

10

Минеральная вата / волокно — наполнитель — IN12

0.046

837

11

Целлюлозный наполнитель — IN13

0,039

1381

48

Изоляционная плита

— HF-B2

0,043

1381

48

Изоляционная плита — HF-B5

0.043

837

32

Предварительно формованная минеральная плита — IN21

0,042

711

240

Пенополистирол — IN31

0,035

1213

29

Вспененный полиуретан — IN41

0.023

1590

24

Формальдегид мочевины — IN51

0,035

1255

11

Обшивка изоляционной плиты

— IN61

0,055

1297

288

Изоляционная плита для черепицы — IN63

0.058

1297

288

Изоляционная плита Обшивка основания гвоздя — IN64

0,064

1297

400

Предварительно формованная изоляция крыши — IN71

0,052

837

256

Металл

Сталь

50.000

480

7800

Медь

200,000

418

8900

Алюминий

160.000

896

2800

Облицовка из легкого металла

0,290

1000

1250

Стальной сайдинг — HF-A3

44.970

418

7690

Гипс

Штукатурка (плотная)

0.500

1000

1300

Гипс (легкий)

0,160

1000

600

Гипсокартон

0,160

840

950

Перлитный гипсокартон

0.180

837

800

Гипсовая штукатурка

0,420

837

1200

Перлитовая штукатурка

0,080

837

400

Штукатурка вермикулит

0.200

837

720

Гипсовая потолочная плитка

0,380

840

1120

Цементная штукатурка

0,720

800

1860

Перлитовая штукатурка

0,220

1300

720

Перлитовая штукатурка — песчано-заполнитель

0.810

800

1680

Цементная штукатурка — с песчаным заполнителем — CM03

0,721

837

1858

Гипсокартон / гипсовая плита — HF-E1

0,160

837

801

Гипсовый гипс легкий заполнитель — GP04

0.230

837

721

Гипсовая штукатурка — песчаный заполнитель — GP06

0,819

837

1682

Стяжки и штукатурки

Внешний рендеринг

0.500

1000

1300

Стяжка

0,410

840

1200

Гранолитная штукатурка / стяжка

0,870

837

2085

Штукатурка — HF-A1

0,721

837

2659

Пески, камни и почвы

Каменная крошка

0.960

1000

1800

Гравий

0,360

840

1840

Грунт на гравийной основе

0,520

184

2050

Песчаник

1,830

712

2200

Гранит (красный)

2.900

900

2650

Мрамор (белый)

2,770

802

2600

Культивируемая песчаная почва 12,5% D.W. Влажность

1,790

1190

1800

Обработанная песчаная почва 25,0% D.W. Влага

2,220

1480

2000

Культурно-глинистая почва 12,5% D.W. Влажность

1,180

1250

1800

Культурно-глинистая почва 25,0% D.W. Влажность

1,590

1550

2000

Культурная торфяная почва 133% D.W. Влага

0,290

3300

700

Культурная торфяная почва 366% D.W. Влажность

0,500

3650

1100

Сухой известняковый грунт

1,490

840

2180

Лондонская глина

1.410

1000

1900

Почва

1,729

837

1842

Камень — ST01

1,802

837

2243

Камень — HF-A3

1,435

1674

881

Терраццо — TZ01

1.802

837

2243

Плитка

Глиняная плитка

0.840

800

1900

Бетонная плитка

1.100

837

2100

Сланцевая плитка

2.000

753

2700

Пластиковая плитка

0,500

837

1950

Резиновые плитки

0.300

2000

1600

Пробковая плитка

0,080

1800

530

Асфальт / асбестовая плитка

0,550

837

1900

P.V.C. / Асбестовая плитка

0.850

837

2000

Плитка потолочная

0,056

1000

380

Гипсовая потолочная плитка

0,380

840

1120

Облицовка из легкого металла

0.290

1000

1250

Акустическая плитка — минеральное волокно

0,050

800

290

Акустическая плитка — AC01

0,057

1339

288

Акустическая плитка — HF-E5

0.061

2142

480

Плитка из полой глины — 1 ячейка — CT01

0,498

837

1121

Плитка из полой глины — 2 ячейки — CT03

0,571

837

1121

Плитка из полой глины — 3 ячейки — CT06

0.692

837

1121

Глиняная плитка — HF-C1

0,571

837

1121

Асфальтоукладчик — Глиняная плитка — CT11

1,802

837

1922

шифер — SL01

1.442

1464

1602

Древесина

Деревянные полы

0.140

1200

650

Фанера (легкая)

0,150

2500

560

Фанера (тяжелая)

0,150

1420

700

Деревянные блоки

0.140

1200

650

Плита из древесной шерсти

0,100

1000

500

Оргалит (средний)

0,080

2000

600

Оргалит (стандартный)

0.130

2000

900

Сосна (20% влажности)

0,140

2720

419

Пробковая доска

0,040

1888

160

ДСП

0,150

2093

800

Обшивка

0.140

2000

650

Дуб (Радиальный)

0,190

2390

700

Пробковая плитка

0,080

1800

530

Фанера — PW01

0,115

1213

545

Мягкое дерево — WD01

0.115

1381

513

Твердая древесина — WD11

0,158

1255

721

Дерево — HF-B7

0,121

837

593

Фанера — Дугласская пихта

0,120

1200

540

Гонт Древесина — WS01

0.115

1255

513

Прочность и теплопроводность легких строительных материалов

  • Açıkgöz F, Öz M (1980) Отчет о разведке пемзы в Невшехире, Ургупе, вокруг Каймаклы, MTA, Анкара (не опубликовано). [на турецком языке]

  • Алдуайдж Дж., Алшалех К., Хак М.Н., Эллайти К. (1999) Легкий бетон в горячих прибрежных районах. Cem Concr Compos 21: 453–458

    Статья Google Scholar

  • Аль-Хайят Х., Хак М.Н. (1998) Влияние начального отверждения на раннюю прочность и физические свойства легкого бетона.Cem Concr Res 28: 859–866

    Статья Google Scholar

  • ASTM 1045-90 (1990) Практика расчета свойств теплопередачи на основе измерений теплового потока в установившемся режиме. Американское общество испытаний и материалов, Пенсильвания, США

  • Atış CD (2003) Зольный бетон с большим объемом, высокой прочностью и низкой усадкой при высыхании. J Mater Civ Eng 15 (2): 153–156

    Статья Google Scholar

  • Gündüz L (1998) Технология пемзы, тома I и II.Факультет инженерии и архитектуры, Университет Сулеймана Демиреля, Испарта. [на турецком языке]

  • Международное общество механиков горных пород (ISRM) (1981) Испытания и мониторинг характеристик горных пород, Предлагаемые методы ISRM (Brown ET, ed). Pergamon Press, Oxford, 211 pp.

  • Janna SW (1986) Инженерная теплопередача. PWS Publisher, Boston 769 pp

    Google Scholar

  • Kakaç S (1998) Датчик нагрева в образцах.Издательство Tıp & Teknik, Анкара. [на турецком языке]

  • Kanca AC (1980) Теплоизоляция в зданиях, нет. 649, том 57/1. Публикации Министерства сельского хозяйства, Анкара. [на турецком языке]

    Google Scholar

  • Кылыч А., Атыш С.Д., Яшар Э., Озджан Ф. (2003) Высокопрочный легкий бетон, сделанный из шлакобетона, содержащего минеральные добавки. Cem Concr Res 33: 1595–1599

    Статья Google Scholar

  • Озкахраман Х.Т., Селвер Р., Ишик Е.С. (2004) Определение теплопроводности горных пород по скорости продольной волны.Int J Rock Mech Min Sci 41 (4): 703–708

    Статья Google Scholar

  • Popovics S (1992) Бетонные материалы, свойства, спецификации и испытания. Noyes Publications, Нью-Джерси

    Google Scholar

  • Россиньоло Дж. А., Агнеси М. В., Мораис Дж. А. (2003) Свойства высокоэффективного LWAC для сборных железобетонных конструкций с бразильскими легкими заполнителями. Cem Concr Compos 25: 77–82

    Статья Google Scholar

  • Толчай А., Яшар Э., Эрдоган Ю. (2004) Исследование возможности использования в качестве совокупности пемзы Невшехир, 5.Симпозиум по промышленным материалам, Горно-инженерная палата TMMOB, стр. 345–354. [на турецком языке]

  • Topcu IB (1997) Полулегкие бетоны, полученные из вулканических шлаков. Cem Concr Res 27: 15–21

    Статья Google Scholar

  • Турецкий институт стандартов (TSI) (1980) TS 706, Заполнитель для бетонов. TSI, Анкара

    Google Scholar

  • Яшар Э., Эрдоган Ю. (2001) Базальты Топраккале в производстве природных горных пород, 4.Симпозиум по промышленным материалам, стр. 87–96. [на турецком языке]

  • Яшар Э., Эрдоган Ю. (2004) Корреляция скорости звука с плотностью, прочностью на сжатие и модулем Юнга карбонатных пород. Int J Rock Mech Min Sci 41: 871–875

    Статья Google Scholar

  • Яшар Э., Эрдоган Ю.

  • alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *